WO2023199638A1 - Hot-stamp-formed article - Google Patents

Hot-stamp-formed article Download PDF

Info

Publication number
WO2023199638A1
WO2023199638A1 PCT/JP2023/007855 JP2023007855W WO2023199638A1 WO 2023199638 A1 WO2023199638 A1 WO 2023199638A1 JP 2023007855 W JP2023007855 W JP 2023007855W WO 2023199638 A1 WO2023199638 A1 WO 2023199638A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
content
region
stamped
Prior art date
Application number
PCT/JP2023/007855
Other languages
French (fr)
Japanese (ja)
Inventor
由梨 戸田
真吾 藤中
純 芳賀
祐馬 浅田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023199638A1 publication Critical patent/WO2023199638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a hot stamp molded article.
  • This application claims priority based on Japanese Patent Application No. 2022-067020 filed in Japan on April 14, 2022, the contents of which are incorporated herein.
  • Hot stamping technology is progressing, in which press forming is performed after heating the steel plate to a high temperature in the austenite region where the steel plate becomes soft.
  • Hot stamping is attracting attention as a technology that achieves both moldability into automobile parts and strength of automobile parts by performing quenching treatment in a mold at the same time as press working.
  • Patent Document 1 discloses a high-yield ratio, high-strength electrogalvanized steel sheet in which the amount of diffusible hydrogen in the steel is 0.20 mass ppm or less and excellent bendability.
  • Hydrogen embrittlement cracking is a phenomenon in which a steel member under high stress during use breaks down due to hydrogen penetrating into the steel from the external environment. This phenomenon is also called delayed fracture because of the manner in which the fracture occurs. It is generally known that hydrogen embrittlement cracking of a steel plate occurs more easily as the tensile strength of the steel plate increases. This is thought to be because the higher the tensile strength of the steel plate, the greater the stress remaining in the steel plate after forming the part. This susceptibility to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
  • Early fracture is a phenomenon in which fracture occurs at a stress lower than the tensile strength estimated from the hardness of the steel member. This susceptibility to early rupture is referred to as early rupture resistance.
  • Patent Document 1 bendability is considered, but hydrogen embrittlement resistance and early rupture resistance are not considered.
  • An object of the present invention is to provide a hot-stamped molded article having high strength and excellent hydrogen embrittlement resistance and early breakage resistance.
  • the hot stamp molded article according to one embodiment of the present invention has a chemical composition in mass %, C: more than 0.40%, less than 0.70%, Si: 0.010-3.00%, Mn: 0.60-3.00%, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.0200% or less, Al: 0.0010-0.5000%, Nb: 0.0010 to 0.100%, Ti: 0.010-0.200%, Cr: 0.01-0.80%, Mo: 0.0010-1.000%, B: 0.0005-0.0200%, Co: 0-4.00%, Ni: 0-3.00%, Cu: 0-3.00%, V: 0 to 3.00%, W: 0-3.00%, Ca: 0-1.000%, Mg: 0-1.000%, REM: 0-1.000%, Sb: 0 to 1.000%, Sn: 0-1.000%, Zr: 0 to 1.000%, As: 0
  • the hot-stamped molded article according to (1) above has the chemical composition in mass %, Co: 0.01-4.00%, Ni: 0.01 to 3.00%, Cu: 0.01-3.00%, V: 0.01 to 3.00%, W: 0.01-3.00%, Ca: 0.001-1.000%, Mg: 0.001-1.000%, REM: 0.001-1.000%, Sb: 0.001 to 1.000%, Sn: 0.001 to 1.000%, Zr: 0.001 to 1.000%, and As: 0.001 to 0.100% It may contain one or more selected from the group consisting of:
  • FIG. 3 is a diagram for explaining how to obtain a B-free index.
  • the present inventors have discovered that by reducing the standard deviation of the crystal grain size of prior austenite grains in the internal region, it is possible to improve the hydrogen embrittlement resistance and early rupture resistance of a hot stamped compact.
  • the present inventors improved hydrogen embrittlement resistance by generating a desired amount of bainite in the surface layer region, creating a texture with a desired crystal orientation, and setting a desired B removal index. We discovered that further improvements can be made.
  • the present inventors have found that in order to obtain a hot-stamped molded body having the above-mentioned characteristics, it is particularly effective to perform finish rolling and annealing under desired conditions when manufacturing a steel plate to be subjected to hot-stamping. did.
  • the hot stamp molded article according to this embodiment will be explained in detail.
  • the reason for limiting the chemical composition of the hot-stamped molded article according to this embodiment will be explained.
  • the numerically limited range described below with “ ⁇ ” in between includes the lower limit value and the upper limit value.
  • Numerical values indicated as “less than” or “greater than” do not include the value within the numerical range. All percentages regarding chemical composition indicate mass %.
  • the hot-stamped molded article according to this embodiment has a chemical composition in mass %: C: more than 0.40% and 0.70% or less, Si: 0.010 to 3.00%, Mn: 0.60 to 3.00%, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.0200% or less, Al: 0.0010 to 0.5000%, Nb: 0.0010-0.100%, Ti: 0.010-0.200%, Cr: 0.01-0.80%, Mo: 0.0010-1.000%, B: 0.0005-0. 0200%, and the remainder: contains Fe and impurities. Each element will be explained below.
  • C More than 0.40% and 0.70% or less C is an element that improves the strength of the hot stamp molded product. If the C content is less than 0.40%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the C content is set to exceed 0.40%. The C content is preferably 0.42% or more or 0.44% or more. On the other hand, if the C content exceeds 0.70%, the toughness of martensite is too low and excellent early rupture resistance cannot be obtained. Therefore, the C content is set to 0.70% or less. Preferably, the C content is 0.65% or less or 0.60% or less.
  • Si:0.010 ⁇ 3.00% Si is an element that improves the strength of the hot stamp molded product through solid solution strengthening. If the Si content is less than 0.010%, desired strength cannot be obtained. Therefore, the Si content is set to 0.010% or more.
  • the Si content is preferably 0.05% or more, 0.10% or more, or 0.15% or more.
  • the Si content is set to 3.00% or less.
  • the Si content is preferably 2.00% or less, 1.00% or less, or 0.70% or less.
  • Mn 0.60-3.00%
  • Mn is an element that promotes the transformation from prior austenite to pearlite in the hot rolled steel sheet having the chemical composition according to the present embodiment, and contributes to controlling the prior austenite grain size distribution of the hot stamped compact.
  • the Mn content is set to 0.60% or more.
  • the Mn content is preferably 0.70% or more or 1.00% or more.
  • the Mn content is set to 3.00% or less.
  • the Mn content is 2.50% or less or 2.30% or less.
  • P 0.100% or less
  • P is an impurity element, and when it segregates at grain boundaries, it becomes a starting point for fracture and deteriorates early rupture resistance, so the P content is set to 0.100% or less.
  • the P content is preferably 0.050% or less or 0.010% or less.
  • the lower limit of the P content is not particularly limited, but may be 0%. However, reducing the P content to less than 0.0001% significantly increases the cost of removing P, which is economically unfavorable. Therefore, the P content may be 0.0001% or more, 0.001% or more, or 0.005% or more.
  • S 0.0100% or less
  • S is an impurity element and forms inclusions in steel. Since this inclusion becomes a starting point for fracture and deteriorates early fracture resistance, the S content is set to 0.0100% or less.
  • the S content is preferably 0.0080% or less, 0.0050% or less, or 0.0030% or less.
  • the lower limit of the S content is not particularly limited, but may be 0%. However, if the S content is reduced to less than 0.0001%, the cost for removing S will increase significantly, which is economically unfavorable. Therefore, the S content may be 0.0001% or more, 0.0002% or more, 0.0003% or more, or 0.0010% or more.
  • N is an impurity element and forms nitrides in steel. Since this nitride becomes a starting point for fracture and deteriorates early fracture resistance, the N content is set to 0.0200% or less.
  • the N content is preferably 0.0150% or less, 0.0100% or less, 0.0060% or less, or 0.0040% or less.
  • the lower limit of the N content is not particularly limited, but may be 0%. However, reducing the N content to less than 0.0001% significantly increases the cost of removing N, which is economically unfavorable. Therefore, the N content may be 0.0001% or more or 0.0010% or more.
  • the O content is set to 0.0200% or less.
  • the O content is preferably 0.00100% or less, 0.0070% or less, or 0.0040% or less.
  • the O content may be 0%, but in order to disperse a large number of fine oxides during deoxidation of molten steel, the O content may be 0.0005% or more or 0.0010% or more.
  • Al 0.0010-0.5000%
  • Al is an element that has the effect of deoxidizing molten steel and making the steel sound.
  • the Al content is set to 0.0010% or more.
  • the Al content is preferably 0.0050% or more, 0.0100% or more, or 0.0300% or more.
  • the Al content is set to 0.5000% or less.
  • the Al content is preferably 0.4000% or less, 0.3000% or less, 0.2000% or less, or 0.1000% or less.
  • Nb 0.0010-0.100%
  • Nb is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. If the Nb content is less than 0.0010%, desired strength cannot be obtained. Therefore, the Nb content is set to 0.0010% or more. The Nb content is preferably 0.005% or more, 0.009% or more, or 0.015% or more. On the other hand, if the Nb content exceeds 0.100%, a large amount of carbonitrides will be generated in the steel, and the early breakage resistance of the hot-stamped body will deteriorate. Therefore, the Nb content is set to 0.100% or less. The Nb content is preferably 0.080% or less or 0.060% or less.
  • Ti 0.010-0.200%
  • Ti is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. If the Ti content is less than 0.010%, desired strength cannot be obtained. Therefore, the Ti content is set to 0.010% or more.
  • the Ti content is preferably 0.020% or more or 0.025% or more.
  • the Ti content is set to 0.200% or less.
  • the Ti content is preferably 0.150% or less, 0.100% or less, 0.080% or less, 0.060% or less, or 0.050% or less.
  • Cr is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. If the Cr content is less than 0.01%, desired strength cannot be obtained. Therefore, the Cr content is set to 0.01% or more.
  • the Cr content is preferably 0.10% or more, 0.15% or more, or 0.20% or more.
  • the Cr content is set to 0.80% or less.
  • the Cr content is preferably 0.70% or less, 0.50% or less, or 0.40% or less.
  • Mo 0.0010-1.000%
  • Mo is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. If the Mo content is less than 0.0010%, desired strength cannot be obtained. Therefore, the Mo content is set to 0.0010% or more.
  • the Mo content is preferably 0.010% or more, 0.050% or more, or 0.100% or more.
  • Mo content is set to 1.000% or less.
  • Mo content is preferably 0.800% or less, 0.600% or less, or 0.400% or less.
  • B 0.0005-0.0200%
  • B is an element that improves the hardenability of steel. If the B content is less than 0.0005%, desired strength cannot be obtained. Therefore, the B content is set to 0.0005% or more.
  • the B content is preferably 0.0010% or more or 0.0015% or more.
  • the B content exceeds 0.0200%, coarse intermetallic compounds are formed in the hot-stamped molded product, and the early rupture resistance deteriorates. Therefore, the B content is set to 0.0200% or less.
  • the B content is preferably 0.0150% or less, 0.0100% or less, 0.0080% or less, 0.0040% or less, or 0.0030% or less.
  • the remainder of the chemical composition of the hot-stamped molded body may be Fe and impurities.
  • impurities include elements that are unavoidably mixed in from steel raw materials or scraps and/or during the steel manufacturing process and are allowed within a range that does not impede the properties of the hot-stamped molded product according to the present embodiment.
  • the hot stamp molded product may contain the following elements as optional elements. When the following arbitrary elements are not included, the content is 0%.
  • Co is an element that improves the strength of the hot stamp molded product through solid solution strengthening.
  • the Co content is preferably 0.01% or more. More preferably, the Co content is 0.05% or more.
  • the Co content is set to 4.00% or less. If necessary, the upper limit of the Co content may be set to 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
  • Ni 0-3.00%
  • Ni has the effect of increasing the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping.
  • the Ni content is preferably 0.01% or more.
  • the Ni content is 3.00% or less. If necessary, the upper limit of the Ni content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
  • Cu 0-3.00%
  • Cu has the effect of increasing the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping.
  • the Cu content is preferably 0.01% or more.
  • the Cu content is more preferably 0.05% or more.
  • the Cu content is preferably 3.00% or less. If necessary, the upper limit of the Cu content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
  • V 0-3.00%
  • V has the effect of forming carbonitrides in the steel and improving the strength of the hot stamped product through precipitation strengthening.
  • the V content is preferably 0.01% or more.
  • the V content is more preferably 0.05% or more.
  • the V content is set to 3.00% or less. If necessary, the upper limit of the V content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
  • W 0-3.00% W has the effect of improving the strength of the hot stamp molded product.
  • the W content is preferably 0.01% or more.
  • the W content is preferably 0.05% or more.
  • the W content is set to 3.00% or less. If necessary, the upper limit of the W content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
  • Ca 0-1.000% Ca is an element that suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Ca content is preferably 0.001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the Ca content is set to 1.000% or less. If necessary, the upper limit of the Ca content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
  • Mg 0-1.000% Mg forms oxides and sulfides in molten steel, suppresses the formation of coarse MnS, disperses many fine oxides, refines the metal structure, and contributes to improving early fracture resistance. In order to reliably obtain these effects, it is preferable that the Mg content is 0.001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the Mg content is set to 1.000% or less. If necessary, the upper limit of the Mg content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
  • REM 0 ⁇ 1.000% REM suppresses the formation of oxides that become the starting point of fracture, and contributes to improving early fracture resistance.
  • the REM content is preferably 0.001% or more.
  • the REM content is set to 1.000% or less. If necessary, the upper limit of the REM content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
  • REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
  • Sb 0-1.000% Sb suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Sb content is preferably 0.001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sb content is set to 1.000% or less. If necessary, the upper limit of the Sb content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
  • Sn 0-1.000% Sn suppresses the formation of oxides that become a starting point for fracture, and contributes to improving early fracture resistance. To ensure this effect, the Sn content is preferably 0.001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sn content is set to 1.000% or less. If necessary, the upper limit of the Sn content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
  • Zr 0-1.000% Zr suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Zr content is preferably 0.001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the Zr content is set to 1.000% or less. If necessary, the upper limit of the Zr content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
  • the As content is preferably 0.001% or more.
  • the As content is set to 0.100% or less. If necessary, the upper limit of the As content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
  • the chemical composition of the hot-stamped molded article described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Note that C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method. If the surface of the hot-stamped body is provided with a plating layer, paint film, etc., the chemical composition is analyzed after removing the plating layer, paint film, etc. by mechanical grinding.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the hot-stamped molded product according to the present embodiment has a depth from the surface of the hot-stamped molded product to a depth of 4/16 of the plate thickness (thickness of the hot-stamped molded product) to a depth of 5/16 of the plate thickness from the surface.
  • the standard deviation of the crystal grain size of prior austenite grains is 5.0 ⁇ m or less
  • the surface region which is a region from the surface to a depth of 1/25 of the plate thickness, bainite
  • the area ratio of is more than 10%
  • the maximum value of the polar density of the texture is 4.0 or less
  • the B removal index is 0.05 or more.
  • the internal region refers to a region from a depth of 4/16 of the plate thickness from the surface of the hot stamp molded product to a depth of 5/16 of the plate thickness from the surface.
  • the surface layer region refers to a region from the surface of the hot stamp molded product to a depth of 1/25 of the plate thickness from the surface.
  • the "surface” here refers to the interface between the plating layer and the base steel plate, and for convenience, the plating from the hot-stamped molded product is Exclude layers, paint films, etc.
  • the surface of the hot-stamped molded product has a plating layer, a paint film, etc., as described below, for convenience, the area where the iron concentration is less than 90% by mass in GD-OES measurement, that is, the plating layers, paint films, etc. are excluded from the hot-stamped molded body, and the measurement point where the iron concentration is 90% by mass (that is, the interface between the base steel material and the plating layer, etc.) is regarded as the surface of the hot-stamped molded body.
  • the plating layer, paint film, etc. were excluded from the hot-stamped product, but the thickness of the plating layer, paint film, etc.
  • the plate thickness (thickness) of the molded body may be the plate thickness (thickness) including the plating layer, paint film, etc.
  • Standard deviation of the crystal grain size of prior austenite grains 5.0 ⁇ m or less.
  • the lower limit of the standard deviation of the crystal grain size of prior austenite grains does not need to be particularly limited, but may be 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m or 1.5 ⁇ m.
  • the standard deviation of the grain size of prior austenite grains is obtained by the following method.
  • a sample is cut out from an arbitrary position 50 mm or more away from the end surface of the hot-stamped compact (if the sample cannot be taken from this position, avoid the end) so that the thickness cross section parallel to the rolling direction can be observed.
  • the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
  • an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used.
  • an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it.
  • the degree of vacuum in the EBSD analyzer may be 9.6 ⁇ 10 ⁇ 5 Pa or less
  • the acceleration voltage may be 15 kV
  • the irradiation current level may be 13.
  • the crystal orientation of prior austenite grains is calculated from the crystal orientation relationship between general prior austenite grains and crystal grains with a body-centered structure after transformation, and this is used to calculate prior austenite grains. After calculating the average crystal grain size of the grains, its standard deviation is calculated.
  • the method for calculating the crystal orientation of prior austenite grains is as follows. First, a crystal orientation map of prior austenite grains is created using the method described in Non-Patent Document 1. For one of the prior austenite grains included in the observation field, the average value of the shortest diameter and the longest diameter is calculated, and the average value is taken as the grain size of the prior austenite grain. Perform the above operation for all prior austenite grains, excluding prior austenite grains whose entire crystal grains are not included in the photographic field of view, such as at the edges of the photographic field of view, to determine the grain size of all prior austenite grains in the relevant photographic field of view. .
  • the rolling direction of the hot stamp molded body is determined by the following method. First, a test piece is taken from an arbitrary position 50 mm or more away from the end of the hot-stamped molded body so that the cross-section of the plate thickness can be observed. After finishing the thickness section of the sampled test piece by mirror polishing, it is observed using an optical microscope at 100x, 200x, 500x, and 1000x magnification. Depending on the size of the inclusion, select an observation result with an appropriate magnification that allows the size of the inclusion to be measured.
  • the observation range is a width of 500 ⁇ m or more and the full thickness of the plate, and areas with low brightness are determined to be inclusions.
  • the same method as above is applied to the plane parallel to the plane rotated in 5° increments in the range of 0° to 180° with the thickness direction as the axis, using the thickness cross section initially observed by the above method as a reference.
  • the average value of the lengths of the long axes of the plurality of inclusions in each cross section is calculated for each cross section.
  • the cross section in which the average length of the long axes of the obtained inclusions is maximum is identified.
  • a direction parallel to the longitudinal direction of the inclusion in the cross section is determined as the rolling direction.
  • the metal structure of the internal region is not particularly limited as long as the desired strength, hydrogen embrittlement resistance, and early fracture resistance can be obtained, but for example, the metal structure in the internal region is 90 to 100% in total (90% or more, 100% (below) martensite and bainite, and 0 to 10% (0% or more, 10% or less) of ferrite and retained austenite.
  • martensite in this embodiment includes untempered martensite (fresh martensite) and tempered martensite.
  • the metallographic structure of the hot-stamped compact is measured by the following method.
  • an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used.
  • an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it.
  • the degree of vacuum in the EBSD analyzer may be 9.6 ⁇ 10 ⁇ 5 Pa or less
  • the acceleration voltage may be 15 kV
  • the irradiation current level may be 13.
  • the area ratio of the remaining region (the area where "Grain Average Misorientation" exceeds 0.5°) is calculated, and this area ratio is taken as the total area ratio of martensite and bainite.
  • the dislocation density in the surface region can be reduced.
  • the intrusion of hydrogen from the external environment can be suppressed, and the hydrogen embrittlement resistance of the hot-stamped molded article can be improved.
  • the area ratio of bainite in the surface layer region is set to exceed 10%.
  • it is 20% or more, 40% or more, or 60% or more.
  • the upper limit of the area ratio of bainite is not particularly limited, but may be 100%, 90%, or 80%.
  • the metal structure of the surface layer region includes 0 to 90% (0% or more, 90% or less) of martensite, and a total of 0 to 65% (0% or more, 65% or less) of ferrite and residual Austenite may be included.
  • the area ratio of the metal structure is calculated for the surface layer region (the region from the surface to a depth of 1/25 of the plate thickness) by the following method.
  • an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used.
  • an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. You can use At this time, the degree of vacuum in the EBSD analyzer may be 9.6 ⁇ 10 ⁇ 5 Pa or less, the acceleration voltage may be 15 kV, and the irradiation current level may be 13.
  • the area ratio of bainite is obtained by calculating the area ratio of the extracted bainite. Subsequently, a region where "Grain Average Misorientation" is 0.5° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite. The remaining area (area where "Grain Average Misorientation" exceeds 0.75°) is extracted as martensite, and the area rate of martensite is calculated by calculating the area rate of martensite.
  • the maximum value of the polar density of the texture is 4.0 or less
  • the maximum value of the polar density of the texture in the surface layer region is set to 4.0 or less.
  • it is 3.5 or less, 3.0 or less, or 2.5 or less.
  • the lower limit of the polar density of the texture in the surface layer region is not particularly limited, but may be set to 1.0 or 1.2.
  • the texture in the surface layer region is obtained for the surface layer region (the region from the surface to a depth of 1/25 of the plate thickness) by the following method.
  • a sample is cut out from an arbitrary position 50 mm or more away from the end surface of the hot-stamped compact (if the sample cannot be taken from this position, avoid the end) so that the thickness cross section parallel to the rolling direction can be observed.
  • the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
  • an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it.
  • the degree of vacuum in the EBSD analyzer may be 9.6 ⁇ 10 ⁇ 5 Pa or less
  • the acceleration voltage may be 15 kV
  • the irradiation current level may be 13.
  • the obtained crystal orientation information is used to calculate a harmonic function (Harmonic Series) for crystal grains whose crystal structure is bcc. Intensity calculations are performed using (Expansion). At this time, the expansion order is 16, and the half width when applied to Gaussian distribution is 5°.
  • B removal index 0.05 or more
  • the B removal index is an index that quantitatively represents the amount of decrease in B concentration in the surface layer region.
  • the strength of the prior austenite before transformation is reduced, the deformability of the prior austenite grains is improved, and randomly oriented crystal grains are more likely to be generated in the surface layer region.
  • the de-B index is set to 0.05 or more. Preferably, it is 0.20 or more, 0.30 or more, or 0.35 or more.
  • the upper limit of the B removal index is not particularly limited, but may be 1.00, 0.80, or 0.60.
  • the B removal index in the surface layer region is obtained by the following method.
  • Glow Discharge Optical Emission Spectrometry (GD-OES: Marcus type high frequency glow discharge optical emission spectrometer, GD-PROFILER-HR manufactured by Horiba, Ltd.) was used to determine the element concentration distribution in the thickness direction of the hot stamped compact. Measure.
  • the measurement conditions are an analysis diameter of 4 mm ⁇ , a sputtering rate of 4 ⁇ m/min, an argon pressure of 600 Pa, an RF output of 35 W, and a measurement interval of 0.02 ⁇ m or less. Measurements are performed for all elements contained in the hot stamped compact.
  • the hot-stamped molded body has a plating layer or the like on the surface
  • the "surface” here refers to the interface between the plating layer or the like and the base steel plate. If the surface has a plating layer, paint film, etc., mechanical polishing or Part or all of the plating layer, paint, etc. is removed by chemical polishing, and then subjected to GD-OES measurement. In the GD-OES measurement, the measurement point where the iron concentration is 90% by mass is regarded as the surface of the hot stamped body.
  • the hot-stamped molded body may be referred to as a base material steel plate.
  • the B concentration is measured from the surface of the hot-stamped molded article to a depth of at least 100 ⁇ m from the surface.
  • the absolute value of the difference between the average B concentration in the 80 to 100 ⁇ m region and the maximum measured B concentration in the 80 to 100 ⁇ m region is 0.0006. % by mass or less
  • the absolute value of the difference between the average value of the B concentration in the 80 to 100 ⁇ m region and the minimum value of the measured B concentration in the 80 to 100 ⁇ m region is 0.0006 mass % or less
  • the measurement of the B concentration in the depth direction is completed at a depth of 100 ⁇ m from the surface.
  • the measurement of the B concentration in the depth direction is continued. Then, each time a new B concentration measurement value is obtained in the depth direction, calculate the average value of the B concentration in an area of 20 ⁇ m from the deepest part to the surface side, and from the deepest part to the surface side.
  • the absolute value of the difference between the average value of B concentration in a region of 20 ⁇ m from the deepest part to the maximum value of the measured value of B concentration in a region of 20 ⁇ m from the deepest part to the surface side is 0.0006% by mass or less, and , the absolute value of the difference between the average value of the B concentration in the region of 20 ⁇ m from the deepest part to the surface side and the minimum value of the measured value of B concentration in the region of 20 ⁇ m from the deepest part to the surface side is 0. If it is .0006% by mass or less, the measurement of the B concentration in the depth direction ends at that position.
  • the measured value of the B concentration is obtained at a depth of 150 ⁇ m from the surface, the average value of the B concentration in the region 130 to 150 ⁇ m deep from the surface and the measured value of the B concentration in the region 130 to 150 ⁇ m deep from the surface.
  • the area from the deepest part (the deepest position where the B concentration used for calculating the B removal index was obtained) to the region 20 ⁇ m from the deepest part to the surface side is The average value of the B concentration (hereinafter, the average value of the B concentration in this region will be referred to as the average B concentration at the deepest part of 20 ⁇ m) is used in the calculation of the B removal index below.
  • the above-mentioned termination condition for B concentration measurement in the depth direction is satisfied in a region 100 to 200 ⁇ m deep from the surface.
  • the shallowest depth position may be found, and if that position is found, the B removal index may be calculated without using the B concentration measurement results at positions deeper than that depth position.
  • the B concentration may be measured from the surface to a depth of 200 ⁇ m, and in this case, in a region 100 ⁇ m or more from the surface, the shallowest depth position that satisfies the termination condition for the B concentration measurement in the depth direction. If there is, it is assumed that the measurement has ended at that depth position, and the B removal index is calculated.
  • the amount of decrease in B concentration per unit depth in the region from the deepest part to 20 ⁇ m from the deepest part to the surface side of the hot stamped compact (the B concentration at each measurement point was subtracted from the average B concentration at the deepest part of 20 ⁇ m) value) is calculated, and the integral value of the product of the unit depth and the amount of decrease in B concentration is determined to determine the area of the B-deficient region (area of region A in FIG. 1).
  • the product of the average B concentration at the deepest part of 20 ⁇ m and the length of 200 ⁇ m is calculated as a reference area (area of rectangular region B in FIG. 1).
  • the value obtained by dividing the B deficient area (area of region A) by the reference area (area of region B) is defined as the B depletion index (area of region A/area of region B).
  • the reference area (area of region B) is calculated by assuming that the length by which the average B concentration at the deepest part of 20 ⁇ m is multiplied is 200 ⁇ m.
  • the hot stamp molded article according to this embodiment may have a plating layer on the surface.
  • Plating layers include aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot-dip galvanizing layer, electrolytic galvanizing layer, alloyed hot-dip galvanizing layer, zinc-nickel plating layer, aluminum-magnesium-zinc system. Examples include a plating layer.
  • the hot stamping steel plate has the above-mentioned chemical composition.
  • the metal structure of the steel sheet for hot stamping is not particularly limited as long as the desired strength, hydrogen embrittlement resistance, and early fracture resistance can be obtained after hot stamping, but for example, in terms of area percentage, ferrite: 5 to 90%, bainite. and martensite: 0 to 100%, pearlite: 10 to 95%, and retained austenite: 0 to 5%.
  • iron carbides, alloy carbides, intermetallic compounds, and inclusions may be included.
  • the steel plate for hot stamping may have a plating layer on the surface.
  • Plating layers include aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot-dip galvanizing layer, electrolytic galvanizing layer, alloyed hot-dip galvanizing layer, zinc-nickel plating layer, aluminum-magnesium-zinc system. Examples include a plating layer.
  • the rolling reduction ratio (final rolling ratio) of the final pass is preferably 20% or more.
  • the final rolling reduction ratio here is ⁇ (t 0 - t 1 )/t 0 ⁇ 100, where the plate thickness before rolling in the final pass is t 0 and the plate thickness after rolling in the final pass is t 1 . It can be expressed as (%).
  • the early breakage resistance of the hot-stamped molded product can be improved. More preferably, it is 30% or more, 40% or more, or 45% or more.
  • the Mn content is 0.60% or more, as in the chemical composition of the hot-stamped molded product according to the present embodiment, in order to preferably control the texture of the surface layer region of the hot-stamped molded product, it is necessary to perform finish rolling. It is important to increase the final rolling reduction as described above.
  • the conditions for heating before hot rolling, rough rolling, winding, and cold rolling are not particularly limited, and may be general conditions.
  • the winding temperature may be 750° C. or lower.
  • the coiling temperature By setting the coiling temperature to 750° C. or lower, it is possible to suppress ferrite from being arranged in a connected manner in the hot-rolled steel sheet after rolling, and pearlite is uniformly dispersed.
  • This pearlite becomes a reverse transformation site of prior austenite during heating during hot stamping. Therefore, when pearlite is uniformly dispersed, the standard deviation of the crystal grain size of prior austenite grains in the hot-stamped molded body becomes small. As a result, the early breakage resistance of the hot-stamped molded product can be improved.
  • the coil after winding may be subjected to a softening heat treatment.
  • the method of softening heat treatment is not particularly limited, and general conditions may be used.
  • Annealing After cold rolling, it is preferable to perform annealing by heating in an oxidizing atmosphere for 15 seconds or more. Normally, it is preferable to perform annealing in a reducing atmosphere in order to suppress scale formation, but in this embodiment, scale formation on the steel plate surface is promoted by performing annealing in an oxidizing atmosphere.
  • the scale formed on the surface of the steel sheet becomes an oxidation source, and C and B in the surface layer region are oxidized. Since the oxidized C and B separate from the surface layer of the steel sheet, the amounts of C and B are reduced in the surface layer region. As a result, the strength of the prior austenite grains decreases and becomes easily deformed, making it easier to generate randomly oriented crystal grains.
  • the heating temperature during annealing may be in the range of 730 to 900°C, and by staying in this heating temperature range for 15 seconds or more, scale formation can be promoted while suppressing scale peeling. can.
  • the time for annealing is preferably 100 seconds or more, more preferably 200 seconds or more, and even more preferably 300 seconds or more.
  • annealing for more than 3,600 seconds is undesirable because the prior austenite grain size becomes coarser, the grain boundary diffusion rate of B decreases, B removal does not proceed, and the B removal index does not exceed 0.05. . Therefore, the annealing time is preferably 3600 seconds or less. Note that, after annealing in an oxidizing atmosphere, the annealing process may be performed again in an oxidizing atmosphere or a non-oxidizing atmosphere unless a treatment for removing oxide scale (for example, pickling) is performed.
  • the oxidizing atmosphere may be any heating atmosphere that generates oxide scale on the surface layer of the steel sheet, and may be a general condition.
  • a gas combustion atmosphere it is preferable to create an atmosphere in which the mixture ratio of air and fuel (air-fuel ratio) is controlled to 0.80 or more, and more preferably to be controlled to exceed 1.00.
  • air-fuel ratio air-fuel ratio
  • the oxidized scale on the surface of the steel sheet remain in subsequent steps. That is, it is preferable to perform hot stamping, which will be described later, with the oxide scale remaining. Oxide scale is removed by shot blasting after hot stamping.
  • oxide scale remains at the interface between the base steel sheet and the plating layer.
  • the oxide scale disappears after hot stamping due to an alloying reaction during heating before hot stamping.
  • a hot-stamped molded body according to the present embodiment is obtained by hot-stamping the hot-stamping steel plate manufactured by the method described above.
  • the hot stamping conditions are not particularly limited, but it is preferable, for example, to heat the steel plate for hot stamping to a temperature range of 800° C. to 1000° C. and hold it in this temperature range for 60 to 600 seconds. If the heating temperature is less than 800°C, austenitization will be insufficient, the desired prior austenite grain size distribution cannot be obtained, and the early rupture resistance may deteriorate. On the other hand, if the heating temperature exceeds 1000° C., the grains of prior austenite will grow excessively, making it impossible to obtain the desired prior austenite grain size distribution, and the early rupture resistance may deteriorate.
  • the holding time is less than 60 seconds, austenitization becomes insufficient, a desired prior austenite particle size distribution cannot be obtained, and the early rupture resistance may deteriorate. If the holding time exceeds 600 seconds, grains of prior austenite will grow excessively, making it impossible to obtain a desired prior austenite grain size distribution, and the early rupture resistance may deteriorate.
  • the heating atmosphere is not particularly limited and may be under normal conditions, such as the atmosphere, a gas combustion atmosphere with a controlled ratio of air and fuel, or a nitrogen atmosphere, and the dew point of these gases is controlled. Also good.
  • hot stamping is performed. After hot stamping, cooling may be performed to a temperature range of 250°C or lower at an average cooling rate of 20°C/s or higher.
  • heating methods before hot stamping include heating in an electric furnace, gas furnace, etc., flame heating, electrical heating, high frequency heating, induction heating, and the like.
  • a hot stamp molded article according to the present embodiment is obtained.
  • a tempering treatment at 130 to 600° C. may be performed after hot stamp molding, or a baking hardening treatment may be performed after painting.
  • a portion of the hot stamp molded body may be tempered by laser irradiation or the like to provide a partially softened region.
  • the conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
  • the obtained steel plate for hot stamping is heated to a temperature range higher than 800°C in a furnace continuously supplied with nitrogen gas (hot stamp heating), held in the temperature range, hot stamped, and then heated to 250°C.
  • Hot stamping was performed under conditions of cooling at an average cooling rate of 20° C./s or more to the following temperature range.
  • a gas combustion atmosphere was used in which the mixture ratio of air and fuel (air-fuel ratio) was controlled to 0.85.
  • heating in a furnace adjusted to a different atmosphere, reannealing, plating, tempering, hot stamp heating, etc. were performed.
  • the underline in the table indicates that it is outside the scope of the present invention, that it falls outside the preferred manufacturing conditions, or that the characteristic value is unfavorable.
  • the metallographic structure including the standard deviation of the crystal grain size of austenite grains), deboronization index, and ultra-density of the texture of the hot-stamped compact were measured by the methods described above.
  • the mechanical properties of the hot-stamped molded product were evaluated by the following method.
  • the hydrogen embrittlement resistance of the hot-stamped molded product was evaluated by the following method.
  • a test piece with a length of 68 mm and a width of 6 mm is taken from any position of the hot stamp molded body, and the edges of the test piece are polished using #200 to #1500 silicon carbide paper, and the grain size is 1 to 1.
  • a mirror finish was obtained using a liquid in which 6 ⁇ m diamond powder was dispersed in diluted liquid such as alcohol and pure water. Furthermore, the corners of the test pieces were chamfered using #200 to #1500 silicon carbide paper.
  • a stress of 800 MPa or more was applied to the test piece, and the test piece was immersed in 1 liter of hydrochloric acid adjusted to pH 4 at room temperature for 48 hours, and the presence or absence of cracks was determined.
  • a case in which no cracking occurred even under a load stress of 800 MPa or more was judged to be acceptable.
  • the case where there was cracking at a load stress of 800 MPa was determined to be a failure and was written as "Bad" in the table.
  • the early rupture resistance properties are calculated by dividing the tensile strength of the hot-stamped molded product obtained by the above method by the value obtained by multiplying the Vickers hardness obtained by the following method by 3.3 (tensile strength/ (Vickers hardness x 3.3)). When this value was 0.60 or more, it was determined to be excellent in early breakage resistance and was determined to pass, and when this value was less than 0.60, it was determined to be rejected.
  • the value obtained by multiplying the Vickers hardness by 3.3 is the tensile strength estimated from the hardness, and if the measured value of the tensile strength is 0.60 times or more of the estimated tensile strength, then the early rupture resistance is can be judged to be excellent.
  • the Vickers hardness used to evaluate early breakage resistance was obtained by the following method. First, a sample was cut out so that a cross section perpendicular to the surface (thickness cross section) could be observed from an arbitrary position 50 mm or more away from the end surface of the hot stamp molded body. The sample was sized to allow observation of 10 mm in the rolling direction, although it depends on the measuring device. After polishing the cross section of the sample using #600 to #1500 silicon carbide paper, it was finished to a mirror surface using a liquid in which diamond powder with a particle size of 1 to 6 ⁇ m was dispersed in a diluted solution such as alcohol and pure water. .
  • the hot-stamped molded articles according to the present invention have high strength and excellent hydrogen embrittlement resistance and early fracture resistance.
  • the hot-stamped molded article as a comparative example is inferior in one or more properties.

Abstract

This hot-stamp-formed article has a specified chemical composition, in which the standard deviation of crystal grain diameters of prior austenite grains in an internal region is 5.0 μm or less, the area ratio of bainite in a surface layer region is more than 10%, the maximum value of a pole density in a texture is 4.0 or less, and the de-B index is 0.05 or more.

Description

ホットスタンプ成形体hot stamp molded body
 本発明は、ホットスタンプ成形体に関する。
 本願は、2022年4月14日に、日本に出願された特願2022-067020号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot stamp molded article.
This application claims priority based on Japanese Patent Application No. 2022-067020 filed in Japan on April 14, 2022, the contents of which are incorporated herein.
 近年、環境保護及び省資源化の観点から自動車車体の軽量化が求められており、自動車部材へ高強度鋼板が適用されている。自動車部材はプレス成形によって製造されるが、鋼板の高強度化に伴い成形荷重が増加するだけでなく、成形性が低下する。そのため、高強度鋼板においては、複雑な形状の部材への成形性が課題となる。 In recent years, there has been a demand for lighter automobile bodies from the viewpoint of environmental protection and resource conservation, and high-strength steel plates are being applied to automobile parts. Automotive parts are manufactured by press forming, but as the strength of steel plates increases, not only does the forming load increase, but also formability decreases. Therefore, in high-strength steel sheets, formability into members with complex shapes becomes an issue.
 上記のような課題を解決するため、鋼板が軟質化するオーステナイト域の高温まで加熱した後にプレス成形を実施するホットスタンプ技術の適用が進められている。ホットスタンプは、プレス加工と同時に、金型内において焼入れ処理を実施することで、自動車部材への成形性と自動車部材の強度とを両立する技術として注目されている。 In order to solve the above-mentioned problems, the application of hot stamping technology is progressing, in which press forming is performed after heating the steel plate to a high temperature in the austenite region where the steel plate becomes soft. Hot stamping is attracting attention as a technology that achieves both moldability into automobile parts and strength of automobile parts by performing quenching treatment in a mold at the same time as press working.
 例えば、特許文献1には、鋼中の拡散性水素量が0.20質量ppm以下であり、曲げ性に優れた高降伏比高強度電気亜鉛系めっき鋼板が開示されている。 For example, Patent Document 1 discloses a high-yield ratio, high-strength electrogalvanized steel sheet in which the amount of diffusible hydrogen in the steel is 0.20 mass ppm or less and excellent bendability.
国際公開第2020/079925号International Publication No. 2020/079925
 自動車車体を従来よりもさらに軽量化するためには、鋼板をより高強度化することが有効である。鋼板の高強度化のためには、鋼板の焼入性を高めるためにMn含有量を高める方法があるが、Mn含有量を高くすると、水素脆化割れおよび早期破断が課題となる。 In order to further reduce the weight of automobile bodies than before, it is effective to increase the strength of steel plates. In order to increase the strength of a steel plate, there is a method of increasing the Mn content in order to improve the hardenability of the steel plate, but increasing the Mn content poses problems such as hydrogen embrittlement cracking and early fracture.
 水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、外部環境から鋼中に侵入した水素に起因して、破壊が起こる現象である。この現象は、破壊の発生形態から、遅れ破壊とも呼称される。一般に、鋼板の水素脆化割れは、鋼板の引張強さが上昇するほど発生し易くなることが知られている。これは、鋼板の引張強さが高いほど、部品成形後に鋼板に残留する応力が増大するためであると考えられている。この水素脆化割れ(遅れ破壊)に対する感受性のことを耐水素脆化特性と呼称する。 Hydrogen embrittlement cracking is a phenomenon in which a steel member under high stress during use breaks down due to hydrogen penetrating into the steel from the external environment. This phenomenon is also called delayed fracture because of the manner in which the fracture occurs. It is generally known that hydrogen embrittlement cracking of a steel plate occurs more easily as the tensile strength of the steel plate increases. This is thought to be because the higher the tensile strength of the steel plate, the greater the stress remaining in the steel plate after forming the part. This susceptibility to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
 早期破断とは、鋼部材の硬さから推定される引張強さよりも低い応力で破断に至る現象である。この早期破断に対する感受性のことを耐早期破断特性と称する。 Early fracture is a phenomenon in which fracture occurs at a stress lower than the tensile strength estimated from the hardness of the steel member. This susceptibility to early rupture is referred to as early rupture resistance.
 特許文献1では、曲げ性については考慮されているが、耐水素脆化特性および耐早期破断特性については考慮されていない。 In Patent Document 1, bendability is considered, but hydrogen embrittlement resistance and early rupture resistance are not considered.
 本発明は、上記課題に鑑みてなされたものである。本発明は、高い強度を有し、且つ優れた耐水素脆化特性および耐早期破断特性を有するホットスタンプ成形体を提供することを課題とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a hot-stamped molded article having high strength and excellent hydrogen embrittlement resistance and early breakage resistance.
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ成形体は、化学組成が、質量%で、
C :0.40%超、0.70%以下、
Si:0.010~3.00%、
Mn:0.60~3.00%、
P :0.100%以下、
S :0.0100%以下、
N :0.0200%以下、
O :0.0200%以下、
Al:0.0010~0.5000%、
Nb:0.0010~0.100%、
Ti:0.010~0.200%、
Cr:0.01~0.80%、
Mo:0.0010~1.000%、
B :0.0005~0.0200%、
Co:0~4.00%、
Ni:0~3.00%、
Cu:0~3.00%、
V :0~3.00%、
W :0~3.00%、
Ca:0~1.000%、
Mg:0~1.000%、
REM:0~1.000%、
Sb:0~1.000%、
Sn:0~1.000%、
Zr:0~1.000%、
As:0~0.100%、並びに、
残部:Feおよび不純物であり、
 表面から板厚の4/16深さから、前記表面から前記板厚の5/16深さまでの領域である内部領域において、
  旧オーステナイト粒の結晶粒径の標準偏差が5.0μm以下であり、
 前記表面から、前記表面から前記板厚の1/25深さまでの領域である表層領域において、
  ベイナイトの面積率が10%超であり、
  集合組織の極密度の最大値が4.0以下であり、
  脱B指標が0.05以上である。
(2)上記(1)に記載のホットスタンプ成形体は、前記化学組成が、質量%で、
Co:0.01~4.00%、
Ni:0.01~3.00%、
Cu:0.01~3.00%、
V :0.01~3.00%、
W :0.01~3.00%、
Ca:0.001~1.000%、
Mg:0.001~1.000%、
REM:0.001~1.000%、
Sb:0.001~1.000%、
Sn:0.001~1.000%、
Zr:0.001~1.000%、および
As:0.001~0.100%
からなる群から選択される1種または2種以上を含有してもよい。
The gist of the invention is as follows.
(1) The hot stamp molded article according to one embodiment of the present invention has a chemical composition in mass %,
C: more than 0.40%, less than 0.70%,
Si: 0.010-3.00%,
Mn: 0.60-3.00%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0200% or less,
O: 0.0200% or less,
Al: 0.0010-0.5000%,
Nb: 0.0010 to 0.100%,
Ti: 0.010-0.200%,
Cr: 0.01-0.80%,
Mo: 0.0010-1.000%,
B: 0.0005-0.0200%,
Co: 0-4.00%,
Ni: 0-3.00%,
Cu: 0-3.00%,
V: 0 to 3.00%,
W: 0-3.00%,
Ca: 0-1.000%,
Mg: 0-1.000%,
REM: 0-1.000%,
Sb: 0 to 1.000%,
Sn: 0-1.000%,
Zr: 0 to 1.000%,
As: 0 to 0.100%, and
The remainder: Fe and impurities,
In an internal region that is a region from a depth of 4/16 of the plate thickness from the surface to a depth of 5/16 of the plate thickness from the surface,
The standard deviation of the crystal grain size of prior austenite grains is 5.0 μm or less,
In a surface layer region that is a region from the surface to a depth of 1/25 of the plate thickness,
The area ratio of bainite is more than 10%,
The maximum value of the polar density of the texture is 4.0 or less,
The anti-B index is 0.05 or more.
(2) The hot-stamped molded article according to (1) above has the chemical composition in mass %,
Co: 0.01-4.00%,
Ni: 0.01 to 3.00%,
Cu: 0.01-3.00%,
V: 0.01 to 3.00%,
W: 0.01-3.00%,
Ca: 0.001-1.000%,
Mg: 0.001-1.000%,
REM: 0.001-1.000%,
Sb: 0.001 to 1.000%,
Sn: 0.001 to 1.000%,
Zr: 0.001 to 1.000%, and As: 0.001 to 0.100%
It may contain one or more selected from the group consisting of:
 本発明に係る上記態様によれば、高い強度を有し、且つ優れた耐水素脆化特性および耐早期破断特性を有するホットスタンプ成形体を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-stamped molded article that has high strength and excellent hydrogen embrittlement resistance and early breakage resistance.
脱B指標の求め方を説明するための図である。FIG. 3 is a diagram for explaining how to obtain a B-free index.
 本発明者らは、内部領域における旧オーステナイト粒の結晶粒径の標準偏差を小さくすることで、ホットスタンプ成形体の耐水素脆化特性および耐早期破断特性を向上できることを知見した。また、本発明者らは、表層領域において、所望量のベイナイトを生成させること、所望の結晶方位を持つ集合組織とすること、且つ所望の脱B指標とすることで、耐水素脆化特性を更に向上できることを知見した。 The present inventors have discovered that by reducing the standard deviation of the crystal grain size of prior austenite grains in the internal region, it is possible to improve the hydrogen embrittlement resistance and early rupture resistance of a hot stamped compact. In addition, the present inventors improved hydrogen embrittlement resistance by generating a desired amount of bainite in the surface layer region, creating a texture with a desired crystal orientation, and setting a desired B removal index. We discovered that further improvements can be made.
 本発明者らは、上記特徴を有するホットスタンプ成形体を得るためには、特に、ホットスタンプに供する鋼板の製造時に、所望の条件で仕上げ圧延および焼鈍を行うことが効果的であることを知見した。 The present inventors have found that in order to obtain a hot-stamped molded body having the above-mentioned characteristics, it is particularly effective to perform finish rolling and annealing under desired conditions when manufacturing a steel plate to be subjected to hot-stamping. did.
 以下、本実施形態に係るホットスタンプ成形体に詳細に説明する。まず、本実施形態に係るホットスタンプ成形体の化学組成の限定理由について説明する。
 なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての%は全て質量%を示す。
Hereinafter, the hot stamp molded article according to this embodiment will be explained in detail. First, the reason for limiting the chemical composition of the hot-stamped molded article according to this embodiment will be explained.
Note that the numerically limited range described below with "~" in between includes the lower limit value and the upper limit value. Numerical values indicated as "less than" or "greater than" do not include the value within the numerical range. All percentages regarding chemical composition indicate mass %.
 本実施形態に係るホットスタンプ成形体は、化学組成が、質量%で、C:0.40%超、0.70%以下、Si:0.010~3.00%、Mn:0.60~3.00%、P:0.100%以下、S:0.0100%以下、N:0.0200%以下、O:0.0200%以下、Al:0.0010~0.5000%、Nb:0.0010~0.100%、Ti:0.010~0.200%、Cr:0.01~0.80%、Mo:0.0010~1.000%、B:0.0005~0.0200%、並びに、残部:Feおよび不純物を含有する。
 以下、各元素について説明する。
The hot-stamped molded article according to this embodiment has a chemical composition in mass %: C: more than 0.40% and 0.70% or less, Si: 0.010 to 3.00%, Mn: 0.60 to 3.00%, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.0200% or less, Al: 0.0010 to 0.5000%, Nb: 0.0010-0.100%, Ti: 0.010-0.200%, Cr: 0.01-0.80%, Mo: 0.0010-1.000%, B: 0.0005-0. 0200%, and the remainder: contains Fe and impurities.
Each element will be explained below.
 C:0.40%超、0.70%以下
 Cは、ホットスタンプ成形体の強度を向上させる元素である。C含有量が0.40%以下では、ホットスタンプ成形体において所望の強度を得ることができない。そのため、C含有量は0.40%超とする。C含有量は、好ましくは0.42%以上または0.44%以上である。
 一方、C含有量が0.70%超では、マルテンサイトの靭性が低すぎて優れた耐早期破断特性を得ることができない。そのため、C含有量は0.70%以下とする。好ましくは、C含有量は、0.65%以下または0.60%以下である。
C: More than 0.40% and 0.70% or less C is an element that improves the strength of the hot stamp molded product. If the C content is less than 0.40%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the C content is set to exceed 0.40%. The C content is preferably 0.42% or more or 0.44% or more.
On the other hand, if the C content exceeds 0.70%, the toughness of martensite is too low and excellent early rupture resistance cannot be obtained. Therefore, the C content is set to 0.70% or less. Preferably, the C content is 0.65% or less or 0.60% or less.
 Si:0.010~3.00%
 Siは、固溶強化により、ホットスタンプ成形体の強度を向上する元素である。Si含有量が0.010%未満では、所望の強度を得ることができない。そのため、Si含有量は0.010%以上とする。Si含有量は、好ましくは0.05%以上、0.10%以上または0.15%以上である。
 一方、Si含有量が3.00%超では、フェライト量が増加し、所望の金属組織を得ることができない。そのため、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.00%以下、1.00%以下または0.70%以下である。
Si:0.010~3.00%
Si is an element that improves the strength of the hot stamp molded product through solid solution strengthening. If the Si content is less than 0.010%, desired strength cannot be obtained. Therefore, the Si content is set to 0.010% or more. The Si content is preferably 0.05% or more, 0.10% or more, or 0.15% or more.
On the other hand, if the Si content exceeds 3.00%, the amount of ferrite increases, making it impossible to obtain the desired metal structure. Therefore, the Si content is set to 3.00% or less. The Si content is preferably 2.00% or less, 1.00% or less, or 0.70% or less.
 Mn:0.60~3.00%
 Mnは、本実施形態に係る化学組成を有する熱延鋼板において旧オーステナイトからパーライトへの変態を促進させ、ホットスタンプ成形体の旧オーステナイト粒径分布の制御に寄与する元素である。旧オーステナイト粒の結晶粒径の標準偏差を所望の範囲とするために、Mn含有量は0.60%以上とする。Mn含有量は、好ましくは0.70%以上または1.00%以上である。
 一方、Mn含有量が3.00%超であると、本実施形態に係る化学組成を有する熱延鋼板において旧オーステナイトからパーライトへの変態が促進されすぎてしまい、ホットスタンプ成形体において旧オーステナイト粒の結晶粒径の標準偏差を所望の範囲とすることができない。そのため、Mn含有量は3.00%以下とする。好ましくは、Mn含有量は2.50%以下または2.30%以下である。
Mn: 0.60-3.00%
Mn is an element that promotes the transformation from prior austenite to pearlite in the hot rolled steel sheet having the chemical composition according to the present embodiment, and contributes to controlling the prior austenite grain size distribution of the hot stamped compact. In order to keep the standard deviation of the crystal grain size of prior austenite grains within a desired range, the Mn content is set to 0.60% or more. The Mn content is preferably 0.70% or more or 1.00% or more.
On the other hand, if the Mn content exceeds 3.00%, the transformation from prior austenite to pearlite in the hot-rolled steel sheet having the chemical composition according to the present embodiment is excessively promoted, and prior austenite grains in the hot stamped body are It is not possible to set the standard deviation of the crystal grain size within the desired range. Therefore, the Mn content is set to 3.00% or less. Preferably, the Mn content is 2.50% or less or 2.30% or less.
 P:0.100%以下
 Pは、不純物元素であり、粒界に偏析することで破壊の起点となり耐早期破断特性を劣化させるため、P含有量は0.100%以下とする。P含有量は、好ましくは0.050%以下または0.010%以下である。
 P含有量の下限は特に限定しないが、0%であってもよい。ただし、P含有量を0.0001%未満に低減すると、脱Pコストが大幅に上昇し、経済的に好ましくない。そのため、P含有量は0.0001%以上、0.001%以上または0.005%以上としてもよい。
P: 0.100% or less P is an impurity element, and when it segregates at grain boundaries, it becomes a starting point for fracture and deteriorates early rupture resistance, so the P content is set to 0.100% or less. The P content is preferably 0.050% or less or 0.010% or less.
The lower limit of the P content is not particularly limited, but may be 0%. However, reducing the P content to less than 0.0001% significantly increases the cost of removing P, which is economically unfavorable. Therefore, the P content may be 0.0001% or more, 0.001% or more, or 0.005% or more.
 S:0.0100%以下
 Sは、不純物元素であり、鋼中に介在物を形成する。この介在物は破壊の起点となり耐早期破断特性を劣化させるため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下、0.0050%以下または0.0030%以下である。
 S含有量の下限は特に限定しないが、0%であってもよい。ただし、S含有量を0.0001%未満に低減すると、脱Sコストが大幅に上昇し、経済的に好ましくない。そのため、S含有量は0.0001%以上、0.0002%以上、0.0003%以上または0.0010%以上としてもよい。
S: 0.0100% or less S is an impurity element and forms inclusions in steel. Since this inclusion becomes a starting point for fracture and deteriorates early fracture resistance, the S content is set to 0.0100% or less. The S content is preferably 0.0080% or less, 0.0050% or less, or 0.0030% or less.
The lower limit of the S content is not particularly limited, but may be 0%. However, if the S content is reduced to less than 0.0001%, the cost for removing S will increase significantly, which is economically unfavorable. Therefore, the S content may be 0.0001% or more, 0.0002% or more, 0.0003% or more, or 0.0010% or more.
 N:0.0200%以下
 Nは、不純物元素であり、鋼中に窒化物を形成する。この窒化物は破壊の起点となり耐早期破断特性を劣化させるため、N含有量は0.0200%以下とする。N含有量は、好ましくは0.0150%以下、0.0100%以下、0.0060%以下または0.0040%以下である。
 N含有量の下限は特に限定しないが、0%であってもよい。ただし、N含有量を0.0001%未満に低減すると、脱Nコストが大幅に上昇し、経済的に好ましくない。そのため、N含有量は0.0001%以上または0.0010%以上としてもよい。
N: 0.0200% or less N is an impurity element and forms nitrides in steel. Since this nitride becomes a starting point for fracture and deteriorates early fracture resistance, the N content is set to 0.0200% or less. The N content is preferably 0.0150% or less, 0.0100% or less, 0.0060% or less, or 0.0040% or less.
The lower limit of the N content is not particularly limited, but may be 0%. However, reducing the N content to less than 0.0001% significantly increases the cost of removing N, which is economically unfavorable. Therefore, the N content may be 0.0001% or more or 0.0010% or more.
O:0.0200%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、ホットスタンプ成形体の耐早期破断特性を劣化させる。そのため、O含有量は0.0200%以下とする。O含有量は、0.00100%以下、0.0070%以下または0.0040%以下とすることが好ましい。
 O含有量は0%であってもよいが、溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上または0.0010%以上としてもよい。
O: 0.0200% or less When O is contained in a large amount in steel, it forms coarse oxides that become a starting point for fracture, and deteriorates the early breakage resistance of the hot-stamped molded product. Therefore, the O content is set to 0.0200% or less. The O content is preferably 0.00100% or less, 0.0070% or less, or 0.0040% or less.
The O content may be 0%, but in order to disperse a large number of fine oxides during deoxidation of molten steel, the O content may be 0.0005% or more or 0.0010% or more.
 Al:0.0010~0.5000%
 Alは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。Al含有量が0.0010%未満では、脱酸が十分に行われず、粗大な酸化物が生成してり耐早期破断特性を劣化させる。そのため、Al含有量は0.0010%以上とする。Al含有量は、好ましくは0.0050%以上、0.0100%以上または0.0300%以上である。
 一方、Al含有量が0.5000%超であると、鋼中に粗大な酸化物が生成し、ホットスタンプ成形体の耐早期破断特性が低下する。そのため、Al含有量は0.5000%以下とする。Al含有量は、好ましくは0.4000%以下、0.3000%以下0.2000%以下または0.1000%以下である。
Al: 0.0010-0.5000%
Al is an element that has the effect of deoxidizing molten steel and making the steel sound. When the Al content is less than 0.0010%, deoxidation is not performed sufficiently, and coarse oxides are generated, which deteriorates the early rupture resistance. Therefore, the Al content is set to 0.0010% or more. The Al content is preferably 0.0050% or more, 0.0100% or more, or 0.0300% or more.
On the other hand, if the Al content exceeds 0.5000%, coarse oxides are generated in the steel, and the early breakage resistance of the hot-stamped body is reduced. Therefore, the Al content is set to 0.5000% or less. The Al content is preferably 0.4000% or less, 0.3000% or less, 0.2000% or less, or 0.1000% or less.
 Nb:0.0010~0.100%
 Nbは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する元素である。Nb含有量が0.0010%未満であると、所望の強度を得ることができない。そのため、Nb含有量は0.0010%以上とする。Nb含有量は、好ましくは0.005%以上、0.009%以上または0.015%以上である。
 一方、Nb含有量が0.100%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の耐早期破断特性が劣化する。そのため、Nb含有量は0.100%以下とする。Nb含有量は、好ましくは0.080%以下または0.060%以下である。
Nb: 0.0010-0.100%
Nb is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. If the Nb content is less than 0.0010%, desired strength cannot be obtained. Therefore, the Nb content is set to 0.0010% or more. The Nb content is preferably 0.005% or more, 0.009% or more, or 0.015% or more.
On the other hand, if the Nb content exceeds 0.100%, a large amount of carbonitrides will be generated in the steel, and the early breakage resistance of the hot-stamped body will deteriorate. Therefore, the Nb content is set to 0.100% or less. The Nb content is preferably 0.080% or less or 0.060% or less.
 Ti:0.010~0.200%
 Tiは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する元素である。Ti含有量が0.010%未満であると、所望の強度を得ることができない。そのため、Ti含有量は0.010%以上とする。Ti含有量は、好ましくは0.020%以上または0.025%以上である。
 一方、Ti含有量が0.200%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の耐早期破断特性が劣化する。そのため、Ti含有量は0.200%以下とする。Ti含有量は、好ましくは0.150%以下、0.100%以下、0.080%以下、0.060%以下または0.050%以下である。
Ti: 0.010-0.200%
Ti is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. If the Ti content is less than 0.010%, desired strength cannot be obtained. Therefore, the Ti content is set to 0.010% or more. The Ti content is preferably 0.020% or more or 0.025% or more.
On the other hand, if the Ti content exceeds 0.200%, a large amount of carbonitrides will be generated in the steel, and the early breakage resistance of the hot stamped body will deteriorate. Therefore, the Ti content is set to 0.200% or less. The Ti content is preferably 0.150% or less, 0.100% or less, 0.080% or less, 0.060% or less, or 0.050% or less.
 Cr:0.01~0.80%
 Crは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。Cr含有量が0.01%未満であると、所望の強度を得ることができない。そのため、Cr含有量は0.01%以上とする。Cr含有量は、好ましくは0.10%以上、0.15%以上または0.20%以上とする。
 一方、Cr含有量が0.80%超であると、ホットスタンプ成形体において粗大な金属間化合物が形成され、耐早期破断特性が劣化する。そのため、Cr含有量は0.80%以下とする。Cr含有量は、好ましくは0.70%以下、0.50%以下または0.40%以下である。
Cr:0.01~0.80%
Cr is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. If the Cr content is less than 0.01%, desired strength cannot be obtained. Therefore, the Cr content is set to 0.01% or more. The Cr content is preferably 0.10% or more, 0.15% or more, or 0.20% or more.
On the other hand, if the Cr content is more than 0.80%, coarse intermetallic compounds are formed in the hot-stamped molded product, and the early rupture resistance deteriorates. Therefore, the Cr content is set to 0.80% or less. The Cr content is preferably 0.70% or less, 0.50% or less, or 0.40% or less.
 Mo:0.0010~1.000%
 Moは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。Mo含有量が0.0010%未満であると、所望の強度を得ることができない。そのため、Mo含有量は0.0010%以上とする。Mo含有量は、好ましくは0.010%以上、0.050%以上または0.100%以上とする。
 一方、Mo含有量が1.000%超であると、ホットスタンプ成形体において粗大な金属間化合物が形成され、耐早期破断特性が劣化する。そのため、Mo含有量は1.000%以下とする。Mo含有量は、好ましくは0.800%以下、0.600%以下または0.400%以下である。
Mo: 0.0010-1.000%
Mo is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. If the Mo content is less than 0.0010%, desired strength cannot be obtained. Therefore, the Mo content is set to 0.0010% or more. The Mo content is preferably 0.010% or more, 0.050% or more, or 0.100% or more.
On the other hand, if the Mo content exceeds 1.000%, coarse intermetallic compounds are formed in the hot-stamped molded product, and the early rupture resistance deteriorates. Therefore, the Mo content is set to 1.000% or less. Mo content is preferably 0.800% or less, 0.600% or less, or 0.400% or less.
 B:0.0005~0.0200%
 Bは、鋼の焼き入れ性を向上させる元素である。B含有量が0.0005%未満であると、所望の強度を得ることができない。そのため、B含有量は0.0005%以上とする。B含有量は、好ましくは0.0010%以上または0.0015%以上とする。
 一方、B含有量が0.0200%超であると、ホットスタンプ成形体において粗大な金属間化合物が形成され、耐早期破断特性が劣化する。そのため、B含有量は0.0200%以下とする。B含有量は、好ましくは0.0150%以下、0.0100%以下、0.0080%以下、0.0040%以下または0.0030%以下である。
B: 0.0005-0.0200%
B is an element that improves the hardenability of steel. If the B content is less than 0.0005%, desired strength cannot be obtained. Therefore, the B content is set to 0.0005% or more. The B content is preferably 0.0010% or more or 0.0015% or more.
On the other hand, if the B content exceeds 0.0200%, coarse intermetallic compounds are formed in the hot-stamped molded product, and the early rupture resistance deteriorates. Therefore, the B content is set to 0.0200% or less. The B content is preferably 0.0150% or less, 0.0100% or less, 0.0080% or less, 0.0040% or less, or 0.0030% or less.
 ホットスタンプ成形体の化学組成の残部は、Fe及び不純物であってもよい。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程で不可避的に混入し、本実施形態に係るホットスタンプ成形体の特性を阻害しない範囲で許容される元素が例示される。 The remainder of the chemical composition of the hot-stamped molded body may be Fe and impurities. Examples of impurities include elements that are unavoidably mixed in from steel raw materials or scraps and/or during the steel manufacturing process and are allowed within a range that does not impede the properties of the hot-stamped molded product according to the present embodiment.
 ホットスタンプ成形体は、任意元素として、以下の元素を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。 The hot stamp molded product may contain the following elements as optional elements. When the following arbitrary elements are not included, the content is 0%.
 Co:0~4.00%
 Coは、固溶強化により、ホットスタンプ成形体の強度を向上させる元素である。この効果を確実に得る場合、Co含有量は0.01%以上とすることが好ましい。Co含有量は0.05%以上とすることがより好ましい。
 一方、多量に含有させても上記効果は飽和するため、Co含有量は4.00%以下とする。必要に応じて、Co含有量の上限を1.00%、0.50%、0.10%、0.05%又は0.02%としてもよい。
Co: 0-4.00%
Co is an element that improves the strength of the hot stamp molded product through solid solution strengthening. To ensure this effect, the Co content is preferably 0.01% or more. More preferably, the Co content is 0.05% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Co content is set to 4.00% or less. If necessary, the upper limit of the Co content may be set to 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
 Ni:0~3.00%
 Niは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める作用を有する。この効果を確実に得る場合、Ni含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Ni含有量は3.00%以下とすることが好ましい。必要に応じて、Ni含有量の上限を1.50%、1.00%、0.50%、0.10%、0.05%又は0.02%としてもよい。
Ni: 0-3.00%
Ni has the effect of increasing the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Ni content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if Ni is contained in a large amount, it is preferable that the Ni content is 3.00% or less. If necessary, the upper limit of the Ni content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
 Cu:0~3.00%
 Cuは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める作用を有する。この効果を確実に得る場合、Cu含有量を0.01%以上とすることが好ましい。Cu含有量は、0.05%以上とすることがより好ましい。
 一方、多量に含有させても上記効果は飽和するため、Cu含有量は3.00%以下とすることが好ましい。必要に応じて、Cu含有量の上限を1.50%、1.00%、0.50%、0.10%、0.05%又は0.02%としてもよい。
Cu: 0-3.00%
Cu has the effect of increasing the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Cu content is preferably 0.01% or more. The Cu content is more preferably 0.05% or more.
On the other hand, since the above effects are saturated even if Cu is contained in a large amount, the Cu content is preferably 3.00% or less. If necessary, the upper limit of the Cu content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
 V:0~3.00%
 Vは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する効果を有する。この効果を確実に得る場合、V含有量を0.01%以上とすることが好ましい。V含有量は、0.05%以上とすることがより好ましい。
 一方、V含有量を3.00%超とした場合には、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の耐早期破断特性が劣化する。そのため、V含有量は3.00%以下とする。必要に応じて、V含有量の上限を1.50%、1.00%、0.50%、0.10%、0.05%又は0.02%としてもよい。
V: 0-3.00%
V has the effect of forming carbonitrides in the steel and improving the strength of the hot stamped product through precipitation strengthening. To ensure this effect, the V content is preferably 0.01% or more. The V content is more preferably 0.05% or more.
On the other hand, when the V content exceeds 3.00%, a large amount of carbonitrides are generated in the steel, and the early rupture resistance of the hot-stamped body deteriorates. Therefore, the V content is set to 3.00% or less. If necessary, the upper limit of the V content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
 W:0~3.00%
 Wは、ホットスタンプ成形体の強度を向上する効果を有する。この効果を確実に得る場合、W含有量を0.01%以上とすることが好ましい。W含有量は、0.05%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、W含有量は3.00%以下とする。必要に応じて、W含有量の上限を1.50%、1.00%、0.50%、0.10%、0.05%又は0.02%としてもよい。
W: 0-3.00%
W has the effect of improving the strength of the hot stamp molded product. To ensure this effect, the W content is preferably 0.01% or more. The W content is preferably 0.05% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the W content is set to 3.00% or less. If necessary, the upper limit of the W content may be set to 1.50%, 1.00%, 0.50%, 0.10%, 0.05% or 0.02%.
 Ca:0~1.000%
 Caは、破壊の起点となる酸化物の生成を抑制する元素であり、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、Ca含有量を0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Ca含有量は1.000%以下とする。必要に応じて、Ca含有量の上限を0.100%、0.010%、0.005%、0.001%、0.0005%又は0.0002%としてもよい。
Ca: 0-1.000%
Ca is an element that suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Ca content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Ca content is set to 1.000% or less. If necessary, the upper limit of the Ca content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
 Mg:0~1.000%
 Mgは、溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、金属組織を微細化し、耐早期破断特性の向上に寄与する。これらの効果を確実に得る場合、Mg含有量を0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Mg含有量は、1.000%以下とする。必要に応じて、Mg含有量の上限を0.100%、0.010%、0.005%、0.001%、0.0005%又は0.0002%としてもよい。
Mg: 0-1.000%
Mg forms oxides and sulfides in molten steel, suppresses the formation of coarse MnS, disperses many fine oxides, refines the metal structure, and contributes to improving early fracture resistance. In order to reliably obtain these effects, it is preferable that the Mg content is 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Mg content is set to 1.000% or less. If necessary, the upper limit of the Mg content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
 REM:0~1.000%
 REMは、破壊の起点となる酸化物の生成を抑制し、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、REM含有量を0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、REM含有量は1.000%以下とする。必要に応じて、REM含有量の上限を0.100%、0.010%、0.005%、0.001%、0.0005%又は0.0002%としてもよい。
 なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
REM: 0~1.000%
REM suppresses the formation of oxides that become the starting point of fracture, and contributes to improving early fracture resistance. To ensure this effect, the REM content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the REM content is set to 1.000% or less. If necessary, the upper limit of the REM content may be set to 0.100%, 0.010%, 0.005%, 0.001%, 0.0005% or 0.0002%.
In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
 Sb:0~1.000%
 Sbは、破壊の起点となる酸化物の生成を抑制し、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、Sb含有量は0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Sb含有量は1.000%以下とする。必要に応じて、Sb含有量の上限を0.100%、0.050%、0.020%、0.010%、0.005%又は0.002%としてもよい。
Sb: 0-1.000%
Sb suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Sb content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sb content is set to 1.000% or less. If necessary, the upper limit of the Sb content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
 Sn:0~1.000%
 Snは、破壊の起点となる酸化物の生成を抑制し、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、Sn含有量は0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Sn含有量は1.000%以下とする。必要に応じて、Sn含有量の上限を0.100%、0.050%、0.020%、0.010%、0.005%又は0.002%としてもよい。
Sn: 0-1.000%
Sn suppresses the formation of oxides that become a starting point for fracture, and contributes to improving early fracture resistance. To ensure this effect, the Sn content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sn content is set to 1.000% or less. If necessary, the upper limit of the Sn content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
 Zr:0~1.000%
 Zrは、破壊の起点となる酸化物の生成を抑制し、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、Zr含有量を0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Zr含有量は1.000%以下とする。必要に応じて、Zr含有量の上限を0.100%、0.050%、0.020%、0.010%、0.005%又は0.002%としてもよい。
Zr: 0-1.000%
Zr suppresses the formation of oxides that become fracture starting points, and contributes to improving early fracture resistance. To ensure this effect, the Zr content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Zr content is set to 1.000% or less. If necessary, the upper limit of the Zr content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
 As:0~0.100%
 Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、耐早期破断特性の向上に寄与する。この効果を確実に得る場合、As含有量を0.001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、As含有量は0.100%以下とする。必要に応じて、As含有量の上限を0.100%、0.050%、0.020%、0.010%、0.005%又は0.002%としてもよい。
As: 0~0.100%
By lowering the austenite single-phase temperature, As makes prior austenite grains finer and contributes to improving early fracture resistance. To ensure this effect, the As content is preferably 0.001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the As content is set to 0.100% or less. If necessary, the upper limit of the As content may be set to 0.100%, 0.050%, 0.020%, 0.010%, 0.005% or 0.002%.
 上述したホットスタンプ成形体の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 ホットスタンプ成形体の表面にめっき層や塗装皮膜などを備える場合は、機械研削によりめっき層や塗装皮膜などを除去してから化学組成の分析を行う。
The chemical composition of the hot-stamped molded article described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Note that C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
If the surface of the hot-stamped body is provided with a plating layer, paint film, etc., the chemical composition is analyzed after removing the plating layer, paint film, etc. by mechanical grinding.
 次に、本実施形態に係るホットスタンプ成形体の金属組織について説明する。
 本実施形態に係るホットスタンプ成形体は、ホットスタンプ成形体の表面から板厚(ホットスタンプ成形体の厚さ)の4/16深さから、前記表面から前記板厚の5/16深さまでの領域である内部領域において、旧オーステナイト粒の結晶粒径の標準偏差が5.0μm以下であり、前記表面から、前記表面から前記板厚の1/25深さまでの領域である表層領域において、ベイナイトの面積率が10%超であり、集合組織の極密度の最大値が4.0以下であり、脱B指標が0.05以上である。
Next, the metallographic structure of the hot-stamped molded body according to this embodiment will be explained.
The hot-stamped molded product according to the present embodiment has a depth from the surface of the hot-stamped molded product to a depth of 4/16 of the plate thickness (thickness of the hot-stamped molded product) to a depth of 5/16 of the plate thickness from the surface. In the inner region, which is a region, the standard deviation of the crystal grain size of prior austenite grains is 5.0 μm or less, and in the surface region, which is a region from the surface to a depth of 1/25 of the plate thickness, bainite The area ratio of is more than 10%, the maximum value of the polar density of the texture is 4.0 or less, and the B removal index is 0.05 or more.
 本実施形態において内部領域とは、ホットスタンプ成形体の表面から板厚の4/16深さから、表面から板厚の5/16深さまでの領域のことを示す。
 また、表層領域とは、ホットスタンプ成形体の表面から、表面から板厚の1/25深さまでの領域のことを示す。
 なお、ホットスタンプ成形体が表面にめっき層や塗装膜等を有する場合、ここでいう「表面」とはめっき層と母材鋼板との界面のことをいい、便宜的にホットスタンプ成形体からめっき層や塗装皮膜等を除外する。具体的には、ホットスタンプ成形体の表面にめっき層や塗装皮膜等を有する場合には、後述の通り、便宜的に、GD-OES測定において鉄濃度が90質量%未満となる領域、つまりめっき層や塗装皮膜等をホットスタンプ成形体から除外し、鉄濃度が90質量%となる測定点(つまり、母材鋼材とめっき層などとの界面)をホットスタンプ成形体の表面とみなす。なお、前述のとおり、ホットスタンプ成形体からめっき層や塗装皮膜等を除外したが、ホットスタンプ成形体の板厚(厚さ)に対し、めっき層や塗装皮膜等の厚さが非常に小さく無視できる場合(ただし、めっき層だけの場合は、めっき層の厚さは非常に小さい場合が多く、殆どの場合無視できる。)、ホットスタンプ成形体の板厚(厚さ)の測定時には、ホットスタンプ成形体の板厚(厚さ)をめっき層や塗装皮膜等を含んだ板厚(厚さ)としてもよい。
In this embodiment, the internal region refers to a region from a depth of 4/16 of the plate thickness from the surface of the hot stamp molded product to a depth of 5/16 of the plate thickness from the surface.
Further, the surface layer region refers to a region from the surface of the hot stamp molded product to a depth of 1/25 of the plate thickness from the surface.
In addition, when the hot-stamped molded product has a plating layer, a paint film, etc. on the surface, the "surface" here refers to the interface between the plating layer and the base steel plate, and for convenience, the plating from the hot-stamped molded product is Exclude layers, paint films, etc. Specifically, when the surface of the hot-stamped molded product has a plating layer, a paint film, etc., as described below, for convenience, the area where the iron concentration is less than 90% by mass in GD-OES measurement, that is, the plating layers, paint films, etc. are excluded from the hot-stamped molded body, and the measurement point where the iron concentration is 90% by mass (that is, the interface between the base steel material and the plating layer, etc.) is regarded as the surface of the hot-stamped molded body. As mentioned above, the plating layer, paint film, etc. were excluded from the hot-stamped product, but the thickness of the plating layer, paint film, etc. is very small compared to the plate thickness (thickness) of the hot-stamped product, so it can be ignored. If possible (however, in the case of only a plating layer, the thickness of the plating layer is often very small and can be ignored in most cases), when measuring the plate thickness (thickness) of a hot stamp molded product, use a hot stamp. The plate thickness (thickness) of the molded body may be the plate thickness (thickness) including the plating layer, paint film, etc.
(内部領域)
旧オーステナイト粒の結晶粒径の標準偏差:5.0μm以下
 内部領域における旧オーステナイト粒の結晶粒径のばらつきを低減する、すなわち標準偏差を低減することで、局所的な残留応力の上昇を抑制することができる。その結果、ホットスタンプ成形体の耐水素脆化特性および耐早期破断特性を向上することができる。旧オーステナイト粒の結晶粒径の標準偏差が5.0μm超であると、耐水素脆化特性および耐早期破断特性が劣化する。そのため、旧オーステナイト粒の結晶粒径の標準偏差は5.0μm以下とする。好ましくは、4.0μm以下、3.0μm以下または2.5μm以下である。
 旧オーステナイト粒の結晶粒径の標準偏差の下限は特に限定する必要は無いが、0.1μm、0.5μm、1.0μmまたは1.5μmとしてもよい。
(Internal area)
Standard deviation of the crystal grain size of prior austenite grains: 5.0 μm or less By reducing the variation in the crystal grain size of prior austenite grains in the internal region, that is, by reducing the standard deviation, suppress the increase in local residual stress. be able to. As a result, the hydrogen embrittlement resistance and early breakage resistance of the hot-stamped molded article can be improved. If the standard deviation of the crystal grain size of prior austenite grains is more than 5.0 μm, the hydrogen embrittlement resistance and early rupture resistance deteriorate. Therefore, the standard deviation of the crystal grain size of prior austenite grains is set to 5.0 μm or less. Preferably, it is 4.0 μm or less, 3.0 μm or less, or 2.5 μm or less.
The lower limit of the standard deviation of the crystal grain size of prior austenite grains does not need to be particularly limited, but may be 0.1 μm, 0.5 μm, 1.0 μm or 1.5 μm.
 旧オーステナイト粒の結晶粒径の標準偏差は、以下の方法により得る。
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。
The standard deviation of the grain size of prior austenite grains is obtained by the following method.
A sample is cut out from an arbitrary position 50 mm or more away from the end surface of the hot-stamped compact (if the sample cannot be taken from this position, avoid the end) so that the thickness cross section parallel to the rolling direction can be observed. Although the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
 上記サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、電解研磨により観察面を仕上げる。サンプル断面の長手方向の任意の位置において、長さ50μm、表面から板厚の4/16深さ位置から、表面から板厚の5/16深さまでの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されるEBSD解析装置を用いればよく、例えばJEOL製JSM-7001FとTSL製DVC5型検出器とで構成されたEBSD解析装置を用いればよい。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13としてもよい。 After polishing the cross section of the sample above using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 μm in diluted liquid such as alcohol or pure water. . Next, the observation surface is finished by electrolytic polishing. At any position in the longitudinal direction of the sample cross section, a region with a length of 50 μm and a depth of 4/16 of the plate thickness from the surface to a depth of 5/16 of the plate thickness from the surface is measured with an electron beam at a measurement interval of 0.1 μm. Obtain crystal orientation information by measuring by backscattering diffraction method. For measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used. For example, an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it. At this time, the degree of vacuum in the EBSD analyzer may be 9.6×10 −5 Pa or less, the acceleration voltage may be 15 kV, and the irradiation current level may be 13.
 得られた結晶方位情報を用いて、一般的な旧オーステナイト粒と変態後の体心構造を持つ結晶粒との結晶方位関係から、旧オーステナイト粒の結晶方位を計算し、これを用いて旧オーステナイト粒の平均結晶粒径を算出した上で、その標準偏差を算出する。 Using the obtained crystal orientation information, the crystal orientation of prior austenite grains is calculated from the crystal orientation relationship between general prior austenite grains and crystal grains with a body-centered structure after transformation, and this is used to calculate prior austenite grains. After calculating the average crystal grain size of the grains, its standard deviation is calculated.
 旧オーステナイト粒の結晶方位を計算する方法は、以下の方法とする。まず、非特許文献1に記載の方法で旧オーステナイト粒の結晶方位マップを作成する。観察視野に含まれる旧オーステナイト粒の1つについて、最も短い直径と最も長い直径との平均値を算出し、その平均値を当該旧オーステナイト粒の粒径とする。撮影視野の端部等、結晶粒の全体が撮影視野に含まれていない旧オーステナイト粒を除き、全ての旧オーステナイト粒について上記操作を行い、当該撮影視野における全ての旧オーステナイト粒の粒径を求める。得られた全旧オーステナイト粒の粒径から標準偏差を算出することで、旧オーステナイト粒の粒径の標準偏差を得る。
 なお、本実施形態では、ホットスタンプ成形体の圧延方向は、以下の方法により判別する。
 まず、ホットスタンプ成形体の端部から50mm以上離れた任意の位置から、板厚断面が観察できるように試験片を採取する。採取した試験片の板厚断面を鏡面研磨で仕上げた後、光学顕微鏡を用いて、倍率100倍、200倍、500倍、1000倍のそれぞれの倍率で観察する。介在物の寸法に応じて、介在物寸法が測定可能な適切な倍率の観察結果を選択する。観察範囲は、幅500μm以上、且つ板厚全厚の範囲とし、輝度が暗い領域を介在物と判定する。観察の際は複数の視野で観察してもよい。次に、上記方法により初めに観察した板厚断面を基準として、板厚方向を軸に0°~180°の範囲において5°刻みで回転させた面と平行となる面について、上記と同様の方法により断面観察する。各断面における複数の介在物の長軸の長さの平均値を各断面ごとに算出する。得られた介在物の長軸の長さの平均値が最大となる断面を特定する。その断面における介在物の長軸方向と平行な方向を圧延方向と判別する。
The method for calculating the crystal orientation of prior austenite grains is as follows. First, a crystal orientation map of prior austenite grains is created using the method described in Non-Patent Document 1. For one of the prior austenite grains included in the observation field, the average value of the shortest diameter and the longest diameter is calculated, and the average value is taken as the grain size of the prior austenite grain. Perform the above operation for all prior austenite grains, excluding prior austenite grains whose entire crystal grains are not included in the photographic field of view, such as at the edges of the photographic field of view, to determine the grain size of all prior austenite grains in the relevant photographic field of view. . By calculating the standard deviation from the grain size of all the obtained prior austenite grains, the standard deviation of the grain size of the prior austenite grains is obtained.
In addition, in this embodiment, the rolling direction of the hot stamp molded body is determined by the following method.
First, a test piece is taken from an arbitrary position 50 mm or more away from the end of the hot-stamped molded body so that the cross-section of the plate thickness can be observed. After finishing the thickness section of the sampled test piece by mirror polishing, it is observed using an optical microscope at 100x, 200x, 500x, and 1000x magnification. Depending on the size of the inclusion, select an observation result with an appropriate magnification that allows the size of the inclusion to be measured. The observation range is a width of 500 μm or more and the full thickness of the plate, and areas with low brightness are determined to be inclusions. When observing, you may observe from multiple fields of view. Next, the same method as above is applied to the plane parallel to the plane rotated in 5° increments in the range of 0° to 180° with the thickness direction as the axis, using the thickness cross section initially observed by the above method as a reference. Observe the cross section according to the method. The average value of the lengths of the long axes of the plurality of inclusions in each cross section is calculated for each cross section. The cross section in which the average length of the long axes of the obtained inclusions is maximum is identified. A direction parallel to the longitudinal direction of the inclusion in the cross section is determined as the rolling direction.
 内部領域の金属組織は、所望の強度、耐水素脆化特性、耐早期破断特性を得ることができれば特に限定されないが、例えば、面積%で、合計で90~100%(90%以上、100%以下)のマルテンサイトおよびベイナイト、並びに、0~10%(0%以上、10%以下)のフェライトおよび残留オーステナイトからなっていてもよい。なお、本実施形態におけるマルテンサイトには、焼戻されていないマルテンサイト(フレッシュマルテンサイト)および焼き戻しマルテンサイトが含まれる。
 ホットスタンプ成形体の金属組織は以下の方法により測定する。
The metal structure of the internal region is not particularly limited as long as the desired strength, hydrogen embrittlement resistance, and early fracture resistance can be obtained, but for example, the metal structure in the internal region is 90 to 100% in total (90% or more, 100% (below) martensite and bainite, and 0 to 10% (0% or more, 10% or less) of ferrite and retained austenite. Note that martensite in this embodiment includes untempered martensite (fresh martensite) and tempered martensite.
The metallographic structure of the hot-stamped compact is measured by the following method.
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。 Cut out a sample so that the thickness section parallel to the rolling direction can be observed from an arbitrary position 50 mm or more away from the end surface of the hot stamped body (if the sample cannot be taken from this position, avoid the edge). Although the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
 上記サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、電解研磨により観察面を仕上げる。サンプル断面の長手方向の任意の位置において、長さ50μm、ホットスタンプ成形体の表面から板厚の4/16深さ位置から、前記表面から板厚の5/16深さまでの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されるEBSD解析装置を用いればよく、例えばJEOL製JSM-7001FとTSL製DVC5型検出器とで構成されたEBSD解析装置を用いればよい。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13としてもよい。 After polishing the cross section of the sample above using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 μm in diluted liquid such as alcohol or pure water. . Next, the observation surface is finished by electrolytic polishing. At any position in the longitudinal direction of the sample cross section, a region with a length of 50 μm and a depth of 4/16 of the plate thickness from the surface of the hot-stamped molded body to a depth of 5/16 of the plate thickness from the surface is 0. Crystal orientation information is obtained by measuring with an electron backscatter diffraction method at a measurement interval of 1 μm. For measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used. For example, an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it. At this time, the degree of vacuum in the EBSD analyzer may be 9.6×10 −5 Pa or less, the acceleration voltage may be 15 kV, and the irradiation current level may be 13.
 得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶構造がfccであるものを残留オーステナイトと判断する。この残留オーステナイトの面積率を算出することで、残留オーステナイトの面積率を得る。次に、結晶構造がbccである領域をベイナイト、マルテンサイトおよびフェライトと判断する。これらの領域について、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、5°粒界を結晶粒界とみなす条件下で、「Grain Average Misorientation」が0.5°以下の領域をフェライトとして抽出する。抽出したフェライトの面積率を算出することで、フェライトの面積率を得る。 Using the obtained crystal orientation information and the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, those whose crystal structure is fcc are determined to be retained austenite. By calculating the area ratio of this retained austenite, the area ratio of retained austenite is obtained. Next, regions having a bcc crystal structure are determined to be bainite, martensite, and ferrite. Regarding these regions, using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" included with the EBSD analyzer, "Grain Average Misorientation" is performed under conditions where 5° grain boundaries are regarded as grain boundaries. A region where "Average Misorientation" is 0.5° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite.
 続いて、残部領域(「Grain Average Misorientation」が0.5°超の領域)の面積率を算出し、この面積率をマルテンサイトおよびベイナイトの合計の面積率とする。 Subsequently, the area ratio of the remaining region (the area where "Grain Average Misorientation" exceeds 0.5°) is calculated, and this area ratio is taken as the total area ratio of martensite and bainite.
(表層領域)ベイナイトの面積率:10%超
 表層領域にベイナイトを生成させることで、表層領域の転位密度を低減することができる。その結果、外部環境からの水素の侵入を抑制でき、ホットスタンプ成形体の耐水素脆化特性を向上することができる。さらに、表層領域にベイナイトを生成させることによって、表層が過度に軟化することを抑制できるため、部材における耐荷重を維持しながら耐水素脆化特性を高めることができる。表層領域のベイナイトの面積率が10%以下であると、耐水素脆化特性が劣化する。そのため、ベイナイトの面積率は10%超とする。好ましくは、20%以上、40%以上または60%以上である。
 ベイナイトの面積率の上限は特に限定しないが、100%、90%または80%としてもよい。
(Surface region) Area ratio of bainite: more than 10% By generating bainite in the surface region, the dislocation density in the surface region can be reduced. As a result, the intrusion of hydrogen from the external environment can be suppressed, and the hydrogen embrittlement resistance of the hot-stamped molded article can be improved. Furthermore, by generating bainite in the surface layer region, excessive softening of the surface layer can be suppressed, so that the hydrogen embrittlement resistance can be improved while maintaining the load capacity of the member. If the area ratio of bainite in the surface layer region is less than 10%, the hydrogen embrittlement resistance deteriorates. Therefore, the area ratio of bainite is set to exceed 10%. Preferably, it is 20% or more, 40% or more, or 60% or more.
The upper limit of the area ratio of bainite is not particularly limited, but may be 100%, 90%, or 80%.
 表層領域の金属組織には、ベイナイト以外に、0~90%(0%以上、90%以下)のマルテンサイト、並びに、合計で0~65%(0%以上、65%以下)のフェライトおよび残留オーステナイトが含まれていてもよい。
 金属組織の面積率は、表層領域(表面から、表面から板厚の1/25深さまでの領域)について、次の方法により算出する。
In addition to bainite, the metal structure of the surface layer region includes 0 to 90% (0% or more, 90% or less) of martensite, and a total of 0 to 65% (0% or more, 65% or less) of ferrite and residual Austenite may be included.
The area ratio of the metal structure is calculated for the surface layer region (the region from the surface to a depth of 1/25 of the plate thickness) by the following method.
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。 Cut out a sample so that the thickness section parallel to the rolling direction can be observed from an arbitrary position 50 mm or more away from the end surface of the hot stamped body (if the sample cannot be taken from this position, avoid the edge). Although the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
 上記サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、電解研磨により観察面を仕上げる。サンプル断面の長手方向の任意の位置において、長さ50μm、ホットスタンプ成形体の表面から、前記表面から板厚の1/25深さまでの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されるEBSD解析装置を用いればよく、例えば、JEOL製JSM-7001FとTSL製DVC5型検出器とで構成されたEBSD解析装置を用いればよい。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13としてもよい。 After polishing the cross section of the sample above using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 μm in diluted liquid such as alcohol or pure water. . Next, the observation surface is finished by electrolytic polishing. At any position in the longitudinal direction of the sample cross section, a region from the surface of the hot-stamped molded body with a length of 50 μm to a depth of 1/25 of the plate thickness from the surface was measured using an electron backscatter diffraction method at a measurement interval of 0.1 μm. The crystal orientation information is obtained by measuring. For the measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used. For example, an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. You can use At this time, the degree of vacuum in the EBSD analyzer may be 9.6×10 −5 Pa or less, the acceleration voltage may be 15 kV, and the irradiation current level may be 13.
 得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶構造がfccであるものを残留オーステナイトと判断する。この残留オーステナイトの面積率を算出することで、残留オーステナイトの面積率を得る。次に、結晶構造がbccである領域においてEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、5°粒界を結晶粒界とみなす条件下で、「Grain Average Misorientation」が0.50°超、0.75°以下となる領域をベイナイトとして抽出する。抽出したベイナイトの面積率を算出することで、ベイナイトの面積率を得る。
 続いて、「Grain Average Misorientation」が0.5°以下の領域をフェライトとして抽出する。抽出したフェライトの面積率を算出することで、フェライトの面積率を得る。残部領域(「Grain Average Misorientation」が0.75°超の領域)をマルテンサイトとして抽出し、その面積率を算出することで、マルテンサイトの面積率を得る。
Using the obtained crystal orientation information and the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, those whose crystal structure is fcc are determined to be retained austenite. By calculating the area ratio of this retained austenite, the area ratio of retained austenite is obtained. Next, in the region where the crystal structure is bcc, using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" included with the EBSD analyzer, 5° grain boundaries are regarded as grain boundaries. Under these conditions, a region where "Grain Average Misorientation" is greater than 0.50° and less than 0.75° is extracted as bainite. The area ratio of bainite is obtained by calculating the area ratio of the extracted bainite.
Subsequently, a region where "Grain Average Misorientation" is 0.5° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite. The remaining area (area where "Grain Average Misorientation" exceeds 0.75°) is extracted as martensite, and the area rate of martensite is calculated by calculating the area rate of martensite.
(表層領域)表層領域における結晶方位:集合組織の極密度の最大値が4.0以下
 表層領域における集合組織を制御することで、表層領域における外部環境からの水素の侵入を抑制でき、ホットスタンプ成形体の耐水素脆化特性を向上することができる。表層領域における集合組織の極密度の最大値が4.0超であると、ホットスタンプ成形体の耐水素脆化特性が劣化する。そのため、表層領域における集合組織の極密度の最大値は4.0以下とする。好ましくは、3.5以下、3.0以下または2.5以下である。
 表層領域における集合組織の極密度の下限は特に限定しないが、1.0または1.2としてもよい。
(Surface region) Crystal orientation in the surface region: The maximum value of the polar density of the texture is 4.0 or less By controlling the texture in the surface region, it is possible to suppress the intrusion of hydrogen from the external environment into the surface region, and hot stamping The hydrogen embrittlement resistance of the molded body can be improved. If the maximum value of the polar density of the texture in the surface region exceeds 4.0, the hydrogen embrittlement resistance of the hot-stamped molded product deteriorates. Therefore, the maximum value of the polar density of the texture in the surface layer region is set to 4.0 or less. Preferably, it is 3.5 or less, 3.0 or less, or 2.5 or less.
The lower limit of the polar density of the texture in the surface layer region is not particularly limited, but may be set to 1.0 or 1.2.
 表層領域における集合組織は、表層領域(表面から、表面から板厚の1/25深さまでの領域)について、次の方法により得る。
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。
The texture in the surface layer region is obtained for the surface layer region (the region from the surface to a depth of 1/25 of the plate thickness) by the following method.
A sample is cut out from an arbitrary position 50 mm or more away from the end surface of the hot-stamped compact (if the sample cannot be taken from this position, avoid the end) so that the thickness cross section parallel to the rolling direction can be observed. Although the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the rolling direction.
 上記サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、電解研磨により仕上げる。サンプル断面の長手方向の任意の位置において、長さ1000μm、表面から、表面から板厚の1/25深さまでの領域を、5.0μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されるEBSD解析装置を用いればよく、例えばJEOL製JSM-7001FとTSL製DVC5型検出器とで構成されたEBSD解析装置を用いればよい。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13としてもよい。 After polishing the cross section of the sample above using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 μm in diluted liquid such as alcohol or pure water. . Next, it is finished by electrolytic polishing. At any position in the longitudinal direction of the sample cross section, a region with a length of 1000 μm from the surface to a depth of 1/25 of the plate thickness is measured using electron backscatter diffraction at measurement intervals of 5.0 μm to determine the crystal orientation. get information. For measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope and an EBSD detector may be used. For example, an EBSD analysis device consisting of a JEOL JSM-7001F and a TSL DVC5 type detector may be used. Just use it. At this time, the degree of vacuum in the EBSD analyzer may be 9.6×10 −5 Pa or less, the acceleration voltage may be 15 kV, and the irradiation current level may be 13.
 得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Texture」機能を用いて、結晶構造がbccである結晶粒に対して調和関数(Harmonic Series Expansion)を用いて強度計算を行う。この際、展開次数を16、ガウス分布に適用する際の半値幅を5゜とする。次に、強度計算後の出力ファイルに対して「Texture Plot」機能を用いて結晶方位分布関数(ODF:Orientation Distribution Function)におけるφ2=45°断面を出力させる。φ2=45°断面における極密度の最大値を表層領域における集合組織の極密度とする。 Using the "Texture" function installed in the software "OIM Analysis (registered trademark)" that comes with the EBSD analyzer, the obtained crystal orientation information is used to calculate a harmonic function (Harmonic Series) for crystal grains whose crystal structure is bcc. Intensity calculations are performed using (Expansion). At this time, the expansion order is 16, and the half width when applied to Gaussian distribution is 5°. Next, the "Texture Plot" function is used for the output file after the strength calculation to output a φ2=45° cross section in the crystal orientation distribution function (ODF). The maximum value of the polar density in the φ2=45° cross section is defined as the polar density of the texture in the surface layer region.
(表層領域)脱B指標:0.05以上
 脱B指標は表層領域におけるBの濃度低下量を定量的に表す指標である。表層領域においてB濃度を低減させることにより、変態前の旧オーステナイトの強度が低下して旧オーステナイト粒の変形能が向上し、表層領域においてランダムな方位の結晶粒が生成し易くなる。表層領域の脱B指標が0.05未満であると、表層領域において所望の集合組織をもつ結晶粒を得ることができない。そのため、脱B指標は0.05以上とする。好ましくは、0.20以上、0.30以上、0.35以上である。
 脱B指標の上限は特に限定しないが、1.00、0.80または0.60としてもよい。
(Surface layer region) B removal index: 0.05 or more The B removal index is an index that quantitatively represents the amount of decrease in B concentration in the surface layer region. By reducing the B concentration in the surface layer region, the strength of the prior austenite before transformation is reduced, the deformability of the prior austenite grains is improved, and randomly oriented crystal grains are more likely to be generated in the surface layer region. If the B removal index in the surface layer region is less than 0.05, crystal grains with a desired texture cannot be obtained in the surface layer region. Therefore, the de-B index is set to 0.05 or more. Preferably, it is 0.20 or more, 0.30 or more, or 0.35 or more.
The upper limit of the B removal index is not particularly limited, but may be 1.00, 0.80, or 0.60.
 表層領域における脱B指標は次の方法により得る。
 グロー放電発光分析装置(Glow Discharge Optical Emission Spectrometry、GD-OES:堀場製作所製 マーカス型高周波グロー放電発光分析装置、GD-PROFILER-HR)を用いてホットスタンプ成形体における板厚方向の元素濃度分布を測定する。測定条件は、分析径を4mmφ、スパッタ速度を4μm/min、アルゴン圧力を600Pa、RF出力を35Wとし、測定間隔を0.02μm以下とする。測定はホットスタンプ成形体に含まれる全ての元素について実施する。
The B removal index in the surface layer region is obtained by the following method.
Glow Discharge Optical Emission Spectrometry (GD-OES: Marcus type high frequency glow discharge optical emission spectrometer, GD-PROFILER-HR manufactured by Horiba, Ltd.) was used to determine the element concentration distribution in the thickness direction of the hot stamped compact. Measure. The measurement conditions are an analysis diameter of 4 mmφ, a sputtering rate of 4 μm/min, an argon pressure of 600 Pa, an RF output of 35 W, and a measurement interval of 0.02 μm or less. Measurements are performed for all elements contained in the hot stamped compact.
 なお、ホットスタンプ成形体が表面にめっき層等を有する場合、ここでいう「表面」とはめっき層等と母材鋼板との界面のことをいう。表面にめっき層や塗装皮膜等を有する場合については、母材鋼板の表面(母材鋼板とめっき層や塗装皮膜等との界面)から200μm深さまでの測定が可能となるように、機械研磨もしくは化学研磨によりめっき層や塗装等を一部もしくは全てを除去してからGD-OES測定に供する。GD-OES測定において鉄濃度が90質量%となる測定点をホットスタンプ成形体の表面とみなす。なお、以下の説明において、説明の都合上、ホットスタンプ成形体を母材鋼板と称することがある。 Note that when the hot-stamped molded body has a plating layer or the like on the surface, the "surface" here refers to the interface between the plating layer or the like and the base steel plate. If the surface has a plating layer, paint film, etc., mechanical polishing or Part or all of the plating layer, paint, etc. is removed by chemical polishing, and then subjected to GD-OES measurement. In the GD-OES measurement, the measurement point where the iron concentration is 90% by mass is regarded as the surface of the hot stamped body. In addition, in the following description, for convenience of explanation, the hot-stamped molded body may be referred to as a base material steel plate.
 次に、ホットスタンプ成形体の表面から、表面から少なくとも100μm深さまでにおけるB濃度を測定する。表面から深さ100μm位置のB濃度を測定した後、80~100μmの領域におけるB濃度の平均値と80~100μmの領域におけるB濃度の測定値の最大値との差の絶対値が0.0006質量%以下であり、かつ、80~100μmの領域におけるB濃度の平均値と80~100μmの領域におけるB濃度の測定値の最小値との差の絶対値が0.0006質量%以下である場合、表面から深さ100μm位置で深さ方向のB濃度の測定を終了する。
 この測定終了の要件を満たさない場合、深さ方向のB濃度の測定を継続する。その上で、深さ方向に新しいB濃度の測定値を得た都度、最深部~最深部から表面側に20μmの領域のB濃度の平均値を算出し、その最深部~最深部から表面側に20μmの領域におけるB濃度の平均値と、最深部~最深部から表面側に20μmの領域におけるB濃度の測定値の最大値との差の絶対値が0.0006質量%以下であり、かつ、最深部~最深部から表面側に20μmの領域におけるB濃度の平均値と、最深部~最深部から表面側に20μmの領域におけるB濃度の測定値の最小値との差の絶対値が0.0006質量%以下である場合、その位置で深さ方向のB濃度の測定を終了する。例えば、表面から深さ150μm位置のB濃度の測定値を得た場合、表面から深さ130~150μmの領域におけるB濃度の平均値と表面から深さ130~150μmの領域におけるB濃度の測定値の最大値との差の絶対値が0.0006質量%以下であり、かつ表面から深さ130~150μmの領域におけるB濃度の平均値と表面から深さ130~150μmの領域におけるB濃度の測定値の最小値との差の絶対値が0.0006質量%以下である場合、表面から深さ150μm位置で深さ方向のB濃度の測定を終了する。
 前記の測定終了の要件を満たさず、深さ方向のB濃度の測定を終了できない場合であっても、表面から深さ200μm位置のB濃度の測定を完了した時点で、深さ方向のB濃度の測定を終了する。その上で、深さ方向のB濃度の測定を終了した時点において、最深部(脱B指標の算出に用いるB濃度が得られた最も深い位置)~最深部から表面側に20μm位置の領域のB濃度の平均値(以下、この領域のB濃度の平均値を、最深部20μmの平均B濃度という。)を、以下の脱B指標の算出に用いる。
 測定の都合上、例えば、表面から深さ200μm位置までのB濃度の測定を行った上で、表面から深さ100~200μmの領域において、前記の深さ方向のB濃度測定の終了条件を満たす最も浅い深さ位置を探し、その位置があった場合、その深さ位置より深い位置でのB濃度の測定結果を用いずに、脱B指標を算出してもよい。例えば、表面から深さ200μm位置までのB濃度の測定を行ってもよく、この場合、表面から100μm以上の領域において、前記の深さ方向のB濃度測定の終了条件を満たす最も浅い深さ位置があった場合、その深さ位置で測定を終了したと見做して、脱B指標を算出する。
Next, the B concentration is measured from the surface of the hot-stamped molded article to a depth of at least 100 μm from the surface. After measuring the B concentration at a depth of 100 μm from the surface, the absolute value of the difference between the average B concentration in the 80 to 100 μm region and the maximum measured B concentration in the 80 to 100 μm region is 0.0006. % by mass or less, and the absolute value of the difference between the average value of the B concentration in the 80 to 100 μm region and the minimum value of the measured B concentration in the 80 to 100 μm region is 0.0006 mass % or less , the measurement of the B concentration in the depth direction is completed at a depth of 100 μm from the surface.
If the requirements for ending the measurement are not met, the measurement of the B concentration in the depth direction is continued. Then, each time a new B concentration measurement value is obtained in the depth direction, calculate the average value of the B concentration in an area of 20 μm from the deepest part to the surface side, and from the deepest part to the surface side. The absolute value of the difference between the average value of B concentration in a region of 20 μm from the deepest part to the maximum value of the measured value of B concentration in a region of 20 μm from the deepest part to the surface side is 0.0006% by mass or less, and , the absolute value of the difference between the average value of the B concentration in the region of 20 μm from the deepest part to the surface side and the minimum value of the measured value of B concentration in the region of 20 μm from the deepest part to the surface side is 0. If it is .0006% by mass or less, the measurement of the B concentration in the depth direction ends at that position. For example, if the measured value of the B concentration is obtained at a depth of 150 μm from the surface, the average value of the B concentration in the region 130 to 150 μm deep from the surface and the measured value of the B concentration in the region 130 to 150 μm deep from the surface The absolute value of the difference between the maximum value of If the absolute value of the difference from the minimum value is 0.0006% by mass or less, the measurement of the B concentration in the depth direction is terminated at a depth of 150 μm from the surface.
Even if the measurement of the B concentration in the depth direction cannot be completed because the requirements for completing the measurement described above are not met, the B concentration in the depth direction will be terminated as soon as the measurement of the B concentration at a depth of 200 μm from the surface is completed. Finish the measurement. Then, at the point when the measurement of the B concentration in the depth direction is completed, the area from the deepest part (the deepest position where the B concentration used for calculating the B removal index was obtained) to the region 20 μm from the deepest part to the surface side is The average value of the B concentration (hereinafter, the average value of the B concentration in this region will be referred to as the average B concentration at the deepest part of 20 μm) is used in the calculation of the B removal index below.
For convenience of measurement, for example, after measuring the B concentration from the surface to a depth of 200 μm, the above-mentioned termination condition for B concentration measurement in the depth direction is satisfied in a region 100 to 200 μm deep from the surface. The shallowest depth position may be found, and if that position is found, the B removal index may be calculated without using the B concentration measurement results at positions deeper than that depth position. For example, the B concentration may be measured from the surface to a depth of 200 μm, and in this case, in a region 100 μm or more from the surface, the shallowest depth position that satisfies the termination condition for the B concentration measurement in the depth direction. If there is, it is assumed that the measurement has ended at that depth position, and the B removal index is calculated.
 ホットスタンプ成形体の表面から最深部~最深部から表面側に20μmまでの領域において、単位深さあたりのB濃度の減少量(最深部20μmの平均B濃度から各測定点におけるB濃度を差し引いた値)を算出し、単位深さとB濃度の減少量との積の積分値を求めてBの欠乏領域の面積とする(図1の領域Aの面積)。ただし、最深部20μmの平均B濃度から各測定点におけるB濃度を差し引いた値が負の場合は、0として積分する(表面付近では脱B現象のため、最深部20μmの平均B濃度より各測定点のB濃度が小さいことが殆どであり、この積分値は正となる。)。次に、最深部20μmの平均B濃度と長さ200μmの積を基準面積(図1の長方形の領域Bの面積)として算出する。Bの欠乏面積(領域Aの面積)を基準面積(領域Bの面積)で除した値を、脱B指標(領域Aの面積/領域Bの面積)とする。なお、上述したような表面から200μmまでに測定終了の要件を満たす場合においても、最深部20μmの平均B濃度に乗じる長さは200μmとして基準面積(領域Bの面積)を算出する。 The amount of decrease in B concentration per unit depth in the region from the deepest part to 20 μm from the deepest part to the surface side of the hot stamped compact (the B concentration at each measurement point was subtracted from the average B concentration at the deepest part of 20 μm) value) is calculated, and the integral value of the product of the unit depth and the amount of decrease in B concentration is determined to determine the area of the B-deficient region (area of region A in FIG. 1). However, if the value obtained by subtracting the B concentration at each measurement point from the average B concentration at the deepest 20 μm is negative, it is integrated as 0 (because of the de-B phenomenon near the surface, the average B concentration at the deepest 20 μm is In most cases, the B concentration at a point is small, and this integral value is positive.) Next, the product of the average B concentration at the deepest part of 20 μm and the length of 200 μm is calculated as a reference area (area of rectangular region B in FIG. 1). The value obtained by dividing the B deficient area (area of region A) by the reference area (area of region B) is defined as the B depletion index (area of region A/area of region B). Note that even in the case where the above-mentioned requirement of finishing the measurement up to 200 μm from the surface is satisfied, the reference area (area of region B) is calculated by assuming that the length by which the average B concentration at the deepest part of 20 μm is multiplied is 200 μm.
 本実施形態に係るホットスタンプ成形体は、表面にめっき層を有していてもよい。表面にめっき層を有することで、ホットスタンプ後において、耐食性を向上することができる。めっき層としては、アルミめっき層、アルミ-亜鉛めっき層、アルミ-珪素めっき層、溶融亜鉛めっき層、電気亜鉛めっき層、合金化溶融亜鉛めっき層、亜鉛-ニッケルめっき層、アルミ-マグネシウム-亜鉛系めっき層などが例示される。 The hot stamp molded article according to this embodiment may have a plating layer on the surface. By having a plating layer on the surface, corrosion resistance can be improved after hot stamping. Plating layers include aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot-dip galvanizing layer, electrolytic galvanizing layer, alloyed hot-dip galvanizing layer, zinc-nickel plating layer, aluminum-magnesium-zinc system. Examples include a plating layer.
 次に、本実施形態に係るホットスタンプ成形体を得るための、ホットスタンプ用鋼板について説明する。
 ホットスタンプ用鋼板は、上述の化学組成を有する。ホットスタンプ用鋼板の金属組織は、ホットスタンプ後に所望の強度、耐水素脆化特性および耐早期破断特性を得ることができれば特に限定されないが、例えば、面積率で、フェライト:5~90%、ベイナイトおよびマルテンサイト:0~100%、パーライト:10~95%および残留オーステナイト:0~5%からなってもよい。この他に鉄炭化物、合金炭化物、金属間化合物、介在物を含んでもよい。
Next, a hot stamping steel plate for obtaining a hot stamping molded article according to the present embodiment will be explained.
The hot stamping steel plate has the above-mentioned chemical composition. The metal structure of the steel sheet for hot stamping is not particularly limited as long as the desired strength, hydrogen embrittlement resistance, and early fracture resistance can be obtained after hot stamping, but for example, in terms of area percentage, ferrite: 5 to 90%, bainite. and martensite: 0 to 100%, pearlite: 10 to 95%, and retained austenite: 0 to 5%. In addition, iron carbides, alloy carbides, intermetallic compounds, and inclusions may be included.
 また、ホットスタンプ用鋼板は、表面にめっき層を有していてもよい。表面にめっき層を有することで、ホットスタンプ後において、耐食性を向上することができる。めっき層としては、アルミめっき層、アルミ-亜鉛めっき層、アルミ-珪素めっき層、溶融亜鉛めっき層、電気亜鉛めっき層、合金化溶融亜鉛めっき層、亜鉛-ニッケルめっき層、アルミ-マグネシウム-亜鉛系めっき層などが例示される。 Moreover, the steel plate for hot stamping may have a plating layer on the surface. By having a plating layer on the surface, corrosion resistance can be improved after hot stamping. Plating layers include aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot-dip galvanizing layer, electrolytic galvanizing layer, alloyed hot-dip galvanizing layer, zinc-nickel plating layer, aluminum-magnesium-zinc system. Examples include a plating layer.
 ホットスタンプ用鋼板の製造方法
 以下、本実施形態に係るホットスタンプ成形体を得るための、ホットスタンプ用鋼板の製造方法について説明する。上述したホットスタンプ成形体を得るためには、ホットスタンプ用鋼板の製造方法において、特に、仕上げ圧延条件および焼鈍条件を制御することが効果的である。
Method for manufacturing a steel plate for hot stamping Hereinafter, a method for manufacturing a steel plate for hot stamping to obtain a hot stamping molded body according to the present embodiment will be described. In order to obtain the hot-stamped molded body described above, it is particularly effective to control the finish rolling conditions and annealing conditions in the method for manufacturing a hot-stamped steel plate.
仕上げ圧延
 仕上げ圧延では、最終パスの圧下率(最終圧下率)を20%以上とすることが好ましい。ここでいう最終圧下率は、最終パスの圧延前の板厚をtとし、最終パスの圧延後の板厚をtとしたとき、{(t-t)/t}×100(%)で表すことができる。最終圧下率を高くすることで、圧延後の熱延鋼板においてパーライトが均一に分散する。このパーライトは、ホットスタンプの加熱時に旧オーステナイトの逆変態サイトとなる。そのため、パーライトが均一に分散すると、ホットスタンプ成形体において旧オーステナイト粒の結晶粒径の標準偏差が小さくなる。その結果、ホットスタンプ成形体の耐早期破断特性を向上することができる。より好ましくは、30%以上、40%以上、45%以上である。
 本実施形態に係るホットスタンプ成形体の化学組成のように、Mn含有量が0.60%以上である場合、ホットスタンプ成形体における表層領域の集合組織を好ましく制御するためには、仕上げ圧延の最終圧下率を上記のように高めることが重要である。
Finish Rolling In finish rolling, the rolling reduction ratio (final rolling ratio) of the final pass is preferably 20% or more. The final rolling reduction ratio here is {(t 0 - t 1 )/t 0 }×100, where the plate thickness before rolling in the final pass is t 0 and the plate thickness after rolling in the final pass is t 1 . It can be expressed as (%). By increasing the final rolling reduction rate, pearlite is uniformly dispersed in the hot rolled steel sheet after rolling. This pearlite becomes a reverse transformation site of prior austenite during heating during hot stamping. Therefore, when pearlite is uniformly dispersed, the standard deviation of the crystal grain size of prior austenite grains in the hot-stamped molded body becomes small. As a result, the early breakage resistance of the hot-stamped molded product can be improved. More preferably, it is 30% or more, 40% or more, or 45% or more.
When the Mn content is 0.60% or more, as in the chemical composition of the hot-stamped molded product according to the present embodiment, in order to preferably control the texture of the surface layer region of the hot-stamped molded product, it is necessary to perform finish rolling. It is important to increase the final rolling reduction as described above.
 なお、溶鋼の鋳造方法、熱間圧延前の加熱、粗圧延、巻取りおよび冷間圧延の条件は特に限定されず、一般的な条件とすればよい。巻取り温度は、750℃以下とすればよい。巻取温度を750℃以下とすることにより、圧延後の熱延鋼板においてフェライトが連結して配置することを抑制することでき、パーライトが均一に分散する。このパーライトは、ホットスタンプの加熱時に旧オーステナイトの逆変態サイトとなる。そのため、パーライトが均一に分散すると、ホットスタンプ成形体において旧オーステナイト粒の結晶粒径の標準偏差が小さくなる。その結果、ホットスタンプ成形体の耐早期破断特性を向上することができる。
 また、熱延鋼板の軟質化を目的として、巻取後のコイルに軟質化熱処理を施してもよい。軟質化熱処理の方法は特に限定されず、一般的な条件とすればよい。
Note that the casting method of molten steel, the conditions for heating before hot rolling, rough rolling, winding, and cold rolling are not particularly limited, and may be general conditions. The winding temperature may be 750° C. or lower. By setting the coiling temperature to 750° C. or lower, it is possible to suppress ferrite from being arranged in a connected manner in the hot-rolled steel sheet after rolling, and pearlite is uniformly dispersed. This pearlite becomes a reverse transformation site of prior austenite during heating during hot stamping. Therefore, when pearlite is uniformly dispersed, the standard deviation of the crystal grain size of prior austenite grains in the hot-stamped molded body becomes small. As a result, the early breakage resistance of the hot-stamped molded product can be improved.
Further, for the purpose of softening the hot rolled steel sheet, the coil after winding may be subjected to a softening heat treatment. The method of softening heat treatment is not particularly limited, and general conditions may be used.
焼鈍
 冷間圧延後は、酸化雰囲気にて15秒以上加熱する、焼鈍を行うことが好ましい。通常、焼鈍はスケール生成を抑制するために還元雰囲気で行うことが好ましいが、本実施形態では、酸化雰囲気にて焼鈍を行うことで、鋼板表面におけるスケール生成を促進する。ホットスタンプの加熱時には、鋼板表面に形成されたスケールが酸化源となり、表層領域のCおよびBが酸化する。酸化したCおよびBは、鋼板表層から離脱するため、表層領域ではCおよびB量が低減される。そのため、旧オーステナイト粒の強度が低下して変形し易くなり、ランダムな方位の結晶粒が生成し易くなる。これにより、所望の集合組織を持つ結晶粒を表層領域に生成させることができる。
 なお、焼鈍時の加熱温度は、730~900℃の温度域とすればよく、この加熱温度範囲で15秒以上対滞留させることにより、スケールの剥離を抑制しながらスケールの生成を促進させることができる。焼鈍を行う時間は100秒以上が好ましく、200秒以上がより好ましく、300秒以上がより好ましい。一方、3600秒超の焼鈍を行うと、旧オーステナイト粒径の粗大化により、Bの粒界拡散速度が低下し、脱Bが進まず、脱B指標が0.05以上とならないため、好ましくない。よって、焼鈍時間は3600秒以下が好ましい。
 なお、酸化雰囲気にて焼鈍を行った後に、酸化スケールが除去される処理(例えば、酸洗など)を行わない限り、再度、酸化雰囲気または無酸化雰囲気にて焼鈍工程を経ても良い。
Annealing After cold rolling, it is preferable to perform annealing by heating in an oxidizing atmosphere for 15 seconds or more. Normally, it is preferable to perform annealing in a reducing atmosphere in order to suppress scale formation, but in this embodiment, scale formation on the steel plate surface is promoted by performing annealing in an oxidizing atmosphere. During heating during hot stamping, the scale formed on the surface of the steel sheet becomes an oxidation source, and C and B in the surface layer region are oxidized. Since the oxidized C and B separate from the surface layer of the steel sheet, the amounts of C and B are reduced in the surface layer region. As a result, the strength of the prior austenite grains decreases and becomes easily deformed, making it easier to generate randomly oriented crystal grains. Thereby, crystal grains having a desired texture can be generated in the surface layer region.
The heating temperature during annealing may be in the range of 730 to 900°C, and by staying in this heating temperature range for 15 seconds or more, scale formation can be promoted while suppressing scale peeling. can. The time for annealing is preferably 100 seconds or more, more preferably 200 seconds or more, and even more preferably 300 seconds or more. On the other hand, annealing for more than 3,600 seconds is undesirable because the prior austenite grain size becomes coarser, the grain boundary diffusion rate of B decreases, B removal does not proceed, and the B removal index does not exceed 0.05. . Therefore, the annealing time is preferably 3600 seconds or less.
Note that, after annealing in an oxidizing atmosphere, the annealing process may be performed again in an oxidizing atmosphere or a non-oxidizing atmosphere unless a treatment for removing oxide scale (for example, pickling) is performed.
 本実施形態において酸化雰囲気とは鋼板表層に酸化スケールが生成する加熱雰囲気であればよく、一般的な条件とすればよい。例えば、ガス燃焼雰囲気において空気と燃料との混合比(空燃比)を0.80以上に制御した雰囲気とすることが好ましく、1.00超に制御した雰囲気とすることがより好ましい。酸化雰囲気で焼鈍することにより、鋼板表面に酸化スケールを15μm以上生成させることが好ましい。
 鋼板表面の酸化スケールは後の工程においても残存させることが好ましい。すなわち、酸化スケールを残存させた状態で、後述のホットスタンプを行うことが好ましい。酸化スケールはホットスタンプ後にショットブラストにより除去される。
 また、ホットスタンプ用鋼板の表面にめっき層を形成させた場合であっても、母材鋼板とめっき層との界面に酸化スケールは残存する。めっき層を形成させた場合には、ホットスタンプ前の加熱における合金化反応により、ホットスタンプ後において酸化スケールは消滅する。
In this embodiment, the oxidizing atmosphere may be any heating atmosphere that generates oxide scale on the surface layer of the steel sheet, and may be a general condition. For example, in a gas combustion atmosphere, it is preferable to create an atmosphere in which the mixture ratio of air and fuel (air-fuel ratio) is controlled to 0.80 or more, and more preferably to be controlled to exceed 1.00. It is preferable to generate an oxide scale of 15 μm or more on the surface of the steel sheet by annealing in an oxidizing atmosphere.
It is preferable that the oxidized scale on the surface of the steel sheet remain in subsequent steps. That is, it is preferable to perform hot stamping, which will be described later, with the oxide scale remaining. Oxide scale is removed by shot blasting after hot stamping.
Further, even when a plating layer is formed on the surface of a hot stamping steel sheet, oxide scale remains at the interface between the base steel sheet and the plating layer. When a plating layer is formed, the oxide scale disappears after hot stamping due to an alloying reaction during heating before hot stamping.
 上述の方法により製造したホットスタンプ用鋼板をホットスタンプすることで、本実施形態に係るホットスタンプ成形体を得る。ホットスタンプの条件は特に限定されないが、例えば、ホットスタンプ用鋼板を800℃~1000℃の温度域に加熱し、この温度域にて60~600秒間保持することが好ましい。加熱温度が800℃未満ではオーステナイト化が不十分となり、所望の旧オーステナイト粒径分布を得ることができず、耐早期破断特性が劣化する場合がある。一方、加熱温度が1000℃を超えると、旧オーステナイトが過度に粒成長してしまい、所望の旧オーステナイト粒径分布を得ることができず、耐早期破断特性が劣化する場合がある。保持時間が60秒未満では、オーステナイト化が不十分となり、所望の旧オーステナイト粒径分布を得ることができず、耐早期破断特性が劣化する場合がある。保持時間が600秒を超えると、旧オーステナイトが過度に粒成長してしまい、所望の旧オーステナイト粒径分布を得ることができず、耐早期破断特性が劣化する場合がある。 A hot-stamped molded body according to the present embodiment is obtained by hot-stamping the hot-stamping steel plate manufactured by the method described above. The hot stamping conditions are not particularly limited, but it is preferable, for example, to heat the steel plate for hot stamping to a temperature range of 800° C. to 1000° C. and hold it in this temperature range for 60 to 600 seconds. If the heating temperature is less than 800°C, austenitization will be insufficient, the desired prior austenite grain size distribution cannot be obtained, and the early rupture resistance may deteriorate. On the other hand, if the heating temperature exceeds 1000° C., the grains of prior austenite will grow excessively, making it impossible to obtain the desired prior austenite grain size distribution, and the early rupture resistance may deteriorate. If the holding time is less than 60 seconds, austenitization becomes insufficient, a desired prior austenite particle size distribution cannot be obtained, and the early rupture resistance may deteriorate. If the holding time exceeds 600 seconds, grains of prior austenite will grow excessively, making it impossible to obtain a desired prior austenite grain size distribution, and the early rupture resistance may deteriorate.
 なお、加熱雰囲気は特に限定されず、通常の条件で良く、例えば、大気中や、空気と燃料の比率を制御したガス燃焼雰囲気や、窒素雰囲気であればよく、これらガスにおいて露点を制御しても良い。
 当該温度域で保持してから、ホットスタンプする。ホットスタンプ後には、250℃以下の温度域まで、20℃/s以上の平均冷却速度で冷却すればよい。
Note that the heating atmosphere is not particularly limited and may be under normal conditions, such as the atmosphere, a gas combustion atmosphere with a controlled ratio of air and fuel, or a nitrogen atmosphere, and the dew point of these gases is controlled. Also good.
After holding in the relevant temperature range, hot stamping is performed. After hot stamping, cooling may be performed to a temperature range of 250°C or lower at an average cooling rate of 20°C/s or higher.
 ホットスタンプ前の加熱方法としては、例えば、電気炉やガス炉等による加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱等が挙げられる。 Examples of heating methods before hot stamping include heating in an electric furnace, gas furnace, etc., flame heating, electrical heating, high frequency heating, induction heating, and the like.
 以上の方法により、本実施形態に係るホットスタンプ成形体を得る。なお、ホットスタンプ成形後に130~600℃で焼き戻し処理や塗装後の焼き付け硬化処理を行ってもよい。また、ホットスタンプ成形体の一部をレーザー照射等により焼き戻しして部分的に軟化領域を設けても良い。 By the above method, a hot stamp molded article according to the present embodiment is obtained. Note that a tempering treatment at 130 to 600° C. may be performed after hot stamp molding, or a baking hardening treatment may be performed after painting. Alternatively, a portion of the hot stamp molded body may be tempered by laser irradiation or the like to provide a partially softened region.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
 表1A~表1Tに示す化学組成の溶鋼を鋳造して製造したスラブに、1200℃以上の温度域で20分以上保持した後、表2A~表2Hに示す条件で仕上げ圧延、巻取り、および焼鈍を行った。なお、一部の例を除き、焼鈍は酸化雰囲気にて行った。表中備考欄に特筆していない例については、酸化雰囲気での焼鈍では、ガス燃焼雰囲気において空気と燃料との混合比(空燃比)を1.05に制御した。一部の例については、表中に記載のように、還元雰囲気での焼鈍を行い、また巻取後のコイルに軟質化熱処理を行った。 Slabs manufactured by casting molten steel with chemical compositions shown in Tables 1A to 1T are held at a temperature of 1200°C or higher for 20 minutes or more, and then finish rolled, coiled, and rolled under the conditions shown in Tables 2A to 2H. Annealing was performed. Note that, except for some examples, annealing was performed in an oxidizing atmosphere. For examples not specifically mentioned in the notes column in the table, in annealing in an oxidizing atmosphere, the mixture ratio of air and fuel (air-fuel ratio) was controlled to 1.05 in a gas combustion atmosphere. For some examples, as described in the table, annealing was performed in a reducing atmosphere, and the coils after winding were subjected to softening heat treatment.
 得られたホットスタンプ用鋼板に、窒素ガスを連続供給した炉内において800℃よりも高い温度域に加熱(ホットスタンプ加熱)し、当該温度域で保持してから、ホットスタンプした後、250℃以下の温度域まで20℃/s以上の平均冷却速度で冷却する条件でホットスタンプを行った。これにより、表3A~表3Hに示すホットスタンプ成形体を得た。なお、表中備考欄に特筆していない例については、空気と燃料との混合比(空燃比)を0.85に制御したガス燃焼雰囲気とした。
 ただし、一部の例については、表中に記載のように、異なる雰囲気に調整した炉内においての加熱、再焼鈍、めっき付与、焼き戻しまたはホットスタンプ加熱などを行った。
The obtained steel plate for hot stamping is heated to a temperature range higher than 800°C in a furnace continuously supplied with nitrogen gas (hot stamp heating), held in the temperature range, hot stamped, and then heated to 250°C. Hot stamping was performed under conditions of cooling at an average cooling rate of 20° C./s or more to the following temperature range. As a result, hot stamp molded bodies shown in Tables 3A to 3H were obtained. In addition, for the examples not specifically mentioned in the remarks column in the table, a gas combustion atmosphere was used in which the mixture ratio of air and fuel (air-fuel ratio) was controlled to 0.85.
However, for some examples, as described in the table, heating in a furnace adjusted to a different atmosphere, reannealing, plating, tempering, hot stamp heating, etc. were performed.
 なお、表中の下線は、本発明の範囲外であること、好ましい製造条件を外れること、特性値が好ましくないことを示す。
 ホットスタンプ成形体の金属組織(オーステナイト粒の結晶粒径の標準偏差を含む。)、脱B指標および集合組織の極密度の測定等は、上述の方法により行った。また、ホットスタンプ成形体の機械特性は、以下の方法により評価した。
Note that the underline in the table indicates that it is outside the scope of the present invention, that it falls outside the preferred manufacturing conditions, or that the characteristic value is unfavorable.
The metallographic structure (including the standard deviation of the crystal grain size of austenite grains), deboronization index, and ultra-density of the texture of the hot-stamped compact were measured by the methods described above. In addition, the mechanical properties of the hot-stamped molded product were evaluated by the following method.
引張強さ
 ホットスタンプ成形体の引張(最大)強さTSは、ホットスタンプ成形体の任意の位置からJIS Z 2241:2011に準拠して、5号試験片を作製し、引張試験を行うことで得た。なお、クロスヘッド速度は1mm/minとした。引張強さTSが2200MPa以上の場合を高い強度を有するとして合格と判定し、2200MPa未満の場合を高い強度を有さないとして不合格と判定した。
 なお、後述の耐早期破断特性が不合格となった例については、後述の耐早期破断特性評価における方法で測定したビッカース硬さに3.3を乗じた数値(=ビッカース硬さ×3.3)を引張強さとした。
Tensile strength The tensile (maximum) strength TS of the hot-stamped molded product can be determined by preparing a No. 5 test piece from any position of the hot-stamped molded product in accordance with JIS Z 2241:2011 and performing a tensile test. Obtained. Note that the crosshead speed was 1 mm/min. A case where the tensile strength TS was 2200 MPa or more was judged to have high strength and was determined to pass, and a case where the tensile strength TS was less than 2200 MPa was judged to be failed as not to have high strength.
In addition, for examples in which the early rupture resistance described below failed, the Vickers hardness measured by the method for early rupture resistance evaluation described later was multiplied by 3.3 (=Vickers hardness x 3.3). ) was taken as the tensile strength.
耐水素脆化特性
 ホットスタンプ成形体の耐水素脆化特性は、次の方法により評価した。ホットスタンプ成形体の任意の位置から長さ68mm、幅6mmの試験片を採取し、試験片の端部を対して#200から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液および純水に分散させた液体を使用して鏡面に仕上げた。さらに、試験片の角部を#200から#1500の炭化珪素ペーパーを使用して面取りを施した。試験片に800MPa以上の応力を負荷し、室温にてpH4に調整した塩酸1リットルに48時間浸漬し、割れの有無を判定した。負荷応力800MPa以上でも割れが発生しなかった場合を合格と判定した。800MPaで割れ無しの場合を「Fair」、900MPaで割れ無しの場合を「Good」、1000MPaで割れ無しの場合を「Very Good」、1100MPa以上で割れ無しの場合を「Excellent」と表中に記載した。一方、負荷応力800MPaで割れ有りの場合を不合格と判定し、表中に「Bad」と記載した。
Hydrogen embrittlement resistance The hydrogen embrittlement resistance of the hot-stamped molded product was evaluated by the following method. A test piece with a length of 68 mm and a width of 6 mm is taken from any position of the hot stamp molded body, and the edges of the test piece are polished using #200 to #1500 silicon carbide paper, and the grain size is 1 to 1. A mirror finish was obtained using a liquid in which 6 μm diamond powder was dispersed in diluted liquid such as alcohol and pure water. Furthermore, the corners of the test pieces were chamfered using #200 to #1500 silicon carbide paper. A stress of 800 MPa or more was applied to the test piece, and the test piece was immersed in 1 liter of hydrochloric acid adjusted to pH 4 at room temperature for 48 hours, and the presence or absence of cracks was determined. A case in which no cracking occurred even under a load stress of 800 MPa or more was judged to be acceptable. In the table, there is no cracking at 800MPa, "Fair", no cracking at 900MPa, "Good", no cracking at 1000MPa, "Very Good", and no cracking at 1100MPa or higher, "Excellent". did. On the other hand, the case where there was cracking at a load stress of 800 MPa was determined to be a failure and was written as "Bad" in the table.
耐早期破断特性
 耐早期破断特性は、上記方法により得たホットスタンプ成形体の引張強さを、下記方法により得たビッカース硬さに3.3を乗じた値で除した数値(引張強さ/(ビッカース硬さ×3.3))により評価した。この数値が0.60以上である場合を耐早期破断特性に優れるとして合格と判定し、0.60未満である場合を不合格と判定した。ビッカース硬さに3.3を乗じた値は、硬さから推定される引張強さであり、引張強さの実測値が推定引張強さの0.60倍以上であれば、耐早期破断特性に優れると判断することができる。
Early rupture resistance properties The early rupture resistance properties are calculated by dividing the tensile strength of the hot-stamped molded product obtained by the above method by the value obtained by multiplying the Vickers hardness obtained by the following method by 3.3 (tensile strength/ (Vickers hardness x 3.3)). When this value was 0.60 or more, it was determined to be excellent in early breakage resistance and was determined to pass, and when this value was less than 0.60, it was determined to be rejected. The value obtained by multiplying the Vickers hardness by 3.3 is the tensile strength estimated from the hardness, and if the measured value of the tensile strength is 0.60 times or more of the estimated tensile strength, then the early rupture resistance is can be judged to be excellent.
 耐早期破断特性の評価に用いるビッカース硬さは、以下の方法により得た。まず、ホットスタンプ成形体の端面から50mm以上離れた任意の位置から表面に垂直な断面(板厚断面)が観察できるようにサンプルを切り出した。サンプルは、測定装置にもよるが、圧延方向に10mm観察できる大きさとした。サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液および純水に分散させた液体を使用して鏡面に仕上げた。鏡面に仕上げた断面に対し、表面から板厚の4/16深さ位置から、表面から板厚の5/16深さまでの領域のいずれかの位置において、マイクロビッカース硬さ試験機を用いて、板面と平行な方向(圧延方向)に、荷重1kgfで、圧痕の3倍以上の間隔で硬さを測定した。合計で20点測定し、その平均値を算出することで、ビッカース硬さを得た。 The Vickers hardness used to evaluate early breakage resistance was obtained by the following method. First, a sample was cut out so that a cross section perpendicular to the surface (thickness cross section) could be observed from an arbitrary position 50 mm or more away from the end surface of the hot stamp molded body. The sample was sized to allow observation of 10 mm in the rolling direction, although it depends on the measuring device. After polishing the cross section of the sample using #600 to #1500 silicon carbide paper, it was finished to a mirror surface using a liquid in which diamond powder with a particle size of 1 to 6 μm was dispersed in a diluted solution such as alcohol and pure water. . For a mirror-finished cross section, use a micro Vickers hardness tester at any position in the area from a depth of 4/16 of the plate thickness from the surface to a depth of 5/16 of the plate thickness from the surface, Hardness was measured in a direction parallel to the plate surface (rolling direction) under a load of 1 kgf at intervals of three times or more the indentations. The Vickers hardness was obtained by measuring a total of 20 points and calculating the average value.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表3A~表3Hを見ると、本発明例であるホットスタンプ成形体は、高い強度を有し、且つ優れた耐水素脆化特性および耐早期破断特性を有することが分かる。一方、比較例であるホットスタンプ成形体は、1つ以上の特性が劣ることが分かる。 Looking at Tables 3A to 3H, it can be seen that the hot-stamped molded articles according to the present invention have high strength and excellent hydrogen embrittlement resistance and early fracture resistance. On the other hand, it can be seen that the hot-stamped molded article as a comparative example is inferior in one or more properties.
 本発明に係る上記態様によれば、高い強度を有し、且つ優れた耐水素脆化特性および耐早期破断特性を有するホットスタンプ成形体を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-stamped molded article that has high strength and excellent hydrogen embrittlement resistance and early breakage resistance.

Claims (2)

  1.  化学組成が、質量%で、
    C :0.40%超、0.70%以下、
    Si:0.010~3.00%、
    Mn:0.60~3.00%、
    P :0.100%以下、
    S :0.0100%以下、
    N :0.0200%以下、
    O :0.0200%以下、
    Al:0.0010~0.5000%、
    Nb:0.0010~0.100%、
    Ti:0.010~0.200%、
    Cr:0.01~0.80%、
    Mo:0.0010~1.000%、
    B :0.0005~0.0200%、
    Co:0~4.00%、
    Ni:0~3.00%、
    Cu:0~3.00%、
    V :0~3.00%、
    W :0~3.00%、
    Ca:0~1.000%、
    Mg:0~1.000%、
    REM:0~1.000%、
    Sb:0~1.000%、
    Sn:0~1.000%、
    Zr:0~1.000%、
    As:0~0.100%、並びに、
    残部:Feおよび不純物であり、
     ホットスタンプ成形体の表面から板厚の4/16深さから、前記表面から前記板厚の5/16深さまでの領域である内部領域において、
      旧オーステナイト粒の結晶粒径の標準偏差が5.0μm以下であり、
     前記表面から、前記表面から前記板厚の1/25深さまでの領域である表層領域において、
      ベイナイトの面積率が10%超であり、
      集合組織の極密度の最大値が4.0以下であり、
      脱B指標が0.05以上である
    ことを特徴とするホットスタンプ成形体。
    The chemical composition is in mass%,
    C: more than 0.40%, less than 0.70%,
    Si: 0.010-3.00%,
    Mn: 0.60-3.00%,
    P: 0.100% or less,
    S: 0.0100% or less,
    N: 0.0200% or less,
    O: 0.0200% or less,
    Al: 0.0010-0.5000%,
    Nb: 0.0010 to 0.100%,
    Ti: 0.010-0.200%,
    Cr: 0.01-0.80%,
    Mo: 0.0010-1.000%,
    B: 0.0005-0.0200%,
    Co: 0-4.00%,
    Ni: 0-3.00%,
    Cu: 0-3.00%,
    V: 0 to 3.00%,
    W: 0-3.00%,
    Ca: 0-1.000%,
    Mg: 0-1.000%,
    REM: 0-1.000%,
    Sb: 0 to 1.000%,
    Sn: 0-1.000%,
    Zr: 0 to 1.000%,
    As: 0 to 0.100%, and
    The remainder: Fe and impurities,
    In an internal region that is a region from a depth of 4/16 of the plate thickness from the surface of the hot stamp molded body to a depth of 5/16 of the plate thickness from the surface,
    The standard deviation of the crystal grain size of prior austenite grains is 5.0 μm or less,
    In a surface layer region that is a region from the surface to a depth of 1/25 of the plate thickness,
    The area ratio of bainite is more than 10%,
    The maximum value of the polar density of the texture is 4.0 or less,
    A hot-stamped molded article having a B removal index of 0.05 or more.
  2.  前記化学組成が、質量%で、
    Co:0.01~4.00%、
    Ni:0.01~3.00%、
    Cu:0.01~3.00%、
    V :0.01~3.00%、
    W :0.01~3.00%、
    Ca:0.001~1.000%、
    Mg:0.001~1.000%、
    REM:0.001~1.000%、
    Sb:0.001~1.000%、
    Sn:0.001~1.000%、
    Zr:0.001~1.000%、および
    As:0.001~0.100%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載のホットスタンプ成形体。
    The chemical composition is in mass%,
    Co: 0.01-4.00%,
    Ni: 0.01 to 3.00%,
    Cu: 0.01-3.00%,
    V: 0.01 to 3.00%,
    W: 0.01-3.00%,
    Ca: 0.001-1.000%,
    Mg: 0.001-1.000%,
    REM: 0.001-1.000%,
    Sb: 0.001 to 1.000%,
    Sn: 0.001 to 1.000%,
    Zr: 0.001 to 1.000%, and As: 0.001 to 0.100%
    The hot-stamped molded article according to claim 1, characterized in that it contains one or more selected from the group consisting of:
PCT/JP2023/007855 2022-04-14 2023-03-02 Hot-stamp-formed article WO2023199638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-067020 2022-04-14
JP2022067020 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023199638A1 true WO2023199638A1 (en) 2023-10-19

Family

ID=88329346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007855 WO2023199638A1 (en) 2022-04-14 2023-03-02 Hot-stamp-formed article

Country Status (1)

Country Link
WO (1) WO2023199638A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213179A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Steel sheet and method for manufacturing same, and molded article
WO2021230150A1 (en) * 2020-05-13 2021-11-18 日本製鉄株式会社 Hot stamp steel sheet and hot stamp molded body
WO2021230149A1 (en) * 2020-05-13 2021-11-18 日本製鉄株式会社 Hot stamped molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213179A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Steel sheet and method for manufacturing same, and molded article
WO2021230150A1 (en) * 2020-05-13 2021-11-18 日本製鉄株式会社 Hot stamp steel sheet and hot stamp molded body
WO2021230149A1 (en) * 2020-05-13 2021-11-18 日本製鉄株式会社 Hot stamped molded body

Similar Documents

Publication Publication Date Title
KR101614230B1 (en) High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same
EP2246456B9 (en) High-strength steel sheet and process for production thereof
EP3216886A1 (en) Hot-dip galvanized steel sheet
JP7173303B2 (en) Steel plate and its manufacturing method
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
CN110475892B (en) High-strength cold-rolled steel sheet and method for producing same
JPWO2015097891A1 (en) Hot pressed steel plate member, manufacturing method thereof, and hot pressed steel plate
KR102544884B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR20180119638A (en) A method of manufacturing a cold-rolled hard steel sheet, a method of manufacturing a heat-treated sheet, a method of manufacturing a thin steel sheet, and a method of manufacturing a coated steel sheet
WO2022149502A1 (en) Steel sheet and method for producing same
WO2021193632A1 (en) Hot-dipped galvanized steel sheet
WO2021140663A1 (en) High-strength galvanized steel sheet and method for producing same
KR20210151935A (en) hot stamped body
WO2019131099A1 (en) Hot-rolled steel sheet and method for manufacturing same
CN112714800B (en) Steel plate
KR20180019213A (en) Cold rolled steel sheet, plated steel sheet and methods for producing same
JP7216933B2 (en) Steel plate and its manufacturing method
WO2023199638A1 (en) Hot-stamp-formed article
WO2020203979A1 (en) Coated steel member, coated steel sheet, and methods for producing same
WO2023199635A1 (en) Hot-stamp-formed article
CN115244204A (en) Hot rolled steel plate
JPWO2020017607A1 (en) Steel plate
CN114945690B (en) Steel sheet and method for producing same
JP7063414B2 (en) Steel plate
WO2022196733A1 (en) Steel sheet, steel member, and coated steel member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788060

Country of ref document: EP

Kind code of ref document: A1