WO2023197936A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023197936A1
WO2023197936A1 PCT/CN2023/086680 CN2023086680W WO2023197936A1 WO 2023197936 A1 WO2023197936 A1 WO 2023197936A1 CN 2023086680 W CN2023086680 W CN 2023086680W WO 2023197936 A1 WO2023197936 A1 WO 2023197936A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
frequency bands
type
terminal device
frequency
Prior art date
Application number
PCT/CN2023/086680
Other languages
English (en)
French (fr)
Inventor
翟邦昭
丁梦颖
王�锋
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023197936A1 publication Critical patent/WO2023197936A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • wireless communication systems In order to meet the growing demand for wireless transmission, wireless communication systems require larger transmission bandwidth to increase the transmission rate of wireless networks.
  • wireless communication systems are evolving from single-band wireless communication systems in the past to multi-band wireless communication systems.
  • terminal devices In multi-band wireless communication systems, terminal devices can communicate with network devices on multiple frequency bands.
  • the present application provides a communication method and device, which are used to enable a terminal device to report to a network device at least one switching delay corresponding to a radio frequency link switching between multiple frequency bands, so that the terminal device and the network device can be based on at least one switching delay. Switching delay for communication.
  • embodiments of the present application provide a communication method.
  • the method can be applied to a terminal device or a module in the terminal device.
  • the terminal device sends a third message to the network device.
  • An indication information indicates at least one switching delay, and the at least one switching delay corresponds to at least one switching type in which the radio frequency link of the terminal device switches between multiple frequency bands; furthermore, the terminal The device may communicate with the network device based on the at least one switching delay.
  • the terminal device can report at least one switching delay to the network device, so that the terminal device and the network device can communicate based on at least one switching delay. Furthermore, since the terminal device can report handover delays corresponding to different handover types to the network device according to the handover type, signaling overhead can be effectively saved while reporting handover delays.
  • switching the radio frequency link of the terminal device between multiple frequency bands means that the radio frequency link of the terminal device involves switching of at least three frequency bands before and after the switching.
  • the multiple frequency bands are frequency bands supported by the terminal device; or, the multiple frequency bands are frequency bands included in one of multiple frequency band combinations supported by the terminal device. , wherein each of the plurality of frequency band combinations includes at least three frequency bands among the frequency bands supported by the terminal device.
  • the at least one switching type is determined based on at least one of the following: the frequency band before switching; the frequency band after switching; the number of frequency bands before switching; and the number of frequency bands after switching.
  • the at least one switching type includes one or more of the following: a first switching type, The number of frequency bands before switching corresponding to the first switching type is smaller than the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching are completely different; for the second switching type, the number of frequency bands before switching corresponding to the second switching type is The number of frequency bands is greater than the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching are completely different; the third switching type, the number of frequency bands before switching corresponding to the third switching type is equal to the number of frequency bands after switching number, and the frequency bands before switching and the frequency bands after switching are completely different; the fourth switching type, the number of frequency bands before switching corresponding to the fourth switching type is equal to the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching
  • the frequency bands include at least one identical frequency band.
  • the first indication information includes the at least one handover delay; or the first indication information includes an identification of the at least one handover type; or the first indication
  • the information includes a handover delay reference value, and the handover delay reference value is used to determine the at least one handover delay. In this case, signaling overhead can be effectively saved.
  • the method further includes: sending second indication information to the network device, where the second indication information includes identifiers of M frequency bands, identifiers of N frequency bands, and the radio frequency link from The first switching delay corresponding to the switching of the M frequency bands to the N frequency bands, M and N are both integers greater than or equal to 1; the radio frequency link switches from the M frequency bands to the N frequency bands
  • the corresponding switching type belongs to the at least one switching type, and the first switching delay is different from the switching delay corresponding to the switching type.
  • the terminal device can also report the handover delay corresponding to the special handover to the network device through the second instruction information, the accuracy of the handover delay reported by the terminal device can be effectively ensured.
  • embodiments of the present application provide a communication method, which can be applied to a network device or a module in the network device.
  • the network device receives the first indication information from the terminal device,
  • the first indication information indicates at least one switching delay, and the at least one switching delay corresponds to at least one switching type in which the radio frequency link of the terminal device switches between multiple frequency bands; furthermore, the network device can be based on the The at least one switching delay is used to communicate with the terminal device.
  • the at least one switching type is determined based on at least one of the following: the frequency band before switching; the frequency band after switching; the number of frequency bands before switching; and the number of frequency bands after switching.
  • the at least one switching type includes one or more of the following: a first switching type, the number of frequency bands before switching corresponding to the first switching type is smaller than the number of frequency bands after switching, And the frequency band before switching and the frequency band after switching are completely different; the second switching type, the number of frequency bands before switching corresponding to the second switching type is greater than the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching Completely different; the third switching type, the number of frequency bands before switching corresponding to the third switching type is equal to the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching are completely different; the fourth switching type, the The number of frequency bands before switching corresponding to the fourth switching type is equal to the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching include at least one same frequency band.
  • the first indication information includes the at least one handover delay; or the first indication information includes an identification of the at least one handover type; or the first indication
  • the information includes a switching delay reference value, the switching delay reference value being used to determine the at least one switching delay.
  • the method further includes: receiving second indication information from the terminal device, where the second indication information includes identifiers of M frequency bands before switching and identifiers of N frequency bands after switching.
  • the first switching delay corresponding to the radio frequency link switching from the M frequency bands to the N frequency bands, M and N are both integers greater than or equal to 1; the radio frequency link switches from the M frequency bands to The switching type corresponding to the N frequency bands belongs to the at least one switching type, and the first switching delay is different from the switching delay corresponding to the switching type.
  • the present application provides a communication device.
  • the communication device has the function of implementing the first aspect.
  • the communication device includes modules or units or means (means) corresponding to performing operations related to the first aspect.
  • the module or unit or means can be implemented by software, or implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to implement communication between the communication device and other devices; the processing unit can be used to perform the communication Some internal operations of the device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned first aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions involved in the first aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation manner in the above-mentioned first aspect.
  • the communication device includes a processor and a memory, and the memory can store the necessary computer programs or instructions to implement the functions involved in the first aspect.
  • the processor can execute the computer program or instructions stored in the memory.
  • the communication device implements the method in any possible design or implementation manner in the above-mentioned first aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and perform any of the possible designs or implementations in the first aspect. method.
  • the present application provides a communication device.
  • the communication device is capable of implementing the functions related to the second aspect.
  • the communication device includes modules or units or means corresponding to performing operations related to the second aspect, so The above-mentioned functions, units or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to implement communication between the communication device and other devices.
  • the communication unit is used to send messages to a terminal.
  • the device sends system information; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned second aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions related to the second aspect above.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect.
  • the communication device includes a processor and a memory, and the memory can store the necessary computer programs or instructions to implement the functions involved in the second aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the second aspect.
  • the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, Reality Now, the processor may be a general-purpose processor, implemented by reading software code stored in memory.
  • the above processors may be one or more, and the memories may be one or more.
  • the memory can be integrated with the processor, or the memory can be provided separately from the processor. During the specific implementation process, the memory and the processor can be integrated on the same chip, or they can be respectively provided on different chips. The embodiments of this application do not limit the type of memory and the arrangement method of the memory and the processor.
  • the present application provides a communication system, which may include the communication device provided in the third aspect and the communication device provided in the fourth aspect.
  • the present application provides a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer storage medium.
  • the computer reads and executes the computer-readable instructions, the computer is caused to execute the above-mentioned first aspect or Methods in any possible design of the second aspect.
  • the present application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute the method in any possible design of the first aspect or the second aspect.
  • the present application provides a chip.
  • the chip includes a processor.
  • the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement the first aspect or the second aspect. any possible design approach.
  • Figure 1 is a schematic diagram of a network architecture applicable to the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a switching type provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another switching type provided by the embodiment of the present application.
  • Figure 4 is a schematic flow chart corresponding to the communication method provided by the embodiment of the present application.
  • Figure 5 is a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system may include one or more network devices (such as network device 101) and one or more terminal devices (such as terminal device 1021, terminal device 1022, and terminal device 1023).
  • the network device 101 and the terminal device 1021, the terminal device 1022 or the terminal device 1023 can communicate through air interface resources, and optionally, different terminal devices can also communicate through sidelink (SL) resources.
  • SL sidelink
  • a network device may support a single frequency band, or may support multiple frequency bands. The coverage of different/same frequency bands of different network devices may be different, which may be related to the transmission power of the network device, deployment method, frequency size of the band, etc.
  • a terminal device may be covered by one or more frequency bands of one or more network devices.
  • the terminal device can operate according to carrier aggregation (CA), dual connectivity (dual connectivity) , DC) and other transmission technologies.
  • CA carrier aggregation
  • DC dual connectivity
  • the number of CA frequency bands that different terminal equipment can simultaneously support may be different, which may be related to the radio frequency and baseband processing capabilities of the terminal equipment.
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the communication system.
  • the above communication system may also include other devices or network elements, such as core network devices. etc., the embodiments of the present application are not limited to this.
  • the terminal equipment involved in the embodiments of this application is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., and refers to providing voice and/or data to users.
  • Connectivity devices For example, handheld devices, vehicle-mounted devices, etc. with wireless connection capabilities.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (Augmented reality) , AR) equipment, wireless terminals in industrial control, wireless terminals in driverless driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, smart homes Wireless terminals in etc.
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiment of this application may be a base station (BS), and the BS may be a device deployed in a wireless access network that can communicate wirelessly with terminals.
  • base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the network equipment involved in the embodiments of this application may be a next-generation Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB) )wait.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes.
  • CU implements some functions of network equipment
  • DU implements some functions of network equipment.
  • the CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical (physical, PHY) layer.
  • the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device for realizing the functions of the network device is a network device, and the network device is a base station as an example to describe the technical solution provided by the embodiment of the present application.
  • the communication system shown in Figure 1 above can support various wireless access technologies (radio access technology, RAT).
  • the communication system shown in Figure 1 can be a fourth generation (4th generation, 4G) communication system.
  • 4G fourth generation
  • LTE long term evolution
  • 5G also known as new radio (NR) communication system
  • future-oriented evolution system Evolution
  • LTE long term evolution
  • NR new radio
  • the communication system and business scenarios described in the embodiments of this application are for the purpose of explaining the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of this application.
  • Those of ordinary skill in the art will know that with the communication With the evolution of the system and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • Radio frequency links can be divided into transmit (Transmit, Tx) radio frequency links and receive (Receive, Rx) radio frequency links.
  • the terminal equipment may include one or more Tx radio frequency links, and the terminal equipment may send radio frequency signals to the network device through one or more Tx radio frequency links; the terminal equipment may also include one or more Rx radio frequency links, and thus end devices can receive RF signals from network devices through one or more Rx RF links.
  • the radio frequency link involved in the embodiments of this application below may be replaced by a Tx radio frequency link, or may also be replaced by an Rx radio frequency link.
  • a radio frequency link may also be called a radio frequency channel or radio frequency module, or other possible names, without specific limitations.
  • the Tx radio frequency link may include one or more radio frequency devices such as upconverters, phase-locked loops, power amplifiers, and mixers.
  • the frequency band may refer to a frequency range or a frequency range.
  • a frequency band may refer to a carrier; alternatively, a frequency band may refer to a frequency band (band) allocated in the 3rd generation partnership project (3GPP) agreement, such as n1, n2, n41 , n78, etc.
  • 3GPP 3rd generation partnership project
  • n1, n2, n41, n78, etc. can be understood as identification of frequency bands.
  • Each frequency band corresponds to a preset frequency range.
  • the frequency band identified by n41 includes 2496MHz-2690MHz (here, the upstream frequency range is taken as an example).
  • a terminal device can support multiple frequency bands or there can be multiple frequency bands that provide services to the terminal device, and the terminal device can communicate with network devices on multiple frequency bands.
  • a terminal device can access a network device and communicate with the network device on multiple frequency bands through CA technology.
  • a terminal device can access two network devices at the same time and communicate with the two network devices on multiple frequency bands through DC technology.
  • one frequency band can correspond to one Tx radio frequency link, or it can correspond to multiple Tx radio frequency links; that is, the terminal device can send radio frequencies to the network device through one Tx radio frequency link on one frequency band. signals, or RF signals can be sent to network devices through multiple Tx RF links on one frequency band.
  • a frequency band can correspond to one Rx radio frequency link, or it can correspond to multiple Rx radio frequency links; that is, the terminal device can receive radio frequency signals from network devices through one Rx radio frequency link on one frequency band, or it can also RF signals from network devices are received through multiple Rx RF links on one frequency band.
  • a RF link (such as a Tx RF link or an Rx RF link) can operate on different frequency bands at different times.
  • the terminal device may include one or more Tx radio frequency links.
  • the Tx radio frequency link of the terminal device can have multiple possible states. Some possible states of the Tx radio frequency link of the terminal device are described below in conjunction with Scenarios 1 to 3.
  • the number of Tx radio frequency links of the terminal equipment is equal to the number of frequency bands supported by the terminal equipment.
  • a link can include three states as shown in Table 1.
  • Table 1 Status of the Tx RF link of the terminal device
  • state 1 means that one of the two radio frequency links, the Tx radio frequency link, operates in frequency band A, and the other Tx radio frequency link operates in frequency band B.
  • state 2 means that both Tx radio frequency links work in frequency band B.
  • state 3 means that both Tx radio frequency links work in frequency band A.
  • the number of Tx radio frequency links of the terminal equipment is less than the number of frequency bands supported by the terminal equipment.
  • the Tx RF link can include six states as shown in Table 2.
  • Table 2 Status of Tx radio frequency link of terminal equipment
  • state 1 means that both Tx radio frequency links operate in frequency band A.
  • state 2 means that both Tx radio frequency links work in frequency band B.
  • state 3 means that both Tx radio frequency links operate in frequency band C.
  • state 4 means that one of the two Tx radio frequency links operates in frequency band A, and the other Tx radio frequency link operates in frequency band B.
  • state 5 means that one of the two Tx radio frequency links operates in frequency band A, and the other Tx radio frequency link operates in frequency band C.
  • state 6 means that one of the two Tx radio frequency links operates in frequency band B, and the other Tx radio frequency link operates in frequency band C.
  • the terminal equipment supports four frequency bands (for example, the four frequency bands are frequency band A, frequency band B, frequency band C and frequency band D), in this case, the number of Tx radio frequency links of the terminal equipment is less than the number of frequency bands supported by the terminal equipment.
  • the Tx radio frequency link of the terminal device can include ten states as shown in Table 3.
  • Table 3 Status of Tx radio frequency link of terminal equipment
  • state 1 means that both Tx radio frequency links operate in frequency band A.
  • State 2 refers to two Tx radio links All operate in frequency band B.
  • State 3 means that both Tx radio frequency links operate in frequency band C.
  • State 4 means that both Tx radio frequency links work in frequency band D.
  • State 5 means that one of the two Tx radio frequency links operates in frequency band A, and the other Tx radio frequency link operates in frequency band B.
  • State 6 means that one of the two Tx radio frequency links operates in frequency band A, and the other Tx radio frequency link operates in frequency band C.
  • State 7 means that one of the two Tx radio frequency links operates in frequency band A, and the other Tx radio frequency link operates in frequency band D.
  • State 8 means that one of the two Tx radio frequency links operates in frequency band B, and the other Tx radio frequency link operates in frequency band C.
  • State 9 means that one of the two Tx radio frequency links operates in frequency band B, and the other Tx radio frequency link operates in frequency band D.
  • State 10 means that one of the two Tx radio frequency links operates in frequency band C, and the other Tx radio frequency link operates in frequency band D.
  • Table 1 illustrate some possible states of the Tx radio frequency link of the terminal equipment; in specific implementation, taking Table 1 as an example, the Tx radio frequency link of the terminal equipment can support
  • the three states in Table 1 may also support some of the three states.
  • the terminal device may support state 1 and state 2 of the three states, but does not support state 3.
  • the above description is based on the example that the number of Tx radio frequency links of the terminal device is equal to or less than the number of frequency bands supported by the terminal device. In other possible situations, the number of Tx radio frequency links of the terminal device can also be greater than the number of frequency bands supported by the terminal device. The number of frequency bands. In this case, please refer to the descriptions of Scenario 1 to Scenario 3 above.
  • radio frequency link such as Tx radio frequency link
  • the Tx radio frequency link of the terminal device can be switched between multiple frequency bands supported by the terminal device.
  • the Tx radio frequency link of the terminal equipment can switch between the three frequency bands (such as switching between the six states shown in Table 2).
  • the Tx radio frequency link of the terminal equipment can switch between the four frequency bands (such as switching between the ten states shown in Table 3). In this way, switching between multiple frequency bands through the Tx radio frequency link allows the terminal device to communicate with the network device on multiple frequency bands.
  • the terminal device can support at least one frequency band combination.
  • Each frequency band combination in the at least one frequency band combination can include at least two of the multiple frequency bands supported by the terminal device. frequency band.
  • the frequency band combination supported by the terminal equipment includes two frequency bands
  • the frequency band involved in the radio frequency link of the terminal equipment before and after the handover includes these two frequency bands
  • the frequency bands involved in the radio frequency link of the terminal equipment before and after the switching may refer to the union of the frequency bands of the radio frequency link of the terminal equipment before and after the switching.
  • the radio frequency link of the terminal device switches between the two frequency bands included in the frequency band combination, which may include: the radio frequency link of the terminal device is in state 2 and state in Table 1 3, or the radio frequency link of the terminal device switches between state 1 and state 2 in Table 2.
  • the radio frequency link of the terminal device switches between the two frequency bands included in the frequency band combination, which may include: the radio frequency link of the terminal device is in states 1 and 2 in Table 2. Switch between state 3, or the radio frequency link of the terminal device switches between state 1 and state 3 in Table 3.
  • the frequency band combination supported by the terminal equipment includes three frequency bands, if the frequency bands involved in the radio frequency link of the terminal equipment before and after the handover include these three frequency bands, it can be considered that the radio frequency link of the terminal equipment is in Switch between the three frequency bands included in this band combination.
  • the radio frequency link of the terminal device switches between the three frequency bands included in the frequency band combination, which may include: The status of the radio frequency link of the terminal device in Table 2 4. Switch between any two states of state 5 and state 6, or the radio frequency link of the terminal device switches between any two states of state 5, state 6 and state 8 in Table 3.
  • the radio frequency link of the terminal device switches between the three frequency bands included in the frequency band combination, which may include: the radio frequency link of the terminal device in Table 3 Switch between any two states among state 5, state 7 and state 9.
  • the frequency band combination supported by the terminal equipment includes four frequency bands, if the frequency bands involved in the radio frequency link of the terminal equipment before and after the handover include these four frequency bands, it can be considered that the radio frequency link of the terminal equipment is in Switch between the four frequency bands included in this band combination.
  • the radio frequency link of the terminal equipment switches between the four frequency bands included in the frequency band combination, which may include:
  • the radio frequency link of the terminal equipment is in Table 3 Switch between state 5 and state 10 in .
  • the radio frequency link of the terminal device can have multiple switching types when switching between multiple frequency bands, and the multiple switching types can be obtained according to a variety of possible division rules.
  • the multiple frequency bands may be frequency bands supported by the terminal device (for example, the multiple frequency bands may refer to all frequency bands supported by the terminal device), or the multiple frequency bands may be frequency bands included in a combination of frequency bands supported by the terminal device.
  • multiple handover types can be determined based on at least one of the following: frequency band before handover; frequency band after handover; number of frequency bands before handover; number of frequency bands after handover. Based on this division rule, two possible division methods are described below in combination with division method 1 and division method 2.
  • the switching of the radio frequency link of the terminal device between multiple frequency bands can be divided as follows Switching type a1 to switching type a6.
  • the number of frequency bands before switching corresponding to switching type a1 is smaller than the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a1 are completely different. Among them, the frequency band before switching and the frequency band after switching are completely different. It can be understood that the intersection of the frequency band before switching and the frequency band after switching is empty (that is, there is no intersection).
  • switching type a1 For example, the number of frequency bands corresponding to switching type a1 before switching is 1, and the number of frequency bands after switching is 2, as shown in Figure 2.
  • One possible switching included in switching type a1 is: switching the radio frequency link of the terminal device from frequency band A to frequency band B and frequency band C (for example, switching from state 1 to state 6 in Table 2).
  • the number of frequency bands before switching corresponding to switching type a2 is smaller than the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a2 include at least one identical frequency band. Wherein, the frequency band before switching and the frequency band after switching include at least one same frequency band. It can be understood that the frequency band before switching and the frequency band after switching partially overlap or intersect.
  • the number of frequency bands corresponding to switching type a2 is 1 before switching, and the number of frequency bands after switching is 2.
  • one possible switching included in switching type a2 is: the radio frequency link of the terminal device switches from frequency band A to frequency band A and frequency band B (for example, switching from state 3 to state 1 in Table 1).
  • the number of frequency bands before switching corresponding to switching type a3 is greater than the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a3 are completely different.
  • the number of frequency bands corresponding to switching type a3 before switching is 2, and the number of frequency bands after switching is 1.
  • one possible switching included in switching type a3 is: the radio frequency link of the terminal device switches from frequency band A and frequency band B to frequency band C (for example, switching from state 4 to state 3 in Table 2).
  • the number of frequency bands before switching corresponding to switching type a4 is greater than the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a4 include at least one identical frequency band.
  • the number of frequency bands corresponding to switching type a4 is 2 before switching, and the number of frequency bands after switching is 1.
  • one possible switching included in switching type a4 is: the radio frequency link of the terminal device switches from frequency band A and frequency band B to frequency band A (for example, switching from state 1 to state 3 in Table 1).
  • the number of frequency bands before switching corresponding to switching type a5 is equal to the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a5 include at least one identical frequency band.
  • one possible handover included in handover type a5 is: the radio frequency link of the terminal device switches from frequency band A and frequency band B to frequency band A and frequency band C (such as switching from state 4 in Table 2 to state 5).
  • the number of frequency bands before switching corresponding to switching type a6 is equal to the number of frequency bands after switching; the frequency band before switching and the frequency band after switching corresponding to switching type a6 are completely different.
  • one possible handover included in handover type a6 is: the radio frequency link of the terminal device switches from frequency band A and frequency band B to frequency band C and frequency band D (such as switching from state 5 in Table 3 to state 10).
  • switching type a6 switching the radio frequency link of the terminal equipment from frequency band A to frequency band B (such as Switch from state 2 to state 3 in the table).
  • the radio frequency link of the terminal device can be divided into two situations according to the number of frequency bands involved before and after the handover.
  • One situation involves two frequency bands before and after the handover, and the other situation
  • One scenario involves at least three frequency bands before and after handover.
  • the radio frequency chain of the terminal device can be further divided according to the frequency band before switching, the frequency band after switching, the number of frequency bands before switching and the number of frequency bands after switching.
  • the handover of a channel between multiple frequency bands is divided into the following handover type b1 and handover type b2.
  • the number of frequency bands corresponding to switching type b1 is 2 before switching and the number of frequency bands after switching is 1, or the number of frequency bands before switching is 1 and the number of frequency bands after switching is 2.
  • the frequency band before switching and the frequency band after switching corresponding to switching type b1 include at least one identical frequency band.
  • one possible switching included in switching type b1 is: switching the radio frequency link of the terminal device from frequency band A and frequency band B to frequency band A.
  • the number of frequency bands corresponding to switching type b2 is 1 before switching, and the number of frequency bands after switching is 1.
  • Switch type b2 pair The corresponding frequency band before switching and the frequency band after switching are completely different. For example, as shown in Figure 3, one possible switching included in switching type b2 is: switching the radio frequency link of the terminal device from frequency band A to frequency band B.
  • the radio frequency link of the terminal device can be further based on the frequency band before switching, the frequency band after switching, the number of frequency bands before switching, and the number of frequency bands after switching.
  • Handovers between multiple frequency bands are divided into the following handover types b3 to b6.
  • the number of frequency bands before switching corresponding to switching type b3 is smaller than the number of frequency bands after switching.
  • the frequency bands before switching and the frequency bands after switching corresponding to switching type b1 are completely different.
  • the number of frequency bands corresponding to handover type a1 is 1 before handover, and the number of frequency bands after handover is 2.
  • handover type a1 is 1 before handover, and the number of frequency bands after handover is 2.
  • the number of frequency bands before switching corresponding to switching type b4 is greater than the number of frequency bands after switching.
  • the frequency bands before switching and the frequency bands after switching corresponding to switching type b4 are completely different.
  • the number of frequency bands corresponding to handover type a1 is 2 before handover, and the number of frequency bands after handover is 1.
  • the number of frequency bands before switching corresponding to switching type b5 is equal to the number of frequency bands after switching.
  • the frequency band before switching and the frequency band after switching corresponding to switching type b5 include at least one identical frequency band.
  • the number of frequency bands corresponding to handover type a1 is 2 before handover, and the number of frequency bands after handover is 2.
  • the number of frequency bands before switching corresponding to switching type b6 is equal to the number of frequency bands after switching.
  • the frequency bands before switching and the frequency bands after switching corresponding to switching type b6 are completely different.
  • the number of frequency bands before handover type b6 corresponds to 2
  • the number of frequency bands after handover is 2.
  • handover type a6 the difference between handover type b6 and handover type a6 is that the number of frequency bands before handover corresponding to handover type b6
  • the number of frequency bands and the number of frequency bands after switching are greater than 2).
  • switching type b1 and switching type b2 When the terminal device supports three frequency bands, the radio frequency link of the terminal device can switch between the three frequency bands supported by the terminal device (such as switching between the six states shown in Table 2). There are five switching types in total, as follows: Switching type b1 to switching type b5. When the terminal device supports four frequency bands, the radio frequency link of the terminal device can switch between the four frequency bands supported by the terminal device (such as switching between the ten states shown in Table 3). There are six switching types in total, as follows: Switching type b1 to switching type b6.
  • the radio frequency link of the terminal equipment switches between the two frequency bands included in the frequency band combination.
  • the radio frequency link of the terminal equipment can switch between the three frequency bands included in the frequency band combination.
  • Type b5. When the frequency band combination supported by the terminal device includes four frequency bands, the radio frequency link of the terminal device may have a switching type when switching between the three frequency bands included in the frequency band combination, which is switching type b6.
  • the radio frequency link (such as the Tx radio frequency link or the Rx radio frequency link) of the terminal device can be switched between multiple frequency bands.
  • the radio frequency link of the terminal device since a radio frequency link of the terminal device is switched from one frequency band to another frequency band, parameters of one or more radio frequency devices on the radio frequency link need to be reconfigured. in RF devices During parameter reconfiguration, the terminal device cannot send or receive radio frequency signals.
  • the network device communicates with the terminal device within the switching delay caused by the switching (for example, the network device schedules the uplink transmission of the terminal device within the switching delay or Send downlink data to the terminal device), because the terminal device cannot send or receive radio frequency signals within the switching delay, resulting in communication failure.
  • the terminal device reports the switching delay corresponding to the switching of the radio frequency link of the terminal device between different frequency bands to the network device.
  • the network device can determine the switching time according to the switching time. delay, and then communicate with the terminal device after the radio frequency link switching is completed, so that normal communication between the terminal device and the network device can be achieved.
  • Figure 4 is a schematic flowchart corresponding to the communication method provided by the embodiment of the present application. As shown in Figure 4, the process may include:
  • the terminal device sends first indication information to the network device, where the first indication information indicates at least one switching delay.
  • the terminal device may send the first indication information to the network device in multiple ways.
  • the terminal device may send the first indication information to the network device through an RRC message.
  • At least one switching delay indicated by the first indication information may correspond to at least one switching type in which the radio frequency link of the terminal device switches between multiple frequency bands supported by the terminal device.
  • at least one switching type may include at least one of the switching types a1 to a6 described above, or at least one switching type may include the switching types described above. At least one switching type from switching type b1 to switching type b6.
  • the radio frequency link of the terminal device may support switching between all states corresponding to the four frequency bands (such as the ten states shown in Table 3); or , the radio frequency link of the terminal device may also only support switching between some states corresponding to the four frequency bands (such as some of the ten states shown in Table 3).
  • the following takes the example that the terminal device supports four frequency bands and the radio frequency link of the terminal device supports switching between all states corresponding to the four frequency bands. Two possible implementations are described in conjunction with Implementation Mode 1.1 and Implementation Mode 1.2.
  • the terminal device can send the first indication information to the network device, and the first indication information indicates six handover delays corresponding to the six handover types.
  • the handover delay corresponding to the handover type may be determined by the terminal device based on the actual handover delays of different handovers included in the handover type. Since the handover delay corresponding to the terminal equipment's radio frequency link switching between different frequency bands may be related to a variety of factors (such as the specific implementation of the handover, the frequency band before the handover, and the frequency band after the handover), therefore, the same handover type includes The actual handover delays of different handovers may not be exactly the same. For example, switching type b1 includes and hypothesis The corresponding switching delay is t1, The corresponding handover delay is t2.
  • the terminal device can determine that the handover delay corresponding to handover type b1 is t1, or the terminal device can also determine that the handover delay corresponding to handover type b1 is t3 (t3 is greater than t1) .
  • the radio frequency link of the terminal device is switched from frequency band A and frequency band B to frequency band A and from frequency band A to frequency band A and frequency band B.
  • the first indication information may include a handover delay list A1, and the handover delay list A1 includes six handover delays corresponding to six handover types.
  • the handover delay list A1 may include handover delay 1 corresponding to handover type b1, handover delay 2 corresponding to handover type b2,
  • the switching delay corresponding to switching type b3 is 3, the switching delay corresponding to switching type b4 is 4, the switching delay corresponding to switching type b5 is 5, and the switching delay corresponding to switching type b6 is 6.
  • the four frequency bands supported by the terminal device include frequency band A, frequency band B, frequency band C and frequency band D.
  • the handover types corresponding to other handovers are all handover type b1, therefore,
  • the handover delay of other handovers can be handover delay 1.
  • the network device can directly obtain the handover delays corresponding to different handover types, which is relatively simple to implement.
  • the first indication information may also include a handover delay reference value, and then the network device may determine six handover delays corresponding to the six handover types based on the handover delay reference value.
  • the handover delay reference value may also be called It is the switching delay base or other name.
  • the network device can determine the six handover delays according to the handover delay reference value in multiple ways.
  • each of the six handover delays can be predefined through a protocol.
  • the network device can determine six types of handover delays based on the correspondence between the handover delay reference value and the protocol definition.
  • switching delay 1 x1 * switching delay reference value
  • switching delay 2 x2 * switching delay reference value
  • switching delay 3 x3 * switching delay reference value
  • switching delay 4 x4*switching delay reference value
  • switching delay 5 x5*switching delay reference value
  • switching delay 6 x6*switching delay reference value; among them, x1, x2, x3, x4, x5, x6 can is a positive integer.
  • the first indication information can include the handover delay reference value without including six types of handover delays, signaling overhead can be effectively saved.
  • the first indication information may also include an identifier of at least one handover type supported by the terminal device.
  • the handover delays corresponding to the six handover types can be predefined through the protocol. Then, after the terminal device sends the first indication information to the network device, the network device can learn at least one handover type supported by the terminal device, and at least The handover delay corresponding to a handover type.
  • implementation mode 1.1 by dividing the switching supported by the radio frequency link of the terminal device into multiple switching types, and reporting the switching delays corresponding to different switching types to the network device, it is possible to effectively report the switching delay while Save signaling overhead.
  • the radio frequency link of the terminal equipment involves two frequency bands before and after the handover.
  • the terminal device can send parameters of at least one frequency band combination to the network device, and each frequency band combination in the at least one frequency band combination includes two frequency bands, each The parameters of the frequency band combination include the switching delay corresponding to the radio frequency link of the terminal equipment switching between the two frequency bands included in the frequency band combination (i.e., the switching delay corresponding to switching type b1 and the switching delay corresponding to switching type b2) .
  • At least one frequency band combination includes frequency band combination 1, and frequency band combination 1 includes frequency band A and frequency band B.
  • the parameters of frequency band combination 1 reported by the terminal device to the network device may include ⁇ X1, X2, X3, X4 ⁇ .
  • X1 represents the identifier of frequency band A
  • X2 represents the identifier of frequency band B
  • X4 represents the switching delay corresponding to switching type b2 (for example, 140us), where switching type b2 can include the switching between state 2 and state 3 of the radio frequency link of the terminal device. switch between.
  • the radio frequency link of the terminal device does not support switching type b2 (that is, switching between state 2 and state 3 in Table 1 is not supported), the value of X4 can be empty.
  • the radio frequency link of the terminal equipment involves at least three frequency bands before and after the handover.
  • the terminal device can send first indication information to the network device, and the first indication information indicates four handover delays corresponding to the four handover types.
  • the first indication information may include a switching delay list A2.
  • the switching delay list A2 includes four switching delays corresponding to the four switching types.
  • the switching delay list A2 may include a switching delay corresponding to the switching type b3. Delay 1, switching delay 3 corresponding to switching type b4, switching delay 5 corresponding to switching type b5, and switching delay 6 corresponding to switching type b6.
  • the first indication information may also include a handover delay reference value, and the network device may determine four handover delays corresponding to the four handover types based on the handover delay reference value.
  • the description in Implementation Mode 1.1 please refer to the description in Implementation Mode 1.1.
  • different reporting methods can be used depending on the number of frequency bands involved in the radio frequency link of the terminal device before and after the handover, thereby improving the flexibility of reporting the handover delay.
  • the radio frequency link of the terminal equipment involves two frequency bands before and after the handover
  • the handover delays corresponding to the two handover types under different frequency band combinations can be reported separately for different frequency band combinations, thereby improving the reported handover Delay accuracy.
  • the radio frequency link of the terminal device involves at least three frequency bands before and after handover, handover delays corresponding to different handover types can be reported, thus effectively saving signaling overhead.
  • the terminal device may also send other possible information to the network device.
  • the terminal device may also send second indication information to the network device; for another example, the terminal device may also send the second indication information to the network device.
  • the device sends third indication information or fourth indication information.
  • the first to fourth indication information may be carried in the same message (such as an RRC message), or may be carried in different messages, without any specific limitation.
  • the embodiment of the present application does not limit the order in which the terminal device sends the different messages.
  • the second instruction information is introduced below.
  • the second indication information includes identifiers of M frequency bands, identifiers of N frequency bands, and the first switching delay corresponding to switching of the radio frequency link of the terminal device from M frequency bands to N frequency bands.
  • M frequency bands and N frequency bands are all It belongs to multiple frequency bands supported by terminal equipment.
  • M and N are both integers greater than or equal to 1.
  • the switching type corresponding to the radio frequency link switching of the terminal device from M frequency bands to N frequency bands belongs to at least one switching type (in implementation 1.1, at least one switching type may include switching type a1 to switching type a6 or switching type Type b1 to handover type b6; in implementation 1.2, at least one handover type may include handover type b3 to handover type b6).
  • M frequency bands include frequency band A and frequency band B
  • N frequency bands include frequency band C and frequency band D.
  • the corresponding handover type is handover type b6.
  • the first The handover delay is different from the handover delay corresponding to the b6 handover type.
  • the handover type corresponding to the handover performed by the radio frequency link of the terminal equipment is handover type b6 (here, handover type b6 is taken as an example)
  • the handover performed by the radio frequency link of the terminal equipment The corresponding handover delay is the handover delay corresponding to handover type b6.
  • the handover delay corresponding to the special handover does not apply to the handover delay corresponding to the handover type to which the special handover belongs. Therefore, the terminal device can separately report the handover corresponding to each special handover to the network device through the second instruction information. time delay.
  • a possible special switching is: the radio frequency link of the terminal equipment switches from M frequency bands to N frequency bands, and the corresponding handover type of the terminal equipment's radio frequency link switches from M frequency bands to N frequency bands is handover type b6.
  • the switching delay corresponding to the radio frequency link of the terminal device switching from M frequency bands to N frequency bands is different from the switching delay corresponding to switching type b6.
  • the terminal device can send the second instruction information to the network device.
  • the second indication information indicates the handover delay corresponding to the special handover.
  • handover type b6 includes handover 1, handover 2, handover 3 and handover 4.
  • the handover delay corresponding to handover 1 is 35us
  • the handover delay corresponding to handover 1 is 70us
  • the handover delay corresponding to handover 3 The switching delay corresponding to switching 4 is 50us
  • the switching delay corresponding to switching 4 is 140us. Since the switching delay corresponding to switching 4 is significantly different from the switching delay corresponding to the other three switchings, the terminal device can determine the corresponding switching delay of switching type b6.
  • the switching delay is 70us
  • switch 4 is a special switch
  • the switching delay corresponding to switch 4 is reported separately.
  • Using this method can effectively improve the accuracy of the handover delay reported by the terminal device and avoid the waste of transmission resources between the network device and the terminal device due to the large handover delay corresponding to the handover type reported by the terminal device; for example, If the terminal device does not regard handover 4 as a special handover, but reports the handover delay corresponding to handover type b6 as 140us, when the radio frequency link of the terminal device performs handover 1, the actual handover delay is 35us, but the network device needs to wait. It takes 140us to communicate with the terminal device, which will cause a waste of transmission resources.
  • the second indication information indicating the switching delay corresponding to the switching of the radio frequency link of the terminal device from M frequency bands to N frequency bands.
  • the second indication information may also indicate Switching delays corresponding to other special switchings. That is to say, the second indication information may indicate the switching delay corresponding to at least one special switching.
  • the number of special switches indicated by the second indication information may be less than or equal to maxULTxSwitchingSpecialBandEntries, where maxULTxSwitchingSpecialBandEntries is a positive integer.
  • the value of maxULTxSwitchingSpecialBandEntries can be pre-agreed by the network device and the terminal device, or it can also be defined by the protocol, and is not specifically limited.
  • implementation mode 1.2 and the radio frequency link being a Tx radio frequency link are taken as an example to describe two possible signaling structures of the first indication information and the second indication information.
  • the first possible signaling structure is a first possible signaling structure:
  • the second possible signaling structure is a first possible signaling structure
  • the third instruction information and the fourth instruction information are introduced below.
  • the terminal device can also report to the network device the switching supported by the radio frequency link of the terminal device on multiple frequency bands, so that the network device can subsequently switch based on the terminal device's
  • the radio frequency link supports switching on multiple frequency bands to instruct the radio frequency link of the terminal device to perform corresponding switching. Two possible reporting methods are described below in conjunction with Example 1 and Example 2.
  • the terminal device may send third indication information to the network device.
  • the third indication information indicates multiple frequency bands supported by the terminal device.
  • the third indication information includes identifiers of multiple frequency bands supported by the terminal device.
  • the third indication information may implicitly indicate that the radio frequency link of the terminal device supports switching between all states corresponding to multiple frequency bands. In this way, by reporting multiple frequency bands supported by the terminal device, the switching of the radio frequency link supported by the terminal device on multiple frequency bands is implicitly indicated, which can effectively save signaling overhead. For example, if the multiple frequency bands supported by the terminal equipment include frequency band A, frequency band B, frequency band C, and frequency band D, then the radio frequency link of the terminal equipment supports switching between ten states corresponding to the four frequency bands.
  • Example 2 The terminal device may send third indication information and fourth indication information to the network device, the third indication information indicates multiple frequency bands supported by the terminal device, and the fourth indication information indicates at least one frequency band combination supported by the terminal device, such as the fourth
  • the indication information may include identification of frequency bands included in each of the at least one frequency band combination. It can be understood that, for implementation 1.1, each of the at least one frequency band combination indicated by the fourth indication information may include at least two frequency bands; for implementation 1.2, at least one frequency band combination indicated by the fourth indication information Each of the frequency band combinations may include at least three frequency bands.
  • each of the at least one frequency band combination may include at least three frequency bands among multiple frequency bands supported by the terminal device.
  • the multiple frequency bands supported by the terminal device include frequency band A, frequency band B, frequency band C, and frequency band D.
  • At least one frequency band combination includes frequency band combination 1, frequency band combination 2, and frequency band combination 3; wherein frequency band combination 1 includes frequency band A and frequency band B. and frequency band C.
  • the frequency band combination includes frequency band B, frequency band C and frequency band D.
  • Frequency band combination 3 includes frequency band A, frequency band B, frequency band C and frequency band D.
  • the fourth indication information implicitly indicates that the radio frequency link of the terminal device supports switching between the three frequency bands included in the frequency band combination 1, and indicates switching between the three frequency bands included in the frequency band combination 2, and also supports switching between the three frequency bands included in the frequency band combination 2. Switch between the four frequency bands included in Band Combination 3. In this way, by reporting the frequency band combination supported by the terminal device to implicitly indicate the switching supported by the radio frequency link of the terminal device on multiple frequency bands, signaling overhead can be effectively saved.
  • the terminal device may support at least one frequency band combination, and the first indication information may indicate at least one switching delay list corresponding to the at least one frequency band combination.
  • the terminal The device may report to the network device through the first indication information the switching delay corresponding to the switching of the radio frequency link of the terminal device between at least two frequency bands included in the frequency band combination.
  • the terminal device when the frequency band combination supported by the terminal device includes two frequency bands, the terminal device can report to the network device in the manner described in Figure 3 that the radio frequency link of the terminal device is in the two frequency bands included in the frequency band combination.
  • the switching delay corresponding to switching between at least three frequency bands In the following, based on the second scenario, two possible implementations will be described in combination with Implementation Mode 2.1 and Implementation Mode 2.2.
  • At least one frequency band combination supported by the terminal device includes the first frequency band combination
  • the first indication information may indicate the handover delay list B1 corresponding to the first frequency band combination
  • the handover delay list B1 includes at least one handover time.
  • the at least one switching delay corresponds to at least one switching type in which the radio frequency link of the terminal device switches between multiple frequency bands included in the first frequency band combination.
  • the first indication information may indicate the switching delay list B1 in a variety of ways.
  • the first indication information may include the identification of frequency bands included in the first frequency band combination and the switching delay list B1, or the first indication information may It may include identification of frequency bands included in the first frequency band combination and a switching delay reference value, and the switching delay in the switching delay list B1 may be determined based on the switching delay reference value.
  • the first indication information may also indicate a switching delay list B2, and the switching delay list B2 includes at least one switching delay, and at least one switching delay.
  • the switching delay may correspond to at least one switching type in which the radio frequency link of the terminal device switches between multiple frequency bands included in the second frequency band combination.
  • the first frequency band combination includes frequency band A, frequency band B, and frequency band C.
  • the radio frequency link switching of the terminal device between the three frequency bands included in the first frequency band combination includes switching type b3, switching type b4, and switching type b5.
  • the switching delay list B1 may include the switching delay 1a corresponding to the switching type b3, the switching delay 2a corresponding to the switching type b4, and the switching delay 3a corresponding to the switching type b5.
  • the second frequency band combination includes frequency band B, frequency band C and frequency band D.
  • the radio frequency link of the terminal device switches between the three frequency bands included in the second frequency band combination including handover type b3, handover type b4 and handover type b5. See the table
  • the switching delay list B2 may include the switching delay 1b corresponding to the switching type b3, the switching delay 2b corresponding to the switching type b4, and the switching delay 3b corresponding to the switching type b5.
  • Table 5 Examples of the second handover delay list and the third handover delay list
  • the switching delay 1a and the switching delay 1b may be the same, or may be different.
  • Handover delay 2a and handover delay 2b may be the same or may be different.
  • Handover delay 3a and handover delay 3b may be the same or may be different.
  • the following describes a possible signaling structure of the first indication information, taking the first indication information indicating switching delay list B1 and the radio frequency link being a Tx radio frequency link as an example.
  • the terminal equipment can separately report the handover delays corresponding to multiple handover types under different frequency band combinations, thereby improving the accuracy of the handover delays reported by the terminal equipment and saving signaling. overhead.
  • the first indication information may indicate the handover delay list C1 corresponding to the first frequency band combination, and the handover delay list C1 includes at least one handover time.
  • the first indication information may indicate the switching delay list C1 in various ways.
  • the first indication information may include the identification of frequency bands included in the first frequency band combination and the switching delay list C1.
  • the first frequency band combination includes frequency band A, frequency band B, and frequency band C.
  • the switching of the radio frequency link of the terminal device between the multiple frequency bands included in the first frequency band combination may include: Among them, with For example, It means that the radio frequency link of the terminal device is switched from frequency band A and frequency band B to frequency band C and from frequency band C to frequency band A and frequency band B.
  • handover delay list C1 may include The corresponding switching delay, The corresponding switching delay, The corresponding switching delay, The corresponding switching delay, The corresponding switching delay, The corresponding switching delay, The corresponding switching delay.
  • the terminal device can report the handover delays corresponding to different handovers respectively, thereby effectively improving the accuracy of the handover delay reported by the terminal device.
  • implementation mode 1 after the terminal device sends the first instruction information to the network device, it can also report to the network device separately (for example, through the third instruction information or the fourth instruction information). Instruction information is reported to the network device) switching supported by the radio frequency link of the terminal device on multiple frequency bands; and in implementation mode 2, since the first indication information can indicate at least one switching delay list corresponding to at least one frequency band combination, therefore, The network device can know at least one frequency band combination supported by the terminal device according to the first indication information, without the terminal device needing to separately report the switching supported by the radio frequency link of the terminal device.
  • the above focuses on describing the differences between different implementation methods. Except for other differences, different implementation methods can refer to each other.
  • S402 The terminal device and the network device communicate based on at least one switching delay among multiple switching delays.
  • the network device can learn the switching delays corresponding to different handover types. For example, the network device can learn that the radio frequency link of the terminal device switches from state 4 to state 4 in Table 2. 5 corresponding switching delay (such as 35us).
  • the radio frequency link of the terminal device is in state 4 in Table 2
  • the network device determines that it needs to switch the radio frequency link of the terminal device from state 4 to state 5 in Table 2, it can send switching information to the terminal device to switch The information is used to indicate that the radio frequency link of the terminal device switches from state 4 to state 5 in Table 2.
  • the network device can wait 35us before communicating with the terminal device. That is to say, the network device can communicate with the terminal device after time point T1+35us, and During the period from T1 to T1+35us, there is no need to communicate with the terminal device.
  • the embodiments of this application mainly take the Tx radio frequency link as an example for description, and the method described in the embodiments of this application can also be applied to the Rx radio frequency link.
  • the terminal equipment and the access network equipment may include corresponding hardware structures and/or software modules that perform each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the terminal equipment and the access network equipment into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Figure 5 shows a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • the device 500 may include: a processing unit 502 and a communication unit 503.
  • the processing unit 502 is used to control and manage the actions of the device 500 .
  • the communication unit 503 is used to support communication between the device 500 and other devices.
  • the communication unit 503 is also called a transceiver unit and may include a receiving unit and/or a sending unit, respectively configured to perform receiving and sending operations.
  • the device 500 may also include a storage unit 501 for storing program codes and/or data of the device 500 .
  • the device 500 may be the terminal device in the above embodiment.
  • the processing unit 502 can support the apparatus 500 to perform the actions of the terminal device in each of the above method examples.
  • the processing unit 502 mainly performs internal actions of the terminal device in the method example, and the communication unit 503 may support communication between the device 500 and other devices.
  • the communication unit 503 is configured to: send first indication information to the network device, where the first indication information indicates at least one switching delay, and the at least one switching delay corresponds to the radio frequency of the terminal device. At least one switching type in which a link switches between multiple frequency bands; further, the terminal device can communicate with the network device based on the at least one switching delay.
  • switching the radio frequency link of the terminal device between multiple frequency bands means that the radio frequency link of the terminal device involves switching of at least three frequency bands before and after the switching.
  • the multiple frequency bands are frequency bands supported by the terminal device; or, the multiple frequency bands are frequency bands included in one of multiple frequency band combinations supported by the terminal device. , wherein each of the plurality of frequency band combinations includes at least two frequency bands among the frequency bands supported by the terminal device.
  • the at least one switching type is determined based on at least one of the following: the frequency band before switching; the frequency band after switching; the number of frequency bands before switching; and the number of frequency bands after switching.
  • the at least one switching type includes one or more of the following: a first switching type, the number of frequency bands before switching corresponding to the first switching type is smaller than the number of frequency bands after switching, And the frequency band before switching and the frequency band after switching are completely different; the second switching type, the number of frequency bands before switching corresponding to the second switching type is greater than the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching Completely different; the third switching type, the number of frequency bands before switching corresponding to the third switching type is equal to the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching are completely different; the fourth switching type, the The number of frequency bands before switching corresponding to the fourth switching type is equal to the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching include at least one same frequency band.
  • the first indication information includes the at least one handover delay; or the first indication information includes an identification of the at least one handover type; or the first indication
  • the information includes a switching delay reference value, the switching delay reference value being used to determine the at least one switching delay.
  • the communication unit 503 is also configured to send second indication information to the network device, where the second indication information includes identifiers of M frequency bands before switching and identifiers of N frequency bands after switching.
  • the first switching delay corresponding to the radio frequency link switching from the M frequency bands to the N frequency bands, M and N are both integers greater than or equal to 1; the radio frequency link switches from the M frequency bands to The switching type corresponding to the N frequency bands belongs to the at least one switching type, and the first switching delay is different from the switching delay corresponding to the switching type.
  • the device 500 may be the network device in the above embodiment.
  • the processing unit 502 can support the apparatus 500 to perform the actions of the network device in each of the above method examples.
  • the processing unit 502 mainly performs internal actions of the network device in the method example, and the communication unit 503 may support communication between the device 500 and other devices.
  • the communication unit 503 is configured to: receive first indication information from the terminal device, the first indication information indicating at least one switching delay, the at least one switching delay corresponding to the terminal device. At least one switching type in which a radio frequency link switches between multiple frequency bands; further, the network device can communicate with the terminal device based on the at least one switching delay.
  • the at least one switching type is determined based on at least one of the following: the frequency band before switching; the frequency band after switching; the number of frequency bands before switching; and the number of frequency bands after switching.
  • the at least one switching type includes one or more of the following: a first switching type, the number of frequency bands before switching corresponding to the first switching type is smaller than the number of frequency bands after switching, And the frequency band before switching and the frequency band after switching are completely different; the second switching type, the number of frequency bands before switching corresponding to the second switching type is greater than the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching Completely different; the third switching type, the number of frequency bands before switching corresponding to the third switching type is equal to the number of frequency bands after switching, and the frequency bands before switching and the frequency bands after switching are completely different; the fourth switching type, the The number of frequency bands before switching corresponding to the fourth switching type is equal to the number of frequency bands after switching, and the frequency band before switching and the frequency band after switching include at least one same frequency band.
  • the first indication information includes the at least one handover delay; or the first indication information includes an identification of the at least one handover type; or the first indication
  • the information includes a switching delay reference value, the switching delay reference value being used to determine the at least one switching delay.
  • the communication unit 503 is also configured to: receive second indication information from the terminal device, where the second indication information includes the identifiers of the M frequency bands before switching, the identifiers of the N frequency bands before switching, The identifier and the first switching delay corresponding to the radio frequency link switching from the M frequency bands to the N frequency bands, M and N are both integers greater than or equal to 1; the radio frequency link switches from the M frequency bands to The switching type corresponding to the frequency band switching to the N frequency bands belongs to the to There is one less switching type, and the first switching delay is different from the switching delay corresponding to the switching type.
  • each unit in the device can be a separate processing element, or it can be integrated and implemented in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, and a certain processing element of the device can call and execute the unit. Function.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software calling through the processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASIC), or one or Multiple microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general central processing unit (CPU), or other processors that can call programs.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above receiving unit is an interface circuit of the device and is used to receive signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit used for sending is an interface circuit of the device and is used to send signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal device can be applied in the communication system shown in Fig. 1 to implement the operations of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 610, a radio frequency part 620, and a signal processing part 630.
  • the antenna 610 is connected to the radio frequency part 620.
  • the radio frequency part 620 receives the information sent by the network device through the antenna 610, and sends the information sent by the network device to the signal processing part 630 for processing.
  • the signal processing part 630 processes the information of the terminal device and sends it to the radio frequency part 620.
  • the radio frequency part 620 processes the information of the terminal device and sends it to the network device through the antenna 610.
  • the signal processing part 630 may include a modulation and demodulation subsystem for processing each communication protocol layer of the data; it may also include a central processing subsystem for processing the operating system and application layer of the terminal device; in addition, it may It includes other subsystems, such as multimedia subsystem, peripheral subsystem, etc.
  • the multimedia subsystem is used to control the camera, screen display, etc. of the terminal device, and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separately configured chip.
  • the modem subsystem may include one or more processing elements 631, including, for example, a host CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 632 and an interface circuit 633.
  • the storage element 632 is used to store data and programs, but the program used to execute the method performed by the terminal device in the above method may not be stored in the storage element 632, but is stored in a memory outside the modem subsystem.
  • the modem subsystem is loaded and used when used.
  • Interface circuit 633 is used to communicate with other subsystems.
  • the modulation and demodulation subsystem can be implemented by a chip, which includes at least one processing element and an interface circuit, wherein the processing element is used to perform various steps of any method performed by the above terminal equipment, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls a program stored in the storage element to Execute the method executed by the terminal device in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method performed by the terminal device in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls from the off-chip storage element or loads the program on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements. These processing elements are provided on the modulation and demodulation subsystem.
  • the processing elements here may be integrated circuits. For example: one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a SOC.
  • the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element calls the stored program of the storage element to implement the above method executed by the terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal device.
  • the method of device execution; or, the above implementation methods can be combined, and the functions of some units are realized in the form of processing components calling programs, and the functions of some units are realized in the form of integrated circuits.
  • the above apparatus for a terminal device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the terminal device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: that is, by calling the program stored in the storage element; or it can also use the second way: that is, by combining the instructions with the integrated logic circuit of the hardware in the processor element. method to perform part or all of the steps performed by the terminal device; of course, the first method and the second method may also be combined to perform part or all of the steps performed by the terminal device.
  • the processing elements here are the same as described above and can be implemented by a processor.
  • the functions of the processing elements can be the same as the functions of the processing unit described in FIG. 5 .
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP , or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be implemented by a memory, and the function of the storage element can be the same as the function of the storage unit described in FIG. 5 .
  • the storage element can be one memory or a collective name for multiple memories.
  • the terminal device shown in Figure 6 can implement various processes involving the terminal device in the above method embodiment.
  • the operations and/or functions of each module in the terminal device shown in Figure 6 are respectively to implement the corresponding processes in the above method embodiment.
  • the access network device 70 may include one or more DUs 701 and one or more CUs 702.
  • the DU 701 may include at least one antenna 7011, at least one radio frequency unit 7012, at least one processor 7013 and at least one memory 7014.
  • the DU 701 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals. and some baseband processing.
  • CU 702 may include at least one processor 7022 and at least one memory 7021.
  • the CU 702 part is mainly used for baseband processing, controlling access network equipment, etc.
  • the DU 701 and the CU 702 can be physically set together or physically separated, that is, a distributed base station.
  • the CU 702 is the control center of the access network equipment, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 702 can be used to control the access network device to perform the operation process of the access network device in the above method embodiment.
  • the access network device 70 may include one or more radio frequency units, one or more DUs and one or more CUs.
  • the DU may include at least one processor 7013 and at least one memory 7014
  • the radio frequency unit may include at least one antenna 7011 and at least one radio frequency unit 7012
  • the CU may include at least one processor 7022 and at least one memory 7021.
  • the CU702 can be composed of one or more single boards. Multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the memory 7021 and processor 7022 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the DU701 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can separately support wireless access networks of different access standards (such as a 5G network).
  • the memory 7014 and processor 7013 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the access network device shown in Figure 7 can implement various processes involving the access network device in the above method embodiment.
  • the operations and/or functions of each module in the access network equipment shown in Figure 7 are respectively intended to implement the corresponding processes in the above method embodiment.
  • system and “network” in the embodiments of this application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • “at least one of A, B, and C” includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the order, timing, priority or importance of multiple objects. degree.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:终端设备向网络设备发送第一指示信息,第一指示信息指示至少一种切换时延,至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;终端设备基于至少一种切换时延与网络设备进行通信。采用上述方法,终端设备可以向网络设备上报至少一种切换时延,从而使得终端设备和网络设备可以基于至少一种切换时延进行通信;进一步地,由于终端设备可以按照切换类型向网络设备上报不同切换类型对应的切换时延,从而能够在实现上报切换时延的同时,有效节省信令开销。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年04月10日提交中国专利局、申请号为202210370561.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
为了满足日益增长的无线传输需求,无线通信系统需要更大的传输带宽来提高无线网络的传输速率。目前,无线通信系统正在从过去的单频段无线通信系统演进为多频段无线通信系统,在多频段无线通信系统中,终端设备可以在多个频段上与网络设备进行通信。
然而,当终端设备的射频链路在多个频段之间切换时,如何实现终端设备和网络设备之间的通信,仍需进一步的研究。
发明内容
本申请提供一种通信方法及装置,用于实现终端设备向网络设备上报射频链路在多个频段之间切换对应的至少一种切换时延,从而使得终端设备和网络设备可以基于至少一种切换时延进行通信。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备或者终端设备中的模块,以该方法应用于终端设备为例,在该方法中,终端设备向网络设备发送第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;进而,终端设备可以基于所述至少一种切换时延,与所述网络设备进行通信。
采用上述方法,终端设备可以向网络设备上报至少一种切换时延,从而使得终端设备和网络设备可以基于至少一种切换时延进行通信。进一步地,由于终端设备可以按照切换类型向网络设备上报不同切换类型对应的切换时延,从而能够在实现上报切换时延的同时,有效节省信令开销。
在一种可能的设计中,所述终端设备的射频链路在多个频段之间切换是指:所述终端设备的射频链路在切换前和切换后涉及至少三个频段的切换。
在一种可能的设计中,所述多个频段为所述终端设备支持的频段;或者,所述多个频段为所述终端设备支持的多个频段组合中的其中一个频段组合所包括的频段,其中,所述多个频段组合中每个频段组合包括所述终端设备支持的频段中的至少三个频段。
在一种可能的设计中,所述至少一种切换类型根据以下至少一项确定:切换前的频段;切换后的频段;切换前的频段个数;切换后的频段个数。
在一种可能的设计中,所述至少一种切换类型包括以下一项或多项:第一切换类型, 所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
在一种可能的设计中,所述第一指示信息包括所述至少一种切换时延;或者,所述第一指示信息包括所述至少一种切换类型的标识;或者,所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延,此种情形下,能够有效节省信令开销。
在一种可能的设计中,所述方法还包括:向所述网络设备发送第二指示信息,所述第二指示信息包括M个频段的标识、N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
采用上述方法,由于终端设备还可以通过第二指示信息向网络设备上报特殊切换对应的切换时延,从而能够有效保证终端设备上报的切换时延的准确性。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备或者网络设备中的模块,以该方法应用于网络设备为例,网络设备接收来自终端设备的第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;进而,网络设备可以基于所述至少一种切换时延,与所述终端设备进行通信。
在一种可能的设计中,所述至少一种切换类型根据以下至少一项确定:切换前的频段;切换后的频段;切换前的频段个数;切换后的频段个数。
在一种可能的设计中,所述至少一种切换类型包括以下一项或多项:第一切换类型,所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
在一种可能的设计中,所述第一指示信息包括所述至少一种切换时延;或者,所述第一指示信息包括所述至少一种切换类型的标识;或者,所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延。
在一种可能的设计中,所述方法还包括:接收来自所述终端设备的第二指示信息,所述第二指示信息包括切换前的M个频段的标识、切换后的N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
可以理解的是,第二方面中的方法与第一方面中的方法相对应,相关技术特征的有益 效果可以参照第一方面中的描述,不再赘述。
第三方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面的功能,比如,所述通信装置包括执行上述第一方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面中任意可能的设计或实现方式中的方法。
第四方面,本申请提供一种通信装置,所述通信装置具备实现上述第二方面涉及的功能,比如,所述通信装置包括执行上述第二方面涉及操作所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送系统信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面和第四方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实 现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请提供一种通信系统,该通信系统可以包括上述第三方面所提供的通信装置和上述第四方面所提供的通信装置。
第六方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第八方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例提供的一种切换类型示意图;
图3为本申请实施例提供的又一种切换类型示意图;
图4为本申请实施例提供的通信方法所对应的流程示意图;
图5为本申请实施例中所涉及的装置的可能的示例性框图;
图6为本申请实施例提供的一种终端设备的结构示意图;
图7为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例适用的一种通信系统示意图。如图1所示,该通信系统可以包括一个或多个网络设备(比如网络设备101)以及一个或多个终端设备(比如终端设备1021、终端设备1022、终端设备1023)。其中,网络设备101与终端设备1021、终端设备1022或终端设备1023之间可以通过空口资源进行通信,以及可选地,不同终端设备之间也可以通过侧行链路(sidelink,SL)资源进行通信。一个网络设备可能支持单一频段,或者也可能支持多个频段,不同网络设备的不同/相同频段的覆盖范围可能不同,具体可以与网络设备的发射功率、部署方式、频段的频率大小等有关。一个终端设备可能被一个或多个网络设备的一个或多个频段覆盖,当为终端设备提供服务的频段有多个时,终端设备可以按照载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)等传输技术中的一种或多种工作。此外,不同终端设备所能同时支持的CA的频段个数可能不同,具体可以与终端设备的射频和基带处理能力等有关。
本申请实施例对通信系统中所包括的网络设备的数量、终端设备的数量不作限定,而且上述通信系统中除了包括网络设备和终端设备以外,还可以包括其它设备或网元,如核心网设备等,对此本申请实施例也不作限定。
本申请实施例涉及到的终端设备又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备可以为基站(base station,BS),BS可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的网络设备可以是下一代节点B(next-generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。CU实现网络设备的部分功能,DU实现网络设备的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
可以理解的是,上述图1所示意的通信系统可以支持各种无线接入技术(radio access technology,RAT),例如图1所示意的通信系统可以为第四代(4th generation,4G)通信系统(也可以称为长期演进(long term evolution,LTE)通信系统),5G通信系统(也可以称为新无线(new radio,NR)通信系统),或者是面向未来的演进系统。本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限 定。
一、射频链路
射频链路可以分为发射(Transmit,Tx)射频链路和接收(Receive,Rx)射频链路。以终端设备为例,终端设备可以包括一个或多个Tx射频链路,进而终端设备可以通过一个或多个Tx射频链路向网络设备发送射频信号;终端设备也可以包括一个或多个Rx射频链路,进而终端设备可以通过一个或多个Rx射频链路接收来自网络设备的射频信号。本申请实施例下文中所涉及的射频链路可以替换为Tx射频链路,或者也可以替换为Rx射频链路。
射频链路也可以称为射频通道或射频模块,或者其它可能的名称,具体不做限定。从物理结构上来看,以Tx射频链路为例,Tx射频链路可以包括上变频器、锁相环、功率放大器、混频器等射频器件的一个或多个。
二、频段
本申请实施例中,频段可以是指一段频率或者说一个频率范围。
示例性地,一个频段可以是指一个载波;或者,一个频段也可以是指第三代合作伙伴计划(3rd generation partnership project,3GPP)协议中划分的一个频带(band),比如n1、n2、n41、n78等。其中,n1、n2、n41、n78等可以理解为频带的标识,每个频带对应一个预设的频率范围,比如n41标识的频带包括2496MHz-2690MHz(此处是以上行的频率范围为例)。
在多频段无线通信系统中,终端设备可以支持多个频段或者说为终端设备提供服务的频段可以有多个,进而终端设备可以在多个频段上与网络设备进行通信。比如,终端设备可以接入一个网络设备,并通过CA技术在多个频段上与网络设备进行通信。又比如,终端设备可以同时接入两个网络设备,并通过DC技术在多个频段上与两个网络设备进行通信。
三、射频链路的状态
从频段的角度来看,一个频段可以对应一个Tx射频链路,或者也可以对应多个Tx射频链路;也就是说,终端设备可以在一个频段上通过一个Tx射频链路向网络设备发送射频信号,或者也可以在一个频段上通过多个Tx射频链路向网络设备发送射频信号。一个频段可以对应一个Rx射频链路,或者也可以对应多个Rx射频链路;也就是说,终端设备可以在一个频段上通过一个Rx射频链路接收来自网络设备的射频信号,或者也可以在一个频段上通过多个Rx射频链路接收来自网络设备的射频信号。
从射频链路的角度来看,一个射频链路(比如Tx射频链路或Rx射频链路)可以在不同时间工作在不同频段上。
以Tx射频链路为例(Rx射频链路可以参照处理),终端设备可以包括一个或多个Tx射频链路。以终端设备包括两个Tx射频链路为例,终端设备的Tx射频链路可以有多种可能的状态。下面结合情形1至情形3对终端设备的Tx射频链路的一些可能的状态进行描述。
(1)情形1
当终端设备支持两个频段(比如两个频段分别为频段A和频段B)时,此种情形下,终端设备的Tx射频链路个数等于终端设备支持的频段个数,终端设备的Tx射频链路可以包括如表1所示意的三种状态。
表1:终端设备的Tx射频链路的状态
表1中,状态1是指两个射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段B。状态2是指两个Tx射频链路都工作在频段B。状态3是指两个Tx射频链路都工作在频段A。
(2)情形2
当终端设备支持三个频段(比如三个频段分别为频段A、频段B和频段C)时,此种情形下,终端设备的Tx射频链路个数小于终端设备支持的频段个数,终端设备的Tx射频链路可以包括如表2所示的六种状态。
表2:终端设备的Tx射频链路的状态
表2中,状态1是指两个Tx射频链路都工作在频段A。状态2是指两个Tx射频链路都工作在频段B。状态3是指两个Tx射频链路都工作在频段C。状态4是指两个Tx射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段B。状态5是指两个Tx射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段C。状态6是指两个Tx射频链路中的一个Tx射频链路工作在频段B,另一个Tx射频链路工作在频段C。
(3)情形3
当终端设备支持四个频段(比如四个频段分别为频段A、频段B、频段C和频段D)时,此种情形下,终端设备的Tx射频链路个数小于终端设备支持的频段个数,终端设备的Tx射频链路可以包括如表3所示的十种状态。
表3:终端设备的Tx射频链路的状态
表3中,状态1是指两个Tx射频链路都工作在频段A。状态2是指两个Tx射频链路 都工作在频段B。状态3是指两个Tx射频链路都工作在频段C。状态4是指两个Tx射频链路都工作在频段D。状态5是指两个Tx射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段B。状态6是指两个Tx射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段C。状态7是指两个Tx射频链路中的一个Tx射频链路工作在频段A,另一个Tx射频链路工作在频段D。状态8是指两个Tx射频链路中的一个Tx射频链路工作在频段B,另一个Tx射频链路工作在频段C。状态9是指两个Tx射频链路中的一个Tx射频链路工作在频段B,另一个Tx射频链路工作在频段D。状态10是指两个Tx射频链路中的一个Tx射频链路工作在频段C,另一个Tx射频链路工作在频段D。
可以理解的是,上述表1、表2和表3中示意出了终端设备的Tx射频链路的一些可能的状态;具体实施中,以表1为例,终端设备的Tx射频链路可以支持表1中的3种状态,或者也可以支持3种状态中的部分状态,比如终端设备可能支持3种状态中的状态1和状态2,而不支持状态3,具体不做限定。上述是以终端设备的Tx射频链路个数等于或小于终端设备支持的频段个数为例进行描述的,在其它可能的情形中,终端设备的Tx射频链路个数也可以大于终端设备支持的频段个数,此种情形可以参照上述情形1至情形3的描述。
在多频段无线通信系统中,目前引入了射频链路(比如Tx射频链路)切换技术,即终端设备的Tx射频链路可以在终端设备支持的多个频段之间切换。比如,当终端设备支持的频段包括三个频段时,终端设备的Tx射频链路可以在三个频段之间切换(比如在表2所示意的六种状态之间切换)。又比如,当终端设备支持的频段包括四个频段时,终端设备的Tx射频链路可以在四个频段之间切换(比如在表3所示意的十种状态之间切换)。如此,通过Tx射频链路在多个频段之间切换,使得终端设备可以在多个频段上与网络设备进行通信。
四、频段组合
基于终端设备的射频链路的切换,本申请实施例引入频段组合,终端设备可以支持至少一个频段组合,至少一个频段组合中的每个频段组合可以包括终端设备支持的多个频段中的至少两个频段。
(1)当终端设备支持的频段组合包括两个频段时,若终端设备的射频链路在切换前和切换后所涉及的频段包括这两个频段,则可以认为终端设备的射频链路是在该频段组合所包括的两个频段之间切换。其中,终端设备的射频链路在切换前和切换后所涉及的频段可以是指,终端设备的射频链路切换前的频段和切换后的频段的并集。
比如,频段组合包括频段A和频段B,则终端设备的射频链路在该频段组合所包括的两个频段之间切换,可以包括:终端设备的射频链路在表1中的状态2和状态3之间切换,或者终端设备的射频链路在表2中的状态1和状态2之间切换。
又比如,频段组合包括频段A和频段C,则终端设备的射频链路在该频段组合所包括的两个频段之间切换,可以包括:终端设备的射频链路在表2中的状态1和状态3之间切换,或者终端设备的射频链路在表3中的状态1和状态3之间切换。
(2)当终端设备支持的频段组合包括三个频段时,若终端设备的射频链路在切换前和切换后所涉及的频段包括这三个频段,则可以认为终端设备的射频链路是在该频段组合所包括的三个频段之间切换。
比如,频段组合包括频段A、频段B和频段C,则终端设备的射频链路在该频段组合所包括的三个频段之间切换,可以包括:终端设备的射频链路在表2中的状态4、状态5和状态6中的任意两种状态之间切换,或者终端设备的射频链路在表3中的状态5、状态6和状态8中的任意两种状态之间切换。
又比如,频段组合包括频段A、频段B和频段D,则终端设备的射频链路在该频段组合所包括的三个频段之间切换,可以包括:终端设备的射频链路在表3中的状态5、状态7和状态9中的任意两种状态之间切换。
(3)当终端设备支持的频段组合包括四个频段时,若终端设备的射频链路在切换前和切换后所涉及的频段包括这四个频段,则可以认为终端设备的射频链路是在该频段组合所包括的四个频段之间切换。
比如,频段组合包括频段A、频段B、频段C和频段D,则终端设备的射频链路在该频段组合所包括的四个频段之间切换,可以包括:终端设备的射频链路在表3中的状态5和状态10之间切换。
五、切换类型
终端设备的射频链路在多个频段之间切换可以有多种切换类型,多种切换类型可以根据多种可能的划分规则得到。其中,多个频段可以为终端设备支持的频段(比如多个频段可以是指终端设备支持的所有频段),或者多个频段也可以为终端设备支持的某一个频段组合所包括的频段。作为一种可能的划分规则,多种切换类型可以根据以下至少一项确定:切换前的频段;切换后的频段;切换前的频段个数;切换后的频段个数。基于该划分规则,下面结合划分方式1和划分方式2描述两种可能的划分方式。
划分方式1
在划分方式1中,可以根据切换前的频段、切换后的频段、切换前的频段个数和切换后的频段个数,将终端设备的射频链路在多个频段之间的切换划分为如下切换类型a1至切换类型a6。
(1)切换类型a1
切换类型a1对应的切换前的频段个数小于切换后的频段个数;切换类型a1对应的切换前的频段和切换后的频段完全不同。其中,切换前的频段和切换后的频段完全不同,可以理解为,切换前的频段和切换后的频段的交集为空(即没有交集)。
比如,切换类型a1对应的切换前的频段个数为1,切换后的频段个数为2,参见图2所示。切换类型a1所包括的一种可能的切换为:终端设备的射频链路从频段A切换至频段B和频段C(比如从表2中的状态1切换至状态6)。
(2)切换类型a2
切换类型a2对应的切换前的频段个数小于切换后的频段个数;切换类型a2对应的切换前的频段和切换后的频段包括至少一个相同的频段。其中,切换前的频段和切换后的频段包括至少一个相同的频段,可以理解为,切换前的频段和切换后的频段有部分重叠或者有交集。
比如,切换类型a2对应的切换前的频段个数为1,切换后的频段个数为2。参见图2所示,切换类型a2所包括的一种可能的切换为:终端设备的射频链路从频段A切换至频段A和频段B(比如从表1中的状态3切换至状态1)。
(3)切换类型a3
切换类型a3对应的切换前的频段个数大于切换后的频段个数;切换类型a3对应的切换前的频段和切换后的频段完全不同。
比如,切换类型a3对应的切换前的频段个数为2,切换后的频段个数为1。参见图2所示,切换类型a3所包括的一种可能的切换为:终端设备的射频链路从频段A和频段B切换至频段C(比如从表2中的状态4切换至状态3)。
(4)切换类型a4
切换类型a4对应的切换前的频段个数大于切换后的频段个数;切换类型a4对应的切换前的频段和切换后的频段包括至少一个相同的频段。
比如,切换类型a4对应的切换前的频段个数为2,切换后的频段个数为1。参见图所示,切换类型a4所包括的一种可能的切换为:终端设备的射频链路从频段A和频段B切换至频段A(比如从表1中的状态1切换至状态3)。
(5)切换类型a5
切换类型a5对应的切换前的频段个数等于切换后的频段个数;切换类型a5对应的切换前的频段和切换后的频段包括至少一个相同的频段。
比如,切换前的频段个数为2,切换后的频段个数为2。参见图2所示,切换类型a5所包括的一种可能的切换为:终端设备的射频链路从频段A和频段B切换至频段A和频段C(比如从表2中的状态4切换至状态5)。
(6)切换类型a6
切换类型a6对应的切换前的频段个数等于切换后的频段个数;切换类型a6对应的切换前的频段和切换后的频段完全不同。
比如,切换前的频段个数为2,切换后的频段个数为2。参见图2所示,切换类型a6所包括的一种可能的切换为:终端设备的射频链路从频段A和频段B切换至频段C和频段D(比如从表3中的状态5切换至状态10)。
又比如,切换前的频段个数为1,切换后的频段个数为1,切换类型a6所包括的又一种可能的切换为:终端设备的射频链路从频段A切换至频段B(比如从表中的状态2切换至状态3)。
划分方式2
在划分方式2中,可以先根据终端设备的射频链路在切换前和切换后所涉及的频段个数,划分为两种情形,其中一种情形为切换前和切换后涉及两个频段,另一种情形为切换前和切换后涉及至少三个频段。
进一步地,针对于切换前和切换后涉及两个频段的情形,可以进一步根据切换前的频段、切换后的频段、切换前的频段个数和切换后的频段个数,将终端设备的射频链路在多个频段之间的切换划分为如下切换类型b1和切换类型b2。
(1)切换类型b1
切换类型b1对应的切换前的频段个数为2,切换后的频段个数为1,或者切换前的频段个数为1,切换后的频段个数为2。切换类型b1对应的切换前的频段和切换后的频段包括至少一个相同的频段。比如,参见图3所示,切换类型b1所包括的一种可能的切换为:终端设备的射频链路从频段A和频段B切换至频段A。
(2)切换类型b2
切换类型b2对应的切换前的频段个数为1,切换后的频段个数为1。切换类型b2对 应的切换前的频段和切换后的频段完全不同。比如,参见图3所示,切换类型b2所包括的一种可能的切换为:终端设备的射频链路从频段A切换至频段B。
针对于切换前和切换后涉及至少三个频段的情形,可以进一步根据切换前的频段、切换后的频段、切换前的频段个数和切换后的频段个数,将终端设备的射频链路在多个频段之间的切换划分为如下切换类型b3至切换类型b6。
(3)切换类型b3
切换类型b3对应的切换前的频段个数小于切换后的频段个数,切换类型b1对应的切换前的频段和切换后的频段完全不同。比如,切换类型a1对应的切换前的频段个数为1,切换后的频段个数为2,具体可以参照切换类型a1。
(4)切换类型b4
切换类型b4对应的切换前的频段个数大于切换后的频段个数,切换类型b4对应的切换前的频段和切换后的频段完全不同。比如,切换类型a1对应的切换前的频段个数为2,切换后的频段个数为1,具体可以参照切换类型a3。
(5)切换类型b5
切换类型b5对应的切换前的频段个数等于切换后的频段个数,切换类型b5对应的切换前的频段和切换后的频段包括至少一个相同的频段。比如,切换类型a1对应的切换前的频段个数为2,切换后的频段个数为2,具体可以参照切换类型a5。
(6)切换类型b6
切换类型b6对应的切换前的频段个数等于切换后的频段个数,切换类型b6对应的切换前的频段和切换后的频段完全不同。比如,切换类型b6对应的切换前的频段个数为2,切换后的频段个数为2,具体可以参照切换类型a6(切换类型b6和切换类型a6的区别在于,切换类型b6对应的切换前的频段个数和切换后的频段个数大于2)。
基于上述划分方式1或划分方式2,以划分方式2为例,当终端设备支持两个频段时,终端设备的射频链路在终端设备支持的两个频段之间切换共有两种切换类型,分别为切换类型b1和切换类型b2。当终端设备支持三个频段时,终端设备的射频链路在终端设备支持的三个频段之间切换(比如表2所示意的六种状态之间切换)共可以有五种切换类型,分别为切换类型b1至切换类型b5。当终端设备支持四个频段时,终端设备的射频链路在终端设备支持的四个频段之间切换(比如表3所示意的十种状态之间切换)共可以有六种切换类型,分别为切换类型b1至切换类型b6。
基于上述划分方式1或划分方式2,以划分方式2为例,当终端设备支持的频段组合包括两个频段时,终端设备的射频链路在该频段组合所包括的两个频段之间切换共可以有两种切换类型,分别为切换类型b1和切换类型b2。当终端设备支持的频段组合包括三个频段时,终端设备的射频链路在该频段组合所包括的三个频段之间切换共可以有三种切换类型,分别为切换类型b3、切换类型b4和切换类型b5。当终端设备支持的频段组合包括四个频段时,终端设备的射频链路在该频段组合所包括的三个频段之间切换可以有一种切换类型,即为切换类型b6。
根据上述相关技术特征的描述可知,终端设备的射频链路(比如Tx射频链路或Rx射频链路)可以在多个频段之间切换。然而,由于将终端设备的一个射频链路从一个频段切换至另一个频段,需要重新配置该射频链路上的一个或多个射频器件的参数。在射频器件 参数进行重新配置期间,终端设备无法进行射频信号的发送或接收。因此,当终端设备的射频链路在不同频段之间切换时,如果网络设备在切换所导致的切换时延内与终端设备进行通信(比如网络设备在切换时延内调度终端设备的上行传输或者向终端设备发送下行数据),则由于终端设备在切换时延内无法进行射频信号的发送或接收,从而会导致通信失败。
为解决这一问题,本申请实施例提供的一种可能的思路为,终端设备将终端设备的射频链路在不同频段之间切换对应的切换时延上报给网络设备,网络设备可以根据切换时延,在射频链路切换完成后再与终端设备通信,从而能够实现终端设备与网络设备之间的正常通信。图4为本申请实施例提供的通信方法所对应的流程示意图。如图4所示,该流程可以包括:
S401,终端设备向网络设备发送第一指示信息,第一指示信息指示至少一种切换时延。
此处,终端设备向网络设备发送第一指示信息的方式可以有多种,比如终端设备可以通过RRC消息向网络设备发送第一指示信息。
下面结合实现方式1和实现方式2,对上述S401的一些可能的实现进行介绍。
一、实现方式1
在实现方式1中,第一指示信息指示的至少一种切换时延可以对应终端设备的射频链路在终端设备支持的多个频段之间切换的至少一种切换类型。比如,以Tx射频链路为例,至少一种切换类型比如可以包括前文所描述的切换类型a1至切换类型a6中的至少一种切换类型,或者至少一种切换类型比如可以包括前文所描述的切换类型b1至切换类型b6中的至少一种切换类型。
当终端设备支持多个频段时,比如终端设备支持四个频段,终端设备的射频链路可能支持在四个频段所对应的所有状态(比如表3所示意的十种状态)之间切换;或者,终端设备的射频链路也可能仅支持在四个频段所对应的部分状态(比如表3所示意的十种状态中的部分状态)之间切换。下面以终端设备支持四个频段且终端设备的射频链路支持在四个频段所对应的所有状态之间切换为例,结合实现方式1.1和实现方式1.2描述两种可能的实现。
实现方式1.1
由于终端设备的射频链路在终端设备支持的四个频段之间切换共有六种切换类型,比如六种切换类型分别为切换类型a1至切换类型a6(按照划分方式1划分切换类型)或者切换类型b1至切换类型b6(按照划分方式2划分切换类型),因此,终端设备可以向网络设备发送第一指示信息,第一指示信息指示六种切换类型对应的六种切换时延。
作为一种可能的实现,切换类型对应的切换时延可以是终端设备根据切换类型所包括的不同切换的实际切换时延确定的。由于终端设备的射频链路在不同频段之间切换对应的切换时延可能与多种因素(比如切换的具体实现、切换前的频段、切换后的频段)有关,因此,同一切换类型所包括的不同切换的实际切换时延可能并不完全相同。比如,切换类型b1包括假设对应的切换时延为t1,对应的切换时延为t2,当t1≥t2时,终端设备可以确定切换类型b1对应的切换时延为t1,或者终端设备也可以确定切换类型b1对应的切换时延为t3(t3大于t1)。其中,以为例,表示终端设备的射频链路从频段A和频段B切换至频段A以及从频段A切换至频段A和频段B。
在一个示例中,第一指示信息可以包括切换时延列表A1,切换时延列表A1包括六种切换类型对应的六种切换时延。比如以六种切换类型为切换类型b1至切换类型b6为例,参见表4所示,切换时延列表A1可以包括切换类型b1对应的切换时延1、切换类型b2对应的切换时延2、切换类型b3对应的切换时延3、切换类型b4对应的切换时延4、切换类型b5对应的切换时延5、切换类型b6对应的切换时延6。
表4:切换时延列表A1示例
举个例子,终端设备支持的四个频段包括频段A、频段B、频段C和频段D。由于等切换对应的切换类型均为切换类型b1,因此,等切换的切换时延均可以为切换时延1。
采用该示例,由于第一指示信息可以包括六种切换类型对应的六种切换时延,从而使得网络设备可以直接获取到不同切换来类型对应的切换时延,实现较为简便。
在又一个示例中,第一指示信息也可以包括切换时延参考值,进而网络设备可以根据切换时延参考值确定六种切换类型对应的六种切换时延,切换时延参考值也可以称为切换时延基数或者其它名称。其中,网络设备可以根据切换时延参考值确定六种切换时延的方式可以有多种,在一种可能的实现方式中,可以通过协议预先定义六种切换时延中的每种切换时延与切换时延参考值的对应关系,进而网络设备可以根据切换时延参考值以及协议定义的对应关系,确定出六种切换时延。比如,可以通过协议预先定义:切换时延1=x1*切换时延参考值,切换时延2=x2*切换时延参考值,切换时延3=x3*切换时延参考值,切换时延4=x4*切换时延参考值,切换时延5=x5*切换时延参考值,切换时延6=x6*切换时延参考值;其中,x1、x2、x3、x4、x5、x6可以为正整数。
采用该示例,由于第一指示信息可以包括切换时延参考值,而无需包括六种切换时延,从而能够有效节省信令开销。
在又一个示例中,以划分方式2为例,第一指示信息也可以包括终端设备支持的至少一种切换类型的标识。此种情形下,可以通过协议预先定义六种切换类型对应的切换时延,进而当终端设备向网络设备发送第一指示信息后,网络设备可以获知终端设备支持的至少一种切换类型,以及至少一种切换类型对应的切换时延。
在实现方式1.1中,通过将终端设备的射频链路支持的切换划分为多种切换类型,并向网络设备上报不同切换类型对应的切换时延,从而能够在实现上报切换时延的同时,有效节省信令开销。
实现方式1.2
在实现方式1.2中,针对于终端设备的射频链路在切换前和切换后涉及两个频段的情形和终端设备的射频链路在切换前和切换后涉及至少三个频段的情形可以采用不同的方 式。
(1)终端设备的射频链路在切换前和切换后涉及两个频段
当终端设备的射频链路在切换前和切换后涉及两个频段时,终端设备可以向网络设备发送至少一个频段组合的参数,至少一个频段组合中的每个频段组合包括两个频段,每个频段组合的参数包括终端设备的射频链路在该频段组合所包括的两个频段之间切换所对应的切换时延(即切换类型b1对应的切换时延和切换类型b2对应的切换时延)。
比如,至少一个频段组合包括频段组合1,频段组合1包括频段A和频段B。以频段组合1为例,终端设备向网络设备上报的频段组合1的参数可以包括{X1,X2,X3,X4}。其中,X1表示频段A的标识,X2表示频段B的标识,X3表示切换类型b1对应的切换时延(比如35us),其中,切换类型b1可以包括终端设备的射频链路在状态1与状态2之间的切换或者在状态1与状态3之间的切换,X4表示切换类型b2对应的切换时延(比如140us),其中,切换类型b2可以包括终端设备的射频链路在状态2与状态3之间的切换。
可以理解的是,如果终端设备的射频链路不支持切换类型b2(即不支持在表1中的状态2与状态3之间切换),则X4的取值可以为空。
(2)终端设备的射频链路在切换前和切换后涉及至少三个频段
当终端设备的射频链路在切换前和切换后涉及至少三个频段时,由于终端设备的射频链路在终端设备支持的多个频段(此处以四个频段为例)四个频段之间切换共有四种切换类型(即切换类型b3至切换类型b6),因此,终端设备可以向网络设备发送第一指示信息,第一指示信息指示四种切换类型对应的四种切换时延。
在一个示例中,第一指示信息可以包括切换时延列表A2,切换时延列表A2包括四种切换类型对应的四种切换时延,比如切换时延列表A2可以包括切换类型b3对应的切换时延1、切换类型b4对应的切换时延3、切换类型b5对应的切换时延5、切换类型b6对应的切换时延6。在又一个示例中,第一指示信息也可以包括切换时延参考值,进而网络设备可以根据切换时延参考值确定四种切换类型对应的四种切换时延。具体实现可以参照实现方式1.1中的描述。
在实现方式1.2中,针对于终端设备的射频链路在切换前和切换后涉及的频段个数的不同,可以采用不同的上报方式,从而能够提高上报切换时延的灵活性。进一步地,当终端设备的射频链路在切换前和切换后涉及两个频段时,可以针对不同频段组合,分别上报不同频段组合下两种切换类型对应的切换时延,从而能够提高上报的切换时延的准确性。当终端设备的射频链路在切换前和切换后涉及至少三个频段时,可以上报不同切换类型对应的切换时延,从而能够有效节省信令开销。
可选地,在实现方式1.1或实现方式1.2中,终端设备还可以向网络设备发送其它可能的信息,比如终端设备还可以向网络设备发送第二指示信息;又比如,终端设备还可以向网络设备发送第三指示信息或第四指示信息。其中,第一指示信息至第四指示信息可以承载于同一条消息(比如RRC消息),或者也可以承载于不同消息,具体不做限定。此外,当第一指示信息至第四指示信息承载于不同消息时,本申请实施例对终端设备发送不同消息的先后顺序不做限定。
下面对第二指示信息进行介绍。
作为一种可能的实现,第二指示信息包括M个频段的标识、N个频段的标识和终端设备的射频链路从M个频段切换至N个频段对应的第一切换时延,M个频段和N个频段均 属于终端设备支持的多个频段,M、N均为大于或等于1的整数。其中,终端设备的射频链路从M个频段切换至N个频段对应的切换类型属于至少一种切换类型(在实现方式1.1中,至少一种切换类型可以包括切换类型a1至切换类型a6或者切换类型b1至切换类型b6;在实现方式1.2中,至少一种切换类型可以包括切换类型b3至切换类型b6)。举个例子,M个频段包括频段A和频段B,N个频段包括频段C和频段D,终端设备的射频链路从M个频段切换至N个频段对应的切换类型为切换类型b6,第一切换时延不同于b6切换类型对应的切换时延。
也就是说,通常情况下,当终端设备的射频链路所执行的切换对应的切换类型为切换类型b6(此处是以切换类型b6为例)时,终端设备的射频链路所执行的切换对应的切换时延即为切换类型b6对应的切换时延。但也可能存在一些特殊切换,特殊切换对应的切换时延不适用特殊切换所属的切换类型对应的切换时延,因此,终端设备可以通过第二指示信息向网络设备单独上报各个特殊切换对应的切换时延。比如,一种可能的特殊切换为:终端设备的射频链路从M个频段切换至N个频段,终端设备的射频链路从M个频段切换至N个频段对应的切换类型为切换类型b6,但终端设备的射频链路从M个频段切换至N个频段对应的切换时延不同于切换类型b6对应的切换时延,此种情况下,终端设备可以向网络设备发送第二指示信息,第二指示信息指示该特殊切换对应的切换时延。
其中,终端设备确定某一切换是否为特殊切换的实现可以有多种。比如,以切换类型b6为例,切换类型b6包括切换1、切换2、切换3和切换4,其中,切换1对应的切换时延为35us,切换1对应的切换时延为70us,切换3对应的切换时延为50us,切换4对应的切换时延为140us,由于切换4对应的切换时延与其它三种切换对应的切换时延的相差较大,因此,终端设备可以确定切换类型b6对应的切换时延为70us,切换4为特殊切换,并单独上报切换4对应的切换时延。
采用该种方式,能够有效提高终端设备上报的切换时延的准确性,避免终端设备上报的切换类型对应的切换时延较大而导致网络设备与终端设备之间的传输资源的浪费;比如,如果终端设备不将切换4作为特殊切换,而是上报切换类型b6对应的切换时延为140us,当终端设备的射频链路执行切换1时,实际切换时延为35us,但网络设备却需要等待140us才与终端设备进行通信,从而会造成传输资源的浪费。
可以理解的是,上述是以第二指示信息指示终端设备的射频链路从M个频段切换至N个频段对应的切换时延为例,当存在其它特殊切换时,第二指示信息还可以指示其它特殊切换对应的切换时延。也就是说,第二指示信息可以指示至少一种特殊切换对应的切换时延。示例性地,为便于节省信令开销,以Tx射频链路为例,第二指示信息所指示的特殊切换的数量可以小于或等于maxULTxSwitchingSpecialBandEntries,maxULTxSwitchingSpecialBandEntries为正整数。其中,maxULTxSwitchingSpecialBandEntries的取值可以为网络设备和终端设备预先约定的,或者也可以是协议定义的,具体不做限定。
此处以实现方式1.2以及射频链路为Tx射频链路为例,描述第一指示信息和第二指示信息的两种可能的信令结构。
第一种可能的信令结构:

第二种可能的信令结构:

下面对第三指示信息和第四指示信息进行介绍。
作为一种可能的实现,在实现方式1.1或实现方式1.2中,终端设备还可以向网络设备上报终端设备的射频链路在多个频段上支持的切换,从而使得网络设备后续可以根据终端设备的射频链路在多个频段上支持的切换,来指示终端设备的射频链路执行相应的切换。下面结合示例1和示例2描述两种可能的上报方式。
示例1,终端设备可以向网络设备发送第三指示信息,第三指示信息指示终端设备支持的多个频段,比如第三指示信息包括终端设备支持的多个频段的标识。此种情形下,第三指示信息可以隐式指示终端设备的射频链路支持在多个频段所对应的所有状态之间切换。如此,通过上报终端设备支持的多个频段,来隐式指示终端设备的射频链路在多个频段上支持的切换,能够有效节省信令开销。比如,终端设备支持的多个频段包括频段A、频段B、频段C、频段D,则终端设备的射频链路支持在四个频段所对应的十种状态之间切换。
示例2,终端设备可以向网络设备发送第三指示信息和第四指示信息,第三指示信息指示终端设备支持的多个频段,第四指示信息指示终端设备支持的至少一个频段组合,比如第四指示信息可以包括至少一个频段组合中每个频段组合所包括的频段的标识。可以理解的是,针对于实现方式1.1,第四指示信息所指示的至少一个频段组合中的每个频段组合可以包括至少两个频段;针对于实现方式1.2,第四指示信息所指示的至少一个频段组合中的每个频段组合可以包括至少三个频段。
以实现方式1.2为例,至少一个频段组合中的每个频段组合可以包括终端设备支持的多个频段中的至少三个频段。比如,终端设备支持的多个频段包括频段A、频段B、频段C、频段D,至少一个频段组合包括频段组合1、频段组合2和频段组合3;其中,频段组合1包括频段A、频段B和频段C,频段组合包括频段B、频段C和频段D,频段组合3包括频段A、频段B、频段C和频段D。此种情形下,第四指示信息隐式指示终端设备的射频链路支持在频段组合1包括的三个频段之间切换,以及指示在频段组合2包括的三个频段之间切换,以及还支持在频段组合3包括的四个频段之间切换。如此,通过上报终端设备支持的频段组合来隐式指示终端设备的射频链路在多个频段上支持的切换,能够有效节省信令开销。
二、实现方式2
终端设备可以支持至少一个频段组合,第一指示信息可以指示至少一个频段组合对应的至少一个切换时延列表。
示例性地,在第一种情形中,当终端设备支持的频段组合包括至少两个频段时,终端 设备可以通过第一指示信息向网络设备上报终端设备的射频链路在该频段组合所包括的至少两个频段之间切换所对应的切换时延。在第二种情形中,当终端设备支持的频段组合包括两个频段时,终端设备可以通过图3所描述的方式向网络设备上报终端设备的射频链路在该频段组合所包括的两个频段之间切换所对应的切换时延;而当终端设备支持的频段组合包括至少三个频段时,终端设备可以通过第一指示信息向网络设备上报终端设备的射频链路在该频段组合所包括的至少三个频段之间切换所对应的切换时延。下文中,将基于第二种情形,结合实现方式2.1和实现方式2.2描述两种可能的实现。
实现方式2.1
在实现方式2.1中,终端设备支持的至少一个频段组合包括第一频段组合,则第一指示信息可以指示第一频段组合对应的切换时延列表B1,切换时延列表B1包括至少一种切换时延,至少一种切换时延对应终端设备的射频链路在第一频段组合所包括的多个频段之间切换的至少一种切换类型。示例性地,第一指示信息指示切换时延列表B1的方式可以有多种,比如第一指示信息可以包括第一频段组合所包括的频段的标识和切换时延列表B1,或者第一指示信息可以包括第一频段组合所包括的频段的标识和切换时延参考值,切换时延列表B1中切换时延可以根据切换时延参考值确定。
可选地,如果至少一个频段组合还包括其它频段组合,比如第二频段组合,则第一指示信息还可以指示切换时延列表B2,切换时延列表B2包括至少一种切换时延,至少一种切换时延可以对应终端设备的射频链路在第二频段组合所包括的多个频段之间切换的至少一种切换类型。
举个例子,第一频段组合包括频段A、频段B和频段C,终端设备的射频链路在第一频段组合所包括的三个频段之间切换包括切换类型b3、切换类型b4和切换类型b5,则参见表5所示,切换时延列表B1可以包括切换类型b3对应的切换时延1a、切换类型b4对应的切换时延2a、切换类型b5对应的切换时延3a。第二频段组合包括频段B、频段C和频段D,终端设备的射频链路在第二频段组合所包括的三个频段之间切换包括切换类型b3、切换类型b4和切换类型b5,则参见表5所示,切换时延列表B2可以包括切换类型b3对应的切换时延1b、切换类型b4对应的切换时延2b、切换类型b5对应的切换时延3b。
表5:第二切换时延列表和第三切换时延列表示例
其中,切换时延1a和切换时延1b可能相同,或者也可能不同。切换时延2a和切换时延2b可能相同,或者也可能不同。切换时延3a和切换时延3b可能相同,或者也可能不同。
下面以第一指示信息指示切换时延列表B1以及射频链路为Tx射频链路为例,描述第一指示信息的一种可能的信令结构。

在实现方式2.1中,终端设备可以针对不同频段组合,分别上报不同频段组合下多种切换类型对应的切换时延,从而能够在提高终端设备上报的切换时延的准确性的同时,节省信令开销。
实现方式2.2
在实现方式2.2中,终端设备支持的至少一个频段组合包括第一频段组合,则第一指示信息可以指示第一频段组合对应的切换时延列表C1,切换时延列表C1包括至少一种切换时延,至少一种切换时延对应终端设备的射频链路在第一频段组合所包括的多个频段之间的切换。示例性地,第一指示信息指示切换时延列表C1的方式可以有多种,比如第一指示信息可以包括第一频段组合所包括的频段的标识和切换时延列表C1。
举个例子,第一频段组合包括频段A、频段B和频段C,终端设备的射频链路在第一频段组合所包括的多个频段之间的切换可以包括: 其中,以为例,表示终端设备的射频链路从频段A和频段B切换至频段C以及从频段C切换至频段A和频段B。当终端设备的射频链路支持 等切换时,切换时延列表C1可以包括对应的切换时延、对应的切换时延、对应的切换时延、对应的切换时延、对应的切换时延、对应的切换时延。
在实现方式2.2中,终端设备可以针对不同切换,分别上报不同切换对应的切换时延,从而能够有效提高终端设备上报的切换时延的准确性。
针对于上述实现方式1和实现方式2,可以理解的是:实现方式1中,终端设备向网络设备发送第一指示信息后,还可以单独向网络设备上报(比如通过第三指示信息或第四指示信息向网络设备上报)终端设备的射频链路在多个频段上支持的切换;而实现方式2中,由于第一指示信息可以指示至少一个频段组合对应的至少一个切换时延列表,因此,网络设备根据第一指示信息可以知晓终端设备支持的至少一个频段组合,无需终端设备单独上报终端设备的射频链路支持的切换。此外,上述侧重描述了不同实现方式之间的差异之处,除差异之处的其它内容,不同实现方式之间可以相互参照。
S402,终端设备和网络设备基于多种切换时延中的至少一种切换时延进行通信。
示例性地,网络设备接收到终端设备发送的第一指示信息后,可以获知不同切换类型对应的切换时延,比如网络设备可以获知终端设备的射频链路从表2中的状态4切换至状态5对应的切换时延(比如35us)。当终端设备的射频链路处于表2中的状态4时,如果网络设备确定需要将终端设备的射频链路从表2中的状态4切换至状态5,则可以向终端设备发送切换信息,切换信息用于指示终端设备的射频链路从表2中的状态4切换至状态5。比如,网络设备在时间点T1向终端设备发送切换信息,则网络设备可以等待35us以后再与终端设备进行通信,也就是说,网络设备可以在时间点T1+35us之后与终端设备进行通信,而在T1至T1+35us这段时间内,可以不与终端设备进行通信。
可以理解的是,本申请实施例中主要是以Tx射频链路为例进行描述,本申请实施例中所描述的方法也可以同样适用于Rx射频链路。
上述主要从通信装置交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,终端设备和接入网设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和接入网设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图5示出了本申请实施例中所涉及的装置的可能的示例性框图。如图5所示,装置500可以包括:处理单元502和通信单元503。处理单元502用于对装置500的动作进行控制管理。通信单元503用于支持装置500与其他设备的通信。可选地,通信单元503也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置500还可以包括存储单元501,用于存储装置500的程序代码和/或数据。
该装置500可以为上述实施例中的终端设备。处理单元502可以支持装置500执行上文中各方法示例中终端设备的动作。或者,处理单元502主要执行方法示例中终端设备的内部动作,通信单元503可以支持装置500与其它设备之间的通信。
比如,在一个实施例中,通信单元503用于:向网络设备发送第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;进而,终端设备可以基于所述至少一种切换时延,与所述网络设备进行通信。
在一种可能的设计中,所述终端设备的射频链路在多个频段之间切换是指:所述终端设备的射频链路在切换前和切换后涉及至少三个频段的切换。
在一种可能的设计中,所述多个频段为所述终端设备支持的频段;或者,所述多个频段为所述终端设备支持的多个频段组合中的其中一个频段组合所包括的频段,其中,所述多个频段组合中每个频段组合包括所述终端设备支持的频段中的至少两个频段。
在一种可能的设计中,所述至少一种切换类型根据以下至少一项确定:切换前的频段;切换后的频段;切换前的频段个数;切换后的频段个数。
在一种可能的设计中,所述至少一种切换类型包括以下一项或多项:第一切换类型,所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
在一种可能的设计中,所述第一指示信息包括所述至少一种切换时延;或者,所述第一指示信息包括所述至少一种切换类型的标识;或者,所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延。
在一种可能的设计中,通信单元503还用于:向所述网络设备发送第二指示信息,所述第二指示信息包括切换前的M个频段的标识、切换后的N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
该装置500可以为上述实施例中的网络设备。处理单元502可以支持装置500执行上文中各方法示例中网络设备的动作。或者,处理单元502主要执行方法示例中网络设备的内部动作,通信单元503可以支持装置500与其它设备之间的通信。
比如,在一个实施例中,通信单元503用于:接收来自终端设备的第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;进而,网络设备可以基于所述至少一种切换时延,与所述终端设备进行通信。
在一种可能的设计中,所述至少一种切换类型根据以下至少一项确定:切换前的频段;切换后的频段;切换前的频段个数;切换后的频段个数。
在一种可能的设计中,所述至少一种切换类型包括以下一项或多项:第一切换类型,所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段完全不同;第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
在一种可能的设计中,所述第一指示信息包括所述至少一种切换时延;或者,所述第一指示信息包括所述至少一种切换类型的标识;或者,所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延。
在一种可能的设计中,通信单元503还用于:接收来自所述终端设备的第二指示信息,所述第二指示信息包括切换前的M个频段的标识、切换前的N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至 少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图6,为本申请实施例提供的一种终端设备的结构示意图,该终端设备可应用于如图1所示的通信系统中,用于实现以上实施例中终端设备的操作。如图6所示,该终端设备包括:天线610、射频部分620、信号处理部分630。天线610与射频部分620连接。在下行方向上,射频部分620通过天线610接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分630进行处理。在上行方向上,信号处理部分630对终端设备的信息进行处理,并发送给射频部分620,射频部分620对终端设备的信息进行处理后经过天线610发送给网络设备。
信号处理部分630可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件631,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件632和接口电路633。存储元件632用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件632中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路633用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图5中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图5中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图6所示的终端设备能够实现上述方法实施例中涉及终端设备的各个过程。图6所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图7,为本申请实施例提供的一种接入网设备的结构示意图,该接入网设备(或基站)可应用于如图1所示的通信系统中,执行上述方法实施例中接入网设备的功能。如图7所示,接入网设备70可包括一个或多个DU 701和一个或多个CU 702。所述DU 701可以包括至少一个天线7011,至少一个射频单元7012,至少一个处理器7013和至少一个存储器7014。所述DU 701部分主要用于射频信号的收发以及射频信号与基带信号的转换, 以及部分基带处理。CU702可以包括至少一个处理器7022和至少一个存储器7021。
所述CU 702部分主要用于进行基带处理,对接入网设备进行控制等。所述DU 701与CU 702可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 702为接入网设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 702可以用于控制接入网设备执行上述方法实施例中关于接入网设备的操作流程。
此外,可选的,接入网设备70可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器7013和至少一个存储器7014,射频单元可以包括至少一个天线7011和至少一个射频单元7012,CU可以包括至少一个处理器7022和至少一个存储器7021。
在一个实例中,所述CU702可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU701可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7014和处理器7013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图7所示的接入网设备能够实现上述方法实施例中涉及接入网设备的各个过程。图7所示的接入网设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种通信方法,其特征在于,所述方法包括:
    向网络设备发送第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;
    基于所述至少一种切换时延,与所述网络设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一种切换类型根据以下至少一项确定:
    切换前的频段;
    切换后的频段;
    切换前的频段个数;
    切换后的频段个数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一种切换类型包括以下一项或多项:
    第一切换类型,所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;
    第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;
    第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且对应的切换前的频段和切换后的频段完全不同;
    第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一指示信息包括所述至少一种切换时延;或者,
    所述第一指示信息包括所述至少一种切换类型的标识;或者,
    所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第二指示信息,所述第二指示信息包括切换前的M个频段的标识、切换后的N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;
    所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
  6. 一种通信方法,其特征在于,所述方法包括:
    接收来自终端设备的第一指示信息,所述第一指示信息指示至少一种切换时延,所述至少一种切换时延对应终端设备的射频链路在多个频段之间切换的至少一种切换类型;
    基于所述至少一种切换时延,与所述终端设备进行通信。
  7. 根据权利要求6所述的方法,其特征在于,所述至少一种切换类型根据以下至少一项确定:
    切换前的频段;
    切换后的频段;
    切换前的频段个数;
    切换后的频段个数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述至少一种切换类型包括以下一项或多项:
    第一切换类型,所述第一切换类型对应的切换前的频段个数小于切换后的频段个数,且切换前的频段和切换后的频段完全不同;
    第二切换类型,所述第二切换类型对应的切换前的频段个数大于切换后的频段个数,且切换前的频段和切换后的频段完全不同;
    第三切换类型,所述第三切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段完全不同;
    第四切换类型,所述第四切换类型对应的切换前的频段个数等于切换后的频段个数,且切换前的频段和切换后的频段包括至少一个相同的频段。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一指示信息包括所述至少一种切换时延;或者,
    所述第一指示信息包括所述至少一种切换类型的标识;或者,
    所述第一指示信息包括切换时延参考值,所述切换时延参考值用于确定所述至少一种切换时延。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第二指示信息,所述第二指示信息包括切换前的M个频段的标识、切换后的N个频段的标识和所述射频链路从所述M个频段切换至所述N个频段对应的第一切换时延,M、N均为大于或等于1的整数;
    所述射频链路从所述M个频段切换至所述N个频段对应的切换类型属于所述至少一种切换类型,所述第一切换时延不同于所述切换类型对应的切换时延。
  11. 一种通信装置,其特征在于,包括用于执行如权利要求1至5中任一项所述方法的模块。
  12. 一种通信装置,其特征在于,包括用于执行如权利要求6至10中任一项所述方法的模块。
  13. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至5中任一所述的方法。
  14. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求6至10中任一所述的方法。
  15. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信 号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求6至10中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至10中任一项所述方法。
  18. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行权利要求1至10中任一项所述的方法。
PCT/CN2023/086680 2022-04-10 2023-04-06 一种通信方法及装置 WO2023197936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210370561.5A CN116939694A (zh) 2022-04-10 2022-04-10 一种通信方法及装置
CN202210370561.5 2022-04-10

Publications (1)

Publication Number Publication Date
WO2023197936A1 true WO2023197936A1 (zh) 2023-10-19

Family

ID=88328962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086680 WO2023197936A1 (zh) 2022-04-10 2023-04-06 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116939694A (zh)
WO (1) WO2023197936A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077432A1 (en) * 2019-10-26 2021-04-29 Qualcomm Incorporated Uplink transmission (ul tx) preparation time
CN113939020A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种通信方法及装置
CN114006687A (zh) * 2021-01-05 2022-02-01 中国移动通信有限公司研究院 一种发送方法、上行控制方法、终端及网络侧设备
CN114095981A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 一种小区状态切换方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077432A1 (en) * 2019-10-26 2021-04-29 Qualcomm Incorporated Uplink transmission (ul tx) preparation time
CN113939020A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种通信方法及装置
CN114095981A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 一种小区状态切换方法及装置
CN114006687A (zh) * 2021-01-05 2022-02-01 中国移动通信有限公司研究院 一种发送方法、上行控制方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion on UE Rx beam switch delay", 3GPP TSG-RAN WG4 MEETING#102-E, R4-2204790, 14 February 2022 (2022-02-14), XP052112046 *

Also Published As

Publication number Publication date
CN116939694A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11089645B2 (en) Resource scheduling method and apparatus, and base station
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
WO2022052708A1 (zh) 无线通信系统中的多链路建立方法及通信装置
WO2019192458A1 (zh) 通信方法和装置
WO2018000378A1 (zh) 频带处理方法及装置
EP4192082A1 (en) Communication method, apparatus and system
US20230077500A1 (en) Communication Method and Apparatus
WO2020015715A1 (zh) 一种数据发送的方法和装置
WO2023197936A1 (zh) 一种通信方法及装置
CN114175840B (zh) 随机接入方法和装置
WO2022022340A1 (zh) 一种通信方法及装置
EP3782417A1 (en) Urllc data during measurement gaps
WO2022140996A1 (zh) 一种信道接入方法及通信装置
WO2022006858A1 (zh) 无线通信方法、网络节点以及设备
US20220272778A1 (en) Sidelink interface radio bearer configuration method, terminal and network device
WO2019214593A9 (zh) 一种通信方法及装置
WO2023160706A1 (zh) 一种通信方法及装置
WO2023185466A1 (zh) 一种通信方法及装置
WO2022247879A1 (zh) 通信方法以及相关通信装置
WO2024007878A1 (zh) 通信方法及装置
WO2023241504A1 (zh) 一种通信方法及设备
WO2022082789A1 (zh) 复用关系上报方法及通信装置
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023077961A1 (zh) 通信方法和装置
WO2023143269A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787581

Country of ref document: EP

Kind code of ref document: A1