WO2023198572A1 - Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions - Google Patents

Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions Download PDF

Info

Publication number
WO2023198572A1
WO2023198572A1 PCT/EP2023/059081 EP2023059081W WO2023198572A1 WO 2023198572 A1 WO2023198572 A1 WO 2023198572A1 EP 2023059081 W EP2023059081 W EP 2023059081W WO 2023198572 A1 WO2023198572 A1 WO 2023198572A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust system
ammonia
catalyst
oxide
exhaust gas
Prior art date
Application number
PCT/EP2023/059081
Other languages
German (de)
French (fr)
Inventor
Julius KOEGEL
Massimo Colombo
Sonja Buchberger
Marcus Schmidt
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102023101779.9A external-priority patent/DE102023101779A1/en
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Publication of WO2023198572A1 publication Critical patent/WO2023198572A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia

Definitions

  • the present invention is aimed at an exhaust system for reducing exhaust gases and in particular ammonia emissions in the exhaust system of a predominantly stoichiometrically operated spark ignition engine.
  • Spark ignition engines or gasoline engines powered by gasoline or natural gas are cleaned in conventional processes using three-way catalysts (TWC). These are able to simultaneously convert the engine's three main gaseous pollutants, namely hydrocarbons, carbon monoxide and nitrogen oxides, into harmless components.
  • Stoichiometric means that, on average, there is as much air available to burn the fuel present in the cylinder as is required for complete combustion.
  • the combustion air ratio ⁇ (A/F ratio; air/fuel ratio) relates the air mass m L,tats actually available for combustion to the stoichiometric air mass m L,st : If ⁇ ⁇ 1 (e.g. 0.9) this means “lack of air”, one speaks of a rich exhaust gas mixture, ⁇ > 1 (e.g. 1.1) means “excess air” and the exhaust gas mixture is considered lean designated.
  • 1.1 means that 10% more air is present than would be necessary for the stoichiometric reaction. The same applies to the exhaust gases from internal combustion engines.
  • the catalytically active materials used in the known three-way catalysts are generally platinum group metals, in particular platinum, palladium and rhodium, which are present, for example, on ⁇ -aluminum oxide as a support material.
  • three-way catalysts contain oxygen storage materials, for example cerium/zirconium mixed oxides. In the latter, cerium oxide, a rare earth metal oxide, is the fundamental component for oxygen storage. In addition to zirconium oxide and cerium oxide, these materials can contain additional components such as other rare earth metal oxides or alkaline earth metal oxides.
  • Oxygen storage materials are made by Application of catalytically active materials such as platinum group metals activates and thus also serves as a carrier material for the platinum group metals.
  • Compliance with the strict emission values for ammonia requires the use of a storage material to store NH 3 during the rich operating conditions of the combustion engine, particularly in low and medium temperature ranges. engines, as the ammonia is mainly formed under these exhaust gas conditions. The stored ammonia is then converted during lean operating points by oxidation on a layer containing precious metal and/or as part of an SCR reaction. The aim here is to achieve the lowest possible selectivity to N 2 O.
  • a special requirement for the catalysts considered here is the high aging stability of the materials used: In addition to the stability against lean gas conditions, their use in the exhaust system of stoichiometrically operated internal combustion engines also requires that they also be used in the exhaust gas with rich or stoichiometric ric composition are stable under hydrothermal exhaust gas conditions.
  • the use of catalysts, which preferentially convert ammonia into nitrogen, has already been discussed, particularly in the diesel sector or for use in lean-burning DI petrol engines (US5120695; EP1892395A1; EP1882832A2; EP1876331A2; WO12135871A1; US2011271664AA; WO1111091 9A1, EP3915679A1).
  • ammonia slip catalysts or ASCs for short, has also already been described in the area of LNG gasoline engines (EP24258A1). These catalysts often consist of an SCR catalytically active component and a component that catalyzes the oxidation of ammonia. These catalytic converters are usually located in the underbody at the last point of the exhaust system. If for oxidation of the stored If there are not enough nitrogen oxides in the system, the ammonia can also be converted into nitrogen via the ASC with the oxygen present. As it turns out, the aging stability of ASC catalytic converters also depends largely on their design.
  • an exhaust system for reducing harmful exhaust gas components from internal combustion engines in particular predominantly stoichiometrically operated such as spark-ignited gasoline engines, having a first three-way catalytic converter and, on the downstream side, a catalyst for reducing ammonia emissions, which has the following components comprises: - a first component with a transition metal-exchanged zeolite and/or zeotypes with a three-dimensional framework structure; - a second component with an OSC-containing noble metal catalyst which has rhodium; and where the two components are applied as layers on top of one another on a substrate, the solution to the problem is achieved relatively easily, but no less surprisingly.
  • the system according to the invention is characterized by extremely good performance both in terms of the original exhaust gas components and in terms of the NH3 and N2O emissions. It reacts well to the dynamic requirements in the exhaust system of a spark-ignition engine and is sufficiently robust to meet these requirements for a sufficient period of time.
  • the components of the catalyst for reducing ammonia emissions are applied to a carrier, preferably to a flow-through substrate, using a coating step familiar to those skilled in the art (DE102019100099A1 and the literature cited there).
  • a filter substrate such as a wall flow filter is also possible in this context.
  • Flow-through substrates are catalyst supports that are common in the prior art and can consist of metal, for example WO17153239A1, WO16057285A1, WO15121910A1 and the literature cited therein) or ceramic materials.
  • “Corrugated substrates” can also be viewed as flow-through substrates. These are known to those skilled in the art as carriers made of corrugated sheets made of inert materials. Suitable inert materials are, for example, fibrous materials with an average fiber diameter of 50 to 250 ⁇ m and an average fiber length of 2 to 30 mm. Fibrous heat-resistant materials made of silicon dioxide, especially glass fibers, are preferred. However, refractory ceramics such as cordierite, silicon carbite or aluminum titanate etc.
  • the number of carrier channels per area is characterized by the cell density, which is usually between 300 and 900 cells per square inch (cells per square inch, cpsi).
  • the wall thickness of the channel walls for ceramics is between 0.5 – 0.05 mm.
  • the total amount of coatings in the catalyst to reduce ammonia emissions is selected so that the catalyst according to the invention is used as efficiently as possible overall.
  • the total amount of coatings (solids content) per carrier volume (total volume of the carrier) can be between 100 and 600 g/L, in particular between 150 and 400 g/L.
  • the first component is preferably used in an amount of 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably about 145 - 230 g/L of carrier volume.
  • the second component is preferably used from 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably from about 145 - 230 g/L carrier volume.
  • the components are present as separate coatings one above the other on the substrate. It is preferred if the second component lies completely above the first and completely covers it. This is understood to mean the fact that the first component does not protrude beyond the second component at any end. It is particularly preferred if the two coatings with the respective components are of the same length (Fig. 2).
  • the length of the layers can be chosen by the specialist become. They are preferably located on a flow-through substrate and here take up a length of at least 10% and a maximum of 100%, more preferably 20% - 90%, extremely preferably 30% - 80% of the substrate length.
  • a first component of the catalyst for reducing ammonia emissions consists of zeolites and/or zeotypes for storing ammonia. In principle, those skilled in the art are familiar with the zeolites and zeotypes available for this purpose from the diesel sector.
  • zeolites or zeotypes work is based on the fact that they can temporarily store ammonia in operating states of the exhaust gas purification system in which ammonia is produced, for example, by overreduction of nitrogen oxides via a three-way catalytic converter installed on the upstream side, but this is not converted by other conventional three-way catalytic converters. This can happen, for example due to a lack of oxygen or insufficient operating temperatures.
  • the ammonia stored in this way can then be stored out when the operating state of the exhaust gas purification system changes and subsequently or directly converted, for example when sufficient oxygen or nitrogen oxides are present.
  • zeolites and zeotypes are present in the first component of the catalyst to reduce ammonia emissions.
  • zeolites or zeotypes can be divided into different classes. Zeolites are then divided, for example, according to their channel system and their framework structure. For example, laumontite and mordenite are classified as zeolites, which have a one-dimensional system of channels. Your channels have no connection with each other. Zeolites with a two-dimensional channel system are characterized by the fact that their channels are connected to one another in a kind of layered system. A third group has a three-dimensional framework structure with cross-layer connections between the channels.
  • zeolites or zeotypes are used in the present invention [Ch. Baerlocher, WM Meier and DH Olson, Atlas of Zeolite Framework Types, Elsevier, 2001].
  • zeolite refers to porous materials with a lattice structure of corner-linked AlO4 and SiO4 tetrahedra according to the general formula (WM Meier, Pure & Appl.
  • zeolite therefore includes a network made up of tetrahedra that encloses channels and cavities.
  • zeotype is understood to mean a zeolite-like compound that has the same structural type as a naturally occurring or synthetically produced zeolite compound, but which differs from such compounds in that the corresponding cage structure is not made up exclusively of aluminum and silicon framework atoms .
  • the aluminum and/or silicon framework atoms are proportionally replaced by other trivalent, quadrivalent or pentavalent framework atoms such as B(III), Ga(III), Ge(IV), Ti(IV) or P(V) replaced.
  • the most common method used in practice is the replacement of aluminum and/or silicon framework atoms by phosphorus atoms, for example in the silicon aluminum phosphates or in the aluminum phosphates, which crystallize in zeolite structure types.
  • suitable three-dimensional zeolites belong to the structural types CHA, AEI, BEA, AFX.
  • the zeolites or zeotypes in the automobile exhaust catalyst according to the invention are selected from the group of three-dimensional zeolites, such as CHA, AEI and the corresponding zeotypes of these structural types, such as: SAPO. Mixtures of the same can also be present.
  • CHA is particularly preferred.
  • the aging stability of the zeolites or zeotypes used in the exhaust system of predominantly stoichiometrically burning engines is particularly in focus here, since higher temperatures generally prevail here than in a lean-burning engine. In this respect, materials are desired that can withstand the sometimes very high and rapidly changing hydrothermal conditions for as long as possible.
  • the exhaust gas composition is also different compared to lean-burn engine exhaust.
  • concentration, in particular of hydrocarbons and carbon monoxide, which arrive at the catalyst according to the invention is, on the one hand, higher than in lean-burn engines and the composition also changes depending on the driving style around the stoichiometric range (rich/lean change).
  • the hydrothermal temperature stability of zeolites and zeotypes depends heavily on the SAR value (silica-to-alumina ratio) of the zeolite or the ratio corresponding to this value for zeotypes.
  • the amount of silicon atoms remaining in the framework is then related to the substitution atoms.
  • the zeolites have a SAR value of 10 - 50, preferably 12 - 35 and most preferably 13 - 30.
  • the zeotype with the corresponding ratio.
  • the zeolite or zeotype used is ion-exchanged with transition metal ions.
  • the latter are preferably selected from the group consisting of iron and/or copper. Iron is particularly preferred because it has a less oxidizing effect on ammonia compared to copper. These compounds have the possibility of comproportioning nitrogen oxides present in the exhaust gas and the stored ammonia into nitrogen when lean.
  • the zeolite or zeotype described acts as a catalyst for selective catalytic reduction (SCR) (see WO2008106518A2, WO2017187344A1, US2015290632AA, US2015231617AA, WO2014062949A1, US2015231617AA).
  • SCR capability is understood to mean the ability to selectively convert NO x and NH 3 in the lean exhaust gas into nitrogen.
  • the metals, such as iron and/or copper, which advantageously occur in the catalyst to reduce ammonia emissions, are present in a certain proportion in the first component. This is 0.4-10, more preferably 0.8-6 and very preferably 1.5-4.8% by weight of the first component.
  • the iron and/or copper to aluminum ratio is between 0.15 - 0.8, preferably between 0.2 - 0.5 and most preferably between 0.3 - 0.5 for zeolites.
  • a corresponding ratio applies to the exchange places available there.
  • the metals are at least partially present in ion-exchanged form in the zeolites or zeotypes.
  • ion-exchanged zeolites or zeotypes are already introduced into the first component.
  • the zeolites or zeotypes are brought together with, for example, a binder and a solution of the metal ions in a liquid, preferably water, and then dried (preferably by spraying).
  • the first component can preferably contain further components, in particular non-catalytically active components, such as binders.
  • non-catalytically active components such as binders.
  • binders temperature-stable metal oxides that are not or only slightly catalytically active, such as SiO2, Al2O3 and ZrO2, are suitable as binders.
  • the expert knows which materials come into question here.
  • the proportion of such binders in the first component can, for example, be up to 15% by weight, preferably up to 10% by weight Make up component.
  • the binder can also contain the metals specified above.
  • Binders are suitable for ensuring stronger adhesion of the coating to a carrier.
  • a certain particle size of the metal oxides in the binder is advantageous. This can be adjusted accordingly by an expert.
  • the ammonia storage ability or capacity addressed in the context of this invention is given as a quotient of the stored mass of ammonia per liter of catalyst support volume.
  • the zeolites or zeotypes should increase the ammonia storage capacity of the exhaust gas purification system to at least 0.25 g of ammonia per liter of carrier volume (measured in the fresh state).
  • the storage capacity of the ammonia storage components used should be sufficient for the system to contain between 0.25 and 10.0 g of NH 3 per liter of carrier volume, preferably between 0.5 and 8.0 g of NH 3 per liter of carrier volume and particularly preferably between 0. 5 and 5.0 g NH 3 /liter carrier volume of ammonia can be stored (always based on the fresh state).
  • the zeolites or zeotypes are present in sufficient quantities in the catalyst to reduce ammonia emissions. The determination of the ammonia storage capacity is shown further below.
  • the second component consists of an OSC-containing noble metal catalyst containing rhodium. Precious metal refers in particular to the platinum group metals platinum, palladium and rhodium.
  • OSC stands for Oxygen Storage Catalyst.
  • An OSC-containing noble metal catalyst therefore has oxygen storage materials.
  • the OSC-containing precious metal catalyst has the function of storing oxygen in the exhaust gas of the internal combustion engine.
  • Cerium or cerium-zirconium mixed oxides are consistently used as oxygen storage materials.
  • an OSC-containing noble metal catalyst is characterized by the presence of a certain amount of these oxygen storage materials.
  • this component has oxygen storage materials in an amount of more than 5 g/L, preferably more than 10 g/L and most preferably more than 20 g/L carrier volume. This includes the entire cerium-zirconium mixed oxide with all its components.
  • Corresponding OSC-containing precious metal catalysts are capable of operating in the already slightly rich exhaust gas of a predominantly stoichiometric engine Internal combustion engine has an oxidative effect on the substances present (NH3, HC, CO). This component is preferably designed so that it becomes active at correspondingly low temperatures. The ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component. The oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation.
  • the second component in the form of an OSC-containing noble metal catalyst therefore has materials that have an oxidative effect on, among other things, ammonia.
  • This component preferably contains a temperature-stable, high-surface metal oxide, oxygen storage material and at least the noble metal rhodium. Platinum and/or palladium may also be present. However, only rhodium is most preferably present in the second component.
  • the total noble metal content of this component is preferably from 0.015 - 5 g/L, more preferably from 0.035 - 1.8 g/L and particularly preferably from 0.07 - 1.2 g/L carrier volume. If platinum and/or palladium is used, the former should be in the range of 0.015 - 1.42 g/L, more preferably 0.035 - 0.35 g/L carrier volume in the coating.
  • palladium When present in the coating, palladium can be present in between 0.015 - 1.42 g/L, preferably 0.035 - 0.35 g/L carrier volume.
  • Rhodium is present in the second component according to the invention (alone or in combination with the other aforementioned noble metals).
  • the carrier volume in this component should preferably be in the range of 0.035 - 1.0 g/L, more preferably 0.1 - 0.35 g/L. If palladium and/or platinum are also present in this component, the above ranges apply to these metals. Equipped in this way, this component has three-way activity.
  • Suitable three-way catalytically active coatings are described, for example, in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1.
  • the noble metals in the OSC-containing second component are usually fixed on one or more temperature-stable, high-surface metal oxides as carrier materials. All materials familiar to a person skilled in the art for this purpose can be considered as carrier materials. Such materials are in particular metal oxides with a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132 - latest version on the filing date).
  • Particularly suitable carrier materials for the precious metals are selected from the series consisting of aluminum oxide, doped aluminum oxide, silicon oxide, titanium dioxide and mixed oxides from one or more of them.
  • Doped aluminum oxides are, for example, lanthanum oxide, zirconium oxide, barium oxide and/or titanium oxide-doped aluminum oxides.
  • Aluminum oxide or lanthanum-stabilized aluminum oxide is advantageously used, in the latter case lanthanum in amounts of in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as La2O3 and based on the weight of stabilized aluminum oxide.
  • the proportion of barium oxide is in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as BaO and based on the weight of the stabilized aluminum oxide.
  • Another suitable carrier material is lanthanum-stabilized aluminum oxide, the surface of which is coated with lanthanum oxide, barium oxide and/or strontium oxide.
  • This component preferably comprises at least one aluminum oxide or doped aluminum oxide.
  • La-stabilized aluminum oxide with a surface area of 100 to 200 m 2 /g is particularly advantageous in this context.
  • Such active aluminum oxide has been widely described in the literature and is available on the market. Modern gasoline engines are operated under conditions with a discontinuous course of the air ratio ⁇ .
  • oxygen storage materials contained in the catalytic converter compensate for these deviations to a certain extent by absorbing oxygen from the exhaust gas as required or released into the exhaust gas (Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, p.90).
  • the OSC-containing noble metal catalysts (modern three-way catalysts) of the second component therefore contain oxygen storage materials, in particular cerium or Ce/Zr mixed oxides. The mass ratio of cerium oxide to zirconium oxide can vary within wide limits in these mixed oxides.
  • cerium/zirconium mixed oxides include one or more rare earth metal oxides and can therefore be referred to as cerium/zirconium/rare earth metal mixed oxides.
  • cerium/zirconium mixed oxides that do not contain any rare earth metal oxide.
  • the term rare earth metal or rare earth metal oxide in the sense of the present invention does not include cerium or cerium oxide.
  • Possible rare earth metal oxides in the cerium/zirconium/rare earth metal mixed oxides are, for example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide and/or samarium oxide. Lanthanum oxide, yttrium oxide and/or praseodymium oxide are preferred.
  • rare earth metal oxides are lanthana and/or yttrium oxide and very particularly preferred is the joint presence of lanthana and yttrium oxide, yttrium oxide and praseodymium oxide, as well as lanthana and praseodymium oxide in the cerium/zirconium/rare earth metal mixed oxide.
  • this noble metal catalyst has two different cerium/zirconium/rare earth metal mixed oxides, preferably one doped with La and Y and one doped with La and Pr.
  • the oxygen storage components are preferably free of neodymium oxide.
  • the proportion of rare earth metal oxide(s) in the cerium/zirconium/rare earth metal mixed oxides is advantageously 3 to 20% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain yttrium oxide as the rare earth metal, its proportion is preferably 4 to 15% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth mixed oxides contain praseodymium oxide as the rare earth metal, its proportion is preferably 2 to 10% by weight based on the cerium/zirconium/rare earth mixed oxide.
  • cerium/zirconium/rare earth metal mixed oxides contain lanthanum oxide and another rare earth oxide as the rare earth metal, such as yttrium oxide or praseodymium oxide, their mass ratio is in particular 0.1 to 1.25, preferably 0.1 to 1.
  • This noble metal catalyst usually contains oxygen storage materials in amounts of 15 to 120 g/l, based on the volume of the carrier or substrate.
  • the OSC-containing noble metal catalysts therefore have the temperature-stable, high-surface support materials mentioned and, in addition to these, the oxygen-storing materials just explained.
  • the mass ratio of temperature-stable, high-surface carrier materials and oxygen storage components in this component is usually 0.25 to 1.5, for example 0.3 to 1.3.
  • the weight ratio of the sum of the masses of all support materials, such as aluminum oxides (including doped aluminum oxides) to the sum of the masses of all cerium/zirconium mixed oxides in the OSC-containing noble metal catalyst is 10:90 to 75:25, preferably 20: 80 to 65:35.
  • the noble metals can only be deposited on the temperature-stable, high-surface support materials. However, it is preferred if the noble metals are deposited both on the carrier materials mentioned and on the oxygen storage materials.
  • the first and second components preferably form an ammonia storage with SCR functionality and a function for oxidizing ammonia to nitrogen (eg as in WO2008106523A2).
  • the ammonia can also be converted into nitrogen with the oxygen present via the second component. In both cases, if possible, no ammonia or N 2 O is released into the environment.
  • the first component and the second component of the catalyst for reducing ammonia emissions can therefore preferably consist of an ammonia-storing coating paired with a second coating that has an oxidative effect on ammonia. As such, according to the invention, they are present in separate coatings one above the other on the substrate. It is particularly preferred if both coatings are of the same length.
  • the OSC-containing noble metal catalyst of component two is located as a top layer over the first component made of zeolites and / or zeotypes for storing ammonia as a bottom layer. Most preferably, no further layers are present below or above these two coatings on the substrate. In a further preferred embodiment, it has proven to be advantageous if a thin, additional, separate layer of inert, temperature-stable, high-surface metal oxides, as mentioned above, is present between the two layers just mentioned. The expert is guided by the coating methods mentioned above for their production. This thin between 5 ⁇ m and 200 ⁇ m, preferably between 10 ⁇ m and 150 ⁇ m high layer helps to further increase the aging stability of the catalyst to reduce ammonia emissions.
  • a disadvantage of the known systems for reducing ammonia emissions can be that the transition metals in the SCR component, such as iron and/or copper, become predominantly stoichiometric after a long period of use in the exhaust system operated internal combustion engine tend to diffuse into the component for the oxidation of ammonia and poison it. The result is a lower activity of the SCR and the oxidative component.
  • Suitable materials for this layer are those selected from the group consisting of aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, zeolites or mixtures thereof.
  • Very particularly preferred in this context is a layer made of aluminum oxide or silicon oxide, which is preferably located on the substrate at the same length above the lower layer and under the upper layer.
  • the present exhaust system has a first three-way catalyst and a catalyst positioned downstream to reduce ammonia emissions.
  • the first three-way catalyst can have the same components as the OSC-containing noble metal catalyst of the second component. It is preferably constructed as described in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1. Zoned or layered versions are now the norm for TWCs.
  • the first catalyst with three-way activity has, in a further preferred embodiment, a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1.
  • Downstream refers to the fact that the exhaust gas flow first hits the upstream catalytic converter and then the downstream catalytic converter.
  • an exhaust system for a predominantly stoichiometric engine has a unit for filtering small soot and ash particles.
  • GPF are gasoline particle filters and are well known to those skilled in the art (EP3737491A1, EP3601755A1).
  • Particularly preferred is an exhaust gas design in which the first three-way catalytic converter and the GPF on the downstream side are installed in a housing close to the engine, if necessary.
  • Close to the engine in the sense of the invention refers to an area in the exhaust system that is in a position close to the engine, i.e. approx. 10 - 80 cm, preferably 20 - 60 cm away from the engine outlet. It has proven to be advantageous if the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions, so that the exhaust gas is then released into the ambient air.
  • the exhaust system can also have additional exhaust units such as additional three-way catalytic converters or hydrocarbon storage (HC traps) or nitrogen oxide storage (LNT).
  • the underbody is the area below the driver's cab.
  • TWC three-way catalytic converter
  • the three-way activity has already been described earlier. There is explicit reference to what is stated there, especially with regard to the type and quantity of the individual components.
  • This three-way catalyst is preferably one as described in the prior art (DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1). Zoned or layered versions are now the norm for TWCs.
  • At least one of the additional catalysts with three-way activity has a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1.
  • the at least second three-way catalytic converter just described in the exhaust system according to the invention can be installed in the underbody of the vehicle, but it can also be in a position close to the engine. The range of possible Euro 7 systems is large. There can be up to 4 three-way catalytic converters in front of the catalytic converter per exhaust system to reduce ammonia emissions. In an alternative embodiment, there is at least a second three-way catalyst and a possibly catalytically coated wall flow filter (GPF) in front of the catalyst to reduce ammonia emissions.
  • GPF catalytically coated wall flow filter
  • the catalyst for reducing ammonia emissions is preferably located last in the underbody and in fluid communication with the further catalyst or catalysts or the filter of the car exhaust system.
  • the car exhaust system preferably has no additional injection device for ammonia or a precursor compound for ammonia.
  • the present invention relates to a method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, in which the exhaust gas is directed via an exhaust system according to the invention.
  • the present invention is directed to an exhaust gas purification system, in particular for stoichiometrically operated internal combustion engines.
  • a stoichiometrically burning engine in which a rich exhaust gas is produced within a certain temperature interval. This can lead to nitrogen oxides arriving via a three-way catalytic converter being over-reduced to ammonia. This ammonia should not be released into the environment.
  • the ammonia is therefore stored above the catalyst to reduce ammonia emissions and is then oxidized to nitrogen under slightly oxidizing conditions. Here too, care must be taken to ensure that no over-oxidation to N 2 O occurs.
  • the exhaust system is robust enough to fully meet Euro 7 requirements.
  • the coating design shown here leads to a significantly improved suppression of ammonia emissions and the formation of nitrous oxide. This promises a long active lifespan of the targeted exhaust system.
  • Fig.1 Chart to explain the measurement of ammonia storage capacity.
  • Fig.2 Catalyst for reducing ammonia emissions (1), coating with an OSC-containing noble metal catalyst containing rhodium (2), coating with transition metal-exchanged zeolites or zeotypes for storing ammonia (3).
  • Fig.3 Schematic representation of the catalysts tested in the underbody position, with TWC and SCR coatings being combined in different ways.
  • Fig.4 Schematic representation of the catalysts tested in the underbody position with a rhodium-containing TWC coating or a platinum-containing oxidation layer with different layouts
  • Fig.5 Emission values for the catalysts shown in Fig.3 in comparison
  • Fig.6 Emission values for the catalysts shown in Fig.4 in comparison
  • Fig.7 N 2 O selectivity for the catalysts shown in Fig.4
  • Fig.8 Preferred exhaust system with TWC close to the engine followed by a possibly catalytically coated GPF and a catalytic converter to reduce ammonia emissions in the underbody area
  • A. Determination of the ammonia storage capacity This is determined experimentally in a flow tube reactor. To avoid undesirable ammonia oxidation on the reactor material, a reactor made of quartz glass is used. A drill core is taken as a test specimen from the area of the catalytic converter whose ammonia storage capacity is to be determined. A drill core with a diameter of 1 inch and a length of 3 inches is preferably taken as a test specimen. The drill core is inserted into the flow tube reactor and at a temperature of 600 ° C in a gas atmosphere consisting of 500 ppm nitrogen monoxide, 5 vol.% oxygen, 5 vol.% water and the rest nitrogen with a space velocity of 30000 h -1 for 10 minutes conditioned.
  • the measuring temperature of 200 °C is then reached in a gas mixture of 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 .
  • the NH 3 storage phase is initiated by switching on a gas mixture of 450 ppm ammonia, 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 .
  • This gas mixture remains switched on until a stationary ammonia breakthrough concentration is recorded on the downstream side of the test specimen.
  • the mass of ammonia stored on the test specimen is calculated from the recorded ammonia breakthrough curve by integration from the start of the NH 3 storage phase until stationarity is reached, taking into account the measured stationary NH 3 breakthrough concentration and the known volume flow (hatched area in Figure 1).
  • the ammonia storage capacity is calculated as the quotient of the stored mass of ammonia divided by the volume of the tested core.
  • B1. Preparation of the Cu-loaded zeolite The zeolite was coated with copper using a copper(II) nitrate solution in a solids mixer using an incipient wetness process. This was followed by treatment in the oven for 8 hours at 120°C and for 5 hours at 600°C in air.
  • a composition with 3.5 wt% CuO based on the total mass of zeolite and CuO was prepared.
  • B2. Preparation of the Fe-loaded zeolite The zeolite was coated with iron using an incipient wetness process with an iron(III) nitrate solution in a solids mixer.
  • the coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h. If necessary, a layer containing precious metal can be applied as a top layer to the now coated carrier.
  • B4. Production of an iron-containing zeolite coating The coating with an Fe-loaded zeolite was carried out after co-grinding with Nyacol ® -AL20 binder on a cordierite substrate with 164.8 g/L washcoat loading (88% zeolite, 12% binder). The coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h.
  • a layer containing precious metal can be applied as a top layer to the now coated carrier.
  • Lanthanum oxide stabilized alumina was added along with an oxygen storage component comprising 24 wt% ceria, 60 wt% zirconium oxide, 3.5 wt% lanthanum oxide and 12.5 wt% yttria, and lanthanum acetate as an additional source of lanthanum oxide Water suspended.
  • the weight ratio of aluminum oxide to oxygen storage component to additional lanthanum oxide was 43.6:55.7:0.7.
  • a rhodium nitrate solution was then added to the suspension thus obtained with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available substrate, with the coating taking place over 100% of the substrate length.
  • the total loading of this washcoat on the catalyst was 122 g/L, the precious metal loading was 0.177 g/L (5 g/ft 3 ).
  • the coated catalyst thus obtained was dried and then calcined. If necessary, a layer free of precious metals can be applied as a top layer to the now coated carrier.
  • the resulting suspension was ground and, after stabilization with ammonium acetate, used to coat a commercially available carrier, with the coating taking place over 100% of the carrier length.
  • the total loading of this washcoat on the catalyst was 25 g/L, the precious metal loading was 0.106 g/L (3 g/ft 3 ).
  • the coated catalyst thus obtained was dried and then calcined. If necessary, further layers can be applied as a top layer to the now coated carrier. Catalysts as shown schematically in FIGS. 3 and 4 were produced or combined with one another. E.
  • ASCs Aging conditions To determine the catalytic properties of the catalysts according to the invention, they were first aged in an engine test bench aging behind a TWC close to the engine in the underbody position (“fuel-cut aging”). The aging consists of fuel cut-off aging with an exhaust gas temperature of 950 °C in front of the inlet of the TWC near the engine (maximum bed temperature 1030 °C). The aging period and the inlet temperature for the catalytic converter in the underbody position are specified individually for each test. Test conditions: The different catalytic converters were tested in the underbody position on a highly dynamic engine test bench in a WLTC driving cycle.
  • a series-produced TWC containing Pd/Rh was placed in an aged state in a position close to the engine.
  • the value “reduction in NH 3 emissions” refers to the NH 3 emissions of a system with one of the catalytic converters shown in the underbody position over the entire driving cycle in relation to the emissions of the corresponding system in the absence of a catalytic converter in underbody position.

Abstract

The present invention is directed to an exhaust gas system for reducing exhaust gas emissions and in particular ammonia emissions in the exhaust train of a predominantly stoichiometrically operated spark ignition engine.

Description

Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmoto- ren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen Vorliegende Erfindung richtet sich auf ein Abgassystem zur Verminderung der Abgase und insbesondere der Ammoniakemissionen im Abgasstrang eines überwiegend stöch- iometrisch betriebenen Fremdzündungsmotor. Abgase von mit überwiegend (>50% der Betriebszeit) stöchiometrischem Luft/Kraftstoff- Gemisch betriebenen Verbrennungsmotoren, also z. B. mit Benzin oder Erdgas betrie- bene Fremdzündungsmotoren oder Ottomotoren, werden in herkömmlichen Verfahren mit Hilfe von Dreiwegekatalysatoren (three-way-catalyst; TWC) gereinigt. Diese sind in der Lage, die drei wesentlichen gasförmigen Schadstoffe des Motors, nämlich Kohlen- wasserstoffe, Kohlenmonoxid und Stickoxide, gleichzeitig zu unschädlichen Komponen- ten umzusetzen. Stöchiometrisch heißt, dass im Mittel genau so viel Luft zur Verbren- nung des im Zylinder vorhandenen Kraftstoffs zur Verfügung steht, wie für eine vollstän- dige Verbrennung benötigt wird. Das Verbrennungsluftverhältnis λ (A/F-Verhältnis; Luft/Kraftstoffverhältnis) setzt die tatsächlich für eine Verbrennung zur Verfügung ste- hende Luftmasse mL,tats ins Verhältnis zur stöchiometrischen Luftmasse mL,st:
Figure imgf000003_0001
Ist λ < 1 (z. B.0,9) bedeutet dies „Luftmangel“, man spricht von einem fetten Abgasge- misch, λ > 1 (z. B.1,1) bedeutet „Luftüberschuss“ und das Abgasgemisch wird als mager bezeichnet. Die Aussage λ = 1,1 bedeutet, dass 10% mehr Luft vorhanden ist, als zur stöchiometrischen Reaktion notwendig wäre. Gleiches gilt für das Abgas von Verbren- nungsmotoren. Als katalytisch aktive Materialien werden in den bekannten Dreiwegekatalysatoren in der Regel Platingruppenmetalle, insbesondere Platin, Palladium und Rhodium eingesetzt, die beispielsweise auf ^-Aluminiumoxid als Trägermaterial vorliegen. Daneben enthalten Dreiwegekatalysatoren Sauerstoffspeichermaterialien, beispielsweise Cer/Zirkonium- Mischoxide. In letzteren stellt Ceroxid, ein Seltenerdmetalloxid, die für die Sauer- stoffspeicherung grundlegende Komponente dar. Neben Zirkoniumoxid und Ceroxid können diese Materialien zusätzliche Bestandteile wie weitere Seltenerdmetalloxide oder Erdalkalimetalloxide enthalten. Sauerstoffspeichermaterialien werden durch Aufbringen von katalytisch aktiven Materialien wie Platingruppenmetallen aktiviert und dienen somit auch als Trägermaterial für die Platingruppenmetalle. Im Rahmen der zur Mitte der 2020er Jahre in Kraft tretenden Euro 7-Gesetzgebung wer- den erstmals die Emissionen von Ammoniak (NH3) und Lachgas (N2O) für stöchiomet- risch arbeitende Verbrennungsmotoren reguliert. Der giftige Ammoniak und das starke Treibhausgas N2O werden als Sekundäremissionen bezeichnet und ihr Ausstoß kann durch aktuelle Abgasnachbehandlungssysteme nicht ausreichend reduziert werden. Die Einhaltung der strengen Grenzwerte für Sekundäremissionen über einen breiten Bereich von Fahrsituationen erfordert die Entwicklung einer robusten technischen Lösung in Form eines neuen Katalysators für den Benzinabgasstrang. Eine große Herausforde- rung stellen insbesondere die extrem dynamischen Umgebungsbedingungen gerade im Unterboden eines Benzin-PKWs dar. Die Einhaltung der strengen Emissionswerte für Ammoniak erfordert insbesondere für niedrige und mittlere Temperaturbereiche die Verwendung eines Speichermaterials zur Einspeicherung von NH3 während der fetten Betriebsbedingungen des Verbrennungs- motors, da der Ammoniak hauptsächlich unter diesen Abgasbedingungen gebildet wird. Die Umsetzung des gespeicherten Ammoniaks erfolgt dann während magerer Betriebs- punkte durch Oxidation auf einer edelmetalthaltigen Schicht und/oder im Rahmen einer SCR-Reaktion. Hierbei wird eine möglichst geringe Selektivität zu N2O angestrebt. Eine besondere Anforderung an den hier betrachteten Katalysatoren stellt die hohe Alterungs- stabilität der verwendeten Materialien dar: Über die Stabilität gegenüber mageren Gas- bedingungen hinaus erfordert ihre Anwendung im Abgasstrang von stöchiometrisch be- triebenen Verbrennungsmotoren, dass diese auch im Abgas mit fetter oder stöchiomet- rischer Zusammensetzung unter hydrothermalen Abgasbedingungen stabil sind. Insbesondere im Dieselbereich oder für den Einsatz in mager verbrennenden DI Ben- zinmotoren wurde der Einsatz von Katalysatoren, welche bevorzugt Ammoniak zu Stick- stoff umsetzen, schon diskutiert (US5120695; EP1892395A1; EP1882832A2; EP1876331A2; WO12135871A1; US2011271664AA; WO11110919A1, EP3915679A1). Auch im Bereich der LNG-Benzinmotoren wurde die Verwendung von Ammonia Slip Ca- talysts, kurz ASCs, bereits beschrieben (EP24258A1). Diese Katalysatoren bestehen häufig aus einer SCR-katalytisch aktiven und einer die Oxidation von Ammoniak kataly- sierenden Komponente. Diese Katalysatoren befinden sich regelmäßig im Unterboden an letzter Stelle des Abgassystems. Sofern zur Oxidation des eingespeicherten Ammoniaks nicht genügend Stickoxide im System vorhanden sein sollten, kann der Am- moniak über dem ASC auch mit vorhandenem Sauerstoff zu Stickstoff umgesetzt wer- den. Wie sich herausgestellt hat, hängt die Alterungsstabilität der ASC-Katalysatoren auch maßgeblich von ihrem Design ab. Demgemäß ist es eine Aufgabe der vorliegenden Erfindung neue Abgassysteme vorzu- stellen, welche den Betrieb eines Verbrennungsmotor, insbesondere eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors, auch unter der neuen Euro 7-Ge- setzgebung erlauben. Insbesondere sollten die entsprechenden Grenzwerte insbeson- dere für NH3 und N2O sicher einzuhalten sein. Darüber hinaus sollte das System aber auch entsprechend robust und agil sein, um den Arbeitsbedingungen im Abgasstrang eines entsprechenden Automobils für eine ausreichende Zeit standhalten zu können. Diese und weitere, sich für den Fachmann aus dem Stand der Technik ergebenden Auf- gaben werden durch ein Abgassystem und ein Verfahren zur Abgasreinigung gemäß den Ansprüchen 1 bzw.11 gelöst. Die Ansprüche 2 – 10 beziehen sich auf bevorzugte Ausgestaltungen des Abgassystems und sind entsprechend auch auf das erfindungsge- mäße Verfahren anwendbar. Dadurch, dass man ein Abgassystem zur Verminderung von schädlichen Abgasbestand- teile von Verbrennungsmotoren, insbesondere überwiegend stöchiometrisch betriebe- nen wie fremdgezündeten Benzinmotoren, aufweisend einen ersten Dreiwegekatalysa- tor und abstromseitig hierzu einen Katalysator zur Verminderung der Ammoniak-Emis- sionen vorschlägt, der folgende Bestandteile aufweist: - eine erste Komponente mit einem übergangsmetallausgetauschten Zeolithen und/oder Zeotypen mit dreidimensionaler Gerüststruktur; - eine zweite Komponente mit einem OSC-haltigen Edelmetallkatalysator, welcher Rhodium aufweist; und wobei die beiden Komponenten als übereinanderliegende Schichten auf einem Substrat auf- gebracht sind, gelangt man relative einfach, dafür aber nicht minder überraschend zur Lösung der gestellten Aufgabe. Das erfindungsgemäße System zeichnet sich durch eine extrem gute Performance sowohl hinsichtlich der angestammten Abgasbestandteile, als auch hinsichtlich der NH3-und N2O-Emissionen aus. Es reagiert gut unter den dynami- schen Anforderungen im Abgasstrang eines Fremdzündungsmotors und ist entspre- chend robust, um auch eine ausreichende Dauer diesen Anforderungen gerecht zu wer- den. Die Komponenten des Katalysator zur Verminderung der Ammoniak-Emissionen werden durch einen dem Fachmann geläufigen Beschichtungsschritt auf einen Träger, vorzugs- weise auf ein Durchflusssubstrat aufgebracht (DE102019100099A1 sowie dort zitierte Literatur). Ein Filtersubstrat wie ein Wandflussfilter ist in diesem Zusammenhang auch möglich. Durchflusssubstrate sind im Stand der Technik übliche Katalysatorträger, die aus Metall z.B. WO17153239A1, WO16057285A1, WO15121910A1 und darin zitierte Literatur) oder keramischen Materialien bestehen können. „Corrugated substrates“ kön- nen auch als Durchflusssubstrate angesehen werden. Diese sind dem Fachmann als Träger aus gewellten Blättern, welche aus inerten Materialien bestehen, bekannt. Ge- eignete inerte Materialien sind zum Beispiel faserförmige Materialien mit einem durch- schnittlichen Faserdurchmesser von 50 bis 250 µm und einer durchschnittlichen Faser- länge von 2 bis 30 mm. Bevorzugt sind faserförmige hitzebeständige Materialien aus Siliziumdioxid, insbesondere aus Glasfasern. Bevorzugt werden jedoch feuerfeste Kera- miken wie zum Beispiel Cordierit, Siliziumcarbit oder Aluminiumtitanat etc. als Ho- neycomb-Träger eingesetzt. Die Anzahl der Kanäle der Träger pro Fläche wird durch die Zelldichte charakterisiert, welche üblicher Weise zwischen 300 und 900 Zellen pro Quad- rat inch (cells per square inch, cpsi) liegt. Die Wanddicke der Kanalwände beträgt bei Keramiken zwischen 0,5 – 0,05 mm. Die Gesamtmenge der Beschichtungen im Katalysator zur Verminderung der Ammo- niak-Emissionen wird so ausgewählt, dass der erfindungsgemäße Katalysator insge- samt möglichst effizient genutzt wird. Im Falle eines oder mehrerer Durchflusssubstrat(e) kann beispielsweise die Gesamtmenge der Beschichtungen (Feststoffanteil) pro Träger- volumen (Gesamtvolumen des Trägers) zwischen 100 und 600 g/L sein, insbesondere zwischen 150 und 400 g/L. Die erste Komponente wird bevorzugt in einer Menge von 50 bis 350 g/L, insbesondere zwischen 120 und 250 g/L, besonders bevorzugt von etwa 145 – 230 g/L Trägervolumen, eingesetzt. Die zweite Komponente wird vorzugsweise von 50 bis 350 g/L, insbesondere zwischen 120 und 250 g/L, besonders bevorzugt von etwa 145 – 230 g/L Trägervolumen, eingesetzt. Erfindungsgemäß liegen die Komponenten als separate Beschichtungen übereinander liegend auf dem Substrat vor. Bevorzugt ist, wenn die zweite Komponente komplett über der ersten liegt und diese vollständig überdeckt. Hierunter wird die Tatsache verstanden, dass die erste Komponente an keinem Ende über die zweiten Komponente hinausragt. Besonders bevorzugt ist, wenn die beide Beschichtungen mit den jeweiligen Komponen- ten gleich lang sind (Fig. 2). Die Länge der Schichten kann vom Fachmann gewählt werden. Sie befinden sich auf bevorzugt auf einem Durchflusssubstrat und nehmen hier eine Länge von mindestens 10% und maximal 100%, mehr bevorzugt 20% - 90% äu- ßerst bevorzugt 30% - 80% der Substratlänge ein. Wie oben schon angedeutet besteht eine erste Komponente des Katalysator zur Ver- minderung der Ammoniak-Emissionen aus Zeolithen und/oder Zeotypen zur Speiche- rung von Ammoniak. Prinzipiell sind dem Fachmann die hierfür zur Verfügung stehenden Zeolithe und Zeotype aus dem Dieselsektor bekannt. Die Arbeitsweise der Zeolithe bzw. Zeotype beruht dabei darauf, dass sie Ammoniak in Betriebszuständen des Abgasreini- gungssystems zwischenspeichern können, in denen Ammoniak z.B. durch Überreduk- tion von Stickoxiden über einem anstromseitig verbauten Dreiwegekatalysator entsteht, dieses aber nicht von weiteren herkömmlichen Dreiwegekatalysatoren umgesetzt wer- den kann, beispielsweise wegen des Mangels an Sauerstoff oder ungenügenden Be- triebstemperaturen. Der so gespeicherte Ammoniak kann dann bei verändertem Be- triebszustand des Abgasreinigungssystems ausgespeichert und anschließend oder di- rekt umgesetzt werden, beispielsweise dann, wenn genügend Sauerstoff oder Stickoxide vorhanden sind. Zeolithe und Zeotype sind erfindungsgemäß in der ersten Komponente des Katalysators zur Verminderung der Ammoniak-Emissionen zugegen. Gemäß der Klassifizierung der IZA (https://europe.iza-structure.org/IZA-SC/ftc_table.php), der internationalen Zeo- lithvereinigung, können Zeolithe bzw. Zeotype in unterschiedliche Klassen eingeteilt wer- den. Danach werden Zeolithe z.B. gemäß ihres Kanalsystems und ihrer Gerüststruktur unterteilt. Beispielsweise werden Laumontit und Mordenit den Zeolithen zugeordnet, die über ein eindimensionales System von Kanälen verfügen. Ihre Kanäle haben keine Ver- bindung untereinander. Zeolithe mit zweidimensionalem Kanalsystem zeichnen sich dadurch aus, dass ihre Kanäle untereinander in einer Art schichtförmigem System ver- bunden sind. Eine dritte Gruppe weist eine dreidimensionale Gerüststruktur auf mit schichtübergreifenden Verbindungen der Kanäle untereinander. In der vorliegenden Er- findung kommen erfindungsgemäß dreidimensionale Zeolithe bzw. Zeotype zum Einsatz [Ch. Baerlocher, W.M. Meier and D.H. Olson, Atlas of Zeolite Framework Types, Else- vier, 2001]. Unter dem Begriff „Zeolith“ versteht man erfindungsgemäß poröse Materialien mit einer Gitterstruktur aus eckenverknüpften AlO4- und SiO4-Tetraedern gemäß der allgemeinen Formel (W.M. Meier, Pure & Appl. Chem., Vol.58, No.10, pp.1323-1328, 1986): Mm/z [m AlO2 * n SiO2] * q H2O Die Struktur eines Zeolithen umfasst somit ein aus Tetraedern aufgebautes Netzwerk, das Kanäle und Hohlräume umschließt. Man unterscheidet natürlich vorkommende und synthetisch hergestellte Zeolithe. Unter dem Begriff „Zeotyp“ wird eine zeolithähnliche Verbindung verstanden, die denselben Strukturtyp aufweist, wie eine natürlich vorkom- mende oder eine synthetisch hergestellte Zeolithverbindung, die sich von solchen jedoch dadurch unterscheidet, dass die entsprechende Käfigstruktur nicht ausschließlich aus Aluminium- und Siliziumgerüstatomen aufgebaut ist. In solchen Verbindungen werden die Aluminium- und/oder Siliziumgerüstatome anteilig durch andere drei-, vier- oder fünf- wertige Gerüstatome wie beispielsweise B(III), Ga(III), Ge(IV), Ti(IV) oder P(V) ersetzt. In der Praxis am häufigsten zur Anwendung kommt der Ersatz von Aluminium- und/oder Siliziumgerüstatomen durch Phosphoratome, beispielsweise in den Siliziumaluminiump- hosphaten oder in den Aluminiumphosphaten, die in Zeolithstrukturtypen kristallisieren. Beispiele geeigneter dreidimensionaler Zeolithe gehören den Strukturtypen CHA, AEI, BEA, AFX an. Besonders bevorzugt ist, wenn die Zeolithe bzw. Zeotype in dem erfin- dungsgemäßen Autoabgaskatalysator ausgewählt sind aus der Gruppe der dreidimen- sionalen Zeolithe, wie CHA, AEI und den entsprechenden Zeotypen dieser Strukturty- pen, wie z.B: SAPO. Es können auch Mischungen derselben vorliegen. Ganz besonders bevorzugt ist der Einsatz von CHA. Die Alterungsstabilität der verwendeten Zeolithe bzw. Zeotype im Abgasstrang von über- wiegend stöchiometrisch verbrennenden Motoren ist vorliegend besonders im Fokus, da hier gemeinhin höhere Temperaturen als in einem mager verbrennenden Motor vorherr- schen. Insofern sind solche Materialien gewünscht, welche den teils sehr hohen und stark wechselnden hydrothermalen Bedingungen möglichst lange standhalten können. Auf der anderen Seite ist aber auch die Abgaszusammensetzung eine andere verglichen mit Magermotorenabgas. Die Konzentration insbesondere von Kohlenwasserstoffen und Kohlenmonoxid, welche am erfindungsgemäßen Katalysator ankommen, sind zum einen höher als bei Magermotoren und die Zusammensetzung wechselt auch je nach Fahr- weise um den stöchiometrischen Bereich herum (fett/mager-Wechsel). Die hydrother- male Temperaturstabilität von Zeolithen und Zeotypen hängt dabei stark von dem SAR- Wert (silica-to-alumina-ratio) des Zeolithen bzw. dem diesem Wert entsprechendem Ver- hältnis bei Zeotypen ab. Danach wird die Menge an im Gerüst verbleibenden Siliziu- matomen zu den Substitutionsatomen ins Verhältnis gesetzt. Es hat sich als vorteilhaft erwiesen, wenn die Zeolithe einen SAR-Wert von 10 – 50, vorzugsweise 12 – 35 und ganz bevorzugt 13 – 30 aufweisen. Gleiches gilt für die Zeotype mit dem entsprechenden Verhältnis. Erfindungsgemäß ist der eingesetzte Zeolith oder Zeotyp mit Übergangsmetallionen io- nenausgetauscht. Letztere sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Eisen und/oder Kupfer. Eisen ist besonders bevorzugt, da er im Vergleich zu Kupfer weniger oxidierend auf Ammoniak wirkt. Diese Verbindungen besitzen die Möglichkeit, im Abgas vorhandene Stickoxide und den eingespeicherten Ammoniak im Mageren zu Stickstoff zu komproportionieren. In diesem Fall wirkt der beschriebene Zeolith bzw. Ze- otyp wie ein Katalysator zur selektiven katalytischen Reduktion (SCR) (siehe WO2008106518A2, WO2017187344A1, US2015290632AA, US2015231617AA, WO2014062949A1, US2015231617AA). Unter SCR-Fähigkeit wird vorliegend die Fä- higkeit verstanden, selektiv NOx und NH3 im mageren Abgas in Stickstoff umzuwandeln. Die vorteilhafter Weise im Katalysator zur Verminderung der Ammoniak-Emissionen vor- kommenden Metalle, wie Eisen und/oder Kupfer sind in der ersten Komponente in einem bestimmten Anteil vorhanden. Dieser liegt bei 0,4 – 10, mehr bevorzugt 0,8 – 6 und ganz bevorzugt 1,5 – 4,8 Gew.-% an der ersten Komponente. Das Eisen- und/oder Kupfer- zu-Aluminiumverhältnis liegt zwischen 0,15 – 0,8, vorzugsweise zwischen 0,2 – 0,5 und ganz bevorzugt zwischen 0,3 – 0,5 für Zeolithe. Für den Zeotypen gilt ein entsprechen- des Verhältnis für die dort zur Verfügung stehenden Austauschplätze. Die Metalle liegen dabei zumindest teilweise in ionenausgetauschter Form in den Zeolithen bzw. Zeotypen vor. Vorzugsweise werden bereits ionenausgetauschte Zeolithe bzw. Zeotype in die erste Komponente eingebracht. Es kann jedoch auch sein, dass die Zeolithe bzw. Zeo- type mit z.B. einem Bindemittel und einer Lösung der Metallionen in einer Flüssigkeit, bevorzugt Wasser, zusammengebracht werden und dann (vorzugsweise sprüh-) ge- trocknet werden. Hier finden sich dann gewisse Anteile der Metalle in Form der Oxide auch auf dem Bindemittel wieder. Beide Vorgehensweisen sind möglich. Die erste Komponente kann bevorzugt neben den Zeolithen bzw. Zeotypen weitere Be- standteile enthalten, insbesondere nicht katalytisch aktive Komponenten, wie Bindemit- tel. Als Bindemittel sind beispielsweise nicht oder nur wenig katalytisch aktive tempera- turstabile Metalloxide, wie SiO2, Al2O3 und ZrO2, geeignet. Der Fachmann weiß, welche Materialien hier in Frage kommen. Der Anteil solcher Binder in der ersten Komponente kann beispielsweise bis zu 15 Gew.-%, vorzugsweise bis zu 10 Gew.-% an der Komponente ausmachen. Wie gesagt kann auch das Bindemittel die oben angegebenen Metalle aufweisen. Bindemittel sind dazu geeignet, ein stärkeres Anhaften der Beschich- tung auf einem Träger zu gewährleisten. Hierzu ist eine bestimmte Partikelgröße der Metalloxide im Bindemittel vorteilhaft. Diese kann vom Fachmann entsprechend einge- stellt werden. Die im Rahmen dieser Erfindung angesprochene Ammoniakspeicherfähigkeit bzw. -ka- pazität wird als Quotient aus gespeicherter Masse Ammoniak pro Liter Katalysatorträ- gervolumen angegeben. Durch die Zeolithe bzw. Zeotype sollte die Ammoniakspeicher- fähigkeit des Abgasreinigungssystems auf mindestens 0,25 g Ammoniak pro L Träger- volumen erhöht werden (gemessen im Frischzustand). Insgesamt sollte die Speicherka- pazität der eingesetzten Ammoniakspeicherkomponenten ausreichen, damit im System zwischen 0,25 und 10,0 g NH3 pro Liter Trägervolumen, bevorzugt zwischen 0,5 und 8,0 g NH3 pro Liter Trägervolumen und besonders bevorzugt zwischen 0,5 und 5,0 g NH3/Li- ter Trägervolumen Ammoniak gespeichert werden kann (immer bezogen auf den Frisch- zustand). Die Zeolithe bzw. Zeotype sind in einer ausreichenden Menge im Katalysator zur Verminderung der Ammoniak-Emissionen vorhanden. Die Bestimmung der Ammo- niakspeicherfähigkeit ist weiter hinten dargestellt. Die zweite Komponente besteht aus einem OSC-haltigen Edelmetallkatalysator aufwei- send Rhodium. Unter Edelmetall werden insbesondere die Platingruppenmetalle Platin, Palladium und Rhodium verstanden. OSC bedeutet Oxygen Storage Catalyst - Sauer- stoffspeicherkatalysator. Ein OSC-haltiger Edelmetallkatalysator weist demnach Sauer- stoffspeichermaterialien auf. Der OSC-haltige Edelmetallkatalysator weist eine den Sauerstoff im Abgas des Verbren- nungsmotors speichernde Funktion auf. Als Sauerstoffspeichermaterialien werden durchweg Cer- oder Cer-Zirkonium-Mischoxide (siehe weiter unten) verwendet. Demzu- folge zeichnet sich ein OSC-haltiger Edelmetallkatalysator durch das Vorhandensein ei- ner bestimmten Menge an diesen Sauerstoffspeichermaterialien aus. Insbesondere weist diese Komponente Sauerstoffspeichermaterialien in einer Menge von mehr als 5 g/L, bevorzugt mehr als 10 g /L und ganz bevorzugt mehr als 20 g/L Trägervolumen. Hierbei wird das gesamte Cer-Zirkonium Mischoxid mit all seinen Bestandteilen einge- rechnet. Entsprechende OSC-haltige Edelmetallkatalysatoren haben die Befähigung im schon leicht fetten Abgas eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors oxidativ auf die vorhandenen Stoffe (NH3, HC, CO) zu wirken. Diese Komponente ist dabei bevorzugt so ausgelegt, dass sie bei entsprechend niedri- gen Temperaturen schon aktiv wird. Der im Zeolith bzw. Zeotyp eingespeicherte Ammo- niak wird hier über diese Komponente bevorzugt in nichtschädlichen Stickstoff umge- wandelt. Die Oxidationswirkung sollte nicht zu groß sein, da ansonsten aus der Ammo- niakoxidation ein gewisser Anteil an dem starken Treibhausgas N2O gebildet wird. Die zweite Komponente in Form eines OSC-haltigen Edelmetallkatalysators weist dem- nach Materialien auf, die oxidativ auf u.a. Ammoniak wirken. Vorzugsweise enthält diese Komponente ein temperaturstabiles, hochoberflächiges Metalloxid, Sauerstoffspeicher- material und mindestens das Edelmetall Rhodium. Platin und/oder Palladium können auch vorhanden sein. Ganz bevorzugt ist jedoch nur Rhodium in der zweiten Kompo- nente zugegen. Der Gesamtedelmetallgehalt dieser Komponente beträgt vorzugsweise von 0,015 – 5 g/L, mehr bevorzugt von 0,035 – 1,8 g/L und besonders bevorzugt von 0,07 – 1,2 g/L Trägervolumen. Kommt Platin und/oder Palladium zum Einsatz, so sollte sich ersteres im Bereich von 0,015 – 1,42 g/L, mehr bevorzugt 0,035 – 0,35 g/L Träger- volumen in der Beschichtung befinden. Palladium kann bei Vorhandensein in der Be- schichtung zwischen 0,015 – 1,42 g/L, bevorzugt 0,035 – 0,35 g/L Trägervolumen zuge- gen sein. Rhodium ist in der zweiten Komponente erfindungsgemäß vorhanden (alleine oder in Kombination mit den anderen vorher genannten Edelmetallen). Es sollte sich zu vor- zugsweise im Bereich von 0,035 – 1,0 g/L, mehr bevorzugt 0,1 – 0,35 g/L Trägervolumen in dieser Komponente befinden. Sofern Palladium und/oder Platin ebenfalls in dieser Komponente vorhanden sind, gelten die oben genannten Bereiche für diese Metalle. So ausgestattet besitzt diese Komponente Dreiwegeaktivität. Geeignete dreiwegekataly- tisch aktive Beschichtungen (TWC) sind beispielsweise in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1 beschrieben. Die Edelmetalle in der OSC-haltigen zweiten Komponente sind üblicherweise auf einem oder mehreren temperaturstabilen, hochoberflächigen Metalloxiden als Trägermateria- lien fixiert. Als Trägermaterialien kommen alle dem Fachmann für diesen Zweck geläu- figen Materialien in Betracht. Solche Materialien sind insbesondere Metalloxide mit einer BET-Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g (bestimmt nach DIN 66132 – neueste Fassung am Anmeldetag). Besonders geeignete Trägermateria- lien für die Edelmetalle sind ausgewählt aus der Reihe bestehend aus Aluminiumoxid, dotiertes Aluminiumoxid, Siliziumoxid, Titandioxid und Mischoxiden aus einem oder mehreren davon. Dotierte Aluminiumoxide sind beispielsweise Lanthanoxid-, Zirkoni- umoxid-, Bariumoxid- und/oder Titanoxid-dotierte Aluminiumoxide. Mit Vorteil wird Alu- miniumoxid oder Lanthan-stabilisiertes Aluminiumoxid eingesetzt, wobei im letztgenann- ten Fall Lanthan in Mengen von insbesondere 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.- %, jeweils berechnet als La2O3 und bezogen auf das Gewicht des stabilisierten Alumini- umoxides, verwendet wird. Auch im Fall von mit Bariumoxid dotiertem Aluminiumoxid ist der Anteil an Bariumoxid insbesondere 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.-%, jeweils berechnet als BaO und bezogen auf das Gewicht des stabilisierten Aluminiumoxi- des. Ein weiteres geeignetes Trägermaterial ist Lanthan-stabilisiertes Aluminiumoxid, dessen Oberfläche mit Lanthanoxid, mit Bariumoxid und/oder mit Strontiumoxid be- schichtet ist. Diese Komponente umfasst bevorzugt mindestens ein Aluminiumoxid oder dotiertes Aluminiumoxid. Vorteilhaft ist in diesem Zusammenhang insbesondere La-sta- bilisiertes ^-Aluminiumoxid mit einer Oberfläche von 100 bis 200 m2/g. Solches aktives Aluminiumoxid ist in der Literatur vielfach beschrieben und am Markt erhältlich. Moderne Ottomotoren werden unter Bedingungen mit einem diskontinuierlichen Verlauf der Luftzahl ^ betrieben. Sie unterliegen in definierter Weise einem periodischen Wech- sel der Luftzahl ^ und somit einem periodischen Wechsel von oxidierenden und reduzie- renden Abgasbedingungen. Dieser Wechsel der Luftzahl ^ ist in beiden Fällen wesent- lich für das Abgasreinigungsergebnis. Hierzu wird der Lambdawert des Abgases mit sehr kurzer Zyklenzeit (ca.0,5 bis 5 Hertz) und einer Amplitude ^ ^ von 0,005 ^ ^ ^ ^ 0,05 um den Wert ^ = 1 (reduzierende und oxidierende Abgasbestandteile liegen in stöchiomet- rischem Verhältnis zueinander vor) geregelt. Aufgrund der dynamischen Betriebsweise des Motors im Fahrzeug treten zudem Abweichungen von diesem Zustand auf. Damit sich die genannten Abweichungen vom stöchiometrischen Punkt nicht nachteilig auf das Abgasreinigungsergebnis bei Überleiten des Abgases über den Dreiwegkatalysator aus- wirken, gleichen im Katalysator enthaltene Sauerstoffspeichermaterialien diese Abwei- chungen bis zu einem gewissen Grad aus, indem sie Sauerstoff nach Bedarf aus dem Abgas aufnehmen oder ins Abgas abgeben (Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, S.90). In den OSC-haltigen Edelmetallkatalysatoren (moderne Dreiwegkatalysatoren) der zwei- ten Komponente befinden sich daher Sauerstoffspeichermaterialien, insbesondere Cer oder Ce/Zr-Mischoxide. Das Masseverhältnis von Ceroxid zu Zirkoniumoxid kann in die- sen Mischoxiden in weiten Grenzen variieren. Es beträgt beispielsweise 0,1 bis 1,5, bevorzugt 0,15 bis 1 oder 0,2 bis 0,9. Bevorzugte Cer/Zirkonium-Mischoxide umfassen ein oder mehrerer Seltenerdmetalloxide und können somit als Cer/Zirkonium/Seltenerd- metall-Mischoxide bezeichnet werden. Der Begriff „Cer/Zirkonium/Seltenerdmetall- Mischoxid“ im Sinne der vorliegender Erfindung schließt physikalische Mischungen aus Ceroxid, Zirkoniumoxid und Seltenerdoxid aus. Vielmehr sind „Cer/Zirkonium/Seltener- dmetall-Mischoxide“ durch eine weitgehend homogene, dreidimensionale Kristallstruktur gekennzeichnet, die idealerweise frei ist von Phasen aus reinem Ceroxid, Zirkoniumoxid bzw. Seltenerdoxid (sogenannte feste Lösung). Je nach Herstellungsverfahren können aber auch nicht vollständig homogene Produkte entstehen, die in der Regel ohne Nach- teil verwendet werden können. Analoges gilt für Cer/Zirkonium-Mischoxide, die kein Sel- tenerdmetalloxid enthalten. Im Übrigen umfasst der Begriff Seltenerdmetall bzw. Selte- nerdmetalloxid im Sinne vorliegender Erfindung kein Cer bzw. kein Ceroxid. Als Selten- erdmetalloxide in den Cer/Zirkonium/Seltenerdmetall-Mischoxiden kommen beispiels- weise Lanthanoxid, Yttriumoxid, Praseodymoxid, Neodymoxid und/oder Samariumoxid in Betracht. Bevorzugt sind Lanthanoxid, Yttriumoxid und/oder Praseodymoxid. Beson- ders bevorzugt als Seltenerdmetalloxide sind Lanthanoxid und/oder Yttriumoxid und ganz besonders bevorzugt ist das gemeinsame Vorliegen von Lanthanoxid und Yttri- umoxid, Yttriumoxid und Praseodymoxid, sowie Lanthanoxid und Praseodymoxid im Cer/Zirkonium/Seltenerdmetall-Mischoxid. In einer bevorzugten Ausführungsform weist dieser Edelmetallkatalysator zwei unterschiedliche Cer/Zirkonium/Seltenerdmetall- Mischoxide, vorzugsweise eines mit La und Y dotiertes und eines mit La und Pr dotiertes auf. In Ausführungsformen der vorliegenden Erfindung sind die Sauerstoffspeicherkom- ponenten vorzugsweise frei von Neodymoxid. Der Anteil an Seltenerdmetalloxid(en) in den Cer/Zirkonium/Seltenerdmetall-Mischoxi- den liegt vorteilhaft bei 3 bis 20 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdme- tall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdme- tall Yttriumoxid enthalten, so ist dessen Anteil bevorzugt 4 bis 15 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdmetall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdme- tallmischoxide als Seltenerdmetall Praseodymoxid enthalten, so ist dessen Anteil bevor- zugt 2 bis 10 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdmetall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Lanthanoxid und ein weiteres Seltenerdoxid enthalten, wie zum Beispiel Yttriumoxid oder Praseodymoxid, so ist deren Massenverhältnis insbesondere 0,1 bis 1,25, bevorzugt 0,1 bis 1. Üblicherweise enthält dieser Edelmetallkatalysator Sauerstoffspeichermaterialien in Mengen von 15 bis 120 g/l, bezogen auf das Volumen des Trägers bzw. Substrates. Die OSC-haltigen Edelmetallkatalysatoren weisen demnach die genannten temperatur- stabilen, hochoberflächigen Trägermaterialien und zusätzlich zu diesen die eben erläu- terten den Sauerstoff speichernde Materialien auf. Das Masseverhältnis von tempera- turstabilen, hochoberflächigen Trägermaterialien und Sauerstoffspeicherkomponenten in dieser Komponente beträgt üblicherweise 0,25 bis 1,5, beispielsweise 0,3 bis 1,3. In einer beispielhaften Ausführungsform beträgt das Gewichtsverhältnis der Summe der Massen aller Trägermaterialien, wie z.B. Aluminiumoxide (einschließlich dotierter Alumi- niumoxide) zur Summe der Massen aller Cer/Zirkonium-Mischoxide im OSC-haltigen Edelmetallkatalysator 10:90 bis 75:25, bevorzugt 20:80 bis 65:35. In dem OSC-haltigen Edelmetallkatalysator können die Edelmetalle nur auf den temperaturstabilen, hochober- flächigen Trägermaterialien abgeschieden vorliegen. Bevorzugt ist jedoch, wenn die Edelmetalle sowohl auf den genannten Trägermaterialien als auch auf den Sauer- stoffspeichermaterialien abgeschieden vorliegen. Die erste und die zweite Komponente bilden vorzugsweise einen Ammoniakspeicher mit SCR-Funktionalität und eine Funktion zur Oxidation von Ammoniak zu Stickstoff ab (z.B. wie in WO2008106523A2). Sofern zur Oxidation des eingespeicherten Ammoniaks nicht genügend Stickoxide im System vorhanden sein sollten, kann der Ammoniak über der zweiten Komponente auch mit vorhandenem Sauerstoff zu Stickstoff umgesetzt werden. In beiden Fällen erfolgt möglichst keine Abgabe von Ammoniak oder N2O an die Umwelt. Im weitesten Sinne können daher die erste Komponente und die zweite Komponente des Katalysator zur Verminderung der Ammoniak-Emissionen bevorzugt aus einer am- moniakspeichernden Beschichtung gepaart mit einer oxidativ auf Ammoniak wirkenden zweiten Beschichtung bestehen. Als solche liegen sie erfindungsgemäß in separaten Beschichtung übereinander auf dem Substrat vor. Besonders bevorzugt ist es, wenn beide Beschichtungen gleich lang sind. Dabei ist es ganz besonders bevorzugt, wenn der OSC-haltige Edelmetallkatalysator der Komponente zwei als Oberschicht über der erste Komponente aus Zeolithen und/oder Zeotypen zur Speicherung von Ammoniak als Unterschicht lokalisiert ist. Äußerst bevorzugt sind keine weiteren Schichten unter oder über diesen zwei Beschichtungen auf dem Substrat vorhanden. In einer weiteren bevorzugten Ausführungsform hat es sich als vorteilhaft erwiesen, wenn zwischen den beiden eben genannten Schichten eine dünne weitere separate Schicht aus inerten temperaturstabilen, hochoberflächigen Metalloxiden wie weiter vorne genannt vorhanden ist. Der Fachmann orientiert sich an den weiter vorne erwähnten Beschichtungsmethoden für deren Herstellung. Diese dünne zwischen 5 µm und 200 µm, bevorzugt zwischen 10 µm und 150 µm hohe Schicht hilft, die Alterungsstabilität des Katalysators zur Verminderung der Ammoniak-Emissionen weiter zu steigern. Wie sich herausgestellt hat, kann ein Nachteil der bekannten Systeme zur Minderung der Ammo- niakemissionen der sein, dass die in der SCR-Komponente befindlichen Übergangsme- talle wie z.B. Eisen und/oder Kupfer nach längerer Dauer des Gebrauchs im Abgas- strang eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors dazu nei- gen, in die Komponente zur Oxidation von Ammoniak zu diffundieren und diese zu ver- giften. Eine geringere Aktivität der SCR- als auch der oxidativen Komponente ist die Folge. Als Materialien dieser Schicht kommen insbesondere solche ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Siliziumoxid, Titanoxid, Zirkonoxid, Zeolithe oder Mischungen derselben in Frage. Ganz besonders bevorzugt ist in diesem Zusammen- hang eine Schicht aus Aluminiumoxid bzw. Siliziumoxid, die sich vorzugsweise in glei- cher Länge über der Unterschicht und unter der Oberschicht auf dem Substrat befindet. Das vorliegende Abgassystem weist einen ersten Dreiwegekatalysator und einen abstromseitig positionierten Katalysator zur Verminderung der Ammoniak-Emissionen auf. Der erste Dreiwegekatalysator kann dabei die gleichen Bestandteile aufweisen wie der OSC-haltige Edelmetallkatalysator der zweiten Komponente. Bevorzugt ist er wie in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1 beschrieben aufgebaut. Bei den TWCs sind gezonte oder gelayerte Ausführungsformen mittlerweile der Normalfall. Im erfindungsgemäßen Autoabgassystem besitzt der erste Katalysator mit Dreiwegeaktivität in einer weiter bevorzugten Ausführungsform einen 2-Schichtauf- bau mit zwei unterschiedlichen Dreiwegebeschichtungen, vorzugsweise wie in EP3247493A1 beschrieben. Abstromseitig bezeichnet die Tatsache, dass der Abgas- fluss zuerst den anstromseitigen Katalysator trifft und anschließend erst den abstrom- seitig positionierten. Für anstromseitig gilt das Umgekehrte. Es hat sich im Hinblick auf die Euro 7-Gesetzgebung als vorteilhaft erwiesen, wenn ein Abgassystem für einen überwiegend stöchiometrisch verbrennenden Motor ein Aggregat zum Filtern kleiner Ruß- und Aschepartikel aufweist. Bevorzugt ist demnach ein Abgas- system, dass zusätzlich einen ggf. katalytisch beschichteten GPF zwischen dem ersten Dreiwegekatalysator und dem Katalysator zur Verminderung der Ammoniak-Emissionen aufweist (Fig.8). GPF sind Gasoline Partikel Filter und sind dem Fachmann hinlänglich bekannt (EP3737491A1, EP3601755A1). Besonders bevorzugt ist ein Abgasdesign, bei dem der erste Dreiwegekatalysator und abstromseitig der GPF in motornaher Position ggf. in einem Gehäuse verbaut sind. Motornah im Sinne der Erfindung bezeichnet einen Bereich im Abgasstrang, der sich in motornaher Position befinden, also ca.10 – 80 cm, vorzugsweise 20 – 60 cm vom Mo- torausgang entfernt. Es hat sich als vorteilhaft herausgestellt, wenn der Katalysator zur Verminderung der Ammoniak-Emissionen im Unterboden eines Fahrzeugs in Abgasrich- tung an letzter Stelle verbaut ist, so dass danach das Abgas dann an die Umgebungsluft abgegeben wird. Gleichfalls kann das Abgassystem noch weitere Abgasaggregate wie weitere Dreiwegkatalysatoren oder Kohlenwasserstoffspeicher (HC-Traps) oder Stick- oxidspeicher (LNT) aufweisen. Der Unterboden ist der Bereich unterhalb der Fahrerka- bine. In einer weiterhin bevorzugten Ausführungsform befindet sich zwischen dem ersten Drei- wegekatalysator und vor dem Katalysator zur Verminderung der Ammoniak-Emissionen im erfindungsgemäßen Autoabgassystem mindestens ein zweiter Dreiwegekatalysator (TWC). Die Dreiwegeaktivität ist weiter vorne schon beschrieben worden. Es wird explizit auf das dortige Bezug genommen, insbesondere was die Art und Menge der einzelnen Bestandteile anbelangt. Bei diesem Dreiwegekatalysator handelt es sich vorzugsweise um einen wie er im Stand der Technik beschrieben ist (DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1). Bei den TWCs sind gezonte oder gelayerte Ausführungsformen mittlerweile der Normalfall. In einer weiter bevorzugten Ausführungsform besitzt im erfindungsgemäßen Autoabgassystem zumindest einer der zusätzlichen Katalysatoren mit Dreiwegeaktivität einen 2-Schichtaufbau mit zwei unter- schiedlichen Dreiwegebeschichtungen, vorzugsweise wie in EP3247493A1 beschrie- ben. Der eben beschriebene zumindest zweite Dreiwegekatalysator im erfindungsgemä- ßen Abgassystem kann im Unterboden des Fahrzeugs verbaut sein, er kann sich jedoch auch in motornaher Position befinden. Die Fülle an möglichen Euro 7 Systemen ist groß. So können pro Abgasstrang bis zu 4 Dreiwegekatalysatoren vor dem Katalysator zur Verminderung der Ammoniak-Emissionen vorhanden sein. In einer alternativen Ausführungsform befindet sich vor dem Katalysator zur Verminde- rung der Ammoniak-Emissionen mindestens ein zweiter Dreiwegekatalysator und ein ggf. katalytisch beschichteter Wandflussfilter (GPF). Der Katalysator zur Verminderung der Ammoniak-Emissionen befindet sich dabei im Unterboden bevorzugt an letzter Stelle und in fluider Kommunikation mit dem oder den weiteren Katalysatoren bzw. dem Filter des Autoabgassystems. Bevorzugt weist das Autoabgassystem dabei keine zusätzliche Einspritzeinrichtung für Ammoniak oder eine Vorläuferverbindung für Ammoniak auf. Möglich ist allerdings, dass sich im Abgasstrang aufstromseitig zum Katalysator zur Verminderung der Ammoniak-Emissionen oder aufstromseitig zum Wandflussfilter eine Zugabeeinheit für Sekundärluft befindet (analog WO2019219816). In einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf ein Verfahren zur Verminderung schädlichen Abgasbestandteile von überwiegend stöchiometrisch betrie- benen Verbrennungsmotoren, insbesondere fremdgezündeten Benzinmotoren, bei dem das Abgas über ein erfindungsgemäßes Abgassystem geleitet wird. Es sei darauf hin- gewiesen, dass die bevorzugten Ausführungsformen des Autoabgassystems mutatis mutandis auch für das vorliegende Verfahren gelten. Die vorliegende Erfindung richtet sich auf ein Abgasreinigungssystem insbesondere für stöchiometrisch betriebene Verbrennungsmotoren. Es gibt Betriebspunkte eines stöchi- ometrisch verbrennenden Motors, bei dem ein fettes Abgas innerhalb eines bestimmten Temperaturintervalls erzeugt wird. Das kann dazu führen, dass über einem Dreiwege- katalysator ankommende Stickoxide überreduziert werden zu Ammoniak. Dieser Ammo- niak sollte nicht an die Umwelt abgegeben werden. Der Ammoniak wird daher über dem Katalysator zur Verminderung der Ammoniak-Emissionen eingespeichert und anschlie- ßend bei leicht oxidierenden Bedingungen zu Stickstoff oxidiert werden. Dabei muss auch hier darauf geachtet werden, dass möglichst keine Überoxidation zu N2O stattfin- det. Selbst nach intensiver Alterung zeigt sich das Abgassystem robust genug, um die Euro 7-Anforderungen vollständig zu erfüllen. Das hier dargestellte Beschichtungsdes- ign führt zu einer signifikanten verbesserten Unterdrückung der Ammoniakemissionen bzw. der Bildung von Lachgas. Dies verspricht eine lange aktive Lebensdauer des anvi- sierten Abgassystems.
Exhaust system for predominantly stoichiometrically operated internal combustion engines having a catalyst for reducing ammonia emissions. The present invention is aimed at an exhaust system for reducing exhaust gases and in particular ammonia emissions in the exhaust system of a predominantly stoichiometrically operated spark ignition engine. Exhaust gases from internal combustion engines operated with predominantly (>50% of the operating time) stoichiometric air/fuel mixture, i.e. e.g. B. Spark ignition engines or gasoline engines powered by gasoline or natural gas are cleaned in conventional processes using three-way catalysts (TWC). These are able to simultaneously convert the engine's three main gaseous pollutants, namely hydrocarbons, carbon monoxide and nitrogen oxides, into harmless components. Stoichiometric means that, on average, there is as much air available to burn the fuel present in the cylinder as is required for complete combustion. The combustion air ratio λ (A/F ratio; air/fuel ratio) relates the air mass m L,tats actually available for combustion to the stoichiometric air mass m L,st :
Figure imgf000003_0001
If λ < 1 (e.g. 0.9) this means “lack of air”, one speaks of a rich exhaust gas mixture, λ > 1 (e.g. 1.1) means “excess air” and the exhaust gas mixture is considered lean designated. The statement λ = 1.1 means that 10% more air is present than would be necessary for the stoichiometric reaction. The same applies to the exhaust gases from internal combustion engines. The catalytically active materials used in the known three-way catalysts are generally platinum group metals, in particular platinum, palladium and rhodium, which are present, for example, on ^-aluminum oxide as a support material. In addition, three-way catalysts contain oxygen storage materials, for example cerium/zirconium mixed oxides. In the latter, cerium oxide, a rare earth metal oxide, is the fundamental component for oxygen storage. In addition to zirconium oxide and cerium oxide, these materials can contain additional components such as other rare earth metal oxides or alkaline earth metal oxides. Oxygen storage materials are made by Application of catalytically active materials such as platinum group metals activates and thus also serves as a carrier material for the platinum group metals. As part of the Euro 7 legislation, which will come into force in the mid-2020s, the emissions of ammonia (NH3) and nitrous oxide (N2O) for stoichiometric combustion engines will be regulated for the first time. The toxic ammonia and the powerful greenhouse gas N2O are referred to as secondary emissions and their emissions cannot be sufficiently reduced by current exhaust aftertreatment systems. Compliance with strict secondary emissions limits across a wide range of driving situations requires the development of a robust technical solution in the form of a new catalyst for the gasoline exhaust system. The extremely dynamic environmental conditions, especially in the underbody of a gasoline car, represent a major challenge. Compliance with the strict emission values for ammonia requires the use of a storage material to store NH 3 during the rich operating conditions of the combustion engine, particularly in low and medium temperature ranges. engines, as the ammonia is mainly formed under these exhaust gas conditions. The stored ammonia is then converted during lean operating points by oxidation on a layer containing precious metal and/or as part of an SCR reaction. The aim here is to achieve the lowest possible selectivity to N 2 O. A special requirement for the catalysts considered here is the high aging stability of the materials used: In addition to the stability against lean gas conditions, their use in the exhaust system of stoichiometrically operated internal combustion engines also requires that they also be used in the exhaust gas with rich or stoichiometric ric composition are stable under hydrothermal exhaust gas conditions. The use of catalysts, which preferentially convert ammonia into nitrogen, has already been discussed, particularly in the diesel sector or for use in lean-burning DI petrol engines (US5120695; EP1892395A1; EP1882832A2; EP1876331A2; WO12135871A1; US2011271664AA; WO1111091 9A1, EP3915679A1). The use of ammonia slip catalysts, or ASCs for short, has also already been described in the area of LNG gasoline engines (EP24258A1). These catalysts often consist of an SCR catalytically active component and a component that catalyzes the oxidation of ammonia. These catalytic converters are usually located in the underbody at the last point of the exhaust system. If for oxidation of the stored If there are not enough nitrogen oxides in the system, the ammonia can also be converted into nitrogen via the ASC with the oxygen present. As it turns out, the aging stability of ASC catalytic converters also depends largely on their design. Accordingly, it is an object of the present invention to present new exhaust systems which allow the operation of an internal combustion engine, in particular a predominantly stoichiometrically operated internal combustion engine, even under the new Euro 7 legislation. In particular, the corresponding limit values should be safely adhered to, especially for NH 3 and N 2 O. In addition, the system should also be robust and agile in order to be able to withstand the working conditions in the exhaust system of a corresponding automobile for a sufficient period of time. These and other tasks arising from the prior art for a person skilled in the art are solved by an exhaust system and a method for exhaust gas purification according to claims 1 and 11, respectively. Claims 2 - 10 relate to preferred embodiments of the exhaust system and can accordingly also be applied to the method according to the invention. By proposing an exhaust system for reducing harmful exhaust gas components from internal combustion engines, in particular predominantly stoichiometrically operated such as spark-ignited gasoline engines, having a first three-way catalytic converter and, on the downstream side, a catalyst for reducing ammonia emissions, which has the following components comprises: - a first component with a transition metal-exchanged zeolite and/or zeotypes with a three-dimensional framework structure; - a second component with an OSC-containing noble metal catalyst which has rhodium; and where the two components are applied as layers on top of one another on a substrate, the solution to the problem is achieved relatively easily, but no less surprisingly. The system according to the invention is characterized by extremely good performance both in terms of the original exhaust gas components and in terms of the NH3 and N2O emissions. It reacts well to the dynamic requirements in the exhaust system of a spark-ignition engine and is sufficiently robust to meet these requirements for a sufficient period of time. The components of the catalyst for reducing ammonia emissions are applied to a carrier, preferably to a flow-through substrate, using a coating step familiar to those skilled in the art (DE102019100099A1 and the literature cited there). A filter substrate such as a wall flow filter is also possible in this context. Flow-through substrates are catalyst supports that are common in the prior art and can consist of metal, for example WO17153239A1, WO16057285A1, WO15121910A1 and the literature cited therein) or ceramic materials. “Corrugated substrates” can also be viewed as flow-through substrates. These are known to those skilled in the art as carriers made of corrugated sheets made of inert materials. Suitable inert materials are, for example, fibrous materials with an average fiber diameter of 50 to 250 µm and an average fiber length of 2 to 30 mm. Fibrous heat-resistant materials made of silicon dioxide, especially glass fibers, are preferred. However, refractory ceramics such as cordierite, silicon carbite or aluminum titanate etc. are preferably used as honeycomb carriers. The number of carrier channels per area is characterized by the cell density, which is usually between 300 and 900 cells per square inch (cells per square inch, cpsi). The wall thickness of the channel walls for ceramics is between 0.5 – 0.05 mm. The total amount of coatings in the catalyst to reduce ammonia emissions is selected so that the catalyst according to the invention is used as efficiently as possible overall. In the case of one or more flow-through substrates, for example, the total amount of coatings (solids content) per carrier volume (total volume of the carrier) can be between 100 and 600 g/L, in particular between 150 and 400 g/L. The first component is preferably used in an amount of 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably about 145 - 230 g/L of carrier volume. The second component is preferably used from 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably from about 145 - 230 g/L carrier volume. According to the invention, the components are present as separate coatings one above the other on the substrate. It is preferred if the second component lies completely above the first and completely covers it. This is understood to mean the fact that the first component does not protrude beyond the second component at any end. It is particularly preferred if the two coatings with the respective components are of the same length (Fig. 2). The length of the layers can be chosen by the specialist become. They are preferably located on a flow-through substrate and here take up a length of at least 10% and a maximum of 100%, more preferably 20% - 90%, extremely preferably 30% - 80% of the substrate length. As already indicated above, a first component of the catalyst for reducing ammonia emissions consists of zeolites and/or zeotypes for storing ammonia. In principle, those skilled in the art are familiar with the zeolites and zeotypes available for this purpose from the diesel sector. The way the zeolites or zeotypes work is based on the fact that they can temporarily store ammonia in operating states of the exhaust gas purification system in which ammonia is produced, for example, by overreduction of nitrogen oxides via a three-way catalytic converter installed on the upstream side, but this is not converted by other conventional three-way catalytic converters. this can happen, for example due to a lack of oxygen or insufficient operating temperatures. The ammonia stored in this way can then be stored out when the operating state of the exhaust gas purification system changes and subsequently or directly converted, for example when sufficient oxygen or nitrogen oxides are present. According to the invention, zeolites and zeotypes are present in the first component of the catalyst to reduce ammonia emissions. According to the classification of the IZA (https://europe.iza-structure.org/IZA-SC/ftc_table.php), the international zeolite association, zeolites or zeotypes can be divided into different classes. Zeolites are then divided, for example, according to their channel system and their framework structure. For example, laumontite and mordenite are classified as zeolites, which have a one-dimensional system of channels. Your channels have no connection with each other. Zeolites with a two-dimensional channel system are characterized by the fact that their channels are connected to one another in a kind of layered system. A third group has a three-dimensional framework structure with cross-layer connections between the channels. According to the invention, three-dimensional zeolites or zeotypes are used in the present invention [Ch. Baerlocher, WM Meier and DH Olson, Atlas of Zeolite Framework Types, Elsevier, 2001]. According to the invention, the term “zeolite” refers to porous materials with a lattice structure of corner-linked AlO4 and SiO4 tetrahedra according to the general formula (WM Meier, Pure & Appl. Chem., Vol.58, No.10, pp.1323-1328 , 1986): Mm/z [m AlO2 * n SiO2] * q H2O The structure of a zeolite therefore includes a network made up of tetrahedra that encloses channels and cavities. A distinction is made between naturally occurring and synthetically produced zeolites. The term “zeotype” is understood to mean a zeolite-like compound that has the same structural type as a naturally occurring or synthetically produced zeolite compound, but which differs from such compounds in that the corresponding cage structure is not made up exclusively of aluminum and silicon framework atoms . In such compounds, the aluminum and/or silicon framework atoms are proportionally replaced by other trivalent, quadrivalent or pentavalent framework atoms such as B(III), Ga(III), Ge(IV), Ti(IV) or P(V) replaced. The most common method used in practice is the replacement of aluminum and/or silicon framework atoms by phosphorus atoms, for example in the silicon aluminum phosphates or in the aluminum phosphates, which crystallize in zeolite structure types. Examples of suitable three-dimensional zeolites belong to the structural types CHA, AEI, BEA, AFX. It is particularly preferred if the zeolites or zeotypes in the automobile exhaust catalyst according to the invention are selected from the group of three-dimensional zeolites, such as CHA, AEI and the corresponding zeotypes of these structural types, such as: SAPO. Mixtures of the same can also be present. The use of CHA is particularly preferred. The aging stability of the zeolites or zeotypes used in the exhaust system of predominantly stoichiometrically burning engines is particularly in focus here, since higher temperatures generally prevail here than in a lean-burning engine. In this respect, materials are desired that can withstand the sometimes very high and rapidly changing hydrothermal conditions for as long as possible. On the other hand, the exhaust gas composition is also different compared to lean-burn engine exhaust. The concentration, in particular of hydrocarbons and carbon monoxide, which arrive at the catalyst according to the invention is, on the one hand, higher than in lean-burn engines and the composition also changes depending on the driving style around the stoichiometric range (rich/lean change). The hydrothermal temperature stability of zeolites and zeotypes depends heavily on the SAR value (silica-to-alumina ratio) of the zeolite or the ratio corresponding to this value for zeotypes. The amount of silicon atoms remaining in the framework is then related to the substitution atoms. It has proven to be beneficial proven when the zeolites have a SAR value of 10 - 50, preferably 12 - 35 and most preferably 13 - 30. The same applies to the zeotype with the corresponding ratio. According to the invention, the zeolite or zeotype used is ion-exchanged with transition metal ions. The latter are preferably selected from the group consisting of iron and/or copper. Iron is particularly preferred because it has a less oxidizing effect on ammonia compared to copper. These compounds have the possibility of comproportioning nitrogen oxides present in the exhaust gas and the stored ammonia into nitrogen when lean. In this case, the zeolite or zeotype described acts as a catalyst for selective catalytic reduction (SCR) (see WO2008106518A2, WO2017187344A1, US2015290632AA, US2015231617AA, WO2014062949A1, US2015231617AA). In the present case, SCR capability is understood to mean the ability to selectively convert NO x and NH 3 in the lean exhaust gas into nitrogen. The metals, such as iron and/or copper, which advantageously occur in the catalyst to reduce ammonia emissions, are present in a certain proportion in the first component. This is 0.4-10, more preferably 0.8-6 and very preferably 1.5-4.8% by weight of the first component. The iron and/or copper to aluminum ratio is between 0.15 - 0.8, preferably between 0.2 - 0.5 and most preferably between 0.3 - 0.5 for zeolites. For the zeotype, a corresponding ratio applies to the exchange places available there. The metals are at least partially present in ion-exchanged form in the zeolites or zeotypes. Preferably, ion-exchanged zeolites or zeotypes are already introduced into the first component. However, it can also be the case that the zeolites or zeotypes are brought together with, for example, a binder and a solution of the metal ions in a liquid, preferably water, and then dried (preferably by spraying). Here, certain proportions of the metals can also be found on the binder in the form of oxides. Both approaches are possible. In addition to the zeolites or zeotypes, the first component can preferably contain further components, in particular non-catalytically active components, such as binders. For example, temperature-stable metal oxides that are not or only slightly catalytically active, such as SiO2, Al2O3 and ZrO2, are suitable as binders. The expert knows which materials come into question here. The proportion of such binders in the first component can, for example, be up to 15% by weight, preferably up to 10% by weight Make up component. As mentioned, the binder can also contain the metals specified above. Binders are suitable for ensuring stronger adhesion of the coating to a carrier. For this purpose, a certain particle size of the metal oxides in the binder is advantageous. This can be adjusted accordingly by an expert. The ammonia storage ability or capacity addressed in the context of this invention is given as a quotient of the stored mass of ammonia per liter of catalyst support volume. The zeolites or zeotypes should increase the ammonia storage capacity of the exhaust gas purification system to at least 0.25 g of ammonia per liter of carrier volume (measured in the fresh state). Overall, the storage capacity of the ammonia storage components used should be sufficient for the system to contain between 0.25 and 10.0 g of NH 3 per liter of carrier volume, preferably between 0.5 and 8.0 g of NH 3 per liter of carrier volume and particularly preferably between 0. 5 and 5.0 g NH 3 /liter carrier volume of ammonia can be stored (always based on the fresh state). The zeolites or zeotypes are present in sufficient quantities in the catalyst to reduce ammonia emissions. The determination of the ammonia storage capacity is shown further below. The second component consists of an OSC-containing noble metal catalyst containing rhodium. Precious metal refers in particular to the platinum group metals platinum, palladium and rhodium. OSC stands for Oxygen Storage Catalyst. An OSC-containing noble metal catalyst therefore has oxygen storage materials. The OSC-containing precious metal catalyst has the function of storing oxygen in the exhaust gas of the internal combustion engine. Cerium or cerium-zirconium mixed oxides (see below) are consistently used as oxygen storage materials. Accordingly, an OSC-containing noble metal catalyst is characterized by the presence of a certain amount of these oxygen storage materials. In particular, this component has oxygen storage materials in an amount of more than 5 g/L, preferably more than 10 g/L and most preferably more than 20 g/L carrier volume. This includes the entire cerium-zirconium mixed oxide with all its components. Corresponding OSC-containing precious metal catalysts are capable of operating in the already slightly rich exhaust gas of a predominantly stoichiometric engine Internal combustion engine has an oxidative effect on the substances present (NH3, HC, CO). This component is preferably designed so that it becomes active at correspondingly low temperatures. The ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component. The oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation. The second component in the form of an OSC-containing noble metal catalyst therefore has materials that have an oxidative effect on, among other things, ammonia. This component preferably contains a temperature-stable, high-surface metal oxide, oxygen storage material and at least the noble metal rhodium. Platinum and/or palladium may also be present. However, only rhodium is most preferably present in the second component. The total noble metal content of this component is preferably from 0.015 - 5 g/L, more preferably from 0.035 - 1.8 g/L and particularly preferably from 0.07 - 1.2 g/L carrier volume. If platinum and/or palladium is used, the former should be in the range of 0.015 - 1.42 g/L, more preferably 0.035 - 0.35 g/L carrier volume in the coating. When present in the coating, palladium can be present in between 0.015 - 1.42 g/L, preferably 0.035 - 0.35 g/L carrier volume. Rhodium is present in the second component according to the invention (alone or in combination with the other aforementioned noble metals). The carrier volume in this component should preferably be in the range of 0.035 - 1.0 g/L, more preferably 0.1 - 0.35 g/L. If palladium and/or platinum are also present in this component, the above ranges apply to these metals. Equipped in this way, this component has three-way activity. Suitable three-way catalytically active coatings (TWC) are described, for example, in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1. The noble metals in the OSC-containing second component are usually fixed on one or more temperature-stable, high-surface metal oxides as carrier materials. All materials familiar to a person skilled in the art for this purpose can be considered as carrier materials. Such materials are in particular metal oxides with a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132 - latest version on the filing date). Particularly suitable carrier materials for the precious metals are selected from the series consisting of aluminum oxide, doped aluminum oxide, silicon oxide, titanium dioxide and mixed oxides from one or more of them. Doped aluminum oxides are, for example, lanthanum oxide, zirconium oxide, barium oxide and/or titanium oxide-doped aluminum oxides. Aluminum oxide or lanthanum-stabilized aluminum oxide is advantageously used, in the latter case lanthanum in amounts of in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as La2O3 and based on the weight of stabilized aluminum oxide. Even in the case of aluminum oxide doped with barium oxide, the proportion of barium oxide is in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as BaO and based on the weight of the stabilized aluminum oxide. Another suitable carrier material is lanthanum-stabilized aluminum oxide, the surface of which is coated with lanthanum oxide, barium oxide and/or strontium oxide. This component preferably comprises at least one aluminum oxide or doped aluminum oxide. La-stabilized aluminum oxide with a surface area of 100 to 200 m 2 /g is particularly advantageous in this context. Such active aluminum oxide has been widely described in the literature and is available on the market. Modern gasoline engines are operated under conditions with a discontinuous course of the air ratio ^. They are subject in a defined manner to a periodic change in the air ratio ^ and thus to a periodic change in oxidizing and reducing exhaust gas conditions. In both cases, this change in the air ratio ^ is essential for the exhaust gas purification result. For this purpose, the lambda value of the exhaust gas is adjusted with a very short cycle time (approx. 0.5 to 5 Hertz) and an amplitude ^ ^ of 0.005 ^ ^ ^ ^ 0.05 by the value ^ = 1 (reducing and oxidizing exhaust gas components are stoichiometric relationship to each other). Due to the dynamic operation of the engine in the vehicle, deviations from this state also occur. So that the deviations from the stoichiometric point mentioned do not have a negative impact on the exhaust gas purification result when the exhaust gas is passed over the three-way catalytic converter, oxygen storage materials contained in the catalytic converter compensate for these deviations to a certain extent by absorbing oxygen from the exhaust gas as required or released into the exhaust gas (Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, p.90). The OSC-containing noble metal catalysts (modern three-way catalysts) of the second component therefore contain oxygen storage materials, in particular cerium or Ce/Zr mixed oxides. The mass ratio of cerium oxide to zirconium oxide can vary within wide limits in these mixed oxides. For example, it is 0.1 to 1.5, preferably 0.15 to 1 or 0.2 to 0.9. Preferred cerium/zirconium mixed oxides include one or more rare earth metal oxides and can therefore be referred to as cerium/zirconium/rare earth metal mixed oxides. The term “cerium/zirconium/rare earth metal mixed oxide” in the sense of the present invention excludes physical mixtures of cerium oxide, zirconium oxide and rare earth oxide. Rather, “cerium/zirconium/rare earth metal mixed oxides” are characterized by a largely homogeneous, three-dimensional crystal structure, which is ideally free of phases made of pure cerium oxide, zirconium oxide or rare earth oxide (so-called solid solution). Depending on the manufacturing process, however, products may not be completely homogeneous, which can generally be used without disadvantage. The same applies to cerium/zirconium mixed oxides that do not contain any rare earth metal oxide. Furthermore, the term rare earth metal or rare earth metal oxide in the sense of the present invention does not include cerium or cerium oxide. Possible rare earth metal oxides in the cerium/zirconium/rare earth metal mixed oxides are, for example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide and/or samarium oxide. Lanthanum oxide, yttrium oxide and/or praseodymium oxide are preferred. Particularly preferred rare earth metal oxides are lanthana and/or yttrium oxide and very particularly preferred is the joint presence of lanthana and yttrium oxide, yttrium oxide and praseodymium oxide, as well as lanthana and praseodymium oxide in the cerium/zirconium/rare earth metal mixed oxide. In a preferred embodiment, this noble metal catalyst has two different cerium/zirconium/rare earth metal mixed oxides, preferably one doped with La and Y and one doped with La and Pr. In embodiments of the present invention, the oxygen storage components are preferably free of neodymium oxide. The proportion of rare earth metal oxide(s) in the cerium/zirconium/rare earth metal mixed oxides is advantageously 3 to 20% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain yttrium oxide as the rare earth metal, its proportion is preferably 4 to 15% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth mixed oxides contain praseodymium oxide as the rare earth metal, its proportion is preferably 2 to 10% by weight based on the cerium/zirconium/rare earth mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain lanthanum oxide and another rare earth oxide as the rare earth metal, such as yttrium oxide or praseodymium oxide, their mass ratio is in particular 0.1 to 1.25, preferably 0.1 to 1. This noble metal catalyst usually contains oxygen storage materials in amounts of 15 to 120 g/l, based on the volume of the carrier or substrate. The OSC-containing noble metal catalysts therefore have the temperature-stable, high-surface support materials mentioned and, in addition to these, the oxygen-storing materials just explained. The mass ratio of temperature-stable, high-surface carrier materials and oxygen storage components in this component is usually 0.25 to 1.5, for example 0.3 to 1.3. In an exemplary embodiment, the weight ratio of the sum of the masses of all support materials, such as aluminum oxides (including doped aluminum oxides) to the sum of the masses of all cerium/zirconium mixed oxides in the OSC-containing noble metal catalyst is 10:90 to 75:25, preferably 20: 80 to 65:35. In the OSC-containing noble metal catalyst, the noble metals can only be deposited on the temperature-stable, high-surface support materials. However, it is preferred if the noble metals are deposited both on the carrier materials mentioned and on the oxygen storage materials. The first and second components preferably form an ammonia storage with SCR functionality and a function for oxidizing ammonia to nitrogen (eg as in WO2008106523A2). If there are not enough nitrogen oxides in the system to oxidize the stored ammonia, the ammonia can also be converted into nitrogen with the oxygen present via the second component. In both cases, if possible, no ammonia or N 2 O is released into the environment. In the broadest sense, the first component and the second component of the catalyst for reducing ammonia emissions can therefore preferably consist of an ammonia-storing coating paired with a second coating that has an oxidative effect on ammonia. As such, according to the invention, they are present in separate coatings one above the other on the substrate. It is particularly preferred if both coatings are of the same length. It is particularly preferred if the OSC-containing noble metal catalyst of component two is located as a top layer over the first component made of zeolites and / or zeotypes for storing ammonia as a bottom layer. Most preferably, no further layers are present below or above these two coatings on the substrate. In a further preferred embodiment, it has proven to be advantageous if a thin, additional, separate layer of inert, temperature-stable, high-surface metal oxides, as mentioned above, is present between the two layers just mentioned. The expert is guided by the coating methods mentioned above for their production. This thin between 5 µm and 200 µm, preferably between 10 µm and 150 µm high layer helps to further increase the aging stability of the catalyst to reduce ammonia emissions. As has been shown, a disadvantage of the known systems for reducing ammonia emissions can be that the transition metals in the SCR component, such as iron and/or copper, become predominantly stoichiometric after a long period of use in the exhaust system operated internal combustion engine tend to diffuse into the component for the oxidation of ammonia and poison it. The result is a lower activity of the SCR and the oxidative component. Suitable materials for this layer are those selected from the group consisting of aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, zeolites or mixtures thereof. Very particularly preferred in this context is a layer made of aluminum oxide or silicon oxide, which is preferably located on the substrate at the same length above the lower layer and under the upper layer. The present exhaust system has a first three-way catalyst and a catalyst positioned downstream to reduce ammonia emissions. The first three-way catalyst can have the same components as the OSC-containing noble metal catalyst of the second component. It is preferably constructed as described in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1. Zoned or layered versions are now the norm for TWCs. In the car exhaust system according to the invention, the first catalyst with three-way activity has, in a further preferred embodiment, a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1. Downstream refers to the fact that the exhaust gas flow first hits the upstream catalytic converter and then the downstream catalytic converter. The reverse applies to the upstream side. With regard to the Euro 7 legislation, it has proven to be advantageous if an exhaust system for a predominantly stoichiometric engine has a unit for filtering small soot and ash particles. Preference is therefore given to an exhaust system that additionally has a possibly catalytically coated GPF between the first three-way catalytic converter and the catalytic converter to reduce ammonia emissions (Fig. 8). GPF are gasoline particle filters and are well known to those skilled in the art (EP3737491A1, EP3601755A1). Particularly preferred is an exhaust gas design in which the first three-way catalytic converter and the GPF on the downstream side are installed in a housing close to the engine, if necessary. Close to the engine in the sense of the invention refers to an area in the exhaust system that is in a position close to the engine, i.e. approx. 10 - 80 cm, preferably 20 - 60 cm away from the engine outlet. It has proven to be advantageous if the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions, so that the exhaust gas is then released into the ambient air. The exhaust system can also have additional exhaust units such as additional three-way catalytic converters or hydrocarbon storage (HC traps) or nitrogen oxide storage (LNT). The underbody is the area below the driver's cab. In a further preferred embodiment, there is at least a second three-way catalytic converter (TWC) between the first three-way catalytic converter and in front of the catalytic converter to reduce ammonia emissions in the car exhaust system according to the invention. The three-way activity has already been described earlier. There is explicit reference to what is stated there, especially with regard to the type and quantity of the individual components. This three-way catalyst is preferably one as described in the prior art (DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1). Zoned or layered versions are now the norm for TWCs. In a further preferred embodiment, in the car exhaust system according to the invention, at least one of the additional catalysts with three-way activity has a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1. The at least second three-way catalytic converter just described in the exhaust system according to the invention can be installed in the underbody of the vehicle, but it can also be in a position close to the engine. The range of possible Euro 7 systems is large. There can be up to 4 three-way catalytic converters in front of the catalytic converter per exhaust system to reduce ammonia emissions. In an alternative embodiment, there is at least a second three-way catalyst and a possibly catalytically coated wall flow filter (GPF) in front of the catalyst to reduce ammonia emissions. The catalyst for reducing ammonia emissions is preferably located last in the underbody and in fluid communication with the further catalyst or catalysts or the filter of the car exhaust system. The car exhaust system preferably has no additional injection device for ammonia or a precursor compound for ammonia. However, it is possible that in the exhaust system upstream of the catalytic converter Reduction of ammonia emissions or there is an addition unit for secondary air upstream of the wall flow filter (analogous to WO2019219816). In a further aspect, the present invention relates to a method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, in which the exhaust gas is directed via an exhaust system according to the invention. It should be noted that the preferred embodiments of the car exhaust system also apply mutatis mutandis to the present method. The present invention is directed to an exhaust gas purification system, in particular for stoichiometrically operated internal combustion engines. There are operating points of a stoichiometrically burning engine in which a rich exhaust gas is produced within a certain temperature interval. This can lead to nitrogen oxides arriving via a three-way catalytic converter being over-reduced to ammonia. This ammonia should not be released into the environment. The ammonia is therefore stored above the catalyst to reduce ammonia emissions and is then oxidized to nitrogen under slightly oxidizing conditions. Here too, care must be taken to ensure that no over-oxidation to N 2 O occurs. Even after intensive aging, the exhaust system is robust enough to fully meet Euro 7 requirements. The coating design shown here leads to a significantly improved suppression of ammonia emissions and the formation of nitrous oxide. This promises a long active lifespan of the targeted exhaust system.
Figuren: Fig.1: Chart zur Erläuterung der Messung der Ammoniakspeicherfähigkeit. Fig.2: Katalysator zur Verminderung der Ammoniak-Emissionen (1), Beschichtung mit einem OSC-haltigen Edelmetallkatalysator aufweisend Rhodium (2), Beschichtung mit übergangsmetallausgetauschten Zeolithen oder Zeotypen zur Speicherung von Ammo- niak (3). Fig.3: Schematische Darstellung der in Unterboden-Position getesteten Katalysatoren, wobei TWC- und SCR-Beschichtungen auf unterschiedliche Weise miteinander kombi- niert werden Fig.4: Schematische Darstellung der in Unterboden-Position getesteten Katalysatoren mit einer rhodiumhaltiger TWC-Beschichtung oder einer platinhaltigen Oxidationsschicht mit verschiedenen Layouts Fig.5: Emissionswerte für die in Fig.3 dargestellten Katalysatoren im Vergleich Fig.6: Emissionswerte für die in Fig.4 dargestellten Katalysatoren im Vergleich Fig.7: N2O-Selektivität für die in Fig.4 dargestellten Katalysatoren im Vergleich Fig.8: Bevorzugtes Abgassystem mit motornahem TWC gefolgt von einem ggf. kataly- tisch beschichtetem GPF und einem Katalysator zur Verminderung der Ammoniak-Emis- sionen im Unterbodenbereich Figures: Fig.1: Chart to explain the measurement of ammonia storage capacity. Fig.2: Catalyst for reducing ammonia emissions (1), coating with an OSC-containing noble metal catalyst containing rhodium (2), coating with transition metal-exchanged zeolites or zeotypes for storing ammonia (3). Fig.3: Schematic representation of the catalysts tested in the underbody position, with TWC and SCR coatings being combined in different ways. Fig.4: Schematic representation of the catalysts tested in the underbody position with a rhodium-containing TWC coating or a platinum-containing oxidation layer with different layouts Fig.5: Emission values for the catalysts shown in Fig.3 in comparison Fig.6: Emission values for the catalysts shown in Fig.4 in comparison Fig.7: N 2 O selectivity for the catalysts shown in Fig.4 Catalysts shown in comparison Fig.8: Preferred exhaust system with TWC close to the engine followed by a possibly catalytically coated GPF and a catalytic converter to reduce ammonia emissions in the underbody area
Beispiele: A. Bestimmung der Ammoniakspeicherkapazität Diese wird experimentell in einem Strömungsrohrreaktor bestimmt. Zur Vermeidung von unerwünschter Ammoniakoxidation am Reaktormaterial wird ein Reaktor aus Quarzglas verwendet. Aus dem Bereich des Katalysators, dessen Ammoniakspeicherkapazität be- stimmt werden soll, wird ein Bohrkern als Prüfling entnommen. Bevorzugt wird ein Bohr- kern mit 1 Zoll Durchmesser und 3 Zoll Länge als Prüfling entnommen. Der Bohrkern wird in den Strömungsrohrreaktor eingesetzt und bei einer Temperatur von 600 °C in einer Gasatmosphäre aus 500 ppm Stickstoffmonoxid, 5 Vol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindigkeit von 30000 h-1 für 10 Minuten konditioniert. Anschließend wird in einem Gasgemisch aus 0 Vol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindig- keit von 30000 h-1 die Messtemperatur von 200 °C angefahren. Nach Stabilisierung der Temperatur wird die NH3-Speicherphase durch Aufschalten eines Gasgemisches aus 450 ppm Ammoniak, 0 Vol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindigkeit von 30000 h-1 eingeleitet. Dieses Gasgemisch bleibt so lange auf- geschaltet, bis abströmseitig vom Prüfling eine stationäre Ammoniakdurchbruchskon- zentration verzeichnet wird. Die auf dem Prüfling eingespeicherte Masse an Ammoniak wird aus der aufgezeichneten Ammoniak-Durchbruchskurve durch Integration vom Start der NH3-Speicherphase bis zum Erreichen der Stationarität unter Einbeziehung der ge- messenen stationären NH3-Durchbruchskonzentration sowie dem bekannten Volumen- fluss berechnet (schraffierte Fläche in der Figur 1). Die Ammoniakspeicherkapazität wird berechnet als Quotient aus der eingespeicherten Masse an Ammoniak, geteilt durch das Volumen des getesteten Bohrkerns. Examples: A. Determination of the ammonia storage capacity This is determined experimentally in a flow tube reactor. To avoid undesirable ammonia oxidation on the reactor material, a reactor made of quartz glass is used. A drill core is taken as a test specimen from the area of the catalytic converter whose ammonia storage capacity is to be determined. A drill core with a diameter of 1 inch and a length of 3 inches is preferably taken as a test specimen. The drill core is inserted into the flow tube reactor and at a temperature of 600 ° C in a gas atmosphere consisting of 500 ppm nitrogen monoxide, 5 vol.% oxygen, 5 vol.% water and the rest nitrogen with a space velocity of 30000 h -1 for 10 minutes conditioned. The measuring temperature of 200 °C is then reached in a gas mixture of 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 . After the temperature has stabilized, the NH 3 storage phase is initiated by switching on a gas mixture of 450 ppm ammonia, 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 . This gas mixture remains switched on until a stationary ammonia breakthrough concentration is recorded on the downstream side of the test specimen. The mass of ammonia stored on the test specimen is calculated from the recorded ammonia breakthrough curve by integration from the start of the NH 3 storage phase until stationarity is reached, taking into account the measured stationary NH 3 breakthrough concentration and the known volume flow (hatched area in Figure 1). The ammonia storage capacity is calculated as the quotient of the stored mass of ammonia divided by the volume of the tested core.
B. Herstellung der ammoniakspeichernden SCR-Schichten B1. Herstellung des Cu-beladenen Zeolithen Der Zeolith wurde mit Hilfe eines Incipient-Wetness-Verfahrens mit einer Kupfer(II)-nit- rat-Lösung in einem Feststoffmischer mit Kupfer belegt. Anschließend erfolgte eine Be- handlung im Ofen für 8 h bei 120°C und für 5 h bei 600 °C in Luft. Für den Zeolith vom Strukturtyp Levyn (LEV) wurde eine Zusammensetzung mit 3.5 wt-% CuO bezogen auf die Gesamtmasse aus Zeolith und CuO hergestellt. B2. Herstellung des Fe-beladenen Zeolithen Der Zeolith wurde mit Hilfe eines Incipient-Wetness-Verfahrens mit einer Eisen(III)-nitrat- Lösung in einem Feststoffmischer mit Eisen belegt. Anschließend erfolgte eine Behand- lung im Ofen für 8 h bei 120°C und für 2 h bei 600 °C in Luft. Für den Zeolith vom Struk- turtyp Chabasit (CHA) wurde eine Zusammensetzung mit 4.0 wt-% Fe2O3 bezogen auf die Gesamtmasse aus Zeolith und Fe2O3 hergestellt. B3. Herstellung einer kupferhaltigen Zeolithbeschichtung Die Beschichtung mit einem Cu-beladenen Zeolithen erfolgte nach gemeinsamer Mah- lung mit Nyacol®-AL20-Binder auf einem Cordierit-Substrat mit 150 g/L Washcoat-Bela- dung (88% Zeolith, 12% Binder). Der so erhaltene beschichtete Katalysator wurde bei 90 °C getrocknet und anschließend für 15 min bei 350 °C kalziniert und für 2 h bei 550 °C in Luft getempert. Auf den nun beschichteten Träger kann gegebenenfalls eine edelme- tallhaltige Schicht als Top-Layer aufgebracht werden. B4. Herstellung einer eisenhaltigen Zeolithbeschichtung Die Beschichtung mit einem Fe-beladenen Zeolithen erfolgte nach gemeinsamer Mah- lung mit Nyacol®-AL20-Binder auf einem Cordierit-Substrat mit 164.8 g/L Washcoat-Be- ladung (88% Zeolith, 12% Binder). Der so erhaltene beschichtete Katalysator wurde bei 90 °C getrocknet und anschließend für 15 min bei 350 °C kalziniert und für 2 h bei 550 °C in Luft getempert. Auf den nun beschichteten Träger kann gegebenenfalls eine edelme- tallhaltige Schicht als Top-Layer aufgebracht werden. C. Herstellung der edelmetallhaltigen Beschichtungen mit TWC-Aktivität Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspei- cherkomponente, die 24 Gew.-% Ceroxid, 60 Gew.-% Zirkoniumoxid, 3.5 Gew.-% Lan- thanoxid und 12.5 Gew.-% Yttriumoxid umfasste, und Lanthanacetat als zusätzlicher Lanthanoxidquelle in Wasser suspendiert. Das Gewichtsverhältnis von Aluminiumoxid zu Sauerstoffspeicherkomponente zu zusätzlichem Lanthanoxid betrug 43.6:55.7:0.7. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde di- rekt zur Beschichtung eines handelsüblichen Substrats eingesetzt, wobei die Beschich- tung über 100% der Substratlänge erfolgte. Die Gesamtbeladung dieses Washcoats auf dem Katalysator betrug 122 g/L, die Edelmetallbeladung 0.177 g/L (5 g/ft3). Der so er- haltene beschichtete Katalysator wurde getrocknet und anschließend kalziniert. Auf den nun beschichteten Träger kann gegebenenfalls eine edelmetallfreie Schicht als Top- Layer aufgebracht werden. D. Herstellung der platinhaltigen SiO2/Al2O3-Schicht ohne TWC-Aktivität: Ein Silizium-Aluminium-Mischoxid, das aus 95 Gew.-% Aluminiumoxid und 5% Silizi- umoxid besteht, wurde in Wasser suspendiert. Die so erhaltene Suspension wurde nach Einstellung des pH-Wertes auf 7.6 ±0.4 unter ständigem Rühren mit einer EA-Platin- Lösung versetzt. Die resultierende Suspension wurde gemahlen und nach Stabilisierung mit Ammoniumacetat zur Beschichtung eines handelsüblichen Trägers eingesetzt, wo- bei die Beschichtung über 100% der Trägerlänge erfolgte. Die Gesamtbeladung dieses Washcoats auf dem Katalysator betrug 25 g/L, die Edelmetallbeladung 0.106 g/L (3 g/ft3). Der so erhaltene beschichtete Katalysator wurde getrocknet und anschließend kalziniert. Auf den nun beschichteten Träger können gegebenenfalls weitere Schichten als Top-Layer aufgebracht werden. Es wurden Katalysatoren wie in den Fig.3 und 4 schematisch gezeigt hergestellt bzw. miteinander kombiniert. E. Alterung und Testung der ASCs Alterungsbedingungen: Zur Bestimmung der katalytischen Eigenschaften der erfindungsgemäßen Katalysatoren wurden diese zunächst in einer Motorprüfstandsalterung hinter einem motornahen TWC in Unterboden-Position gealtert („Fuel-Cut-Alterung“). Die Alterung besteht aus einer Schubabschaltungsalterung mit 950 °C Abgastemperatur vor dem Eingang des motor- nahen TWC (Maximale Betttemperatur 1030 °C). Die Alterungsdauer und die Einlass- temperatur für den Katalysator in Unterboden-Position sind jeweils individuell für jeden Test angegeben. Testbedingungen: Die unterschiedlichen Katalysatoren wurden in Unterboden-Position an einem hochdy- namischen Motorprüfstand in einem WLTC-Fahrzyklus getestet. Hierbei wurde ein in Serie produzierter Pd/Rh-haltiger TWC im gealterten Zustand in motornaher Position platziert. Der Wert „Verringerung der NH3-Emissionen“ bezieht sich jeweils auf die NH3- Emissionen eines Systems mit einem der gezeigten Katalysatoren in Unterboden-Posi- tion über den gesamten Fahrzyklus im Verhältnis zu den Emissionen des entsprechen- den Systems in Abwesenheit eines Katalysators in Unterboden-Position. Der Wert „Se- lektivität zu N2O“ setzt die durch den ASC in Unterboden-Position zusätzlich gebildeten N2O-Moleküle ins Verhältnis zu den durch den ASC umgesetzten NH3-Molekülen gemäß der Formel: Selektivität zu N2O = 100 ∙ 2 ∙ [(Stoffmenge N2O nach ASC) – (Stoffmenge N2O vor ASC)] / [(Stoffmenge NH3 vor ASC) – (Stoffmenge NH3 nach ASC)]. B. Production of the ammonia-storing SCR layers B1. Preparation of the Cu-loaded zeolite The zeolite was coated with copper using a copper(II) nitrate solution in a solids mixer using an incipient wetness process. This was followed by treatment in the oven for 8 hours at 120°C and for 5 hours at 600°C in air. For the zeolite of the Levyn structural type (LEV), a composition with 3.5 wt% CuO based on the total mass of zeolite and CuO was prepared. B2. Preparation of the Fe-loaded zeolite The zeolite was coated with iron using an incipient wetness process with an iron(III) nitrate solution in a solids mixer. This was followed by treatment in the oven for 8 hours at 120°C and for 2 hours at 600°C in air. For the zeolite with the structure type chabazite (CHA), a composition with 4.0 wt% Fe 2 O 3 based on the total mass of zeolite and Fe 2 O 3 was prepared. B3. Production of a copper-containing zeolite coating The coating with a Cu-loaded zeolite was carried out after co-grinding with Nyacol ® -AL20 binder on a cordierite substrate with a 150 g/L washcoat load (88% zeolite, 12% binder). The coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h. If necessary, a layer containing precious metal can be applied as a top layer to the now coated carrier. B4. Production of an iron-containing zeolite coating The coating with an Fe-loaded zeolite was carried out after co-grinding with Nyacol ® -AL20 binder on a cordierite substrate with 164.8 g/L washcoat loading (88% zeolite, 12% binder). The coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h. If necessary, a layer containing precious metal can be applied as a top layer to the now coated carrier. C. Production of the precious metal-containing coatings with TWC activity Lanthanum oxide stabilized alumina was added along with an oxygen storage component comprising 24 wt% ceria, 60 wt% zirconium oxide, 3.5 wt% lanthanum oxide and 12.5 wt% yttria, and lanthanum acetate as an additional source of lanthanum oxide Water suspended. The weight ratio of aluminum oxide to oxygen storage component to additional lanthanum oxide was 43.6:55.7:0.7. A rhodium nitrate solution was then added to the suspension thus obtained with constant stirring. The resulting coating suspension was used directly to coat a commercially available substrate, with the coating taking place over 100% of the substrate length. The total loading of this washcoat on the catalyst was 122 g/L, the precious metal loading was 0.177 g/L (5 g/ft 3 ). The coated catalyst thus obtained was dried and then calcined. If necessary, a layer free of precious metals can be applied as a top layer to the now coated carrier. D. Production of the platinum-containing SiO 2 /Al 2 O 3 layer without TWC activity: A silicon-aluminum mixed oxide, which consists of 95% by weight of aluminum oxide and 5% of silicon oxide, was suspended in water. After adjusting the pH to 7.6 ± 0.4, the resulting suspension was mixed with an EA platinum solution with constant stirring. The resulting suspension was ground and, after stabilization with ammonium acetate, used to coat a commercially available carrier, with the coating taking place over 100% of the carrier length. The total loading of this washcoat on the catalyst was 25 g/L, the precious metal loading was 0.106 g/L (3 g/ft 3 ). The coated catalyst thus obtained was dried and then calcined. If necessary, further layers can be applied as a top layer to the now coated carrier. Catalysts as shown schematically in FIGS. 3 and 4 were produced or combined with one another. E. Aging and testing of the ASCs Aging conditions: To determine the catalytic properties of the catalysts according to the invention, they were first aged in an engine test bench aging behind a TWC close to the engine in the underbody position (“fuel-cut aging”). The aging consists of fuel cut-off aging with an exhaust gas temperature of 950 °C in front of the inlet of the TWC near the engine (maximum bed temperature 1030 °C). The aging period and the inlet temperature for the catalytic converter in the underbody position are specified individually for each test. Test conditions: The different catalytic converters were tested in the underbody position on a highly dynamic engine test bench in a WLTC driving cycle. Here, a series-produced TWC containing Pd/Rh was placed in an aged state in a position close to the engine. The value “reduction in NH 3 emissions” refers to the NH 3 emissions of a system with one of the catalytic converters shown in the underbody position over the entire driving cycle in relation to the emissions of the corresponding system in the absence of a catalytic converter in underbody position. The value “Selectivity to N 2 O” relates the additional N 2 O molecules formed by the ASC in the bottom position to the NH 3 molecules converted by the ASC according to the formula: Selectivity to N 2 O = 100 ∙ 2 ∙ [(amount of substance N 2 O after ASC) – (amount of substance N 2 O before ASC)] / [(amount of substance NH 3 before ASC) – (amount of substance NH 3 after ASC)].
F. Ergebnisse Vergleich von unterschiedlichen Kombinationen aus SCR- und TWC-Schichten: Siehe Fig.3 und 5 Alle Katalysatoren mit TWC-Schicht enthalten 5 g/ft3 Rh. Alterung: Fuel-Cut-Alterung, 38 h, 800 °C Einlasstemperatur für die Katalysatoren in Un- terboden-Position Volumen des Unterboden-Katalysators: 0.83 L Ein Katalysator, in dem eine SCR-Schicht in einem geschichteten Design mit einer TWC- Schicht mit 5 g/ft3 Rh kombiniert ist, zeigt eine verbesserte katalytische Performance im Vergleich zu Katalysatoren, in denen die SCR- und TWC-Schichten nacheinander an- geordnet sind. Vergleich vonKatalysatoren mit SCR- und rhodiumhaltiger TWC-Beschichtung mit einem Katalysator mit SCR- und platinhaltiger Oxidationsbeschichtung: Siehe Fig.4, 6 und 7 Die Katalysatoren mit TWC-Schicht enthalten 5 g/ft3 Rh, der Katalysator mit Oxidations- schicht enthält 3 g/ft3 Pt. Alterung: Fuel-Cut-Alterung, 19 h, 830 °C Einlasstemperatur für die Katalysatoren in Un- terboden-Position Volumen des Unterboden-Katalysators: 0.83 L Die Katalysatoren, bei denen eine SCR-Schicht in einem geschichteten Design mit einer TWC-Schicht mit 5 g/ft3 Rh kombiniert ist, zeigen eine verbesserte katalytische Perfor- mance und eine verringerte Selektivität zu N2O im Vergleich zu einem Katalysator, in dem die SCR-Schicht mit einer typischen Oxidationsbeschichtung mit 3 g/ft3 Pt kombi- niert ist. Darüber hinaus zeigt ein Beschichtung bei der die TWC-Beschichtung über der SCR- Beschichtung ist eine bessere Performance hinsichtlich NH3 und N2O. Eine Ausgestal- tung mit SCR-Katalysatoren mit dreidimensionaler Gerüststruktur ist ebenfalls bevor- zugt. Anspringverhalten von TWC-Katalysatoren mit unterschiedlicher Edelmetallbela- dung (siehe Tabelle 1): Katalysatoren mit einem TWC-Layer mit unterschiedlichen Edelmetallgehalten werden miteinander verglichen. Tabelle 1 zeigt die Temperaturen, bei denen die Katalysatoren nach einer Fuel-Cut-Alterung in Unterboden-Position in einem Light-Off-Test 50%-igen Umsatz für Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide zeigen. Ein niedrigerer T50-Wert entspricht einer höheren katalytischen Aktivität. Ein ausschließlich rhodiumhal- tiger Katalysator zeigt in diesem Test das beste Anspringverhalten. Tab.1:
Figure imgf000024_0001
F. Results Comparison of different combinations of SCR and TWC layers: See Figures 3 and 5. All catalysts with TWC layer contain 5 g/ft 3 Rh. Aging: Fuel-cut aging, 38 h, 800 °C inlet temperature for the catalysts in the underbody position Volume of the underbody catalyst: 0.83 L A catalyst in which an SCR layer is combined in a layered design with a TWC layer with 5 g/ft 3 Rh shows improved catalytic performance compared to catalysts in which the SCR and TWC layers are arranged one after the other. Comparison of catalysts with SCR and rhodium-containing TWC coating with a catalyst with SCR and platinum-containing oxidation coating: See Figures 4, 6 and 7 The catalysts with TWC coating contain 5 g/ft 3 Rh, the catalyst with oxidation coating contains 3 g/ft 3 pt. Aging: Fuel-cut aging, 19 h, 830 °C Inlet temperature for the catalysts in the underbody position Volume of the underbody catalyst: 0.83 L The catalysts in which an SCR layer in a layered design with a TWC layer with 5 g/ft 3 Rh show improved catalytic performance and reduced selectivity to N2O compared to a catalyst in which the SCR layer is combined with a typical oxidation coating with 3 g/ft 3 Pt . In addition, a coating in which the TWC coating is over the SCR coating shows better performance with regard to NH3 and N2O. A design with SCR catalysts with a three-dimensional framework structure is also preferred. Light-off behavior of TWC catalysts with different precious metal loadings (see Table 1): Catalysts with a TWC layer with different precious metal contents are compared with each other. Table 1 shows the temperatures at which the catalysts show 50% conversion for hydrocarbons, carbon monoxide and nitrogen oxides in a light-off test after fuel-cut aging in the underbody position. A lower T50 value corresponds to a higher catalytic activity. A catalytic converter containing only rhodium shows the best starting behavior in this test. Tab.1:
Figure imgf000024_0001

Claims

Patentansprüche 1. Abgassystem zur Verminderung von schädlichen Abgasbestandteile von über- wiegend stöchiometrisch betriebenen Verbrennungsmotoren, insbesondere fremdgezündeten Benzinmotoren, aufweisend einen ersten Dreiwegekatalysator und abstromseitig hierzu einen Katalysator zur Verminderung der Ammoniak- Emissionen, dadurch gekennzeichnet, dass dieser folgende Bestandteile aufweist: - eine erste Komponente mit einem übergangsmetallausgetauschten Zeolithen und/oder Zeotypen mit dreidimensionaler Gerüststruktur; - eine zweite Komponente mit einem OSC-haltigen Edelmetallkatalysator, welcher Rhodium aufweist; und wobei die beiden Komponenten als übereinanderliegende Schichten auf einem Substrat aufgebracht sind. 2. Abgassystem nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Komponente komplett über der ersten liegt und diese vollständig über- deckt. 3. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beide Schichten gleich lang sind. 4. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Übergangsmetalle Eisen und/oder Kupfer vorliegen. 5. Abgassystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Zeolith bzw. Zeotyp mit dreidimensionaler Gerüststruktur solche ausgewählt aus der Gruppe bestehend aus CHA, AEI, BEA und AFX in Frage kommen. 6. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeolith bzw. Zeotyp eine Ammoniakspeicherfähigkeit von zwischen 0,25 und 10,0 g NH3 pro Liter Trägervolumen aufweist. 7. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Edelmetalle im Edelmetallkatalysator sowohl auf temperaturstabilen, hoch- oberflächigen Trägermaterialien als auch auf Sauerstoffspeichermaterialien ab- geschieden vorliegen. 8. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzlich einen GPF zwischen dem ersten Dreiwegekatalysator und dem Ka- talysator zur Verminderung der Ammoniak-Emissionen aufweist. 9. Abgassystem nach Anspruch 8, dadurch gekennzeichnet, dass der erste Dreiwegekatalysator und der GPF in motornaher Position verbaut sind. 10. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Katalysator zur Verminderung der Ammoniak-Emissionen im Unterboden ei- nes Fahrzeugs in Abgasrichtung an letzter Stelle verbaut ist. 11. Verfahren zur Verminderung schädlichen Abgasbestandteile von überwiegend stöchiometrisch betriebenen Verbrennungsmotoren, insbesondere fremdgezün- deten Benzinmotoren,‘ dadurch gekennzeichnet, dass das Abgas über ein Abgassystem gemäß einem der vorhergehenden Ansprüche geleitet wird. Claims 1. Exhaust system for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, having a first three-way catalytic converter and, downstream of this, a catalytic converter for reducing ammonia emissions, characterized in that it has the following components: - a first component with a transition metal-exchanged zeolite and/or zeotypes with a three-dimensional framework structure; - a second component with an OSC-containing noble metal catalyst which has rhodium; and wherein the two components are applied as superimposed layers on a substrate. 2. Exhaust system according to claim 1, characterized in that the second component lies completely above the first and completely covers it. 3. Exhaust system according to one of the preceding claims, characterized in that the two layers are the same length. 4. Exhaust system according to one of the preceding claims, characterized in that iron and / or copper are present as transition metals. 5. Exhaust system according to claim 1 or 2, characterized in that the zeolite or zeotype with a three-dimensional framework structure selected from the group consisting of CHA, AEI, BEA and AFX can be considered. 6. Exhaust system according to one of the preceding claims, characterized in that the zeolite or zeotype has an ammonia storage capacity of between 0.25 and 10.0 g NH3 per liter of carrier volume. 7. Exhaust system according to one of the preceding claims, characterized in that the precious metals in the precious metal catalyst are deposited both on temperature-stable, high-surface support materials and on oxygen storage materials. 8. Exhaust system according to one of the preceding claims, characterized in that it additionally has a GPF between the first three-way catalytic converter and the catalytic converter for reducing ammonia emissions. 9. Exhaust system according to claim 8, characterized in that the first three-way catalytic converter and the GPF are installed in a position close to the engine. 10. Exhaust system according to one of the preceding claims, characterized in that the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions. 11. A method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, characterized in that the exhaust gas is passed through an exhaust system according to one of the preceding claims.
PCT/EP2023/059081 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions WO2023198572A1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
DE102022108768.9 2022-04-11
DE102022108768 2022-04-11
DE102022119442 2022-08-03
DE102022119442.6 2022-08-03
DE102022119443.4 2022-08-03
DE102022119441 2022-08-03
DE102022119443 2022-08-03
DE102022119441.8 2022-08-03
DE102023101779.9A DE102023101779A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101763.2A DE102023101763A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101779.9 2023-01-25
DE102023101772.1 2023-01-25
DE102023101768.3A DE102023101768A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101772.1A DE102023101772A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101768.3 2023-01-25
DE102023101763.2 2023-01-25

Publications (1)

Publication Number Publication Date
WO2023198572A1 true WO2023198572A1 (en) 2023-10-19

Family

ID=85984972

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/EP2023/059078 WO2023198569A1 (en) 2022-04-11 2023-04-06 Ammonia-blocking catalyst for stoichiometric internal combustion engines
PCT/EP2023/059083 WO2023198574A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059081 WO2023198572A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059082 WO2023198573A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059084 WO2023198575A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059087 WO2023198577A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059079 WO2023198570A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059080 WO2023198571A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2023/059078 WO2023198569A1 (en) 2022-04-11 2023-04-06 Ammonia-blocking catalyst for stoichiometric internal combustion engines
PCT/EP2023/059083 WO2023198574A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/EP2023/059082 WO2023198573A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059084 WO2023198575A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059087 WO2023198577A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059079 WO2023198570A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059080 WO2023198571A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Country Status (1)

Country Link
WO (8) WO2023198569A1 (en)

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024258A1 (en) 1979-08-14 1981-02-25 Ciba-Geigy Ag Manufacture of pharmaceutical compositions for the treatment of herpes infections
US5120695A (en) 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
US20030083193A1 (en) * 2001-11-01 2003-05-01 Nissan Motor Co., Ltd Exhaust gas purifying catalyst
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1882832A2 (en) 2006-07-08 2008-01-30 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1892395A1 (en) 2006-08-16 2008-02-27 MAN Nutzfahrzeuge AG Exhaust gas treatment system
WO2008106523A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
WO2008106518A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Scr on low thermal mass filter substrates
US20110182791A1 (en) * 2011-04-08 2011-07-28 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
WO2011110919A1 (en) 2010-03-08 2011-09-15 Johnson Matthey Public Limited Company Improvements in control of emissions
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
WO2012135871A1 (en) 2011-03-29 2012-10-04 Basf Corporation Multi-component filters for emissions control
WO2014062949A1 (en) 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve as high temperature scr catalyst
DE102013210270A1 (en) 2013-06-03 2014-12-04 Umicore Ag & Co. Kg three-way
US20150231617A1 (en) 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
US20150290632A1 (en) 2014-04-09 2015-10-15 Ford Global Technologies, Llc IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
US20160067690A1 (en) * 2013-05-27 2016-03-10 Mazda Motor Corporation Exhaust gas purification catalyst and production method thereof
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
US20170014766A1 (en) * 2014-03-13 2017-01-19 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
WO2017187344A1 (en) 2016-04-26 2017-11-02 Basf Corporation Zoned configuration for oxidation catalyst combinations
EP3247493A1 (en) 2015-01-19 2017-11-29 Umicore AG & Co. KG Double-layer three-way catalyst with improved ageing stability
US20180229224A1 (en) * 2015-08-21 2018-08-16 Basf Corporation Exhaust gas treatment catalysts
WO2019219816A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
EP3601755A1 (en) 2017-03-23 2020-02-05 Umicore AG & Co. KG Catalytically active particulate filter
DE102019100099A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Process for the production of catalytically active wall flow filters
EP3727655A1 (en) 2017-12-19 2020-10-28 UMICORE AG & Co. KG Single-layer 3-way catalytic converter
EP3737491A1 (en) 2019-03-29 2020-11-18 UMICORE AG & Co. KG Catalytically active particulate filter
DE102020101876A1 (en) 2020-01-27 2021-07-29 Umicore Ag & Co. Kg Double-layer three-way catalyst with further improved aging stability
EP3915679A1 (en) 2020-05-26 2021-12-01 UMICORE AG & Co. KG Ammonia emissions reduction catalyst, catalyst system, and exhaust gas purification system
US20220010714A1 (en) * 2014-12-08 2022-01-13 Basf Corporation Nitrous oxide removal catalysts for exhaust systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1166853A1 (en) * 2000-06-22 2002-01-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
JP5683111B2 (en) 2007-02-27 2015-03-11 ビーエーエスエフ コーポレーション Copper CHA zeolite catalyst
US9440192B2 (en) * 2009-01-16 2016-09-13 Basf Corporation Diesel oxidation catalyst and use thereof in diesel and advanced combustion diesel engine systems
DE102010007499A1 (en) 2010-02-09 2011-08-11 Umicore AG & Co. KG, 63457 Volumetric coating arrangement
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
GB2556232B (en) * 2013-07-30 2019-01-23 Johnson Matthey Plc Ammonia slip catalyst
US9149768B1 (en) 2014-03-27 2015-10-06 General Electric Company Emission control in rich burn natural gas engines
GB2541500B (en) * 2015-06-18 2019-06-26 Johnson Matthey Plc NH3 overdosing-tolerant SCR catalyst
EP3357558B1 (en) * 2017-02-03 2019-06-26 Umicore Ag & Co. Kg Catalyst for cleaning diesel engine exhaust gases
BR112019015734A2 (en) * 2017-02-08 2020-03-24 Basf Corporation CATALYTIC ARTICLE, EXHAUST GAS TREATMENT SYSTEM AND METHOD FOR TREATING AN EXHAUST GAS CHAIN
CN109225316B (en) * 2018-10-08 2020-03-31 中自环保科技股份有限公司 Tail gas treatment catalyst and preparation method and application thereof
US11073057B2 (en) * 2019-01-31 2021-07-27 Hyundai Motor Company Co clean-up catalyst, after treatment system and after treatment method
GB201903006D0 (en) * 2019-03-06 2019-04-17 Johnson Matthey Plc Lean nox trap catalyst
EP3885040A1 (en) * 2020-03-24 2021-09-29 UMICORE AG & Co. KG Ammonia oxidation catalyst

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024258A1 (en) 1979-08-14 1981-02-25 Ciba-Geigy Ag Manufacture of pharmaceutical compositions for the treatment of herpes infections
US5120695A (en) 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
US20030083193A1 (en) * 2001-11-01 2003-05-01 Nissan Motor Co., Ltd Exhaust gas purifying catalyst
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1882832A2 (en) 2006-07-08 2008-01-30 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1892395A1 (en) 2006-08-16 2008-02-27 MAN Nutzfahrzeuge AG Exhaust gas treatment system
WO2008106523A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
WO2008106518A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Scr on low thermal mass filter substrates
WO2011110919A1 (en) 2010-03-08 2011-09-15 Johnson Matthey Public Limited Company Improvements in control of emissions
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
WO2012135871A1 (en) 2011-03-29 2012-10-04 Basf Corporation Multi-component filters for emissions control
US20110182791A1 (en) * 2011-04-08 2011-07-28 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
WO2014062949A1 (en) 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve as high temperature scr catalyst
US20160067690A1 (en) * 2013-05-27 2016-03-10 Mazda Motor Corporation Exhaust gas purification catalyst and production method thereof
DE102013210270A1 (en) 2013-06-03 2014-12-04 Umicore Ag & Co. Kg three-way
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
US20150231617A1 (en) 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
US20170014766A1 (en) * 2014-03-13 2017-01-19 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
US20150290632A1 (en) 2014-04-09 2015-10-15 Ford Global Technologies, Llc IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
US20220010714A1 (en) * 2014-12-08 2022-01-13 Basf Corporation Nitrous oxide removal catalysts for exhaust systems
EP3247493A1 (en) 2015-01-19 2017-11-29 Umicore AG & Co. KG Double-layer three-way catalyst with improved ageing stability
US20180229224A1 (en) * 2015-08-21 2018-08-16 Basf Corporation Exhaust gas treatment catalysts
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
WO2017187344A1 (en) 2016-04-26 2017-11-02 Basf Corporation Zoned configuration for oxidation catalyst combinations
EP3601755A1 (en) 2017-03-23 2020-02-05 Umicore AG & Co. KG Catalytically active particulate filter
EP3727655A1 (en) 2017-12-19 2020-10-28 UMICORE AG & Co. KG Single-layer 3-way catalytic converter
WO2019219816A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
DE102019100099A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Process for the production of catalytically active wall flow filters
EP3737491A1 (en) 2019-03-29 2020-11-18 UMICORE AG & Co. KG Catalytically active particulate filter
DE102020101876A1 (en) 2020-01-27 2021-07-29 Umicore Ag & Co. Kg Double-layer three-way catalyst with further improved aging stability
EP3915679A1 (en) 2020-05-26 2021-12-01 UMICORE AG & Co. KG Ammonia emissions reduction catalyst, catalyst system, and exhaust gas purification system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHERW.M. MEIERD.H. OLSON: "Atlas of Zeolite Framework Types", 2001, ELSEVIER
W.M. MEIER, PURE & APPL. CHEM., vol. 58, no. 10, 1986, pages 1323 - 1328

Also Published As

Publication number Publication date
WO2023198569A1 (en) 2023-10-19
WO2023198574A1 (en) 2023-10-19
WO2023198570A1 (en) 2023-10-19
WO2023198571A1 (en) 2023-10-19
WO2023198577A1 (en) 2023-10-19
WO2023198573A1 (en) 2023-10-19
WO2023198575A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
DE102014110701B4 (en) Oxidation catalytic converter for treating exhaust gas from a diesel engine, its uses and method for its production
EP2335810B1 (en) Selective catalytic reduction of nitrogen oxides in the exhaust gas of diesel engines
DE102014104748B4 (en) EXHAUST SYSTEM INCLUDING A CATALYZED FILTER
EP1961933B1 (en) Catalytically activated diesel particulate filter with ammoniac blocking action
EP3727653B1 (en) Catalytically active particulate filter
EP2038046B1 (en) Two-layered three-way catalyst and its use
DE102012218254B4 (en) EXHAUST SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE102012222801B4 (en) Exhaust system and use of a washcoat
DE102014105736A1 (en) A spark-ignition engine and exhaust system comprising a catalyzed zoned filter substrate
EP2322773B1 (en) Method for cleaning combustion engine exhaust gases
DE102016118542A1 (en) A CATALYST AND A SCR CATALYST CATALYTIC FILTER
DE102014102023A1 (en) OXIDATION CATALYST FOR A COMBUSTION ENGINE
DE112011103996T5 (en) Metal-containing zeolite catalyst
DE102013223839A1 (en) Catalyzed soot filter for treating the exhaust gas of a compression ignition engine
WO2015135983A1 (en) Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
DE69838589T2 (en) METHOD FOR EXHAUST GAS CLEANING
DE102010056223A1 (en) Exhaust system for a vehicle engine with spark ignition
EP3601755A1 (en) Catalytically active particulate filter
EP2640513A1 (en) Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
EP4029592A1 (en) Catalytically active particulate filter
EP3695902B1 (en) Catalyst for reducing nitrogen oxides
WO2023198572A1 (en) Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
DE102023101763A1 (en) Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE202009018901U1 (en) Catalytically active particulate filter for cleaning exhaust gases from internal combustion engines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23717519

Country of ref document: EP

Kind code of ref document: A1