WO2023198070A1 - 车载冗余电源的防反灌控制电路、车辆控制器及车辆 - Google Patents

车载冗余电源的防反灌控制电路、车辆控制器及车辆 Download PDF

Info

Publication number
WO2023198070A1
WO2023198070A1 PCT/CN2023/087661 CN2023087661W WO2023198070A1 WO 2023198070 A1 WO2023198070 A1 WO 2023198070A1 CN 2023087661 W CN2023087661 W CN 2023087661W WO 2023198070 A1 WO2023198070 A1 WO 2023198070A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
reverse
module
vehicle
circuit
Prior art date
Application number
PCT/CN2023/087661
Other languages
English (en)
French (fr)
Inventor
杨姣姣
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2023198070A1 publication Critical patent/WO2023198070A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • H02H11/003Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present disclosure relates to the field of vehicle technology, and specifically to an anti-backfeed control circuit of a vehicle-mounted redundant power supply, a vehicle controller, and a vehicle.
  • the controller of an electric vehicle is usually powered by a redundant power supply.
  • the backup power supply is switched to supply power to the controller to ensure that the controller can work normally.
  • the output terminals of the main power supply and the backup power supply are connected together, whether it is the main power supply or the backup power supply, there will inevitably be a voltage difference between the two, and there will be a current flowing from the high-voltage power supply to the low-voltage power supply. Low power supply, causing backfeed to the power supply.
  • the present disclosure provides an anti-backfeed control circuit of a vehicle redundant power supply, a vehicle controller and a vehicle.
  • the present disclosure provides an anti-backfeed control circuit for a vehicle-mounted redundant power supply.
  • the circuit is connected between the power supply and the electrical load; the circuit includes: a path switching module, a first anti-reverse module and a second anti-reverse module. module;
  • the path switching module includes a first input terminal, a second input terminal, a first output terminal and a second output terminal, the first input terminal is connected to a first power supply, and the second input terminal is connected to a second power supply,
  • the control end of the first anti-reverse module is connected to the first output end of the channel switching module, and the control end of the second anti-reverse module is connected to the second output end of the channel switching module;
  • the input end of the first anti-reverse module is connected to the first power supply
  • the input end of the second anti-reverse module is connected to the second power supply
  • the output end of the first anti-reverse module is connected to the first power supply.
  • the output ends of the two anti-reverse modules are connected to electrical loads;
  • the path switching module is configured to control the first anti-reverse module and the second anti-reverse module to selectively conduct one based on the voltage value transmitted by the first power supply and the second power supply.
  • the first anti-reverse module and the second anti-reverse module are configured to block current transmission from the output end to the input end when not conducting.
  • the path switching module includes a voltage comparison unit, an inverting unit, a first control unit and a second control unit;
  • the voltage comparison unit includes a first input terminal, a second input terminal, and first and second output terminals.
  • the first input terminal is connected to a first power supply, and the second input terminal is connected to a second power supply.
  • the first output terminal is connected to the input terminal of the first control unit, and the second output terminal is connected to the input terminal of the second control unit;
  • the output end of the first control unit is connected to the control end of the first anti-reverse module, and the output end of the second control unit is connected to the control end of the second anti-reverse module;
  • the inverting unit is optionally provided in the connection circuit between the voltage comparison unit and the first control unit or between the voltage comparison unit and the second control unit.
  • the first control unit and the second control unit are both configured as charge pumps.
  • the voltage comparison unit is configured as a hysteresis comparator.
  • the inverting unit is configured as one of an inverter or an inverting circuit.
  • the first anti-reverse module includes a first MOS transistor and a second MOS transistor connected in series;
  • the second anti-reverse module includes a third MOS transistor and a fourth MOS transistor connected in series;
  • the drain of the first MOS tube is connected to the first power supply, the source of the first MOS tube is connected to the source of the second MOS tube, and the drain of the second MOS tube is connected to the Electric load, or the source of the first MOS tube is connected to the first power supply, the drain of the first MOS tube is connected to the drain of the second MOS tube, and the drain of the second MOS tube
  • the source is connected to the electrical load; the gate of the first MOS transistor and the gate of the second MOS transistor are both connected to the first output end of the channel switching module;
  • the drain of the third MOS tube is connected to the second power supply, the source of the third MOS tube is connected to the source of the fourth MOS tube, and the drain of the fourth MOS tube is connected to the Use an electrical load, or the source of the third MOS tube is connected to the second power supply, the drain of the third MOS tube is connected to the drain of the fourth MOS tube, and the drain of the fourth MOS tube is connected.
  • the source electrode is connected to the electrical load; the gate electrode of the third MOS transistor and the gate electrode of the fourth MOS transistor are both connected to the second output end of the channel switching module.
  • the first MOS transistor, the second MOS transistor, the third MOS transistor and the fourth MOS transistor are all configured as NMOS transistors.
  • the present disclosure also provides a vehicle controller, including any of the above circuits.
  • the present disclosure also provides a vehicle, including: the above vehicle controller.
  • the vehicle further includes: a power connector and a power supply;
  • Each power supply is connected to the vehicle controller through a power plug connector, and the power connector corresponds to the power supply one-to-one.
  • the path switching module selects one of the first anti-reverse module and the second anti-reverse module based on the voltage values transmitted by the first power supply and the second power supply.
  • the module is reversed to connect the corresponding power supply path, and the corresponding power supply is charged to the power supply load.
  • the current cannot flow from the output end of the unconducted power supply circuit to the input end. In this way, the anti-backfeed of the power supply is achieved.
  • Figure 1 is a schematic structural diagram of an anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of another anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure
  • Figure 9 is a schematic structural diagram of a vehicle provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of another vehicle provided by an embodiment of the present disclosure.
  • a vehicle redundant power supply anti-backfeed control circuit a vehicle controller and a vehicle.
  • the circuit is connected between the power supply and the electrical load. time; the circuit includes: a path switching module, a first anti-reverse module and a second anti-reverse module; the path switching module includes a first input terminal, a second input terminal, a first output terminal and a second output terminal, the first input terminal Connect the first power supply, the second input end is connected to the second power supply, the control end of the first anti-reverse module is connected to the first output end of the channel switching module, and the control end of the second anti-reverse module is connected to the second output of the channel switching module end; the input end of the first anti-reverse module is connected to the first power supply, the input end of the second anti-reverse module is connected to the second power supply, and the output end of the first anti-reverse module and the output end of the second anti-reverse module are connected to electrical
  • the path switching module selects one of the first anti-reverse module and the second anti-reverse module based on the voltage value transmitted by the first power supply and the second power supply, thereby turning on the corresponding power supply path, and the corresponding power supply is used.
  • supply to The electrical load is charged; the current cannot flow from the output end of the non-conducting power supply circuit to the input end. In this way, the backflow prevention of the power supply is achieved.
  • FIG. 1 it is a schematic structural diagram of an anti-backfeed control circuit of a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure.
  • the circuit 100 is connected between the power supply 40 and the electrical load 50.
  • the circuit 100 includes: a path switching module 10, a first anti-reverse module 20 and a second anti-reverse module 30; the path switching module 10 includes a third anti-reverse module.
  • the first input terminal is connected to the first power supply 41
  • the second input terminal is connected to the second power supply 42
  • the control terminal of the first anti-reverse module 20 Connect the first output end of the path switching module 10, the control end of the second anti-reverse module 30 is connected to the second output end of the path switching module 10; the input end of the first anti-reverse module 20 is connected to the first power supply 41, and the second anti-reverse module 30
  • the input end of the anti-reverse module 30 is connected to the second power supply 42, and the output ends of the first anti-reverse module 20 and the output end of the second anti-reverse module 30 are both connected to the electrical load 50; wherein, the path switching module 10 is configured to be based on the first
  • the voltage values transmitted by the power supply 41 and the second power supply 42 control the first anti-reverse module 20 and the second anti-reverse module 30 to selectively conduct.
  • the first anti-reverse module 20 and the second anti-reverse module 30 are both set to be in When not conducting, the current is blocked
  • the first power supply 41 - the first anti-reverse module 20 - the electrical load 50 and the second power supply 42 - the second anti-reverse module 30 - the electrical load 50 are respectively two lines. power supply circuit; and the first power supply 41 - the path switching module 10 - the first anti-reverse module 20 and the second power supply 42 - the channel switching module 10 - the second anti-reverse module 30 are respectively used to control the third A control circuit for the conductive state of the first anti-reverse module 20 and the second anti-reverse module 30 .
  • the channel switching module 10 selects one of the anti-reverse modules 20 and the second anti-reverse module 30 to conduct based on the voltage values transmitted by the first power supply 41 and the second power supply 42; if the first anti-reverse module 20 is turned on, then the second anti-reverse module 30 is not turned on; if the first anti-reverse module 20 is not turned on, then the second anti-reverse module 30 is turned on.
  • the circuit 100 includes: a path switching module 10, a first anti-reverse module 20 and a second anti-reverse module 30; the first input end of the path switching module 10 is connected to the first power supply 41.
  • the second input end is connected to the second power supply 42, the control end of the first anti-reverse module 20 is connected to the first output end of the path switching module 10, and the control end of the second anti-reverse module 30 is connected to the second end of the path switching module 10.
  • the input end of the first anti-reverse module 20 is connected to the first power supply 41
  • the input end of the second anti-reverse module 30 is connected to the second power supply 42
  • the output ends of 30 are all connected to the electrical load 50;
  • the path switching module 10 selects one of the anti-reverse modules 20 and the second anti-reverse module 30 to conduct based on the voltage values transmitted by the first power supply 41 and the second power supply 42; if When the first anti-reverse module 20 is turned on, the second anti-reverse module 30 is not turned on. At this time, the power supply circuit of the first power supply 41 - the first anti-reverse module 20 - the electrical load 50 is turned on.
  • the power supply circuit of the second power supply 42 - the second anti-reverse module 30 - the electrical load 50 is not connected.
  • the first power supply 41 supplies power to the electrical load 50, and the current does not flow from the second power supply 42.
  • the output end of the power supply circuit flows to the input end; if the first anti-reverse module 20 is not turned on, the second anti-reverse module 30 is turned on.
  • the first power supply 41 - the first anti-reverse module 20 - electrical load The power supply circuit 50 is not connected, and the second power supply circuit 42 - the second anti-reverse module 30 - the electrical load 50 is connected, and the second power supply 42 supplies power to the electrical load 50, and the current It will not flow from the output end of the power supply circuit where the first power supply 41 is located to the input end.
  • the embodiment of the present disclosure provides a vehicle-mounted redundant power supply anti-backfeed control circuit 100, which circuit is connected between the power supply 40 and the electrical load 50; the circuit includes: a path switching module 10, a first anti-backfeed module 20 and the second anti-reverse module 30; the path switching module 10 includes a first input terminal, a second input terminal, a first output terminal and a second output terminal. The first input terminal is connected to the first power supply 41, and the second input terminal is connected to the first power supply 41.
  • the path switching module 10 selects one of the first anti-reverse module 20 and the second anti-reverse module 30 based on the voltage values transmitted by the first power supply 41 and the second power supply 42, thereby turning on the corresponding power supply path.
  • the corresponding power supply charges the power supply load; the current cannot flow from the output end of the unconducted power supply circuit to the input end. In this way, the anti-backfeed of the power supply is achieved.
  • the path switching module 10 includes a voltage comparison unit 11, an inverting unit 12, a first control unit 13 and a second control unit 14; the voltage comparison unit 11 includes a first input terminal and a second input terminal.
  • the first input terminal is connected to the first power supply 41, the second input terminal is connected to the second power supply 42, the first output terminal is connected to the input terminal of the first control unit 13, and the second output terminal terminal is connected to the input terminal of the second control unit 14;
  • the output terminal of the first control unit 13 is connected to the control terminal of the first anti-reverse module 20, and the output terminal of the second control unit 14 is connected to the control terminal of the second anti-reverse module 30;
  • reverse The phase unit 12 is disposed either in the connection circuit between the voltage comparison unit 11 and the first control unit 13 or between the voltage comparison unit 11 and the second control unit 14 .
  • the voltage comparison unit 11 compares the voltage values transmitted by the first power supply 41 and the second power supply 42 and outputs a preset voltage; if the comparison results are different, the output preset voltages are also different, and the preset voltage It includes a first preset voltage and a second preset voltage, and the phase difference between the first preset voltage and the second preset voltage is 180°.
  • the output voltage of the voltage comparison unit 11 is the first preset voltage; if the input voltage VIN1 of the first power supply 41 is less than the second The input voltage VIN2 of the second power supply 42, then the output voltage of the voltage comparison unit 11 is the second preset voltage; or, if the input voltage VIN1 of the first power supply 41 is greater than the input voltage VIN2 of the second power supply 42, then the voltage comparison unit 11 The output voltage of the unit 11 is the second preset voltage; if the input voltage VIN1 of the first power supply 41 is less than the input voltage VIN2 of the second power supply 42, the output voltage of the voltage comparison unit 11 is the first preset voltage.
  • the inverting unit 12 is used to perform a 180-degree phase reversal on the output voltage of the voltage comparison unit 11. For example, if the input signal of the inverting unit 12 is 0, the output signal is 1; if the inverting unit 12 The input signal of 12 is 1, then the output signal is 0.
  • the output voltage of the voltage comparison unit 11 is the first preset voltage, after the first preset voltage is processed by the inverting unit 12, the output voltage becomes the second preset voltage; if the output of the voltage comparison unit 11 is the second preset voltage, Assuming a voltage, after the second preset voltage is processed by the inverting unit 12, the output voltage becomes the first preset voltage.
  • the first control unit 13/the second control unit 14 are used to control the conduction state of the first anti-reverse module 20/the second anti-reverse module 30, and adjust the voltage, such as boosting or bucking. , phase or polarity reversal, etc.
  • one output terminal of the voltage comparison unit 11 is connected to the input terminal of the first control unit 13 or the second control unit 14
  • the other output terminal is connected to the second control unit 14 or the second control unit 14 through the inverting unit 12 .
  • An input terminal of the control unit 13, the first control unit 13 and the second control unit 14 control the status of the first anti-reverse module 20 and the second anti-reverse module 30 based on the received voltage. Since the inverting unit 12 inverts the output voltage of the voltage comparison unit 11 , the input voltages received by the first control unit 13 and the second control unit 14 are exactly opposite, that is, the input voltages of the first anti-reverse module 20 and the second anti-reverse module 30 The states are also opposite, one is on and the other is not.
  • the path switching module 10 includes a voltage comparison unit 11, an inverting unit 12, a first control unit 13 and a second control unit 14; One input terminal is connected to the first power supply 41, the second input terminal is connected to the second power supply 42, the first output terminal is connected to the input terminal of the first control unit 13, and the second output terminal is connected to the input terminal of the second control unit 14; The output end of a control unit 13 is connected to the control end of the first anti-reverse module 20, and the output end of the second control unit 14 is connected to the control end of the second anti-reverse module 30; the inverter unit 12 is disposed between the voltage comparison unit 11 and the second anti-reverse module 30.
  • the first anti-reverse module 20 and the second anti-reverse module 30 are turned on; if the output voltage of the voltage comparison unit 11 is the first preset voltage, the first anti-reverse module 20 and the second anti-reverse module 30 are turned on.
  • a preset voltage then the input voltage received by the first control unit 13 is the first preset voltage, the first anti-reverse module 20 is turned on, the input voltage received by the second control unit 14 is the second preset voltage, and the second The anti-reverse module 20 is not turned on; if the output voltage of the voltage comparison unit 11 is the second preset voltage, the input voltage received by the first control unit 13 is the second preset voltage, and the first anti-reverse module 20 is not turned on. is turned on, the input voltage received by the second control unit 14 is the first preset voltage, and the second anti-reverse module 20 is turned on; similarly, it is assumed that the input voltage received by the first control unit 13 and the second control unit 14 is the second preset voltage.
  • the first anti-reverse module 20 and the second anti-reverse module 30 are turned on; if the output voltage of the voltage comparison unit 11 is the first preset voltage, the input voltage received by the first control unit 13 is the first preset voltage. Assuming voltage, the first anti-reverse module 20 is not turned on, the input voltage received by the second control unit 14 is the second preset voltage, and the second anti-reverse module 20 is turned on; if the output voltage of the voltage comparison unit 11 is the second preset voltage, two preset voltages, then the input voltage received by the first control unit 13 is the second preset voltage, the first anti-reverse module 20 is turned on, the input voltage received by the second control unit 14 is the first preset voltage, and the second The anti-reverse module 20 is not turned on.
  • FIG. 2 only exemplarily shows the connection circuit in which the inverter unit 12 is provided between the voltage comparison unit 11 and the second control unit 14 , but does not constitute a vehicle-mounted redundant power supply provided by the embodiment of the present disclosure. Limitations of the anti-backfeed control circuit. In other embodiments, the inverter unit 12 is also provided in the connection circuit between the voltage comparison unit 11 and the first control unit 13 , which is not limited here.
  • FIG. 3 it is a schematic structural diagram of another anti-backfeed control circuit for a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure.
  • both the first control unit 13 and the second control unit 14 are configured as charge pumps.
  • the charge pump is used to generate an output voltage that is larger than the input voltage, or to generate a negative output voltage to meet the voltage requirements required to turn on the first anti-reverse module 20 and the second anti-reverse module 30 .
  • the preset voltage output by the voltage comparison unit 11 is low, and the first anti-reverse module 20 and the second anti-reverse module 30 can only be turned on when the input voltage reaches a higher value, and the voltage is increased through the charge pump.
  • voltage processing to meet the voltage requirements for turning on the anti-reverse module; or the first preset voltage and the second preset voltage output by the voltage comparison unit 11 are both positive voltages, and the first anti-reverse module 20 and the second anti-reverse module 30 can be turned on only when the input voltage is negative.
  • the polarity of the voltage is reversed through the charge pump, so that the voltage is converted from positive voltage to negative voltage to meet the voltage requirements of the turn-on anti-reverse module.
  • the path switching module 10 includes a voltage comparison unit 11 , an inverting unit 12 , a first charge pump 131 and a second charge pump 141 ;
  • One input terminal is connected to the first power supply 41, the second input terminal is connected to the second power supply 42, the first output terminal is connected to the input terminal of the first charge pump 131, and the second output terminal is connected to the input terminal of the second charge pump 141;
  • the output end of a charge pump 131 is connected to the control end of the first anti-reverse module 20, and the output end of the second charge pump 141 is connected to the control end of the second anti-reverse module 30;
  • the inverter unit 12 is disposed between the voltage comparison unit 11 and the second anti-reverse module 30.
  • FIG. 4 a schematic structural diagram of another anti-backfeed control circuit for a vehicle-mounted redundant power supply is provided according to an embodiment of the present disclosure.
  • the voltage comparison unit 11 is configured as a hysteresis comparator 111 .
  • the stability of the output voltage of the hysteretic comparator 111 is good; adding positive feedback to the hysteretic comparator 111 can speed up the response speed of the comparator, and can also avoid self-oscillation caused by parasitic coupling of the circuit. .
  • the hysteresis comparator 111 includes two input terminals, namely a non-inverting input terminal and an inverting input terminal. If the input voltage of the non-inverting input terminal is greater than the voltage of the inverting input terminal, a high level is output. If If the input voltage of the non-inverting input terminal is less than the voltage of the inverting input terminal, the output is low level.
  • FIG. 5 it is a schematic structural diagram of another anti-backfeed control circuit for a vehicle-mounted redundant power supply provided by an embodiment of the present disclosure.
  • the inverting unit 12 is provided as one of an inverter 121 or an inverting circuit.
  • the inverter unit 12 may be configured as one of the inverter 121 or an inverter circuit, or may be configured as an electronic component with a phase reversal function known to those skilled in the art, which is not limited here.
  • the first anti-reverse module 20 includes a first MOS transistor 21 and a second MOS transistor 22 connected in series;
  • the second anti-reverse module 30 includes a third MOS transistor 31 and a third MOS transistor connected in series.
  • MOS transistors 32 the drain D of the first MOS transistor 31 is connected to the first power supply 41, the source S of the first MOS transistor 21 is connected to the source S of the second MOS transistor 22, and the drain of the second MOS transistor 22 is connected.
  • D is connected to the electrical load 50, or the source S of the first MOS transistor 21 is connected to the first power supply 41, the drain D of the first MOS transistor 21 is connected to the drain D of the second MOS transistor 22, and the second MOS transistor 22 is connected to D.
  • the source S of the D is connected to the second power supply 42, the source S of the third MOS transistor 31 is connected to the source S of the fourth MOS transistor 32, and the drain D of the fourth MOS transistor 32 is connected to the electrical load 50, or the third MOS transistor 31
  • the source S is connected to the second power supply 42, the drain D of the third MOS transistor 31 is connected to the drain D of the fourth MOS transistor 32,
  • the source S of the fourth MOS transistor 32 is connected to the electrical load 50 ; the gate G of the third MOS transistor 31 and the gate G of the fourth MOS transistor 32 are both connected to the second output end of the channel switching module 10 .
  • the sources of the first MOS transistor 21 and the second MOS transistor 22 are connected (S-S) or the drains are connected (D-D), and the conduction direction of the parasitic diode on the first MOS transistor 21 is consistent with that of the second MOS transistor 22
  • the conduction direction of the parasitic diode on the third MOS transistor 31 is opposite to that of the fourth MOS transistor 32; the sources of the third MOS transistor 31 and the fourth MOS transistor 32 are connected (S-S) or the drains (D-D).
  • the conduction direction of the parasitic diode on the MOS tube 32 is opposite.
  • the first MOS transistor 21 and the second MOS transistor 22 can be configured as NMOS transistors or PMOS transistors, both of which are of the same type; the third MOS transistor 31 and the fourth MOS transistor 32 can be configured as NMOS transistors or PMOS transistors.
  • PMOS tubes are of the same type; because the turn-on voltage of the NMOS tube is different from that of the PMOS tube, the NMOS tube is turned on when the level is high and turned off when the level is low; the PMOS tube is turned on when the level is low and turns off when the level is low.
  • the type of MOS tube can be selected according to the requirements of the anti-backfeed control circuit of the vehicle redundant power supply, such as all NMOS tubes, all PMOS tubes, or the first MOS tube 21 and the second MOS tube 22 are
  • the NMOS tube, the third MOS tube 31 and the fourth MOS tube 32 are PMOS tubes (the inverting unit is cancelled), or the first MOS tube 21 and the second MOS tube 22 are PMOS tubes, the third MOS tube 31 and the fourth MOS tube
  • the tube 32 is an NMOS tube (the inverting unit is cancelled), which is not limited here.
  • the first anti-reverse module 20 includes a first MOS transistor 21 and a second MOS transistor 22 connected in series;
  • the second anti-reverse module 30 includes a series connected The third MOS tube 31 and the fourth MOS tube 32;
  • the drain D of the first MOS tube 21 is connected to the first power supply 41, the source S of the first MOS tube 21 is connected to the source S of the second MOS tube 22,
  • the drain D of the second MOS transistor 22 is connected to the electrical load 50, the gate G of the first MOS transistor 21 and the gate G of the second MOS transistor 22 are both connected to the first output end of the channel switching module 10;
  • the third MOS transistor 22 is connected to the first output terminal of the channel switching module 10;
  • the drain D of the tube 31 is connected to the second power supply 42, the source S of the third MOS tube 31 is connected to the source S of the fourth MOS tube 32, and the drain D of the fourth MOS tube 32 is connected to the electrical load 50.
  • the gate G of the third MOS tube 21 is connected
  • FIGS. 6 to 8 only illustrate that the four MOS transistors are configured as NMOS transistors, but do not constitute a limitation on the anti-backfeed control circuit of the vehicle-mounted redundant power supply provided by the embodiment of the present disclosure. In other embodiments, it can also be configured as a PMOS transistor, which is not limited here.
  • the first MOS transistor 21 , the second MOS transistor 22 , the third MOS transistor 31 and the fourth MOS transistor 32 are all configured as NMOS transistors.
  • the circuit 100 includes a hysteresis comparator 111, an inverter 121, a first charge pump 131, a second charge pump 141 and four NMOS transistors; wherein, the hysteresis comparator
  • the non-inverting input end of 111 is connected to the first power supply 41, the inverting input end is connected to the second power supply 42, the first output end is connected to the input end of the first charge pump 131, and the second output end is connected to the input of the second charge pump 141.
  • the output terminal of the first charge pump 131 is connected to the first
  • the gate G of the NMOS transistor 211 and the second NMOS transistor 221 and the output end of the second charge pump 141 are connected to the gate G of the third NMOS transistor 311 and the fourth NMOS transistor 321;
  • the inverter 121 is provided in the hysteresis comparator 111
  • the connection circuit with the second charge pump 141; the source S of the first NMOS transistor 211 is connected to the source S of the second NMOS transistor 221, and the source S of the third NMOS transistor 311 is connected to the source of the fourth NMOS transistor 321. S.
  • the hysteresis comparator 111 When the input voltage of the first power supply 41 is greater than the input voltage of the second power supply 42, the hysteresis comparator 111 outputs a high level, and the first charge pump 131 connected to the first output terminal of the hysteresis comparator 111 is enabled, The output high level is boosted to enable the first NMOS transistor 211 and the second NMOS transistor 221 to be turned on, thereby turning on the power supply circuit where the first power supply 41 is located; The phaser 121 inverts the high level and outputs a low level, the second charge pump 141 is disabled, the third NMOS transistor 311 and the fourth NMOS transistor 321 are turned off, so that the power supply circuit where the second power supply 42 is located cannot be turned on.
  • the first power supply 41 supplies power to the electrical load 50 .
  • the hysteresis comparator 111 outputs a low level, and the first charge pump 131 connected to the first output terminal of the hysteresis comparator 111 is disabled.
  • the first NMOS transistor 211 and the second NMOS transistor 221 are turned off, so that the power supply circuit where the first power supply 41 is located cannot be turned on; the inverter 121 connected to the second output end of the hysteresis comparator 111 inverts the low level.
  • the circuit 100 selects the power supply with the larger input voltage to supply power to the electrical load, ensuring that when one of the two power supplies fails (such as the power supply is suddenly disconnected), it can smoothly switch to the other power supply and supply power. circuit, and there will be no backfeed current in the faulty power supply, thereby reducing the fault failure rate.
  • the setting position of the inverter 121 needs to be determined according to the type of MOS tube and the position of the power supply connected to the inverting input end of the hysteresis comparator 111; for example, in Figure 8, all MOS tubes are NMOS tubes, and the second power supply
  • the power supply 42 is connected to the inverting input end of the hysteresis comparator 111, and the inverter is arranged on the connection circuit between the hysteresis comparator 111 and the second charge pump 141; if the first power supply and the hysteresis comparator 111
  • the inverting input end of If the inverting input terminal of the hysteresis comparator 111 is connected, the inverter is arranged on the connection circuit between the hysteresis comparator 111 and the second charge pump 141; if the second power supply 42 and the inverting input terminal of the hysteresis comparator 111 connection, the inverter is provided on the
  • embodiments of the present disclosure also provide a vehicle controller.
  • the vehicle controller 200 includes: any of the above circuits 100; has corresponding beneficial effects. In order to avoid The description is repeated and will not be repeated here.
  • the vehicle controller 200 also includes an electrical load 50; the electrical load 50 includes all logic control circuits provided in the vehicle controller.
  • an embodiment of the present disclosure also provides a vehicle.
  • FIG. 9 it is a schematic structural diagram of a vehicle provided by an embodiment of the present disclosure.
  • the vehicle includes: the above-mentioned vehicle controller 200 , which has corresponding beneficial effects. To avoid repeated description, they will not be described again here.
  • the vehicle controller 200 includes a power supply and the vehicle controller 200,
  • the power supply includes a battery (KL30) and a power battery (DCDC).
  • the battery and power battery are used as redundant power supplies.
  • the battery is used as the first power supply and the power battery is the second power supply.
  • the vehicle controller 200 includes an anti-reverse power supply for the on-board redundant power supply.
  • the injection control circuit 100 and the electric load 50; the anti-backfeed control circuit 100 of the vehicle redundant power supply includes a hysteresis comparator 111, an inverter 121, a first charge pump 131, a second charge pump 141 and four NMOS tubes; Among them, the non-inverting input end of the hysteresis comparator 111 is connected to the battery, the inverting input end is connected to the power battery, the first output end is connected to the input end of the first charge pump 131, and the output end of the first charge pump 131 is connected to the first NMOS tube.
  • the second output terminal of the hysteresis comparator 111 is connected to the input terminal of the inverter 121, and the output terminal of the inverter 121 is connected to the input terminal of the second charge pump 141;
  • the output terminal of the second charge pump 141 is connected to the gate of the third NMOS transistor 311 and the gate of the fourth NMOS transistor 321;
  • the source of the first NMOS transistor 211 is connected to the source of the second NMOS transistor 221, and the third NMOS transistor 311
  • the source of is connected to the source of the fourth NMOS transistor 321.
  • the power battery supplies power to the vehicle controller 200.
  • the battery does not supply power.
  • the two NMOS tubes on the power supply circuit where the battery is located are closed, and the current of the power battery will not flow.
  • the battery can effectively prevent battery backfeed; when the power battery fails, the battery can be quickly switched to power the vehicle controller 200 to ensure the normal operation of the vehicle controller 200 and reduce the failure rate.
  • FIG. 9 only illustrates by way of example that the first power supply is a battery and the second power supply is a power battery, but does not constitute a limitation on the vehicle controller provided by the embodiment of the present disclosure.
  • the first power supply can also be set as a power battery, and the second power supply can be set as a storage battery, or the first power supply and the second power supply can be set as other power supplies known to those skilled in the art. This is not limited.
  • FIG. 10 it is a schematic structural diagram of another vehicle provided by an embodiment of the present disclosure.
  • the vehicle also includes: a power connector 60 and a power supply 40; each power supply 40 is connected to the vehicle controller 200 through a power connector 60, and the power connector 60 corresponds to the power supply 40 one-to-one.
  • the connectors of the power supply are designed to be redundant, that is, the connectors of each power supply are set separately to prevent the two power supplies from failing at the same time due to damage or detachment of the power harness, and to avoid common cause failure.
  • the vehicle also includes other components known to those skilled in the art, which are not limited here.

Abstract

公开了一种车载冗余电源的防反灌控制电路、车辆控制器及车辆,该电路包括:通路切换模块、第一防反模块和第二防反模块;通路切换模块的第一输入端连接第一供电电源,第二输入端连接第二供电电源,第一输出端连接第一防反模块的控制端,第二输出端连接第二防反模块的控制端;第一防反模块的输入端连接第一供电电源,第二防反模块的输入端连接第二供电电源,第一防反模块的输出端和第二防反模块的输出端均连接用电负载。通路切换模块基于第一供电电源和第二供电电源传输的电压值,控制第一防反模块和第二防反模块择一导通,第一防反模块和第二防反模块在未导通时阻断电流由输出端向输入端传输。

Description

车载冗余电源的防反灌控制电路、车辆控制器及车辆
相关申请的交叉引用
本申请基于申请号为202210374841.3、申请日为2022年4月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆技术领域,具体涉及一种车载冗余电源的防反灌控制电路、车辆控制器及车辆。
背景技术
相关技术中,电动车辆的控制器通常采用冗余电源供电,在主电源异常的情况下,切换为由备用电源为控制器供电,以保证控制器能够正常工作。然而,由于主电源和备用电源的输出端是连接在一起的,无论是主电源供电还是备用电源供电,二者之间不可避免的会存在电压差,就会存在电流由电压高的电源流向电压低的电源,进而造成对电源的反灌。
发明内容
为了解决上述技术问题,本公开提供了一种车载冗余电源的防反灌控制电路、车辆控制器及车辆。
本公开提供了一种车载冗余电源的防反灌控制电路,所述电路连接于供电电源和用电负载之间;所述电路包括:通路切换模块、第一防反模块和第二防反模块;
所述通路切换模块包括第一输入端、第二输入端和第一输出端和第二输出端,所述第一输入端连接第一供电电源,所述第二输入端连接第二供电电源,所述第一防反模块的控制端连接所述通路切换模块的第一输出端,所述第二防反模块的控制端连接所述通路切换模块的第二输出端;
所述第一防反模块的输入端连接所述第一供电电源,所述第二防反模块的输入端连接所述第二供电电源,所述第一防反模块的输出端和所述第二防反模块的输出端均连接用电负载;
其中,所述通路切换模块设置为基于所述第一供电电源和所述第二供电电源传输的电压值,控制第一防反模块和第二防反模块择一导通,第一防反模块和第二防反模块均设置为在未导通时阻断电流由输出端向输入端传输。
在一些实施例中,所述通路切换模块包括电压比较单元、反相单元、第一控制单元和第二控制单元;
所述电压比较单元包括第一输入端、第二输入端和第一输出端和第二输出端,所述第一输入端连接第一供电电源,所述第二输入端连接第二供电电源,所述第一输出端连接所述第一控制单元的输入端,所述第二输出端连接所述第二控制单元的输入端;
所述第一控制单元的输出端连接所述第一防反模块的控制端,所述第二控制单元的输出端连接所述第二防反模块的控制端;
所述反相单元择一设置于所述电压比较单元与所述第一控制单之间、或所述电压比较单元与所述第二控制单元之间的连接电路。
在一些实施例中,所述第一控制单元和所述第二控制单元均设置为电荷泵。
在一些实施例中,所述电压比较单元设置为滞回比较器。
在一些实施例中,所述反相单元设置为反相器或反相电路中的一种。
在一些实施例中,所述第一防反模块包括串联的第一MOS管和第二MOS管;所述第二防反模块包括串联的第三MOS管和第四MOS管;
所述第一MOS管的漏极连接所述第一供电电源,所述第一MOS管的源极连接所述第二MOS管的源极连接,所述第二MOS管的漏极连接所述用电负载,或者所述第一MOS管的源极连接所述第一供电电源,所述第一MOS管的漏极连接所述第二MOS管的漏极连接,所述第二MOS管的源极连接所述用电负载;所述第一MOS管的栅极和所述第二MOS管的栅极均与所述通路切换模块的所述第一输出端连接;
所述第三MOS管的漏极连接所述第二供电电源,所述第三MOS管的源极连接所述第四MOS管的源极连接,所述第四MOS管的漏极连接所述用电负载,或者所述第三MOS管的源极连接所述第二供电电源,所述第三MOS管的漏极连接所述第四MOS管的漏极连接,所述第四MOS管的源极连接所述用电负载;所述第三MOS管的栅极和所述第四MOS管的栅极均与所述通路切换模块的所述第二输出端连接。
在一些实施例中,所述第一MOS管、所述第二MOS管、所述第三MOS管和所述第四MOS管均设置为NMOS管。
本公开还提供了一种车辆控制器,包括:上述任一种电路。
本公开还提供了一种车辆,包括:上述车辆控制器。
在一些实施例中,所述车辆还包括:电源接插件和供电电源;
每个所述供电电源均通过一个所述电源插接件与所述车辆控制器连接,所述电源接插件与所述供电电源一一对应。
本公开提供的技术方案与相关技术相比具有如下优点:
在本公开提供的一种车载冗余电源的防反灌控制电路中,通路切换模块基于第一供电电源和第二供电电源传输的电压值,择一导通第一防反模块和第二防反模块,从而导通对应的供电通路,由对应的供电电源向供电负载充电,电流不能从未导通供电电路的输出端流向输入端,如此,实现了供电电源的防反灌。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技 术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种车载冗余电源的防反灌控制电路的结构示意图;
图2为本公开实施例提供的另一种车载冗余电源的防反灌控制电路的结构示意图;
图3为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图4为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图5为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图6为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图7为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图8为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图;
图9为本公开实施例提供的一种车辆的结构示意图;
图10为本公开实施例提供的另一种车辆的结构示意图。
其中,10、通路切换模块;11、电压比较单元;111、滞回比较器;12、反相单元;121、反相器;13、第一控制单元;131、第一电荷泵;14、第二控制单元;141、第二电荷泵;20、第一防反模块;21、第一MOS管;211、第一NMOS管;22、第二MOS管;221、第二MOS管;30、第二防反模块;31、第三MOS管;311、第三NMOS管;32、第四MOS管;321、第四NMOS管;40、供电电源;41、第一供电电源;42、第二供电电源;50、用电负载;60、电源接插件;100、车载冗余电源的防反灌控制电路;200、车辆控制器。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
为了解决冗余电源供电电路中存在电源反灌问题,本公开实施例提供了一种车载冗余电源的防反灌控制电路、车辆控制器及车辆,该电路连接于供电电源和用电负载之间;该电路包括:通路切换模块、第一防反模块和第二防反模块;通路切换模块包括第一输入端、第二输入端和第一输出端和第二输出端,第一输入端连接第一供电电源,第二输入端连接第二供电电源,第一防反模块的控制端连接通路切换模块的第一输出端,第二防反模块的控制端连接通路切换模块的第二输出端;第一防反模块的输入端连接第一供电电源,第二防反模块的输入端连接第二供电电源,第一防反模块的输出端和第二防反模块的输出端均连接用电负载。由此,通路切换模块基于第一供电电源和第二供电电源传输的电压值,择一导通第一防反模块和第二防反模块,从而导通对应的供电通路,由对应的供电电源向供 电负载充电;电流不能从未导通供电电路的输出端流向输入端,如此,实现了供电电源的防反灌。
下面结合图1-图10,对本公开实施例提供的车载冗余电源的防反灌控制电路、车辆控制器及车辆进行示例性说明。
在一些实施例中,如图1所示,为本公开实施例提供的一种车载冗余电源的防反灌控制电路的结构示意图。参照图1,该电路100连接于供电电源40和用电负载50之间,该电路100包括:通路切换模块10、第一防反模块20和第二防反模块30;通路切换模块10包括第一输入端、第二输入端和第一输出端和第二输出端,第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一防反模块20的控制端连接通路切换模块10的第一输出端,第二防反模块30的控制端连接通路切换模块10的第二输出端;第一防反模块20的输入端连接第一供电电源41,第二防反模块30的输入端连接第二供电电源42,第一防反模块20的输出端和第二防反模块30的输出端均连接用电负载50;其中,通路切换模块10设置为基于第一供电电源41和第二供电电源42传输的电压值,控制第一防反模块20和第二防反模块30择一导通,第一防反模块20和第二防反模块30均设置为在未导通时阻断电流由输出端向输入端传输。
在一些实施例中,第一供电电源41——第一防反模块20——用电负载50和第二供电电源42——第二防反模块30——用电负载50,分别为两条供电电路;而第一供电电源41——通路切换模块10——第一防反模块20和第二供电电源42——通路切换模块10——第二防反模块30,分别为用于控制第一防反模块20和第二防反模块30导通状态的控制电路。
在一些实施例中,通路切换模块10基于第一供电电源41和第二供电电源42传输的电压值,择一导通一防反模块20和第二防反模块30;若第一防反模块20被导通,则第二防反模块30未被导通;若第一防反模块20未被导通,则第二防反模块30被导通。
在一些实施例中,如图1所示,该电路100包括:通路切换模块10、第一防反模块20和第二防反模块30;通路切换模块10的第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一防反模块20的控制端连接通路切换模块10的第一输出端,第二防反模块30的控制端连接通路切换模块10的第二输出端;第一防反模块20的输入端连接第一供电电源41,第二防反模块30的输入端连接第二供电电源42,第一防反模块20的输出端和第二防反模块30的输出端均连接用电负载50;通路切换模块10基于第一供电电源41和第二供电电源42传输的电压值,择一导通一防反模块20和第二防反模块30;若第一防反模块20被导通,则第二防反模块30未被导通,此时第一供电电源41——第一防反模块20——用电负载50这条供电电路导通,第二供电电源42——第二防反模块30——用电负载50这条供电电路未导通,由第一供电电源41向用电负载50供电,且电流不会从第二供电电源42所在供电电路的输出端流向输入端;若第一防反模块20未被导通,则第二防反模块30被导通,此时第一供电电源41——第一防反模块20——用电负载 50这条供电电路未导通,第二供电电源42——第二防反模块30——用电负载50这条供电电路导通,由第二供电电源42向用电负载50供电,且电流不会从第一供电电源41所在供电电路的输出端流向输入端。
本公开实施例提供了一种车载冗余电源的防反灌控制电路100,该电路连接于供电电源40和用电负载50之间;该电路包括:通路切换模块10、第一防反模块20和第二防反模块30;通路切换模块10包括第一输入端、第二输入端和第一输出端和第二输出端,第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一防反模块20的控制端连接通路切换模块10的第一输出端,第二防反模块30的控制端连接通路切换模块10的第二输出端;第一防反模块20的输入端连接第一供电电源41,第二防反模块30的输入端连接第二供电电源42,第一防反模块20的输出端和第二防反模块30的输出端均连接用电负载50。由此,通路切换模块10基于第一供电电源41和第二供电电源42传输的电压值,择一导通第一防反模块20和第二防反模块30,从而导通对应的供电通路,由对应的供电电源向供电负载充电;电流不能从未导通供电电路的输出端流向输入端,如此,实现了供电电源的防反灌。
在一些实施例中,如图2所示,为本公开实施例提供的另一种车载冗余电源的防反灌控制电路的结构示意图。参照图2,在该电路中,通路切换模块10包括电压比较单元11、反相单元12、第一控制单元13和第二控制单元14;电压比较单元11包括第一输入端、第二输入端和第一输出端和第二输出端,第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一输出端连接第一控制单元13的输入端,第二输出端连接第二控制单元14的输入端;第一控制单元13的输出端连接第一防反模块20的控制端,第二控制单元14的输出端连接第二防反模块30的控制端;反相单元12择一设置于电压比较单元11与第一控制单13之间、或电压比较单元11与第二控制单元14之间的连接电路。
在一些实施例中,电压比较单元11通过比较第一供电电源41和第二供电电源42传输的电压值大小,并输出预设电压;比较结果不同,输出的预设电压也不同,预设电压包括第一预设电压和第二预设电压,第一预设电压和第二预设电压相位相差为180°。例如,若第一供电电源41的输入电压VIN1大于第二供电电源42的输入电压VIN2,则电压比较单元11的输出电压为第一预设电压;若第一供电电源41的输入电压VIN1小于第二供电电源42的输入电压VIN2,则电压比较单元11的输出电压为第二预设电压;或者,若第一供电电源41的输入电压VIN1大于第二供电电源42的输入电压VIN2,则电压比较单元11的输出电压为第二预设电压;若第一供电电源41的输入电压VIN1小于第二供电电源42的输入电压VIN2,则电压比较单元11的输出电压为第一预设电压。
在一些实施例中,反相单元12用于将电压比较单元11的输出电压进行180度相位反转,例如,若反相单元12的输入信号为0,则输出信号为1;若反相单元12的输入信号为1,则输出信号为0。在电压比较单元11的输出电压为第一预设电压,第一预设电压经反相单元12处理后,输出的电压变为第二预设电压;若电压比较单元11的输出为第二预 设电压,第二预设电压经反相单元12处理后,输出的电压变为第一预设电压。
在一些实施例中,第一控制单元13/第二控制单元14用于控制第一防反模块20/第二防反模块30的导通状态,以及对电压进行调整,如升压、降压、相位或者正负极性的反转等。
在一些实施例中,电压比较单元11的一个输出端与第一控制单元13或第二控制单元14的输入端连接,另一个输出端经反相单元12后连接至第二控制单元14或第一控制单元13的输入端,第一控制单元13和第二控制单元14基于接收到的电压,控制第一防反模块20和第二防反模块30的状态。由于反相单元12对电压比较单元11输出电压的反相处理,第一控制单元13和第二控制单元14接收的输入电压正好相反,即第一防反模块20和第二防反模块30的状态也相反,一个导通,另一个未导通。
在一些实施例中,如图2所示,在该电路中,通路切换模块10包括电压比较单元11、反相单元12、第一控制单元13和第二控制单元14;电压比较单元11的第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一输出端连接第一控制单元13的输入端,第二输出端连接第二控制单元14的输入端;第一控制单元13的输出端连接第一防反模块20的控制端,第二控制单元14的输出端连接第二防反模块30的控制端;反相单元12设置于电压比较单元11与第二控制单14之间的连接电路。假设第一控制单元13和第二控制单元14接收的输入电压为第一预设电压时,导通第一防反模块20和第二防反模块30;若电压比较单元11的输出电压为第一预设电压,则第一控制单元13接收的输入电压为第一预设电压,第一防反模块20被导通,第二控制单元14接收的输入电压为第二预设电压,第二防反模块20未被导通;若电压比较单元11的输出电压为第二预设电压,则第一控制单元13接收的输入电压为第二预设电压,第一防反模块20未被导通,第二控制单元14接收的输入电压为第一预设电压,第二防反模块20被导通;同理,假设第一控制单元13和第二控制单元14接收的输入电压为第二预设电压时,导通第一防反模块20和第二防反模块30;若电压比较单元11的输出电压为第一预设电压,则第一控制单元13接收的输入电压为第一预设电压,第一防反模块20未被导通,第二控制单元14接收的输入电压为第二预设电压,第二防反模块20被导通;若电压比较单元11的输出电压为第二预设电压,则第一控制单元13接收的输入电压为第二预设电压,第一防反模块20被导通,第二控制单元14接收的输入电压为第一预设电压,第二防反模块20未被导通。
需要说明的是,图2仅示例性地示出了反相单元12设置于电压比较单元11与第二控制单14之间的连接电路,但并不构成对本公开实施例提供的车载冗余电源的防反灌控制电路的限定。在其他实施方式中,反相单元12还设置于电压比较单元11与第一控制单13之间的连接电路,在此不限定。
在一些实施例中,如图3所示,为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图。参照图3,第一控制单元13和第二控制单元14均设置为电荷泵。
其中,电荷泵用于产生比输入电压更大的输出电压,或是产生负的输出电压,以满足导通第一防反模块20和第二防反模块30所需的电压要求。例如,电压比较单元11输出的预设电压为较低,而第一防反模块20和第二防反模块30只有在输入电压达到较高数值时才能被导通,通过电荷泵对电压进行升压处理,以满足导通防反模块的电压要求;或者电压比较单元11输出的第一预设电压和第二预设电压均为正电压,而第一防反模块20和第二防反模块30在输入电压为负电压时才能被导通,通过电荷泵对电压进行极性反转处理,使电压由正电压变换为负电压,满足导通防反模块的电压要求。
在一些实施例中,如图3所示,在该电路中,通路切换模块10包括电压比较单元11、反相单元12、第一电荷泵131和第二电荷泵141;电压比较单元11的第一输入端连接第一供电电源41,第二输入端连接第二供电电源42,第一输出端连接第一电荷泵131的输入端,第二输出端连接第二电荷泵141的输入端;第一电荷泵131的输出端连接第一防反模块20的控制端,第二电荷泵141的输出端连接第二防反模块30的控制端;反相单元12设置于电压比较单元11与第二控制单14之间的连接电路。
在一些实施例中,如图4所示,为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图。参照图4,电压比较单元11设置为滞回比较器111。
在一些实施例中,滞回比较器111输出电压的稳定性好;滞回比较器111加有正反馈后,可加快比较器的响应速度,还可免除由于电路寄生耦合而产生的自激振荡。
在一些实施例中,滞回比较器111包括两个输入端,分别为正相输入端和反相输入端,若正相输入端的输入电压大于反相输入端的电压,则输出高电平,若正相输入端的输入电压小于反相输入端的电压,则输出低电平。
在一些实施例中,如图5所示,为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图。参照图5,反相单元12设置为反相器121或反相电路中的一种。
在一些实施例中,反相单元12可设置为反相器121或反相电路中的一种,或者设置为本领域技术人员可知的具有相位反转功能的电子元件,在此不限定。
在一些实施例中,如图6-图8所示,为本公开实施例提供的又一种车载冗余电源的防反灌控制电路的结构示意图。参照图6-图8,在该电路100中,第一防反模块20包括串联的第一MOS管21和第二MOS管22;第二防反模块30包括串联的第三MOS管31和第四MOS管32;第一MOS管31的漏极D连接第一供电电源41,第一MOS管21的源极S连接第二MOS管22的源极S连接,第二MOS管22的漏极D连接用电负载50,或者第一MOS管21的源极S连接第一供电电源41,第一MOS管21的漏极D连接第二MOS管22的漏极D连接,第二MOS管22的源极S连接用电负载50;第一MOS管21的栅极G和第二MOS管22的栅极G均与通路切换模块10的第一输出端连接;第三MOS管31的漏极D连接第二供电电源42,第三MOS管31的源极S连接第四MOS管32的源极S连接,第四MOS管32的漏极D连接用电负载50,或者第三MOS管31的源极S连接第二供电电源42,第三MOS管31的漏极D连接第四MOS管32的漏极D连接, 第四MOS管32的源极S连接用电负载50;第三MOS管31的栅极G和第四MOS管32的栅极G均与通路切换模块10的第二输出端连接。
在一些实施例中,第一MOS管21和第二MOS管22的源极相连(S-S)或漏极相连(D-D),第一MOS管21上寄生二极管的导通方向与第二MOS管22上寄生二极管的导通方向相反;第三MOS管31和第四MOS管32的源极相连(S-S)或漏极相连(D-D),第三MOS管31上寄生二极管的导通方向与第四MOS管32上寄生二极管的导通方向相反。
在一些实施例中,第一MOS管21和第二MOS管22可设置为NMOS管或PMOS管,二者的类型相同;第三MOS管31和第四MOS管32,可设置为NMOS管或PMOS管,二者的类型相同;由于NMOS管的导通电压和PMOS管的导通电压不同,NMOS管的在高电平时导通,低电平时关闭;PMOS管在低电平时导通,在高电平时关闭;如此可根据车载冗余电源的防反灌控制电路的需求选择MOS管的类型,如全部为NMOS管,全部为PMOS管,或者第一MOS管21和第二MOS管22为NMOS管、第三MOS管31和第四MOS管32为PMOS管(取消反相单元),再或者第一MOS管21和第二MOS管22为PMOS管、第三MOS管31和第四MOS管32为NMOS管(取消反相单元),在此不限定。
如此设置,在未被导通的供电电路上,电流不会通过MOS管的寄生二极管流向供电电源;同时,MOS管的功耗和压降较低,满足用电负载高功耗需求。
在一些实施例中,如图6-图8所示,在该电路100中,第一防反模块20包括串联的第一MOS管21和第二MOS管22;第二防反模块30包括串联的第三MOS管31和第四MOS管32;第一MOS管21的漏极D连接第一供电电源41,第一MOS管21的源极S连接第二MOS管22的源极S连接,第二MOS管22的漏极D连接用电负载50,第一MOS管21的栅极G和第二MOS管22的栅极G均与通路切换模块10的第一输出端连接;第三MOS管31的漏极D连接第二供电电源42,第三MOS管31的源极S连接第四MOS管32的源极S连接,第四MOS管32的漏极D连接用电负载50,第三MOS管31的栅极G和第四MOS管32的栅极G均与通路切换模块10的第二输出端连接。
需要说明的是,图6-图8仅示例性地示出了四个MOS管均设置为NMOS管,但并不构成对本公开实施例提供的车载冗余电源的防反灌控制电路的限定。在其他实施方式中,还可以设置为PMOS管,在此不限定。
在一些实施例中,如图6-图8所示,第一MOS管21、第二MOS管22、第三MOS管31和第四MOS管32均设置为NMOS管。
在一些实施例中,如图8所示,该电路100包括滞回比较器111、反相器121、第一电荷泵131、第二电荷泵141和四个NMOS管;其中,滞回比较器111的正相输入端连接第一供电电源41,反相输入端连接第二供电电源42,第一输出端连接第一电荷泵131的输入端,第二输出端连接第二电荷泵141的输入端;第一电荷泵131的输出端连接第一 NMOS管211、第二NMOS管221的栅极G,第二电荷泵141的输出端连接第三NMOS管311、第四NMOS管321的栅极G;反相器121设置于滞回比较器111与第二电荷泵141之间的连接电路;第一NMOS管211的源极S连接第二NMOS管221的源极S,第三NMOS管311的源极S连接第四NMOS管321的源极S。当第一供电电源41的输入电压大于第二供电电源42的输入电压时,滞回比较器111输出高电平,与滞回比较器111第一输出端连接的第一电荷泵131使能,将输出的高电平升压以满足导通第一NMOS管211和第二NMOS管221,从而导通第一供电电源41所在的供电电路;与滞回比较器111第二输出端连接的反相器121将高电平反相处理,输出低电平,第二电荷泵141禁能,第三NMOS管311和第四NMOS管321关闭,从而第二供电电源42所在的供电电路不能被导通,由第一供电电源41向用电负载50供电。当第一供电电源41的输入电压小于第二供电电源42的输入电压时,滞回比较器111输出低电平,与滞回比较器111第一输出端连接的第一电荷泵131禁能,第一NMOS管211和第二NMOS管221关闭,从而第一供电电源41所在的供电电路不能被导通;与滞回比较器111第二输出端连接的反相器121将低电平反相处理,输出高电平,第二电荷泵141使能,第三NMOS管311和第四NMOS管321导通,从导通第二供电电源42所在的供电电路,由第二供电电源42向用电负载50供电。如此设置,该电路100选择由输入电压大的供电电源对用电负载供电,保证了在两个供电电源在其中一个出现故障(如电源突然断开)时能够平稳切换至另外一个供电电源和供电电路,并且故障电源不会存在反灌电流,从而降低故障失效率。
需要说明的是,反相器121的设置位置需要根据MOS管类型和滞回比较器111反相输入端连接的供电电源位置来确定;例如,图8中MOS管全部为NMOS管,第二供电电源42与滞回比较器111的反相输入端连接,则反相器设置在滞回比较器111与第二电荷泵141之间的连接电路上;若第一供电电源与滞回比较器111的反相输入端连接,则将反相器设置在滞回比较器111于第一电荷泵131之间的连接电路上;当MOS管全部为PMOS管时,若第一供电电源与滞回比较器111的反相输入端连接,则反相器设置在滞回比较器111于第二电荷泵141之间的连接电路上;若第二供电电源42与滞回比较器111的反相输入端连接,反相器设置在滞回比较器111与第一电荷泵131之间的连接电路上。
在上述实施方式的基础上,本公开实施例还提供了一种车辆控制器,如图8所示,该车辆控制器200包括:上述任一种电路100;具有相对应的有益效果,为避免重复描述,在此不再赘述。
在一些实施例中,车辆控制器200还包括用电负载50;用电负载50包括车辆控制器中设置的全部逻辑控制电路。
在上述实施方式的基础上,本公开实施例还提供了一种车辆,如图9所示,为本公开实施例提供的一种车辆的结构示意图。参照图9,该车辆包括:上述车辆控制器200;具有相对应的有益效果,为避免重复描述,在此不再赘述。
在一些实施例中,如图9所示,该车辆控制器200包括供电电源和车辆控制器200, 供电电源包括蓄电池(KL30)和动力电池(DCDC),蓄电池和动力电池作为冗余电源,蓄电池作为第一供电电源,动力电池为第二供电电源;车辆控制器200包括车载冗余电源的防反灌控制电路100和用电负载50;车载冗余电源的防反灌控制电路100包括滞回比较器111、反相器121、第一电荷泵131、第二电荷泵141和四个NMOS管;其中,滞回比较器111的正相输入端连接蓄电池,反相输入端连接动力电池,第一输出端连接第一电荷泵131的输入端,第一电荷泵131的输出端连接第一NMOS管211的栅极和第二NMOS管221的栅极;滞回比较器111的第二输出端连接反相器121的输入端,反相器121的输出端连接第二电荷泵141的输入端;第二电荷泵141的输出端连接第三NMOS管311的栅极和第四NMOS管321的栅极;第一NMOS管211的源极连接第二NMOS管221的源极,第三NMOS管311的源极连接第四NMOS管321的源极。在车辆正常工作时,动力电池的电压大于蓄电池电压,此时由动力电池为车辆控制器200供电,蓄电池不供电,蓄电池所在的供电电路上的两个NMOS管关闭,动力电池的电流不会流向蓄电池,能够有效防止蓄电池反灌;在动力电池电力出现故障时,可快速切换为由蓄电池为车辆控制器200供电,保证车辆控制器200的正常工作,降低故障失效率。
能够理解的是,图9仅示例性地示出了,第一供电电源为蓄电池,第二供电电源为动力电池,但并不构成对本公开实施例提供的车辆控制器的限定。在其它实施方式中,还可以将第一供电电源设置为动力电池,第二供电电源设置为蓄电池,或者将第一供电电源和第二供电电源设置为本领领域技术人员可知的其他供电电源,在此不限定。
在一些实施例中,如图10所示,为本公开实施例提供的另一种车辆的结构示意图。参照图10,该车辆还包括:电源接插件60和供电电源40;每个供电电源40均通过一个电源插接件60与车辆控制器200连接,电源接插件60与供电电源40一一对应。
如此设置,实现了电动汽车上的高功耗控制器在电源线或者线束脱落时,能够快速切换至冗余供电电路,保证了控制器的正常工作,降低了故障失效率。同时,供电电源的接插件冗余设计,即每个供电电源的接插件均单独设置,防止两个供电电源因为电源线束破损或脱落导致同时失效的情况发生,避免共因失效。
在其他实施方式中,车辆还包括本领域技术人员可知的其他组成部分,在此不限定。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对 这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种车载冗余电源的防反灌控制电路,其特征在于,所述电路连接于供电电源和用电负载之间;所述电路包括:通路切换模块、第一防反模块和第二防反模块;
    所述通路切换模块包括第一输入端、第二输入端和第一输出端和第二输出端,所述第一输入端连接第一供电电源,所述第二输入端连接第二供电电源,所述第一防反模块的控制端连接所述通路切换模块的第一输出端,所述第二防反模块的控制端连接所述通路切换模块的第二输出端;
    所述第一防反模块的输入端连接所述第一供电电源,所述第二防反模块的输入端连接所述第二供电电源,所述第一防反模块的输出端和所述第二防反模块的输出端均连接用电负载。
  2. 如权利要求1所述的电路,其特征在于,所述通路切换模块包括电压比较单元、反相单元、第一控制单元和第二控制单元;
    所述电压比较单元包括第一输入端、第二输入端和第一输出端和第二输出端,所述第一输入端连接第一供电电源,所述第二输入端连接第二供电电源,所述第一输出端连接所述第一控制单元的输入端,所述第二输出端连接所述第二控制单元的输入端;
    所述第一控制单元的输出端连接所述第一防反模块的控制端,所述第二控制单元的输出端连接所述第二防反模块的控制端;
    所述反相单元择一设置于所述电压比较单元与所述第一控制单之间、或所述电压比较单元与所述第二控制单元之间的连接电路。
  3. 如权利要求2所述的电路,其特征在于,所述第一控制单元和所述第二控制单元均设置为电荷泵。
  4. 如权利要求2或3所述的电路,其特征在于,所述电压比较单元设置为滞回比较器。
  5. 如权利要求2至4中任一项所述的电路,其特征在于,所述反相单元设置为反相器或反相电路中的一种。
  6. 如权利要求1至5中任一项所述的电路,其特征在于,所述第一防反模块包括串联的第一MOS管和第二MOS管;所述第二防反模块包括串联的第三MOS管和第四MOS管;
    所述第一MOS管的漏极连接所述第一供电电源,所述第一MOS管的源极连接所述第二MOS管的源极连接,所述第二MOS管的漏极连接所述用电负载,或者所述第一MOS 管的源极连接所述第一供电电源,所述第一MOS管的漏极连接所述第二MOS管的漏极连接,所述第二MOS管的源极连接所述用电负载;所述第一MOS管的栅极和所述第二MOS管的栅极均与所述通路切换模块的所述第一输出端连接;
    所述第三MOS管的漏极连接所述第二供电电源,所述第三MOS管的源极连接所述第四MOS管的源极连接,所述第四MOS管的漏极连接所述用电负载,或者所述第三MOS管的源极连接所述第二供电电源,所述第三MOS管的漏极连接所述第四MOS管的漏极连接,所述第四MOS管的源极连接所述用电负载;所述第三MOS管的栅极和所述第四MOS管的栅极均与所述通路切换模块的所述第二输出端连接。
  7. 如权利要求6所述的电路,其特征在于,所述第一MOS管、所述第二MOS管、所述第三MOS管和所述第四MOS管均设置为NMOS管。
  8. 一种车辆控制器,其特征在于,包括:如权利要求1至7中任一项所述的电路。
  9. 一种车辆,其特征在于,包括:如权利要求8所述的车辆控制器。
  10. 如权利要求9所述的车辆,其特征在于,还包括:电源接插件和供电电源;
    每个所述供电电源均通过一个所述电源插接件与所述车辆控制器连接,所述电源接插件与所述供电电源一一对应。
PCT/CN2023/087661 2022-04-11 2023-04-11 车载冗余电源的防反灌控制电路、车辆控制器及车辆 WO2023198070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210374841.3A CN116937773A (zh) 2022-04-11 2022-04-11 车载冗余电源的防反灌控制电路、车辆控制器及车辆
CN202210374841.3 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023198070A1 true WO2023198070A1 (zh) 2023-10-19

Family

ID=88328955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087661 WO2023198070A1 (zh) 2022-04-11 2023-04-11 车载冗余电源的防反灌控制电路、车辆控制器及车辆

Country Status (2)

Country Link
CN (1) CN116937773A (zh)
WO (1) WO2023198070A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203434730U (zh) * 2013-09-05 2014-02-12 北京慧博环宇科技有限公司 一种冗余电源
CN105703614A (zh) * 2015-12-30 2016-06-22 深圳市国耀电子科技股份有限公司 一种防反接防倒灌保护电路
CN105703615A (zh) * 2016-04-13 2016-06-22 浪潮集团有限公司 一种用于dc电源冗余电路的防倒灌设计方法
CN109733374A (zh) * 2018-12-28 2019-05-10 上海擎度汽车科技有限公司 控制器供电系统
CN109842108A (zh) * 2019-02-25 2019-06-04 西安微电子技术研究所 一种多路大电流电源并网防反灌配电装置
WO2020183901A1 (ja) * 2019-03-08 2020-09-17 株式会社デンソー 通電制御装置
CN215934520U (zh) * 2021-09-30 2022-03-01 金卡水务科技有限公司 电源切换系统及双电源供电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203434730U (zh) * 2013-09-05 2014-02-12 北京慧博环宇科技有限公司 一种冗余电源
CN105703614A (zh) * 2015-12-30 2016-06-22 深圳市国耀电子科技股份有限公司 一种防反接防倒灌保护电路
CN105703615A (zh) * 2016-04-13 2016-06-22 浪潮集团有限公司 一种用于dc电源冗余电路的防倒灌设计方法
CN109733374A (zh) * 2018-12-28 2019-05-10 上海擎度汽车科技有限公司 控制器供电系统
CN109842108A (zh) * 2019-02-25 2019-06-04 西安微电子技术研究所 一种多路大电流电源并网防反灌配电装置
WO2020183901A1 (ja) * 2019-03-08 2020-09-17 株式会社デンソー 通電制御装置
CN215934520U (zh) * 2021-09-30 2022-03-01 金卡水务科技有限公司 电源切换系统及双电源供电设备

Also Published As

Publication number Publication date
CN116937773A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
EP2241009B1 (en) Low-swing cmos input circuit
US10505441B2 (en) Voltage regulation system, regulator chip and voltage regulation control method
US11522363B2 (en) Supply protection circuit that protects power transistor from a supply signal of an incorrect polarity
US20140340070A1 (en) Electronic circuit having band-gap reference circuit and start-up circuit, and method of starting-up band-gap reference circuit
CN113328734A (zh) 快速阻断开关
CN109194126B (zh) 一种电源切换电路
CN110352543B (zh) 一种车辆的充电系统及车辆
CN213843926U (zh) 用于线性稳压器的防倒灌电路和线性稳压装置
WO2023198070A1 (zh) 车载冗余电源的防反灌控制电路、车辆控制器及车辆
CN216625280U (zh) 一种过流保护电路及电系统
CN115954980A (zh) 一种电池均衡放电控制电路
CN111769541B (zh) 一种供电电路、防止电压倒流的终端附件和方法
CN212343647U (zh) Mos管开关电路及其系统、电源、门锁和报警开关电路系统
CN111327194B (zh) 共直流电源的电源转换器及供电装置
CN112953227A (zh) 电路、开关电源芯片及系统
CN111434001B (zh) 用于双输入充电器的电容器平衡驱动器电路
CN220673618U (zh) 防电流倒灌电路、主板和电子设备
CN219420370U (zh) 电源切换电路
CN112968518B (zh) 一种包括后备电源的供电系统
CN216851750U (zh) 一种并联供电保护电路和电子设备
US7368947B2 (en) Voltage translating control structure
CN115833344A (zh) 一种双电池硬件切换电路及双电池供电系统
CN106301344B (zh) 具有保护电路的半导体元件
CN116155090A (zh) 电源供应电路以及电源供应方法
CN117220483A (zh) 一种两级联动的电源控制单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787713

Country of ref document: EP

Kind code of ref document: A1