WO2023197955A1 - 信号处理方法、装置、电子设备及介质 - Google Patents

信号处理方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2023197955A1
WO2023197955A1 PCT/CN2023/086987 CN2023086987W WO2023197955A1 WO 2023197955 A1 WO2023197955 A1 WO 2023197955A1 CN 2023086987 W CN2023086987 W CN 2023086987W WO 2023197955 A1 WO2023197955 A1 WO 2023197955A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
spectrum
frequency
frame
phase spectrum
Prior art date
Application number
PCT/CN2023/086987
Other languages
English (en)
French (fr)
Inventor
康东
刘良兵
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023197955A1 publication Critical patent/WO2023197955A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L25/84Detection of presence or absence of voice signals for discriminating voice from noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a signal processing method, device, electronic equipment and medium.
  • signal detection such as harmonic detection of speech signals, single-frequency tone detection, radar reflection frequency detection, and biomedical signal frequency detection have important uses in scenarios such as voice communication, industrial automation control, radar ranging, and medical imaging.
  • signals such as speech signals
  • signals and noise need to be distinguished to obtain effective signals.
  • the curves of the energy of the signal and noise can be reflected by the amplitude spectrum. Since the energy of the signal is stronger than the energy of the noise, the signal and the noise can be distinguished according to the two curves in the amplitude spectrum, that is, the curve with the stronger energy indicates The signal is determined to be the signal of the target frequency.
  • the purpose of the embodiments of the present application is to provide a signal processing method, device, electronic equipment and medium that can solve the problem of being unable to accurately determine the target frequency signal from the amplitude spectrum when in a medium or low signal-to-noise ratio environment.
  • embodiments of the present application provide a signal processing method.
  • the method includes: obtaining a first phase spectrum of M frame signals, where M is a positive integer; and calculating the first phase spectrum according to the first phase compensation function. Phase compensation is performed to obtain a second phase spectrum, which is a phase characteristic spectrum of the M frame signal at the target frequency.
  • inventions of the present application provide a signal processing device.
  • the signal processing device includes: an acquisition module and a processing module.
  • the acquisition module is used to acquire the first phase spectrum of M frame signals, where M is a positive integer;
  • the processing module is used to perform phase compensation on the first phase spectrum acquired by the acquisition module according to the first phase compensation function to obtain the first phase spectrum.
  • Two phase spectrograms, the second phase spectrogram is the phase characteristic spectrogram of the M frame signal at the target frequency.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are processed by the processor.
  • the processor is executed, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium on which a program is stored.
  • a program or instruction that, when executed by a processor, implements the steps of the method described in the first aspect.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect. the method described.
  • embodiments of the present application provide a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect.
  • the first phase spectrum of M frame signals can be obtained, and M is a positive integer; according to the phase compensation function, phase compensation is performed on the first phase spectrum to obtain a second phase spectrum.
  • the phase spectrum is the phase characteristic spectrum of the M frame signal at the target frequency.
  • Figure 1 is a schematic diagram of a signal processing method provided by an embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of a phase spectrum processing process provided by an embodiment of the present application.
  • Figure 3 is a second schematic diagram of a phase spectrum processing process provided by an embodiment of the present application.
  • Figure 4 is a third schematic diagram of a phase spectrum processing process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the fourth phase spectrum processing process provided by the embodiment of the present application.
  • Figure 6 is one of the time-frequency distribution schematic diagrams provided by the embodiment of the present application.
  • Figure 7 is a second time-frequency distribution schematic diagram provided by an embodiment of the present application.
  • Figure 8 is the third schematic diagram of time-frequency distribution provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 11 is a hardware schematic diagram of an electronic device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first,”"second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates the connected At least one of the objects, the character “/”, generally indicates that the related objects are in an "or” relationship.
  • an embodiment of the present application provides a signal processing method, which includes the following S101 to S102.
  • the signal processing device obtains the first phase spectrum of the M frame signal.
  • M is a positive integer.
  • the signal processing method provided by the embodiment of the present application can be applied in a medium and low signal-to-noise ratio environment below -15 decibels (dB).
  • the above-mentioned M frame signals are non-dense frequency signals.
  • the M frame signal is a speech signal.
  • the above-mentioned first phase spectrum is a phase diagram of the M frame signal in the frequency domain.
  • the first phase spectrum includes a phase-frequency curve; when M is greater than 1, it is a multi-frame signal. At this time, the first phase spectrum includes multiple phase-frequency curves. curve.
  • the electronic device can directly obtain it from the server, or the electronic device can perform Fourier transform on the time domain signal to obtain it.
  • the electronic device can directly obtain it from the server, or the electronic device can perform Fourier transform on the time domain signal to obtain it.
  • the signal processing device performs phase compensation on the first phase spectrum according to the first phase compensation function to obtain a second phase spectrum.
  • the above-mentioned second phase spectrum is the phase characteristic spectrum of the M frame signal at the target frequency.
  • the above target frequency is determined based on the phase characteristics of the second phase spectrum.
  • the signal processing method provided by the embodiment of the present application may also include: extracting the slope of the window function to obtain the first phase compensation function.
  • the above window function can be set by the developer or customized by the user.
  • the window function can be a Hanning window.
  • the window function is a multi-segment continuous curve
  • its slope can be extracted to form an equal slope straight line. That is, the straight lines with equal slopes are the first phase compensation function.
  • phase compensation processing on the first phase spectrum according to the first phase compensation function can unwind the wrapped phase spectrum and achieve a phase-frequency curve flattening effect.
  • Figure 2 includes three sub-figures (a) to (c).
  • (a) in Figure 2 is the amplitude spectrum of three adjacent frames
  • (b) in Figure 2 is the first phase spectrum of three adjacent frames
  • (c) in Figure 2 is the first phase compensation function
  • the phase curves of the three adjacent frames after phase compensation is performed on the first phase spectrum, that is, the second phase spectrum.
  • the area corresponding to the stronger amplitude sub-band area of the amplitude spectrum shows good flatness characteristics, that is, the first phase compensation function has good feature extraction function.
  • the difference between the first phase spectrum and the first phase compensation function is calculated to obtain a phase after the initial phase with winding has been compensated once; then the modulus of 2 times ⁇ is performed on this phase, and then divided by 2 , get another phase after taking the remainder; finally, take the sine and then the inverse sine of the other phase after taking the remainder to get a new phase spectrum, that is, get the second phase spectrum.
  • phase information is divided by 2 to reduce the dynamic range to [0, pi], which is more in line with the need to extract the target frequency.
  • Embodiments of the present application provide a signal processing method. After acquiring a phase spectrum of at least one frame of signal, phase compensation is performed on the one phase spectrum according to the phase compensation function to obtain another phase spectrum. Since the other phase spectrum is The phase spectrum is the phase characteristic spectrum of the at least one frame signal at the target frequency, so the signal of the target frequency can be accurately determined from the other phase spectrum. In this way, when in a medium or low signal-to-noise ratio environment, the signal of the target frequency can be distinguished through the signal processing method provided by this application.
  • the signal processing method provided by the embodiment of the present application may also include the following S103.
  • obtaining the second phase spectrum in the above-mentioned S102 can be specifically implemented through the following S102A.
  • the signal processing device obtains M second phase compensation functions.
  • the above S103 can be specifically implemented through the following S103A and S103B.
  • the signal processing device determines the first estimated frequency based on the amplitude spectrum of the M frame signal.
  • the above-mentioned first estimated frequency is the frequency corresponding to the maximum amplitude value in the amplitude spectrogram.
  • (a) in Figure 3 is the amplitude spectrogram of the three-frame signal.
  • the frequency corresponding to the maximum amplitude in the amplitude spectrogram is 100, that is, the first estimated frequency is 100.
  • the signal processing device determines M second phase compensation functions based on the first estimated frequency and the frame number of the M frame signal.
  • each frame signal in the M frame signals corresponds to a frame sequence number, M different second compensation functions are obtained.
  • the signal processing method provided by the embodiment of the present application determines the first estimated frequency based on the amplitude spectrum of the M-frame signal, and determines M second phase compensation functions based on the first estimated frequency and the frame number of the M-frame signal, thereby It is convenient to perform inter-frame phase difference compensation on M frame signals through M second phase compensation functions to achieve the purpose of further feature extraction.
  • the signal processing device performs inter-frame phase difference compensation on the third phase spectrum according to the M second phase compensation functions to obtain the second phase spectrum.
  • a second phase compensation function performs phase compensation on a frame signal corresponding to the second phase compensation function.
  • the third phase spectrum is obtained by performing phase compensation according to the first phase compensation function.
  • a frame of signal corresponding to the above-mentioned second phase compensation function may be a signal after using the first phase compensation function for phase compensation, or a signal without using the first phase compensation function for phase compensation.
  • the specific determination is based on the actual situation, and the embodiments of the present application do not limit this.
  • the above method is to first unwrap the first phase spectrum with winding, and then perform inter-frame phase difference compensation on the phase spectrum obtained after unwinding to obtain the second phase spectrum.
  • the above S102A is to obtain the third phase spectrum after phase compensation is performed on the first phase spectrum according to the first phase compensation function; and the third phase spectrum is obtained based on M second phase compensation functions.
  • the inter-frame phase difference compensation is performed to obtain the second phase spectrum as an example for illustrative explanation.
  • phase compensation when it is necessary to perform phase compensation on the first phase spectrum according to the first phase compensation function and M second phase compensation functions at the same time, it is also possible to first perform phase compensation on the first phase spectrum according to the M second phase compensation functions.
  • the spectrum is compensated for the phase difference between frames to obtain a phase spectrum; and based on the first phase compensation function, phase compensation is performed on the phase spectrum to obtain a second phase spectrum.
  • the above method is to perform inter-frame phase difference compensation on the first phase spectrum, and then unwrap the phase spectrum obtained after inter-frame phase difference compensation to obtain the second phase spectrum. It can be understood that the amount of calculation can be effectively saved by adopting the above method.
  • the signal processing device can first calculate the difference between the first phase spectrum and the second phase compensation function, a phase spectrum, and the phase of the phase spectrum is obtained by performing a phase compensation on the initial phase with winding. phase; then, calculate the difference between the phase spectrum and the first phase compensation function to obtain another phase spectrum.
  • the phase of the other phase spectrum is the phase after secondary phase compensation of the wrapped phase. ; Then, take the modulus of 2 times ⁇ on the phase of the other phase spectrogram, and then divide it by 2 to get the remainder phase; finally, take the sine and then the inverse sine of the remainder phase to get the new phase, That is, the second phase spectrum is obtained.
  • Figure 3 includes three sub-figures (a) to (c).
  • (a) in Figure 3 is the amplitude spectrum of three adjacent frames
  • (c) in Figure 3 is the second phase compensation function used to frame (b) in Figure 3 (that is, (c) in Figure 2).
  • the phase curve after compensation for the phase difference between the two is the second phase spectrum.
  • the area in the second phase spectrum corresponding to the sub-band area with stronger amplitude of the amplitude spectrum shows good inter-frame consistency, that is, the second phase compensation function has Good feature extraction function.
  • inter-frame phase difference compensation is performed on the third phase spectrum according to M second phase compensation functions to obtain the second phase spectrum, since the region in the second phase spectrum corresponding to the stronger sub-band region of the amplitude spectrum shows good
  • the inter-frame consistency that is, the second phase compensation function, has a good feature extraction effect.
  • the signal processing method provided by the embodiment of the present application may also include the following S104.
  • obtaining the second phase spectrum in the above-mentioned S102A can be specifically implemented through the following S102A1.
  • the signal processing device obtains M first phase values corresponding to each frequency point in the fourth phase spectrum diagram.
  • the above-mentioned fourth phase spectrum is obtained after inter-frame phase difference compensation is performed according to M second phase compensation functions.
  • a first phase value is determined by calculating the standard deviation of P phase values.
  • the P phase values are the phase values corresponding to the P frame signal at a frequency point.
  • the P frame signal is the signal of each frame in the M frame signal. adjacent signal frames.
  • each of the M first phase values corresponds to one frame of the M frame signals.
  • the signal processing device obtains the second phase spectrum based on the M first phase values and the frequency points in the fourth phase spectrum.
  • the above S102A1 specifically includes: using M first phase values as phase values corresponding to frequency points in the fourth phase spectrum to obtain the second phase spectrum.
  • the above-mentioned fourth phase spectrum diagram includes a plurality of consecutive frequency points, and each frequency point corresponds to M first phase values. That is, the phase value of each frame signal at each frequency point is a first phase value, thereby obtaining the second phase spectrum.
  • Figure 4 includes three sub-figures (a) to (c).
  • (a) in Figure 4 is the amplitude spectrum of three adjacent frames, and (c) in Figure 4 is obtained after executing the above S104 and S102A1 on (b) in Figure 4 (that is, (c) in Figure 3) Phase curve, that is, the second phase spectrum.
  • M first phase values corresponding to each frequency point in the second phase spectrum can be obtained, and based on the M first phase values and the frequency points in the fourth phase spectrum, the th Therefore, in the second phase spectrum, the phase value of the region corresponding to the stronger amplitude sub-band region of the amplitude spectrum is significantly lower and tends to zero. That is, through standard deviation calculation, feature extraction can be further performed.
  • the signal processing method provided by the embodiment of the present application may also include the following S105.
  • obtaining the second phase spectrum in the above-mentioned S102A1 can be specifically implemented through the following S102a.
  • the signal processing device obtains M second phase values corresponding to each frequency point in the fifth phase spectrum.
  • the fifth phase spectrum is obtained based on the M first phase values and the frequency points in the fourth phase spectrum.
  • a second phase value is determined by averaging the phase values of K adjacent frequency points.
  • the K adjacent frequency points are frequency points adjacent to one frequency point, and K is an integer greater than 1.
  • each of the M second phase values corresponds to one frame of the M frame signals.
  • the signal processing device obtains a second phase spectrum based on the M second phase values and the frequency points in the fifth phase spectrum.
  • the above S102a specifically includes: using M second phase values as frequency point pairs in the fifth phase spectrum diagram. corresponding phase value to obtain the second phase spectrum.
  • the fifth phase spectrum includes multiple consecutive frequency points, and each frequency point corresponds to M second phase values. That is, the phase value of each frame signal at each frequency point is a second phase value, thereby obtaining a second phase spectrum.
  • Figure 5 includes three sub-figures (a) to (c).
  • (a) in Figure 5 is the amplitude spectrum of three adjacent frames, and (c) in Figure 5 is obtained after executing the above S105 and S102a on (b) in Figure 5 (that is, (c) in Figure 4) Phase curve, that is, the second phase spectrum.
  • M second phase values corresponding to each frequency point in the fifth phase spectrum can be obtained, and based on the M second phase values and the frequency points in the fifth phase spectrum, we obtain
  • the second phase spectrum diagram can further highlight that the second phase spectrum diagram has better single frame stability and discrimination in the area corresponding to the sub-band area with stronger amplitude of the amplitude spectrum diagram. That is, through average calculation, further feature extraction can be performed.
  • the signal processing method provided by the embodiment of the present application may also include the following S106.
  • the signal processing device sharpens the second phase spectrum to obtain the target time-frequency diagram.
  • the above target time-frequency diagram is a time-frequency distribution diagram of the M frame signal at the target frequency.
  • the above-mentioned S106 specifically includes: sharpening the phase spectrum information of the second phase spectrum diagram using a decibel scale to obtain the target time-frequency diagram.
  • sharpening the second phase spectrum in S106 above includes: first taking the logarithm of the phase value of the second phase spectrum, and then taking the inverse.
  • the signal-to-noise ratio is -7dB
  • the sampling frequency fs is 16 kilohertz (kHz)kHz
  • lenFrame is 512
  • lenFft is 2048
  • width4fnStd is 6.
  • (a) in Figure 6 is the amplitude spectrum, and the dotted box 01 in the amplitude spectrum is the target frequency
  • (b) in Figure 6 is the target phase spectrum
  • (c) in Figure 6 is the target phase spectrum
  • the dotted box 02 in the target time-frequency diagram is the target frequency.
  • the target time-frequency diagram reflects the distribution of multi-frame signals at the target frequency of 100
  • the single-frame signal with the target frequency of 100 can be determined according to the target time-frequency diagram.
  • the target time-frequency diagram further highlights the distribution of the target frequency.
  • the signal-to-noise ratio is -15dB
  • the sampling frequency fs is 16 kilohertz (kHz)
  • lenFrame is 512
  • lenFft is 2048
  • width4fnStd is 6.
  • (a) in Figure 7 is the amplitude spectrum
  • the dotted box 03 in the amplitude spectrum is the target frequency
  • (b) in Figure 7 is the target phase spectrum
  • (c) in Figure 7 is the target phase spectrum.
  • the dotted box 04 in the target time-frequency diagram is the target frequency.
  • the target time-frequency diagram reflects the distribution of multi-frame signals at the target frequency of 100
  • the single-frame signal with the target frequency of 100 can be determined according to the target time-frequency diagram.
  • the target time-frequency diagram further highlights the distribution of the target frequency.
  • the signal-to-noise ratio is -18dB
  • the sampling frequency fs is 16 kilohertz (kHz)
  • lenFrame is 512
  • lenFft is 2048
  • width4fnStd is 6.
  • (a) in Figure 8 is the amplitude spectrum. In this amplitude spectrum, The dotted box 05 is the target frequency;
  • (b) in Figure 8 is the target phase spectrum, and
  • (c) in Figure 8 is the target time-frequency diagram after sharpening the target phase spectrum.
  • the dotted line in the target time-frequency diagram Box 06 is the target frequency.
  • the target time-frequency diagram reflects the distribution of multi-frame signals at the target frequency of 100
  • the single-frame signal with the target frequency of 100 can be determined according to the target time-frequency diagram.
  • the target time-frequency diagram further highlights the distribution of the target frequency.
  • the signal processing method provided by the embodiment of the present application can sharpen the second phase spectrum to obtain the target time-frequency diagram. Since the target time-frequency diagram is the time-frequency distribution diagram of the M frame signal at the target frequency, the target time-frequency diagram is The frequency diagram can further highlight the target frequency, so that the signal of the target frequency can be determined based on the target time-frequency diagram to distinguish the noise, thus achieving higher noise immunity.
  • the execution subject may be a signal processing device.
  • the signal processing method performed by the signal processing device is taken as an example to illustrate the signal processing device provided by the embodiments of the present application.
  • this embodiment of the present application provides a signal processing device 200 , which may include an acquisition module 201 and a processing module 202 .
  • the acquisition module 201 can be used to acquire the first phase spectrum of M frame signals, where M is a positive integer.
  • the processing module 202 may be configured to perform phase compensation on the first phase spectrum obtained by the acquisition module 201 according to the first phase compensation function to obtain a second phase spectrum.
  • the second phase spectrum is the M frame signal at the target frequency. phase characteristic spectrum.
  • processing module can also be used to extract the slope of the window function to obtain the first phase compensation function.
  • the acquisition module can also be used to acquire M second phase compensation functions.
  • the processing module can be specifically used to perform inter-frame phase difference compensation on the third phase spectrum according to the M second phase compensation functions to obtain the second phase spectrum.
  • One second phase compensation function corresponds to one second phase compensation function.
  • a frame of signal is phase compensated; wherein, the third phase spectrum is obtained by performing phase compensation according to the first phase compensation function.
  • the acquisition module may be specifically configured to determine a first estimated frequency based on the amplitude spectrogram of the M frame signal, where the first estimated frequency is the frequency corresponding to the maximum amplitude in the amplitude spectrogram; and based on the first estimate The frequency and the frame number of the M frame signal determine the M second phase compensation functions.
  • the acquisition module can also be used to acquire M first phase values corresponding to each frequency point in the fourth phase spectrum diagram.
  • the first phase value is determined by standard deviation calculation of P phase values
  • P A phase value is the phase value corresponding to a frequency point of the P frame signal
  • the P frame signal is a signal frame adjacent to each frame signal in the M frame signal.
  • the processing module may be specifically configured to obtain a second phase spectrum based on the M first phase values and the frequency points in the fourth phase spectrum; wherein the fourth phase spectrum is frame based on the M second phase compensation functions. obtained after compensating for the phase difference between them.
  • the acquisition module can also be used to acquire M second phase values corresponding to each frequency point in the fifth phase spectrum diagram.
  • the second phase value is calculated by averaging the phase values of K adjacent frequency points. It is determined that K adjacent frequency points are frequency points adjacent to one frequency point, and K is an integer greater than 1.
  • the processing module can be specifically used to obtain the second phase spectrum according to the M second phase values and the frequency points in the fifth phase spectrum; wherein the fifth phase spectrum is based on M first phase values and frequency points in the fourth phase spectrum are obtained.
  • the processing module can also be used to sharpen the second phase spectrum to obtain a target time-frequency diagram.
  • the target time-frequency diagram is a time-frequency distribution diagram of the M frame signal at the target frequency.
  • Embodiments of the present application provide a signal processing device. After acquiring a phase spectrum of at least one frame of signal, phase compensation is performed on the one phase spectrum according to the phase compensation function to obtain another phase spectrum. Since the other phase spectrum is The phase spectrum is the phase characteristic spectrum of the at least one frame signal at the target frequency, so the signal of the target frequency can be accurately determined from the other phase spectrum. In this way, when in a medium or low signal-to-noise ratio environment, the signal of the target frequency can be distinguished through the signal processing method provided by this application.
  • the signal processing device in the embodiment of the present application may be an electronic device or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile Internet device (MID), or augmented reality (AR)/virtual reality (VR).
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • the signal processing device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the signal processing device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 1 to 8. To avoid duplication, they will not be described again here.
  • this embodiment of the present application also provides an electronic device 300, including a processor 301 and a memory 302.
  • the memory 302 stores programs or instructions that can be run on the processor 301.
  • the program or instruction is executed by the processor 301, each step of the above signal processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • Figure 11 is a schematic diagram of the hardware structure of an electronic device that implements an embodiment of the present application.
  • the electronic device 400 includes but is not limited to: radio frequency unit 401, network module 402, audio output unit 403, input unit 404, sensor 405, display unit 406, user input unit 407, interface unit 408, memory 409, processor 410, etc. part.
  • the electronic device 400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 410 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 11 does not constitute
  • the electronic equipment may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the processor 410 is used to obtain the first phase spectrum of M frame signals, where M is a positive integer; and is used to perform phase compensation on the first phase spectrum according to the first phase compensation function to obtain the second phase spectrum.
  • the second phase spectrum is the phase characteristic spectrum of the M frame signal at the target frequency.
  • the processor 410 is also used to extract the slope of the window function to obtain the first phase compensation function.
  • the processor 410 is also used to obtain M second phase compensation functions.
  • the processor 410 may be specifically configured to perform inter-frame phase difference compensation on the third phase spectrum according to the M second phase compensation functions to obtain the second phase spectrum.
  • One second phase compensation function corresponds to one second phase compensation function.
  • the corresponding frame signal is phase compensated; wherein, the third phase spectrum is obtained by performing phase compensation according to the first phase compensation function.
  • the processor 410 is configured to determine a first estimated frequency based on the amplitude spectrum of the M-frame signal, where the first estimated frequency is the frequency corresponding to the maximum amplitude in the amplitude spectrum; and based on the first estimated frequency and the frame sequence numbers of M frame signals to determine M second phase compensation functions.
  • the processor 410 is used for M first phase values corresponding to each frequency point in the fourth phase spectrum diagram.
  • the first phase value is determined by performing standard deviation calculation on P phase values.
  • the P phases The value is the phase value corresponding to a frequency point of the P frame signal.
  • the P frame signal is the signal frame adjacent to each frame signal in the M frame signal; and is used to calculate the M first phase values and the fourth phase spectrum in the frequency point to obtain a second phase spectrum; wherein, the fourth phase spectrum is obtained after inter-frame phase difference compensation is performed according to M second phase compensation functions.
  • the processor 410 is configured to obtain M second phase values corresponding to each frequency point in the fifth phase spectrum diagram.
  • the second phase value is determined by averaging the phase values of K adjacent frequency points.
  • K adjacent frequency points are frequency points adjacent to one frequency point, and K is an integer greater than 1; and used to obtain the third phase value based on the M second phase values and the frequency points in the fifth phase spectrum diagram.
  • the processor 410 is configured to perform sharpening processing on the second phase spectrum to obtain a target time-frequency diagram.
  • the target time-frequency diagram is a time-frequency distribution diagram of the M frame signal at the target frequency.
  • Embodiments of the present application provide an electronic device. After acquiring a phase spectrum of at least one frame of signal, the one phase spectrum is phase compensated according to the phase compensation function to obtain another phase spectrum. Since the other phase spectrum The spectrum is a phase characteristic spectrum of the at least one frame signal at the target frequency, so the signal of the target frequency can be accurately determined from the other phase spectrum. In this way, when in a medium or low signal-to-noise ratio environment, the signal of the target frequency can be distinguished through the signal processing method provided by this application.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 406 may include a display panel 4061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 407 includes a touch panel 4071 and other input devices 4072 at least one of them. Touch panel 4071, also called touch screen.
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 4072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 409 may be used to store software programs as well as various data.
  • the memory 409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 409 may include volatile memory or nonvolatile memory, or memory 409 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory
  • the processor 410 may include one or more processing units; optionally, the processor 410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 410.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above signal processing method embodiment is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above signal processing method embodiments. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above signal processing method embodiment, and can achieve To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Noise Elimination (AREA)
  • Complex Calculations (AREA)

Abstract

一种信号处理方法、装置、电子设备及介质,属于通信技术领域。信号处理方法包括:获取M帧信号的第一相位谱图(S101),M为正整数;根据第一相位补偿函数,对第一相位谱图进行相位补偿,得到第二相位谱图(S102),第二相位谱图为该M帧信号在目标频率的相位特征谱图。

Description

信号处理方法、装置、电子设备及介质
相关申请的交叉引用
本申请主张在2022年4月11日在中国提交的中国专利申请号202210377040.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法、装置、电子设备及介质。
背景技术
随着通信技术的发展,各种信号检测广泛的应用在人们的生产生活中。例如,语音信号的谐波检测、单频音检测、雷达反射频率检测、生物医学信号频率检测等信号检测,在语音通讯、工业自动化控制、雷达测距和医学成像等场景中具有重要用途。
由于信号(例如语音信号)中往往伴随有噪声,因此在实际应用中,需要区分出信号和噪声,以获得有效的信号。通常,可以通过幅度谱图反映信号和噪声的能量的曲线,由于信号的能量强于噪声的能量,因此根据幅度谱图中的两条曲线可以区分信号和噪声,即将能量较强的曲线指示的信号确定为目标频率的信号。
然而,当电子设备处于-15分贝(dB)以下的中低信噪比环境时,由于信号的能量与噪声的能量无太大区别,因此幅度谱图中的曲线呈现出的能量差异较小,从而无法区分信号和噪声。如此,导致无法准确地从幅度谱图中确定目标频率的信号。
发明内容
本申请实施例的目的是提供一种信号处理方法、装置、电子设备及介质,能够解决当处于中低信噪比环境时无法准确地从幅度谱图中确定目标频率的信号的问题。
第一方面,本申请实施例提供了一种信号处理方法,该方法包括:获取M帧信号的第一相位谱图,M为正整数;根据第一相位补偿函数,对该第一相位谱图进行相位补偿,得到第二相位谱图,该第二相位谱图为该M帧信号在目标频率的相位特征谱图。
第二方面,本申请实施例提供了一种信号处理装置,该信号处理装置包括:获取模块和处理模块。获取模块,用于获取M帧信号的第一相位谱图,M为正整数;处理模块,用于根据第一相位补偿函数,对获取模块获取的该第一相位谱图进行相位补偿,得到第二相位谱图,该第二相位谱图为该M帧信号在目标频率的相位特征谱图。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程 序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,可以获取M帧信号的第一相位谱图,M为正整数;根据相位补偿函数,对该第一相位谱图进行相位补偿,得到第二相位谱图,该第二相位谱图为该M帧信号在目标频率的相位特征谱图。通过本方案,在获取至少一帧信号的一个相位谱图之后,由于根据相位补偿函数,对该一个相位谱图进行相位补偿得到另一个相位谱图,由于该另一个相位谱图是该至少一帧信号在目标频率的相位特征谱图,因此可以准确地从该另一个相位谱图中确定该目标频率的信号。如此,当处于中低信噪比环境时,通过本申请提供的信号处理方法可以区分出目标频率的信号。
附图说明
图1为本申请实施例提供的一种信号处理方法的示意图;
图2为本申请实施例提供的一种对相位谱图处理的过程示意图之一;
图3为本申请实施例提供的一种对相位谱图处理的过程示意图之二;
图4为本申请实施例提供的一种对相位谱图处理的过程示意图之三;
图5为本申请实施例提供的一种对相位谱图处理的过程示意图之四;
图6为本申请实施例提供的一种时频分布示意图之一;
图7为本申请实施例提供的一种时频分布示意图之二;
图8为本申请实施例提供的一种时频分布示意图之三;
图9为本申请实施例提供的信号处理装置的结构示意图;
图10为本申请实施例提供的电子设备的结构示意图;
图11为本申请实施例提供的电子设备的硬件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接 对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信号处理方法、装置、电子设备及介质进行详细地说明。
如图1所示,本申请实施例提供一种信号处理方法,该方法包括下述S101至S102。
S101、信号处理装置获取M帧信号的第一相位谱图。
其中,M为正整数。
可选地,本申请实施例提供的信号处理方法可应用于-15分贝(dB)以下的中低信噪比环境下。
可选地,在本申请实施例中,上述M帧信号为非密集频率信号。例如,该M帧信号为语音信号。
可选地,上述第一相位谱图为M帧信号在频域上的相位图。
进一步地,当M=1时,即一帧信号,此时第一相位谱图包括一条相频曲线;当M大于1时,即多帧信号,此时第一相位谱图包括多条相频曲线。
此外,对于第一相位谱图,电子设备可以直接从服务器上获取,或电子设备对时域信号进行傅里叶变换得到,具体可以参照相关技术中的实现方式,本申请实施例对此不予赘述。
S102、信号处理装置根据第一相位补偿函数,对该第一相位谱图进行相位补偿,得到第二相位谱图。
其中,上述第二相位谱图为M帧信号在目标频率的相位特征谱图。
可选地,上述目标频率是根据第二相位谱图的相位特征确定。
可选地,上述S102之前,本申请实施例提供的信号处理方法还可以包括:提取窗函数的斜率,得到第一相位补偿函数。
可选地,上述窗函数可以为开发人员设置的,或为用户自定义设置的。例如,窗函数可以为汉宁窗。
具体地,由于窗函数为多段连续曲线,因此可以提取其斜率,构成一条等斜率直线。即该等斜率直线为第一相位补偿函数。
需要说明的是,根据第一相位补偿函数,对第一相位谱图进行相位补偿处理,可以使得被卷绕的相位谱解卷绕,实现相频曲线平坦化效果。
示例性地,以M=3为例。如图2所示,图2中包括(a)至(c)3个子图。图2中的(a)为邻近三帧的幅度谱图,图2中的(b)为该邻近三帧的第一相位谱图,图2中的(c)为采用第一相位补偿函数,对该第一相位谱图进行相位补偿后的该邻近三帧的相位曲线,即第二相位谱图。
进一步,基于对上述图2示例进行分析,在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好的平坦性特征,即第一相位补偿函数具有良好的特征提取作用。
示例性地,计算第一相位谱图和第一相位补偿函数之差,得到有卷绕的初始相位进行一次补偿后的一个相位;再对该一个相位进行2倍π取余,再除以2,得到取余后的另一个相位;最后,对取余后的另一个相位先取正弦再取反正弦,得到新的相位谱图,即得到第二相位谱图。
需要说明的是,根据正弦信号对正负相位的取绝对值的特点,设计了取正弦,最后取反正弦的方法,可以有效去除相位卷绕的干扰。进一步地,考虑到相位谱信息不需要关注相位差的符号,因此对相位信息除以2,将动态范围降低到[0,pi],更符合提取目标频率的需要。
可以理解的是,在根据第一补偿函数,对第一相位谱图进行相位补偿,得到第二相位谱图之后,由于在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好的平坦性特征,即第一相位补偿函数,具有良好的特征提取作用。
本申请实施例提供一种信号处理方法,在获取至少一帧信号的一个相位谱图之后,由于根据相位补偿函数,对该一个相位谱图进行相位补偿得到另一个相位谱图,由于该另一个相位谱图是该至少一帧信号在目标频率的相位特征谱图,因此可以准确地从该另一个相位谱图中确定该目标频率的信号。如此,当处于中低信噪比环境时,通过本申请提供的信号处理方法可以区分出目标频率的信号。
可选地,在上述S102中的得到第二相位谱图之前,本申请实施例提供的信号处理方法还可以包括下述S103。相应地,上述S102中的得到第二相位谱图,具体可以通过下述S102A实现。
S103、信号处理装置获取M个第二相位补偿函数。
可选地,上述S103可以具体通过下述S103A和S103B实现。
S103A、信号处理装置基于M帧信号的幅度谱图,确定第一估计频率。
其中,上述第一估计频率为幅度谱图中的最大幅度值对应的频率。
示例性地,如图3所示,图3中的(a)为3帧信号的幅度谱图,该幅度谱图中的最大幅值对应的频率为100,即第一估计频率为100。
S103B、信号处理装置根据该第一估计频率和该M帧信号的帧序号,确定M个第二相位补偿函数。
可选地,分别计算M帧信号的帧序号对应的传播时间长度,结合第一估计频率,得到M个第二相位补偿函数。
可以理解的是,由于M帧信号中每帧信号对应一个帧序号,因此得到的M个不同的第二补偿函数。
本申请实施例提供的信号处理方法,基于M帧信号的幅度谱图,确定第一估计频率,根据该第一估计频率和该M帧信号的帧序号,确定M个第二相位补偿函数,从而便于通过M个第二相位补偿函数对M帧信号进行帧间相位差异补偿,以达到进一步特征提取的目的。
S102A、信号处理装置根据M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到第二相位谱图。
其中,一个第二相位补偿函数对该一个第二相位补偿函数对应的一帧信号进行相位补偿。第三相位谱图为根据第一相位补偿函数进行相位补偿得到的。
可选地,上述一个第二相位补偿函数对应的一帧信号可以为采用第一相位补偿函数进行相位补偿之后的信号,或为未采用第一相位补偿函数进行相位补偿的信号。具体根据实际情况确定,本申请实施例对此不作限定。
需要说明的是,上述方式是对有卷绕的第一相位谱图先解卷绕,再对解卷绕后得到的相位谱图进行帧间相位差异补偿,得到第二相位谱图。
可选地,上述S102A是在根据第一相位补偿函数,对第一相位谱图进行相位补偿后,得到第三相位谱图;并根据M个第二相位补偿函数,对该第三相位谱图进行帧间相位差异补偿,得到第二相位谱图为例进行示例性说明的。
进一步地,在同时需要根据第一相位补偿函数和M个第二相位补偿函数,对第一相位谱图进行相位补偿的情况下,还可以先根据M个第二相位补偿函数,对第一相位谱图进行帧间相位差异补偿,得到一个相位谱图;并根据第一相位补偿函数,对该一个相位谱图进行相位补偿,得到第二相位谱图。
需要说明的是,上述方式是对第一相位谱图进行帧间相位差异补偿,再对进行帧间相位差异补偿后得到的相位谱图进行解卷绕,得到第二相位谱图。可以理解的是,采用上述方式可以有效节约计算量。
示例性地,信号处理装置可以先计算第一相位谱图和第二相位补偿函数之差,一个相位谱图,该一个相位谱图的相位是对有卷绕的初始相位进行一次相位补偿后的相位;然后,再计算该一个相位谱图和第一相位补偿函数之差,得到另一个相位谱图,该另一个相位谱图的相位是对有卷绕的相位进行二次相位补偿后的相位;接着,对该另一个相位谱图的相位进行2倍π取余,再除以2,得到取余后的相位;最后,对取余后的相位先取正弦再取反正弦,得到新相位,即得到第二相位谱图。
示例性地,以M=3为例。结合图2,如图3所示,图3中包括(a)至(c)3个子图。图3中的(a)为邻近三帧的幅度谱图,图3中的(c)为采用第二相位补偿函数对图3中的(b)(即图2中的(c))进行帧间相位差异补偿后的相位曲线,即第二相位谱图。
进一步,基于对上述图3示例进行分析,在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好的帧间一致性,即第二相位补偿函数具有良好的特征提取作用。
在本申请实施例中,在根据第一补偿函数对第一相位谱图进行相位补偿之后,根据M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到第二相位谱图,由于在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好 的帧间一致性,即第二相位补偿函数,具有良好的特征提取作用。
可选地,在上述S102A中的得到第二相位谱图之前,本申请实施例提供的信号处理方法还可以包括下述S104。相应地,上述S102A中的得到第二相位谱图具体可以通过下述S102A1实现。
S104、信号处理装置获取第四相位谱图中的每个频点对应的M个第一相位值。
其中,上述第四相位谱图为根据M个第二相位补偿函数进行帧间相位差异补偿后得到的。一个第一相位值是对P个相位值进行标准差计算确定的,该P个相位值为P帧信号在一个频点对应的相位值,该P帧信号为与M帧信号中的每帧信号相邻的信号帧。
需要说明的是,M个第一相位值中的每个第一相位值对应M帧信号中的一帧信号。
S102A1、信号处理装置根据M个第一相位值和第四相位谱图中的频点,得到第二相位谱图。
可选地,上述S102A1具体包括:将M个第一相位值作为第四相位谱图中的频点对应的相位值,以得到第二相位谱图。
可以理解的是,上述第四相位谱图中包括连续的多个频点,每个频点均对应M个第一相位值。即每个帧信号在每个频点下的相位值为一个第一相位值,从而得到第二相位谱图。
示例性地,以M=3为例。结合图3,如图4所示,图4中包括(a)至(c)3个子图。图4中的(a)为邻近三帧的幅度谱图,图4中的(c)为对图4中的(b)(即图3中的(c))执行上述S104和S102A1之后得到的相位曲线,即第二相位谱图。
在本申请实施例中,可以获取第二相位谱图中的每个频点对应的M个第一相位值,并根据M个第一相位值和第四相位谱图中的频点,得到第二相位谱图,从而在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域相位值明显较低且趋向于零。即通过标准差计算,可以进一步进行特征提取。
可选地,在上述S102A1中的得到第二相位谱图之前,本申请实施例提供的信号处理方法还可以包括下述S105。相应地,上述S102A1中的得到第二相位谱图,可以具体通过下述S102a实现。
S105、信号处理装置获取第五相位谱图中的每个频点对应的M个第二相位值。
其中,上述第五相位谱图为根据M个第一相位值和所述第四相位谱图中的频点得到的。一个第二相位值是对K个相邻频点的相位值进行平均值计算确定的,该K个相邻频点为与一个频点相邻的频点,K为大于1的整数。
需要说明的是,M个第二相位值中的每个第二相位值对应M帧信号中的一帧信号。
S102a、信号处理装置根据该M个第二相位值和第五相位谱图中的频点,得到第二相位谱图。
可选地,上述S102a具体包括:将M个第二相位值作为第五相位谱图中的频点对 应的相位值,以得到第二相位谱图。
可以理解的是,第五相位谱图中包括连续的多个频点,每个频点均对应M个第二相位值。即每个帧信号在每个频点下的相位值为一个第二相位值,从而得到第二相位谱图。
示例性地,以M=3为例。结合图4,如图5所示,图5中包括(a)至(c)3个子图。图5中的(a)为邻近三帧的幅度谱图,图5中的(c)为对图5中的(b)(即图4中的(c))执行上述S105和S102a之后得到的相位曲线,即第二相位谱图。
在本申请实施例中,可以获取第五相位谱图中的每个频点对应的M个第二相位值,并根据该M个第二相位值和第五相位谱图中的频点,得到第二相位谱图,从而该第二谱相位图能够进一步凸显在与幅度谱图的幅度较强的子带区域对应的区域具有更好的单帧稳定性和区分度。即通过平均值计算,可以进一步进行特征提取。
可选地,在上述S102之后,本申请实施例提供的信号处理方法还可以包括下述S106。
S106、信号处理装置对第二相位谱图进行锐化处理,得到目标时频图。
其中,上述目标时频图为M帧信号在目标频率的时频分布图。
可选地,上述S106具体包括:采用分贝刻度对第二相位谱图的相位谱信息进行锐化,得到目标时频图。
具体地,上述S106中将第二相位谱图进行锐化处理,具体包括:先对第二相位谱图的相位值取对数,再取相反数。
示例性地,如图6所示,信噪比为-7dB,采样频率fs为16千赫兹(kHz)kHz,lenFrame为512,lenFft为2048,width4fnStd为6。图6中的(a)为幅度谱图,该幅度谱图中虚线框01为目标频率;图6中的(b)为目标相位谱图;图6中的(c)为对目标相位谱图锐化处理后的目标时频图,该目标时频图中虚线框02为目标频率。可知,由于该目标时频图反映了多帧信号在目标频率为100的分布情况,因此根据目标时频图可以确定出目标频率为100的单帧信号。如此,与幅度谱图相比,目标时频图进一步凸显目标频率的分布情况。
示例性地,如图7所示,信噪比为-15dB,采样频率fs为16千赫兹(kHz),lenFrame为512,lenFft为2048,width4fnStd为6。图7中的(a)为幅度谱图,该幅度谱图中虚线框03为目标频率;图7中的(b)为目标相位谱图,图7中的(c)为对目标相位谱图锐化处理后的目标时频图,该目标时频图中虚线框04为目标频率。可知,由于该目标时频图反映了多帧信号在目标频率为100的分布情况,因此根据目标时频图可以确定出目标频率为100的单帧信号。如此,与幅度谱图相比,目标时频图进一步凸显目标频率的分布情况。
示例性地,如图8所示,信噪比为-18dB,采样频率fs为16千赫兹(kHz),lenFrame为512,lenFft为2048,width4fnStd为6。图8中的(a)为幅度谱图,该幅度谱图中 虚线框05为目标频率;图8中的(b)为目标相位谱图,图8中的(c)为对目标相位谱图锐化处理后的目标时频图,该目标时频图中虚线框06为目标频率。可知,由于该目标时频图反映了多帧信号在目标频率为100的分布情况,因此根据目标时频图可以确定出目标频率为100的单帧信号。如此,与幅度谱图相比,目标时频图进一步凸显目标频率的分布情况。
本申请实施例提供的信号处理方法,可以对第二相位谱图进行锐化处理,得到目标时频图,由于该目标时频图为M帧信号在目标频率的时频分布图,因此目标时频图可以进一步地凸显出目标频率,从而根据该目标时频图可以确定目标频率的信号以区分噪声,如此实现更高的抗噪性。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实施例中以信号处理装置执行信号处理的方法为例,说明本申请实施例提供的信号处理的装置。
如图9所示,本申请实施例提供一种信号处理装置200,该信号处理装置可以包括获取模块201和处理模块202。获取模块201,可以用于获取M帧信号的第一相位谱图,M为正整数。处理模块202,可以用于根据第一相位补偿函数,对获取模块201获取的该第一相位谱图进行相位补偿,得到第二相位谱图,该第二相位谱图为M帧信号在目标频率的相位特征谱图。
可选地,处理模块,还可以用于提取窗函数的斜率,得到第一相位补偿函数。
可选地,获取模块,还可以用于获取M个第二相位补偿函数。处理模块,可以具体用于根据M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到第二相位谱图,一个第二相位补偿函数对一个第二相位补偿函数对应的一帧信号进行相位补偿;其中,第三相位谱图为根据第一相位补偿函数进行相位补偿得到的。
可选地,获取模块,可以具体用于基于M帧信号的幅度谱图,确定第一估计频率,该第一估计频率为幅度谱图中的最大幅值对应的频率;并根据该第一估计频率和M帧信号的帧序号,确定M个第二相位补偿函数。
可选地,获取模块,还可以用于获取第四相位谱图中的每个频点对应的M个第一相位值,第一相位值是对P个相位值进行标准差计算确定的,P个相位值为P帧信号在一个频点对应的相位值,P帧信号为与M帧信号中的每帧信号相邻的信号帧。处理模块,可以具体用于根据M个第一相位值和第四相位谱图中的频点,得到第二相位谱图;其中,第四相位谱图为根据M个第二相位补偿函数进行帧间相位差异补偿后得到的。
可选地,获取模块,还可以用于获取第五相位谱图中的每个频点对应的M个第二相位值,第二相位值是对K个相邻频点的相位值进行均值计算确定的,K个相邻频点为与一个频点相邻的频点,K为大于1的整数。处理模块,可以具体用于根据M个第二相位值和第五相位谱图中的频点,得到第二相位谱图;其中,第五相位谱图为根据 M个第一相位值和第四相位谱图中的频点得到的。
可选地,处理模块,还可以用于对第二相位谱图进行锐化处理,得到目标时频图,该目标时频图为M帧信号在目标频率的时频分布图。
本申请实施例提供一种信号处理装置,在获取至少一帧信号的一个相位谱图之后,由于根据相位补偿函数,对该一个相位谱图进行相位补偿得到另一个相位谱图,由于该另一个相位谱图是该至少一帧信号在目标频率的相位特征谱图,因此可以准确地从该另一个相位谱图中确定该目标频率的信号。如此,当处于中低信噪比环境时,通过本申请提供的信号处理方法可以区分出目标频率的信号。
本申请实施例中的信号处理装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信号处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图1至图8的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种电子设备300,包括处理器301和存储器302,存储器302上存储有可在所述处理器301上运行的程序或指令,该程序或指令被处理器301执行时实现上述信号处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图11为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、以及处理器410等部件。
本领域技术人员可以理解,电子设备400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的电子设备结构并不构成 对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器410,用于获取M帧信号的第一相位谱图,M为正整数;并用于根据第一相位补偿函数,对该第一相位谱图进行相位补偿,得到第二相位谱图,该第二相位谱图为M帧信号在目标频率的相位特征谱图。
可选地,处理器410,还用于提取窗函数的斜率,得到第一相位补偿函数。
可选地,处理器410,还用于获取M个第二相位补偿函数。处理器410,可以具体用于根据M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到第二相位谱图,一个第二相位补偿函数对一个第二相位补偿函数对应的一帧信号进行相位补偿;其中,第三相位谱图为根据第一相位补偿函数进行相位补偿得到的。
可选地,处理器410,用于基于M帧信号的幅度谱图,确定第一估计频率,该第一估计频率为幅度谱图中的最大幅值对应的频率;并根据该第一估计频率和M帧信号的帧序号,确定M个第二相位补偿函数。
可选地,处理器410,用于第四相位谱图中的每个频点对应的M个第一相位值,第一相位值是对P个相位值进行标准差计算确定的,P个相位值为P帧信号在一个频点对应的相位值,P帧信号为与M帧信号中的每帧信号相邻的信号帧;并用于根据M个第一相位值和第四相位谱图中的频点,得到第二相位谱图;其中,该第四相位谱图为根据M个第二相位补偿函数进行帧间相位差异补偿后得到的。
可选地,处理器410,用于获取第五相位谱图中的每个频点对应的M个第二相位值,第二相位值是对K个相邻频点的相位值进行均值计算确定的,K个相邻频点为与一个频点相邻的频点,K为大于1的整数;并用于根据该M个第二相位值和该第五相位谱图中的频点,得到第二相位谱图;其中,第五相位谱图为根据M个第一相位值和第四相位谱图中的频点得到的。
可选地,处理器410,用于对第二相位谱图进行锐化处理,得到目标时频图,该目标时频图为M帧信号在目标频率的时频分布图。
本申请实施例提供一种电子设备,在获取至少一帧信号的一个相位谱图之后,由于根据相位补偿函数,对该一个相位谱图进行相位补偿得到另一个相位谱图,由于该另一个相位谱图是该至少一帧信号在目标频率的相位特征谱图,因此可以准确地从该另一个相位谱图中确定该目标频率的信号。如此,当处于中低信噪比环境时,通过本申请提供的信号处理方法可以区分出目标频率的信号。
应理解的是,本申请实施例中,输入单元404可以包括图形处理器(graphics processing unit,GPU)4041和麦克风4042,图形处理器4041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元406可包括显示面板4061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板4061。用户输入单元407包括触控面板4071以及其他输入设备4072 中的至少一种。触控面板4071,也称为触摸屏。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器409可以包括易失性存储器或非易失性存储器,或者,存储器409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器410可包括一个或多个处理单元;可选的,处理器410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述信号处理方法实施例的各个过程,且能达 到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种信号处理方法,所述方法包括:
    获取M帧信号的第一相位谱图,M为正整数;
    根据第一相位补偿函数,对所述第一相位谱图进行相位补偿,得到第二相位谱图,所述第二相位谱图为所述M帧信号在目标频率的相位特征谱图。
  2. 根据权利要求1所述的方法,其中,所述根据第一相位补偿函数,对所述第一相位谱图进行相位补偿之前,所述方法还包括:
    提取窗函数的斜率,得到第一相位补偿函数。
  3. 根据权利要求1所述的方法,其中,所述得到第二相位谱图之前,所述方法还包括;
    获取M个第二相位补偿函数;
    所述得到第二相位谱图,包括:
    根据所述M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到所述第二相位谱图,一个第二相位补偿函数对所述一个第二相位补偿函数对应的一帧信号进行相位补偿;
    其中,所述第三相位谱图为根据所述第一相位补偿函数进行相位补偿得到的。
  4. 根据权利要求3所述的方法,其中,所述获取M个第二相位补偿函数,包括:
    基于所述M帧信号的幅度谱图,确定第一估计频率,所述第一估计频率为所述幅度谱图中的最大幅值对应的频率;
    根据所述第一估计频率和所述M帧信号的帧序号,确定M个第二相位补偿函数。
  5. 根据权利要求3所述的方法,其中,所述得到第二相位谱图之前,所述方法还包括:
    获取第四相位谱图中的每个频点对应的M个第一相位值,所述第一相位值是对P个相位值进行标准差计算确定的,所述P个相位值为P帧信号在一个频点对应的相位值,所述P帧信号为与所述M帧信号中的每帧信号相邻的信号帧;
    所述得到第二相位谱图,包括:
    根据所述M个第一相位值和所述第四相位谱图中的频点,得到所述第二相位谱图;
    其中,所述第四相位谱图为根据所述M个第二相位补偿函数进行帧间相位差异补偿后得到的。
  6. 根据权利要求5所述的方法,其中,所述得到第二相位谱图之前,所述方法还包括:
    获取第五相位谱图中的每个频点对应的M个第二相位值,所述第二相位值是对K个相邻频点的相位值进行均值计算确定的,所述K个相邻频点为与一个频点相邻的频点,K为大于1的整数;
    所述得到第二相位谱图,包括:
    根据所述M个第二相位值和所述第五相位谱图中的频点,得到所述第二相位谱图;
    其中,所述第五相位谱图为根据所述M个第一相位值和所述第四相位谱图中的频点得到的。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述得到第二相位谱图之后,所述方法还包括:
    对所述第二相位谱图进行锐化处理,得到目标时频图,所述目标时频图为所述M帧信号在所述目标频率的时频分布图。
  8. 一种信号处理装置,所述信号处理装置包括获取模块和处理模块;
    所述获取模块,用于获取M帧信号的第一相位谱图,M为正整数;
    所述处理模块,用于根据第一相位补偿函数,对所述获取模块获取的所述第一相位谱图进行相位补偿,得到第二相位谱图,所述第二相位谱图为所述M帧信号在目标频率的相位特征谱图。
  9. 根据权利要求8所述的装置,其中,所述处理模块,还用于提取窗函数的斜率,得到第一相位补偿函数。
  10. 根据权利要求9所述的装置,其中,所述获取模块,还用于获取M个第二相位补偿函数;
    所述处理模块,具体用于根据所述M个第二相位补偿函数,对第三相位谱图进行帧间相位差异补偿,得到所述第二相位谱图,一个第二相位补偿函数对所述一个第二相位补偿函数对应的一帧信号进行相位补偿;
    其中,所述第三相位谱图为根据所述第一相位补偿函数进行相位补偿得到的。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:确定模块,所述获取模块,具体用于基于所述M帧信号的幅度谱图,确定第一估计频率,所述第一估计频率为所述幅度谱图中的最大幅值对应的频率;
    所述确定模块,用于根据所述第一估计频率和所述M帧信号的帧序号,确定M个第二相位补偿函数。
  12. 根据权利要求10所述的装置,其中,所述获取模块,还用于获取第四相位谱图中的每个频点对应的M个第一相位值,所述第一相位值是对P个相位值进行标准差计算确定的,所述P个相位值为P帧信号在一个频点对应的相位值,所述P帧信号为与所述M帧信号中的每帧信号相邻的信号帧;
    所述处理模块,具体用于根据所述M个第一相位值和所述第四相位谱图中的频点,得到所述第二相位谱图;
    其中,所述第四相位谱图为根据所述M个第二相位补偿函数进行帧间相位差异补偿后得到的。
  13. 根据权利要求12所述的装置,其中,所述获取模块,还用于获取第五相位谱图中的每个频点对应的M个第二相位值,所述第二相位值是对K个相邻频点的相位值 进行均值计算确定的,所述K个相邻频点为与一个频点相邻的频点,K为大于1的整数;
    所述处理模块,具体用于根据所述M个第二相位值和所述第五相位谱图中的频点,得到所述第二相位谱图;
    其中,所述第五相位谱图为根据所述M个第一相位值和所述第四相位谱图中的频点得到的。
  14. 根据权利要求8至13中任一项所述的装置,其中,所述处理模块,还用于对所述第二相位谱图进行锐化处理,得到目标时频图,所述目标时频图为所述M帧信号在所述目标频率的时频分布图。
  15. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-7任一项所述的信号处理方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-7任一项所述的信号处理方法的步骤。
  17. 一种计算机软件产品,所述计算机软件产品被至少一个处理器执行以实现如权利要求1-7中任一项所述的信号处理方法。
  18. 一种电子设备,包括电子设备被配置成用于执行如权利要求1-7中任一项所述的信号处理方法。
  19. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-7中任一项所述的信号处理方法。
  20. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1-7任一项所述的信号处理方法的步骤。
PCT/CN2023/086987 2022-04-11 2023-04-07 信号处理方法、装置、电子设备及介质 WO2023197955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210377040.2A CN115295024A (zh) 2022-04-11 2022-04-11 信号处理方法、装置、电子设备及介质
CN202210377040.2 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197955A1 true WO2023197955A1 (zh) 2023-10-19

Family

ID=83821217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086987 WO2023197955A1 (zh) 2022-04-11 2023-04-07 信号处理方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN115295024A (zh)
WO (1) WO2023197955A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117376074A (zh) * 2023-10-20 2024-01-09 深圳磊诺科技有限公司 相位补偿方法、电子设备以及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295024A (zh) * 2022-04-11 2022-11-04 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180174571A1 (en) * 2015-09-16 2018-06-21 Kabushiki Kaisha Toshiba Speech processing device, speech processing method, and computer program product
CN108735213A (zh) * 2018-05-29 2018-11-02 太原理工大学 一种基于相位补偿的语音增强方法及系统
CN110797041A (zh) * 2019-10-21 2020-02-14 珠海市杰理科技股份有限公司 语音降噪处理方法、装置、计算机设备及存储介质
CN111508514A (zh) * 2020-04-10 2020-08-07 江苏科技大学 基于补偿相位谱的单通道语音增强算法
CN114757229A (zh) * 2022-04-11 2022-07-15 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质
CN115295024A (zh) * 2022-04-11 2022-11-04 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270869B2 (ja) * 1993-04-30 2002-04-02 ソニー株式会社 音程変換装置
US7222070B1 (en) * 1999-09-22 2007-05-22 Texas Instruments Incorporated Hybrid speech coding and system
JP4830350B2 (ja) * 2005-05-26 2011-12-07 カシオ計算機株式会社 声質変換装置、及びプログラム
JP5070993B2 (ja) * 2007-08-27 2012-11-14 富士通株式会社 音処理装置、位相差補正方法及びコンピュータプログラム
JP6278294B2 (ja) * 2013-03-11 2018-02-14 大学共同利用機関法人情報・システム研究機構 音声信号処理装置及び方法
CN105931649A (zh) * 2016-03-31 2016-09-07 欧仕达听力科技(厦门)有限公司 基于频谱分析的超低时延音频处理方法与系统
CN111368649B (zh) * 2020-02-17 2023-05-12 杭州电子科技大学 一种运行于树莓派的情绪感知方法
CN112951257A (zh) * 2020-09-24 2021-06-11 上海译会信息科技有限公司 一种音频图像采集设备及说话人定位及语音分离方法
CN113593604B (zh) * 2021-07-22 2024-07-19 腾讯音乐娱乐科技(深圳)有限公司 检测音频质量方法、装置及存储介质
CN114005457A (zh) * 2021-11-09 2022-02-01 西安邮电大学 一种基于幅度估计与相位重构的单通道语音增强方法
CN114242099A (zh) * 2021-12-15 2022-03-25 南京邮电大学 基于改进相位谱补偿和全卷积神经网络的语音增强算法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180174571A1 (en) * 2015-09-16 2018-06-21 Kabushiki Kaisha Toshiba Speech processing device, speech processing method, and computer program product
CN108735213A (zh) * 2018-05-29 2018-11-02 太原理工大学 一种基于相位补偿的语音增强方法及系统
CN110797041A (zh) * 2019-10-21 2020-02-14 珠海市杰理科技股份有限公司 语音降噪处理方法、装置、计算机设备及存储介质
CN111508514A (zh) * 2020-04-10 2020-08-07 江苏科技大学 基于补偿相位谱的单通道语音增强算法
CN114757229A (zh) * 2022-04-11 2022-07-15 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质
CN115295024A (zh) * 2022-04-11 2022-11-04 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117376074A (zh) * 2023-10-20 2024-01-09 深圳磊诺科技有限公司 相位补偿方法、电子设备以及存储介质

Also Published As

Publication number Publication date
CN115295024A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2023197955A1 (zh) 信号处理方法、装置、电子设备及介质
CN107731223B (zh) 语音活性检测方法、相关装置和设备
US20210327448A1 (en) Speech noise reduction method and apparatus, computing device, and computer-readable storage medium
US8060795B2 (en) Solution for automatically incorporating diagnostic data within screen capture images
US20200243067A1 (en) Environment classifier for detection of laser-based audio injection attacks
WO2023197933A1 (zh) 信号处理方法、装置、电子设备及介质
WO2017005085A1 (zh) 一种数据压缩方法、装置及终端
CN112309426B (zh) 语音处理模型训练方法及装置和语音处理方法及装置
JP7159438B2 (ja) エコー検出
CN109756818B (zh) 双麦克风降噪方法、装置、存储介质及电子设备
CN110111811B (zh) 音频信号检测方法、装置和存储介质
CN114879929A (zh) 多媒体文件播放方法及其装置
WO2022143522A1 (zh) 音频信号处理方法、装置和电子设备
WO2024051521A1 (zh) 音频信号处理方法、装置、电子设备及可读存储介质
WO2024088142A1 (zh) 音频信号处理方法、装置、电子设备及可读存储介质
CN111356908B (zh) 一种降噪方法及终端
CN112397082B (zh) 估计回声延迟的方法、装置、电子设备和存储介质
CN112669878B (zh) 声音增益值的计算方法、装置和电子设备
CN112201267B (zh) 一种音频处理方法、装置、电子设备及存储介质
CN111986694B (zh) 基于瞬态噪声抑制的音频处理方法、装置、设备及介质
CN111506233B (zh) 一种用于在阅读应用中提供书籍信息的方法与设备
WO2024051676A1 (zh) 模型训练方法、装置、电子设备及介质
CN111210817A (zh) 数据处理方法及装置
CN110992975A (zh) 一种语音信号处理方法、装置及终端
CN115273822A (zh) 音频处理方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787599

Country of ref document: EP

Kind code of ref document: A1