WO2023198571A1 - Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions - Google Patents

Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions Download PDF

Info

Publication number
WO2023198571A1
WO2023198571A1 PCT/EP2023/059080 EP2023059080W WO2023198571A1 WO 2023198571 A1 WO2023198571 A1 WO 2023198571A1 EP 2023059080 W EP2023059080 W EP 2023059080W WO 2023198571 A1 WO2023198571 A1 WO 2023198571A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ammonia
osc
exhaust system
exhaust gas
Prior art date
Application number
PCT/EP2023/059080
Other languages
German (de)
French (fr)
Inventor
Julius KOEGEL
Massimo Colombo
Sonja Buchberger
Marcus Schmidt
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102023101779.9A external-priority patent/DE102023101779A1/en
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Publication of WO2023198571A1 publication Critical patent/WO2023198571A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia

Definitions

  • the present invention is directed to an exhaust system for reducing exhaust gases and in particular ammonia emissions in the exhaust system of a predominantly stoichiometrically operated spark ignition engine.
  • Exhaust gases from internal combustion engines operated with predominantly (>50% of the operating time) stoichiometric air/fuel mixture i.e. e.g. B. spark ignition engines or gasoline engines powered by gasoline or natural gas are cleaned in conventional processes using three-way catalysts (TWC). These are able to simultaneously convert the engine's three main gaseous pollutants, namely hydrocarbons, carbon monoxide and nitrogen oxides, into harmless components.
  • Stoichiometric means that on average there is as much air available to burn the fuel in the cylinder as is needed for complete combustion.
  • the combustion air ratio A (A/F ratio; air/fuel ratio) relates the air mass mL.tats actually available for combustion to the stoichiometric air mass mi_,st:
  • a ⁇ 1 (e.g. 0.9) this means “lack of air”
  • a > 1 (e.g. 1.1) means “excess air” and the exhaust gas mixture is referred to as lean.
  • the statement A 1.1 means that 10% more air is present than would be necessary for the stoichiometric reaction. The same applies to the exhaust gases from internal combustion engines.
  • the catalytically active materials used in the known three-way catalysts are generally platinum group metals, in particular platinum, palladium and rhodium, which are present, for example, on ⁇ -aluminum oxide as a support material.
  • three-way catalysts contain oxygen storage materials, for example cerium/zirconium mixed oxides. In the latter, cerium oxide, a rare earth metal oxide, is the fundamental component for oxygen storage. In addition to zirconium oxide and cerium oxide, these materials can contain additional components such as other rare earth metal oxides or alkaline earth metal oxides.
  • Oxygen storage materials are made by Application of catalytically active materials such as platinum group metals activates and thus also serves as a carrier material for the platinum group metals.
  • Compliance with the strict emission values for ammonia requires the use of a storage material to store NH3 during the rich operating conditions of the internal combustion engine, especially for low and medium temperature ranges, as the ammonia is mainly formed under these exhaust gas conditions.
  • the stored ammonia is then converted during lean operating points by oxidation on a layer containing precious metal and/or as part of an SCR reaction.
  • the aim here is to achieve the lowest possible selectivity to N2O.
  • a special requirement for the catalysts considered here is the high aging stability of the materials used: In addition to the stability against lean gas conditions, their use in the exhaust system of stoichiometrically operated internal combustion engines requires that they also be stable in exhaust gas with a rich or stoichiometric composition under hydrothermal exhaust gas conditions.
  • the ammonia can also be converted into nitrogen via the ASC with the oxygen present.
  • a further disadvantage of the known systems for reducing ammonia emissions is that the transition metals in the SCR component, such as iron and/or copper, tend to dissolve in the exhaust system of a predominantly stoichiometrically operated internal combustion engine after a long period of use to diffuse the component for the oxidation of ammonia and poison it. The result is a lower activity of the SCR and the oxidative component.
  • NH3 and N2O should be safely adhered to in addition to the traditional ones for CO, HC and NOx.
  • the system should also be robust and agile in order to be able to withstand the working conditions in the exhaust system of a corresponding automobile for a sufficient period of time.
  • Claims 2 - 8 relate to preferred embodiments of the exhaust system and can accordingly also be applied to the method according to the invention.
  • an exhaust system for reducing the harmful exhaust gas components of internal combustion engines in particular predominantly stoichiometrically operated internal combustion engines, such as spark-ignited gasoline engines, having a first three-way catalytic converter and, on the downstream side, a catalyst for reducing ammonia emissions, which has the following components:
  • the system according to the invention is characterized by an extremely good Performance in terms of reducing CO, HC and NOx emissions as well as NH3 and IX ⁇ O emissions. It reacts well to the dynamic requirements in the exhaust system of a gasoline engine and is sufficiently robust to meet these requirements for a sufficient period of time.
  • a first component of the catalyst for reducing ammonia emissions consists of zeolites and/or zeotypes for storing ammonia.
  • zeolites and/or zeotypes for storing ammonia.
  • those skilled in the art are familiar with the zeolites and zeotypes available for this purpose from the diesel sector.
  • the way the zeolites or zeotypes work is based on the fact that they can temporarily store ammonia in operating states of the exhaust gas purification system in which ammonia is produced, for example, by over-reduction of nitrogen oxides via a three-way catalytic converter installed on the upstream side, but this cannot be converted by other conventional three-way catalytic converters, for example because of the Lack of oxygen or insufficient operating temperatures.
  • the ammonia stored in this way can then be removed from storage when the operating state of the exhaust gas purification system changes and subsequently or directly converted, for example when sufficient oxygen or nitrogen oxides are present.
  • zeolites and zeotypes are present in the first component of the catalyst to reduce ammonia emissions.
  • IZA https://europe.iza-structure.org/IZA-SC/ftc_table.php
  • the international zeolite association, zeolites or zeotypes can be divided into different classes. Zeolites are then divided, for example, according to their channel system and their framework structure. For example, laumontite and mordenite are classified as zeolites, which have a one-dimensional system of channels. Your channels are not connected to each other. Zeolites with a two-dimensional channel system are characterized by the fact that their channels are connected to each other in a kind of layered system.
  • a third group has a three-dimensional framework structure with cross-layer connections between the channels.
  • Two- and/or three-dimensional zeolites or zeotypes are preferably used in the present invention [Ch. Baerlocher, WM Meier and DH Olson, Atlas of Zeolite Framework Types, Elsevier, 2001], According to the invention, the term “zeolite” refers to porous materials with a lattice structure of corner-linked AIO4 and SiCU tetrahedra according to the general formula (WM Meier, Pure & Appl. Chem., Vol. 58, No. 10, pp. 1323-1328 , 1986):
  • the structure of a zeolite therefore comprises a network made up of tetrahedra that encloses channels and cavities.
  • zeotype is understood to mean a zeolite-like compound that has the same structural type as a naturally occurring or synthetically produced zeolite compound, but which differs from such compounds in that the corresponding cage structure is not made up exclusively of aluminum and silicon framework atoms.
  • the aluminum and/or silicon framework atoms are proportionally replaced by other trivalent, quadrivalent or pentavalent framework atoms such as B(III), Ga(III), Ge(IV), Ti(IV) or P(V).
  • the most common method used in practice is the replacement of aluminum and/or silicon framework atoms by phosphorus atoms, for example in the silicon aluminum phosphates or in the aluminum phosphates, which crystallize in zeolite structure types.
  • zeolites come from the group of two-dimensional or three-dimensional zeolites/zeotypes. They preferably belong to the structure types AGO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, BEA, BIK, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, ESV, ETL, GIS , GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON.
  • the zeolites or zeotypes in the car exhaust gas catalyst according to the invention are selected from the group AEI, AFT, AFX, CHA, DDR, ERI, ESV, ETL, KFI, LEV, UFI and the corresponding zeotypes of these structural types, such as: SAPO. Mixtures of the same can also be present.
  • CHA, FER, LEV and AEI is particularly preferred.
  • metal-free means the absence of metals in ionic, oxidic or metallic form, which could catalyze the SCR reaction or ammonia oxidation. It therefore essentially contains no transition metals, in particular iron and/or copper, and also no precious metals. The need for prior contact with these metals is therefore eliminated.
  • the zeolite/zeotype may contain residues of metals such as sodium or potassium etc. in low concentrations. This is usually the case Zeolite/zeotype after calcination is preferably essentially in the H form (so-called white zeolite).
  • the aging stability of the zeolites or zeotypes used in the exhaust system of predominantly stoichiometrically burning engines is particularly in focus here, since higher temperatures generally prevail here than in a lean-burning engine. In this respect, materials are desired that can withstand the sometimes very high and rapidly changing hydrothermal conditions for as long as possible.
  • the exhaust gas composition is also different compared to lean-burn engine exhaust.
  • concentration, in particular of hydrocarbons and carbon monoxide, which arrive at the catalyst according to the invention is, on the one hand, higher than in lean-burn engines and the composition also changes depending on the driving style around the stoichiometric range (rich/lean change).
  • the hydrothermal temperature stability of zeolites and zeotypes depends heavily on the SAR value (silica-to-alumina ratio) of the zeolite or the ratio corresponding to this value for zeotypes.
  • SAR value silicon-to-alumina ratio
  • the amount of silicon atoms remaining in the framework is then related to the substitution atoms. It has proven to be advantageous if the zeolites have a SAR value of 10 - 50, preferably 12 - 35 and most preferably 13 - 30. The same applies to the zeotype with the corresponding ratio.
  • the first component can preferably have other non-catalytically active components, such as binders.
  • binders temperature-stable metal oxides that are not or only slightly catalytically active, such as SiO2, Al2O3 and ZrÜ2, are suitable as binders.
  • the expert knows which materials come into question here.
  • the proportion of such binders in the first coating can, for example, be up to 15% by weight, preferably up to 10% by weight, of the coating.
  • the binder should also not contain the transition metals specified above, in particular iron and/or copper, and no precious metals. Binders are suitable for ensuring stronger adhesion of the coating to a carrier or another coating.
  • the ammonia storage ability or capacity addressed in the context of this invention is given as a quotient of the stored mass of ammonia per liter of catalyst support volume.
  • the zeolites or zeotypes should increase the ammonia storage capacity of the exhaust gas purification system to at least 0.25 g of ammonia per liter of carrier volume (measured in the fresh state).
  • the storage capacity of the ammonia storage components used should be sufficient so that the system contains between 0.25 and 10.0 g of NH3 per liter of carrier volume, preferably between 0.5 and 8.0 g of NH3 per liter of carrier volume and particularly preferably between 0.5 and 5.
  • 0 g NH3/U-ter carrier volume of ammonia can be stored (always based on the fresh state).
  • the zeolites or zeotypes are present in sufficient quantities in the catalyst to reduce ammonia emissions. The determination of the ammonia storage capacity is shown below.
  • the second component consists of an OSC-free precious metal catalyst and/or an OSC-containing noble metal catalyst.
  • Precious metal refers in particular to the platinum group metals platinum, palladium and rhodium. Accordingly, the noble metals in the OSC-free or OSC-containing noble metal catalyst are selected from the group consisting of palladium, platinum, rhodium.
  • OSC means Oxygen Storage Catalyst - oxygen storage catalyst.
  • An OSC-containing noble metal catalyst therefore has oxygen storage materials.
  • the OSC-free precious metal catalyst essentially has no function of storing oxygen in the exhaust gas of the internal combustion engine.
  • this component has oxygen storage materials, in particular cerium-zirconium mixed oxides, of less than 20 g/L, preferably less than 10 g/L and most preferably less than 5 g/L carrier volume.
  • the entire amount of cerium or cerium-zirconium mixed oxides, for example, is considered the storage material, including the doping elements present.
  • Corresponding OSC-free precious metal catalysts have the ability to have an oxidative effect on the substances present (NH3, HC, CO) in the already slightly lean exhaust gas of a predominantly stoichiometrically operated combustion engine.
  • This component is preferably designed so that it becomes active at correspondingly low temperatures.
  • the ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component.
  • the oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation.
  • the second component in the form of an OSC-free precious metal catalyst therefore has materials that have an oxidative effect on, among other things, ammonia.
  • This component normally contains a temperature-stable, high-surface metal oxide and at least one noble metal selected from the group rhodium, platinum and palladium.
  • the total noble metal content of this component is preferably from 0.015 - 5 g/L, more preferably from 0.035 - 1.8 g/L and particularly preferably from 0.07 - 1.2 g/L carrier volume.
  • the precious metals platinum or palladium, or platinum and palladium together, are particularly suitable for use in this component that has an oxidative effect on ammonia.
  • the person skilled in the art can preferably choose whether to use the strongly oxidative platinum alone or, if necessary, in conjunction with palladium in the second coating layer. If platinum and/or palladium is used, the former should be in the range of 0.015 - 1.42 g/L, more preferably 0.035 - 0.35 g/L carrier volume in the coating. Palladium can be present in the coating in between 0.015 - 1.42 g/L, preferably 0.035 - 0.35 g/L carrier volume. The weight ratio of platinum to palladium should be between 1:0 and 1:5, more preferably 1:0 and 1:4 and most preferably 1:0 and 1:2.
  • the precious metals in the OSC-free second component are fixed on one or more temperature-stable, high-surface metal oxides as carrier materials.
  • All materials familiar to those skilled in the art for this purpose can be considered as carrier materials.
  • Such materials are in particular metal oxides with a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132 - latest version on the filing date).
  • Particularly suitable carrier materials for the precious metals are selected from the series consisting of aluminum oxide, doped aluminum oxide, silicon oxide, titanium dioxide and mixed oxides from one or more of these.
  • Doped aluminum oxides are, for example, lanthanum oxide, zirconium oxide, barium oxide and/or titanium oxide-doped aluminum oxides.
  • Aluminum oxide or lanthanum-stabilized aluminum oxide is advantageously used, in the latter case lanthanum in amounts of in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as La2Ü3 and based on the weight of the stabilized aluminum oxide, is used. Even in the case of aluminum oxide doped with barium oxide, the proportion of barium oxide is in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as BaO and based on the weight of the stabilized aluminum oxide.
  • a Another suitable carrier material is lanthanum-stabilized aluminum oxide, the surface of which is coated with lanthanum oxide, barium oxide and/or strontium oxide. This component preferably comprises at least one aluminum oxide or doped aluminum oxide.
  • La-stabilized y-alumina with a surface area of 100 to 200 m 2 /g is particularly advantageous in this context. Such active aluminum oxide has been widely described in the literature and is available on the market.
  • the catalyst for reducing ammonia emissions has an OSC-containing noble metal catalyst as an alternative or cumulative to the OSC-free precious metal catalyst.
  • oxygen storage materials are also present in the precious metal catalyst (containing OSC). Cerium or cerium-zirconium mixed oxides (see below) are consistently used as oxygen storage materials. Accordingly, an OSC-containing noble metal catalyst is characterized by the presence of a certain amount of these oxygen storage materials. In particular, this component has oxygen storage materials in an amount of more than 5 g/L, preferably more than 10 g/L and most preferably more than 20 g/L carrier volume. The entire cerium-zirconium mixed oxide with all its components is included.
  • Corresponding OSC-containing precious metal catalysts have the ability to have an oxidative effect on the substances present (NH3, HC, CO) in the already slightly rich exhaust gas of a predominantly stoichiometrically operated internal combustion engine.
  • This component is preferably designed so that it becomes active at correspondingly low temperatures.
  • the ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component.
  • the oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation.
  • the noble metals in the OSC-containing noble metal catalyst are preferably selected from the group consisting of palladium or rhodium or platinum, platinum and rhodium, palladium and rhodium or palladium and rhodium and platinum together.
  • This catalyst is preferably a coating equipped with three-way catalytic capability.
  • the precious metals can only be deposited on the temperature-stable, high-surface support materials present. However, it is preferred if the noble metals are deposited both on the carrier materials mentioned and on the oxygen storage materials.
  • rhodium is present in this component (whether alone or in combination with the other aforementioned noble metals), this should preferably be in the range of 0.035 - 1.0 g/L, more preferably 0.1 - 0.35 g/L carrier volume located in the respective component. If palladium and/or platinum are also present in this component, the ranges mentioned above for the OSC-free precious metal catalysts apply to these metals.
  • Suitable three-way catalytically active coatings are, for example, in DE102013210270A1, DE102020101876A1, EP3247493A1,
  • Modern gasoline engines are operated under conditions with a discontinuous course of the air ratio X. They are subject to a periodic change in the air ratio X in a defined manner and thus to a periodic change in oxidizing and reducing exhaust gas conditions.
  • This change in the air ratio X is essential for the exhaust gas purification result in both cases.
  • oxygen storage materials contained in the catalytic converter compensate for these deviations to a certain extent by absorbing oxygen from the exhaust gas or releasing it into the exhaust gas as required ( Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, p. 90).
  • the OSC-containing noble metal catalysts therefore contain oxygen storage materials, in particular cerium or Ce/Zr mixed oxides.
  • the mass ratio of cerium oxide to zirconium oxide can vary within wide limits in these mixed oxides. It is, for example, 0.1 to 1.5, preferably 0.15 to 1 or 0.2 to 0.9.
  • Preferred cerium/zirconium mixed oxides include one or more rare earth metal oxides and can thus be referred to as cerium/zirconium/rare earth mixed oxides.
  • the term “cerium/zirconium/rare earth metal mixed oxide” in the sense of the present invention includes physical mixtures of cerium oxide and zirconium oxide and rare earth oxide.
  • cerium/zirconium/rare earth metal mixed oxides are characterized by a largely homogeneous, three-dimensional crystal structure, which is ideally free of phases made of pure cerium oxide, zirconium oxide or rare earth oxide (so-called solid solution). Depending on the manufacturing process, products may not be completely homogeneous, which can generally be used without disadvantage. The same applies to cerium/zirconium mixed oxides that do not contain any rare earth metal oxide. Furthermore, the term rare earth metal or rare earth metal oxide in the sense of the present invention does not include cerium or cerium oxide.
  • Suitable rare earth metal oxides in the cerium/zirconium/rare earth metal mixed oxides include, for example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide and/or samarium oxide.
  • Lanthanum oxide, yttrium oxide and/or praseodymium oxide are preferred.
  • Particularly preferred rare earth metal oxides are lanthanum oxide and/or yttrium oxide and very particularly preferred is the joint presence of lanthanum oxide and yttrium oxide, yttrium oxide and praseodymium oxide, as well as lanthanum oxide and praseodymium oxide in the cerium/zirconium/rare earth metal mixed oxide.
  • this noble metal catalyst has two different cerium/zirconium/rare earth metal mixed oxides, preferably one doped with La and Y and one doped with La and Pr.
  • the oxygen storage components are preferably free of neodymium oxide.
  • the proportion of rare earth metal oxide(s) in the cerium/zirconium/rare earth metal mixed oxides is advantageously 3 to 20% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain yttrium oxide as the rare earth metal, its proportion is preferably 4 to 15% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain praseodymium oxide as the rare earth metal, its proportion is preferably 2 to 10% by weight based on the cerium/zirconium/rare earth metal mixed oxide.
  • cerium/zirconium/rare earth metal mixed oxides contain lanthanum oxide and another rare earth oxide as the rare earth metal, such as yttrium oxide or praseodymium oxide, their mass ratio is in particular 0.1 to 1.25, preferably 0.1 to 1.
  • This noble metal catalyst usually contains oxygen storage materials in amounts of 15 to 120 g/l, based on the volume of the carrier or substrate.
  • the OSC-containing noble metal catalysts also have the temperature-stable, high-surface support materials mentioned for the OSC-free noble metal catalysts and, in addition to these, oxygen-storing materials.
  • the mass ratio of temperature-stable, high-surface carrier materials and oxygen storage components in this component is usually 0.25 to 1.5, for example 0.3 to 1.3.
  • the weight ratio of the sum of the masses of all support materials, such as aluminum oxides (including doped aluminum oxides) to the sum of the masses of all cerium/zirconium mixed oxides in the OSC-containing noble metal catalyst is 10:90 to 75:25, preferably 20 :80 to 65:35..
  • the first and second components preferably form an ammonia storage and a function for the oxidation of ammonia to nitrogen (e.g. as in WO2008106523A2), although the ammonia storage is metal-free within the scope of the invention. If there are not enough nitrogen oxides in the system to oxidize the stored ammonia, the ammonia can also be converted into nitrogen with the oxygen present via the second component. In both cases, if possible, no ammonia or N2O is released into the environment.
  • the first component and the second component of the catalyst for reducing ammonia emissions can therefore preferably consist of an ammonia-storing coating paired with a second coating that has an oxidative effect on ammonia.
  • the respective layer/component can be freely chosen by the person skilled in the art within the scope of the invention. They are preferably located on a flow-through substrate and here take up a length of at least 10% and a maximum of 100%, more preferably 20% - 90%, extremely preferably 30% - 80% of the substrate length.
  • the components are in separate layers, separated from each other but lying on top of each other. It is particularly advantageous if both components are the same length and completely overlap each other.
  • the OSC-free and/or OSC-containing noble metal catalyst of component two is located as a lower layer under the first component made of zeolites and/or zeotypes for storing ammonia as an upper layer.
  • the second component is preferably placed directly on the substrate as a coating. There is preferably no further layer between the first component and the second component (Fig. 2). However, the reverse orientation also provides good results and is also preferred (Fig. 3 - A2).
  • the components of the catalyst for reducing ammonia emissions are applied to a carrier using a coating step familiar to those skilled in the art. preferably applied to a flow-through substrate (DE102019100099A1 and literature cited there).
  • a filter substrate such as a wall flow filter is also possible in this context.
  • Flow-through substrates are catalyst supports that are common in the prior art and can consist of metal, for example WO17153239A1, WO16057285A1, WO15121910A1 and the literature cited therein) or ceramic materials.
  • “Corrugated substrates” can also be viewed as flow-through substrates. These are known to those skilled in the art as carriers made of corrugated sheets made of inert materials.
  • Suitable inert materials are, for example, fibrous materials with an average fiber diameter of 50 to 250 pm and an average fiber length of 2 to 30 mm. Fibrous heat-resistant materials made of silicon dioxide, especially glass fibers, are preferred. However, refractory ceramics such as cordierite, silicon carbite or aluminum titanate etc. are preferably used as honeycomb carriers. The number of channels of these carriers per area is characterized by the cell density, which is usually between 300 and 900 cells per square inch (cells per square inch, cpsi). The wall thickness of the channel walls for ceramics is between 0.5 - 0.05 mm.
  • the total amount of coatings in the catalyst to reduce ammonia emissions is selected so that the catalyst according to the invention is used as efficiently as possible overall.
  • the total amount of coatings (solids content) per carrier volume (total volume of the carrier) can be between 100 and 600 g/L, in particular between 150 and 400 g/L.
  • the first component is preferably used in an amount of 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably about 145 - 230 g/L of carrier volume.
  • the second component is preferably used from 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably from about 145 - 230 g/L carrier volume.
  • the present exhaust system has a first three-way catalyst and a catalyst positioned downstream to reduce ammonia emissions.
  • the first three-way catalyst can have the same components as the OSC-containing noble metal catalyst of the second component. It is preferably constructed as described in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1, preferably as described in EP3247493A1.
  • Downstream refers to the fact that the exhaust gas flow first hits the upstream catalytic converter and then the downstream catalytic converter. The reverse applies to the upstream side.
  • Euro 7 legislation it has proven to be advantageous if an exhaust system for a predominantly stoichiometric engine has a unit for filtering small soot and ash particles.
  • An exhaust system is therefore preferred that additionally has a possibly catalytically coated GPF between the first three-way catalytic converter and the catalytic converter to reduce ammonia emissions (FIG. 6).
  • GPF are gasoline particle filters and are well known to those skilled in the art (EP3737491A1, EP3601755A1).
  • An exhaust gas design in which the first three-way catalytic converter and the GPF are installed in a position close to the engine is particularly preferred.
  • Close to the engine in the sense of the invention refers to an area in the exhaust system that is in a position close to the engine, i.e. approx. 10 - 80 cm, preferably 20 - 60 cm away from the engine outlet. It has proven to be advantageous if the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions, so that the exhaust gas is then released into the ambient air.
  • the exhaust system can also have additional exhaust units such as additional three-way catalytic converters or hydrocarbon storage (HC traps) or nitrogen oxide storage (LNT).
  • the underbody is the area below the driver's cab.
  • At least a second three-way catalytic converter is located between the first three-way catalytic converter and in front of the catalytic converter to reduce ammonia emissions in the car exhaust system according to the invention.
  • the three-way activity has already been described earlier. There is explicit reference to what is stated there, especially with regard to the type and quantity of the individual components.
  • This three-way catalyst is preferably one as described in the prior art (DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1). Zoned or layered versions are now the norm for TWCs.
  • At least one of the additional catalysts with three-way activity has a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1.
  • the at least second three-way catalytic converter just described in the exhaust system according to the invention can be installed in the underbody of the vehicle, but it can also be located close to the engine. The range of possible Euro 7 systems is large. There can be up to 4 three-way catalytic converters in front of the catalytic converter per exhaust system to reduce ammonia emissions.
  • the catalyst for reducing ammonia emissions is preferably located last in the underbody and in fluid communication with the further catalyst or catalysts or the filter of the car exhaust system.
  • the car exhaust system preferably has no additional injection device for ammonia or a precursor compound for ammonia.
  • an addition unit for secondary air in the exhaust system upstream of the catalytic converter to reduce ammonia emissions or upstream of the wall flow filter (analogous to WO2019219816).
  • the present invention relates to a method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, in which the exhaust gas is passed through an exhaust system according to the invention.
  • the preferred embodiments of the automobile exhaust system also apply mutatis mutandis to the present method.
  • the present invention is directed to an exhaust gas purification system, in particular for stoichiometrically operated internal combustion engines.
  • a stoichiometric engine in which a rich exhaust gas is produced within a certain temperature interval. This can lead to nitrogen oxides arriving via a three-way catalytic converter being over-reduced to ammonia. This ammonia should not be released into the environment.
  • the ammonia is therefore stored above the catalyst to reduce ammonia emissions and is then oxidized to nitrogen under slightly oxidizing conditions. Here too, care must be taken to ensure that over-oxidation to N2O does not occur. Even after intensive aging, the exhaust system is robust enough to fully meet Euro 7 requirements.
  • the catalysts advocated here for reducing ammonia emissions work without transition metal-exchanged zeolites and/or zeotypes.
  • This has the advantage that the second component for ammonia oxidation is prevented from being poisoned with the transition metals, which means that its high activity remains still well preserved under harsh aging conditions. This promises a long active lifespan for the targeted exhaust system.
  • Fig. 1 Chart to explain the measurement of ammonia storage capacity.
  • Fig. 2 Catalyst for reducing ammonia emissions (1), coating with metal-free zeolites or zeotypes for storing ammonia (2) and a coating with an OSC-free noble metal catalyst and/or an OSC-containing noble metal catalyst (3) .
  • Fig. 3 Schematic representation of the catalysts tested in the underbody position
  • Fig. 5 Emission values for catalysts with TWC coating with and without zeolite coating in comparison
  • Fig. 6 Exhaust system according to the invention with a three-way catalytic converter close to the engine (A), GPF close to the engine (B) and the following catalyst to reduce ammonia emissions (C).
  • a reactor made of quartz glass is used.
  • a drill core is taken as a test specimen from the area of the catalytic converter whose ammonia storage capacity is to be determined.
  • a drill core with a diameter of 1 inch and a length of 3 inches is preferably taken as a test specimen.
  • the drill core is inserted into the flow tube reactor and at a temperature of 600 ° C in a gas atmosphere consisting of 500 ppm nitrogen monoxide, 5 ol.-% oxygen, 5 vol.-% water and the rest nitrogen with a space velocity of 30,000 h -1 for 10 minutes conditioned.
  • the measuring temperature of 200 °C is then approached in a gas mixture of 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 .
  • the NHs storage phase is initiated by switching on a gas mixture of 450 ppm ammonia, 0 vol.% oxygen, 5 vol.% water and the rest nitrogen with a space velocity of 30,000 IT 1 . This gas mixture remains switched on until a steady ammonia breakthrough concentration is recorded downstream from the test specimen.
  • the mass of ammonia stored on the test specimen is calculated from the recorded ammonia breakthrough curve by integrating from the start of the NHs storage phase until stationarity is reached, taking into account the measured stationary NHs breakthrough concentration and the known volume flow (hatched area in Figure 1).
  • the ammonia storage capacity is calculated as the quotient of the stored mass of ammonia divided by the volume of the tested core.
  • the zeolite was coated with copper using an incipient wetness process with a copper(II) nitrate solution in a solids mixer. This was followed by treatment in the oven for 8 h at 120°C and for 2 h at 600°C in air.
  • a zeolite of the chabazite structural type a composition with 3.8 wt% CuO based on the total mass of zeolite and CuO was prepared. B2. Production of the copper-containing SCR coating
  • the coating with a Cu-loaded zeolite was carried out after joint grinding with Nyacol®-AL20 binder on a cordierite substrate with the desired washcoat loading (88% zeolite, 12% binder).
  • the coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h. If necessary, a layer containing precious metal can be applied as a top layer to the now coated carrier.
  • the coating with white zeolite of the Chabazite type was carried out after joint grinding of the zeolite material suspended in water with Nyacol®-AL20 binder on a cordierite substrate with the desired washcoat loading (88% zeolite, 12% binder).
  • the coated catalyst thus obtained was dried at 90 °C, annealed at 350 °C for 15 min and then calcined in air at 600 °C for 2 h. If necessary, further layers can be applied as a top layer to the now coated carrier.
  • Lanthanum oxide-stabilized alumina was suspended in water along with an oxygen storage component comprising 24 wt% ceria, 60 wt% zirconia, 3.5 wt% lanthana, and 12.5 wt% yttria, and lanthanum acetate as an additional source of lanthana.
  • the weight ratio of aluminum oxide to oxygen storage component to additional lanthanum oxide was 43.6:55.7:0.7.
  • a rhodium nitrate solution was then added to the suspension thus obtained with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available substrate, with the coating taking place over 100% of the substrate length.
  • a silicon-aluminum mixed oxide consisting of 95% by weight aluminum oxide and 5% silicon oxide was suspended in water. After adjusting the pH to 7.6 ⁇ 0.4, the resulting suspension was mixed with an EA platinum solution with constant stirring. The resulting suspension was ground and, after stabilization with ammonium acetate, used to coat a commercially available carrier, with the coating taking place over 100% of the carrier length. The total loading of this washcoat on the catalyst was 25 g/L, the precious metal loading was 0.106 g/L (3 g/ft 3 ). The coated catalyst thus obtained was dried and then calcined. If necessary, further layers can be applied as a top layer to the now coated carrier.
  • Catalysts were prepared as shown schematically in Figures 4 and 5.
  • the aging consists of fuel cut-off aging with an exhaust gas temperature of 950 °C in front of the inlet of the TWC close to the engine (maximum bed temperature 1030 °C).
  • the aging time and the inlet temperature for the catalytic converter in the underbody position are specified individually for each test.
  • the different catalytic converters were tested in the underbody position on a highly dynamic engine test bench in a WLTC driving cycle.
  • a series-produced TWC containing Pd/Rh was placed in an aged state in a position close to the engine.
  • the value “reduction in NHs emissions” refers to the NH3 emissions of a system with one of the catalytic converters shown in the underbody position over the entire driving cycle in relation to the emissions of the corresponding system in the absence of a catalytic converter in the underbody position.
  • All catalysts with oxidation layer contain 1 g/ft 3 pt.
  • a catalyst in which a copper-free zeolite layer is combined in a layered design with a 1 g/ft 3 Pt oxidation layer shows improved catalytic performance compared to a corresponding catalyst in which a copper-containing SCR in place of the white zeolite layer is used.
  • Both catalysts with TWC layer contain 5 g/ft 3 Rh.
  • a catalyst in which a copper-free zeolite layer is combined in a layered design with a TWC layer at 5 g/ft 3 Rh shows improved catalytic performance compared to a pure TWC coating without zeolite.
  • Catalysts with a TWC layer with different precious metal contents are compared with each other.
  • Table 1 shows the temperatures at which the catalysts show 50% conversion for hydrocarbons, carbon monoxide and nitrogen oxides in a light-off test after fuel-cut aging in the underbody position. A lower one Tso value corresponds to a higher catalytic activity. A catalytic converter containing only rhodium shows the best starting behavior in this test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention is directed to an exhaust gas system for reducing exhaust gas emissions and in particular ammonia emissions in the exhaust train of a predominantly stoichiometrically operated spark ignition engine.

Description

Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
Vorliegende Erfindung richtet sich auf ein Abgassystem zur Verminderung der Abgase und insbesondere der Ammoniakemissionen im Abgasstrang eines überwiegend stöchiometrisch betriebenen Fremdzündungsmotor. The present invention is directed to an exhaust system for reducing exhaust gases and in particular ammonia emissions in the exhaust system of a predominantly stoichiometrically operated spark ignition engine.
Abgase von mit überwiegend (>50% der Betriebszeit) stöchiometrischem Luft/Kraftstoff- Gemisch betriebenen Verbrennungsmotoren, also z. B. mit Benzin oder Erdgas betriebene Fremdzündungsmotoren oder Ottomotoren, werden in herkömmlichen Verfahren mit Hilfe von Dreiwegekatalysatoren (three-way-catalyst; TWC) gereinigt. Diese sind in der Lage, die drei wesentlichen gasförmigen Schadstoffe des Motors, nämlich Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide, gleichzeitig zu unschädlichen Komponenten umzusetzen. Stöchiometrisch heißt, dass im Mittel genau so viel Luft zur Verbrennung des im Zylinder vorhandenen Kraftstoffs zur Verfügung steht, wie für eine vollständige Verbrennung benötigt wird. Das Verbrennungsluftverhältnis A (A/F-Verhältnis; Luft/Kraftstoffverhältnis) setzt die tatsächlich für eine Verbrennung zur Verfügung stehende Luftmasse mL.tats ins Verhältnis zur stöchiometrischen Luftmasse mi_,st:
Figure imgf000003_0001
Exhaust gases from internal combustion engines operated with predominantly (>50% of the operating time) stoichiometric air/fuel mixture, i.e. e.g. B. spark ignition engines or gasoline engines powered by gasoline or natural gas are cleaned in conventional processes using three-way catalysts (TWC). These are able to simultaneously convert the engine's three main gaseous pollutants, namely hydrocarbons, carbon monoxide and nitrogen oxides, into harmless components. Stoichiometric means that on average there is as much air available to burn the fuel in the cylinder as is needed for complete combustion. The combustion air ratio A (A/F ratio; air/fuel ratio) relates the air mass mL.tats actually available for combustion to the stoichiometric air mass mi_,st:
Figure imgf000003_0001
Ist A < 1 (z. B. 0,9) bedeutet dies „Luftmangel“, man spricht von einem fetten Abgasgemisch, A > 1 (z. B. 1 ,1) bedeutet „Luftüberschuss“ und das Abgasgemisch wird als mager bezeichnet. Die Aussage A = 1 ,1 bedeutet, dass 10% mehr Luft vorhanden ist, als zur stöchiometrischen Reaktion notwendig wäre. Gleiches gilt für das Abgas von Verbrennungsmotoren. If A < 1 (e.g. 0.9) this means “lack of air”, one speaks of a rich exhaust gas mixture, A > 1 (e.g. 1.1) means “excess air” and the exhaust gas mixture is referred to as lean. The statement A = 1.1 means that 10% more air is present than would be necessary for the stoichiometric reaction. The same applies to the exhaust gases from internal combustion engines.
Als katalytisch aktive Materialien werden in den bekannten Dreiwegekatalysatoren in der Regel Platingruppenmetalle, insbesondere Platin, Palladium und Rhodium eingesetzt, die beispielsweise auf y-Aluminiumoxid als Trägermaterial vorliegen. Daneben enthalten Dreiwegekatalysatoren Sauerstoffspeichermaterialien, beispielsweise Cer/Zirkonium- Mischoxide. In letzteren stellt Ceroxid, ein Seltenerdmetalloxid, die für die Sauerstoffspeicherung grundlegende Komponente dar. Neben Zirkoniumoxid und Ceroxid können diese Materialien zusätzliche Bestandteile wie weitere Seltenerdmetalloxide oder Erdalkalimetalloxide enthalten. Sauerstoffspeichermaterialien werden durch Aufbringen von katalytisch aktiven Materialien wie Platingruppenmetallen aktiviert und dienen somit auch als Trägermaterial für die Platingruppenmetalle. The catalytically active materials used in the known three-way catalysts are generally platinum group metals, in particular platinum, palladium and rhodium, which are present, for example, on γ-aluminum oxide as a support material. In addition, three-way catalysts contain oxygen storage materials, for example cerium/zirconium mixed oxides. In the latter, cerium oxide, a rare earth metal oxide, is the fundamental component for oxygen storage. In addition to zirconium oxide and cerium oxide, these materials can contain additional components such as other rare earth metal oxides or alkaline earth metal oxides. Oxygen storage materials are made by Application of catalytically active materials such as platinum group metals activates and thus also serves as a carrier material for the platinum group metals.
Im Rahmen der zur Mitte der 2020er Jahre in Kraft tretenden Euro 7-Gesetzgebung werden erstmals die Emissionen von Ammoniak (NH3) und Lachgas (N2O) für stöchiometrisch arbeitende Verbrennungsmotoren reguliert. Der giftige Ammoniak und das starke Treibhausgas N2O werden als Sekundäremissionen bezeichnet und ihr Ausstoß kann durch aktuelle Abgasnachbehandlungssysteme nicht ausreichend reduziert werden. Die Einhaltung der strengen Grenzwerte für Sekundäremissionen über einen breiten Bereich von Fahrsituationen erfordert die Entwicklung einer robusten technischen Lösung in Form eines neuen Katalysators für den Benzinabgasstrang. Eine große Herausforderung stellen insbesondere die extrem dynamischen Umgebungsbedingungen gerade im Unterboden eines Benzin-PKWs dar. As part of the Euro 7 legislation, which will come into force in the mid-2020s, emissions of ammonia (NH3) and nitrous oxide (N2O) for stoichiometric combustion engines will be regulated for the first time. The toxic ammonia and the powerful greenhouse gas N2O are referred to as secondary emissions and their emissions cannot be sufficiently reduced by current exhaust aftertreatment systems. Compliance with strict secondary emissions limits across a wide range of driving situations requires the development of a robust technical solution in the form of a new catalyst for the gasoline exhaust system. The extremely dynamic environmental conditions, particularly in the underbody of a gasoline-powered car, pose a major challenge.
Die Einhaltung der strengen Emissionswerte für Ammoniak erfordert insbesondere für niedrige und mittlere Temperaturbereiche die Verwendung eines Speichermaterials zur Einspeicherung von NH3 während der fetten Betriebsbedingungen des Verbrennungsmotors, da der Ammoniak hauptsächlich unter diesen Abgasbedingungen gebildet wird. Die Umsetzung des gespeicherten Ammoniaks erfolgt dann während magerer Betriebspunkte durch Oxidation auf einer edelmetalthaltigen Schicht und/oder im Rahmen einer SCR-Reaktion. Hierbei wird eine möglichst geringe Selektivität zu N2O angestrebt. Eine besondere Anforderung an den hier betrachteten Katalysatoren stellt die hohe Alterungsstabilität der verwendeten Materialien dar: Über die Stabilität gegenüber mageren Gasbedingungen hinaus erfordert ihre Anwendung im Abgasstrang von stöchiometrisch betriebenen Verbrennungsmotoren, dass diese auch im Abgas mit fetter oder stöchiometrischer Zusammensetzung unter hydrothermalen Abgasbedingungen stabil sind. Compliance with the strict emission values for ammonia requires the use of a storage material to store NH3 during the rich operating conditions of the internal combustion engine, especially for low and medium temperature ranges, as the ammonia is mainly formed under these exhaust gas conditions. The stored ammonia is then converted during lean operating points by oxidation on a layer containing precious metal and/or as part of an SCR reaction. The aim here is to achieve the lowest possible selectivity to N2O. A special requirement for the catalysts considered here is the high aging stability of the materials used: In addition to the stability against lean gas conditions, their use in the exhaust system of stoichiometrically operated internal combustion engines requires that they also be stable in exhaust gas with a rich or stoichiometric composition under hydrothermal exhaust gas conditions.
Insbesondere im Dieselbereich oder für den Einsatz in mager verbrennenden DI Benzinmotoren wurde der Einsatz von Katalysatoren, welche bevorzugt Ammoniak zu Stickstoff umsetzen, schon diskutiert (US5120695; EP1892395A1 ; EP1882832A2; EP1876331A2; WO12135871A1 ; US2011271664AA; WO11110919A1 , EP3915679A1). Auch im Bereich der LNG-Benzinmotoren wurde die Verwendung von Ammonia Slip Catalysts, kurz ASCs, bereits beschrieben (EP24258A1). Diese Katalysatoren bestehen häufig aus einer SCR-katalytisch aktiven und einer die Oxidation von Ammoniak katalysierenden Komponente. Diese Katalysatoren befinden sich regelmäßig im Unterboden an letzter Stelle des Abgassystems. Sofern zur Oxidation des eingespeicherten Ammoniaks nicht genügend Stickoxide im System vorhanden sein sollten, kann der Ammoniak über dem ASC auch mit vorhandenem Sauerstoff zu Stickstoff umgesetzt werden. Wie sich herausgestellt hat, ist ein weiterer Nachteil der bekannten Systeme zur Minderung der Ammoniakemissionen der, dass die in der SCR-Komponente befindlichen Übergangsmetalle wie z.B. Eisen und/oder Kupfer nach längerer Dauer des Gebrauchs im Abgasstrang eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors dazu neigen, in die Komponente zur Oxidation von Ammoniak zu diffundieren und diese zu vergiften. Eine geringere Aktivität der SCR- als auch der oxidativen Komponente ist die Folge. The use of catalysts, which preferentially convert ammonia to nitrogen, has already been discussed, particularly in the diesel sector or for use in lean-burning DI petrol engines (US5120695; EP1892395A1; EP1882832A2; EP1876331A2; WO12135871A1; US2011271664AA; WO11110919A1, EP 3915679A1). The use of ammonia slip catalysts, or ASCs for short, has also already been described in the area of LNG gasoline engines (EP24258A1). These catalysts often consist of an SCR catalytically active component and a component that catalyzes the oxidation of ammonia. These catalytic converters are usually located in the underbody at the last point of the exhaust system. If for oxidation of the stored If there are not enough nitrogen oxides in the system, the ammonia can also be converted into nitrogen via the ASC with the oxygen present. As it has been found, a further disadvantage of the known systems for reducing ammonia emissions is that the transition metals in the SCR component, such as iron and/or copper, tend to dissolve in the exhaust system of a predominantly stoichiometrically operated internal combustion engine after a long period of use to diffuse the component for the oxidation of ammonia and poison it. The result is a lower activity of the SCR and the oxidative component.
Demgemäß ist es eine Aufgabe der vorliegenden Erfindung neue Abgassysteme vorzustellen, welche den Betrieb eines Verbrennungsmotors, insbesondere eines überwiegend stöchiometrisch betriebenen, fremdgezündeten Verbrennungsmotors, auch unter der neuen Euro 7-Gesetzgebung erlauben. Insbesondere sollten die entsprechenden Grenzwerte für NH3 und N2O neben den angestammten für CO, HC und NOx sicher einzuhalten sein. Darüber hinaus sollte das System aber auch entsprechend robust und agil sein, um den Arbeitsbedingungen im Abgasstrang eines entsprechenden Automobils für eine ausreichende Zeit standhalten zu können. Accordingly, it is an object of the present invention to present new exhaust systems which allow the operation of an internal combustion engine, in particular a predominantly stoichiometrically operated, spark-ignited internal combustion engine, even under the new Euro 7 legislation. In particular, the corresponding limit values for NH3 and N2O should be safely adhered to in addition to the traditional ones for CO, HC and NOx. In addition, the system should also be robust and agile in order to be able to withstand the working conditions in the exhaust system of a corresponding automobile for a sufficient period of time.
Diese und weitere, sich für den Fachmann aus dem Stand der Technik ergebenden Aufgaben werden durch ein Abgassystem und ein Verfahren zur Abgasreinigung gemäß den Ansprüchen 1 bzw. 9 gelöst. Die Ansprüche 2 - 8 beziehen sich auf bevorzugte Ausgestaltungen des Abgassystems und sind entsprechend auch auf das erfindungsgemäße Verfahren anwendbar. These and other tasks arising from the prior art for the person skilled in the art are solved by an exhaust system and a method for exhaust gas purification according to claims 1 and 9, respectively. Claims 2 - 8 relate to preferred embodiments of the exhaust system and can accordingly also be applied to the method according to the invention.
Dadurch, dass man ein Abgassystem zur Verminderung der schädlichen Abgasbestandteile von Verbrennungsmotoren, insbesondere überwiegend stöchiometrisch betriebenen Verbrennungsmotoren, wie z.B. fremdgezündeten Benzinmotoren, aufweisend einen ersten Dreiwegekatalysator und abstromseitig hierzu einen Katalysator zur Verminderung der Ammoniak-Emissionen bereithält, der folgende Bestandteile aufweist: By providing an exhaust system for reducing the harmful exhaust gas components of internal combustion engines, in particular predominantly stoichiometrically operated internal combustion engines, such as spark-ignited gasoline engines, having a first three-way catalytic converter and, on the downstream side, a catalyst for reducing ammonia emissions, which has the following components:
- eine erste Komponente mit einem metallfreien Zeolith und/oder Zeotyp zur Speicherung von Ammoniak; - a first component with a metal-free zeolite and/or zeotype for storing ammonia;
- eine zweite Komponente mit einem OSC-freien Edelmetallkatalysator und/oder einem OSC-haltigen Edelmetallkatalysator, gelangt man relative einfach, dafür aber nicht minder überraschend zur Lösung der gestellten Aufgabe. Das erfindungsgemäße System zeichnet sich durch eine extrem gute Performance hinsichtlich der Verminderung der CO, HC und NOx-Emissionen wie auch der NH3- und IX^O-Emissionen aus. Es reagiert gut unter den dynamischen Anforderungen im Abgasstrang eines Benzinmotors und es ist entsprechend robust, um auch eine ausreichende Dauer diesen Anforderungen gerecht zu werden. - a second component with an OSC-free precious metal catalyst and/or an OSC-containing noble metal catalyst, the solution to the problem is achieved relatively easily, but no less surprisingly. The system according to the invention is characterized by an extremely good Performance in terms of reducing CO, HC and NOx emissions as well as NH3 and IX^O emissions. It reacts well to the dynamic requirements in the exhaust system of a gasoline engine and is sufficiently robust to meet these requirements for a sufficient period of time.
Wie oben schon angedeutet besteht eine erste Komponente des Katalysator zur Verminderung der Ammoniak-Emissionen aus Zeolithen und/oder Zeotypen zur Speicherung von Ammoniak. Prinzipiell sind dem Fachmann die hierfür zur Verfügung stehenden Zeolithe und Zeotype aus dem Dieselsektor bekannt. Die Arbeitsweise der Zeolithe bzw. Zeotype beruht dabei darauf, dass sie Ammoniak in Betriebszuständen des Abgasreinigungssystems Zwischenspeichern können, in denen Ammoniak z.B. durch Überreduktion von Stickoxiden über einem anstromseitig verbauten Dreiwegekatalysator entsteht, dieses aber nicht von weiteren herkömmlichen Dreiwegekatalysatoren umgesetzt werden kann, beispielsweise wegen des Mangels an Sauerstoff oder ungenügenden Betriebstemperaturen. Der so gespeicherte Ammoniak kann dann bei verändertem Betriebszustand des Abgasreinigungssystems ausgespeichert und anschließend oder direkt umgesetzt werden, beispielsweise dann, wenn genügend Sauerstoff oder Stickoxide vorhanden sind. As already indicated above, a first component of the catalyst for reducing ammonia emissions consists of zeolites and/or zeotypes for storing ammonia. In principle, those skilled in the art are familiar with the zeolites and zeotypes available for this purpose from the diesel sector. The way the zeolites or zeotypes work is based on the fact that they can temporarily store ammonia in operating states of the exhaust gas purification system in which ammonia is produced, for example, by over-reduction of nitrogen oxides via a three-way catalytic converter installed on the upstream side, but this cannot be converted by other conventional three-way catalytic converters, for example because of the Lack of oxygen or insufficient operating temperatures. The ammonia stored in this way can then be removed from storage when the operating state of the exhaust gas purification system changes and subsequently or directly converted, for example when sufficient oxygen or nitrogen oxides are present.
Zeolithe und Zeotype sind erfindungsgemäß in der ersten Komponente des Katalysators zur Verminderung der Ammoniak-Emissionen zugegen. Gemäß der Klassifizierung der IZA (https://europe.iza-structure.org/IZA-SC/ftc_table.php), der internationalen Zeolithvereinigung, können Zeolithe bzw. Zeotype in unterschiedliche Klassen eingeteilt werden. Danach werden Zeolithe z.B. gemäß ihres Kanalsystems und ihrer Gerüststruktur unterteilt. Beispielsweise werden Laumontit und Mordenit den Zeolithen zugeordnet, die über ein eindimensionales System von Kanälen verfügen. Ihre Kanäle haben keine Verbindung untereinander. Zeolithe mit zweidimensionalem Kanalsystem zeichnen sich dadurch aus, dass ihre Kanäle untereinander in einer Art schichtförmigem System verbunden sind. Eine dritte Gruppe weist eine dreidimensionale Gerüststruktur auf mit schichtübergreifenden Verbindungen der Kanäle untereinander. In der vorliegenden Erfindung kommen vorzugsweise zwei- und/oder dreidimensionale Zeolithe bzw. Zeotype zum Einsatz [Ch. Baerlocher, W.M. Meier and D.H. Olson, Atlas of Zeolite Framework Types, Elsevier, 2001], Unter dem Begriff „Zeolith“ versteht man erfindungsgemäß poröse Materialien mit einer Gitterstruktur aus eckenverknüpften AIO4- und SiCU-Tetraedern gemäß der allgemeinen Formel (W.M. Meier, Pure & Appl. Chem., Vol. 58, No. 10, pp. 1323-1328, 1986): According to the invention, zeolites and zeotypes are present in the first component of the catalyst to reduce ammonia emissions. According to the classification of the IZA (https://europe.iza-structure.org/IZA-SC/ftc_table.php), the international zeolite association, zeolites or zeotypes can be divided into different classes. Zeolites are then divided, for example, according to their channel system and their framework structure. For example, laumontite and mordenite are classified as zeolites, which have a one-dimensional system of channels. Your channels are not connected to each other. Zeolites with a two-dimensional channel system are characterized by the fact that their channels are connected to each other in a kind of layered system. A third group has a three-dimensional framework structure with cross-layer connections between the channels. Two- and/or three-dimensional zeolites or zeotypes are preferably used in the present invention [Ch. Baerlocher, WM Meier and DH Olson, Atlas of Zeolite Framework Types, Elsevier, 2001], According to the invention, the term “zeolite” refers to porous materials with a lattice structure of corner-linked AIO4 and SiCU tetrahedra according to the general formula (WM Meier, Pure & Appl. Chem., Vol. 58, No. 10, pp. 1323-1328 , 1986):
Mm/z [m AIO2 * n SiC>2] * q H2O Mm/z [m AIO2 * n SiC>2] * q H 2 O
Die Struktur eines Zeolithen umfasst somit ein aus Tetraedern aufgebautes Netzwerk, das Kanäle und Hohlräume umschließt. Man unterscheidet natürlich vorkommende und synthetisch hergestellte Zeolithe. Unter dem Begriff „Zeotyp“ wird eine zeolithähnliche Verbindung verstanden, die denselben Strukturtyp aufweist, wie eine natürlich vorkommende odereine synthetisch hergestellte Zeolithverbindung, die sich von solchen jedoch dadurch unterscheidet, dass die entsprechende Käfigstruktur nicht ausschließlich aus Aluminium- und Siliziumgerüstatomen aufgebaut ist. In solchen Verbindungen werden die Aluminium- und/oder Siliziumgerüstatome anteilig durch andere drei-, vier- oder fünfwertige Gerüstatome wie beispielsweise B(lll), Ga(lll), Ge(IV), Ti(IV) oder P(V) ersetzt. In der Praxis am häufigsten zur Anwendung kommt der Ersatz von Aluminium- und/oder Siliziumgerüstatomen durch Phosphoratome, beispielsweise in den Siliziumaluminiumphosphaten oder in den Aluminiumphosphaten, die in Zeolithstrukturtypen kristallisieren. The structure of a zeolite therefore comprises a network made up of tetrahedra that encloses channels and cavities. A distinction is made between naturally occurring and synthetically produced zeolites. The term “zeotype” is understood to mean a zeolite-like compound that has the same structural type as a naturally occurring or synthetically produced zeolite compound, but which differs from such compounds in that the corresponding cage structure is not made up exclusively of aluminum and silicon framework atoms. In such compounds, the aluminum and/or silicon framework atoms are proportionally replaced by other trivalent, quadrivalent or pentavalent framework atoms such as B(III), Ga(III), Ge(IV), Ti(IV) or P(V). The most common method used in practice is the replacement of aluminum and/or silicon framework atoms by phosphorus atoms, for example in the silicon aluminum phosphates or in the aluminum phosphates, which crystallize in zeolite structure types.
Beispiele geeigneter Zeolithe kommen aus der Gruppe der zweidimensionalen oder dreidimensionalen Zeolithe/Zeotype. Bevorzugt gehören sie den Strukturtypen AGO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, BEA, BIK, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, ESV, ETL, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON an. Besonders bevorzugt ist, wenn die Zeolithe bzw. Zeotype in dem erfindungsgemäßen Autoabgaskatalysator ausgewählt sind aus der Gruppe AEI, AFT, AFX, CHA, DDR, ERI, ESV, ETL, KFI, LEV, UFI und den entsprechenden Zeotypen dieser Strukturtypen, wie z.B: SAPO. Es können auch Mischungen derselben vorliegen. Ganz besonders bevorzugt ist der Einsatz von CHA, FER, LEV und AEI. Examples of suitable zeolites come from the group of two-dimensional or three-dimensional zeolites/zeotypes. They preferably belong to the structure types AGO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, BEA, BIK, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, ESV, ETL, GIS , GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON. It is particularly preferred if the zeolites or zeotypes in the car exhaust gas catalyst according to the invention are selected from the group AEI, AFT, AFX, CHA, DDR, ERI, ESV, ETL, KFI, LEV, UFI and the corresponding zeotypes of these structural types, such as: SAPO. Mixtures of the same can also be present. The use of CHA, FER, LEV and AEI is particularly preferred.
Diese erste Komponente ist metallfrei. Metallfrei bedeutet im Rahmen der Erfindung das Fehlen von Metallen in ionischer, oxidischer oder metallischer Form, welche die SCR- Reaktion bzw. die Ammoniakoxidation katalysieren könnten. Sie enthält daher im Wesentlichen keine Übergangsmetalle, insbesondere Eisen und/oder Kupfer, und auch keine Edelmetalle. Die Notwendigkeit der vorherigen Kontaktierung mit diesen Metallen entfällt daher. Herstellungsbedingt kann der Zeolithe/Zeotype Reste der Metalle wie Natrium oder Kalium etc. in geringen Konzentrationen aufweisen. In der Regel liegt der Zeolith/Zeotyp nach der Kalzinierung bevorzugt im Wesentlichen in der H-Form vor (sogenannter weißer Zeolith). Herstellungsbedingt vorhandene Metalle sowie Übergangsmetalle und Edelmetalle sind zu weniger als 500 ppm, mehr bevorzugt weniger als 300 ppm und ganz besonders bevorzugt zu weniger als 100 ppm in ihm vorhanden. Ausgenommen von dem Ausschluss sind die weiter unten genannten, aktiv zugegebenen, nicht katalytisch aktiven Komponenten, insbesondere Bindemittel. This first component is metal-free. In the context of the invention, metal-free means the absence of metals in ionic, oxidic or metallic form, which could catalyze the SCR reaction or ammonia oxidation. It therefore essentially contains no transition metals, in particular iron and/or copper, and also no precious metals. The need for prior contact with these metals is therefore eliminated. Due to the manufacturing process, the zeolite/zeotype may contain residues of metals such as sodium or potassium etc. in low concentrations. This is usually the case Zeolite/zeotype after calcination is preferably essentially in the H form (so-called white zeolite). Metals present during production, as well as transition metals and precious metals, are present in it in amounts of less than 500 ppm, more preferably less than 300 ppm and most preferably less than 100 ppm. Excluded from the exclusion are the actively added, non-catalytically active components mentioned below, in particular binders.
Die Alterungsstabilität der verwendeten Zeolithe bzw. Zeotype im Abgasstrang von überwiegend stöchiometrisch verbrennenden Motoren ist vorliegend besonders im Fokus, da hier gemeinhin höhere Temperaturen als in einem mager verbrennenden Motor vorherrschen. Insofern sind solche Materialien gewünscht, welche den teils sehr hohen und stark wechselnden hydrothermalen Bedingungen möglichst lange standhalten können. Auf der anderen Seite ist aber auch die Abgaszusammensetzung eine andere verglichen mit Magermotorenabgas. Die Konzentration insbesondere von Kohlenwasserstoffen und Kohlenmonoxid, welche am erfindungsgemäßen Katalysator ankommen, sind zum einen höher als bei Magermotoren und die Zusammensetzung wechselt auch je nach Fahrweise um den stöchiometrischen Bereich herum (fett/mager- Wechsel). Die hydrothermale Temperaturstabilität von Zeolithen und Zeotypen hängt dabei stark von dem SAR- Wert (silica-to-alumina-ratio) des Zeolithen bzw. dem diesem Wert entsprechendem Verhältnis bei Zeotypen ab. Danach wird die Menge an im Gerüst verbleibenden Siliziumatomen zu den Substitutionsatomen ins Verhältnis gesetzt. Es hat sich als vorteilhaft erwiesen, wenn die Zeolithe einen SAR-Wert von 10 - 50, vorzugsweise 12 - 35 und ganz bevorzugt 13 - 30 aufweisen. Gleiches gilt für die Zeotype mit dem entsprechenden Verhältnis. The aging stability of the zeolites or zeotypes used in the exhaust system of predominantly stoichiometrically burning engines is particularly in focus here, since higher temperatures generally prevail here than in a lean-burning engine. In this respect, materials are desired that can withstand the sometimes very high and rapidly changing hydrothermal conditions for as long as possible. On the other hand, the exhaust gas composition is also different compared to lean-burn engine exhaust. The concentration, in particular of hydrocarbons and carbon monoxide, which arrive at the catalyst according to the invention is, on the one hand, higher than in lean-burn engines and the composition also changes depending on the driving style around the stoichiometric range (rich/lean change). The hydrothermal temperature stability of zeolites and zeotypes depends heavily on the SAR value (silica-to-alumina ratio) of the zeolite or the ratio corresponding to this value for zeotypes. The amount of silicon atoms remaining in the framework is then related to the substitution atoms. It has proven to be advantageous if the zeolites have a SAR value of 10 - 50, preferably 12 - 35 and most preferably 13 - 30. The same applies to the zeotype with the corresponding ratio.
Die erste Komponente kann bevorzugt neben den Zeolithen bzw. Zeotypen weitere nicht katalytisch aktive Komponenten aufweisen, wie z.B. Bindemittel. Als Bindemittel sind beispielsweise nicht oder nur wenig katalytisch aktive temperaturstabile Metalloxide, wie SiO2, AI2O3 und ZrÜ2, geeignet. Der Fachmann weiß, welche Materialien hier in Frage kommen. Der Anteil solcher Binder in der ersten Beschichtung kann beispielsweise bis zu 15 Gew.-%, vorzugsweise bis zu 10 Gew.-% an der Beschichtung ausmachen. Auch das Bindemittel sollte die oben angegebenen Übergangsmetalle, insbesondere Eisen und/oder Kupfer, und Edelmetalle mitnichten aufweisen. Bindemittel sind dazu geeignet, ein stärkeres Anhaften der Beschichtung auf einem T räger oder einer weiteren Beschichtung zu gewährleisten. Hierzu ist eine bestimmte Partikelgröße der Metalloxide im Bindemittel vorteilhaft. Diese kann vom Fachmann entsprechend eingestellt werden. Die im Rahmen dieser Erfindung angesprochene Ammoniakspeicherfähigkeit bzw. -ka- pazität wird als Quotient aus gespeicherter Masse Ammoniak pro Liter Katalysatorträgervolumen angegeben. Durch die Zeolithe bzw. Zeotype sollte die Ammoniakspeicherfähigkeit des Abgasreinigungssystems auf mindestens 0,25 g Ammoniak pro L Trägervolumen erhöht werden (gemessen im Frischzustand). Insgesamt sollte die Speicherkapazität der eingesetzten Ammoniakspeicherkomponenten ausreichen, damit im System zwischen 0,25 und 10,0 g NH3 pro Liter Trägervolumen, bevorzugt zwischen 0,5 und 8,0 g NH3 pro Liter Trägervolumen und besonders bevorzugt zwischen 0,5 und 5,0 g NH3/U- ter Trägervolumen Ammoniak gespeichert werden kann (immer bezogen auf den Frischzustand). Die Zeolithe bzw. Zeotype sind in einer ausreichenden Menge im Katalysator zur Verminderung der Ammoniak-Emissionen vorhanden. Die Bestimmung der Ammoniakspeicherfähigkeit ist weiter hinten dargestellt. In addition to the zeolites or zeotypes, the first component can preferably have other non-catalytically active components, such as binders. For example, temperature-stable metal oxides that are not or only slightly catalytically active, such as SiO2, Al2O3 and ZrÜ2, are suitable as binders. The expert knows which materials come into question here. The proportion of such binders in the first coating can, for example, be up to 15% by weight, preferably up to 10% by weight, of the coating. The binder should also not contain the transition metals specified above, in particular iron and/or copper, and no precious metals. Binders are suitable for ensuring stronger adhesion of the coating to a carrier or another coating. For this purpose, a certain particle size of the metal oxides in the binder is advantageous. This can be adjusted accordingly by a specialist. The ammonia storage ability or capacity addressed in the context of this invention is given as a quotient of the stored mass of ammonia per liter of catalyst support volume. The zeolites or zeotypes should increase the ammonia storage capacity of the exhaust gas purification system to at least 0.25 g of ammonia per liter of carrier volume (measured in the fresh state). Overall, the storage capacity of the ammonia storage components used should be sufficient so that the system contains between 0.25 and 10.0 g of NH3 per liter of carrier volume, preferably between 0.5 and 8.0 g of NH3 per liter of carrier volume and particularly preferably between 0.5 and 5. 0 g NH3/U-ter carrier volume of ammonia can be stored (always based on the fresh state). The zeolites or zeotypes are present in sufficient quantities in the catalyst to reduce ammonia emissions. The determination of the ammonia storage capacity is shown below.
Die zweite Komponente besteht aus einem OSC-freien Edelmetallkatalysator und/oder einem OSC-haltigen Edelmetallkatalysator. Unter Edelmetall werden insbesondere die Platingruppenmetalle Platin, Palladium und Rhodium verstanden. Demgemäß sind die Edelmetalle im OSC-freien bzw. OSC-haltigen Edelmetallkatalysator ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Rhodium. OSC bedeutet Oxygen Storage Catalyst - Sauerstoffspeicherkatalysator. Ein OSC-haltiger Edelmetallkatalysator weist demnach Sauerstoffspeichermaterialien auf. The second component consists of an OSC-free precious metal catalyst and/or an OSC-containing noble metal catalyst. Precious metal refers in particular to the platinum group metals platinum, palladium and rhodium. Accordingly, the noble metals in the OSC-free or OSC-containing noble metal catalyst are selected from the group consisting of palladium, platinum, rhodium. OSC means Oxygen Storage Catalyst - oxygen storage catalyst. An OSC-containing noble metal catalyst therefore has oxygen storage materials.
Der OSC-freie Edelmetallkatalysator weist hingegen im Wesentlichen keine den Sauerstoff im Abgas des Verbrennungsmotors speichernde Funktion auf. Insbesondere weist diese Komponente Sauerstoffspeichermaterialien, insbesondere Cer-Zirkonium- Mischoxide, von weniger als 20 g/L, bevorzugt weniger als 10 g /L und ganz bevorzugt weniger als 5 g/L Trägervolumen . Als Speichermaterial wird die gesamte Menge an z.B. Cer- oder Cer-Zirkonium-Mischoxiden angesehen, samt der vorhandenen Dotierungselemente. The OSC-free precious metal catalyst, on the other hand, essentially has no function of storing oxygen in the exhaust gas of the internal combustion engine. In particular, this component has oxygen storage materials, in particular cerium-zirconium mixed oxides, of less than 20 g/L, preferably less than 10 g/L and most preferably less than 5 g/L carrier volume. The entire amount of cerium or cerium-zirconium mixed oxides, for example, is considered the storage material, including the doping elements present.
Entsprechende OSC-freie Edelmetallkatalysatoren haben die Befähigung im schon leicht mageren Abgas eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors oxidativ auf die vorhandenen Stoffe (NH3, HC, CO) zu wirken. Diese Komponente ist dabei bevorzugt so ausgelegt, dass sie bei entsprechend niedrigen Temperaturen schon aktiv wird. Der im Zeolith bzw. Zeotyp eingespeicherte Ammoniak wird hier über diese Komponente bevorzugt in nichtschädlichen Stickstoff umgewandelt. Die Oxidationswirkung sollte nicht zu groß sein, da ansonsten aus der Ammoniakoxidation ein gewisser Anteil an dem starken Treibhausgas N2O gebildet wird. Corresponding OSC-free precious metal catalysts have the ability to have an oxidative effect on the substances present (NH3, HC, CO) in the already slightly lean exhaust gas of a predominantly stoichiometrically operated combustion engine. This component is preferably designed so that it becomes active at correspondingly low temperatures. The ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component. The The oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation.
Die zweite Komponente in Form eines OSC-freien Edelmetallkatalysators weist demnach Materialien auf, die oxidativ auf u.a. Ammoniak wirken. Normalerweise enthält diese Komponente ein temperaturstabiles, hochoberflächiges Metalloxid und mindestens ein Edelmetall ausgewählt aus der Gruppe Rhodium, Platin und Palladium. Der Gesamtedelmetallgehalt dieser Komponente beträgt vorzugsweise von 0,015 - 5 g/L, mehr bevorzugt von 0,035 - 1 ,8 g/L und besonders bevorzugt von 0,07 - 1 ,2 g/L Trägervolumen. Für den Einsatz in dieser oxidativ auf Ammoniak wirkenden Komponente bieten sich insbesondere die Edelmetalle Platin oder Palladium, oder Platin und Palladium zusammen an. Dabei kann der Fachmann vorzugsweise wählen, ob er das stark oxidativ wirkende Platin alleine oder ggf. in Verbindung mit Palladium in der zweiten Beschichtungsschicht einsetzt. Kommt Platin und/oder Palladium zum Einsatz, so sollte sich ersteres im Bereich von 0,015 - 1 ,42 g/L, mehr bevorzugt 0,035 - 0,35 g/L Trägervolumen in der Beschichtung befinden. Palladium kann bei Vorhandensein in der Beschichtung zwischen 0,015 - 1 ,42 g/L, bevorzugt 0,035 - 0,35 g/L Trägervolumen zugegen sein. Das Gewichtsverhältnis von Platin zu Palladium sollte zwischen 1 :0 und 1 :5, mehr bevorzugt 1 :0 und 1 :4 und ganz bevorzugt 1 :0 und 1 :2 betragen. The second component in the form of an OSC-free precious metal catalyst therefore has materials that have an oxidative effect on, among other things, ammonia. This component normally contains a temperature-stable, high-surface metal oxide and at least one noble metal selected from the group rhodium, platinum and palladium. The total noble metal content of this component is preferably from 0.015 - 5 g/L, more preferably from 0.035 - 1.8 g/L and particularly preferably from 0.07 - 1.2 g/L carrier volume. The precious metals platinum or palladium, or platinum and palladium together, are particularly suitable for use in this component that has an oxidative effect on ammonia. The person skilled in the art can preferably choose whether to use the strongly oxidative platinum alone or, if necessary, in conjunction with palladium in the second coating layer. If platinum and/or palladium is used, the former should be in the range of 0.015 - 1.42 g/L, more preferably 0.035 - 0.35 g/L carrier volume in the coating. Palladium can be present in the coating in between 0.015 - 1.42 g/L, preferably 0.035 - 0.35 g/L carrier volume. The weight ratio of platinum to palladium should be between 1:0 and 1:5, more preferably 1:0 and 1:4 and most preferably 1:0 and 1:2.
Die Edelmetalle in der OSC-freien zweiten Komponente sind wie gesagt auf einem oder mehreren temperaturstabilen, hochoberflächigen Metalloxiden als Trägermaterialien fixiert. Als Trägermaterialien kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Solche Materialien sind insbesondere Metalloxide mit einer BET- Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g (bestimmt nach DIN 66132 - neueste Fassung am Anmeldetag). Besonders geeignete Trägermaterialien für die Edelmetalle sind ausgewählt aus der Reihe bestehend aus Aluminiumoxid, dotiertes Aluminiumoxid, Siliziumoxid, Titandioxid und Mischoxiden aus einem oder mehreren davon. Dotierte Aluminiumoxide sind beispielsweise Lanthanoxid-, Zirkoniumoxid-, Bariumoxid- und/oder Titanoxid-dotierte Aluminiumoxide. Mit Vorteil wird Aluminiumoxid oder Lanthan-stabilisiertes Aluminiumoxid eingesetzt, wobei im letztgenannten Fall Lanthan in Mengen von insbesondere 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.-%, jeweils berechnet als La2Ü3 und bezogen auf das Gewicht des stabilisierten Aluminiumoxides, verwendet wird. Auch im Fall von mit Bariumoxid dotiertem Aluminiumoxid ist der Anteil an Bariumoxid insbesondere 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.-%, jeweils berechnet als BaO und bezogen auf das Gewicht des stabilisierten Aluminiumoxides. Ein weiteres geeignetes Trägermaterial ist Lanthan-stabilisiertes Aluminiumoxid, dessen Oberfläche mit Lanthanoxid, mit Bariumoxid und/oder mit Strontiumoxid beschichtet ist. Diese Komponente umfasst bevorzugt mindestens ein Aluminiumoxid oder dotiertes Aluminiumoxid. Vorteilhaft ist in diesem Zusammenhang insbesondere La-stabilisiertes y- Aluminiumoxid mit einer Oberfläche von 100 bis 200 m2/g. Solches aktives Aluminiumoxid ist in der Literatur vielfach beschrieben und am Markt erhältlich. As mentioned, the precious metals in the OSC-free second component are fixed on one or more temperature-stable, high-surface metal oxides as carrier materials. All materials familiar to those skilled in the art for this purpose can be considered as carrier materials. Such materials are in particular metal oxides with a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132 - latest version on the filing date). Particularly suitable carrier materials for the precious metals are selected from the series consisting of aluminum oxide, doped aluminum oxide, silicon oxide, titanium dioxide and mixed oxides from one or more of these. Doped aluminum oxides are, for example, lanthanum oxide, zirconium oxide, barium oxide and/or titanium oxide-doped aluminum oxides. Aluminum oxide or lanthanum-stabilized aluminum oxide is advantageously used, in the latter case lanthanum in amounts of in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as La2Ü3 and based on the weight of the stabilized aluminum oxide, is used. Even in the case of aluminum oxide doped with barium oxide, the proportion of barium oxide is in particular 1 to 10% by weight, preferably 3 to 6% by weight, in each case calculated as BaO and based on the weight of the stabilized aluminum oxide. A Another suitable carrier material is lanthanum-stabilized aluminum oxide, the surface of which is coated with lanthanum oxide, barium oxide and/or strontium oxide. This component preferably comprises at least one aluminum oxide or doped aluminum oxide. La-stabilized y-alumina with a surface area of 100 to 200 m 2 /g is particularly advantageous in this context. Such active aluminum oxide has been widely described in the literature and is available on the market.
Der Katalysator zur Verminderung der Ammoniak-Emissionen weist alternativ oder kumulativ zum OSC-freien Edelmetallkatalysator einen OSC-haltigen Edelmetallkatalysator auf. Hier sind neben den Edelmetallen und den eben genannten temperaturstabilen, hochoberflächigen Metalloxiden auch Sauerstoffspeichermaterialien im Edelmetallkatalysator vorhanden (OSC-haltig). Als Sauerstoffspeichermaterialien werden durchweg Cer- oder Cer-Zirkonium-Mischoxide (siehe weiter unten) verwendet. Demzufolge zeichnet sich ein OSC-haltiger Edelmetallkatalysator durch das Vorhandensein einer bestimmten Menge an diesen Sauerstoffspeichermaterialien aus. Insbesondere weist diese Komponente Sauerstoffspeichermaterialien in einer Menge von mehr als 5 g/L, bevorzugt mehr als 10 g /L und ganz bevorzugt mehr als 20 g/L Trägervolumen . Hierbei wird das gesamte Cer-Zirkonium-Mischoxid mit all seinen Bestandteilen eingerechnet. The catalyst for reducing ammonia emissions has an OSC-containing noble metal catalyst as an alternative or cumulative to the OSC-free precious metal catalyst. In addition to the precious metals and the above-mentioned temperature-stable, high-surface metal oxides, oxygen storage materials are also present in the precious metal catalyst (containing OSC). Cerium or cerium-zirconium mixed oxides (see below) are consistently used as oxygen storage materials. Accordingly, an OSC-containing noble metal catalyst is characterized by the presence of a certain amount of these oxygen storage materials. In particular, this component has oxygen storage materials in an amount of more than 5 g/L, preferably more than 10 g/L and most preferably more than 20 g/L carrier volume. The entire cerium-zirconium mixed oxide with all its components is included.
Entsprechende OSC-haltige Edelmetallkatalysatoren haben die Befähigung im schon leicht fetten Abgas eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors oxidativ auf die vorhandenen Stoffe (NH3, HC, CO) zu wirken. Diese Komponente ist dabei bevorzugt so ausgelegt, dass sie bei entsprechend niedrigen Temperaturen schon aktiv wird. Der im Zeolith bzw. Zeotyp eingespeicherte Ammoniak wird hier über diese Komponente bevorzugt in nichtschädlichen Stickstoff umgewandelt. Die Oxidationswirkung sollte nicht zu groß sein, da ansonsten aus der Ammoniakoxidation ein gewisser Anteil an dem starken Treibhausgas N2O gebildet wird. Corresponding OSC-containing precious metal catalysts have the ability to have an oxidative effect on the substances present (NH3, HC, CO) in the already slightly rich exhaust gas of a predominantly stoichiometrically operated internal combustion engine. This component is preferably designed so that it becomes active at correspondingly low temperatures. The ammonia stored in the zeolite or zeotype is preferably converted into non-harmful nitrogen via this component. The oxidation effect should not be too great, otherwise a certain proportion of the powerful greenhouse gas N2O will be formed from ammonia oxidation.
Die Edelmetalle im OSC-haltigen Edelmetallkatalysator sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Palladium oder Rhodium oder Platin, Platin und Rhodium, Palladium und Rhodium bzw. Palladium und Rhodium und Platin zusammen. Bevorzugt handelt es sich bei diesem Katalysator um eine mit dreiwegekatalytischer Fähigkeit ausgestattete Beschichtung. Diese weist besonders bevorzugt Edelmetalle ausgewählt aus der Gruppe Platin und Rhodium, Palladium und Rhodium, vorzugsweise Rhodium alleine auf. In dem OSC-haltigen Edelmetallkatalysator können die Edelmetalle nur auf den temperaturstabilen, hochoberflächigen Trägermaterialien abgeschieden vorliegen. Bevorzugt ist jedoch, wenn die Edelmetalle sowohl auf den genannten Trägermaterialien als auch auf den Sauerstoffspeichermaterialien abgeschieden vorliegen. The noble metals in the OSC-containing noble metal catalyst are preferably selected from the group consisting of palladium or rhodium or platinum, platinum and rhodium, palladium and rhodium or palladium and rhodium and platinum together. This catalyst is preferably a coating equipped with three-way catalytic capability. This particularly preferably has precious metals selected from the group of platinum and rhodium, palladium and rhodium, preferably rhodium alone. In the OSC-containing noble metal catalyst, the precious metals can only be deposited on the temperature-stable, high-surface support materials present. However, it is preferred if the noble metals are deposited both on the carrier materials mentioned and on the oxygen storage materials.
Sofern Rhodium in dieser Komponente vorhanden ist (ob alleine oder in Kombination mit den anderen vorher genannten Edelmetallen), sollte sich dieses vorzugsweise im Bereich von 0,035 - 1 ,0 g/L, mehr bevorzugt 0,1 - 0,35 g/L Trägervolumen in der jeweiligen Komponente befinden. Sofern Palladium und/oder Platin ebenfalls in dieser Komponente vorhanden sind, gelten die oben für die OSC-freien Edelmetallkatalysatoren genannten Bereiche für diese Metalle. Geeignete dreiwegekatalytisch aktive Beschichtungen sind beispielsweise in DE102013210270A1 , DE102020101876A1 , EP3247493A1 ,If rhodium is present in this component (whether alone or in combination with the other aforementioned noble metals), this should preferably be in the range of 0.035 - 1.0 g/L, more preferably 0.1 - 0.35 g/L carrier volume located in the respective component. If palladium and/or platinum are also present in this component, the ranges mentioned above for the OSC-free precious metal catalysts apply to these metals. Suitable three-way catalytically active coatings are, for example, in DE102013210270A1, DE102020101876A1, EP3247493A1,
EP3727655A1 beschrieben. EP3727655A1 described.
Moderne Ottomotoren werden unter Bedingungen mit einem diskontinuierlichen Verlauf der Luftzahl X betrieben. Sie unterliegen in definierter Weise einem periodischen Wechsel der Luftzahl X und somit einem periodischen Wechsel von oxidierenden und reduzierenden Abgasbedingungen. Dieser Wechsel der Luftzahl X ist in beiden Fällen wesentlich für das Abgasreinigungsergebnis. Hierzu wird der Lambdawert des Abgases mit sehr kurzer Zyklenzeit (ca. 0,5 bis 5 Hertz) und einer Amplitude AÄ. von 0,005 < AÄ < 0,05 um den Wert X = 1 (reduzierende und oxidierende Abgasbestandteile liegen in stöchiometrischem Verhältnis zueinander vor) geregelt. Aufgrund der dynamischen Betriebsweise des Motors im Fahrzeug treten zudem Abweichungen von diesem Zustand auf. Damit sich die genannten Abweichungen vom stöchiometrischen Punkt nicht nachteilig auf das Abgasreinigungsergebnis bei Überleiten des Abgases über den Dreiwegkatalysator auswirken, gleichen im Katalysator enthaltene Sauerstoffspeichermaterialien diese Abweichungen bis zu einem gewissen Grad aus, indem sie Sauerstoff nach Bedarf aus dem Abgas aufnehmen oder ins Abgas abgeben (Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, S. 90). Modern gasoline engines are operated under conditions with a discontinuous course of the air ratio X. They are subject to a periodic change in the air ratio X in a defined manner and thus to a periodic change in oxidizing and reducing exhaust gas conditions. This change in the air ratio X is essential for the exhaust gas purification result in both cases. For this purpose, the lambda value of the exhaust gas is measured with a very short cycle time (approx. 0.5 to 5 Hertz) and an amplitude AÄ. from 0.005 <AÄ <0.05 around the value X = 1 (reducing and oxidizing exhaust gas components are present in a stoichiometric ratio to one another). Due to the dynamic operation of the engine in the vehicle, deviations from this state also occur. So that the deviations from the stoichiometric point mentioned do not have a negative impact on the exhaust gas purification result when the exhaust gas is passed over the three-way catalytic converter, oxygen storage materials contained in the catalytic converter compensate for these deviations to a certain extent by absorbing oxygen from the exhaust gas or releasing it into the exhaust gas as required ( Catalytic Air Pollution Control, Commercial Technology, R. Heck et al., 1995, p. 90).
In den OSC-haltigen Edelmetallkatalysatoren (moderne Dreiwegkatalysatoren) befinden sich daher Sauerstoffspeichermaterialien, insbesondere Cer oder Ce/Zr-Mischoxide. Das Masseverhältnis von Ceroxid zu Zirkoniumoxid kann in diesen Mischoxiden in weiten Grenzen variieren. Es beträgt beispielsweise 0,1 bis 1 ,5, bevorzugt 0,15 bis 1 oder 0,2 bis 0,9. Bevorzugte Cer/Zirkonium-Mischoxide umfassen ein oder mehrerer Seltenerdmetalloxide und können somit als Cer/Zirkonium/Seltenerdmetall-Mischoxide bezeichnet werden. Der Begriff „Cer/Zirkonium/Seltenerdmetall-Mischoxid“ im Sinne der vorliegender Erfindung schließt physikalische Mischungen aus Ceroxid, Zirkoniumoxid und Seltenerdoxid aus. Vielmehr sind „Cer/Zirkonium/Seltenerdmetall-Mischoxide“ durch eine weitgehend homogene, dreidimensionale Kristallstruktur gekennzeichnet, die idealerweise frei ist von Phasen aus reinem Ceroxid, Zirkoniumoxid bzw. Seltenerdoxid (sogenannte feste Lösung). Je nach Herstellungsverfahren können aber auch nicht vollständig homogene Produkte entstehen, die in der Regel ohne Nachteil verwendet werden können. Analoges gilt für Cer/Zirkonium-Mischoxide, die kein Seltenerdmetalloxid enthalten. Im Übrigen umfasst der Begriff Seltenerdmetall bzw. Seltenerdmetalloxid im Sinne vorliegender Erfindung kein Cer bzw. kein Ceroxid. Als Seltenerdmetalloxide in den Cer/Zirkonium/Seltenerdmetall-Mischoxiden kommen beispielsweise Lanthanoxid, Yttriumoxid, Praseodymoxid, Neodymoxid und/oder Samariumoxid in Betracht. Bevorzugt sind Lanthanoxid, Yttriumoxid und/oder Praseodymoxid. Besonders bevorzugt als Seltenerdmetalloxide sind Lanthanoxid und/oder Yttriumoxid und ganz besonders bevorzugt ist das gemeinsame Vorliegen von Lanthanoxid und Yttriumoxid, Yttriumoxid und Praseodymoxid, sowie Lanthanoxid und Praseodymoxid im Cer/Zirkonium/Seltenerdme- tall-Mischoxid. In einer bevorzugten Ausführungsform weist dieser Edelmetallkatalysator zwei unterschiedliche Cer/Zirkonium/Seltenerdmetall-Mischoxide, vorzugsweise eines mit La und Y dotiertes und eines mit La und Pr dotiertes auf. In Ausführungsformen der vorliegenden Erfindung sind die Sauerstoffspeicherkomponenten vorzugsweise frei von Neodymoxid. The OSC-containing noble metal catalysts (modern three-way catalysts) therefore contain oxygen storage materials, in particular cerium or Ce/Zr mixed oxides. The mass ratio of cerium oxide to zirconium oxide can vary within wide limits in these mixed oxides. It is, for example, 0.1 to 1.5, preferably 0.15 to 1 or 0.2 to 0.9. Preferred cerium/zirconium mixed oxides include one or more rare earth metal oxides and can thus be referred to as cerium/zirconium/rare earth mixed oxides. The term “cerium/zirconium/rare earth metal mixed oxide” in the sense of the present invention includes physical mixtures of cerium oxide and zirconium oxide and rare earth oxide. Rather, “cerium/zirconium/rare earth metal mixed oxides” are characterized by a largely homogeneous, three-dimensional crystal structure, which is ideally free of phases made of pure cerium oxide, zirconium oxide or rare earth oxide (so-called solid solution). Depending on the manufacturing process, products may not be completely homogeneous, which can generally be used without disadvantage. The same applies to cerium/zirconium mixed oxides that do not contain any rare earth metal oxide. Furthermore, the term rare earth metal or rare earth metal oxide in the sense of the present invention does not include cerium or cerium oxide. Suitable rare earth metal oxides in the cerium/zirconium/rare earth metal mixed oxides include, for example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide and/or samarium oxide. Lanthanum oxide, yttrium oxide and/or praseodymium oxide are preferred. Particularly preferred rare earth metal oxides are lanthanum oxide and/or yttrium oxide and very particularly preferred is the joint presence of lanthanum oxide and yttrium oxide, yttrium oxide and praseodymium oxide, as well as lanthanum oxide and praseodymium oxide in the cerium/zirconium/rare earth metal mixed oxide. In a preferred embodiment, this noble metal catalyst has two different cerium/zirconium/rare earth metal mixed oxides, preferably one doped with La and Y and one doped with La and Pr. In embodiments of the present invention, the oxygen storage components are preferably free of neodymium oxide.
Der Anteil an Seltenerdmetalloxid(en) in den Cer/Zirkonium/Seltenerdmetall-Mischoxi- den liegt vorteilhaft bei 3 bis 20 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdme- tall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Yttriumoxid enthalten, so ist dessen Anteil bevorzugt 4 bis 15 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdmetall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdme- tallmischoxide als Seltenerdmetall Praseodymoxid enthalten, so ist dessen Anteil bevorzugt 2 bis 10 Gew.-% bezogen auf das Cer/Zirkonium/Seltenerdmetall-Mischoxid. Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Lanthanoxid und ein weiteres Seltenerdoxid enthalten, wie zum Beispiel Yttriumoxid oder Praseodymoxid, so ist deren Massenverhältnis insbesondere 0,1 bis 1 ,25, bevorzugt 0,1 bis 1. Üblicherweise enthält dieser Edelmetallkatalysator Sauerstoffspeichermaterialien in Mengen von 15 bis 120 g/l, bezogen auf das Volumen des Trägers bzw. Substrates. The proportion of rare earth metal oxide(s) in the cerium/zirconium/rare earth metal mixed oxides is advantageously 3 to 20% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain yttrium oxide as the rare earth metal, its proportion is preferably 4 to 15% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain praseodymium oxide as the rare earth metal, its proportion is preferably 2 to 10% by weight based on the cerium/zirconium/rare earth metal mixed oxide. If the cerium/zirconium/rare earth metal mixed oxides contain lanthanum oxide and another rare earth oxide as the rare earth metal, such as yttrium oxide or praseodymium oxide, their mass ratio is in particular 0.1 to 1.25, preferably 0.1 to 1. This noble metal catalyst usually contains oxygen storage materials in amounts of 15 to 120 g/l, based on the volume of the carrier or substrate.
Die OSC-haltigen Edelmetallkatalysatoren weisen ebenfalls die für die OSC-freien Edelmetallkatalysatoren genannten temperaturstabilen, hochoberflächigen Trägermaterialien und zusätzlich zu diesen den Sauerstoff speichernde Materialien auf. Das Masseverhältnis von temperaturstabilen, hochoberflächigen Trägermaterialien und Sauerstoffspeicherkomponenten in dieser Komponente beträgt üblicherweise 0,25 bis 1 ,5, beispielsweise 0,3 bis 1 ,3. In einer beispielhaften Ausführungsform beträgt das Gewichtsverhältnis der Summe der Massen aller Trägermaterialien, wie z.B. Aluminiumoxide (einschließlich dotierter Aluminiumoxide) zur Summe der Massen aller Cer/Zir- konium-Mischoxide im OSC-haltigen Edelmetallkatalysator beträgt 10:90 bis 75:25, bevorzugt 20:80 bis 65:35.. The OSC-containing noble metal catalysts also have the temperature-stable, high-surface support materials mentioned for the OSC-free noble metal catalysts and, in addition to these, oxygen-storing materials. The The mass ratio of temperature-stable, high-surface carrier materials and oxygen storage components in this component is usually 0.25 to 1.5, for example 0.3 to 1.3. In an exemplary embodiment, the weight ratio of the sum of the masses of all support materials, such as aluminum oxides (including doped aluminum oxides) to the sum of the masses of all cerium/zirconium mixed oxides in the OSC-containing noble metal catalyst is 10:90 to 75:25, preferably 20 :80 to 65:35..
Die erste und die zweite Komponente bilden vorzugsweise einen Ammoniakspeicher und eine Funktion zur Oxidation von Ammoniak zu Stickstoff ab (z.B. wie in W02008106523A2), wobei der Ammoniakspeicher jedoch im Rahmen der Erfindung metallfrei ist. Sofern zur Oxidation des eingespeicherten Ammoniaks nicht genügend Stickoxide im System vorhanden sein sollten, kann der Ammoniak über der zweiten Komponente auch mit vorhandenem Sauerstoff zu Stickstoff umgesetzt werden. In beiden Fällen erfolgt möglichst keine Abgabe von Ammoniak oder N2O an die Umwelt. Im weitesten Sinne können daher die erste Komponente und die zweite Komponente des Katalysator zur Verminderung der Ammoniak-Emissionen bevorzugt aus einer ammoniakspeichernden Beschichtung gepaart mit einer oxidativ auf Ammoniak wirkenden zweiten Beschichtung bestehen. Als solche liegen sie bevorzugt in separaten Beschichtung, mehr bevorzugt zumindest teilweise überlappend auf dem Substrat vor. Die Länge der jeweiligen Schicht/Komponente kann vom Fachmann im Rahmen der Erfindung frei gewählt werden. Sie befinden sich auf bevorzugt auf einem Durchflusssubstrat und nehmen hier eine Länge von mindestens 10% und maximal 100%, mehr bevorzugt 20% - 90% äußerst bevorzugt 30% - 80% der Substratlänge ein. Die Komponenten liegen in separaten Schichten getrennt voneinander aber übereinanderliegend vor. Hierbei ist es besonders vorteilhaft, wenn beide Komponenten gleich lang sind und sich komplett überlagern. Dabei ist es ganz besonders bevorzugt, wenn der OSC-freie und/oder OSC-hal- tige Edelmetallkatalysator der Komponente zwei als Unterschicht unter der erste Komponente aus Zeolithen und/oder Zeotypen zur Speicherung von Ammoniak als Oberschicht lokalisiert ist. Die zweite Komponenten liegt als Beschichtung bevorzugt direkt auf dem Substrat auf. Zwischen der ersten Komponente und der zweiten Komponente ist vorzugsweise keine weitere Schicht zugegen (Fig. 2). Die umgekehrte Orientierung liefert aber ebenfalls gute Ergebnisse und ist ebenfalls bevorzugt (Fig. 3 - A2). The first and second components preferably form an ammonia storage and a function for the oxidation of ammonia to nitrogen (e.g. as in WO2008106523A2), although the ammonia storage is metal-free within the scope of the invention. If there are not enough nitrogen oxides in the system to oxidize the stored ammonia, the ammonia can also be converted into nitrogen with the oxygen present via the second component. In both cases, if possible, no ammonia or N2O is released into the environment. In the broadest sense, the first component and the second component of the catalyst for reducing ammonia emissions can therefore preferably consist of an ammonia-storing coating paired with a second coating that has an oxidative effect on ammonia. As such, they are preferably present in separate coatings, more preferably at least partially overlapping, on the substrate. The length of the respective layer/component can be freely chosen by the person skilled in the art within the scope of the invention. They are preferably located on a flow-through substrate and here take up a length of at least 10% and a maximum of 100%, more preferably 20% - 90%, extremely preferably 30% - 80% of the substrate length. The components are in separate layers, separated from each other but lying on top of each other. It is particularly advantageous if both components are the same length and completely overlap each other. It is particularly preferred if the OSC-free and/or OSC-containing noble metal catalyst of component two is located as a lower layer under the first component made of zeolites and/or zeotypes for storing ammonia as an upper layer. The second component is preferably placed directly on the substrate as a coating. There is preferably no further layer between the first component and the second component (Fig. 2). However, the reverse orientation also provides good results and is also preferred (Fig. 3 - A2).
Die Komponenten des Katalysator zur Verminderung der Ammoniak-Emissionen werden durch einen dem Fachmann geläufigen Beschichtungsschritt auf einen Träger, vorzugsweise auf ein Durchflusssubstrat aufgebracht (DE102019100099A1 sowie dort zitierte Literatur). Ein Filtersubstrat wie ein Wandflussfilter ist in diesem Zusammenhang auch möglich. Durchflusssubstrate sind im Stand der Technik übliche Katalysatorträger, die aus Metall z.B. WO17153239A1 , WO16057285A1 , WO15121910A1 und darin zitierte Literatur) oder keramischen Materialien bestehen können. „Corrugated substrates“ können auch als Durchflusssubstrate angesehen werden. Diese sind dem Fachmann als Träger aus gewellten Blättern, welche aus inerten Materialien bestehen, bekannt. Geeignete inerte Materialien sind zum Beispiel faserförmige Materialien mit einem durchschnittlichen Faserdurchmesser von 50 bis 250 pm und einer durchschnittlichen Faserlänge von 2 bis 30 mm. Bevorzugt sind faserförmige hitzebeständige Materialien aus Siliziumdioxid, insbesondere aus Glasfasern. Bevorzugt werden jedoch feuerfeste Keramiken wie zum Beispiel Cordierit, Siliziumcarbit oder Aluminiumtitanat etc. als Ho- neycomb-T räger eingesetzt. Die Anzahl der Kanäle dieser T räger pro Fläche wird durch die Zelldichte charakterisiert, welche üblicher Weise zwischen 300 und 900 Zellen pro Quadrat inch (cells per square inch, cpsi) liegt. Die Wanddicke der Kanalwände beträgt bei Keramiken zwischen 0,5 - 0,05 mm. The components of the catalyst for reducing ammonia emissions are applied to a carrier using a coating step familiar to those skilled in the art. preferably applied to a flow-through substrate (DE102019100099A1 and literature cited there). A filter substrate such as a wall flow filter is also possible in this context. Flow-through substrates are catalyst supports that are common in the prior art and can consist of metal, for example WO17153239A1, WO16057285A1, WO15121910A1 and the literature cited therein) or ceramic materials. “Corrugated substrates” can also be viewed as flow-through substrates. These are known to those skilled in the art as carriers made of corrugated sheets made of inert materials. Suitable inert materials are, for example, fibrous materials with an average fiber diameter of 50 to 250 pm and an average fiber length of 2 to 30 mm. Fibrous heat-resistant materials made of silicon dioxide, especially glass fibers, are preferred. However, refractory ceramics such as cordierite, silicon carbite or aluminum titanate etc. are preferably used as honeycomb carriers. The number of channels of these carriers per area is characterized by the cell density, which is usually between 300 and 900 cells per square inch (cells per square inch, cpsi). The wall thickness of the channel walls for ceramics is between 0.5 - 0.05 mm.
Die Gesamtmenge der Beschichtungen im Katalysator zur Verminderung der Ammoniak-Emissionen wird so ausgewählt, dass der erfindungsgemäße Katalysator insgesamt möglichst effizient genutzt wird. Im Falle eines oder mehrerer Durchflusssubstrat(e) kann beispielsweise die Gesamtmenge der Beschichtungen (Feststoffanteil) pro Trägervolumen (Gesamtvolumen des Trägers) zwischen 100 und 600 g/L sein, insbesondere zwischen 150 und 400 g/L. Die erste Komponente wird bevorzugt in einer Menge von 50 bis 350 g/L, insbesondere zwischen 120 und 250 g/L, besonders bevorzugt von etwa 145 - 230 g/L Trägervolumen, eingesetzt. Die zweite Komponente wird vorzugsweise von 50 bis 350 g/L, insbesondere zwischen 120 und 250 g/L, besonders bevorzugt von etwa 145 - 230 g/L Trägervolumen, eingesetzt. The total amount of coatings in the catalyst to reduce ammonia emissions is selected so that the catalyst according to the invention is used as efficiently as possible overall. In the case of one or more flow-through substrates, for example, the total amount of coatings (solids content) per carrier volume (total volume of the carrier) can be between 100 and 600 g/L, in particular between 150 and 400 g/L. The first component is preferably used in an amount of 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably about 145 - 230 g/L of carrier volume. The second component is preferably used from 50 to 350 g/L, in particular between 120 and 250 g/L, particularly preferably from about 145 - 230 g/L carrier volume.
Das vorliegende Abgassystem weist einen ersten Dreiwegekatalysator und einen abstromseitig positionierten Katalysator zur Verminderung der Ammoniak-Emissionen auf. Der erste Dreiwegekatalysator kann dabei die gleichen Bestandteile aufweisen wie der OSC-haltige Edelmetallkatalysator der zweiten Komponente. Bevorzugt ist er wie in DE102013210270A1 , DE102020101876A1 , EP3247493A1 , EP3727655A1 , vorzugsweise wie in EP3247493A1 beschrieben aufgebaut. Abstromseitig bezeichnet die Tatsache, dass der Abgasfluss zuerst den anstromseitigen Katalysator trifft und anschließend erst den abstromseitig positionierten. Für anstromseitig gilt das Umgekehrte. Es hat sich im Hinblick auf die Euro 7-Gesetzgebung als vorteilhaft erwiesen, wenn ein Abgassystem für einen überwiegend stöchiometrisch verbrennenden Motor ein Aggregat zum Filtern kleiner Ruß- und Aschepartikel aufweist. Bevorzugt ist demnach ein Abgassystem, dass zusätzlich einen ggf. katalytisch beschichteten GPF zwischen dem ersten Dreiwegekatalysator und dem Katalysator zur Verminderung der Ammoniak-Emissionen aufweist (Fig. 6). GPF sind Gasoline Partikel Filter und sind dem Fachmann hinlänglich bekannt (EP3737491A1 , EP3601755A1). Besonders bevorzugt ist ein Abgasdesign, bei dem der erste Dreiwegekatalysator und der GPF in motornaher Position verbaut sind. The present exhaust system has a first three-way catalyst and a catalyst positioned downstream to reduce ammonia emissions. The first three-way catalyst can have the same components as the OSC-containing noble metal catalyst of the second component. It is preferably constructed as described in DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1, preferably as described in EP3247493A1. Downstream refers to the fact that the exhaust gas flow first hits the upstream catalytic converter and then the downstream catalytic converter. The reverse applies to the upstream side. With regard to the Euro 7 legislation, it has proven to be advantageous if an exhaust system for a predominantly stoichiometric engine has a unit for filtering small soot and ash particles. An exhaust system is therefore preferred that additionally has a possibly catalytically coated GPF between the first three-way catalytic converter and the catalytic converter to reduce ammonia emissions (FIG. 6). GPF are gasoline particle filters and are well known to those skilled in the art (EP3737491A1, EP3601755A1). An exhaust gas design in which the first three-way catalytic converter and the GPF are installed in a position close to the engine is particularly preferred.
Motornah im Sinne der Erfindung bezeichnet einen Bereich im Abgasstrang, der sich in motornaher Position befinden, also ca. 10 - 80 cm, vorzugsweise 20 - 60 cm vom Motorausgang entfernt. Es hat sich als vorteilhaft herausgestellt, wenn der Katalysator zur Verminderung der Ammoniak-Emissionen im Unterboden eines Fahrzeugs in Abgasrichtung an letzter Stelle verbaut ist, so dass danach das Abgas dann an die Umgebungsluft abgegeben wird. Gleichfalls kann das Abgassystem noch weitere Abgasaggregate wie weitere Dreiwegkatalysatoren oder Kohlenwasserstoffspeicher (HC-Traps) oder Stick- oxidspeicher (LNT) aufweisen. Der Unterboden ist der Bereich unterhalb der Fahrerkabine. Close to the engine in the sense of the invention refers to an area in the exhaust system that is in a position close to the engine, i.e. approx. 10 - 80 cm, preferably 20 - 60 cm away from the engine outlet. It has proven to be advantageous if the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions, so that the exhaust gas is then released into the ambient air. The exhaust system can also have additional exhaust units such as additional three-way catalytic converters or hydrocarbon storage (HC traps) or nitrogen oxide storage (LNT). The underbody is the area below the driver's cab.
In einer weiterhin bevorzugten Ausführungsform befindet sich zwischen dem ersten Dreiwegekatalysator und vor dem Katalysator zur Verminderung der Ammoniak-Emissionen im erfindungsgemäßen Autoabgassystem mindestens ein zweiter Dreiwegekatalysator (TWC). Die Dreiwegeaktivität ist weiter vorne schon beschrieben worden. Es wird explizit auf das dortige Bezug genommen, insbesondere was die Art und Menge der einzelnen Bestandteile anbelangt. Bei diesem Dreiwegekatalysator handelt es sich vorzugsweise um einen wie er im Stand der Technik beschrieben ist (DE102013210270A1 , DE102020101876A1 , EP3247493A1 , EP3727655A1). Bei den TWCs sind gezonte oder gelayerte Ausführungsformen mittlerweile der Normalfall. In einer weiter bevorzugten Ausführungsform besitzt im erfindungsgemäßen Autoabgassystem zumindest einer der zusätzlichen Katalysatoren mit Dreiwegeaktivität einen 2-Schichtaufbau mit zwei unterschiedlichen Dreiwegebeschichtungen, vorzugsweise wie in EP3247493A1 beschrieben. Der eben beschriebene zumindest zweite Dreiwegekatalysator im erfindungsgemäßen Abgassystem kann im Unterboden des Fahrzeugs verbaut sein, er kann sich jedoch auch in motornaher Position befinden. Die Fülle an möglichen Euro 7 Systemen ist groß. So können pro Abgasstrang bis zu 4 Dreiwegekatalysatoren vor dem Katalysator zur Verminderung der Ammoniak-Emissionen vorhanden sein. In a further preferred embodiment, at least a second three-way catalytic converter (TWC) is located between the first three-way catalytic converter and in front of the catalytic converter to reduce ammonia emissions in the car exhaust system according to the invention. The three-way activity has already been described earlier. There is explicit reference to what is stated there, especially with regard to the type and quantity of the individual components. This three-way catalyst is preferably one as described in the prior art (DE102013210270A1, DE102020101876A1, EP3247493A1, EP3727655A1). Zoned or layered versions are now the norm for TWCs. In a further preferred embodiment, in the car exhaust system according to the invention, at least one of the additional catalysts with three-way activity has a 2-layer structure with two different three-way coatings, preferably as described in EP3247493A1. The at least second three-way catalytic converter just described in the exhaust system according to the invention can be installed in the underbody of the vehicle, but it can also be located close to the engine. The range of possible Euro 7 systems is large. There can be up to 4 three-way catalytic converters in front of the catalytic converter per exhaust system to reduce ammonia emissions.
In einer alternativen Ausführungsform befindet sich vor dem Katalysator zur Verminderung der Ammoniak-Emissionen mindestens ein Dreiwegekatalysator und ein ggf. katalytisch beschichteter Wandflussfilter (GPF). Der Katalysator zur Verminderung der Ammoniak-Emissionen befindet sich dabei im Unterboden bevorzugt an letzter Stelle und in fluider Kommunikation mit dem oder den weiteren Katalysatoren bzw. dem Filter des Autoabgassystems. Bevorzugt weist das Autoabgassystem dabei keine zusätzliche Einspritzeinrichtung für Ammoniak oder eine Vorläuferverbindung für Ammoniak auf. Möglich ist allerdings, dass sich im Abgasstrang aufstromseitig zum Katalysator zur Verminderung der Ammoniak-Emissionen oder aufstromseitig zum Wandflussfilter eine Zugabeeinheit für Sekundärluft befindet (analog WO2019219816). In an alternative embodiment, there is at least one three-way catalyst and, if necessary, a catalytically coated wall flow filter (GPF) in front of the catalyst to reduce ammonia emissions. The catalyst for reducing ammonia emissions is preferably located last in the underbody and in fluid communication with the further catalyst or catalysts or the filter of the car exhaust system. The car exhaust system preferably has no additional injection device for ammonia or a precursor compound for ammonia. However, it is possible that there is an addition unit for secondary air in the exhaust system upstream of the catalytic converter to reduce ammonia emissions or upstream of the wall flow filter (analogous to WO2019219816).
In einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf ein Verfahren zur Verminderung schädlichen Abgasbestandteile von überwiegend stöchiometrisch betriebenen Verbrennungsmotoren, insbesondere fremdgezündeten Benzinmotoren, bei dem das Abgas über ein erfindungsgemäßes Abgassystem geleitet wird. Es sei darauf hingewiesen, dass die bevorzugten Ausführungsformen des Autoabgassystems mutatis mutandis auch für das vorliegende Verfahren gelten. In a further aspect, the present invention relates to a method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, in which the exhaust gas is passed through an exhaust system according to the invention. It should be noted that the preferred embodiments of the automobile exhaust system also apply mutatis mutandis to the present method.
Die vorliegende Erfindung richtet sich auf ein Abgasreinigungssystem insbesondere für stöchiometrisch betriebene Verbrennungsmotoren. Es gibt Betriebspunkte eines stöchiometrisch verbrennenden Motors, bei dem ein fettes Abgas innerhalb eines bestimmten Temperaturintervalls erzeugt wird. Das kann dazu führen, dass über einem Dreiwegekatalysator ankommende Stickoxide überreduziert werden zu Ammoniak. Dieser Ammoniak sollte nicht an die Umwelt abgegeben werden. Der Ammoniak wird daher über dem Katalysator zur Verminderung der Ammoniak-Emissionen eingespeichert und anschließend bei leicht oxidierenden Bedingungen zu Stickstoff oxidiert werden. Dabei muss auch hier darauf geachtet werden, dass möglichst keine Überoxidation zu N2O stattfindet. Selbst nach intensiver Alterung zeigt sich das Abgassystem robust genug, um die Euro 7-Anforderungen vollständig zu erfüllen. Insbesondere kann als Überraschung gelten, dass die hier propagierten Katalysatoren zur Verminderung der Ammoniak-Emissionen ohne übergangsmetallausgetauschte Zeolithe und/oder Zeotype funktionieren. Dies hat den Vorteil, dass eine Vergiftung der zweiten Komponente zur Ammoniakoxidation mit den Übergangsmetallen unterbleibt, wodurch dessen hohe Aktivität auch nach harten Alterungsbedingungen noch gut erhalten bleibt. Dies verspricht eine lange aktive Lebensdauer des anvisierten Abgassystems. The present invention is directed to an exhaust gas purification system, in particular for stoichiometrically operated internal combustion engines. There are operating points of a stoichiometric engine in which a rich exhaust gas is produced within a certain temperature interval. This can lead to nitrogen oxides arriving via a three-way catalytic converter being over-reduced to ammonia. This ammonia should not be released into the environment. The ammonia is therefore stored above the catalyst to reduce ammonia emissions and is then oxidized to nitrogen under slightly oxidizing conditions. Here too, care must be taken to ensure that over-oxidation to N2O does not occur. Even after intensive aging, the exhaust system is robust enough to fully meet Euro 7 requirements. In particular, it may come as a surprise that the catalysts advocated here for reducing ammonia emissions work without transition metal-exchanged zeolites and/or zeotypes. This has the advantage that the second component for ammonia oxidation is prevented from being poisoned with the transition metals, which means that its high activity remains still well preserved under harsh aging conditions. This promises a long active lifespan for the targeted exhaust system.
Figuren: Characters:
Fig. 1 : Chart zur Erläuterung der Messung der Ammoniakspeicherfähigkeit. Fig. 1: Chart to explain the measurement of ammonia storage capacity.
Fig. 2: Katalysator zur Verminderung der Ammoniak-Emissionen (1), Beschichtung mit metallfreien Zeolithen oder Zeotypen zur Speicherung von Ammoniak (2) und einer Be- Schichtung mit einem OSC-freien Edelmetallkatalysator und/oder einem OSC-haltigen Edelmetallkatalysator (3). Fig. 2: Catalyst for reducing ammonia emissions (1), coating with metal-free zeolites or zeotypes for storing ammonia (2) and a coating with an OSC-free noble metal catalyst and/or an OSC-containing noble metal catalyst (3) .
Fig. 3: Schematische Darstellung der in Unterboden-Position getesteten Katalysatoren Fig. 3: Schematic representation of the catalysts tested in the underbody position
Fig. 4: Emissionswerte für Katalysatoren ohne TWC-Beschichtung im Vergleich Fig. 4: Emission values for catalysts without TWC coating in comparison
Fig. 5: Emissionswerte für Katalysatoren mit TWC-Beschichtung mit und ohne Zeolith- Beschichtung im Vergleich Fig. 5: Emission values for catalysts with TWC coating with and without zeolite coating in comparison
Fig. 6: Erfindungsgemäßes Abgassystem mit motonahem Dreiwegkatalysator (A), motornahem GPF (B) und folgendem Katalysator zur Verminderung der Ammoniak-Emissionen (C). Fig. 6: Exhaust system according to the invention with a three-way catalytic converter close to the engine (A), GPF close to the engine (B) and the following catalyst to reduce ammonia emissions (C).
Beispiele: Examples:
A. Bestimmung der Ammoniakspeicherkapazität A. Determination of ammonia storage capacity
Diese wird experimentell in einem Strömungsrohrreaktor bestimmt. Zur Vermeidung von unerwünschter Ammoniakoxidation am Reaktormaterial wird ein Reaktor aus Quarzglas verwendet. Aus dem Bereich des Katalysators, dessen Ammoniakspeicherkapazität bestimmt werden soll, wird ein Bohrkern als Prüfling entnommen. Bevorzugt wird ein Bohrkern mit 1 Zoll Durchmesser und 3 Zoll Länge als Prüfling entnommen. Der Bohrkern wird in den Strömungsrohrreaktor eingesetzt und bei einer Temperatur von 600 °C in einer Gasatmosphäre aus 500 ppm Stickstoffmonoxid, 5 ol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindigkeit von 30000 h-1 für 10 Minuten konditioniert. Anschließend wird in einem Gasgemisch aus 0 Vol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindigkeit von 30000 h-1 die Messtemperatur von 200 °C angefahren. Nach Stabilisierung der Temperatur wird die NHs-Speicherphase durch Aufschalten eines Gasgemisches aus 450 ppm Ammoniak, 0 Vol.-% Sauerstoff, 5 Vol.-% Wasser und Rest Stickstoff mit einer Raumgeschwindigkeit von 30000 IT1 eingeleitet. Dieses Gasgemisch bleibt so lange aufgeschaltet, bis abströmseitig vom Prüfling eine stationäre Ammoniakdurchbruchskonzentration verzeichnet wird. Die auf dem Prüfling eingespeicherte Masse an Ammoniak wird aus der aufgezeichneten Ammoniak-Durchbruchskurve durch Integration vom Start der NHs-Speicherphase bis zum Erreichen der Stationarität unter Einbeziehung der gemessenen stationären NHs-Durchbruchskonzentration sowie dem bekannten Volumenfluss berechnet (schraffierte Fläche in der Figur 1). Die Ammoniakspeicherkapazität wird berechnet als Quotient aus der eingespeicherten Masse an Ammoniak, geteilt durch das Volumen des getesteten Bohrkerns. This is determined experimentally in a flow tube reactor. To avoid undesirable ammonia oxidation on the reactor material, a reactor made of quartz glass is used. A drill core is taken as a test specimen from the area of the catalytic converter whose ammonia storage capacity is to be determined. A drill core with a diameter of 1 inch and a length of 3 inches is preferably taken as a test specimen. The drill core is inserted into the flow tube reactor and at a temperature of 600 ° C in a gas atmosphere consisting of 500 ppm nitrogen monoxide, 5 ol.-% oxygen, 5 vol.-% water and the rest nitrogen with a space velocity of 30,000 h -1 for 10 minutes conditioned. The measuring temperature of 200 °C is then approached in a gas mixture of 0 vol.% oxygen, 5 vol.% water and the rest nitrogen at a space velocity of 30,000 h -1 . After the temperature has stabilized, the NHs storage phase is initiated by switching on a gas mixture of 450 ppm ammonia, 0 vol.% oxygen, 5 vol.% water and the rest nitrogen with a space velocity of 30,000 IT 1 . This gas mixture remains switched on until a steady ammonia breakthrough concentration is recorded downstream from the test specimen. The mass of ammonia stored on the test specimen is calculated from the recorded ammonia breakthrough curve by integrating from the start of the NHs storage phase until stationarity is reached, taking into account the measured stationary NHs breakthrough concentration and the known volume flow (hatched area in Figure 1). The ammonia storage capacity is calculated as the quotient of the stored mass of ammonia divided by the volume of the tested core.
B. Herstellung der ammoniakspeichernden SCR-Schichten B. Production of the ammonia-storing SCR layers
B1 Herstellung des Cu-beladenen Zeolithen B1 Preparation of the Cu-loaded zeolite
Der Zeolith wurde mit Hilfe eines Incipient- Wetness-Verfahrens mit einer Kupfer(ll)-nit- rat-Lösung in einem Feststoffmischer mit Kupfer belegt. Anschließend erfolgte eine Behandlung im Ofen für 8 h bei 120°C und für 2 h bei 600°C in Luft. Für einen Zeolith vom Strukturtyp Chabasit wurde eine Zusammensetzung mit 3.8 wt-% CuO bezogen auf die Gesamtmasse aus Zeolith und CuO hergestellt. B2. Herstellung der kupferhaltigen SCR-Beschichtung The zeolite was coated with copper using an incipient wetness process with a copper(II) nitrate solution in a solids mixer. This was followed by treatment in the oven for 8 h at 120°C and for 2 h at 600°C in air. For a zeolite of the chabazite structural type, a composition with 3.8 wt% CuO based on the total mass of zeolite and CuO was prepared. B2. Production of the copper-containing SCR coating
Die Beschichtung mit einem Cu-beladenen Zeolithen erfolgte nach gemeinsamer Mahlung mit Nyacol®-AL20-Binder auf einem Cordierit-Substrat mit der gewünschten Washcoat Beladung (88% Zeolith, 12% Binder). Der so erhaltene beschichtete Katalysator wurde bei 90 °C getrocknet und anschließend für 15 min bei 350 °C kalziniert und für 2 h bei 550 °C in Luft getempert. Auf den nun beschichteten Träger kann gegebenenfalls eine edelmetallhaltige Schicht als Top-Layer aufgebracht werden. The coating with a Cu-loaded zeolite was carried out after joint grinding with Nyacol®-AL20 binder on a cordierite substrate with the desired washcoat loading (88% zeolite, 12% binder). The coated catalyst thus obtained was dried at 90 °C and then calcined at 350 °C for 15 min and annealed in air at 550 °C for 2 h. If necessary, a layer containing precious metal can be applied as a top layer to the now coated carrier.
B3. Herstellung der kupferfreien Zeolith-Beschichtungen B3. Production of copper-free zeolite coatings
Die Beschichtung mit weißem Zeolith vom Typ Chabasit erfolgte nach gemeinsamer Mahlung des in Wasser suspendierten Zeolithmaterials mit Nyacol®-AL20-Binder auf einem Cordierit-Substrat mit der gewünschten Washcoat-Beladung (88% Zeolith, 12% Binder). Der so erhaltene beschichtete Katalysator wurde bei 90 °C getrocknet, für 15 min bei 350 °C getempert und anschließend für 2 h bei 600 °C in Luft kalziniert. Auf den nun beschichteten Träger können gegebenenfalls weitere Schichten als Top-Layer aufgebracht werden. The coating with white zeolite of the Chabazite type was carried out after joint grinding of the zeolite material suspended in water with Nyacol®-AL20 binder on a cordierite substrate with the desired washcoat loading (88% zeolite, 12% binder). The coated catalyst thus obtained was dried at 90 °C, annealed at 350 °C for 15 min and then calcined in air at 600 °C for 2 h. If necessary, further layers can be applied as a top layer to the now coated carrier.
C. Herstellung der edelmetallhaltigen Beschichtungen mit TWC-Aktivität C. Production of the precious metal-containing coatings with TWC activity
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, 60 Gew.-% Zirkoniumoxid, 3.5 Gew.-% Lanthanoxid und 12.5 Gew.-% Yttriumoxid umfasste, und Lanthanacetat als zusätzlicher Lanthanoxidquelle in Wasser suspendiert. Das Gewichtsverhältnis von Aluminiumoxid zu Sauerstoffspeicherkomponente zu zusätzlichem Lanthanoxid betrug 43.6:55.7:0.7. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Substrats eingesetzt, wobei die Beschichtung über 100% der Substratlänge erfolgte. Die Gesamtbeladung dieses Washcoats auf dem Katalysator betrug 122 g/L, die Edelmetallbeladung 0.177 g/L (5 g/ft3). Der so erhaltene beschichtete Katalysator wurde getrocknet und anschließend kalziniert. Auf den nun beschichteten Träger kann gegebenenfalls eine edelmetallfreie Schicht als Top- Layer aufgebracht werden. D. Herstellung der platinhaltigen SiC^/AhCh-Schicht ohne TWC-Aktivität Lanthanum oxide-stabilized alumina was suspended in water along with an oxygen storage component comprising 24 wt% ceria, 60 wt% zirconia, 3.5 wt% lanthana, and 12.5 wt% yttria, and lanthanum acetate as an additional source of lanthana. The weight ratio of aluminum oxide to oxygen storage component to additional lanthanum oxide was 43.6:55.7:0.7. A rhodium nitrate solution was then added to the suspension thus obtained with constant stirring. The resulting coating suspension was used directly to coat a commercially available substrate, with the coating taking place over 100% of the substrate length. The total loading of this washcoat on the catalyst was 122 g/L, the precious metal loading was 0.177 g/L (5 g/ft 3 ). The coated catalyst thus obtained was dried and then calcined. If necessary, a layer free of precious metals can be applied as a top layer to the now coated carrier. D. Preparation of the platinum-containing SiC^/AhCh layer without TWC activity
Ein Silizium-Aluminium-Mischoxid, das aus 95 Gew.-% Aluminiumoxid und 5% Siliziumoxid besteht, wurde in Wasser suspendiert. Die so erhaltene Suspension wurde nach Einstellung des pH-Wertes auf 7.6 ±0.4 unter ständigem Rühren mit einer EA-Platin- Lösung versetzt. Die resultierende Suspension wurde gemahlen und nach Stabilisierung mit Ammoniumacetat zur Beschichtung eines handelsüblichen Trägers eingesetzt, wobei die Beschichtung über 100% der Trägerlänge erfolgte. Die Gesamtbeladung dieses Washcoats auf dem Katalysator betrug 25 g/L, die Edelmetallbeladung 0.106 g/L (3 g/ft3). Der so erhaltene beschichtete Katalysator wurde getrocknet und anschließend kalziniert. Auf den nun beschichteten Träger können gegebenenfalls weitere Schichten als Top-Layer aufgebracht werden. A silicon-aluminum mixed oxide consisting of 95% by weight aluminum oxide and 5% silicon oxide was suspended in water. After adjusting the pH to 7.6 ± 0.4, the resulting suspension was mixed with an EA platinum solution with constant stirring. The resulting suspension was ground and, after stabilization with ammonium acetate, used to coat a commercially available carrier, with the coating taking place over 100% of the carrier length. The total loading of this washcoat on the catalyst was 25 g/L, the precious metal loading was 0.106 g/L (3 g/ft 3 ). The coated catalyst thus obtained was dried and then calcined. If necessary, further layers can be applied as a top layer to the now coated carrier.
Es wurden Katalysatoren wie in den Fig. 4 und 5 schematisch gezeigt hergestellt. Catalysts were prepared as shown schematically in Figures 4 and 5.
E. Alterung und Testung der ASCs E. Aging and testing of ASCs
Alterungsbedingungen: Aging conditions:
Zur Bestimmung der katalytischen Eigenschaften der erfindungsgemäßen Katalysatoren wurden diese zunächst in einer Motorprüfstandsalterung hinter einem motornahen TWC in Unterboden-Position gealtert („Fuel-Cut-Alterung“). Die Alterung besteht aus einer Schubabschaltungsalterung mit 950 °C Abgastemperatur vor dem Eingang des motornahen TWC (Maximale Betttemperatur 1030 °C). Die Alterungsdauer und die Einlasstemperatur für den Katalysator in Unterboden-Position sind jeweils individuell für jeden Test angegeben. To determine the catalytic properties of the catalysts according to the invention, they were first aged in an engine test bench aging behind a TWC close to the engine in the underbody position (“fuel-cut aging”). The aging consists of fuel cut-off aging with an exhaust gas temperature of 950 °C in front of the inlet of the TWC close to the engine (maximum bed temperature 1030 °C). The aging time and the inlet temperature for the catalytic converter in the underbody position are specified individually for each test.
Testbedingungen: Test conditions:
Die unterschiedlichen Katalysatoren wurden in Unterboden-Position an einem hochdynamischen Motorprüfstand in einem WLTC-Fahrzyklus getestet. Hierbei wurde ein in Serie produzierter Pd/Rh-haltiger TWC im gealterten Zustand in motornaher Position platziert. Der Wert „Verringerung der NHs-Emissionen“ bezieht sich jeweils auf die NH3- Emissionen eines Systems mit einem der gezeigten Katalysatoren in Unterboden-Position über den gesamten Fahrzyklus im Verhältnis zu den Emissionen des entsprechenden Systems in Abwesenheit eines Katalysators in Unterboden-Position. F. Ergebnisse The different catalytic converters were tested in the underbody position on a highly dynamic engine test bench in a WLTC driving cycle. Here, a series-produced TWC containing Pd/Rh was placed in an aged state in a position close to the engine. The value “reduction in NHs emissions” refers to the NH3 emissions of a system with one of the catalytic converters shown in the underbody position over the entire driving cycle in relation to the emissions of the corresponding system in the absence of a catalytic converter in the underbody position. F. Results
Vergleich eines ASCs mit einem weißen Zeolith mit einem ASC mit einer kupferhaltigen SCR-Beschichtung: Comparison of an ASC with a white zeolite with an ASC with a copper-containing SCR coating:
Siehe Fig. 4 See Fig. 4
Alle Katalysatoren mit Oxidationsschicht enthalten 1 g/ft3 Pt. All catalysts with oxidation layer contain 1 g/ft 3 pt.
Alterung: Fuel-Cut-Alterung, 76 h, 800 °C Einlasstemperatur für die Katalysatoren in Unterboden-Position Aging: Fuel-cut aging, 76 h, 800 °C inlet temperature for the catalytic converters in the underbody position
Volumen des Unterboden-Katalysators: 1 L Volume of the underbody catalytic converter: 1 L
Ein Katalysator, in dem eine kupferfreie Zeolith-Schicht in einem geschichteten Design mit einer Oxidationsschicht mit 1 g/ft3 Pt kombiniert ist, zeigt eine verbesserte katalytische Performance im Vergleich zu einem entsprechenden Katalysator, in dem an Stelle des weißen Zeolithen eine kupferhaltige SCR-Schicht verwendet wird. A catalyst in which a copper-free zeolite layer is combined in a layered design with a 1 g/ft 3 Pt oxidation layer shows improved catalytic performance compared to a corresponding catalyst in which a copper-containing SCR in place of the white zeolite layer is used.
Vergleich eines TWCs mit einem TWC in Kombination mit einer Beschichtung aus weißem Zeolith: Comparison of a TWC with a TWC combined with a white zeolite coating:
Siehe Fig. 5 See Fig. 5
Beide Katalysatoren mit TWC-Schicht enthalten 5 g/ft3 Rh. Both catalysts with TWC layer contain 5 g/ft 3 Rh.
Alterung: Fuel-Cut-Alterung, 38 h, 800 °C Einlasstemperatur für die Katalysatoren in Unterboden-Position Aging: Fuel-cut aging, 38 h, 800 °C inlet temperature for the catalytic converters in the underbody position
Volumen des Unterboden-Katalysators: 0.83 L Volume of the underbody catalytic converter: 0.83 L
Ein Katalysator, in dem eine kupferfreie Zeolith-Schicht in einem geschichteten Design mit einer TWC-Schicht mit 5 g/ft3 Rh kombiniert ist, zeigt eine verbesserte katalytische Performance im Vergleich zu einer reinen TWC-Beschichtung ohne Zeolith. A catalyst in which a copper-free zeolite layer is combined in a layered design with a TWC layer at 5 g/ft 3 Rh shows improved catalytic performance compared to a pure TWC coating without zeolite.
Anspringverhalten von TWC-Katalysatoren mit unterschiedlicher Edelmetallbeladung (siehe Tabelle 1): Light-off behavior of TWC catalysts with different precious metal loadings (see Table 1):
Katalysatoren mit einem TWC-Layer mit unterschiedlichen Edelmetallgehalten werden miteinander verglichen. Tabelle 1 zeigt die Temperaturen, bei denen die Katalysatoren nach einer Fuel-Cut-Alterung in Unterboden-Position in einem Light-Off-Test 50%-igen Umsatz für Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide zeigen. Ein niedrigerer Tso- Wert entspricht einer höheren katalytischen Aktivität. Ein ausschließlich rhodiumhaltiger Katalysator zeigt in diesem Test das beste Anspringverhalten. Catalysts with a TWC layer with different precious metal contents are compared with each other. Table 1 shows the temperatures at which the catalysts show 50% conversion for hydrocarbons, carbon monoxide and nitrogen oxides in a light-off test after fuel-cut aging in the underbody position. A lower one Tso value corresponds to a higher catalytic activity. A catalytic converter containing only rhodium shows the best starting behavior in this test.
Tab. 1 :
Figure imgf000024_0001
Table 1:
Figure imgf000024_0001

Claims

Patentansprüche Patent claims
1 . Abgassystem zur Verminderung von schädlichen Abgasbestandteile von Verbrennungsmotoren, insbesondere überwiegend stöchiometrisch betriebenen Benzinmotoren, aufweisend einen ersten Dreiwegekatalysator und abstromseitig hierzu einen Katalysator zur Verminderung der Ammoniak-Emissionen, dadurch gekennzeichnet, dass dieser folgende Bestandteile aufweist: 1 . Exhaust system for reducing harmful exhaust gas components from internal combustion engines, in particular predominantly stoichiometrically operated gasoline engines, having a first three-way catalytic converter and, on the downstream side, a catalyst for reducing ammonia emissions, characterized in that it has the following components:
- eine erste Komponente mit einem metallfreien Zeolithen oder Zeotypen zur Speicherung von Ammoniak; - a first component with a metal-free zeolite or zeotype for storing ammonia;
- eine zweite Komponente mit einem OSC-freien Edelmetallkatalysator und/oder einem OSC-haltigen Edelmetallkatalysator. - a second component with an OSC-free precious metal catalyst and/or an OSC-containing noble metal catalyst.
2. Abgassystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Edelmetalle im OSC-freien bzw. OSC-haltigen Edelmetallkatalysator ausgewählt sind aus der Gruppe bestehend aus Palladium, Platin, Rhodium. 2. Exhaust system according to claim 1, characterized in that the precious metals in the OSC-free or OSC-containing noble metal catalyst are selected from the group consisting of palladium, platinum, rhodium.
3. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die metallfreien Zeolithe oder Zeotype zur Speicherung von Ammoniak ausgewählt sind aus der Gruppe bestehend aus CHA, AEI, LEV, FER.. 3. Exhaust system according to one of the preceding claims, characterized in that the metal-free zeolites or zeotypes for storing ammonia are selected from the group consisting of CHA, AEI, LEV, FER..
4. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die metallfreien Zeolithe oder Zeotype zur Speicherung von Ammoniak und der OSC-freie bzw. der OSC-haltigen Edelmetallkatalysator in separaten Beschichtungen vorliegen. 4. Exhaust system according to one of the preceding claims, characterized in that the metal-free zeolites or zeotypes for storing ammonia and the OSC-free or OSC-containing noble metal catalyst are present in separate coatings.
5. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Falle des Vorhandenseins von OSC-haltigen Edelmetallkatalysatoren die Edelmetalle dabei sowohl auf temperaturstabilen, hochoberflächigen Trägermaterialien als auch auf den Sauerstoffspeichermaterialien abgeschieden vorliegen. 5. Exhaust system according to one of the preceding claims, characterized in that in the case of the presence of OSC-containing precious metal catalysts, the precious metals are deposited both on temperature-stable, high-surface carrier materials and on the oxygen storage materials.
6. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzlich einen GPF zwischen dem ersten Dreiwegekatalysator und dem Katalysator zur Verminderung der Ammoniak-Emissionen aufweist. 6. Exhaust system according to one of the preceding claims, characterized in that it additionally has a GPF between the first three-way catalyst and the catalyst to reduce ammonia emissions.
7. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Dreiwegekatalysator und der GPF in motornaher Position verbaut sind. 7. Exhaust system according to one of the preceding claims, characterized in that the first three-way catalytic converter and the GPF are installed in a position close to the engine.
8. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Katalysator zur Verminderung der Ammoniak-Emissionen im Unterboden eines Fahrzeugs in Abgasrichtung an letzter Stelle verbaut ist. 8. Exhaust system according to one of the preceding claims, characterized in that the catalytic converter is installed last in the exhaust direction in the underbody of a vehicle to reduce ammonia emissions.
9. Verfahren zur Verminderung schädlichen Abgasbestandteile von überwiegend stöchiometrisch betriebenen Verbrennungsmotoren, insbesondere fremdgezündeten Benzinmotoren,' dadurch gekennzeichnet, dass das Abgas über ein Abgassystem gemäß einem der vorhergehenden Ansprüche geleitet wird. 9. A method for reducing harmful exhaust gas components from predominantly stoichiometrically operated internal combustion engines, in particular spark-ignited gasoline engines, characterized in that the exhaust gas is passed through an exhaust system according to one of the preceding claims.
PCT/EP2023/059080 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions WO2023198571A1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
DE102022108768 2022-04-11
DE102022108768.9 2022-04-11
DE102022119442 2022-08-03
DE102022119442.6 2022-08-03
DE102022119443.4 2022-08-03
DE102022119443 2022-08-03
DE102022119441.8 2022-08-03
DE102022119441 2022-08-03
DE102023101763.2 2023-01-25
DE102023101779.9 2023-01-25
DE102023101779.9A DE102023101779A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101772.1A DE102023101772A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101768.3A DE102023101768A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101763.2A DE102023101763A1 (en) 2022-04-11 2023-01-25 Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions
DE102023101772.1 2023-01-25
DE102023101768.3 2023-01-25

Publications (1)

Publication Number Publication Date
WO2023198571A1 true WO2023198571A1 (en) 2023-10-19

Family

ID=85984972

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/EP2023/059078 WO2023198569A1 (en) 2022-04-11 2023-04-06 Ammonia-blocking catalyst for stoichiometric internal combustion engines
PCT/EP2023/059084 WO2023198575A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059080 WO2023198571A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059079 WO2023198570A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059081 WO2023198572A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059087 WO2023198577A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059083 WO2023198574A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059082 WO2023198573A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2023/059078 WO2023198569A1 (en) 2022-04-11 2023-04-06 Ammonia-blocking catalyst for stoichiometric internal combustion engines
PCT/EP2023/059084 WO2023198575A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/EP2023/059079 WO2023198570A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059081 WO2023198572A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059087 WO2023198577A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059083 WO2023198574A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions
PCT/EP2023/059082 WO2023198573A1 (en) 2022-04-11 2023-04-06 Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions

Country Status (1)

Country Link
WO (8) WO2023198569A1 (en)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024258A1 (en) 1979-08-14 1981-02-25 Ciba-Geigy Ag Manufacture of pharmaceutical compositions for the treatment of herpes infections
US5120695A (en) 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1882832A2 (en) 2006-07-08 2008-01-30 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1892395A1 (en) 2006-08-16 2008-02-27 MAN Nutzfahrzeuge AG Exhaust gas treatment system
WO2008106523A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
WO2011110919A1 (en) 2010-03-08 2011-09-15 Johnson Matthey Public Limited Company Improvements in control of emissions
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
WO2012135871A1 (en) 2011-03-29 2012-10-04 Basf Corporation Multi-component filters for emissions control
DE102013210270A1 (en) 2013-06-03 2014-12-04 Umicore Ag & Co. Kg three-way
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
US9440192B2 (en) * 2009-01-16 2016-09-13 Basf Corporation Diesel oxidation catalyst and use thereof in diesel and advanced combustion diesel engine systems
US20170014766A1 (en) * 2014-03-13 2017-01-19 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
EP3247493A1 (en) 2015-01-19 2017-11-29 Umicore AG & Co. KG Double-layer three-way catalyst with improved ageing stability
WO2019219816A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
EP3601755A1 (en) 2017-03-23 2020-02-05 Umicore AG & Co. KG Catalytically active particulate filter
DE102019100099A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Process for the production of catalytically active wall flow filters
US20200282385A1 (en) * 2019-03-06 2020-09-10 Johnson Matthey Public Limited Company LEAN NOx TRAP CATALYST
EP3727655A1 (en) 2017-12-19 2020-10-28 UMICORE AG & Co. KG Single-layer 3-way catalytic converter
EP3737491A1 (en) 2019-03-29 2020-11-18 UMICORE AG & Co. KG Catalytically active particulate filter
DE102020101876A1 (en) 2020-01-27 2021-07-29 Umicore Ag & Co. Kg Double-layer three-way catalyst with further improved aging stability
EP3915679A1 (en) 2020-05-26 2021-12-01 UMICORE AG & Co. KG Ammonia emissions reduction catalyst, catalyst system, and exhaust gas purification system
US20220010714A1 (en) * 2014-12-08 2022-01-13 Basf Corporation Nitrous oxide removal catalysts for exhaust systems

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1419810B1 (en) * 2000-06-22 2007-02-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
JP3855266B2 (en) * 2001-11-01 2006-12-06 日産自動車株式会社 Exhaust gas purification catalyst
PL2117707T5 (en) 2007-02-27 2019-01-31 Basf Corporation Copper cha zeolite catalysts
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
DE102010007499A1 (en) 2010-02-09 2011-08-11 Umicore AG & Co. KG, 63457 Volumetric coating arrangement
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
WO2014062949A1 (en) 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve as high temperature scr catalyst
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
CN104661749B (en) * 2013-05-27 2017-03-15 马自达汽车株式会社 Exhaust gas catalytic conversion and preparation method thereof
BR112016001924B1 (en) * 2013-07-30 2021-09-28 Johnson Matthey Public Limited Company CATALYST ARTICLE, SYSTEM AND METHOD TO TREAT EXHAUST GAS
US20150231617A1 (en) 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
US9149768B1 (en) 2014-03-27 2015-10-06 General Electric Company Emission control in rich burn natural gas engines
US20150290632A1 (en) 2014-04-09 2015-10-15 Ford Global Technologies, Llc IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
RU2715539C2 (en) * 2015-06-18 2020-02-28 Джонсон Мэтти Паблик Лимитед Компани Nh3 overdosing-tolerant scr catalyst
BR112018003261B1 (en) * 2015-08-21 2021-08-03 Basf Corporation CATALYST, EXHAUST GAS TREATMENT SYSTEM, AND, EXHAUST GAS TREATMENT METHOD
MX2018013204A (en) 2016-04-26 2019-02-21 Basf Corp Zoned configuration for oxidation catalyst combinations.
PL3357558T3 (en) * 2017-02-03 2020-03-31 Umicore Ag & Co. Kg Catalyst for cleaning diesel engine exhaust gases
EP3579970B1 (en) * 2017-02-08 2022-04-06 BASF Corporation Catalytic article
CN109225316B (en) * 2018-10-08 2020-03-31 中自环保科技股份有限公司 Tail gas treatment catalyst and preparation method and application thereof
US11073057B2 (en) * 2019-01-31 2021-07-27 Hyundai Motor Company Co clean-up catalyst, after treatment system and after treatment method
EP3885040A1 (en) * 2020-03-24 2021-09-29 UMICORE AG & Co. KG Ammonia oxidation catalyst

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024258A1 (en) 1979-08-14 1981-02-25 Ciba-Geigy Ag Manufacture of pharmaceutical compositions for the treatment of herpes infections
US5120695A (en) 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1882832A2 (en) 2006-07-08 2008-01-30 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
EP1892395A1 (en) 2006-08-16 2008-02-27 MAN Nutzfahrzeuge AG Exhaust gas treatment system
WO2008106523A2 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
US9440192B2 (en) * 2009-01-16 2016-09-13 Basf Corporation Diesel oxidation catalyst and use thereof in diesel and advanced combustion diesel engine systems
WO2011110919A1 (en) 2010-03-08 2011-09-15 Johnson Matthey Public Limited Company Improvements in control of emissions
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
WO2012135871A1 (en) 2011-03-29 2012-10-04 Basf Corporation Multi-component filters for emissions control
DE102013210270A1 (en) 2013-06-03 2014-12-04 Umicore Ag & Co. Kg three-way
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
US20170014766A1 (en) * 2014-03-13 2017-01-19 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
US20220010714A1 (en) * 2014-12-08 2022-01-13 Basf Corporation Nitrous oxide removal catalysts for exhaust systems
EP3247493A1 (en) 2015-01-19 2017-11-29 Umicore AG & Co. KG Double-layer three-way catalyst with improved ageing stability
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
EP3601755A1 (en) 2017-03-23 2020-02-05 Umicore AG & Co. KG Catalytically active particulate filter
EP3727655A1 (en) 2017-12-19 2020-10-28 UMICORE AG & Co. KG Single-layer 3-way catalytic converter
WO2019219816A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
DE102019100099A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Process for the production of catalytically active wall flow filters
US20200282385A1 (en) * 2019-03-06 2020-09-10 Johnson Matthey Public Limited Company LEAN NOx TRAP CATALYST
EP3737491A1 (en) 2019-03-29 2020-11-18 UMICORE AG & Co. KG Catalytically active particulate filter
DE102020101876A1 (en) 2020-01-27 2021-07-29 Umicore Ag & Co. Kg Double-layer three-way catalyst with further improved aging stability
EP3915679A1 (en) 2020-05-26 2021-12-01 UMICORE AG & Co. KG Ammonia emissions reduction catalyst, catalyst system, and exhaust gas purification system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHERW.M. MEIERD.H. OLSON: "Atlas of Zeolite Framework Types", 2001, ELSEVIER
R. HECK ET AL.: "Catalytic Air Pollution Control", COMMERCIAL TECHNOLOGY, 1995, pages 90
W.M. MEIER, PURE & APPL. CHEM., vol. 58, no. 10, 1986, pages 1323 - 1328

Also Published As

Publication number Publication date
WO2023198569A1 (en) 2023-10-19
WO2023198574A1 (en) 2023-10-19
WO2023198572A1 (en) 2023-10-19
WO2023198570A1 (en) 2023-10-19
WO2023198577A1 (en) 2023-10-19
WO2023198575A1 (en) 2023-10-19
WO2023198573A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP2335810B1 (en) Selective catalytic reduction of nitrogen oxides in the exhaust gas of diesel engines
EP3727653B1 (en) Catalytically active particulate filter
DE102014110701B4 (en) Oxidation catalytic converter for treating exhaust gas from a diesel engine, its uses and method for its production
DE102012222801B4 (en) Exhaust system and use of a washcoat
DE102012218254B4 (en) EXHAUST SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
EP1961933B1 (en) Catalytically activated diesel particulate filter with ammoniac blocking action
DE102016118542A1 (en) A CATALYST AND A SCR CATALYST CATALYTIC FILTER
EP2718011B1 (en) Process for the selective catalytic reduction of nitrogen oxides in the exhaust gases of diesel engines
DE102013223839A1 (en) Catalyzed soot filter for treating the exhaust gas of a compression ignition engine
DE112011103996T5 (en) Metal-containing zeolite catalyst
DE102014105736A1 (en) A spark-ignition engine and exhaust system comprising a catalyzed zoned filter substrate
DE102012222807A1 (en) Exhaust system for a lean-burn internal combustion engine comprising an SCR catalyst
DE102012025751A1 (en) An exhaust system for a lean-burn internal combustion engine comprising a PGM component and an SCR catalyst
DE102014104748A1 (en) Filter substrate comprising a three-way catalyst.
DE102014102023A1 (en) OXIDATION CATALYST FOR A COMBUSTION ENGINE
DE102016112536A1 (en) Nitrogen oxide (NOx) storage catalyst
DE102010011404A1 (en) Sulfur tolerant, perovskite supported catalysts
DE102017116461A1 (en) CATALYST BINDER FOR FILTER SUBSTRATES
DE102010056223A1 (en) Exhaust system for a vehicle engine with spark ignition
DE102017122000A1 (en) Oxidation catalyst for a diesel engine exhaust
EP2640513A1 (en) Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
EP3601755A1 (en) Catalytically active particulate filter
DE102017117695A1 (en) Diesel oxidation catalyst having a trap region for sulfur-containing impurities
DE102017109169A1 (en) exhaust system
EP3695902A1 (en) Catalyst for reducing nitrogen oxides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23716600

Country of ref document: EP

Kind code of ref document: A1