WO2023197894A1 - 力反馈装置及电子设备 - Google Patents

力反馈装置及电子设备 Download PDF

Info

Publication number
WO2023197894A1
WO2023197894A1 PCT/CN2023/085518 CN2023085518W WO2023197894A1 WO 2023197894 A1 WO2023197894 A1 WO 2023197894A1 CN 2023085518 W CN2023085518 W CN 2023085518W WO 2023197894 A1 WO2023197894 A1 WO 2023197894A1
Authority
WO
WIPO (PCT)
Prior art keywords
force feedback
feedback device
mover
force
flat coil
Prior art date
Application number
PCT/CN2023/085518
Other languages
English (en)
French (fr)
Inventor
朱跃光
刘兆江
彭晓光
王永强
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023197894A1 publication Critical patent/WO2023197894A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1037Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted for converting control signals received from the game device into a haptic signal, e.g. using force feedback

Definitions

  • the invention relates to the technical field of game equipment, and in particular to a force feedback device and electronic equipment.
  • home game equipment has designed force feedback devices on game control handles (including traditional game handles and new AR/VR handheld handles, etc.), adding a variety of force feedback modes, thereby realizing game content and Player interaction simulates real force feedback effects.
  • the existing technical solution for a force feedback device is to use a traditional compression spring and a common rotor motor to drive a gearbox to achieve the force feedback effect.
  • this makes the force feedback device alone occupy a large space, and the module structure is complex, making it difficult to miniaturize.
  • the main purpose of the present invention is to provide a force feedback device and electronic equipment, aiming to solve the problem that the existing force feedback device alone occupies a large space and is difficult to miniaturize.
  • a force feedback device which includes:
  • a linear drive assembly includes a stator fixedly provided in the housing, a mover provided in the housing that moves along a first direction, and a pushing part fixedly connected to the mover, wherein the stator and the mover are One is a flat coil, the other is a magnet structure, the magnet structure forms a magnetic field, the flat coil is in the magnetic field, and the pushing part has a first end extending outside the housing;
  • the operating part includes a rotating part and an operating body connected to the rotating part.
  • the first end is provided correspondingly to the operating body.
  • the rotating part is integrally formed or separated from the operating body.
  • the operating body is provided with a contact portion protruding toward the first end, the contact portion is arranged in an arc on one side close to the first end, and the first end is arranged corresponding to the contact portion. .
  • a side of the first end close to the operating body is arranged in an arc shape, so that the operating body abuts the first end when rotating toward the first end.
  • the pushing part includes a fitting part and a mounting bracket fixedly connected to the fitting part.
  • the fitting part is arranged in an arc close to one side of the operating body, and the mover is fixed to the mounting bracket. .
  • an elastic member is provided between the fitting part and the housing to provide a restoring force for the pushing part.
  • the stator includes the magnet structure, and the mover includes the flat coil;
  • the magnet structure includes a magnet group, the magnet group includes two magnets, a magnetic gap is formed between the two magnets, and the flat coil is disposed in the magnetic gap.
  • the magnet groups are arranged into at least two groups, the two groups of magnet groups are arranged in the first direction, and the magnetization direction of the magnets located on the same side of the magnetic gap in the two groups of magnet groups is On the contrary, so that the magnetic field direction of the magnetic gap at the corresponding two sets of magnet sets is opposite;
  • Two opposite sides of the flat coil in the first direction are located in the magnetic gaps corresponding to the two sets of magnets.
  • the housing includes a plurality of side portions, the plurality of side portions enclose to form an installation channel extending along the first direction, and the plurality of side portions include oppositely arranged first side portions. and a second side part, the mover is slidably provided in the installation channel along the first direction;
  • the magnet structure and the flat coil are stacked between the first side and the second side.
  • the force feedback device further includes a mounting bracket, the mounting bracket is slidably provided in the mounting channel along the first direction, the mounting bracket is formed with a mounting groove, and the mounting groove is used to accommodate Place the mover.
  • the linear drive assembly includes a magnetic yoke disposed corresponding to the magnet structure.
  • the force feedback device further includes a controller, a displacement sensor and a power supply module.
  • the displacement sensor is used to detect the displacement signal of the operating part.
  • the controller is electrically connected to the displacement sensor and the power supply module. sexual connection to control the current size and current direction of the power supply module according to the displacement signal.
  • the present invention also proposes an electronic device, including the above-mentioned force feedback device.
  • the force feedback device includes:
  • the linear drive assembly includes a stator fixedly installed in the housing and a stator moved along the first direction.
  • the mover in the housing and the pushing part fixedly connected to the mover, one of the stator and the mover is a flat coil, the other is a magnet structure, the magnet structure forms a magnetic field, the The flat coil is in the magnetic field, and the pushing part has a first end extending outside the housing;
  • the operating part includes a rotating part and an operating body connected to the rotating part.
  • the first end is provided correspondingly to the operating body.
  • the rotating part is integrally formed or separated from the operating body.
  • the mover in the linear drive assembly cooperates with the stator to simulate the feedback force of the force feedback device, thereby achieving the force feedback effect.
  • this solution sets one of the mover and the stator as a flat coil and the other as a magnet structure, and the flat coil is in the In the magnetic field generated by the magnet structure, when the flat coil is energized, an interactive ampere force is generated between the flat coil and the magnet structure, thereby feeding back to the mover and feedback through the operating body. to the user's fingers, and the flat coil is flat.
  • the overall structure of the linear drive assembly can achieve a flat, miniaturized and ultra-thin design on the premise of satisfying the force feedback effect, adapting to the application needs of different types of handles. This solves the problem that the existing force feedback device alone occupies a large space and is difficult to miniaturize.
  • the magnitude and direction of the ampere force received by the flat coil can be adjusted, so that the mover can be reset when necessary.
  • the stator can exert an ampere force on the mover toward the operating body, thereby exerting a feedback force on the user's finger, and by adjusting the size of the current in the flat coil, the feedback force can be made Different sizes to meet more force feedback needs.
  • Figure 1 is a schematic structural diagram of an embodiment of a force feedback device provided by the present invention
  • Figure 2 is a schematic structural diagram of part of the force feedback device in Figure 1;
  • Figure 3 is a partial schematic diagram of the A-A section in Figure 2;
  • Figure 4 is an exploded schematic diagram of the components in Figure 2.
  • the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back%), then the directional indications are only used to explain the position of a certain posture (as shown in the drawings). The relative positional relationship, movement conditions, etc. between the components under the display). If the specific posture changes, the directional indication will also change accordingly.
  • home game equipment has designed force feedback devices on game control handles (including traditional game handles and new AR/VR handheld handles, etc.), adding a variety of force feedback modes, thereby realizing game content and Player interaction simulates real force feedback effects.
  • the existing technical solution for a force feedback device is to use a traditional compression spring and a common rotor motor to drive a gearbox to achieve the force feedback effect.
  • this makes the force feedback device alone occupy a large space, and the module structure is complex, making it difficult to miniaturize.
  • the present invention provides a force feedback device, aiming to solve the problem that the existing force feedback device alone occupies a large space and is difficult to miniaturize.
  • Figures 1 to 4 show specific embodiments of the force feedback device provided by the present invention.
  • the force feedback device 100 includes: a housing 1 , a linear drive assembly 2 and an operating part 3 .
  • the linear drive assembly 2 includes a stator 21 fixedly installed in the housing 1, a mover 22 moved in the housing 1 along a first direction, and a pushing part 23 fixedly connected to the mover 22.
  • one of the stator 21 and the mover 22 is a flat coil 221, and the other is a magnet structure 211.
  • the magnet structure 211 forms a magnetic field, the flat coil 221 is in the magnetic field, and the pushing part 23 has a first end extending out of the housing 1;
  • the operating part 3 includes a rotating part (not shown) and an operating body 31 connected to the rotating part, the first end 231 is connected to the
  • the operating body 31 is provided correspondingly, and the operating body 31 is integrally formed with the rotating part or is provided separately.
  • the first direction is a relative direction, specifically the direction in which the mover 22 slides.
  • the mover 22 in the linear drive assembly 2 cooperates with the stator 21 to simulate the feedback force of the force feedback device 100, thereby achieving the force feedback effect.
  • this solution sets one of the mover 22 and the stator 21 as a flat coil 221 and the other as a magnet structure 211.
  • the flat The coil 221 is in the magnetic field generated by the magnet structure 211, and the flat When the coil 221 is energized, an interactive ampere force is generated between the flat coil 221 and the magnet structure 211, thereby feeding back to the mover 22 and to the user's finger through the operating body 31, and
  • the flat coil 221 has a flat configuration, and the overall structure of the linear drive assembly 2 can achieve a flat, miniaturized and ultra-thin design on the premise of satisfying the force feedback effect, adapting to the application needs of different types of handles to solve current problems. Some force feedback devices alone occupy a large space and are difficult to miniaturize.
  • the magnitude and direction of the ampere force received by the flat coil 221 can be adjusted, so that the mover 22 can be adjusted when necessary. Perform a reset. And the stator 21 can exert an ampere force on the mover 22 toward the operating body 31, thereby exerting a feedback force on the user's finger, and by adjusting the size of the current in the flat coil 221, the The size of the feedback force is different to meet more force feedback needs.
  • the operating body 31 when the operating body 31 rotates toward the first end 231 , it will contact the first end 231 and push the first end 231 , thereby driving the mover 22 to move. . Because the operating body 31 is rotated, when the operating body contacts the first end, the operating body 31 exerts a force along the first direction and a vertical force toward the first end 231 . As for the component force in the first direction, the force along the first direction can drive the movement of the mover 22 , while the component force perpendicular to the first direction may hinder the movement of the mover 22 .
  • the operating body 31 is provided with a contact portion 311 protruding toward the first end 231 , and the contact portion 311 is arranged in an arc shape on one side close to the first end 231 .
  • the first end 231 is provided correspondingly to the contact portion 311 .
  • the side of the contact portion 311 close to the first end 231 is arc-shaped, so that when the contact portion 311 is in contact with the first end 231, the contact portion 311 and The first end 231 will be in a tangent state.
  • the influence of the force component perpendicular to the first direction is small, so that the movement of the pushing part 23 and the mover 22 along the first direction is smoother, which facilitates the use of the user.
  • the operating body 31 converts its rotational movement into linear movement of the pushing portion 23 and the mover 22 along the first direction through the arcuate arrangement of the contact portion 311, thereby causing the force feedback device to 100 to meet more usage needs.
  • the side of the first end 231 close to the operating body 31 is arranged in an arc shape, so that the operating body 31 abuts the first end 231 when rotating toward the first end 231 .
  • the first end 231 will contact the operating body 31 . Therefore, the side of the first end 231 facing the operating body 31 can be arranged in an arc shape, so that when the operating body 31 rotates, the first end 231 and the operating body 31 can remain tangential in real time. state, which reduces the resistance when the operating body 31 pushes the first end 231, thereby facilitating the movement of the mover 22.
  • the operating body 31 is provided with a contact portion 311 protruding toward the first end 231 , and the contact portion 311 is arranged in an arc shape on one side close to the first end 231 . That is to say, the contact portion 311 is in contact with the first end 231 . At this time, both the first end 231 and the contact portion 311 are arranged in an arc shape, which enables the first end 231 and the contact portion 311 to maintain a real-time tangent state, thereby further reducing the The resistance when the operating body 31 pushes the first end 231 .
  • the pushing part 23 includes a fitting part 232 and a mounting bracket 233 fixedly connected to the fitting part 232.
  • the fitting part 232 is arranged in an arc shape on one side close to the operating body 31.
  • the mover 22 fixed to the mounting bracket 233.
  • the fitting portion 232 is actually provided at the first end 231 of the pushing portion 23 , so that when the operating body 31 rotates, the fitting portion 232 will interact with the operating body 31 touch. Therefore, the side of the fitting portion 232 close to the operating body 31 is arranged in an arc shape, so that when the operating body 31 rotates, the fitting portion 232 and the operating body 31 can maintain a real-time tangent state. This reduces the resistance when the operating body 31 pushes the fitting portion 232, thereby facilitating the movement of the mover 22.
  • the pushing part 23 also includes the mounting bracket 233 for fixed installation of the mover 22.
  • the mounting bracket 233 is fixedly connected to the matching part 232, so that the operating body 31 pushes the When pushing the part 23, the mover 22 will move together with the pushing part 23, and the ampere force that the mover 22 receives at this time in the direction opposite to its own movement can also be fed back to the user's finger, thereby completing force feedback.
  • the force feedback device 100 needs to reset the operating body 31 after each use.
  • the operating body 31 can be reset by applying ampere force on the mover 22 , so that the mover 22 drives the pushing part 23 to move the operating body 31 Reset is possible, but this method is more expensive. Therefore, in one embodiment of the present invention, an elastic member 4 is provided between the fitting portion 232 and the housing 1 to provide a restoring force for the pushing portion 23 .
  • the fitting portion 232 when the user's fingers need to press and operate the operating body 31, the fitting portion 232 will compress the elastic member 4 when moving toward the housing 1, and the elastic member 4 will deform through itself. Create an elastic force. After the user has finished using it, the operating body 31 no longer receives pressure, and the elastic member 4 pushes out the fitting part 232 through elastic force, and the fitting part 232 also resets the operating body 31 to ensure that all The operation body 31 can be used normally next time, and the use cost is low.
  • the operating body 31 and the pushing part 23 may always be in contact with each other.
  • the operating body 31 may only contact the pushing part 23 after being rotated to a certain angle.
  • the elastic member 4 can reset the operating body 31 and the pushing part 23 at the same time; when the operating body 31 rotates to a certain When contacting the pushing part 23 again after reaching an angle, the elastic member 4 can only reset the pushing part 23 .
  • the stator 21 includes the magnet structure, and the mover 22 includes the flat coil 221; the magnet structure 211 includes a magnet group 211a, and the magnet group 211a includes two There are two magnets, a magnetic gap is formed between the two magnets, and the flat coil 221 is provided in the magnetic gap.
  • the flat coil 221 when the flat coil 221 is supplied with alternating current, a part of the flat coil 221 in the magnetic gap will generate an ampere force, which can be determined according to the left-hand rule: stretch out your left hand, Make the thumb perpendicular to the other four fingers and in a plane, let the magnetic field lines flow from the palm of the hand, the four fingers point in the direction of the current, and the thumb points in the direction of the Ampere force (that is, the direction of the force on the conductor). From this, we can derive the direction of the force exerted on the flat coil 221 in the magnetic field.
  • the direction of the current in the flat coil 221 can be set to the ampere force generated by it.
  • the direction of the current in the flat coil 221 can be set so that the ampere force generated by it faces away from the user's finger, thereby reducing the feedback force.
  • Ampere's force is a force generated by the interaction between magnets and energized wires.
  • the stator 21 may include two magnets, and the mover 22 It includes the flat coil 221.
  • the flat coil 221 is driven by Ampere force.
  • the flat coil 221 can serve as the The stator is fixed to the housing 1, and the magnet structure 211 can be movably installed in the housing 1.
  • Ampere force acts on the two magnets, thereby driving the two magnets to move.
  • the flat coil 221 can continue to be arranged between the two magnets, or two flat coils 221 can be arranged on both sides of a single magnet, or it can be adjusted according to the use requirements, and no adjustment is made here.
  • the magnet groups 211a are arranged into at least two groups, the two groups of magnet groups 211a are arranged in the first direction, and the two groups of magnet groups 211a are located on the same side of the magnetic gap.
  • the magnetizing directions of the magnets are opposite, so that the magnetic field directions of the magnetic gaps at the corresponding two sets of magnet groups 211a are opposite; the two opposite sides of the flat coil 221 in the first direction correspond to in the magnetic gaps corresponding to the two magnet groups 211a.
  • the two opposite sides of the flat coil 221 in the first direction can simultaneously sense ampere force in the same direction, so that the theoretical value of the feedback force is doubled.
  • the current value of the flat coil 221 can also be changed. When the current value is larger, the ampere force is larger. , on the contrary, the smaller the Ampere force.
  • the housing 1 includes multiple side parts, and the multiple side parts are enclosed to form An installation channel extends along the first direction.
  • the cross-section of the installation channel is rectangular in shape, and the plurality of side parts include a first side part 11 and a second side part 12 that are arranged oppositely,
  • the mover 22 is slidably provided in the installation channel along the first direction; the magnet structure 211 and the flat coil 221 are between the first side part 11 and the second side part 12
  • the stacked arrangement makes the force feedback device 100 compact in the thickness direction and suitable for the needs of different types of handle triggers.
  • the force feedback device 100 further includes a mounting bracket 233.
  • the mounting bracket 233 is slidably provided in the mounting channel along the first direction.
  • the mounting bracket 233 forms a There is an installation slot, and the installation slot is used to accommodate the mover.
  • the operating part 3 can obtain a greater movable stroke in the first direction, making the user's operating experience stronger, and at the second end A mounting slot is formed, and the mounting slot is used to accommodate the flat coil 221.
  • the flat coil 221 is driven by ampere force, the flat coil 221 exerts a force on the side wall of the mounting slot, Thus, force feedback of the magnetic drive of the operating part 3 is achieved.
  • the installation groove is preferably an annular groove.
  • the flat coil 221 is clamped in the annular groove, and the peripheral side of the flat coil 221 is clamped through the peripheral wall of the annular groove.
  • the annular groove can be set to the same height as the flat coil 221, or to a smaller size to achieve flattening.
  • the linear drive assembly includes the The magnet structure 211 corresponds to the provided magnetic yoke. Because the magnetic permeability of the magnetic yoke is high, the magnetic field can be constrained, so that the magnetic field of the magnet structure 211 can exert greater energy efficiency.
  • the force feedback device 100 also includes a controller, a displacement sensor and a power supply module.
  • the displacement sensor is used to detect the displacement signal of the operating part 3.
  • the controller, the displacement sensor and the power supply module Electrically connected to control the current size and current direction of the power supply module according to the displacement signal.
  • the user pulls the trigger and presses the operation part 3 to perform game operations.
  • the game information does not generate feedback.
  • the feedback force felt is the reset elastic force generated by the elastic member 4; when the car is driving, the resistance in the game scene is small at this time, and the
  • the current provided by the power supply module is a negative current.
  • the negative current passes through the flat coil 221, and the direction of the ampere force generated between the negative current and the magnet structure 211 is opposite to the direction of the aforementioned repulsive force.
  • the feedback force felt by the user is the reset elastic force.
  • Subtracting the resultant force of the Ampere force that is, the game feedback force felt by the user is also smaller, making it easier to drive.
  • the current provided by the power supply module is a forward current
  • the direction of the Ampere force is the same as that of the Ampere force.
  • the direction of the reset elastic force is the same, so the game feedback force felt by the user is the sum of the reset elastic force and the ampere force. At this time, the feedback force corresponding to the game content becomes larger, making it difficult to start.
  • the present invention also provides an electronic device.
  • the electronic device may be a game controller, a game console, a game operating device, a mobile terminal device, etc.
  • the electronic device includes the force feedback device 100.
  • the force feedback device 100 is specifically Structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

本发明公开一种力反馈装置及电子设备,力反馈装置包括:壳体、直线驱动组件及操作部。直线驱动组件包括固定设于壳体内的定子、沿第一方向滑动设于壳体内的动子及与所述动子固定连接的推动部,定子和动子其中之一为扁平线圈,另一为磁体结构,磁体结构形成有磁场,扁平线圈处在磁场;操作部包括操作主体,操作主体在朝向及远离推动部的方向上转动安装于壳体的外侧,以推动推动部活动;扁平线圈和磁体结构产生的安培力会反馈到动子上,从而通过操作主体反馈到用户手指,从而完成力反馈。并且扁平线圈为扁平设置,这使得力反馈装置占用空间较小。

Description

力反馈装置及电子设备 技术领域
本发明涉及游戏设备技术领域,具体涉及一种力反馈装置及电子设备。
背景技术
目前,家用游戏设备为提升用户体验,在游戏控制手柄设备(包含传统游戏手柄及AR/VR新型手持式手柄等)上设计了力反馈装置,增加了多种力反馈模式,从而实现游戏内容与玩家的交互,模拟真实的力反馈效果。
现有的力反馈装置的技术方案是通过使用传统压缩弹簧与普通转子电机带动齿轮箱配合实现力反馈效果,但这使得力反馈装置单体的占用空间大,模组结构复杂,难以小型化。
发明内容
本发明的主要目的是提出一种力反馈装置和电子设备,旨在解决现有的力反馈装置单体占用空间大,难以小型化的问题。
为实现上述目的,本发明提出一种力反馈装置,所述力反馈装置包括:
壳体;
直线驱动组件,包括固定设于所述壳体内的定子、沿第一方向移动设于所述壳体内的动子以及与所述动子固定连接的推动部,所述定子和所述动子其中之一为扁平线圈,另一为磁体结构,所述磁体结构形成有磁场,所述扁平线圈处在所述磁场,所述推动部具有伸出至所述壳体外的第一端;
操作部,包括转动部和与所述转动部连接的操作主体,所述第一端与所述操作主体对应设置,所述转动部与所述操作主体一体形成或分体设置。
可选地,所述操作主体朝向所述第一端凸设有接触部,所述接触部靠近所述第一端的一侧呈弧形设置,所述第一端与所述接触部对应设置。
可选地,所述第一端靠近所述操作主体的一侧呈弧形设置,以使得所述操作主体在朝向所述第一端转动时,与所述第一端抵接。
可选地,所述推动部包括配合部和与所述配合部固定连接的安装架,所述配合部靠近所述操作主体的一侧呈弧形设置,所述动子固定于所述安装架。
可选地,所述配合部与所述壳体之间设有弹性件,以为所述推动部提供回复力。
可选地,所述定子包括所述磁体结构,所述动子包括所述扁平线圈;
所述磁体结构包括磁体组,所述磁体组包括两个磁体,两个所述磁体之间形成磁间隙,所述扁平线圈设于所述磁间隙。
可选地,所述磁体组设置为至少两组,两组所述磁体组在所述第一方向上布设,且两组所述磁体组内位于所述磁间隙同一侧的磁体的充磁方向相反,以使得所述磁间隙在对应两组所述磁体组处的磁场方向相反;
所述扁平线圈在所述第一方向上的两个相对设置的边、对应处在两组所述磁体组对应的所述磁间隙中。
可选地,所述壳体包括多个侧部,多个所述侧部围合形成沿所述第一方向延伸设置的安装通道,多个所述侧部包括呈相对设置的第一侧部和第二侧部,所述动子沿所述第一方向可滑动地设于所述安装通道;
所述磁体结构和所述扁平线圈在所述第一侧部和所述第二侧部之间层叠设置。
可选地,所述力反馈装置还包括安装架,所述安装架沿所述第一方向可滑动地设于所述安装通道,所述安装架形成有安装槽,所述安装槽用以容置所述动子。
可选地,所述直线驱动组件包括与所述磁体结构对应设置的磁轭。
可选地,所述力反馈装置还包括控制器、位移传感器和供电模块,所述位移传感器用以检测所述操作部的位移信号,所述控制器与所述位移传感器和所述供电模块电性连接,以根据所述位移信号控制所述供电模块的电流大小和电流方向。
本发明还提出一种电子设备,包括上述的力反馈装置,所述力反馈装置包括:
壳体;
直线驱动组件,包括固定设于所述壳体内的定子、沿第一方向移动设于 所述壳体内的动子以及与所述动子固定连接的推动部,所述定子和所述动子其中之一为扁平线圈,另一为磁体结构,所述磁体结构形成有磁场,所述扁平线圈处在所述磁场,所述推动部具有伸出至所述壳体外的第一端;
操作部,包括转动部和与所述转动部连接的操作主体,所述第一端与所述操作主体对应设置,所述转动部与所述操作主体一体形成或分体设置。
本发明的技术方案中,通过所述直线驱动组件中的所述动子与所述定子相配合,如此模拟所述力反馈装置的反馈力,从而实现力反馈效果。具体地,当需要模拟的反馈力和操作部的活动行程无直接联系时,本方案通过将动子和定子中的一个设置为扁平线圈,另一个设置为磁体结构,所述扁平线圈处于所述磁体结构产生的磁场中,所述扁平线圈在通电状态下,所述扁平线圈和所述磁体结构之间产生相互作用的安培力,从而反馈到所述动子上,并通过所述操作主体反馈到用户手指,并且所述扁平线圈为扁平设置,所述直线驱动组件的整体结构在满足力反馈效果的前提下,能够实现扁平化及小型化超薄设计,适配不同类型手柄的应用需求,以解决现有的力反馈装置单体占用空间大,难以小型化的问题。
要说明的是,在本方案中可通过改变所述扁平线圈内电流的大小与方向,可以调整所述扁平线圈受到的安培力的大小与方向,从而在必要时对所述动子进行复位。并且所述定子可以对所述动子施加一个朝向所述操作主体的安培力,从而向用户的手指施加一个反馈力,并且通过调节所述扁平线圈内电流的大小,可以使得所述反馈力的大小不同,从而满足更多的力反馈需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明提供的力反馈装置一实施例的结构示意图;
图2为图1中力反馈装置的部分结构的结构示意图;
图3为图2中A-A截面部分示意图;
图4为图2中零部件的爆炸示意图。
附图标号说明:
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以 明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
目前,家用游戏设备为提升用户体验,在游戏控制手柄设备(包含传统游戏手柄及AR/VR新型手持式手柄等)上设计了力反馈装置,增加了多种力反馈模式,从而实现游戏内容与玩家的交互,模拟真实的力反馈效果。
现有的力反馈装置的技术方案是通过使用传统压缩弹簧与普通转子电机带动齿轮箱配合实现力反馈效果,但这使得力反馈装置单体的占用空间大,模组结构复杂,难以小型化。
鉴于此,本发明提供一种力反馈装置,旨在解决现有的力反馈装置单体占用空间大,难以小型化的问题。图1至图4为本发明提供的力反馈装置的具体实施例。
请参阅图1至图3,本发明提供的所述力反馈装置100包括:壳体1、直线驱动组件2及操作部3。所述直线驱动组件2包括固定设于所述壳体1内的定子21、沿第一方向移动设于所述壳体1内的动子22以及与所述动子22固定连接的推动部23,所述定子21和所述动子22其中之一为扁平线圈221,另一为磁体结构211,所述磁体结构211形成有磁场,所述扁平线圈221处在所述磁场,所述推动部23具有伸出至所述壳体1外的第一端;所述操作部3包括转动部(未示出)和与所述转动部连接的操作主体31,所述第一端231与所述操作主体31对应设置,所述操作主体31与所述转动部一体形成或分体设置。
在本发明中,所述第一方向为相对方向,具体为所述动子22滑动的方向。
本发明的技术方案中,通过所述直线驱动组件2中的所述动子22与所述定子21相配合,如此模拟所述力反馈装置100的反馈力,从而实现力反馈效果。具体地,当需要模拟的反馈力和操作部的活动行程无直接联系时,本方案通过将动子22和定子21中的一个设置为扁平线圈221,另一个设置为磁体结构211,所述扁平线圈221处于所述磁体结构211产生的磁场中,所述扁平 线圈221在通电状态下,所述扁平线圈221和所述磁体结构211之间产生相互作用的安培力,从而反馈到所述动子22上,并通过所述操作主体31反馈到用户手指,并且所述扁平线圈221为扁平设置,所述直线驱动组件2的整体结构在满足力反馈效果的前提下,能够实现扁平化及小型化超薄设计,适配不同类型手柄的应用需求,以解决现有的力反馈装置单体占用空间大,难以小型化的问题。
要说明的是,在本方案中可通过改变所述扁平线圈221内电流的大小与方向,可以调整所述扁平线圈221受到的安培力的大小与方向,从而在必要时对所述动子22进行复位。并且所述定子21可以对所述动子22施加一个朝向所述操作主体31的安培力,从而向用户的手指施加一个反馈力,并且通过调节所述扁平线圈221内电流的大小,可以使得所述反馈力的大小不同,从而满足更多的力反馈需求。
进一步地,请参阅图1,所述操作主体31在朝向所述第一端231转动时会与所述第一端231接触,并推动所述第一端231,从而带动所述动子22活动。因为所述操作主体31是转动设置的,因此在所述操作主体与所述第一端接触时,所述操作主体31会朝向所述第一端231施加沿所述第一方向的力及垂直于所述第一方向的分力,其中沿所述第一方向的力能够驱动所述动子22活动,而垂直于所述第一方向的分力可能会阻碍所述动子22的活动。因此在本发明的一实施例中,所述操作主体31朝向所述第一端231凸设有接触部311,所述接触部311靠近所述第一端231的一侧呈弧形设置,所述第一端231与所述接触部311对应设置。
在本实施例中,所述接触部311靠近所述第一端231的一侧为弧形,而这使得所述接触部311在于所述第一端231抵接时,所述接触部311与所述第一端231会处于相切的状态。这使得所述接触部311与所述第一端231的接触面积较小,从而使得所述接触部311与所述第一端231相对滑动的阻力较小,如此使得所述第一端231受到垂直于所述第一方向的分力的影响较小,以此使得所述推动部23及所述动子22沿所述第一方向的活动更加顺畅,方便了用户的使用。所述操作主体31通过所述接触部311的弧形设置将自身的转动活动转化为所述推动部23及所述动子22沿所述第一方向的直线活动,从而使得所述力反馈装置100满足更多的使用需求。
进一步地,所述第一端231靠近所述操作主体31的一侧呈弧形设置,以使得所述操作主体31在朝向所述第一端231转动时,与所述第一端231抵接。在本实施中,当所述操作主体31朝向所述第一端231转动时,所述第一端231会与所述操作主体31接触。因此所述第一端231朝向所述操作主体31的一侧可呈弧形设置,如此能够在所述操作主体31转动时,所述第一端231与所述操作主体31保持实时相切的状态,这使得所述操作主体31推动所述第一端231时阻力减小,从而便于驱动所述动子22活动。
在本发明的另一实施例中,所述操作主体31朝向所述第一端231凸设有接触部311,所述接触部311靠近所述第一端231的一侧呈弧形设置,也就是说所述接触部311与所述第一端231接触。此时所述第一端231与所述接触部311都呈弧形设置,这使得所述第一端231与所述接触部311之间能够保持实时相切的状态,从而进一步减小所述操作主体31推动所述第一端231时的阻力。
进一步地,所述推动部23包括配合部232和与所述配合部232固定连接的安装架233,所述配合部232靠近所述操作主体31的一侧呈弧形设置,所述动子22固定于所述安装架233。
在本实施例中,所述配合部232实际上设置在所述推动部23的所述第一端231,从而在所述操作主体31转动时,所述配合部232会与所述操作主体31接触。因此所述配合部232靠近所述操作主体31的一侧呈弧形设置,如此能够在所述操作主体31转动时,所述配合部232与所述操作主体31保持实时相切的状态,这使得所述操作主体31推动所述配合部232时阻力减小,从而便于驱动所述动子22活动。
此外,所述推动部23还包括用于供所述动子22固定安装的所述安装架233,所述安装架233与所述配合部232固定连接,从而使得所述操作主体31推动所述推动部23时,所述动子22会与所述推动部23一同活动,而所述动子22此时受到的与自身活动方向相反的安培力也可以反馈到用户的手指,从而完成力反馈。
进一步地,在具体应用时,所述力反馈装置100在每次使用完后都需要对所述操作主体31进行复位,所述操作主体31的复位可以通过在所述动子22上作用安培力,使得所述动子22带动所述推动部23将所述操作主体31进 行复位,但这种方式成本较高。因此在本发明的一实施例中,所述配合部232与所述壳体1之间设有弹性件4,以为所述推动部23提供回复力。
在本实施例中,当用户手指需要按压操作所述操作主体31的时候,所述配合部232朝向所述壳体1活动时会压缩所述弹性件4,所述弹性件4通过自身形变会产生一个弹力。当用户使用完后,所述操作主体31不再受到压力,而所述弹性件4通过弹力将所述配合部232顶出,而所述配合部232也将所述操作主体31复位,保证所述操作主体31下一次的正常使用,并且使用成本较低。
要说明的是,所述操作主体31与推动部23之间可以是一直保持抵接状态的,当然所述操作主体31可能是在转动至一定的角度后才能与所述推动部23接触。在这其中,当所述操作主体31与推动部23一直抵接时,所述弹性件4可以同时复位所述操作主体31及所述推动部23;当所述操作主体31在转动至一定的角度后再与所述推动部23接触时,所述弹性件4只能将所述推动部23复位。
具体地,请参阅图3及图4,所述定子21包括所述磁体结构,所述动子22包括所述扁平线圈221;所述磁体结构211包括磁体组211a,所述磁体组211a包括两个磁体,两个所述磁体之间形成磁间隙,所述扁平线圈221设于所述磁间隙。
在本实施例中,在所述扁平线圈221通以交流电时,处在所述磁间隙中的所述扁平线圈221的一部分将产生安培力,具体可以根据左手定则进行判断:伸开左手,使拇指与其他四指垂直且在一个平面内,让磁感线从手心流入,四指指向电流方向,大拇指指向的就是安培力方向(即导体受力的方向)。由此可以得出在磁场中所述扁平线圈221所受到力的作用的方向,当需要增大反馈力的阻碍感时,可将所述扁平线圈221内的电流方向设置为其产生的安培力朝向用户手指的方向;当需要有泄力感时,可将所述扁平线圈221内的电流方向设置为其产生的安培力背向用户手指的方向,从而减小反馈力。
需要说明的是,因安培力是磁体和通电导线之间相互作用而产生的力,可以理解的是,请参阅图3,所述定子21可以是包括两个所述磁体,所述动子22包括所述扁平线圈221,当两个所述磁体固定于所述壳体1的时候,所述扁平线圈221被安培力驱动活动。反之,所述扁平线圈221可以作为所述 定子,固定于所述壳体1,而所述磁体结构211可以活动安装于所述壳体1内,此时安培力作用于两个所述磁体,从而驱动两个所述磁体活动,在此时所述扁平线圈221可以继续设置在两个所述磁体之间,还可以在单个磁体的两侧设置两个所述扁平线圈221,或者根据使用需求进行调整,在此不做调整。
进一步地,请参阅图3,因所述扁平线圈221在横截面上的两个部分的导线的电流方向反向设置,为了使得反馈力的力度有较大的区间值,能够充分满足用户的体验感。因此在本实施例中,所述磁体组211a设置为至少两组,两组所述磁体组211a在所述第一方向上布设,且两组所述磁体组211a内位于所述磁间隙同一侧的磁体的充磁方向相反,以使得所述磁间隙在对应两组所述磁体组211a处的磁场方向相反;所述扁平线圈221在所述第一方向上的两个相对设置的边、对应处在两组所述磁体组211a对应的所述磁间隙中。这样所述扁平线圈221在所述第一方向上的两个相对设置的边都能够同时感应到同方向的安培力,使得所述反馈力的理论值增大了一倍。当然,调节反馈力的大小,除了可以设置更多的所述磁体组211a和所述扁平线圈221之外,还可以改变所述扁平线圈221的电流值,当电流值越大,安培力越大,反之安培力越小。
具体地,为了配合所述扁平线圈221的扁平化和超薄化设计,请参阅图3,在本实施例中,所述壳体1包括多个侧部,多个所述侧部围合形成沿所述第一方向延伸设置的安装通道,优选地,所述安装通道的横截面的形状为长方形,多个所述侧部包括呈相对设置的第一侧部11和第二侧部12,所述动子22沿所述第一方向可滑动地设于所述安装通道;所述磁体结构211和所述扁平线圈221在所述第一侧部11和所述第二侧部12之间层叠设置,使得所述力反馈装置100在厚度方向上结构紧凑,适合不同类型的手柄扳机的需求。
具体地,请参阅图3及图4,所述力反馈装置100还包括安装架233,所述安装架233沿所述第一方向可滑动地设于所述安装通道,所述安装架233形成有安装槽,所述安装槽用以容置所述动子。
在本实施例中,通过设置所述安装架233,可以使得所述操作部3在所述第一方向上获得更大的活动行程,使得用户操作体验感更强,并且在所述第二端形成有安装槽,所述安装槽用以容置所述扁平线圈221,当所述扁平线圈221受到安培力的驱动时,所述扁平线圈221对所述安装槽的侧壁施加作用力, 从而实现所述操作部3的磁力驱动的力反馈。
为了实现尽可能的超薄化,所述安装槽优选为环形槽,所述扁平线圈221卡持于所述环形槽内,通过所述环形槽的周壁对所述扁平线圈221的周侧进行卡持,在保证所述安装架233的强度的情况下,所述环形槽可以设置得与所述扁平线圈221同等高度尺寸,或是尺寸更小,以实现扁平化。
进一步地,因所述磁体结构211具有磁场,为了使得所述磁体结构211产生的磁场能够最大能效的作用于所述扁平线圈221,因此在本实施例中,所述直线驱动组件包括与所述磁体结构211对应设置的磁轭。因磁轭的导磁率较高,能够约束所述磁场,以使得所述磁体结构211的磁场能够发挥较大的能效。
进一步地,所述力反馈装置100还包括控制器、位移传感器和供电模块,所述位移传感器用以检测所述操作部3的位移信号,所述控制器与所述位移传感器和所述供电模块电性连接,以根据所述位移信号控制所述供电模块的电流大小和电流方向。
在实际应用中,用户在游戏使用时,扣动扳机,按压所述操作部3进行进行游戏操作,例如假定为赛车游戏操作时,当游戏内的汽车处于静止状态时,游戏的信息不产生反馈电流,此时用户按压下所述操作部3后,感受到的反馈力即为所述弹性件4产生的复位弹力;当汽车在开动时,此时在游戏场景中的阻力较小,所述供电模块提供的电流为负向电流,负向电流通过所述扁平线圈221,并与所述磁体结构211之间产生的安培力方向与前述的排斥力方向相反,用户感受的反馈力为复位弹力减去安培力的合力,即用户感受到的游戏反馈力也较小,比较容易开动;同理,当汽车撞上障碍时,此时所述供电模块提供的电流为正向电流,安培力方向与复位弹力方向相同,因此用户感受到的游戏反馈力为复位弹力与安培力之和,此时对应游戏内容的反馈力变大,难以开动。
本发明还提供一种电子设备,所述电子设备可以是游戏手柄,可以是游戏机、游戏操作装置或者移动终端设备等,该电子设备包括所述力反馈装置100,该力反馈装置100的具体结构参照上述实施例,由于本电子设备采用了上述所有实施例的全部技术方案,因此至少具有上述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (12)

  1. 一种力反馈装置,其特征在于,包括:
    壳体;
    直线驱动组件,包括固定设于所述壳体内的定子、沿第一方向移动设于所述壳体内的动子以及与所述动子固定连接的推动部,所述定子和所述动子其中之一为扁平线圈,另一为磁体结构,所述磁体结构形成有磁场,所述扁平线圈处在所述磁场,所述推动部具有伸出至所述壳体外的第一端;
    操作部,包括转动部和与所述转动部连接的操作主体,所述第一端与所述操作主体对应设置,所述转动部与所述操作主体一体形成或分体设置。
  2. 如权利要求1所述的力反馈装置,其特征在于,所述操作主体朝向所述第一端凸设有接触部,所述接触部靠近所述第一端的一侧呈弧形设置,所述第一端与所述接触部对应设置。
  3. 如权利要求1或2所述的力反馈装置,其特征在于,所述第一端靠近所述操作主体的一侧呈弧形设置,以使得所述操作主体在朝向所述第一端转动时,与所述第一端抵接。
  4. 如权利要求3所述的力反馈装置,其特征在于,所述推动部包括配合部和与所述配合部固定连接的安装架,所述配合部靠近所述操作主体的一侧呈弧形设置,所述动子固定于所述安装架。
  5. 如权利要求4所述的力反馈装置,其特征在于,所述配合部与所述壳体之间设有弹性件,以为所述推动部提供回复力。
  6. 如权利要求1所述的力反馈装置,其特征在于,所述定子包括所述磁体结构,所述动子包括所述扁平线圈;
    所述磁体结构包括磁体组,所述磁体组包括两个磁体,两个所述磁体之间形成磁间隙,所述扁平线圈设于所述磁间隙。
  7. 如权利要求6所述的力反馈装置,其特征在于,所述磁体组设置为至少两组,两组所述磁体组在所述第一方向上布设,且两组所述磁体组内位于所述磁间隙同一侧的磁体的充磁方向相反,以使得所述磁间隙在对应两组所述磁体组处的磁场方向相反;
    所述扁平线圈在所述第一方向上的两个相对设置的边、对应处在两组所述磁体组对应的所述磁间隙中。
  8. 如权利要求1所述的力反馈装置,其特征在于,所述壳体包括多个侧部,多个所述侧部围合形成沿所述第一方向延伸设置的安装通道,多个所述侧部包括呈相对设置的第一侧部和第二侧部,所述动子沿所述第一方向可滑动地设于所述安装通道;
    所述磁体结构和所述扁平线圈在所述第一侧部和所述第二侧部之间层叠设置。
  9. 如权利要求8所述的力反馈装置,其特征在于,所述力反馈装置还包括安装架,所述安装架沿所述第一方向可滑动地设于所述安装通道,所述安装架形成有安装槽,所述安装槽用以容置所述动子。
  10. 如权利要求1所述的力反馈装置,其特征在于,所述直线驱动组件包括与所述磁体结构对应设置的磁轭。
  11. 如权利要求1所述的力反馈装置,其特征在于,所述力反馈装置还包括控制器、位移传感器和供电模块,所述位移传感器用以检测所述操作部的位移信号,所述控制器与所述位移传感器和所述供电模块电性连接,以根据所述位移信号控制所述供电模块的电流大小和电流方向。
  12. 一种电子设备,其特征在于,包括如权利要求1至11中任意一项所述的力反馈装置。
PCT/CN2023/085518 2022-04-11 2023-03-31 力反馈装置及电子设备 WO2023197894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210382648.4 2022-04-11
CN202210382648.4A CN114748870A (zh) 2022-04-11 2022-04-11 力反馈装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023197894A1 true WO2023197894A1 (zh) 2023-10-19

Family

ID=82328514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085518 WO2023197894A1 (zh) 2022-04-11 2023-03-31 力反馈装置及电子设备

Country Status (2)

Country Link
CN (1) CN114748870A (zh)
WO (1) WO2023197894A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114748870A (zh) * 2022-04-11 2022-07-15 歌尔股份有限公司 力反馈装置及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320284B1 (en) * 1998-12-23 2001-11-20 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
CN1453670A (zh) * 2003-05-23 2003-11-05 南开大学 临场力感应操作控制器
CN204810108U (zh) * 2015-07-08 2015-11-25 瑞声光电科技(常州)有限公司 振动电机
JP2019201486A (ja) * 2018-05-16 2019-11-21 日本電産コパル株式会社 リニア振動モータ及び電子機器
CN111330263A (zh) * 2020-02-28 2020-06-26 歌尔科技有限公司 一种游戏手柄及其摇杆反馈力调节装置
CN113363100A (zh) * 2021-06-25 2021-09-07 歌尔股份有限公司 扳机按键装置和电子设备
CN113937975A (zh) * 2021-11-16 2022-01-14 歌尔股份有限公司 振动装置和电子设备
CN114748870A (zh) * 2022-04-11 2022-07-15 歌尔股份有限公司 力反馈装置及电子设备
CN217548964U (zh) * 2022-04-11 2022-10-11 歌尔股份有限公司 按键结构及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320284B1 (en) * 1998-12-23 2001-11-20 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
CN1453670A (zh) * 2003-05-23 2003-11-05 南开大学 临场力感应操作控制器
CN204810108U (zh) * 2015-07-08 2015-11-25 瑞声光电科技(常州)有限公司 振动电机
JP2019201486A (ja) * 2018-05-16 2019-11-21 日本電産コパル株式会社 リニア振動モータ及び電子機器
CN111330263A (zh) * 2020-02-28 2020-06-26 歌尔科技有限公司 一种游戏手柄及其摇杆反馈力调节装置
CN113363100A (zh) * 2021-06-25 2021-09-07 歌尔股份有限公司 扳机按键装置和电子设备
CN113937975A (zh) * 2021-11-16 2022-01-14 歌尔股份有限公司 振动装置和电子设备
CN114748870A (zh) * 2022-04-11 2022-07-15 歌尔股份有限公司 力反馈装置及电子设备
CN217548964U (zh) * 2022-04-11 2022-10-11 歌尔股份有限公司 按键结构及电子设备

Also Published As

Publication number Publication date
CN114748870A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023197894A1 (zh) 力反馈装置及电子设备
CN110716655B (zh) 外围接口轮的电磁模式变化
WO2023197893A1 (zh) 力反馈装置和电子设备
US20060267448A1 (en) Actuator that provides tactile information
CN217548964U (zh) 按键结构及电子设备
CN117389172A (zh) 无源无线控制模组
CN218248474U (zh) 按键结构和电子设备
CN113363100A (zh) 扳机按键装置和电子设备
JP2018191402A (ja) 発電装置および電子デバイス
CN108365725B (zh) 一种自发电开关装置
WO2023070895A1 (zh) 力反馈装置、电子设备以及电子设备系统
CN114783796A (zh) 按键结构和电子设备
CN113380570B (zh) 扳机按键装置、电子设备以及电子系统
US20170222534A1 (en) Dual diamagnetic linear resonant actuator with magnetic roller balls
CN114613633A (zh) 按键结构和电子设备
CN113209606A (zh) 一种反馈力装置、游戏手柄及系统
CN204131874U (zh) 卡合模块
CN216319921U (zh) 力反馈装置和电子设备
WO2011155393A1 (ja) 操作入力装置
WO2024000851A1 (zh) 摇杆装置和电子设备
CN214799256U (zh) 发电机、发电模组与自发电设备
CN114758908A (zh) 按键结构和电子设备
CN113871240A (zh) 扳机按键装置和电子设备
CN216528483U (zh) 一种双工位直动触头装置
WO2016021456A1 (ja) 発電入力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787539

Country of ref document: EP

Kind code of ref document: A1