WO2023197933A1 - 信号处理方法、装置、电子设备及介质 - Google Patents

信号处理方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2023197933A1
WO2023197933A1 PCT/CN2023/086624 CN2023086624W WO2023197933A1 WO 2023197933 A1 WO2023197933 A1 WO 2023197933A1 CN 2023086624 W CN2023086624 W CN 2023086624W WO 2023197933 A1 WO2023197933 A1 WO 2023197933A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frame signal
map
estimated
diagram
Prior art date
Application number
PCT/CN2023/086624
Other languages
English (en)
French (fr)
Inventor
刘良兵
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023197933A1 publication Critical patent/WO2023197933A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L25/84Detection of presence or absence of voice signals for discriminating voice from noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • G06F2218/14Classification; Matching by matching peak patterns

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a signal processing method, device, electronic equipment and medium.
  • a commonly used method for estimating signal frequency is to perform Fourier transform on the signal to obtain the amplitude spectrum of the signal, and use the frequency point corresponding to the maximum amplitude in the amplitude spectrum as the frequency estimate of the signal.
  • the above method can only use the integer frequency points in the amplitude spectrum as the estimated signal frequency, resulting in low accuracy in estimating the signal frequency, that is, the frequency estimation method The error is large.
  • the purpose of the embodiments of the present application is to provide a signal processing method, device, electronic equipment and medium that can solve the problem of large errors in frequency estimation methods.
  • embodiments of the present application provide a signal processing method.
  • the method includes: determining a first frequency estimation diagram of the M-frame signal according to the amplitude spectrum diagram of the M-frame signal.
  • the frequency points in the first frequency estimation diagram are The amplitude is greater than or equal to the amplitude threshold value, and M is a positive integer; according to the first frequency estimation diagram and the phase spectrum diagram of the M frame signal, the estimated frequency of the M frame signal is determined, and the estimated frequency is the first frequency point at The first frequency estimates the corresponding frequency in the graph.
  • inventions of the present application provide a signal processing device.
  • the signal processing device includes: a determination module. Determining module, configured to determine the first frequency estimation diagram of the M frame signal based on the amplitude spectrum diagram of the M frame signal. The amplitude of the frequency point in the first frequency estimation diagram is greater than or equal to the amplitude threshold value, and M is a positive integer. .
  • the determination module is also configured to determine the estimated frequency of the M-frame signal based on the first frequency estimation diagram and the phase spectrum diagram of the M-frame signal, where the estimated frequency is the corresponding first frequency point in the first frequency estimation diagram. frequency.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are processed by the processor.
  • the processor is executed, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the method described in the first aspect are implemented. .
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect. the method described.
  • embodiments of the present application provide a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect.
  • the first frequency estimation diagram of the M frame signal is determined based on the amplitude spectrum diagram of the M frame signal.
  • the amplitude of the frequency point in the first frequency estimation diagram is greater than or equal to the amplitude threshold value, and M is positive Integer; determine the estimated frequency of the M-frame signal based on the first frequency estimation map and the phase spectrum of the M-frame signal, where the estimated frequency is the frequency corresponding to the first frequency point in the first frequency estimation map.
  • the first frequency estimation diagram of the signal can be determined according to the amplitude spectrum diagram of the signal, and the estimated frequency of the signal can be determined based on the first frequency estimation diagram and the phase spectrum diagram of the signal, it is not limited to Instead of using the integer frequency points in the amplitude spectrum as the estimated frequency of the signal, the estimated frequency of the signal is obtained by processing the amplitude spectrum and phase spectrum, thereby improving the accuracy of frequency estimation and reducing the error of frequency estimation. .
  • Figure 1 is a schematic diagram of a signal processing method provided by an embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of a phase spectrum processing process provided by an embodiment of the present application.
  • Figure 3 is a second schematic diagram of a phase spectrum processing process provided by an embodiment of the present application.
  • Figure 4 is a third schematic diagram of a phase spectrum processing process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the fourth phase spectrum processing process provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the fifth phase spectrum processing process provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of error estimation of time-frequency distribution provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 10 is a hardware schematic diagram of an electronic device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the signal processing method provided by the embodiment of the present application may include the following S101 and S102.
  • the signal processing device determines the first frequency estimation map of the M-frame signal based on the amplitude spectrum of the M-frame signal.
  • the amplitude of the frequency point in the above-mentioned first frequency estimation diagram is greater than or equal to the amplitude threshold value, and M is a positive integer.
  • the signal processing method provided by the embodiments of the present application can be applied not only in medium and low signal-to-noise ratio environments below -15 decibels (dB), but also in medium and high signal-to-noise ratio environments.
  • the above-mentioned M frame signals are non-dense frequency signals.
  • the M frame signal is a speech signal.
  • the signal processing method provided by the embodiment of the present application may also include: the signal processing device performs Fourier transform on the time domain diagram of the M frame signal to obtain an amplitude spectrum diagram.
  • the signal processing device performs Fourier transform on the time domain diagram of the M frame signal to obtain an amplitude spectrum diagram.
  • the first frequency estimation map of the M-frame signal can be determined based on the amplitude spectrogram.
  • the average amplitude and the maximum amplitude can be determined first based on the amplitude spectrum; and then, the amplitude threshold value can be obtained based on the average amplitude and the maximum amplitude.
  • the above-mentioned first frequency estimation map is a set of at least one frequency point, and the amplitude of each frequency point in the at least one frequency point is greater than or equal to the amplitude threshold value.
  • the signal processing device determines the estimated frequency of the M-frame signal based on the first frequency estimation diagram and the phase spectrum diagram of the M-frame signal.
  • the above estimated frequency is the frequency corresponding to the first frequency point in the first frequency estimation map.
  • phase spectrum diagram is a phase diagram of the M frame signal in the frequency domain.
  • phase spectrum may be a phase spectrum obtained by Fourier transforming the time domain diagram of the M frame signal, or a phase spectrum obtained by further processing the phase spectrum obtained after Fourier transforming.
  • Phase spectrum The specific determination is based on the actual situation, and the embodiments of the present application do not limit this.
  • the above-mentioned first frequency point is any frequency point in the first frequency estimation map. Since the first frequency estimation map is a set of at least one frequency point, the amplitude of each frequency point in the at least one frequency point is greater than or equal to the amplitude threshold value. It can be understood that the estimated frequency at this time is the first frequency point, so the frequency point in the first frequency estimation diagram serves as the frequency candidate value of the estimated frequency of the M frame signal.
  • the estimated frequency of the M frame signal in the embodiment of the present application is an estimate of the frequency at the strongest energy of the M frame signal.
  • the above-mentioned phase spectrum includes the first phase spectrum; the above-mentioned S102 may specifically include S102A and S102B.
  • the signal processing device performs reliability screening on the first phase spectrum diagram based on the first frequency estimation diagram to obtain a second frequency estimation diagram.
  • an all-zero vector with a length of lenAmp is generated, recorded as iBinByJump (ie, the second frequency estimation map), where lenAmp is equal to (lenFft/2+1).
  • iBinByJump the second frequency estimation map
  • lenAmp is equal to (lenFft/2+1).
  • iBingAmp traverse each frequency point (denoted as iBig) in the first frequency estimation diagram (denoted as iBingAmp), and do the following operations: calculate the first phase spectrum diagram (denoted thetaJump) (iBig) divided by 2 ⁇ and lenHop*( The difference between iBig-1)/lenFft is recorded as temp1, where lenHop represents the number of frame shift points and lenFft represents the number of Fourier transform points; then take the remainder of temp1 to 2 ⁇ and multiply it by lenFft/lenHop to get temp2; then , add temp2 and iBig-1
  • Figure 2 includes three sub-figures (a) to (c).
  • (a) in Figure 2 is the amplitude spectrum of three adjacent frames
  • (b) in Figure 2 is the first phase spectrum of three adjacent frames
  • (c) in Figure 2 is the estimated spectrum based on the first frequency, Perform reliability screening on the first phase spectrum to obtain the second frequency estimation map.
  • the frequencies of the three frame signals all converge at the frequency point of 100 near the frequency.
  • the signal processing device determines the estimated frequency of the M frame signal based on the second frequency estimation map.
  • the above estimated frequency is the frequency corresponding to the first frequency point in the second frequency estimation map.
  • the above-mentioned second frequency estimation map includes multiple frequency points, and each frequency point corresponds to a frequency in the second frequency estimation map, that is, multiple estimated frequencies are obtained.
  • the estimated frequency of the M-frame signal is any one of the plurality of estimated frequencies, that is, the plurality of estimated frequencies is the frequency of the M-frame signal. Frequency candidate values for estimated frequencies.
  • the first phase spectrum diagram can be subjected to reliability screening and target frequency point collection according to the first frequency estimation diagram to obtain a second frequency estimation diagram, because the first frequency estimation diagram can estimate the first frequency spectrum.
  • the phase spectrogram performs high-reliability screening based on amplitude, which can eliminate a large number of interfering frequency estimation candidate values from the first phase spectrogram, and can better protect the true frequency candidate value from being used when the signal-to-noise ratio is low. Omission.
  • Embodiments of the present application provide a signal processing method, because the first frequency estimation diagram of the signal can be determined according to the amplitude spectrum diagram of the signal, and the first frequency estimation diagram of the signal can be determined based on the first frequency estimation diagram and the phase spectrum diagram of the signal.
  • Estimating the frequency is not limited to just using the integer frequency points in the amplitude spectrum as the estimated frequency of the signal. Instead, the estimated frequency of the signal is obtained by processing the amplitude spectrum and phase spectrum, thereby improving frequency estimation. The accuracy reduces the frequency estimation error.
  • the signal processing method provided by the embodiment of the present application may also include the following S103 and S104.
  • the signal processing device obtains the second phase spectrum of the M frame signal.
  • the above S103 can be specifically implemented through the following S103A.
  • the signal processing device performs phase compensation on the third phase spectrum according to the phase compensation function to obtain the second phase spectrum.
  • the above-mentioned third phase spectrum is obtained by Fourier transform of the M frame signal.
  • the phase compensation function is determined based on the slope of the window function.
  • phase value of the third phase spectrum changes according to changes in frequency.
  • the above window function can be set by the developer or customized by the user.
  • the window function is the Hanning window.
  • the window function is a multi-segment continuous curve
  • its slope can be extracted to form an equal slope straight line. That is, the straight lines with equal slopes are phase compensation functions.
  • Figure 3 includes three sub-figures (a) to (c).
  • (a) in Figure 3 is the amplitude spectrum of three adjacent frames
  • (b) in Figure 3 is the phase spectrum obtained by Fourier transform of the three adjacent frames, that is, the third phase spectrum
  • (c) is the phase curve of the three adjacent frames after phase compensation is performed on the third phase spectrum using a phase compensation function, that is, the second phase spectrum.
  • the area corresponding to the stronger amplitude sub-band area of the amplitude spectrum shows good flatness characteristics, indicating that the phase compensation function has good Feature extraction function.
  • the difference between the third phase spectrum and the phase compensation function is calculated to obtain a phase after the initial phase with winding has been compensated once; then the phase is divided by 2 ⁇ to obtain the remainder, and the remainder is obtained.
  • Another phase, that is, the second phase spectrum is obtained.
  • the phase compensation function to perform phase compensation processing on the third phase spectrum to obtain the second phase spectrum
  • the component in the second phase spectrum that is stronger than the amplitude spectrum is The area corresponding to the band area shows good flatness characteristics, so through the first phase compensation function, the phase characteristics of the third phase spectrum can be extracted. In this way, the wrapped phase spectrum can be unwrapped, thereby achieving a phase-frequency curve flattening effect.
  • the signal processing device performs inter-frame phase difference compensation on the second phase spectrum to obtain the first phase spectrum.
  • the above-mentioned S104 specifically includes: obtaining the difference between the phase values of any two adjacent frame signals in the M frame signal; then dividing the difference by 2 ⁇ and taking the remainder.
  • Figure 4 includes three sub-figures (a) to (c).
  • (a) in Figure 4 is the amplitude spectrum of three adjacent frames
  • (c) in Figure 4 is the inter-frame phase difference compensation based on the second phase spectrum (that is, (c) in Figure 3).
  • the first phase spectrum obtained.
  • the area corresponding to the sub-band area with stronger amplitude of the amplitude spectrum shows good inter-frame consistency, indicating that the inter-frame phase difference compensation has Good feature extraction function.
  • inter-frame phase difference compensation is performed on the second phase spectrum to obtain the first phase spectrum. Since in the first phase spectrum The area corresponding to the sub-band area with stronger amplitude in the amplitude spectrum shows good inter-frame consistency, that is, inter-frame phase difference compensation, and has a good feature extraction effect. In this way, further feature extraction can be performed on the phase spectrum.
  • the above S102B can be specifically implemented through the following S102B1 and S102B2.
  • the signal processing device performs frequency consistency screening on the second frequency estimation map to obtain a third frequency estimation map.
  • performing frequency consistency screening on the second frequency estimation map in the above S102B1 specifically refers to: screening out some frequency points from the second frequency estimation map, and the M frame signal also has corresponding frequencies at these frequency points.
  • the signal processing device determines the estimated frequency of the M frame signal based on the third frequency estimation map.
  • the above estimated frequency is the frequency corresponding to the first frequency point in the third frequency estimation map.
  • the third frequency estimation map includes a plurality of frequency points, and the first frequency point is a frequency point among the plurality of frequency points. Since each frequency point among the multiple frequency points corresponds to a frequency in the second frequency estimation diagram, multiple estimated frequencies can be obtained according to the second frequency estimation diagram, so that the estimated frequency of the M frame signal is the multiple estimated frequencies. Any frequency in , that is, the plurality of estimated frequencies is a frequency candidate value of the estimated frequency of the M frame signal.
  • the third frequency estimation map includes fewer frequency points compared with the second frequency estimation map, the third frequency estimation map includes fewer frequency candidate values, so that the third frequency estimation map includes Include fewer error frequency candidates. In this way, a relatively accurate estimated frequency can be obtained from the third frequency estimation map.
  • Figure 5 includes three sub-figures (a) to (c).
  • (a) in Figure 5 is the amplitude spectrum of three adjacent frames
  • (b) in Figure 5 is the second frequency estimation map of three adjacent frames (i.e. (c) in Figure 2)
  • (c) in Figure 5 In order to perform frequency consistency screening on the second frequency estimation map, the third frequency estimation map of three adjacent frames is obtained.
  • the frequencies in the third frequency estimation map are more concentrated, that is, the third frequency estimation map includes fewer erroneous frequency candidate values.
  • any integer frequency point in the second frequency estimation diagram that is greater than 0 and less than lenAmp+1, and do the following operations: first read the matrix from the penultimate (width4JumpSmth+1) frame to the current frame signal, and extract the iBin row in the matrix. Get the vector temp3 with length width4JumpSmth; then, calculate the minimum value of temp3 (recorded as temp4) and the standard deviation (recorded as temp5), and obtain the sum respectively; then, if temp4 is equal to 0 or temp5 is greater than 2, then the frequency value corresponding to iBin Zero. In this way, the second frequency estimation map (denoted as iBinByJumpSmth(iBin)) is obtained.
  • frequency consistency screening is performed on the second frequency estimation map to obtain a third frequency estimation map, and the estimated frequency of the M frame signal is determined based on the third frequency estimation map. Since it is different from the second frequency estimation map In comparison, the third frequency estimation map contains fewer false frequency candidates, thus further increasing the probability of estimating more accurate frequencies.
  • the above S102B2 can be specifically implemented through the following S102b1 to S102b3.
  • the signal processing device rounds the frequencies in the third frequency estimation map to obtain a fourth frequency estimation map.
  • the signal processing device counts the number of occurrences of the first estimated frequency in the fourth frequency estimation map to obtain a frequency point count map.
  • the above-mentioned first estimated frequency is a frequency that is not equal to the second estimated frequency
  • the second estimated frequency is the frequency corresponding to the maximum amplitude in the amplitude spectrogram.
  • the signal processing device determines the estimated frequency of the M frame signal based on the frequency point count map.
  • Figure 6 includes three sub-figures (a) to (c).
  • (a) in Figure 6 is the amplitude spectrogram of three adjacent frames
  • (b) in Figure 6 is the third frequency estimation map of three adjacent frames (i.e. (c) in Figure 5)
  • (c) in Figure 6 ) is to round the frequencies in the third frequency estimation map to obtain a fourth frequency estimation map, and count the number of occurrences of the first estimated frequency in the fourth frequency estimation map to obtain a frequency point count map.
  • the frequency point count map is more convergent, that is, the frequency point count map includes fewer candidate frequency points, so that the frequency point count map contains Fewer error frequency candidates.
  • any integer iBin in the third frequency estimation map specifically including: rounding iBinByJumpSmth(iBin) (i.e., the third frequency estimation map) to obtain temp6; if temp6 is greater than 0 and temp6 is less than lenAmp+1, calculate iBinByCnt(temp6 )+1, get the new iBinByCnt(iBin), which is the frequency point count map.
  • the frequencies in the third frequency estimation map are rounded to obtain a fourth frequency estimation map, and the number of occurrences of the first estimated frequency in the fourth frequency estimation map is counted to obtain a frequency point count map. , since the frequency count map contains fewer erroneous frequency candidates, the probability of estimating more accurate frequencies is further improved.
  • the signal processing method provided by the embodiment of the present application may also include the following S105:
  • the above S102b3 may be specifically implemented through the following S102b4 and S102b5.
  • the signal processing device calculates the second frequency point in the frequency point counting chart whose frequency is greater than the preset number.
  • the above-mentioned preset number of times can be set by the developer or customized by the user.
  • the preset number of times is 8 times.
  • the signal processing device determines the second frequency point as the first frequency point.
  • the signal processing device determines the frequency corresponding to the first frequency point in the third frequency estimation map as the estimated frequency of the M frame signal.
  • the above-mentioned first frequency point is a frequency point determined in the third frequency estimation map. Since the estimated frequency of the M-frame signal is the frequency corresponding to the first frequency point in the third frequency estimation map, the estimated frequency of the M-frame signal is a determined frequency rather than a set of frequency candidate values. In this way, compared with the third frequency estimation map, the estimated frequency of the M frame signal can be accurately obtained through S105, S102b4 and S102b5, and the accuracy of the estimated frequency of the M frame signal can be improved to a greater extent.
  • the estimated frequency of the M frame signal can be accurately obtained through S105, S102b4 and S102b5
  • the estimated frequency of the estimated frequency is less than or equal to the first preset threshold, and the estimated error is the true difference between the estimated frequency and the M frame signal. frequency difference.
  • the above-mentioned first preset threshold is obtained by those skilled in the art using the signal processing method provided in this application to conduct a large number of experiments. Specifically, under medium and high signal-to-noise ratio conditions, the first preset threshold is 5% to 25%; under low signal-to-noise ratio conditions, the first preset threshold is 5% to 30%.
  • the sampling frequency fs is 16kHz
  • lenFrame is 512
  • lenFft is 2048
  • width4JumpSmth is 3
  • radius4binStd is 4
  • snr is 0dB
  • the relative position of the real frequency comparison Fourier frequency point iBinTrue is 100.63.
  • Figure 7 includes three sub-images (a) to (c).
  • (a) in Figure 7 is the amplitude spectrum of three adjacent frames.
  • (b) in Figure 7 is used to represent the difference between the estimated frequency of the signal obtained by using the signal processing method provided by this application and the true frequency of the signal.
  • Figure (c) in 7 is used to represent the difference between the peak frequency point obtained using the conventional amplitude spectrum peak estimation method and the true frequency of the signal.
  • the signal processing method provided by the embodiment of the present application after obtaining the third frequency estimation map and the frequency point count map of the M frame signal, can calculate the second frequency point in the frequency point count map whose frequency is greater than the preset number of times, and calculate the second frequency point in the frequency point count map.
  • the second frequency point is determined as the first frequency point, so the frequency corresponding to the first frequency point in the third frequency estimation diagram is determined as the estimated frequency of the M frame signal, so that the estimated frequency of the M frame signal can be accurately obtained, and
  • the accuracy of the estimated frequency of the M-frame signal is improved to a greater extent, and the problem of using integer frequency points determined based on the amplitude spectrogram as the estimated frequency of the signal in related technologies does not arise. In this way, the error of frequency estimation of the signal is reduced and the accuracy of the frequency estimation of the signal is improved.
  • the execution subject may be a signal processing device.
  • the signal processing method performed by the signal processing device is taken as an example to illustrate the signal processing device provided by the embodiments of the present application.
  • this embodiment of the present application provides a signal processing device 200 , which may include a determination module 201 .
  • the determination module 201 is used to determine the first frequency estimation diagram of the M frame signal based on the amplitude spectrum diagram of the M frame signal. The amplitude of the frequency point in the first frequency estimation diagram is greater than the amplitude threshold, and M is a positive integer; the determination module 201, It is also used to determine the estimated frequency of the M-frame signal based on the first frequency estimation diagram and the phase spectrum diagram of the M-frame signal, where the estimated frequency is the frequency corresponding to the first frequency point in the first frequency estimation diagram.
  • the phase spectrum includes a first phase spectrum; the determination module 201 is specifically configured to perform reliability screening on the first phase spectrum based on the first frequency estimation map to obtain a second frequency estimation map; based on the second frequency The estimation map determines the estimated frequency of the M frame signal; where the estimated frequency is the frequency corresponding to the first frequency point in the second frequency estimation map.
  • the signal processing device further includes an acquisition module and a processing module; the acquisition module is used to acquire the second phase spectrum of the M frame signal; the processing module is used to perform inter-frame phase difference compensation on the second phase spectrum to obtain The first phase spectrum.
  • the acquisition module is specifically configured to perform phase compensation on the third phase spectrum according to the phase compensation function to obtain the second phase spectrum, and the phase compensation function is determined according to the slope of the window function; wherein, the third phase spectrum
  • the picture is obtained by Fourier transform of the M frame signal.
  • the signal processing device further includes a processing module; a processing module configured to perform frequency consistency screening on the second frequency estimation map to obtain a third frequency estimation map; and a determination module 201 specifically configured to perform frequency consistency screening based on the third frequency estimation map. , determine the estimated frequency of the M frame signal; wherein, the estimated frequency is the frequency corresponding to the first frequency point in the third frequency estimation map.
  • the determination module 201 is specifically configured to round the frequencies in the third frequency estimation map to obtain a fourth frequency estimation map; and to count the number of occurrences of the first estimated frequency in the fourth frequency estimation map to obtain frequency points. count map; and determine the estimated frequency of the M frame signal based on the frequency point count map.
  • the processing module is used to calculate the second frequency point in the frequency point counting chart whose frequency is greater than the preset number of times; the determination module 201 is specifically used to determine the second frequency point as the first frequency point; and the first frequency point The frequency corresponding to the point in the third frequency estimation diagram is determined as the estimated frequency of the M frame signal.
  • Embodiments of the present application provide a signal processing device, which can determine the first frequency estimation diagram of the signal according to the amplitude spectrum diagram of the signal, and determine the signal's frequency estimation diagram based on the first frequency estimation diagram and the phase spectrum diagram of the signal. Estimating the frequency is not limited to just using the integer frequency points in the amplitude spectrum as the estimated frequency of the signal. Instead, the estimated frequency of the signal is obtained by processing the amplitude spectrum and phase spectrum, thereby improving frequency estimation. The accuracy reduces the frequency estimation error.
  • the signal processing device in the embodiment of the present application may be an electronic device or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile internet device (Mobile Internet Device, MID), or augmented reality (AR)/virtual reality (VR).
  • the signal processing device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the signal processing device provided by the embodiments of the present application can implement various processes implemented by the method embodiments of Figures 1 to 7. To avoid repetition, they will not be described again here.
  • this embodiment of the present application also provides an electronic device 300, including a processor 301 and a memory 302.
  • the memory 302 stores programs or instructions that can be run on the processor 301.
  • the program or instruction is executed by the processor 301, each step of the above signal processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 10 is a schematic diagram of the hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 400 includes but is not limited to: radio frequency unit 401, network module 402, audio output unit 403, input unit 404, sensor 405, display unit 406, user input unit 407, interface unit 408, memory 409, processor 410, etc. part.
  • the electronic device 400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 410 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 10 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the processor 410 is used to determine the first frequency estimation diagram of the M frame signal based on the amplitude spectrum diagram of the M frame signal.
  • the amplitude of the frequency point in the first frequency estimation diagram is greater than the amplitude threshold, and M is a positive integer; and used to According to the first frequency estimation diagram and the phase spectrum diagram of the M-frame signal, the estimated frequency of the M-frame signal is determined, and the estimated frequency is the frequency corresponding to the first frequency point in the first frequency estimation diagram.
  • the phase spectrum includes a first phase spectrum; the processor 410 is specifically configured to perform reliability screening on the first phase spectrum according to the first frequency estimation map to obtain a second frequency estimation map; according to the second frequency The estimation map determines the estimated frequency of the M frame signal; where the estimated frequency is the frequency corresponding to the first frequency point in the second frequency estimation map.
  • the processor 410 is configured to obtain the second phase spectrum of the M frame signal; and perform inter-frame phase difference compensation on the second phase spectrum to obtain the first phase spectrum.
  • the processor 410 is specifically configured to perform phase compensation on the third phase spectrum according to a phase compensation function to obtain a second phase spectrum, the phase compensation function being determined based on the slope of the window function; wherein, the third phase spectrum is determined according to the slope of the window function.
  • the phase spectrum is obtained by Fourier transform of the M frame signal.
  • the processor 410 is configured to perform frequency consistency screening on the second frequency estimation map to obtain a third frequency estimation map; and to determine the estimated frequency of the M frame signal based on the third frequency estimation map; wherein, the The estimated frequency is the frequency corresponding to the first frequency point in the third frequency estimation map.
  • the processor 410 is specifically configured to round the frequencies in the third frequency estimation map to obtain a fourth frequency estimation map; and to count the number of occurrences of the first estimated frequency in the fourth frequency estimation map to obtain frequency points. count map; and determine the estimated frequency of the M frame signal based on the frequency point count map.
  • the processor 410 is configured to calculate a second frequency point in the frequency point count chart with a frequency greater than a preset number of times; and to determine the second frequency point as the first frequency point; and to set the first frequency point at The corresponding frequency in the third frequency estimation diagram is determined as the estimated frequency of the M frame signal.
  • Embodiments of the present application provide an electronic device that can determine the first frequency estimation diagram of the signal based on the amplitude spectrum diagram of the signal, and determine the estimation of the signal based on the first frequency estimation diagram and the phase spectrum diagram of the signal. frequency, so it is not limited to just using the integer frequency points in the amplitude spectrum as the estimated frequency of the signal. Instead, the estimated frequency of the signal is obtained by processing the amplitude spectrum and phase spectrum, thereby improving the accuracy of frequency estimation. accuracy, reducing the frequency estimation error.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 406 may include a display panel 4061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 407 includes a touch panel 4071 and at least one of other input devices 4072 . Touch panel 4071, also called touch screen.
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 4072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 409 may be used to store software programs as well as various data.
  • the memory 409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 409 may include volatile memory or nonvolatile memory, or memory 409 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 410 may include one or more processing units; optionally, the processor 410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 410.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above signal processing method embodiment is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above signal processing method embodiments. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above signal processing method embodiment, and can achieve the same technical effect. , to avoid repetition, will not be repeated here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本申请公开了一种信号处理方法、装置、电子设备及介质,属于通信技术领域。该方法包括:根据M帧信号的幅度谱图,确定该M帧信号的第一频率估计图,该第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数;根据该第一频率估计图和该M帧信号的相位谱图,确定该M帧信号的估计频率,该估计频率为第一频点在该第一频率估计图中对应的频率。

Description

信号处理方法、装置、电子设备及介质
相关申请的交叉引用
本申请主张在2022年04月11日在中国提交的中国专利申请号202210377038.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法、装置、电子设备及介质。
背景技术
随着通信技术的发展,各种信号广泛的应用于人们的生产生活中,而估计信号频率是语音通讯、雷达测距、工业检测、医学成像等领域的关键任务之一。
目前,常用的估计信号频率的方法为:对信号进行傅里叶变换,得到信号的幅度谱图,将该幅度谱图中的最大幅值对应的频点作为该信号的频率估计值。
然而,由于离散傅立叶变换会产生栅格效应问题,因此采用上述方法,只能将幅度谱图中的整数频点作为估计的信号频率,因此导致估计信号频率的精度较低,即频率估计方法的误差较大。
发明内容
本申请实施例的目的是提供一种信号处理方法、装置、电子设备及介质,能够解决频率估计方法的误差较大的问题。
第一方面,本申请实施例提供了一种信号处理方法,该方法包括:根据M帧信号的幅度谱图,确定该M帧信号的第一频率估计图,该第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数;根据该第一频率估计图和该M帧信号的相位谱图,确定该M帧信号的估计频率,该估计频率为第一频点在该第一频率估计图中对应的频率。
第二方面,本申请实施例提供了一种信号处理装置,信号处理装置包括:确定模块。确定模块,用于基于根据M帧信号的幅度谱图,确定该M帧信号的第一频率估计图,该第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数。确定模块,还用于根据该第一频率估计图和该M帧信号的相位谱图,确定该M帧信号的估计频率,该估计频率为第一频点在该第一频率估计图中对应的频率。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,根据M帧信号的幅度谱图,确定该M帧信号的第一频率估计图,该第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数;根据该第一频率估计图和该M帧信号的相位谱图,确定该M帧信号的估计频率,该估计频率为第一频点在该第一频率估计图中对应的频率。通过该方案,由于可以根据信号的幅度谱图,确定该信号的第一频率估计图,并根据该第一频率估计图和该信号的相位谱图,确定该信号的估计频率,因此并不局限于基于幅度谱图中的整数频点作为信号的估计频率,而是通过对幅度谱图和相位谱图的处理以得到信号的估计频率,从而提高了频率估计的精度,降低了频率估计的误差。
附图说明
图1为本申请实施例提供的一种信号处理方法的示意图;
图2为本申请实施例提供的一种对相位谱图处理的过程示意图之一;
图3为本申请实施例提供的一种对相位谱图处理的过程示意图之二;
图4为本申请实施例提供的一种对相位谱图处理的过程示意图之三;
图5为本申请实施例提供的一种对相位谱图处理的过程示意图之四;
图6为本申请实施例提供的一种对相位谱图处理的过程示意图之五;
图7为本申请实施例提供的一种时频分布的误差估计示意图;
图8为本申请实施例提供的信号处理装置的结构示意图;
图9为本申请实施例提供的电子设备的结构示意图;
图10为本申请实施例提供的电子设备的硬件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信号处理方法、装置、电子设备及介质进行详细地说明。
如图1所示,本申请实施例提供的信号处理方法可以包括下述S101和S102。
S101、信号处理装置根据M帧信号的幅度谱图,确定该M帧信号的第一频率估计图。
其中,上述第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数。
可选地,本申请实施例提供的信号处理方法不仅可以应用于-15分贝(dB)以下的中低信噪比环境下,而且可以应用于中高信噪比的环境下。
可选地,在本申请实施例中,上述M帧信号为非密集频率信号。例如,该M帧信号为语音信号。
可选地,当M=1时,即一帧信号,此时相位谱图包括一条相频曲线;当M大于1时,即多帧信号,此时相位谱图包括多条相频曲线。
可选地,在上述S101之前,本申请实施例提供的信号处理方法还可以包括:信号处理装置对M帧信号的时域图进行傅里叶变换,得到幅度谱图。如此,可以根据幅度谱图,确定该M帧信号的第一频率估计图。
进一步可选地,可以先根据幅度谱图,确定平均幅值和最大幅值;然后,再根据该平均幅值和最大幅值,得到幅度门限值。
可选地,上述第一频率估计图为至少一个频点的集合,该至少一个频点中的每个频点的幅值大于或等于幅度门限值。
S102、信号处理装置根据该第一频率估计图和M帧信号的相位谱图,确定M帧信号的估计频率。
其中,上述估计频率为第一频点在第一频率估计图中对应的频率。
可选地,上述相位谱图为M帧信号在频域上的相位图。
具体地,上述相位谱图可以为对M帧信号的时域图进行傅里叶变换,得到的相位谱图,或为对进行傅里叶变换后得到的相位谱图进行进一步处理之后,得到的相位谱图。具体根据实际情况确定,本申请实施例对此不作限定。
可选地,上述第一频点为第一频率估计图中的任意频点。由于该第一频率估计图为至少一个频点的集合,该至少一个频点中的每个频点的幅值大于或等于幅度门限值。可以理解的是,此时估计频率即为第一频点,故第一频率估计图中的频点作为M帧信号的估计频率的频率候选值。
需要说明的是,本申请实施例中的M帧信号的估计频率,为对该M帧信号的最强能量处的频率的估计。
可选地,上述相位谱图包括第一相位谱图;上述S102可以具体包括S102A和S102B。
S102A、信号处理装置根据第一频率估计图,对第一相位谱图进行可靠性筛选,得到第二频率估计图。
示例性的,生成长度为lenAmp的全零向量,记为iBinByJump(即第二频率估计图),其中lenAmp等于(lenFft/2+1)。首先,遍历第一频率估计图(记为iBingAmp)中的每一个频点(记为iBig),做如下操作:计算第一相位谱图(记为thetaJump)(iBig)除以2π与lenHop*(iBig-1)/lenFft的之差,记为temp1,其中lenHop表示帧移的点数,lenFft表示傅立叶变换的点数;然后将temp1对2π取余数,再将其乘以lenFft/lenHop,得到temp2;接着,将temp2与iBig-1相加,得到iBinByJump(iBig)。若iBig为iBingAmp中的最后一个频点,则遍历结束。
示例性的,以M=3为例。如图2所示,图2中包括(a)至(c)3个子图。图2中的(a)为邻近三帧的幅度谱图,图2中的(b)为该邻近三帧的第一相位谱图,图2中的(c)为根据第一频率估计图,对第一相位谱图进行可靠性筛选,得到的第二频率估计图。
进一步可选地,基于对上述图2示例进行分析,在第二频率估计图中与幅度谱图的幅度较强的子带区域对应的区域,这个三帧信号的频率均收敛在频点为100的频率附近。
S102B、信号处理装置根据该第二频率估计图,确定M帧信号的估计频率。
其中,上述估计频率为第一频点在第二频率估计图中对应的频率。
可选地,上述第二频率估计图中包括多个频点,每个频点在第二频率估计图中对应一个频率,即得到多个估计频率。进一步地,由于第一频点为该多个频点中的任意频点,因此M帧信号的估计频率为该多个估计频率中的任意一个频率,即该多个估计频率为M帧信号的估计频率的频率候选值。
在本申请实施例中,可以根据第一频率估计图,对第一相位谱图进行可靠性筛选和目标频点集合,得到的第二频率估计图,由于该第一频率估计图能够对第一相位谱图进行基于幅值的高可靠性筛选,从而能够从第一相位谱图中消除大量的干扰性频率估计候选值,又可以在低信噪比时较好的保护真实频率候选值不被遗漏。
本申请实施例提供一种信号处理方法,由于可以根据信号的幅度谱图,确定该信号的第一频率估计图,并根据该第一频率估计图和该信号的相位谱图,确定该信号的估计频率,因此并不局限于仅仅是基于幅度谱图中的整数频点作为信号的估计频率,而是通过对幅度谱图和相位谱图的处理以得到信号的估计频率,从而提高了频率估计的精度,降低了频率估计的误差。
可选地,在上述S102A之前,本申请实施例提供的信号处理方法还可以包括下述S103和S104。
S103、信号处理装置获取M帧信号的第二相位谱图。
可选地,上述S103可以具体通过下述S103A实现。
S103A、信号处理装置根据相位补偿函数,对第三相位谱图进行相位补偿,得到第二相位谱图。
其中,上述第三相位谱图是对M帧信号的进行傅里叶变换得到的。相位补偿函数根据窗函数的斜率确定。
可选地,上述第三相位谱图的相位值根据频率的变化而变化。
可选地,上述窗函数可以为开发人员设置的,或为用户自定义设置的。例如,窗函数为汉宁窗。
具体地,由于窗函数为多段连续曲线,因此可以提取其斜率,构成一条等斜率直线。即该等斜率直线为相位补偿函数。
示例性的,以M=3为例。如图3所示,图3中包括(a)至(c)3个子图。图3中的(a)为邻近三帧的幅度谱图,图3中的(b)为该邻近三帧进行傅里叶变换得到的相位谱图,即第三相位谱图,图3中的(c)为采用相位补偿函数,对该第三相位谱图进行相位补偿后的该邻近三帧的相位曲线,即第二相位谱图。
进一步可选地,基于对上述示例进行分析,在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现了很好的平坦性特征,说明相位补偿函数具有良好的特征提取作用。
示例性的,计算第三相位谱图和相位补偿函之差,得到有卷绕的初始相位进行一次补偿后的一个相位;再对该一个相位和2π作除法运算取余数,得到取余后的另一个相位,即得到第二相位谱图。
在本申请实施例中,在采用相位补偿函数,对第三相位谱图进行相位补偿处理,得到第二相位谱图之后,由于在第二相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现了很好的平坦性特征,因此通过第一相位补偿函数,可以提取对该第三相位谱图进行相位特征提取。如此,可以使得被卷绕的相位谱图解卷绕,实现相频曲线平坦化效果。
S104、信号处理装置对该第二相位谱图进行帧间相位差异补偿,得到第一相位谱图。
具体地,上述S104具体包括:获取M帧信号中任意相邻两帧信号的相位值的差值;再将该差值对2π进行除法运算后取余数。
示例性的,以M=3为例。结合图3,如图4所示,图4中包括(a)至(c)3个子图。图4中的(a)为邻近三帧的幅度谱图,图4中的(c)为在第二相位谱图(即图3中的(c))的基础上进行帧间相位差异补偿,得到的第一相位谱图。
进一步可选地,基于对上述示例分析,在第一相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好的帧间一致性,说明帧间相位差异补偿具有良好的特征提取作用。
在本申请实施例中,在根据目标补偿函数对第三相位谱图进行相位补偿之后,对第二相位谱图进行帧间相位差异补偿,得到第一相位谱图,由于在第一相位谱图中与幅度谱图的幅度较强的子带区域对应的区域表现出很好的帧间一致性,即帧间相位差异补偿,具有良好的特征提取作用。如此,可以对相位谱图进行进一步的特征提取。
可选地,上述S102B可以具体通过下述S102B1和S102B2实现。
S102B1、信号处理装置对第二频率估计图进行频率一致性筛选,得到第三频率估计图。
可选地,上述S102B1中的对第二频率估计图进行频率一致性筛选,具体是指:从第二频率估计图筛选出一些频点,M帧信号在这些频点下同时存在对应的频率。
S102B2、信号处理装置根据该第三频率估计图,确定M帧信号的估计频率。
其中,上述估计频率为第一频点在第三频率估计图中对应的频率。
可选地,上述第三频率估计图包括多个频点,该第一频点为该多个频点中的频点。由于多个频点中的每个频点在第二频率估计图中对应一个频率,因此根据第二频率估计图,可以得到多个估计频率,从而M帧信号的估计频率为该多个估计频率中的任意一个频率,即该多个估计频率为M帧信号的估计频率的频率候选值。
需要说明的是,由于与第二频率估计图相比,第三频率估计图中包括更少的频点,因此第三频率估计图中包括的频率候选值更少,从而第三频率估计图中包括更少的错误频率候选值。如此,可以从第三频率估计图得到相对准确的估计频率。
示例性的,以M=3为例。结合上述图2,如图5所示,图5中包括(a)至(c)3个子图。图5中的(a)为邻近三帧的幅度谱,图5中的(b)为邻近三帧的第二频率估计图(即图2中的(c)),图5中的(c)为对该第二频率估计图进行频率一致性筛选,得到的邻近三帧的第三频率估计图。
进一步可选地,基于对上述示例进行分析,相比第二频率估计图,第三频率估计图中的频率更为集中,即第三频率估计图中包括更少的错误频率候选值。
示例性的,结合上述实施例中的示例内容。遍历第二频率估计图中大于0小于lenAmp+1的任一整数频点,做如下操作:先读取倒数第(width4JumpSmth+1)帧到当前帧信号的矩阵,提取该矩阵中第iBin行,得到长度为width4JumpSmth的向量temp3;然后,计算temp3的最小值(记为temp4)和标准差(记为temp5),分别得到和;接着,若temp4等于0或temp5大于2,则iBin对应的频率值置零。如此得到第二频率估计图(记为iBinByJumpSmth(iBin))。
在本申请实施例中,对第二频率估计图进行频率一致性筛选,得到第三频率估计图,并根据该第三频率估计图,确定M帧信号的估计频率,由于与第二频率估计图相比,第三频率估计图包含更少的错误频率候选值,因此进一步提高了估计出更准确频率的概率。
可选地,上述S102B2可以具体通过下述S102b1至S102b3实现。
S102b1、信号处理装置对第三频率估计图中的频率取整,得到第四频率估计图。
S102b2、信号处理装置统计该第四频率估计图中第一估计频率出现的次数,得到频点计数图。
可选地,上述第一估计频率为与第二估计频率不相等的频率,该第二估计频率为幅度谱图中最大幅值对应的频率。
S102b3、信号处理装置根据该频点计数图,确定M帧信号的估计频率。
示例性的,以M=3为例。结合图5,如图6所示,图6中包括(a)至(c)3个子图。图6中的(a)为邻近三帧的幅度谱图,图6中的(b)为邻近三帧的第三频率估计图(即图5中的(c)),图6中的(c)为对第三频率估计图中的频率取整,得到第四频率估计图,并统计该第四频率估计图中第一估计频率出现的次数,得到的频点计数图。
进一步可选地,基于对上述示例进行分析,与第三频率估计图相比,频点计数图更为收敛,即频点计数图中包括的候选频点更少,从而频点计数图中包含更少的错误频率候选值。
示例性的,结合上述实施例中的示例内容。遍历第三频率估计图中任一整数iBin,具体包括:对iBinByJumpSmth(iBin)(即第三频率估计图)取整,得到temp6;如果temp6大于0并且temp6小于lenAmp+1,则计算iBinByCnt(temp6)+1,得到新的iBinByCnt(iBin),即频点计数图。
在本申请实施例中,对该第三频率估计图中的频率取整,得到第四频率估计图,并统计该第四频率估计图中的第一估计频率的出现次数,得到频点计数图,由于频点计数图包含更少的错误频率候选值,因此进一步提高了估计出更准确频率的概率。
可选地,在上述S102b2之后,上述S102b3之前,本申请实施例提供的信号处理方法还可以包括下述S105:相应地,上述S102b3可以具体通过下述S102b4和S102b5实现。
S105、信号处理装置计算频点计数图中频次大于预设次数的第二频点。
可选地,上述预设次数可以为开发人员设置的,为用户自定义设置的,例如,预设次数为8次。
S102b4、信号处理装置将该第二频点确定为第一频点。
S102b5、信号处理装置将该第一频点在第三频率估计图中对应的频率确定为M帧信号的估计频率。
需要说明的是,上述第一频点为第三频率估计图中确定的一个频点。由于M帧信号的估计频率为该第一频点在第三频率估计图中对应的频率,因此M帧信号的估计频率为一个确定的频率,而非频率候选值集合。如此,与第三频率估计图相比,通过S105、S102b4和S102b5可以准确得到M帧信号的估计频率,且能够更大程度上地提高M帧信号的估计频率的精确度。
可选地,在通过S105、S102b4和S102b5可以准确得到M帧信号的估计频率之后,该估计频率的估计误差小于或等于第一预设阈值,该估计误差为该估计频率与M帧信号的真实频率之差。
可选地,上述第一预设阈值是本领域技术人员采用本申请提供的信号处理方法进行大量实验得到的。具体地,在中高信噪比条件下,第一预设阈值为5%~25%;在低信噪比条件下,第一预设阈值为5%~30%。
示例性的,采样频率fs为16kHz,lenFrame为512,lenFft为2048,width4JumpSmth为3,radius4binStd为4,snr为0dB,真实频率对比傅立叶频点的相对位置iBinTrue为100.63。在处于中信噪比的场景下,如图7所示,图7中包括(a)至(c)3个子图。图7中的(a)为邻近三帧的幅度谱图,图7中的(b)用于表示采用本申请提供的信号处理方法所得到的信号的估计频率与信号的真实频率之差,图7中的(c)用于表示采用常规的幅度谱峰值估计法得到的峰值频率点与信号的真实频率之差。
进一步地,基于对这3个子图的分析,由于图7中的(b)可以将误差均值从0.37降低到0.028,因此与常规的幅度谱峰值估计法得到的峰值频率相比,采用本申请的方案所得到的估计频率的精度明显提高且统计无偏。
本申请实施例提供的信号处理方法,在得到M帧信号的第三频率估计图和频点计数图之后,由于可以计算频点计数图中频次大于预设次数的第二频点,并将该第二频点确定为第一频点,因此将该第一频点在第三频率估计图中对应的频率确定为M帧信号的估计频率,从而可以准确得到M帧信号的估计频率,且能够更大程度上地提高M帧信号的估计频率的精确度,进而不会出现相关技术中基于幅度谱图确定的整数频点作为信号的估计频率的问题。如此,降低了信号的频率估计的误差,也提高了信号的频率估计的精度。
需要说明的是,在对每帧信号的处理过程中,只有少量的四则运算和很少量的滑动求标准差,从而说明本方法的计算复杂度非常低。
另外,对于lenFft较长导致的计算复杂度,由于通过该计算成本实际也同时收获了更密集信息量的幅度谱,因此收益是多方面和不局限于本申请提供的信号处理方法的,故可以不视为计算成本。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实施例中以信号处理装置执行信号处理的方法为例,说明本申请实施例提供的信号处理的装置。
如图8所示,本申请实施例提供一种信号处理装置200,该信号处理装置可以包括确定模块201。确定模块201,用于基于根据M帧信号的幅度谱图,确定M帧信号的第一频率估计图,第一频率估计图中频点的幅值大于幅度门限,M为正整数;确定模块201,还用于根据该第一频率估计图和M帧信号的相位谱图,确定M帧信号的估计频率,估计频率为第一频点在第一频率估计图中对应的频率。
可选地,相位谱图包括第一相位谱图;确定模块201,具体用于根据第一频率估计图,对第一相位谱图进行可靠性筛选,得到第二频率估计图;根据第二频率估计图,确定M帧信号的估计频率;其中,估计频率为第一频点在第二频率估计图中对应的频率。
可选地,信号处理装置还包括获取模块和处理模块;获取模块,用于获取M帧信号的第二相位谱图;处理模块,用于对第二相位谱图进行帧间相位差异补偿,得到第一相位谱图。
可选地,获取模块,具体用于根据相位补偿函数,对第三相位谱图进行相位补偿,得到第二相位谱图,相位补偿函数根据窗函数的斜率确定;其中,所述第三相位谱图是对所述M帧信号的进行傅里叶变换得到的。
可选地,信号处理装置还包括处理模块;处理模块,用于对第二频率估计图进行频率一致性筛选,得到第三频率估计图;确定模块201,具体用于根据该第三频率估计图,确定M帧信号的估计频率;其中,该估计频率为第一频点在第三频率估计图中对应的频率。
可选地,确定模块201,具体用于对所述第三频率估计图中频率取整,得到第四频率估计图;并统计第四频率估计图中第一估计频率出现的次数,得到频点计数图;以及根据频点计数图,确定M帧信号的估计频率。
可选地,处理模块,用于计算频点计数图中频次大于预设次数的第二频点;确定模块201,具体用于将第二频点确定为第一频点;并将第一频点在第三频率估计图中对应的频率确定为M帧信号的估计频率。
本申请实施例提供一种信号处理装置,由于可以根据信号的幅度谱图,确定该信号的第一频率估计图,并根据该第一频率估计图和该信号的相位谱图,确定该信号的估计频率,因此并不局限于仅仅是基于幅度谱图中的整数频点作为信号的估计频率,而是通过对幅度谱图和相位谱图的处理以得到信号的估计频率,从而提高了频率估计的精度,降低了频率估计的误差。
本申请实施例中的信号处理装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信号处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图1至图7的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图9所示,本申请实施例还提供一种电子设备300,包括处理器301和存储器302,存储器302上存储有可在所述处理器301上运行的程序或指令,该程序或指令被处理器301执行时实现上述信号处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图10为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、以及处理器410等部件。
本领域技术人员可以理解,电子设备400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器410,用于基于根据M帧信号的幅度谱图,确定M帧信号的第一频率估计图,第一频率估计图中频点的幅值大于幅度门限,M为正整数;并用于根据该第一频率估计图和M帧信号的相位谱图,确定M帧信号的估计频率,估计频率为第一频点在第一频率估计图中对应的频率。
可选地,相位谱图包括第一相位谱图;处理器410,具体用于根据第一频率估计图,对第一相位谱图进行可靠性筛选,得到第二频率估计图;根据第二频率估计图,确定M帧信号的估计频率;其中,估计频率为第一频点在第二频率估计图中对应的频率。
可选地,处理器410,用于获取M帧信号的第二相位谱图;并对第二相位谱图进行帧间相位差异补偿,得到第一相位谱图。
可选地,处理器410,具体用于根据相位补偿函数,对第三相位谱图进行相位补偿,得到第二相位谱图,该相位补偿函数根据窗函数的斜率确定;其中,所述第三相位谱图是对所述M帧信号的进行傅里叶变换得到的。
可选地,处理器410,用于对第二频率估计图进行频率一致性筛选,得到第三频率估计图;并用于根据该第三频率估计图,确定M帧信号的估计频率;其中,该估计频率为第一频点在第三频率估计图中对应的频率。
可选地,处理器410,具体用于对所述第三频率估计图中频率取整,得到第四频率估计图;并统计第四频率估计图中第一估计频率出现的次数,得到频点计数图;以及根据频点计数图,确定M帧信号的估计频率。
可选地,处理器410,用于计算频点计数图中频次大于预设次数的第二频点;并用于将该第二频点确定为第一频点;以及将该第一频点在第三频率估计图中对应的频率确定为M帧信号的估计频率。
本申请实施例提供一种电子设备,由于可以根据信号的幅度谱图,确定该信号的第一频率估计图,并根据该第一频率估计图和该信号的相位谱图,确定该信号的估计频率,因此并不局限于仅仅是基于幅度谱图中的整数频点作为信号的估计频率,而是通过对幅度谱图和相位谱图的处理以得到信号的估计频率,从而提高了频率估计的精度,降低了频率估计的误差。
应理解的是,本申请实施例中,输入单元404可以包括图形处理器(graphics processing unit,GPU)4041和麦克风4042,图形处理器4041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元406可包括显示面板4061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板4061。用户输入单元407包括触控面板4071以及其他输入设备4072中的至少一种。触控面板4071,也称为触摸屏。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器409可以包括易失性存储器或非易失性存储器,或者,存储器409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器409包括但不限于这些和任意其它适合类型的存储器。
处理器410可包括一个或多个处理单元;可选的,处理器410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (18)

  1. 一种信号处理方法,所述方法包括:
    根据M帧信号的幅度谱图,确定所述M帧信号的第一频率估计图,所述第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数;
    根据所述第一频率估计图和所述M帧信号的相位谱图,确定所述M帧信号的估计频率,所述估计频率为第一频点在所述第一频率估计图中对应的频率。
  2. 根据权利要求1所述的方法,其中,所述相位谱图包括第一相位谱图;
    所述根据所述第一频率估计图和所述M帧信号的相位谱图,确定所述M帧信号的估计频率,包括:
    根据所述第一频率估计图,对所述第一相位谱图进行可靠性筛选,得到第二频率估计图;
    根据所述第二频率估计图,确定所述M帧信号的估计频率;
    其中,所述估计频率为所述第一频点在所述第二频率估计图中对应的频率。
  3. 根据权利要求2所述的方法,其中,所述根据所述第一频率估计图,对所述第一相位谱图进行可靠性筛选,得到第二频率估计图之前,所述方法还包括:
    获取所述M帧信号的第二相位谱图;
    对所述第二相位谱图进行帧间相位差异补偿,得到所述第一相位谱图。
  4. 根据权利要求3所述的方法,其中,所述获取所述M帧信号的第二相位谱图,包括:
    根据相位补偿函数,对第三相位谱图进行相位补偿,得到所述第二相位谱图,所述相位补偿函数根据窗函数的斜率确定;
    其中,所述第三相位谱图是对所述M帧信号的进行傅里叶变换得到的。
  5. 根据权利要求2所述的方法,其中,所述根据所述第二频率估计图,确定所述M帧信号的估计频率,包括:
    对所述第二频率估计图进行频率一致性筛选,得到第三频率估计图;
    根据所述第三频率估计图,确定所述M帧信号的估计频率;
    其中,所述估计频率为所述第一频点在所述第三频率估计图中对应的频率。
  6. 根据权利要求5所述的方法,其中,所述根据所述第三频率估计图,确定所述M帧信号的估计频率,包括:
    对所述第三频率估计图中频率取整,得到第四频率估计图;
    统计所述第四频率估计图中第一估计频率出现的次数,得到频点计数图;
    根据所述频点计数图,确定所述M帧信号的估计频率。
  7. 根据权利要求6所述的方法,其中,所述得到频点计数图之后,根据所述频点计数图,确定所述M帧信号的估计频率之前,所述方法还包括:
    计算所述频点计数图中频次大于预设次数的第二频点;
    所述根据所述频点计数图,确定所述M帧信号的估计频率,包括:
    将所述第二频点确定为所述第一频点;
    将所述第一频点在所述第三频率估计图中对应的频率确定为所述M帧信号的估计频率。
  8. 一种信号处理装置,所述信号处理装置包括确定模块;
    所述确定模块,用于基于根据M帧信号的幅度谱图,确定所述M帧信号的第一频率估计图,所述第一频率估计图中频点的幅值大于或等于幅度门限值,M为正整数;
    所述确定模块,还用于根据所述第一频率估计图和所述M帧信号的相位谱图,确定所述M帧信号的估计频率,所述估计频率为第一频点在所述第一频率估计图中对应的频率。
  9. 根据权利要求8所述的装置,其中,所述相位谱图包括第一相位谱图;
    所述确定模块,具体用于根据所述第一频率估计图,对所述第一相位谱图进行可靠性筛选,得到第二频率估计图;根据所述第二频率估计图,确定所述M帧信号的估计频率;
    其中,所述估计频率为所述第一频点在所述第二频率估计图中对应的频率。
  10. 根据权利要求9所述的装置,其中,所述装置还包括获取模块和处理模块;
    所述获取模块,用于所述确定模块根据所述第一频率估计图,对所述第一相位谱图进行可靠性筛选,得到第二频率估计图之前,获取所述M帧信号的第二相位谱图;
    所述处理模块,用于对所述获取模块获取的所述第二相位谱图进行帧间相位差异补偿,得到所述第一相位谱图。
  11. 根据权利要求10所述的装置,其中,所述获取模块,具体用于根据相位补偿函数,对第三相位谱图进行相位补偿,得到所述第二相位谱图,所述相位补偿函数根据窗函数的斜率确定;
    其中,所述第三相位谱图是对所述M帧信号的进行傅里叶变换得到的。
  12. 根据权利要求9所述的装置,其中,所述装置还包括处理模块;
    所述处理模块,用于对所述第二频率估计图进行频率一致性筛选,得到第三频率估计图;
    所述确定模块,具体用于根据所述第三频率估计图,确定所述M帧信号的估计频率;
    其中,所述估计频率为所述第一频点在所述第三频率估计图中对应的频率。
  13. 根据权利要求12所述的装置,其中,所述确定模块,具体用于:
    对所述第三频率估计图中频率取整,得到第四频率估计图;
    统计所述第四频率估计图中第一估计频率出现的次数,得到频点计数图;
    根据所述频点计数图,确定所述M帧信号的估计频率。
  14. 根据权利要求13所述的装置,其中,所述处理模块,用于所述确定模块得到频点计数图之后,根据所述频点计数图,确定所述M帧信号的估计频率之前,计算所述频点计数图中频次大于预设次数的第二频点;
    所述处理模块,具体用于:
    将所述第二频点确定为所述第一频点;
    将所述第一频点在所述第三频率估计图中对应的频率确定为所述M帧信号的估计频率。
  15. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-7任一项所述的信号处理方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-7任一项所述的信号处理方法的步骤。
  17. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-7任一项所述的信号处理方法的步骤。
  18. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1-7任一项所述的信号处理方法的步骤。
PCT/CN2023/086624 2022-04-11 2023-04-06 信号处理方法、装置、电子设备及介质 WO2023197933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210377038.5 2022-04-11
CN202210377038.5A CN114757229A (zh) 2022-04-11 2022-04-11 信号处理方法、装置、电子设备及介质

Publications (1)

Publication Number Publication Date
WO2023197933A1 true WO2023197933A1 (zh) 2023-10-19

Family

ID=82329106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086624 WO2023197933A1 (zh) 2022-04-11 2023-04-06 信号处理方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN114757229A (zh)
WO (1) WO2023197933A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114757229A (zh) * 2022-04-11 2022-07-15 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质
CN115295024A (zh) * 2022-04-11 2022-11-04 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323837A1 (en) * 2008-06-27 2009-12-31 Sungkyunkwan University Foundation For Corporate Collaboration Method for estimating frequency offset in system utilizing a plurality of sub-carriers
US20160188972A1 (en) * 2014-08-12 2016-06-30 Digimarc Corporation Signal processors and methods for estimating transformations between signals with phase estimation
CN111128230A (zh) * 2019-12-31 2020-05-08 广州市百果园信息技术有限公司 语音信号重建方法、装置、设备和存储介质
CN112037816A (zh) * 2020-05-06 2020-12-04 珠海市杰理科技股份有限公司 语音信号频域频率的校正、啸叫检测、抑制方法及装置
CN112151065A (zh) * 2019-06-28 2020-12-29 力同科技股份有限公司 单音信号频率检测方法、装置、设备及计算机存储介质
CN113281566A (zh) * 2021-05-11 2021-08-20 重庆邮电大学 一种基于组合复信号相位差的频率估计方法
CN114757229A (zh) * 2022-04-11 2022-07-15 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323837A1 (en) * 2008-06-27 2009-12-31 Sungkyunkwan University Foundation For Corporate Collaboration Method for estimating frequency offset in system utilizing a plurality of sub-carriers
US20160188972A1 (en) * 2014-08-12 2016-06-30 Digimarc Corporation Signal processors and methods for estimating transformations between signals with phase estimation
CN112151065A (zh) * 2019-06-28 2020-12-29 力同科技股份有限公司 单音信号频率检测方法、装置、设备及计算机存储介质
CN111128230A (zh) * 2019-12-31 2020-05-08 广州市百果园信息技术有限公司 语音信号重建方法、装置、设备和存储介质
CN112037816A (zh) * 2020-05-06 2020-12-04 珠海市杰理科技股份有限公司 语音信号频域频率的校正、啸叫检测、抑制方法及装置
CN113281566A (zh) * 2021-05-11 2021-08-20 重庆邮电大学 一种基于组合复信号相位差的频率估计方法
CN114757229A (zh) * 2022-04-11 2022-07-15 维沃移动通信有限公司 信号处理方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN114757229A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023197933A1 (zh) 信号处理方法、装置、电子设备及介质
CN107731223B (zh) 语音活性检测方法、相关装置和设备
JP6472872B2 (ja) リアル・タイム・ビデオ要約
US9300997B2 (en) Consumption likelihood of linear content streams
US10129504B2 (en) Method and system for measuring quality of video call
WO2020220809A1 (zh) 目标对象的动作识别方法、装置和电子设备
TW202032425A (zh) 圖像處理方法及裝置、電子設備和儲存介質
WO2013122586A2 (en) Automated perceptual quality assessment of touch screen devices
RU2649945C2 (ru) Способ улучшения распознавания касаний и электронное устройство для его осуществления
CN112994980A (zh) 时延测试方法、装置、电子设备和存储介质
CN111582432B (zh) 一种网络参数处理方法及装置
WO2023197955A1 (zh) 信号处理方法、装置、电子设备及介质
US9298312B2 (en) Automated perceptual quality assessment of touchscreen devices
CN112800276B (zh) 视频封面确定方法、装置、介质及设备
US20070248243A1 (en) Device and method of detecting gradual shot transition in moving picture
CN108960213A (zh) 目标跟踪方法、装置、存储介质及终端
CN115103210B (zh) 信息处理方法、装置、终端和存储介质
CN114298227A (zh) 文本去重方法、装置、设备及介质
CN114298403A (zh) 预测作品的关注度的方法和装置
CN110019657B (zh) 处理方法、装置和机器可读介质
CN112710300A (zh) 一种切换可穿戴设备的表盘的方法与设备
EP4156124A1 (en) Dynamic gesture recognition method and apparatus, and device and storage medium
CN114697711B (zh) 一种主播推荐方法、装置、电子设备和存储介质
WO2023179342A1 (zh) 重定位方法及相关设备
JP2012129731A (ja) 携帯端末および画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787578

Country of ref document: EP

Kind code of ref document: A1