WO2023198213A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2023198213A1
WO2023198213A1 PCT/CN2023/088549 CN2023088549W WO2023198213A1 WO 2023198213 A1 WO2023198213 A1 WO 2023198213A1 CN 2023088549 W CN2023088549 W CN 2023088549W WO 2023198213 A1 WO2023198213 A1 WO 2023198213A1
Authority
WO
WIPO (PCT)
Prior art keywords
air inlet
configuration
air
airflow
operating element
Prior art date
Application number
PCT/CN2023/088549
Other languages
English (en)
French (fr)
Inventor
徐伟
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220888270.0U external-priority patent/CN217446684U/zh
Priority claimed from CN202220875734.4U external-priority patent/CN217826746U/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023198213A1 publication Critical patent/WO2023198213A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the embodiments of the present application relate to the technical field of electronic atomization, and in particular, to an electronic atomization device.
  • Smoking products eg, cigarettes, cigars, etc.
  • Smoking products burn tobacco during use to produce tobacco smoke. Attempts have been made to replace these tobacco-burning products by creating products that release compounds without burning them.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • aerosol-providing articles such as so-called vaping devices. These devices typically contain a liquid that is heated so that it vaporizes, creating an inhalable aerosol. The liquid may contain nicotine and/or flavors and/or aerosol-generating substances (eg, glycerin).
  • an airflow sensor senses the user's suction action, and controls the vaporization of liquid to generate aerosol based on the sensing of the airflow sensor.
  • One embodiment of the present application provides an electronic atomization device, including:
  • Liquid storage chamber for storing liquid matrix
  • Atomization component used to atomize liquid matrix to generate aerosol
  • first air inlet a first air inlet, and a first air flow channel located between the first air inlet and the suction port;
  • the first air inlet, the suction port and the first air flow channel are arranged to define a first air flow path from the first air inlet via the atomizing assembly to the suction port to transfer the aerosol Passed to the suction port;
  • An airflow sensor is in airflow communication with the first airflow channel and is used to sense airflow changes in the first airflow channel;
  • Battery core used to provide power to the atomization component
  • a circuit configured to control the battery core to provide power to the atomization component according to the sensing result of the airflow sensor
  • the operating element is arranged to be configurable between a first configuration and a second configuration; wherein the operating element closes or covers the first air inlet in the first configuration to prevent outside air from flowing through the first air inlet.
  • An air inlet enters and the operating element opens or reveals the first air inlet in the second configuration.
  • the circuit is configured to prevent the battery core from providing power to the atomizing assembly when the operating element is in the first configuration.
  • the second air inlet, the suction port, and the second air flow channel are arranged to define a distance from and a second airflow path from the first air inlet to the suction port.
  • the operating element opens or reveals the second air inlet in the first configuration; and the operating element closes or covers the second air inlet in the second configuration to Prevent outside air from entering through the second air inlet.
  • the area of the second air inlet is larger than the area of the first air inlet.
  • a housing at least partially defining a surface of the electronic atomization device
  • the operating element is at least partially exposed outside the housing and is configured to be moveable relative to the housing to change the configuration between the first configuration and the second configuration.
  • a damping element is located between the operating element and the housing for providing damping in the movement of the operating element.
  • the airflow sensor includes a first side and a second side opposite to each other; , the first side is in airflow communication with the first airflow channel;
  • the outer shell is also provided with air holes for connecting the second side to the outside atmosphere;
  • the operating element closes or covers the air hole in the first configuration to isolate the second side from the outside atmosphere, thereby preventing the airflow sensor from sensing airflow changes in the first airflow channel; the operating element
  • the air hole is opened or exposed in the second configuration to communicate the second side to the outside atmosphere.
  • the operating element prevents the airflow sensor from sensing changes in airflow of the first airflow channel in a first configuration, and allows the airflow sensor to sense changes in the first airflow channel in a second configuration. Airflow changes in airflow channels.
  • Another embodiment of the present application also provides an electronic atomization device, including:
  • Liquid storage chamber for storing liquid matrix
  • Atomization component used to atomize liquid matrix to generate aerosol
  • the first air inlet passes through the first air flow path of the atomization assembly to the inhalation port to deliver the aerosol to the inhalation port;
  • An airflow sensor includes an opposite first side and a second side; wherein the first side is in airflow communication with the first airflow channel;
  • Battery core used to provide power to the atomization component
  • an operating element arranged to be configurable between a first configuration and a second configuration; wherein the operating element in the first configuration closes or covers the air hole to isolate the second side from the outside atmosphere, The airflow sensor is thereby prevented from sensing airflow changes in the first airflow channel; the operating element opens or exposes the air hole in the second configuration to connect the second side with the outside atmosphere to allow the The airflow sensor senses airflow changes in the first airflow channel.
  • the above electronic atomization device locks the electronic atomization device in the first configuration through the operating element to prevent aerosol from being provided to users, especially minors.
  • Figure 1 is a schematic diagram of an electronic atomization device provided by an embodiment
  • Figure 2 is a schematic diagram of the electronic atomization device in Figure 1 from another perspective;
  • Figure 3 is an exploded schematic view of some components of the electronic atomization device in Figure 2 before assembly;
  • Figure 4 is an exploded schematic diagram of the operating element and damping element in Figure 3 from another perspective;
  • Figure 5 is a schematic diagram of the operating components in Figure 2 in a configuration state
  • Figure 6 is a schematic diagram of the operating element in Figure 5 moving to another configuration state
  • Figure 7 is a schematic cross-sectional view of the electronic atomization device in Figure 2;
  • Figure 8 is a schematic cross-sectional view of the operating element in Figure 7 in a configuration state
  • Figure 9 is a schematic cross-sectional view of the operating element in Figure 8 moving to another configuration state
  • Figure 10 is an exploded schematic diagram of some components of an electronic atomization device according to another embodiment
  • Figure 11 is a schematic cross-sectional view of the electronic atomization device in Figure 10.
  • Figure 12 is a schematic cross-sectional view of the operating element in Figure 11 in a configuration state
  • Figure 13 is a schematic cross-sectional view of the operating element in Figure 12 moving to another configuration state
  • Figure 14 is a schematic diagram of the operating elements in Figure 10 in a configuration state
  • Figure 15 is a schematic diagram of the operating element in Figure 14 moving to another configuration state
  • Figure 16 is a cross-sectional view of an electronic atomization device according to another embodiment
  • Figure 17 is an exploded view of the atomization assembly in Figure 16;
  • Figure 18 is a cross-sectional view of the electronic atomization device of Figure 16 from another perspective;
  • Figure 19 is an exploded view of the electronic atomization device of Figure 16.
  • Figure 20 is a perspective view of the electronic atomization device in Figure 16 with the rotating sleeve removed;
  • Figure 21 is a perspective view of the sleeve of the electronic atomization device of Figure 16.
  • Figure 22 is a perspective view of the rotating sleeve of the electronic atomization device of Figure 16;
  • Figure 23 is a cross-sectional view of the electronic atomization device of Figure 16 from another perspective;
  • Figure 24 is a cross-sectional view of an electronic atomization device according to another embodiment.
  • Figure 25 is an exploded view of the electronic atomization device of Figure 24;
  • Figure 26 is a perspective view of the operating element of the electronic atomization device of Figure 24 in a first configuration
  • Figure 27 is a perspective view of the operating element of the electronic atomization device of Figure 24 in a third configuration
  • Figure 28 is a perspective view of the operating element of the electronic atomization device of Figure 24 in a second configuration.
  • This application proposes an electronic atomization device for atomizing a liquid matrix to generate an aerosol.
  • FIG. 1 shows a schematic diagram of an electronic atomization device 100 of a specific embodiment, including several components disposed within an outer body or housing (which may be referred to as a housing).
  • the overall design of the outer body or housing may vary, and the type or configuration of the outer body that may define the overall size and shape of the vaping device 100 may vary.
  • the elongate body may be formed from a single unitary housing, or the elongate housing may be formed from two or more separable bodies.
  • the electronic atomization device 100 may have a control body at one end that includes one or more reusable components (e.g., a battery such as a rechargeable battery and/or a rechargeable supercapacitor) and a device for controlling the The casing of various electronic devices for the operation of the article) and has an outer body or housing for suction at the other end.
  • one or more reusable components e.g., a battery such as a rechargeable battery and/or a rechargeable supercapacitor
  • a device for controlling the The casing of various electronic devices for the operation of the article and has an outer body or housing for suction at the other end.
  • the electronic atomization device 100 includes:
  • the housing 10 basically defines the outer surface of the electronic atomization device 100, and has a proximal end 110 and a distal end 120 that are opposite in the longitudinal direction; in use, the proximal end 110 is the end close to the user for vaping; the distal end 120 is away from the user. One end.
  • housing 10 may be formed from a metal or alloy such as stainless steel, aluminum.
  • suitable materials include various plastics (e.g., polycarbonate), metal-plating over plastic, ceramics, and the like.
  • the electronic atomization device 100 further includes:
  • the suction port A is used for the user to inhale; it is located at the proximal end 110 of the housing 10 .
  • the electronic atomization device 100 also includes:
  • the operating element 80 is provided at the distal end 120 of the housing 10 and is arranged to be movable along the width direction of the housing 10 .
  • the distal end 120 of the housing 10 is provided with a groove 121 extending in the width direction; the operating element 80 is at least partially accommodated and held to move within the groove 121 .
  • a limiting recess 125 extending along the width direction of the housing 10 is provided; the operating element 80 is provided with a latching protrusion 831 that extends into the limiting recess 125; furthermore, during movement, the operating element 80 is moved by the limiting recess 125. Limit the position.
  • the cooperation of the limiting recess 125 and the latching protrusion 831 prevents the operating element 80 from coming out of the groove 121 .
  • the operating element 80 is configured to be substantially perpendicular to the longitudinal direction of the housing 10 ; the operating element 80 is thin, and the length of the operating element 80 is greater than the width and is greater than the thickness.
  • the operating element 80 has a first end wall 810 and a second end wall 820 opposite in the thickness direction, and a peripheral side wall 830 extending between the first end wall 810 and the second end wall 820 .
  • the latching protrusion 831 is located on the peripheral side wall 830 .
  • the first end wall 810 of the operating element 80 is not exposed toward the groove 121 of the housing 10 , and the second end wall 820 is exposed to the distal end 120 of the housing 10 .
  • the second end wall 820 is provided with a plurality of ridges 821 to provide friction when the user presses the second end wall 820 to move the operating element 80, which is convenient for user operation.
  • the ridge 821 is perpendicular to the length direction of the operating element 80 .
  • the first end wall 810 of the operating element 80 is provided with a receiving cavity 811 , which is used to receive and install the damping element 90 .
  • the damping element 90 is made of elastic silicone, thermoplastic elastomer, elastic polymer, etc. After assembly, the damping element 90 is located between the operating element 80 and the housing 10 along the longitudinal direction of the electronic atomizer device, so that the operating element 80 Provides damping during movement.
  • the damping element 90 is also configured in a thin shape; after assembly, the damping element 90 is compressed from both sides in the thickness direction by the operating element 80 and the housing 10 .
  • the surface of the damping element 90 facing the housing 10 is provided with protrusions 91 , which may be advantageous for providing damping for squeezing or compression against the housing 10 .
  • the electronic atomization device 100 also includes:
  • the aerosol output tube 11 is arranged along the longitudinal direction; in implementation, the aerosol output tube 11 at least partially extends within the liquid storage chamber 12 and is formed by a gap between the outer wall of the aerosol output tube 11 and the inner wall of the first housing 10 The space forms a liquid storage chamber 12.
  • the first end of the aerosol output tube 11 relative to the proximal end 110 is connected to the suction port A, so as to output the aerosol generated by atomization of the atomizing component to the suction port A for suction.
  • the atomization assembly includes:
  • the liquid-conducting element 20 is made of capillary material or porous material, such as sponge, cotton fiber, porous body, etc.
  • the liquid-guiding element 20 extends perpendicularly to the longitudinal direction of the electronic atomization device 100, and the liquid-guiding element 20 at least partially extends from the liquid storage chamber 12 into the aerosol output tube 11, thereby absorbing and storing liquid substrates such as through capillary infiltration. As shown by arrow R1 in Figure 7;
  • the heating element 30 is located in the aerosol output tube 11 and surrounds the liquid-conducting element 20 for heating at least part of the liquid matrix in the liquid-conducting element 20 to generate aerosol and release it to the aerosol output tube 11 .
  • the heating element 30 is a spiral heating wire surrounding the liquid conducting element 20 .
  • the liquid-conducting element 20 can also be configured into various regular or irregular shapes, and is partially in fluid communication with the liquid storage chamber 12 to receive the liquid matrix.
  • the liquid-conducting element 20 may have a more regular or irregular shape, such as a polygonal block, a groove shape with grooves on the surface, or an arched shape with a hollow channel inside, etc.
  • the heating element 30 can be combined with the liquid-conducting element 20 through printing, deposition, sintering or physical assembly.
  • the liquid conductive element 20 may have a flat or curved surface for supporting the heating element 30 , and the heating element 30 is formed on the flat or curved surface of the liquid conductive element 20 by mounting, printing, deposition, etc.
  • the heating element 30 is a conductive track formed on the surface of the liquid-conducting element 20 .
  • the conductive tracks of the heating element 30 may be in the form of traces formed by printing.
  • heating element 30 is a patterned conductive trace.
  • heating element 30 is planar.
  • the heating element 30 is a conductive track extending in a circuitous, meandering, reciprocating or meandering manner.
  • a sealing element 40 is also provided in the housing 10 ; the sealing element 40 at least partially supports the aerosol output tube 11 and seals the liquid storage chamber 12 . Then after assembly, the liquid storage chamber 12 defined between the outer wall of the aerosol output tube 11 and the inner wall of the housing 10 is closed at the end near the proximal end 110; and the liquid storage chamber 12 is closed at the end toward the distal end 120. is sealed by sealing element 40.
  • the sealing element 40 is provided with a plug-in portion 41 extending toward the proximal end 110 for plugging the aerosol output tube 11 .
  • the sealing element 40 also defines an air channel 42 hanging through the sealing element 40 along the longitudinal direction of the electronic atomizer device to allow outside air to enter the aerosol output tube 11 during suction. As shown in FIG. 7 , the air channel 42 is at least partially surrounded by the plug portion 41 .
  • the electronic atomization device 100 also includes:
  • the bracket 130 is located between the sealing element 40 and the distal end 120; the bracket 130 is rigid and has a support arm 131, which is inserted into the sealing element 40 to provide support for the sealing element 40.
  • the electric core 140 is at least partially accommodated and held on the bracket 130 and is used to power the heating element 30 .
  • the sealing element 40 is provided with lead holes 43. After assembly, the two ends of the heating element 30 are connected to the electric core 140 through leads passing through the lead holes 43, thereby connecting the heating elements 30.
  • the electronic atomization device 100 is further provided with:
  • a circuit board (not shown in the figure) is used to control the power output by the electric core 140 to the heating element 30 .
  • the distal end 120 of the electronic atomization device 100 is provided with an air inlet for allowing outside air to enter the housing 10 during suction. Inside. And, there is a gap between the battery core 140 and the housing 10, so that the air entering from the air inlet can enter the air channel 42 of the sealing element 40 through the gap between the battery core 140 and the housing 10, and then pass through the aerosol output tube. 11 and carries the heating element 30 to heat the generated aerosol and outputs it to the inhalation port A.
  • the electronic atomization device 100 includes:
  • the airflow sensor 150 such as a microphone or a differential pressure sensor, has a first side 151 and a second side 152 that are away from each other along the longitudinal direction of the electronic atomization device 100 .
  • the first side 151 is arranged toward the battery core 140, and the first side 151 is in communication with the gap between the battery core 140 and the casing 10, and can thereby sense the airflow through the battery core during the user's suction process. 140 and the airflow in the gap between the housing 10.
  • the second side 152 is directed toward the distal end 120 and can communicate with the outside atmosphere through the hole 124 located in the slot 121 .
  • the airflow sensor 150 determines the user's suction action and outputs a high-level signal when the pressure difference between the first side 151 and the second side 152 is greater than a preset threshold based on the suction airflow; further, the circuit board (not shown in the figure) ) controls the electric core 140 to output power to the heating element 30 according to the sensing result of the airflow sensor 150 to atomize the liquid to generate an aerosol.
  • the electronic atomization device 100 includes:
  • the first air inlet channel 170 is located between the battery core 140 and the distal end 120; the first air inlet channel 170 has a first air inlet 123 located in the groove 121; the first air inlet channel 170 is used to provide external The air enters into the housing 10 through the first air inlet 123 , specifically, the external air enters through the first air inlet channel 170 into the gap between the battery core 140 and the housing 10 , and finally enters the aerosol output tube 11 .
  • the airflow sensor 150 is arranged near the distal end 120; and the airflow sensor 150 is arranged near the first air inlet 123 at the distal end 120.
  • the operating element 80 is provided with a first through hole 840
  • the damping element 90 is provided with a first through hole 840 that is opposite and connected to the first through hole 840.
  • the operating element 80 moves within the slot 121 when the user presses the second end wall 820, and has a first configuration or first position. specifically:
  • FIG. 5 and 8 show schematic diagrams of the operating element 80 in a first configuration or first position, in which the operating element 80 and the damping element 90 close the first air inlet channel 170 of the first air inlet 123.
  • the operating element 80 and the damping element 90 close the hole 124; then in the first configuration or first position, the second side 152 of the airflow sensor 150 is sealed or connected to If the outside air is isolated, the air flow sensor 150 such as a microphone or differential pressure sensor cannot be triggered.
  • the circuit board control prevents the battery core 140 from providing power to the heating element 30 and the user is unable to draw. And in this implementation, outside air cannot enter the housing 10 through the first air inlet 123. At this time, when the user suctions the suction port A, there is a large suction resistance because no suction airflow is generated.
  • Figures 6 and 9 show schematic diagrams of the operating element 80 moving into a second configuration or position in which the operating element 80 and the damping element 90 open or reveal the first air inlet channel
  • the first air inlet 123 of 170; and the hole 124 are aligned with the first through hole 840 of the operating element 80 and the second through hole 92 of the damping element 90 to communicate with the outside air; at this time, the second through hole of the air flow sensor 150 Side 152 is connected to the outside air.
  • the outside air can enter the housing 10 through the first air inlet channel 170 as shown by the arrow R4 in FIG. 9; and then along the arrow R2.
  • the air flows to the aerosol output tube 11 through the gap between the battery core 140 and the casing 10; at the same time, the airflow sensor 150 can be triggered according to the pressure difference between the first side 151 and the second side 152 being greater than the preset threshold, so that the circuit board
  • the electric core 140 is controlled to supply power to the heating element 30 to heat and generate aerosol.
  • the operating element 80 moves between the first configuration and the second configuration along the arrow P in FIGS. 5 and 6 , thereby selectively opening or closing the first air inlet channel 170 and the hole 124 .
  • closing the first air inlet channel 170 and the hole 124 forms a locked state of the electronic atomization device 100 , which prevents the heating element 30 from heating to generate aerosol and enables higher inhalation efficiency.
  • the suction resistance prevents suction; when moving to the second configuration, the first air inlet channel 170 and the hole 124 are opened or connected to form an unlocked state of the electronic atomization device 100, at which time the user can perform aerosol inhalation.
  • the above electronic atomization device 100 can prevent users, especially minors, from vaping through the locked state.
  • the electronic atomization device 100 can detect the position of the operating element 80 through sensing devices such as distance sensors, light sensors, etc., to determine the configuration state of the operating element 80; and prevent the generation of aerosol in the first configuration.
  • Figures 10 to 15 show an electronic atomization device 100 of yet another more preferred embodiment; in this implementation, the electronic atomization device 100 includes:
  • the housing 10a has a proximal end 110a and a distal end 120a that are away from each other in the longitudinal direction; the housing 10a is provided with an aerosol output tube 11a and a liquid storage chamber 12a close to the proximal end 110a;
  • the liquid-conducting element 20a extends from the liquid storage chamber 12a into the aerosol output tube 11a to absorb the liquid matrix; the heating element 30a is located in the aerosol output tube 11a and surrounds the liquid-conducting element 20a to heat at least one element in the liquid-conducting element 20a. Some liquid matrices generate aerosols;
  • the sealing element 40a seals the liquid storage chamber 12a and has a plug-in part 41a for the aerosol output tube 11a to be plugged into; the sealing element 40a is provided with a lead hole 43a for the lead to pass through the lead hole 43a to connect the heating element 30a to the electrical circuit.
  • the bracket 130a is rigid and has a support arm 131a that is inserted into the sealing element 40a to provide support for the sealing element 40a;
  • the electric core 140a is accommodated and held in the bracket 130a; used to output power to the heating element 30a;
  • a circuit board (not shown in the figure) is used to output power to the heating element 30a according to the control cell 140a.
  • the electronic atomization device 100 of this embodiment further includes:
  • the first side 151a of the airflow sensor 150a is arranged toward the battery core 140a, and the first side 151a is in airflow communication with the gap between the battery core 140a and the housing 10a, and can thereby sense the flow through the battery core during the user's suction process.
  • the second side 152a is toward the distal end 120a and can communicate with the outside air through the hole 124a located in the groove 121a.
  • the first air inlet channel 170a has a first air inlet 123a located in the slot 121a; the first air inlet channel 170a is used for external air to enter the housing 10a through the first air inlet 123a. Inside, specifically, the outside air is allowed to enter from the first air inlet channel 170a to the gap between the battery core 140a and the housing 10a, and then finally enter the aerosol output pipe 11a.
  • the second air inlet channel 160a has a second air inlet channel 160a located in the groove 121a.
  • the air port 122a; the second air inlet channel 160a is used for allowing outside air to enter the housing 10a through the second air inlet 122a.
  • Operating element 80a and damping element 90a located at distal end 120a and movable within slot 121a of housing 10a, are selectively configured between a first configuration and a second configuration. specifically:
  • FIGS. 12 and 14 show schematic diagrams of a first configuration in which the operating element 80a blocks or closes the first air inlet 123a and the hole 124a of the first air inlet channel 170a; to prevent the airflow sensor 150a from triggering the locking electronic Atomization device 100.
  • the outside air can enter the housing 10a through the second air inlet 122a of the second air inlet channel 160a, as shown by the arrow R3 in Figure 12; and then passes through the electricity
  • the gap between the core 140a and the housing 10a flows to the air channel 42a and the aerosol output tube 11a.
  • the electronic atomization device 100 of this embodiment in the locked state, the user does not heat to generate aerosol when inhaling, but the airflow still passes through the electronic atomization device 100; in the locked state, the air can still be sucked without large
  • the suction resistance is beneficial to avoid causing minors to discover or discover that the electronic atomizer 100 is locked.
  • the area of the second air inlet 122a is larger than the area of the first air inlet 123a.
  • the hole 124a passes through the first through hole 840a of the operating element 80a and the second through hole 92a of the damping element 90a.
  • the first air inlet 123a of the first air inlet channel 170a is open or exposed, and the outside air can enter the housing 10a along the arrow R4 in the figure during suction.
  • the electronic atomization device 100 is in an unlocked state.
  • the airflow sensor 150a such as a microphone or a differential pressure sensor, can trigger and generate a high-level signal in response to the inhalation action.
  • the circuit board then controls the battery core 140a according to the triggering of the airflow sensor 150a. Electric power is output to heating element 30a.
  • the second air inlet 122a of the second air inlet channel 160a is blocked or closed to prevent outside air from entering the housing 10a through the second air inlet channel 160a.
  • the electronic atomization device 100 of this preferred embodiment prevents the generation of aerosol when in the locked state and still has airflow through the electronic atomization device 100 , which is advantageous for preventing minors from discovering that the electronic atomization device 100 is locked.
  • the air entering the housing 10a through the second air inlet channel 160a avoids the first side 151a of the airflow sensor 150a; or In the locked state, the airflow during suction is separated from the first side 151a of the airflow sensor 150a; this is further advantageous for preventing the triggering of the airflow sensor 150a.
  • the cross-sectional area of the first air inlet channel 170a is smaller than the cross-sectional area of the second air inlet channel 160a; It is advantageous to further avoid being targeted by minors.
  • the second air inlet 122a has a hole diameter of about 1 to 3 mm; and the number of the second air inlet 122a includes multiple, for example, as shown in Figure 14, it is arranged in an annular shape. 6.
  • both the first air inlet channel 170a and the second air inlet channel 160a extend along the longitudinal direction of the electronic atomization device 100; and the first air inlet channel 170a and the second air inlet channel 160a extend along the electronic atomization device 100.
  • the atomizing devices 100 are arranged at intervals in the width direction.
  • the airflow sensor 150a is located between the first air inlet channel 170a and the second air inlet channel 160a along the width direction of the electronic atomization device 100.
  • the airflow sensor 150a is close to the center of the electronic atomization device 100 in the width direction; and the first air inlet channel 170a and/or the second air inlet channel 160a is offset from the center of the electronic atomization device 100 in the width direction.
  • the housing 10/10a of the electronic atomization device 100 is configured to have a longitudinal cylindrical shape different from the above flat shape; the operating element 80/80a is an annular shape that at least partially surrounds the housing 10/10a. or arc shape.
  • the position of the operating element 80/80 is adjusted to be configured between the first configuration and the second configuration by driving the operating element 80/80a to rotate around the circumference of the housing 10/10a.
  • the first air inlet channel 170/170a and the first air inlet 123/123a are respectively arranged at a position far away from the distal end 120/120a; for example, in some implementations, the first air inlet channel 170/170a and the first air inlet 123/123a are located between the battery core 140/140a and the sealing element 40/40a. Or for example, in some implementations, the first air inlet channel 170/170a and the first air inlet port 123/123a are defined between the bracket 130/130a and the sealing element 40/40a. Then the operating elements 80/80a are correspondingly adjusted and arranged at corresponding positions on the housing 10/10a.
  • Figures 16 to 23 show an electronic atomization device 100 of yet another embodiment; in this implementation, the housing 10b of the electronic atomization device 100 includes a longitudinally opposite suction nozzle end and an open end.
  • the portion of the housing 10b adjacent to the suction nozzle end is configured as a flat suction port B.
  • the interior of the suction port B is provided with a suction port along its longitudinal direction.
  • the penetrating nozzle port B1 is mainly in contact with the inhalation port B when the user uses the electronic atomization device 100 .
  • the atomizer assembly and the battery 16b are installed in the inner cavity of the casing 10b from the end opening of the casing 10b.
  • a bottom cover is also provided at the open end of the casing 10b.
  • the bottom cover In addition to covering the open end of the casing 10b, the bottom cover also Used to provide longitudinal support for battery components.
  • a part of the inner cavity of the housing 10b is configured as a liquid storage chamber 12b, and the liquid storage chamber 12b is used to store a liquid matrix.
  • the liquid storage chamber 12b is defined by a liquid storage tube 121b fixed in the inner cavity of the housing 10b.
  • the inner cavity of the liquid storage tube 121b is filled with a liquid storage element 122b.
  • the liquid storage element 122b can be made of Fiber cotton with liquid storage capacity is defined and formed.
  • the atomization assembly includes an atomization core assembly and an electronic atomization device 100 for supporting the atomization core assembly.
  • the atomization core assembly includes a heating element 30b and a liquid-conducting element 20b.
  • the heating element 30b is used to atomize the liquid matrix to generate an aerosol. At least a part of the liquid-conducting element 20b is combined with the heating element 30b, and the other part of the liquid-conducting element 20b extends To the inside of the liquid storage chamber 12b or to maintain a fluid channel with the liquid storage chamber 12b, the liquid matrix inside the liquid storage chamber 12b is provided to the heating element 30b.
  • the atomization core assembly of the electronic atomization device 100 generally uses a lower-cost cotton core atomization core assembly.
  • the liquid-conducting element 20b is made of fiber cotton material
  • the heating element 30b is made of fiber cotton.
  • One or more metals in iron, chromium and nickel are made into a spiral heating wire or a heating plate with a grid structure.
  • the heating element 30b is configured as a heating plate with a grid structure.
  • the heating plate is configured as an unclosed tubular-like structure.
  • the liquid-conducting element 20b is fixed on the outer periphery of the heating element 30b so as to Heating element 30b is enclosed within its interior cavity.
  • the atomizing core assembly is placed in the inner cavity of the housing 10b by means of a generally tubular bracket 23b.
  • the bracket 23b has a cavity with open openings at both ends.
  • the side wall of the bracket 23b is provided with two U-shaped openings that penetrate to the upper end of the bracket.
  • the liquid-conducting element 20b is generally formed by stacking several layers of fiber cotton sheets.
  • the two free ends of the fiber cotton sheets are overlapped together to form a raised structure, and several layers of fiber cotton sheets stacked together are fixed on one of the U-shaped openings 231b on the bracket 23b by means of the raised structure.
  • a step surface is provided on the inner wall of the bracket 23b.
  • the lower end of the liquid guide element 20b is longitudinally abutted against the step surface of the inner wall.
  • the upper end of the U-shaped opening 231b extends to the open upper end of the bracket 23b.
  • the lower end of the U-shaped opening 231b Flush with the steps.
  • a liquid inlet 232b is also provided on the side wall of the bracket 23b, and the liquid inlet 232b is provided in the U-shaped opening 231b. within the vertical extension range.
  • An air outlet pipe 24b is set at the upper end of the bracket 23b.
  • One end of the air outlet pipe 24b is in contact with the flange on the outer wall of the bracket 23b.
  • the other end of the air outlet pipe 24b extends out of the inner cavity of the liquid storage pipe 121b.
  • the liquid storage element 122b filled inside the liquid storage tube 121b is made up of several parts of fiber cotton, which are assembled around the bracket 23b and the outer periphery of the air outlet tube.
  • the convex structure on the liquid guide element 20b can directly contact the fiber cotton. Thereby, the liquid substrate is absorbed, and at the same time, the liquid substrate can also enter the liquid conduction element 20b from the liquid inlet hole on the bracket 23b, and the heating element 30b atomizes the absorbed liquid substrate to generate an aerosol.
  • the liquid storage chamber 12b of the electronic atomization device 100 is usually configured to be non-fillable, thereby preventing the user from adding inferior liquid base into the liquid storage chamber 12b.
  • the liquid storage tube 121b includes a longitudinally opposite proximal end and a distal end. The proximal end is located close to the suction port B.
  • An upper seal 13b and a lower seal 14b are respectively provided at the proximal and distal ends of the liquid storage tube 121b.
  • the sealing sleeve is sealingly connected to the upper end of the liquid storage tube 121b.
  • the upper seal 13b is also provided with a groove.
  • a liquid suction element 131b is provided in the groove.
  • the liquid suction element 131b is provided close to the suction nozzle opening B1 and is selected. It is made of fiber cotton material with capillary action, so that it can absorb condensate and prevent the condensate from entering the nozzle B1 and being sucked by the user. At the same time, longitudinally penetrating fluid channels are provided on both the liquid absorbing element 131b and the upper sealing member 13b.
  • a hollow air guide column 133b is provided on the upper seal 13b, and the air guide column 133b is accommodated in the inner cavity of the air outlet pipe 24b. The vent hole on the column 133b is connected with the vent hole on the air outlet pipe 24b and the liquid suction element 131b.
  • a flange is provided on the side wall of the lower seal 14b, and the lower end of the liquid storage tube 121b abuts against the flange of the lower seal 14b.
  • the upper seal 13b is provided with a through hole communicating with the groove, the upper end of the air outlet pipe 24b is fixed in the through hole of the upper seal 13b, and the air outlet end of the air outlet pipe 24b Located close to the air outlet on the liquid-conducting element 20b, the through hole on the upper seal 13b is vertically connected to the air outlet pipe and the air vent on the liquid suction element 131b.
  • the lower seal 14b is also provided with an air guide hole 141b, which is configured to introduce external airflow into the inner cavity of the bracket 23b.
  • the lower end of the bracket 23b abuts against the step surface on the inner wall of the air guide hole 141b.
  • a positive electrode 142b and a negative electrode 143b are fixed on the lower seal 14b, and the conductive pins connected to both ends of the heating element 30b respectively penetrate the wall of the lower seal 14b and are connected to the positive electrode 142b and the negative electrode 143b.
  • the heating element 30b is configured as a heating plate with a grid structure.
  • the heating plate is configured as an unclosed tubular-like structure.
  • the conductive leads connected to both ends of the heating element 30b are kept as close as possible to the two free ends of the heating plate. extends along the longitudinal extension line of the side, so that Prevent the pulling effect on the two free sides of the heating plate to cause the heating plate to shift and affect the heating effect of the heating plate.
  • a plurality of supporting feet 144b are provided on the bottom end surface of the lower seal 14b, and the plurality of supporting feet are arranged around the air guide hole 141b. The support foot 144b abuts on the liquid absorbing element or the power supply component in the bottom cover 81b.
  • the control part of the airflow sensor 150b inside the electronic atomization device 100 is connected to the power component through wires.
  • the electronic atomization device 100 receives the air pressure changes inside the housing 10b due to the suction action through the airflow sensor 150b to control the electronic atomization device 100 opening and closing.
  • the airflow sensor has a first side 151b and a second side 152b.
  • the first side 151b is connected to the airflow channel inside the electronic atomization device 100.
  • the second side 152b is connected to the outside atmosphere through the air hole 50b.
  • the electronic atomization device 100 The internal airflow channel connects the nozzle opening B1 and the air inlet 60b.
  • the air pressure in the internal airflow channel of the electronic atomization device 100 decreases, and the air pressure between the second side 152b and the first side 151b of the electronic atomizer 100 decreases.
  • the air flow sensor 150b converts the pressure difference signal into an electrical signal to control the battery 16b to provide electric drive for the atomization assembly.
  • the air inlet 60b of the electronic atomization device 100 is generally disposed at the bottom of the bottom cover or close to the bottom end thereof.
  • the air hole 50b of the airflow sensor is also disposed close to the air inlet 60b.
  • an end of the housing 10b is also disposed.
  • the operating element 70b has the function of a child lock. Only when the operating element 70b is adjusted to the set position can the electronic atomization device 100 be started. Further, the operating element 70b is configured to be able to be in the first configuration relative to the housing 10b. and the second configuration.
  • the operating element 70b When the operating element 70b is in the first configuration, the operating element 70b is configured to close the air hole 50b and the air inlet 60b at the same time, and the electronic atomization device 100 is in a locked state; when the operating element 70b is in the third configuration, In the second configuration, the operating element 70b is configured to open the air hole 50b and the air inlet 60b simultaneously, and the electronic atomization device 100 is in an open state. When the electronic atomization device 100 is not in use, the electronic atomization device 100 is in a closed state, and the air inlet 60b and the air hole 50b of the electronic atomization device 100 are in a closed state.
  • the configuration of the operating element 70b mainly relies on a movable switch.
  • the movable switch can be configured to rotate relative to the housing 10b to open and close the electronic atomization device 100.
  • the movable switch can also be configured to slide relative to the housing 10b to open and close the electronic atomizer 100. Realize opening and closing of the electronic atomization device 100.
  • the specific structure of the movable switch will be described in detail below in conjunction with different structures of the electronic atomization device 100 .
  • the operating element 70b is configured as a rotary switch.
  • the atomization components and power components inside the electronic atomization device 100 are arranged in parallel up and down, and the airflow sensor 150b is arranged at the lower end of the battery 16b.
  • the electronic atomization device 100 includes a rotating sleeve 71b connected to one end of the housing 10b, where the rotating sleeve 71b can rotate relative to the housing 10b, and a sleeve 72b is also provided inside the rotating sleeve 71b.
  • the sleeve 72b is coaxially arranged with the rotating sleeve 71b. One end of the sleeve 72b is fixedly connected to the housing 10b.
  • the operating element 70b includes the rotating sleeve 71b and the sleeve 72b.
  • the rotating sleeve 71b rotates relative to the sleeve 72b to change the air intake.
  • the battery 16b is accommodated in the inner cavity of the sleeve 72b.
  • the length of the sleeve 72b is greater than the length of the lower housing 10b.
  • a circumferentially extending slide rail 711b is provided on the inner wall of the rotating sleeve 71b.
  • a first set of buckles 721b that is everted is provided on the sleeve 72b.
  • the first set of buckles 721b is configured to slide on the slide rail 711b.
  • the first set of buckles 721b includes a first buckle 7211b and a second buckle 7211b that are symmetrical about its axis.
  • Buckle 7212b correspondingly, a first slide rail 7111b and a second slide rail 7112b are provided symmetrically about the central axis of the rotation sleeve 71b, wherein the first buckle 7211b slides on the first slide rail 7111b, and the second slide rail 7112b slides on the first slide rail 7111b.
  • the buckle 7212b slides on the second slide rail 7112b.
  • a second set of buckles 722b is also provided on the sleeve 72b.
  • the second set of buckles 722b are snap-connected to the housing 10b, so that the sleeve 72b is fixedly arranged inside the electronic atomization device 100.
  • the first set of buckles 721b on the sleeve 72b is at one end of the slide rail 711b.
  • the first set of buckles 721b on the sleeve 72b is at The other end of the slide rail 711b.
  • a receiving cavity 723 is provided on the sleeve 72b.
  • the airflow sensor 150b is fixed in the receiving cavity 723.
  • a wire trough is provided on one side of the receiving cavity 723. The wires connected to the control board of the airflow sensor 150b are led out through the wire trough and further extended to with battery 16b and heating Element 30b is connected.
  • the air inlet 60b includes at least one air inlet hole 61b provided at intervals on the bottom end of the rotating sleeve 71b.
  • An air guide port 62b is provided on the bottom end of the sleeve 72b.
  • the air hole 50b includes at least one air inlet hole 61b provided on the bottom end of the rotating sleeve 71b.
  • the first air hole 51b on the sleeve 72b and the second air hole 52b provided on the bottom end of the sleeve 72b.
  • the second air hole 52b is connected with the receiving cavity 723 of the air flow sensor 150b, and a part of the air inlet hole 61b is connected with the first air hole 51b.
  • the rotational displacement of the air inlet 61b relative to its central axis is basically the same as the rotational displacement of the first air hole 51b relative to its central axis, so that the air intake
  • the hole 61b and the first air hole 51b can be connected to or staggered with the air guide port 62b and the second air hole 52b on the sleeve 72b respectively at the same time.
  • the air inlet hole 61b on the rotating sleeve 71b is staggered with the air guide port 62b on the sleeve 72b, and the first air hole 51b on the rotating sleeve 71b is staggered with the second air hole 52b on the sleeve 72b, in order to control the rotation
  • the air inlet hole 61b and the first air hole 51b on the sleeve 71b form a seal to prevent airflow from entering through the gap between the rotating sleeve 71b and the sleeve 72b.
  • a blocking element 73b is also provided between the rotating sleeve 71b and the sleeve 72b.
  • the blocking element 73b is configured It is made of a flexible material, so that the air inlet hole 61b and the first air hole 51b on the rotating sleeve 71b can be sealed and blocked, making it difficult for airflow to enter through the gap between them.
  • a first air guide window 63b and a second air guide window 53b are also provided on the shielding element 73b.
  • the first air guide window 63b and the second air guide window 53b are arranged symmetrically about the center of the shielding element 73b.
  • the first air guide window 63b is always connected with the air guide port 62b on the sleeve 72b.
  • the first air guide window 63b faces the air inlet 61b on the rotating sleeve 71b, and the electronic mist
  • the air flow channel inside the electronic atomizing device 100 is in longitudinal communication; when the rotating sleeve 71b is in the second configuration, the first air guide window 63b is completely staggered with the air inlet hole 61b on the rotating sleeve 71b, and the air flow channel inside the electronic atomizing device 100 is in Disabled.
  • the air hole 50b includes a second air guide window 53b.
  • the second air guide window 53b is always connected with the second air hole 52b on the sleeve 72b.
  • the second air guiding window 53b faces the rotating sleeve.
  • the first air hole 51b and the air hole 50b on the rotating sleeve 71b are in longitudinal communication; when the rotating sleeve 71b is in the second configuration, the second air guide window 53b is completely staggered with the first air hole 51b on the rotating sleeve 71b, and the air hole 50b is in a closed state.
  • the air inlet cross-sectional area of the air inlet 60b of the electronic atomization device 100 is configured to be adjustable, so that the suction resistance of the electronic atomization device 100 is configured in an adjustable mode. in one of them
  • the electronic atomization device 100 is configured in a two-stage suction resistance mode.
  • two air inlet holes 61b are provided on the end of the rotating sleeve 71b, namely the first air inlet hole 611b and the second air inlet hole 612b.
  • the An air inlet hole 611b is in longitudinal communication with the first air guide window 63b on the shielding element 73b and the air guide port 62b on the sleeve 72b, and the air flow channel is in a connected state.
  • the air guide windows are staggered, and the external airflow can only enter the interior of the electronic atomization device 100 through the first air inlet hole 611b. At this time, the electronic atomization device 100 is in the first suction resistance mode.
  • the first air inlet hole 611b and the second air inlet hole 612b are longitudinally connected with the first air guide window 63b on the shielding element 73b and the air guide port 62b on the sleeve 72b, and the external airflow You can enter the interior of the electronic atomization device 100 through the first air inlet 611b and the second air inlet 612b.
  • the electronic atomization device 100 is in the second suction resistance mode.
  • the air inlet 60b corresponding to the second suction resistance mode The air inlet cross-sectional area defined is much larger than the air inlet cross-sectional area defined by the air inlet 60b corresponding to the first suction resistance mode.
  • the user can determine whether the electronic atomization device 100 is currently in the first suction resistance mode or the second suction resistance mode by observing the opening and closing status of the first air inlet hole 611b and the second air inlet hole 612b on the bottom cover.
  • the third position is between the first configuration and the second configuration.
  • the rotating sleeve 71b corresponds to the third position.
  • the air hole 50b is in an open state, that is, the first air hole 51b on the rotating sleeve 71b, the second air guide window 53b on the shielding element 73b and the second air hole 52b on the sleeve 72b are in an open state.
  • the air inlet area of the second air guide window 53b is larger than the air inlet area of the second air hole 52b and the first air hole 51b, so that when the rotating sleeve 71b moves from the third position to the second configuration, the third air intake area on the rotating sleeve 71b
  • the two air holes 52b can always be connected with the second air guide window 53b; the air inlet area of the first air guide window 63b is larger than the air inlet areas of the first air inlet hole 611b and the second air inlet hole 612b, so that when the rotating sleeve 71b rotates
  • the first air inlet hole 611b and the second air inlet hole 612b arranged at intervals on the end surface of the rotating sleeve 71b can coincide with the first air guide window 63b at the same time; the air inlet area of the first air guide window 63b can be the same as that of the sleeve.
  • the areas of the air guide openings 62b on the tube 72b are configured to be the same to further increase the amount of air entering the interior of the electronic atomization device 100.
  • the air inlet 61b provided on the rotating sleeve 71b can be configured as an arc-shaped air inlet, so that during the rotation of the rotating sleeve 71b, the arc-shaped air inlet on the rotating sleeve 71b is in contact with the shielding element 73b
  • the overlapping area of the first air guide window 63b continuously changes, thereby continuously changing the suction resistance of the electronic atomization device 100.
  • the atomization components and power components inside the electronic atomization device 100 are arranged side by side.
  • the inner cavity of the housing 10b of the electronic atomization device 100 is divided into two chambers, namely the liquid storage chamber 12b and the battery chamber, and the suction port B is provided within the extended area of the liquid storage chamber 12b.
  • the liquid storage chamber 12b and the battery chamber are separated by the inner wall of the housing 10b.
  • a bottom cover 81b is provided at one end of the housing 10b, and the airflow sensor 150b is fixedly provided in the inner cavity of the bottom cover 81b.
  • the box-shaped electronic atomization device 100 is configured with a larger liquid storage chamber 12b, so that more liquid substrates can be stored inside.
  • the bottom cover 81b A charging interface 31b is also provided on the battery 16b.
  • the charging interface 31b is fixed on a charging plate.
  • the charging plate is arranged at the lower end of the battery 16b.
  • a receiving cavity is also provided in the inner cavity of the bottom cover 81b.
  • the airflow sensor 150b is fixed on the sealing sleeve 43b, an airflow sensing assembly is formed, and the airflow sensing assembly is fixed inside the receiving cavity.
  • the airflow sensor 150b is arranged closer to the atomization component than in the above embodiment, so a protruding air guide column 431b is provided at one end of the sealing sleeve 43b.
  • One end of the ventilation hole on the air guide column 431b is in contact with the inside of the electronic atomization device 100.
  • the air flow channels are connected, and the other end of the ventilation hole on the air guide column 431b is connected with the sensing film of the air flow sensor 150b.
  • the operating element 70b configured on the electronic atomization device 100 is set as a sliding switch 75b.
  • a chute 32b is provided on the end surface of the bottom cover 81b.
  • a strip opening 33b is provided in the chute 32b.
  • the sliding switch 75b includes an operating member and a protrusion.
  • a sliding column is provided. One end of the sliding column is connected to the operating piece. The other end of the sliding column is provided with a plug.
  • An anti-slip pattern is provided on the outer surface of the operating piece.
  • the air inlet 60b of the electronic atomization device 100 includes an air inlet 61b provided on the chute 32b.
  • the air hole 50b of the electronic atomization device 100 includes a third air hole 54b provided on the chute 32b.
  • the air inlet 61b is used for The external airflow is introduced into the inner cavity of the bottom cover 81b, thereby entering the inside of the electronic atomizer 100.
  • the first air hole 51b is connected with the receiving cavity of the airflow sensor 150b, so that the base film of the airflow sensor 150b is connected with the external atmosphere.
  • the air inlet 61b is arranged adjacent to the third air hole 54b. When the sliding switch 75b is in the first configuration, the third air hole 54b and the air inlet 61b are blocked by the sliding switch 75b.
  • the electronic atomizer device 100 airflow channels and 50b air holes All are in the closed state. If the user inhales hard in time, external airflow cannot enter the interior of the electronic atomization device 100, and the airflow sensor 150b cannot be triggered, so that the electronic atomization device 100 is in the child lock state.
  • the sliding switch 75b is in the second configuration, the first air hole 51b is staggered with the sliding switch 75b, so that the air hole 50b of the electronic atomization device 100 is in an open state, and at the same time, the air inlet 61b is staggered with the sliding switch 75b, so that the electronic atomization The air flow channel of device 100 is in an open state.
  • the suction resistance of the electronic atomization device 100 is configured to be adjustable.
  • two air inlet holes 61b are spaced in the chute 32b, which are the first air inlet hole 611b and the second air inlet hole. 612b.
  • the third air hole 54b is provided on one side of the first air inlet hole 611b.
  • the third air hole 54b, the first air inlet hole 611b and the second air inlet hole 612b are arranged adjacent to each other in sequence.
  • the sliding switch 75b also includes a first air inlet hole 612b in the first configuration.
  • the electronic atomization device 100 corresponds to the first suction resistance mode, as shown in Figure 27; when the sliding switch 75b is in the second configuration , the first air hole 51b is staggered with the sliding switch 75b, the air hole 50b is in an open state, the first air inlet hole 611b and the second air inlet hole 612b are staggered with the sliding switch 75b, the air inlet 60b is in an open state, and the electronic atomization device 100 corresponds to the first suction resistance mode, as shown in Figure 27; when the sliding switch 75b is in the second configuration , the first air hole 51b is staggered with the sliding switch 75b, the air hole 50b is in an open state, the first air inlet hole 611b and the second air inlet hole 612b are staggered with the sliding switch 75b, the air inlet 60b is in an open state, and the electronic atomization The device 100 corresponds to the second absorption resistance mode, as shown in FIG.
  • the air inlet cross-sectional area defined by the air inlet 60b in the first suction resistance mode of the electronic atomization device 100 is smaller than the air inlet cross-sectional area defined by the air inlet 60b in the second suction resistance mode. It can be understood that if a multi-stage suction resistance mode needs to be set, the air inlet 60b can be set as a strip air inlet or multiple air inlets 61b can be provided on the chute 32b by changing the position of the sliding switch 75b Then, the opening and closing states of the plurality of air inlet holes 61b are changed, thereby adjusting the suction resistance of the electronic atomization device 100.
  • the embodiment of the present application provides an operating element 70b that can simultaneously control the opening and closing states of the air hole 50b and the air inlet 60b of the electronic atomization device 100.
  • the operating element 70b When the operating element 70b is in the first configuration, the air hole 50b and the air inlet 60b are closed. The air ports 60b are all closed. Even if the user uses force to inhale, without the supplement of external airflow inside the electronic atomization device 100, the first side 151b of the airflow sensor 150b can only feel weak airflow changes, causing the electronic atomizer to The airflow sensor 150b of the chemical device 100 cannot be triggered.
  • the air hole 50b is in an open state and the user inhales the electronic atomization device 100, external airflow can pass through the air hole 50b and the connection of the airflow sensor 150b.
  • the gap between the wire and its wire fixing groove or hole enters the inside of the electronic atomization device 100, thereby generating sufficient negative pressure inside the electronic atomization device 100, which in turn causes the airflow sensor 150b to be triggered, thereby starting the electronic atomization device 100.
  • the operating element 70b can be set to a multi-level adjustment mode for further adjusting the suction resistance mode of the electronic atomization device 100, thereby improving the user experience.

Abstract

一种电子雾化装置(100),包括:储液腔(12),存储液体基质;雾化组件,用于雾化液体基质生成气溶胶;吸气口(A),第一进气口(123),及第一气流通道,共同限定从第一进气口(123)经由雾化组件到吸气口(A)的第一气流路径,以将气溶胶传递到吸气口(A);气流传感器(150),用于感测第一气流通道的气流变化;操作元件(80),被布置成能在第一配置和第二配置之间进行配置;操作元件(80)在第一配置中关闭或遮盖第一进气口(123),以阻止外界空气由第一进气口(123)进入;操作元件(80)在第二配置中打开或显露第一进气口(123);电芯(140);电路板,根据气流传感器(150)的感测控制向雾化组件提供电力。以上电子雾化装置(100),通过操作元件(80)在第一配置锁定电子雾化装置(100),以阻止向用户特别是未成年人提供气溶胶。

Description

电子雾化装置
相关申请的交叉参考
本申请要求于2022年4月15日提交中国知识产权局,申请号为202220888270.0,名称为“电子雾化装置”,以及申请号为202220875734.4,名称为“气溶胶生成装置”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子雾化技术领域,尤其涉及一种电子雾化装置。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。作为另一示例,存在有气溶胶提供制品,例如,所谓的电子雾化装置。这些装置通常包含液体,该液体被加热以使其发生汽化,从而产生可吸入的气溶胶。该液体可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。已知的电子雾化装置,由气流传感器感测用户的抽吸动作,并根据气流传感器的感测控制液体汽化生成气溶胶。
申请内容
本申请的一个实施例提供一种电子雾化装置,包括:
储液腔,用于存储液体基质;
雾化组件,用于雾化液体基质生成气溶胶;
吸气口;
第一进气口,及位于所述第一进气口与吸气口之间的第一气流通道;所 述第一进气口、吸气口和所述第一气流通道布置成限定从所述第一进气口经由所述雾化组件到所述吸气口的第一气流路径,以将气溶胶传递到所述吸气口;
气流传感器,与所述第一气流通道气流连通,用于感测所述第一气流通道内的气流变化;
电芯,用于对所述雾化组件提供电力;
电路,被配置为根据所述气流传感器的感测结果,控制所述电芯向所述雾化组件提供电力;
操作元件,被布置成能在第一配置和第二配置之间进行配置;其中,所述操作元件在第一配置中关闭或遮盖所述第一进气口,以阻止外界空气由所述第一进气口进入,所述操作元件在第二配置中打开或显露所述第一进气口。
在更加优选的实施中,所述电路被配置为当所述操作元件在第一配置时,阻止所述电芯向所述雾化组件提供电力。
在更加优选的实施中,还包括:
第二进气口,及位于所述第二进气口与吸气口之间的第二气流通道;所述第二进气口、吸气口和所述第二气流通道布置成限定从所述第一进气口到所述吸气口的第二气流路径。
在更加优选的实施中,所述操作元件在第一配置中打开或显露所述第二进气口;以及,所述操作元件在第二配置中关闭或遮盖所述第二进气口,以阻止外界空气由所述第二进气口进入。
在更加优选的实施中,所述第二进气口的面积大于所述第一进气口的面积。
在更加优选的实施中,还包括:
外壳,至少部分界定所述电子雾化装置的表面;
所述操作元件至少部分裸露于所述外壳外,并被构造成能相对于所述外壳移动,以改变在所述第一配置和第二配置之间的配置。
在更加优选的实施中,还包括:
阻尼元件,位于所述操作元件和外壳之间,以用于在所述操作元件的移动中提供阻尼。
在更加优选的实施中,所述气流传感器包括相背的第一侧和第二侧;其 中,所述第一侧与所述第一气流通道气流连通;
所述外壳上还设有气孔,以用于将所述第二侧与外界大气连通;
所述操作元件在第一配置中关闭或遮盖所述气孔,以将所述第二侧与外界大气隔离,进而阻止所述气流传感器感测所述第一气流通道的气流变化;所述操作元件在第二配置中打开或显露所述气孔,以使所述第二侧与外界大气连通。
在更加优选的实施中,所述操作元件在第一配置中阻止所述气流传感器感测所述第一气流通道的气流变化,以及在第二配置中允许所述气流传感器感测所述第一气流通道的气流变化。
本申请的又一个实施例还提出一种电子雾化装置,包括:
储液腔,用于存储液体基质;
雾化组件,用于雾化液体基质生成气溶胶;
吸气口;
第一进气口,及位于所述第一进气口与吸气口之间的第一气流通道;所述第一进气口、吸气口和所述第一气流通道布置成限定从所述第一进气口经由所述雾化组件到所述吸气口的第一气流路径,以将气溶胶传递到所述吸气口;
气流传感器,包括相背的第一侧和第二侧;其中,所述第一侧与所述第一气流通道气流连通;
气孔,用于将所述第二侧与外界大气连通;
电芯,用于对所述雾化组件提供电力;
电路,根据所述气流传感器的感测结果,控制所述电芯向所述雾化组件提供电力;
操作元件,被布置成能在第一配置和第二配置之间进行配置;其中,所述操作元件在第一配置中关闭或遮盖所述气孔,以将所述第二侧与外界大气隔离,进而阻止所述气流传感器感测所述第一气流通道的气流变化;所述操作元件在第二配置中打开或显露所述气孔,以使所述第二侧与外界大气连通,以允许所述气流传感器感测所述第一气流通道的气流变化。
以上电子雾化装置,通过操作元件在第一配置锁定电子雾化装置,以阻止向用户特别是未成年人提供气溶胶。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是一实施例提供的电子雾化装置一个视角的示意图;
图2是图1中电子雾化装置的又一个视角的示意图;
图3是图2中电子雾化装置部分部件未装配前的分解示意图;
图4是图3中操作元件与阻尼元件又一个视角的分解示意图;
图5是图2中操作元件在一个配置状态的示意图;
图6是图5中操作元件移动至又一个配置状态的示意图;
图7是图2中电子雾化装置的剖面示意图;
图8是图7中操作元件在一个配置状态的剖面示意图;
图9是图8中操作元件移动至又一个配置状态的剖面示意图;
图10是又一个实施例的电子雾化装置部分部件的分解示意图;
图11是图10中电子雾化装置的剖面示意图;
图12图11中操作元件在一个配置状态的剖面示意图;
图13是图12中操作元件移动至又一个配置状态的剖面示意图;
图14是图10中操作元件在一个配置状态的示意图;
图15是图14中操作元件移动至又一个配置状态的示意图;
图16是又一个实施例的电子雾化装置的剖面图;
图17是图16中雾化组件的爆炸图;
图18是图16电子雾化装置又一视角的剖面图;
图19是图16电子雾化装置的爆炸图;
图20是图16电子雾化装置去除旋转套后的立体图;
图21是图16电子雾化装置的套管的立体图;
图22是图16电子雾化装置的旋转套的立体图;
图23是图16电子雾化装置又一视角的剖面图;
图24是又一个实施例的电子雾化装置的剖面图;
图25是图24电子雾化装置的爆炸图;
图26是图24电子雾化装置的操作元件处于第一配置的立体图;
图27是图24电子雾化装置的操作元件处于第三配置的立体图;
图28是图24电子雾化装置的操作元件处于第二配置的立体图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请提出一种电子雾化装置,用于雾化液体基质生成气溶胶。
进一步地图1示出了一个具体实施例的电子雾化装置100的示意图,包括设置在外部主体或外壳(可以被称为壳体)内的数个部件。外部主体或外壳的总体设计可变化,且可限定电子雾化装置100的总体尺寸和形状的外部主体的型式或配置可变化。通常,细长主体可由单个一体式壳体形成,或细长壳体可由两个或更多个可分离的主体形成。
例如,电子雾化装置100可以在一端具有控制主体,该控制主体具备包含一个或多个可重复使用的部件(例如,诸如充电电池和/或可充电的超级电容器的蓄电池、以及用于控制该制品的操作的各种电子器件)的壳体,并且在另一端具有用于抽吸的外部主体或外壳。
进一步在图1至图2所示的具体实施例中,电子雾化装置100包括:
外壳10,基本界定电子雾化装置100的外表面,具有沿纵向方向相对的近端110和远端120;在使用中,近端110是靠近用户抽吸的一端;远端120是远离用户的一端。
在一些示例中,外壳10可由诸如不锈钢、铝之类的金属或合金形成。其它适合的材料包括各种塑料(例如,聚碳酸酯)、金属电镀塑料(metal-plating over plastic)、陶瓷等等。
进一步根据图1至图2所示,电子雾化装置100还包括:
吸气口A,以用于供用户进行抽吸;位于外壳10的近端110。
电子雾化装置100还包括:
操作元件80,设置于外壳10的远端120处,并被布置成可沿外壳10的宽度方向移动。具体地,外壳10的远端120设置有沿宽度方向延伸的槽121;操作元件80被至少部分容纳和保持于槽121内移动。同时,槽121的侧边上 设置有沿外壳10的宽度方向延伸的限位凹部125;操作元件80上设置有伸入至限位凹部125内的卡凸831;进而在移动中,通过限位凹部125对操作元件80的移动进行限位。同时,通过限位凹部125和卡凸831的配合,阻止操作元件80从槽121内脱出。
进一步参见图3和图4所示,操作元件80被构造成是大致垂直于外壳10的纵向方向的;操作元件80是较薄的,操作元件80的长度大于宽度大于厚度。操作元件80具有沿厚度方向相背的第一端壁810和第二端壁820、以及在第一端壁810和第二端壁820之间延伸的周侧壁830。卡凸831位于周侧壁830上。
在装配后,操作元件80的第一端壁810是朝向外壳10的槽121内并非显露的,第二端壁820是裸露于外壳10的远端120的。第二端壁820设置有若干凸棱821,用于在用户按压第二端壁820对操作元件80进行移动操作时提供摩擦,对于用户操作是便利的。凸棱821是垂直于操作元件80的长度方向的。
操作元件80的第一端壁810上设置有容纳凹腔811,该容纳凹腔811用于容纳和安装阻尼元件90。阻尼元件90是由弹性的硅胶、热塑性的弹性体、弹性聚合物等制备的,在装配后阻尼元件90沿电子雾化装置的纵向方向位于操作元件80和外壳10之间,以在操作元件80的移动中提供阻尼。
进一步参见图3和图4所示,阻尼元件90同样也被构造成是薄的形状;在装配后,阻尼元件90是被操作元件80和外壳10从厚度方向的两侧压缩的。阻尼元件90朝向外壳10的表面设置有凸起91,对于抵靠至外壳10形成挤压或压缩提供阻尼是有利的。
进一步参见图5至图9所示,电子雾化装置100内还包括:
用于存储液体基质的储液腔12,以及用于从储液腔12中吸取液体基质并加热雾化液体基质的雾化组件。以及为便于汽化和输出,储液腔12和雾化组件均是靠近近端110设置的。具体地在该实施例中:
沿纵向方向设置的气溶胶输出管11;在实施中,该气溶胶输出管11至少部分于储液腔12内延伸,并由气溶胶输出管11的外壁与第一壳体10内壁之间的空间形成储液腔12。该气溶胶输出管11相对近端110的第一端与吸气口A连通,以将雾化组件雾化生成的气溶胶输出至吸气口A处抽吸。
在图7所示的该实施中,雾化组件包括:
导液元件20,由毛细材料或多孔材料制备,例如海绵体、棉纤维、多孔体等。导液元件20是垂直于电子雾化装置100的纵向方向延伸的,并且导液元件20至少部分由储液腔12延伸至气溶胶输出管11内,进而能通过毛细浸润吸取和存储液体基质如图7中箭头R1所示;
加热元件30,位于气溶胶输出管11内,并且围绕导液元件20;以用于加热导液元件20内的至少部分液体基质生成气溶胶并释放至气溶胶输出管11。在该优选的实施中,加热元件30是围绕导液元件20的螺旋发热丝。
或者在又一些变化的实施中,导液元件20还可以被构造成是各种规则或非规则的形状,并部分与储液腔12流体连通以接收液体基质。或者在其他的变化实施中,导液元件20可以是更多的规则或者不规则的形状,例如多边形块状、表面具有凹槽的槽形形状、或者内部具有中空通道的拱形形状等。
或者在又一些变化的实施中,加热元件30可以是通过印刷、沉积、烧结或物理装配等方式结合在导液元件20上的。在一些其他的变化实施方式中,导液元件20可以具有用于支撑加热元件30的平面或曲面,加热元件30通过贴装、印刷、沉积等方式形成于导液元件20的平面或曲面上。或者在又一些变化的实施中,加热元件30是形成于导液元件20表面的导电轨迹。在实施中,加热元件30的导电轨迹可以是通过印刷形成的印制线路的形式。在一些实施中,加热元件30是图案化的导电轨迹。在又一些实施中,加热元件30是平面的。在实施中,加热元件30是迂回、蜿蜒、往复或弯折延伸的导电轨迹。
进一步参见图7所示,外壳10内还设置有密封元件40;密封元件40至少部分支撑气溶胶输出管11,并密封储液腔12。则在装配后,由气溶胶输出管11的外壁外壳10内壁之间界定的储液腔12,在靠近近端110的端部是封闭的;以及储液腔12在朝向远端120的端部是被密封元件40密封的。
为了便于装配,密封元件40设置有朝向近端110延伸出的插接部41,用于供气溶胶输出管11插接。密封元件40还界定有沿电子雾化装置的纵向方向挂穿该密封元件40的空气通道42,以在抽吸中供外界空气进入至气溶胶输出管11。根据图7中所示,空气通道42至少部分是由插接部41围绕的。
进一步参见图7所示,电子雾化装置100还包括:
支架130,位于密封元件40和远端120之间;支架130是刚性的,并具有支撑臂131,该支撑臂131插入至密封元件40内以对密封元件40提供支撑。
电芯140,至少部分被容纳和保持于支架130上;并用于对加热元件30供电。具体地,密封元件40上设置有引线孔43,装配后加热元件30的两端通过穿过引线孔43的引线连接至电芯140,进而使加热元件30连通。
当然,进一步电子雾化装置100还设置有:
电路板(图中未示出),以用于控制电芯140向加热元件30输出的功率。
进一步参见图7所示,在抽吸的气流路径设计中参见箭头R2所示;电子雾化装置100的远端120设置有进气口,以用于在抽吸中供外界空气进入至外壳10内。以及,电芯140与外壳10之间保持有缝隙,进而使进气口进入的空气能通过电芯140与外壳10之间的缝隙进入密封元件40的空气通道42,而后穿过气溶胶输出管11并携带加热元件30加热生成的气溶胶输出至吸气口A。
进一步参见图5至图9所示,电子雾化装置100包括:
气流传感器150,例如咪头或压差传感器等,具有沿电子雾化装置100的纵向方向相背离的第一侧151和第二侧152。在装配后,第一侧151是朝向电芯140布置的,并且第一侧151是与电芯140与外壳10之间的缝隙气流连通的,进而能通过感测用户抽吸过程中流过电芯140与外壳10之间缝隙的气流。第二侧152是朝向远端120的,并能通过位于槽121内的孔124与外界大气连通。气流传感器150根据抽吸气流引起在第一侧151和第二侧152的压力差大于预设阈值时,确定用户的抽吸动作,并输出高电平信号;进一步电路板(图中未示出)根据气流传感器150的感测结果控制电芯140向加热元件30输出电力以雾化液体生成气溶胶。
进一步参见图5至图9所示,电子雾化装置100包括:
位于电芯140与远端120的之间的第一进气通道170;该第一进气通道170具有位于槽121内的第一进气口123;第一进气通道170以用于供外界空气由第一进气口123进入至外壳10内,具体地是供外界空气由第一进气通道170进入至电芯140与外壳10之间的缝隙,进而最终进入气溶胶输出管11。
以及根据图中所示,气流传感器150是靠近远端120布置的;并且气流传感器150是在远端120处靠近第一进气口123布置的。
进一步参见图3、图4、图5、图6、图8和图9所示;操作元件80上设置有第一通孔840,阻尼元件90上设置有与第一通孔840相对并连通的第二通孔92。操作元件80由用户按压第二端壁820在槽121内移动,并具有第一配置或第一位置。具体地:
图5和图8示出了操作元件80在第一配置或第一位置中的示意图,在该第一配置或第一位置下,操作元件80和阻尼元件90是关闭第一进气通道170的第一进气口123的。同时,在该第一配置或第一位置下,操作元件80和阻尼元件90是关闭孔124的;则在该第一配置或第一位置下,气流传感器150的第二侧152是密闭或与外界空气隔离的,则气流传感器150例如咪头或压差传感器是无法触发的。则在该第一配置或第一位置中,电路板控制阻止电芯140向加热元件30提供电力,用户无法抽吸。并且在该实施中,外界空气无法通过第一进气口123进入至外壳10内,此时用户抽吸吸气口A时,由于无抽吸气流产生,具有较大的吸阻。
图6和图9示出了操作元件80移动至第二配置或第二位置中的示意图,在该第二配置或第二位置中,操作元件80和阻尼元件90打开或显露第一进气通道170的第一进气口123;以及孔124与操作元件80的第一通孔840、阻尼元件90的第二通孔92均是对准进而与外界空气连通;此时气流传感器150的第二侧152是与外界空气连通的。则在该第二配置和第二位置中,用户抽吸吸气口A时,外界空气能沿图9中箭头R4所示通过第一进气通道170进入至外壳10内;而后再沿箭头R2所示,经电芯140与外壳10之间的缝隙流向气溶胶输出管11;同时,气流传感器150能根据第一侧151和第二侧152的压差大于预设阈值进而触发,使电路板控制电芯140向加热元件30供电加热生成气溶胶。
以上通过操作元件80沿图5和图6中箭头P所示,在第一配置和第二配置之间移动,进而选择性地打开或关闭第一进气通道170和孔124。具体地,当移动至第一配置时,关闭第一进气通道170和孔124形成电子雾化装置100的锁定状态,此时阻止加热元件30加热生成气溶胶并使抽吸时具有较高的吸阻以阻止抽吸;当移动至第二配置时,打开或导通第一进气通道170和孔124形成电子雾化装置100的解锁状态,此时用户能进行气溶胶抽吸。进而以上电子雾化装置100能通过锁定状态阻止用户特别例如是未成年人的抽吸。
在一些实施中,电子雾化装置100可通过传感器件例如距离传感器、光传感器等检测操作元件80所处的位置,以确定操作元件80的配置状态;并在第一配置时阻止生成气溶胶。
进一步图10至图15示出了又一个更加优选的实施例的电子雾化装置100;在该实施中,电子雾化装置100包括:
外壳10a,具有沿纵向方向相背离的近端110a和远端120a;外壳10a内设置有靠近近端110a的气溶胶输出管11a和储液腔12a;
导液元件20a,由储液腔12a延伸至气溶胶输出管11a内,以吸取液体基质;加热元件30a位于气溶胶输出管11a内并围绕导液元件20a,以加热导液元件20a内的至少部分液体基质生成气溶胶;
密封元件40a,密封储液腔12a,并具有插接部41a供气溶胶输出管11a插接;密封元件40a上设置有引线孔43a,供引线穿过引线孔43a后将加热元件30a连接至电芯140a;密封元件40a上空气通道42a,以供由远端120a进入的空气流入气溶胶输出管11a;
支架130a,是刚性的并具有支撑臂131a,该支撑臂131a插入至密封元件40a内以对密封元件40a提供支撑;
电芯140a,被容纳和保持于支架130a;用于向加热元件30a输出电力;
电路板(图中未示出),用于根据控制电芯140a向加热元件30a输出电力。
进一步参见图12至图15所示,该实施例的电子雾化装置100还包括:
气流传感器150a,第一侧151a是朝向电芯140a布置的,并且第一侧151a是与电芯140a与外壳10a之间的缝隙气流连通的,进而能通过感测用户抽吸过程中流过电芯140a与外壳10a之间缝隙的气流;第二侧152a是朝向远端120a的,并能通过位于槽121a内的孔124a与外界空气连通。
第一进气通道170a,该第一进气通道170a具有位于槽121a内的第一进气口123a;第一进气通道170a以用于供外界空气由第一进气口123a进入至外壳10a内,具体地是供外界空气由第一进气通道170a进入至电芯140a与外壳10a之间的缝隙,进而最终进入气溶胶输出管11a。
第二进气通道160a,该第二进气通道160a具有位于槽121a内的第二进 气口122a;第二进气通道160a以用于供外界空气由第二进气口122a进入至外壳10a内。
操作元件80a和阻尼元件90a,位于远端120a并能在外壳10a的槽121a内移动,选择性地在第一配置和第二配置之间进行配置。具体地:
图12和图14示出了第一配置的示意图,操作元件80a在第一配置中遮挡或关闭第一进气通道170a的第一进气口123a和孔124a;以阻止气流传感器150a触发锁定电子雾化装置100。
同时在第一配置中,当用户抽吸气口A时,外界空气能由第二进气通道160a的第二进气口122a进入外壳10a内,如图12中箭头R3所示;而后再经电芯140a与外壳10a之间的间隙流向空气通道42a和气溶胶输出管11a。在该实施例的电子雾化装置100中,锁定状态下用户抽吸时不加热产生气溶胶,但仍然穿过电子雾化装置100的气流;锁定状态下仍然能抽吸空气而不呈现大的吸阻,对避免引起未成年人发现或发觉电子雾化装置100被锁定是有利的。
以及,第二进气口122a的面积是大于第一进气口123a的面积的。
进一步当操作元件80a和阻尼元件90a移动至第二配置时,如图13和图15所示,孔124a通过操作元件80a的第一通孔840a、阻尼元件90a的第二通孔92a均是对准进而与外界空气连通;第一进气通道170a的第一进气口123a是打开或显露的,抽吸时外界空气能沿图中箭头R4所示进入外壳10a内。此时电子雾化装置100呈解锁状态,用户抽吸时气流传感器150a例如咪头或压差传感器能响应抽吸动作触发产生高电平信号,进而电路板根据气流传感器150a的触发控制电芯140a向加热元件30a输出电力。
同时根据图13和图15所示的第二配置中,第二进气通道160a的第二进气口122a是被遮挡或关闭的;以阻止外界空气由第二进气通道160a进入外壳10a内。
该优选实施例的电子雾化装置100,在锁定状态时阻止产生气溶胶,并仍然具有穿过电子雾化装置100的气流,对于阻止未成年人发觉电子雾化装置100被锁定是有利的。
在又一些优选的实施中,在锁定状态下,当用户抽吸时由第二进气通道160a进入外壳10a内空气,是避开气流传感器150a的第一侧151a的;或者 在锁定状态下,抽吸时的气流是与气流传感器150a的第一侧151a分离的;则进一步对于阻止气流传感器150a的触发是有利的。
进一步根据图12和图13中所示的优选实施,第一进气通道170a的横截面积小于第二进气通道160a的横截面积;对于在锁定状态被未成年人抽吸中,降低吸阻进一步避免被未成年人察觉被锁定是有利的。
进一步在图14所示的优选实施中,第二进气口122a是孔径大约为1~3mm;并且第二进气口122a的数量包括多个,例如图14中所示为呈环状布置的6个。
进一步在更加优选的实施中,第一进气通道170a和第二进气通道160a均是沿电子雾化装置100的纵向方向延伸;并且第一进气通道170a和第二进气通道160a沿电子雾化装置100的宽度方向间隔布置。以及,气流传感器150a沿电子雾化装置100的宽度方向位于第一进气通道170a和第二进气通道160a之间。
以及,气流传感器150a是靠近电子雾化装置100的宽度方向的中央的;以及,第一进气通道170a和/或第二进气通道160a是偏离电子雾化装置100的宽度方向的中央的。
或者在又一些变化的实施中,电子雾化装置100的外壳10/10a被构造成是不同于以上扁形的纵长的圆柱形形状;操作元件80/80a是至少部分围绕外壳10/10a的环形或弧形形状。则对应地在操作中,通过驱动操作元件80/80a围绕外壳10/10a的周向的转动,以调整操作元件80/80的位置使其在第一配置和第二配置之间进行配置。
或者在又一些变化的实施中,第一进气通道170/170a和第一进气口123/123a相应地布置于远离远端120/120a的位置;例如在一些实施中,第一进气通道170/170a和第一进气口123/123a位于电芯140/140a与密封元件40/40a之间。或者例如在一些实施中,第一进气通道170/170a和第一进气口123/123a界定于支架130/130a与密封元件40/40a之间。则操作元件80/80a则对应调整布置于外壳10/10a上相对应的位置。
进一步图16至图23示出了又一个的实施例的电子雾化装置100;在该实 施中,电子雾化装置100的外壳10b包括纵向相对的吸嘴端和敞口端,外壳10b毗邻吸嘴端的部分配置成扁状的吸气口B,吸气口B内部设置有沿其纵向贯通的吸嘴口B1,用户在使用电子雾化装置100的过程中,主要与吸气口B接触。雾化组件以及电池16b自外壳10b的端部敞口安装在外壳10b的内腔中,在外壳10b的敞口端处还设置有底盖,底盖除了覆盖外壳10b的敞口端之外还用于对电池组件提供纵向支撑。外壳10b的内腔的一部分空间配置为储液腔12b,该储液腔12b用于储存液体基质。在其中的一个示例中,储液腔12b由固定在外壳10b内腔的储液管121b界定形成,在该储液管121b的内腔中填充有储液元件122b,储液元件122b可以是由具有储液能力的纤维棉界定形成。
雾化组件包括雾化芯组件以及用于支撑雾化芯组件的电子雾化装置100。雾化芯组件包括加热元件30b以及导液元件20b,加热元件30b用于将液体基质雾化生成气溶胶,导液元件20b的至少一部分与加热元件30b相结合,导液元件20b的另一部分延伸至储液腔12b内部或者与储液腔12b保持流体通道,从而将储液腔12b内部的液体基质提供给加热元件30b。对于不可充电式的电子雾化装置100,电子雾化装置100的雾化芯组件一般选用成本较低的棉芯类雾化芯组件,其导液元件20b采用纤维棉材料制备,加热元件30b采用铁铬镍中的一种或多种金属制备而成呈螺旋状的加热丝或者是具有网格结构的加热片。
在其中的一个示例中,参考图17所示,加热元件30b配置为具有网格结构的加热片,加热片构造为不闭合的类管状结构,导液元件20b固定在加热元件30b的外周从而将加热元件30b包裹在其内腔中。雾化芯组件借助于大致呈管状的支架23b放置在外壳10b的内腔中。支架23b具有两端敞口设置的腔体,在支架23b的侧壁上设置有两个贯穿至其上端敞口的U形开口,导液元件20b一般采用若干层纤维棉片叠合形成,该纤维棉片的两个自由端叠合在一起形成凸起结构,叠合在一起的若干层纤维棉片借助于该凸起结构固定在支架23b上的其中一个U形开口231b上。在支架23b的内壁上设置有台阶面,导液元件20b的下端纵向抵接在该内壁的台阶面上,U形开口231b的上端延伸至支架23b的上端敞口处,U形开口231b的下端与台阶面相平齐。在支架23b侧壁上还设置有进液孔232b,该进液孔232b设置在U形开口231b 纵向延伸的范围之内。在支架23b的上端套设有出气管24b,该出气管24b的一端抵接在支架23b的外壁上的凸缘上,该出气管24b的另一端延伸出储液管121b的内腔设置。储液管121b内部填充的储液元件122b由若干部分纤维棉拼合而成,若干部分纤维棉拼合在支架23b以及出气管的外周,导液元件20b上的凸起结构能够与纤维棉直接接触,从而吸收液体基质,同时液体基质也可以自支架23b上的进液孔进入导液元件20b,加热元件30b将吸收的液体基质雾化生成气溶胶。
当电子雾化装置100达到出厂状态时,电子雾化装置100的储液腔12b通常被配置为不可填充,从而防止使用者将劣质液体基质添加至储液腔12b内。储液管121b包括纵向相对的近端和远端,其近端靠近吸气口B设置,在储液管121b的近端和远端处分别设置有上密封件13b和下密封件14b,上密封套密封套接在储液管121b的上端,在上密封件13b还设置有凹槽,在该凹槽内设置有吸液元件131b,该吸液元件131b靠近吸嘴口B1设置,并选用具有毛细作用的纤维棉材料制备,从而能够吸收冷凝液,阻挡冷凝液进入吸嘴口B1被用户吸食。同时在该吸液元件131b、上密封件13b上均设置纵向贯通的流体通道。在其中的一个的示例中,参考图16和图17所示,在上密封件13b上设置有空心的导气柱133b,该导气柱133b容置在出气管24b的内腔中,导气柱133b上的通气孔连通出气管24b以及吸液元件131b上的通气孔。在下密封件14b的侧壁上设置有凸缘,储液管121b的下端抵靠在下密封件14b的凸缘上。在另外的示例中,参考图24所示,在上密封件13b上设置有与凹槽连通的通孔,出气管24b的上端固定在上密封件13b的通孔内,出气管24b的出气端靠近导液元件20b上的出气孔设置,上密封件13b上的通孔纵向连通出气管以及吸液元件131b上的通气孔。
在下密封件14b上还设置有导气孔141b,该导气孔141b配置为能够将外部气流导入支架23b的内腔中。支架23b的下端抵靠在导气孔141b的内壁上的台阶面上。进一步地,在下密封件14b上还固定有正电极142b和负电极143b,加热元件30b两端连接的导电引脚分别穿透下密封件14b的壁从而与正电极142b和负电极143b相连接。在优选的实施中,加热元件30b配置为具有网格结构的加热片,加热片构造为不闭合的类管状结构,加热元件30b两端连接的导电引线尽可能保持在与加热片的两个自由侧的纵向延伸线上延伸,从而 防止对加热片的两个自由侧形成拉扯作用导致加热片产生移位,影响加热片的加热效果。在下密封件14b的底端面上设置有若干个支撑脚144b,该若干个支撑脚围绕导气孔141b设置。该支撑脚144b抵靠在底盖81b内的吸液元件上或者是电源组件上。
电子雾化装置100内部的气流传感器150b的控制部分通过导线与电源组件相连通,电子雾化装置100通过气流传感器150b受外壳10b内部由于抽吸动作从而产生的气压变化进而控制电子雾化装置100的开闭。其气流传感器具有第一侧151b和第二侧152b,其第一侧151b与电子雾化装置100内部的气流通道相连通,其第二侧152b通过气孔50b与外界大气连通,电子雾化装置100内部的气流通道连通吸嘴口B1和进气口60b,当使用者产生抽吸动作时,电子雾化装置100内部的气流通道内的气压减小,其第二侧152b与第一侧151b之间产生压力差,该压力差达到气流传感器150b的启动阈值时,气流传感器150b将压差信号转化为电信号从而控制电池16b为雾化组件提供电力驱动。
对于连体型的电子雾化装置100,电子雾化装置100的进气口60b一般设置在其底盖的底部或者靠近其底端设置。当气流传感器150b也设置在电子雾化装置100的底盖的内部时,气流传感器的气孔50b也靠近进气口60b设置,在本申请提供的实施例中,在外壳10b的一端上还设置有操作元件70b,该操作元件70b具备童锁的作用,只有将该操作元件70b调节至设定位置,电子雾化装置100才能启动,进一步地该操作元件70b配置成能够相对外壳10b在第一配置和第二配置之间活动,当操作元件70b处于第一配置时,该操作元件70b配置成将气孔50b以及进气口60b同时关闭,电子雾化装置100处于锁定状态;当操作元件70b处于第二配置时,该操作元件70b配置成将气孔50b以及进气口60b同时打开,电子雾化装置100处于打开状态。当电子雾化装置100处于不使用状态时,电子雾化装置100处于关闭状态,电子雾化装置100的进气口60b以及气孔50b均处于关闭状态,因而即使有儿童进行模仿式的抽吸动作,外部气流无法经过气孔50b或者进气口60b进入电子雾化装置100内部,进而电子雾化装置100内部的气流传感器150b的第一侧151b和第二侧152b无法产生压差,因而气流传感器150b无法被触发,电子雾化装置100也无法产生气溶胶,从而限制电子雾化装置100被儿童使用。 该操作元件70b配置主要依靠活动开关作用,该活动开关可以配置为相对外壳10b旋转从而实现电子雾化装置100的开闭,在可选择实施中,该活动开关也可以配置为相对外壳10b滑动从而实现电子雾化装置100的开闭。如下将结合电子雾化装置100的不同的构造对活动开关的具体结构进行具体说明。
在其中的一个实施例中,电子雾化装置100配置为圆柱形时,操作元件70b配置为旋转开关。电子雾化装置100配置为圆柱形时,电子雾化装置100内部的雾化组件和电源组件上下并列设置,气流传感器150b设置在电池16b的下端。参考图18至图23所示,电子雾化装置100包括连接在外壳10b的一端的旋转套71b,其中旋转套71b可以相对于外壳10b旋转,在旋转套71b的内部还设置有套管72b,套管72b与该旋转套71b同轴设置,套管72b的一端固定连接在外壳10b上,操作元件70b包括旋转套71b以及套管72b,旋转套71b相对于套管72b旋转,从而改变进气口60b以及气孔50b的开关状态。进一步地,电池16b收容在套管72b的内腔中,该套管72b的长度大于下外壳10b的长度,在旋转套71b的内壁上设置有周向延伸的滑轨711b,在套管72b上设置有外翻的第一组卡扣721b,该第一组卡扣721b配置成能够在滑轨711b上滑动,第一组卡扣721b包括关于其轴心对称的第一卡扣7211b和第二卡扣7212b,对应的在选旋转套71b上设置有关于其中心轴线对称设置有第一滑轨7111b和第二滑轨7112b,其中第一卡扣7211b在第一滑轨7111b上滑动,第二卡扣7212b在第二滑轨7112b上滑动。在套管72b上还设置有第二组卡扣722b,该第二组卡扣722b与外壳10b进行卡扣连接,使得套管72b固定设置在电子雾化装置100的内部,当沿某一方向旋转旋转套71b时,旋转套71b相对套管72b发生转动,直至套管72b上的卡扣与旋转套71b上的滑轨的端部相抵接。可理解的是,也可以在旋转套71b的内壁上设置凸起结构,在套管72b上设置滑槽结构,使得旋转套71b配置成能够在滑槽限定的行程内转动。当旋转套71b处于第一配置时,套管72b上的第一组卡扣721b处于滑轨711b的一端,当旋转套71b处于第二配置时,套管72b上的第一组卡扣721b处于滑轨711b的另一端。在套管72b上设置有收容腔723,气流传感器150b固定在该收容腔723内,在收容腔723的一侧设置有导线槽,气流传感器150b的控制板上连接的导线通过该导线槽引出并进一步延伸至与电池16b和加热 元件30b相连接。
进气口60b包括设置在旋转套71b的底端上的间隔设置的至少一个进气孔61b,在套管72b的底端上设置有导气口62b,气孔50b包括设置在旋转套71b的底端上的第一气孔51b以及设置在套管72b的底端上的第二气孔52b,第二气孔52b与气流传感器150b的收容腔723相连通,其中进气孔61b中的一部分与第一气孔51b关于旋转套71b的底端的中心对称设置,因而在旋转套71b旋转的过程中,进气孔61b相对其中心轴线旋转的位移与第一气孔51b相对其中心轴线旋转的位移基本相同,使得进气孔61b和第一气孔51b能够同时分别与套管72b上的导气口62b以及第二气孔52b相连通或者错开。
进一步,当旋转套71b上的进气孔61b与套管72b上的导气口62b相错开,旋转套71b上的第一气孔51b与套管72b上的第二气孔52b相错开时,为了对旋转套71b上的进气孔61b和第一气孔51b形成密封,防止气流经过旋转套71b和套管72b之间的缝隙进入,在旋转套71b和套管72b之间还设置有遮挡元件73b,当该旋转套71b上的进气孔61b与套管72b上的导气口62b相错开时,旋转套71b上的第一气孔51b与套管72b上的第二气孔52b相错开时,遮挡元件73b配置成柔性材料,因而能够对旋转套71b上的进气孔61b以及第一气孔51b进行密封遮挡,使得气流难以经两者之间的缝隙进入。同时,在遮挡元件73b上还设置有第一导气窗口63b和第二导气窗口53b,第一导气窗口63b和第二导气窗口53b关于遮挡元件73b的中心对称设置。其中第一导气窗口63b始终与套管72b上的导气口62b相连通,当旋转套71b处于第一配置时,第一导气窗口63b正对旋转套71b上的进气孔61b,电子雾化装置100内部的气流通道处于纵向连通;当旋转套71b处于第二配置时,第一导气窗口63b与旋转套71b上的进气孔61b完全错开,电子雾化装置100内部的气流通道处于关闭状态。气孔50b包括第二导气窗口53b,第二导气窗口53b始终与套管72b上的第二气孔52b相连通,当旋转套71b处于第一配置时,第二导气窗口53b正对旋转套71b上的第一气孔51b,气孔50b处于纵向连通;当旋转套71b处于第二配置时,第二导气窗口53b与旋转套71b上的第一气孔51b完全错开,气孔50b处于关闭状态。
更进一步的,电子雾化装置100的进气口60b的进气截面积配置成可以调节,使得电子雾化装置100的抽吸阻力配置成可调节模式。在其中的一个 示例中,电子雾化装置100配置为两级吸阻模式。参考图19所示,在旋转套71b的端部上设置有两个进气孔61b,分别为第一进气孔611b和第二进气孔612b,当旋转套71b处于第三位置时,第一进气孔611b与遮挡元件73b上的第一导气窗口63b、以及套管72b上的导气口62b处于纵向连通,气流通道处于连通状态,第二进气孔612b与遮挡元件73b上的第一导气窗口相错开,外部气流只能经第一进气孔611b进入电子雾化装置100的内部,此时电子雾化装置100处于第一吸阻模式。当旋转套71b处于第二配置时,第一进气孔611b、第二进气孔612b与遮挡元件73b上的第一导气窗口63b以及套管72b上的导气口62b均纵向连通,外部气流可以经第一进气孔611b以及第二进气孔612b进入电子雾化装置100的内部,此时电子雾化装置100处于第二吸阻模式,显然第二吸阻模式对应的进气口60b限定形成的进气截面积远大于第一吸阻模式对应的进气口60b所限定形成的进气截面积。用户可以通过观察底盖上的第一进气孔611b和第二进气孔612b的开关状态,从而判断目前电子雾化装置100处于第一吸阻模式还是第二吸阻模式。其中第三位置处于第一配置和第二配置之间,对应的当第一卡扣7211b和第二卡扣7212b均处于滑轨711b的中间位置时,旋转套71b对应于第三位置状态。并且当旋转套71b处于第三位置时,气孔50b处于打开状态,即旋转套71b上的第一气孔51b、遮挡元件73b上的第二导气窗口53b以及套管72b上的第二气孔52b处于连通状态,因此第二导气窗口53b的进气面积大于第二气孔52b以及第一气孔51b的进气面积,使得旋转套71b自第三位置运动至第二配置时,旋转套71b上的第二气孔52b能够始终与第二导气窗口53b相连通;第一导气窗口63b的进气面积大于第一进气孔611b、第二进气孔612b的进气面积,使得在旋转套71b旋转的过程中,旋转套71b端面上间隔设置的第一进气孔611b和第二进气孔612b能够同时与第一导气窗口63b相重合;第一导气窗口63b的进气面积可以与套管72b上的导气口62b的面积配置为相同,以进一步提升进入电子雾化装置100内部的气流量。可理解的是,设置在旋转套71b上的进气孔61b可以设置为弧形进气口,使得旋转套71b在旋转的过程中,旋转套71b上的弧形进气口与遮挡元件73b上的第一导气窗口63b相重合的面积不断发生改变,从而不断改变电子雾化装置100的抽吸阻力的大小。
在本申请提供的又一个实施例中,参考图24至图28所示,电子雾化装置100配置为盒状时,电子雾化装置100内部的雾化组件和电源组件左右并排设置。在优选的实施中,电子雾化装置100的外壳10b的内腔分隔为两个腔室,分别为储液腔12b和电池腔,吸气口B设置在储液腔12b延伸的区域范围内,储液腔12b和电池腔通过外壳10b的内壁间隔开。关于盒状的电子雾化装置100中,在外壳10b的一端设置有底盖81b,气流传感器150b固定设置在底盖81b的内腔中。具体地,参考图24至图25所示,盒状的电子雾化装置100配置有较大储液腔12b,因而其内部能够储存较多的液体基质,在优选的实施中,在底盖81b上还设置有充电接口31b,该充电接口31b固定在充电板上,该充电板设置在电池16b的下端。在底盖81b的内腔中还设置有收容腔,将气流传感器150b固定在密封套43b上之后形成气流感应组件,将气流感应组件固定在收容腔内部。其中气流传感器150b相对上述实施例更靠近雾化组件设置,因而在密封套43b的一端设置有凸出的导气柱431b,该导气柱431b上的通气孔的一端与电子雾化装置100内部的气流通道相连通,导气柱431b上的通气孔的另一端与气流传感器150b的感应膜相连通。电子雾化装置100上配置的操作元件70b设置为滑动开关75b,在底盖81b的端面上设置有滑槽32b,在滑槽32b内设置有条形开口33b,滑动开关75b包括操作件以及凸出设置的滑动柱,该滑动柱的一端连接在操作件上,滑动柱的另一端设置有塞子,在操作件的外表面上设置有防滑纹路,对操作件施加外力时,滑动开关75b能够在滑槽32b内滑动,并且滑动开关75b可操作的移动范围为滑槽32b的条形开口33b所限定的行程。当滑动开关75b处于第一配置时,滑动开关75b的滑动柱处于条形开口33b的一侧,当滑动开关75b处于第二配置时,滑动开关75b的滑动柱处于条形开口的另一侧。
电子雾化装置100的进气口60b包括设置在滑槽32b上的进气孔61b,电子雾化装置100的气孔50b包括设置在滑槽32b上的第三气孔54b,进气孔61b用于将外部气流引入底盖81b的内腔中,从而进入电子雾化装置100的内部,第一气孔51b与气流传感器150b的收容腔相连通,从而使得气流传感器150b的基膜与外部大气相连通。其中进气孔61b邻近第三气孔54b设置,当滑动开关75b处于第一配置时,第三气孔54b以及进气孔61b均被滑动开关75b所遮挡,参考图26所示,使得电子雾化装置100的气流通道以及气孔50b 均处于关闭状态,用户及时用力抽吸,外部气流也无法进入电子雾化装置100的内部,气流传感器150b无法被触发,使得电子雾化装置100处于童锁状态。当滑动开关75b处于第二配置时,第一气孔51b与滑动开关75b相错开,使得电子雾化装置100的气孔50b处于打开状态,同时进气孔61b与滑动开关75b相错开,使得电子雾化装置100的气流通道处于打开状态。
进一步地,电子雾化装置100的吸阻配置为是可以调节的,具体地,在滑槽32b内间隔设置有两个进气孔61b,分别为第一进气孔611b和第二进气孔612b,第三气孔54b设置在第一进气孔611b的一侧,第三气孔54b、第一进气孔611b以及第二进气孔612b依次相邻设置,滑动开关75b还包括处于第一配置和第二配置之间的第三位置,当滑动开关75b处于第三位置时,第三气孔54b与滑动开关75b相错开,气孔50b处于打开状态,第一进气孔611b与滑动开关75b相错开,第二进气孔612b被滑动开关75b所遮挡,进气口60b处于打开状态,电子雾化装置100对应于第一吸阻模式,参考图27所示;当滑动开关75b处于第二配置时,第一气孔51b与滑动开关75b相错开,气孔50b处于打开状态,第一进气孔611b以及第二进气孔612b均与滑动开关75b相错开,进气口60b处于打开状态,电子雾化装置100对应于第二吸阻模式,参考图28所示。很显然电子雾化装置100的第一吸阻模式的进气口60b所限定的进气截面积小于第二吸阻模式的进气口60b所限定的进气截面积。可理解的是,如果需要增加设置多级吸阻模式,可以将进气口60b设置为条形进气口或者在滑槽32b上设置有多个进气孔61b,通过滑动开关75b位置的改变进而改变多个进气孔61b的开关状态,从而调节电子雾化装置100的抽吸阻力。
本申请实施例中提供一种操作元件70b,该操作元件70b能够同时控制电子雾化装置100的气孔50b以及进气口60b的开关状态,当操作元件70b处于第一配置时,气孔50b以及进气口60b均处于关闭状态,用户即使用力进行抽吸动作,电子雾化装置100内部在无外部气流的补充下,气流传感器150b的第一侧151b只能感受到微弱的气流变化,使得电子雾化装置100的气流传感器150b无法被触发。可理解的是,如果气孔50b处于打开状态,用户抽吸电子雾化装置100,外部气流可以经气孔50b、以及气流传感器150b的连接 导线与其导线固定槽或固定孔之间的缝隙进入电子雾化装置100内部,从而使得电子雾化装置100内部产生足够的负压,进而使得气流传感器150b被触发,从而启动电子雾化装置100,而将气孔50b封闭之后,外部气流就无机会进入电子雾化装置100的内部,从而使得电子雾化装置100的童锁无失效的可能性。进一步地,操作元件70b可以设置多级调节模式,用于进一步调节电子雾化装置100的抽吸阻力模式,从而提升用户体验。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种电子雾化装置,其特征在于,包括:
    储液腔,用于存储液体基质;
    雾化组件,用于雾化液体基质生成气溶胶;
    吸气口;
    第一进气口,及位于所述第一进气口与吸气口之间的第一气流通道,所述第一气流通道限定从所述第一进气口经由所述雾化组件到所述吸气口的第一气流路径,以将气溶胶传递到所述吸气口;
    气流传感器,与所述第一气流通道气流连通,用于感测所述第一气流通道内的气流变化;
    电芯,用于对所述雾化组件提供电力;
    电路,被配置为根据所述气流传感器的感测结果,控制所述电芯向所述雾化组件提供电力;
    操作元件,被布置成能在第一配置和第二配置之间进行配置;其中,所述操作元件在第一配置中关闭或遮盖所述第一进气口,以阻止外界空气由所述第一进气口进入所述第一气流通道,所述操作元件在第二配置中打开或显露所述第一进气口。
  2. 如权利要求1所述的电子雾化装置,其特征在于,所述电路被配置为当所述操作元件在第一配置时,阻止所述电芯向所述雾化组件提供电力。
  3. 如权利要求1或2所述的电子雾化装置,其特征在于,还包括:
    第二进气口,及位于所述第二进气口与吸气口之间的第二气流通道,所述第二气流通道限定从所述第一进气口到所述吸气口的第二气流路径。
  4. 如权利要求3所述的电子雾化装置,其特征在于,所述操作元件在第一配置中打开或显露所述第二进气口;所述操作元件在第二配置中关闭或遮盖所述第二进气口,以阻止外界空气由所述第二进气口进入所述第二气流通道。
  5. 如权利要求3所述的电子雾化装置,其特征在于,所述第二进气口的面积大于所述第一进气口的面积,或者所述第二进气口的数量大于所述第一进气口的数量。
  6. 如权利要求1或2所述的电子雾化装置,其特征在于,还包括:
    外壳,至少部分界定所述电子雾化装置的表面;
    所述操作元件至少部分裸露于所述外壳外,并被构造成能相对于所述外壳移动,以改变在所述第一配置和第二配置之间的配置。
  7. 如权利要求6所述的电子雾化装置,其特征在于,还包括:
    阻尼元件,位于所述操作元件和外壳之间,以用于在所述操作元件的移动中提供阻尼。
  8. 如权利要求6所述的电子雾化装置,其特征在于,所述气流传感器包括相背的第一侧和第二侧;其中,所述第一侧与所述第一气流通道气流连通;
    所述外壳上还设有气孔,以用于将所述第二侧与外界大气连通;
    所述操作元件在第一配置中关闭或遮盖所述气孔,以将所述第二侧与外界大气隔离,进而阻止所述气流传感器感测所述第一气流通道的气流变化;所述操作元件在第二配置中打开或显露所述气孔,以使所述第二侧与外界大气连通。
  9. 如权利要求1所述的电子雾化装置,其特征在于,所述操作元件在第一配置中阻止所述气流传感器感测所述第一气流通道的气流变化,以及在第二配置中允许所述气流传感器感测所述第一气流通道的气流变化。
  10. 如权利要求1所述的电子雾化装置,其特征在于,所述电子雾化装置还包括第二进气口,所述操作元件配置还具有第三配置,所述操作元件处于第三配置时打开所述第一进气口并且关闭所述第二进气口,所述第三配置的位置处于所述第一配置和所述第二配置之间。
  11. 如权利要求10所述的电子雾化装置,其特征在于,所述操作元件处于第二配置时同时打开所述第一进气和所述第二进气口。
  12. 一种电子雾化装置,其特征在于,包括:
    外壳;
    吸气口和至少一个进气口,所述进气口用于引导外部气流进入所述电子雾化装置内部,并且在所述进气口与吸气口之间限定有气流通道;
    气流传感器,用于感测所述气流通道内的气流变化以产生感测信号,所述气流传感器包括相对的第一侧和第二侧,所述第一侧流体连通所述气流通道;
    气孔,用于连通所述气流传感器的第二侧和外界;和
    操作元件,所述操作元件可相对于所述外壳在第一配置和第二配置之间活动;其中所述操作元件在处于第一配置时,同时关闭所述气孔和全部所述进气口,从而阻止所述气流传感器激活以产生感测信号;所述操作元件在处于第二配置时,同时打开所述气孔和全部所述进气口,从而允许所述气流传感器能够被激活。
  13. 如权利要求12所述的电子雾化装置,其特征在于,所述进气口的进气截面积配置成可跟随所述操作元件的位置改变从而改变。
  14. 如权利要求12所述的电子雾化装置,其特征在于,所述操作元件配置为可处于第三配置,所述第三配置处于所述第一配置和所述第二配置之间,当所述操作元件处于第三配置时,所述气孔被打开,同时所述进气口被部分打开或者部分数量的所述进气口被打开。
  15. 如权利要求11所述的电子雾化装置,其特征在于,所述操作元件包括旋转套,所述旋转套连接在所述外壳的一端并且所述旋转套配置为能够相对所述外壳旋转;
    或者所述操作元件包括滑动开关,所述滑动开关被配置为能够被操作从而相对所述外壳滑动。
PCT/CN2023/088549 2022-04-15 2023-04-15 电子雾化装置 WO2023198213A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220875734.4 2022-04-15
CN202220888270.0 2022-04-15
CN202220888270.0U CN217446684U (zh) 2022-04-15 2022-04-15 电子雾化装置
CN202220875734.4U CN217826746U (zh) 2022-04-15 2022-04-15 气溶胶生成装置

Publications (1)

Publication Number Publication Date
WO2023198213A1 true WO2023198213A1 (zh) 2023-10-19

Family

ID=88329081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088549 WO2023198213A1 (zh) 2022-04-15 2023-04-15 电子雾化装置

Country Status (1)

Country Link
WO (1) WO2023198213A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026963A2 (en) * 2010-08-23 2012-03-01 Darren Rubin Systems and methods of aerosol delivery with airflow regulation
CN106998810A (zh) * 2014-10-29 2017-08-01 Jt国际股份公司 烟雾生成装置
CN111602857A (zh) * 2019-05-16 2020-09-01 深圳市艾维普思科技有限公司 电子烟的气动开关、电子烟的供电装置及电子烟
CN213939709U (zh) * 2020-07-28 2021-08-13 深圳市悦享未来电子有限公司 一次性电子烟
CN113766844A (zh) * 2019-05-03 2021-12-07 日本烟草国际股份有限公司 具有带检测器的可移动关闭件的气溶胶产生装置
CN215347044U (zh) * 2021-05-07 2021-12-31 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215347020U (zh) * 2021-03-11 2021-12-31 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215958310U (zh) * 2021-01-29 2022-03-08 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215958315U (zh) * 2021-07-21 2022-03-08 深圳市合元科技有限公司 雾化器、电子雾化装置及用于雾化器的密封元件
CN217446684U (zh) * 2022-04-15 2022-09-20 深圳市合元科技有限公司 电子雾化装置
CN217826746U (zh) * 2022-04-15 2022-11-18 深圳市合元科技有限公司 气溶胶生成装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026963A2 (en) * 2010-08-23 2012-03-01 Darren Rubin Systems and methods of aerosol delivery with airflow regulation
CN106998810A (zh) * 2014-10-29 2017-08-01 Jt国际股份公司 烟雾生成装置
CN113766844A (zh) * 2019-05-03 2021-12-07 日本烟草国际股份有限公司 具有带检测器的可移动关闭件的气溶胶产生装置
CN111602857A (zh) * 2019-05-16 2020-09-01 深圳市艾维普思科技有限公司 电子烟的气动开关、电子烟的供电装置及电子烟
CN213939709U (zh) * 2020-07-28 2021-08-13 深圳市悦享未来电子有限公司 一次性电子烟
CN215958310U (zh) * 2021-01-29 2022-03-08 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215347020U (zh) * 2021-03-11 2021-12-31 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215347044U (zh) * 2021-05-07 2021-12-31 深圳市合元科技有限公司 雾化器及电子雾化装置
CN215958315U (zh) * 2021-07-21 2022-03-08 深圳市合元科技有限公司 雾化器、电子雾化装置及用于雾化器的密封元件
CN217446684U (zh) * 2022-04-15 2022-09-20 深圳市合元科技有限公司 电子雾化装置
CN217826746U (zh) * 2022-04-15 2022-11-18 深圳市合元科技有限公司 气溶胶生成装置

Similar Documents

Publication Publication Date Title
EP3337541B1 (en) A cartridge assembly for an aerosol-generating system and an aerosol-generating system comprising a cartridge assembly
EP3287020B1 (en) Electronic cigarette
CN109068751B (zh) 电子烟
CN217446684U (zh) 电子雾化装置
WO2019196688A1 (zh) 雾化器及电子烟
JP2021527423A (ja) 電子タバコのアトマイザー及びこの電子タバコ
WO2023020594A1 (zh) 气溶胶生成装置
CN211746942U (zh) 上盖组件、雾化器及其气溶胶发生装置
WO2023198213A1 (zh) 电子雾化装置
CN217826746U (zh) 气溶胶生成装置
CN211091883U (zh) 一种带有冷凝液回收结构的电子烟
US20220022536A1 (en) Aerosol generating system and cartridge with leakage protection
WO2023198205A1 (zh) 电子雾化装置
CN210611027U (zh) 电池组件及电子烟
CN220274916U (zh) 电子雾化装置
CN217826790U (zh) 按压转动式气雾发生装置
CN218474124U (zh) 童锁组件及气雾发生装置
EP4335313A1 (en) Atomizer and electronic atomization device
CN220712901U (zh) 电子雾化装置
CN217446683U (zh) 电子雾化装置
CN217446667U (zh) 气溶胶生成装置
CN218354618U (zh) 雾化器及气溶胶生成装置
CN218737218U (zh) 一种雾化器及其电子雾化装置
WO2022007857A1 (zh) 气溶胶生成系统和电源装置
WO2023207791A1 (zh) 雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787855

Country of ref document: EP

Kind code of ref document: A1