WO2023197818A1 - 一种风力采集装置、储气设备和发电系统 - Google Patents

一种风力采集装置、储气设备和发电系统 Download PDF

Info

Publication number
WO2023197818A1
WO2023197818A1 PCT/CN2023/081953 CN2023081953W WO2023197818A1 WO 2023197818 A1 WO2023197818 A1 WO 2023197818A1 CN 2023081953 W CN2023081953 W CN 2023081953W WO 2023197818 A1 WO2023197818 A1 WO 2023197818A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
logarithmic spiral
flow guide
collection device
wind power
Prior art date
Application number
PCT/CN2023/081953
Other languages
English (en)
French (fr)
Inventor
许水电
李延福
许涛
Original Assignee
传孚科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 传孚科技(厦门)有限公司 filed Critical 传孚科技(厦门)有限公司
Publication of WO2023197818A1 publication Critical patent/WO2023197818A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the technical field of wind power engineering, and specifically relates to a wind power collection device, gas storage equipment and power generation system.
  • Wind energy is a clean and pollution-free renewable energy. my country is rich in wind energy resources.
  • the exploitable wind energy reserves are about 1 billion kW.
  • the wind energy reserves on land are about 253 million kW (calculated based on the data at a height of 10m above the ground on land).
  • the wind energy reserves that can be developed and utilized are about 750 million kW, totaling 1 billion kW.
  • the principle of wind drive is to convert the kinetic energy of the wind into mechanical kinetic energy, and then apply the mechanical energy to other fields such as power generation.
  • the Chinese invention patent document "CN201811623274.0” proposes a "power generation system that uses wind power to collect compressed air as power”. It uses compressed air to store energy, "splicing" intermittent wind energy, and the stored compressed air is converted through a gas power device. It drives the generator for mechanical energy to achieve stable and controllable output.
  • this technical solution uses a modified horizontal axis fan for transmission, which is not conducive to the direction of the horizontal axis blades to the wind and can easily cause "wind loss”.
  • the wind energy utilization rate is low, and the blades of the horizontal axis fan can reach tens or even hundreds of meters.
  • the area requirement is large, the aerodynamic noise is large, the cost is high, and the installation is difficult. It is not conducive to distribution and construction in urban areas or residential areas, and it is difficult to achieve commercialization.
  • the present invention proposes a wind power collection device, gas storage equipment and power generation system to solve the above problems.
  • the present invention proposes a wind power collection device, including an impeller.
  • the outer side wall of the impeller is composed of four mutually spliced flow guide surfaces.
  • the radial cross-sections of the four mutually spliced flow guide surfaces correspond to It is four mutually spliced flow guide curves.
  • the flow guide surface is formed by rotating and stretching the flow guide curve in the axial direction around the axis center line of the impeller; the flow guide curve includes a section of a convex first logarithmic spiral.
  • the extension line of the first logarithmic spiral of the flow conduction curve intersects the extension line of the second logarithmic spiral at point A, and the end point of the first logarithmic spiral of the flow conduction curve is away from the intersection point A.
  • B the end point of the second logarithmic spiral of the conduction curve away from the intersection point A
  • the rotation angle of the flow guide curve located at both ends of the flow guide surface relative to the axis of the impeller ranges from 80 to 100°.
  • the first logarithmic spiral and the second logarithmic spiral are connected by a smooth transition through an arc curve.
  • the wind power collection device further includes two circular cover plates, the two cover plates are respectively provided at both ends of the impeller, and the two ends of the guide surface are sealingly connected to the cover plates.
  • the diameter of the impeller is D 1
  • the height of the impeller is H
  • the diameter of the inscribed circle of the four sections of the flow guide curve is D 3 , then D 3 ⁇ 0.5D 1 .
  • the strike angle range of the first logarithmic spiral and the second logarithmic spiral is 60° to 80°.
  • the cover plate is connected to a rotating assembly
  • the rotating assembly includes a rotating shaft
  • the rotating shaft is fixedly connected to the bottom wall of the cover plate.
  • the present invention also proposes a gas storage device, including a pressurizing device, a gas storage device, and a wind collection device as described above.
  • the wind collection device converts the wind collected by the impeller into the rotational force of the rotating shaft.
  • the rotating shaft drives the pressurizing device to perform air compression
  • the gas storage device is used to store gas compressed by the pressurizing device.
  • the present invention also proposes a power generation system, which includes the above-mentioned gas storage device, a cyclone engine and a generator.
  • the compressed air in the gas storage device is used to drive the cyclone engine to drive the generator. Control and stabilize power generation.
  • the impeller of the present invention adopts a different design idea from the traditional wind drive device.
  • the blades of the traditional wind drive device are the "crescent-shaped" convex parts of the impeller;
  • the "blade” of the present invention is the concave part of the impeller, that is, the guide Flow surface, the design idea is to make the wind from different directions form a cyclone in the guide surface of the impeller;
  • the logarithmic spiral convex line segment and the logarithmic spiral concave line segment are used as the basic components of the diversion curve. What is particularly important is that the impeller is made of four diversion surfaces spliced together. The radial cross-sectional outer contour of the impeller The four diversion curves are spliced together, supplemented by the point ABC, the length of the connecting line AB and AC, and the limitation of ⁇ BAC, so that the diversion surface obtains a suitable opening size and wind receiving area, and the position of the logarithmic spiral line segment is laid out.
  • This device has low cost, is easy to install and transport, has low noise, is suitable for distributed installation, meets the requirements of different regions, can work normally under breeze, strong wind and even typhoon, and can be applied Suitable for small to large fans, cost-effective;
  • the wind power collection device also includes two circular cover plates.
  • the diameter of the cover plates is 0.95 to 1.1 times the diameter of the impeller. Since the cover plates are sealed with the guide surface, they are formed at both axial ends of the impeller. In a relatively closed space, this design is conducive to the formation of a stable and continuous cyclone, allowing the cyclone to perform work on the guide surface for a longer period of time, thereby further improving the efficiency of wind energy utilization.
  • Figure 1 shows a schematic diagram of the overall structure according to an embodiment of the present invention
  • Figure 2 shows a schematic structural diagram of a wind power collection device according to an embodiment of the present invention
  • Figure 3 shows a top view of the wind collection device after removing the cover plate according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of the logarithmic spiral structure described in the present invention
  • Figure 5 shows a schematic diagram of the flow diversion curve in the wind power collection device according to the embodiment of the present invention.
  • Figure 6 shows a schematic diagram of another embodiment of the flow guide curve in the wind power collection device according to the embodiment of the present invention.
  • Figure 7 shows a schematic diagram of the air flow in the wind collection device according to the embodiment of the present invention.
  • Figures 8-1 and 8-2 show simulation diagrams of airflow in the wind collection device according to the embodiment of the present invention.
  • Figure 9 shows a partial cross-sectional view of the wind power collection device according to the embodiment of the present invention.
  • Figure 10 shows a flow chart of an application scenario according to the embodiment of the present invention.
  • Impeller 2. Diversion surface; 3. Diversion curve; 301. First logarithmic spiral; 302. Second logarithmic spiral; 4. Cover plate; 5. Rotating component ; 501. Rotating shaft; 502. Bearing; 503. Bearing seat; 6. Pressurizing device; 7. Gas storage device; 8. Cyclone starter Machine; 9. Generator.
  • the present invention proposes a wind power collection device.
  • Figure 1 shows a schematic diagram of the overall structure of a wind power collection device according to an embodiment of the present invention.
  • the wind power collection device includes an impeller. 1 and rotating assembly 5.
  • the outer wall of the impeller 1 is composed of four guide surfaces 2 , and the four guide surfaces 2 are sequentially spliced to form a ring around the axis of the impeller 1 to form the outer wall of the impeller 1 .
  • the impeller 1 of the traditional fan is designed for its blades (that is, the crescent-shaped convex part of the impeller). By designing the concave shape of the blades to face the wind, The rotational force of the impeller 1 is obtained by the pressure difference between the airflow and the convex leeward surface relative to the windward surface when the airflow is exposed to the wind.
  • the impeller 1 of the present invention is designed for the guide surface 2 so that the wind from different directions forms a cyclone in the guide surface of the impeller, thereby causing the airflow to do work multiple times and improving the wind energy utilization efficiency of the impeller. This is the core of this solution. Point of invention.
  • each guide surface 2 corresponds to a guide curve 3.
  • the guide curve 3 as a whole approaches from both ends toward the axis, that is, from both ends toward the axis center line to connect the convex shape.
  • the side and the concave side are designed as a whole.
  • the design direction is to make the impeller 1 receive wind from all directions and act on the guide surface 2, forming a cyclone on the impeller 1.
  • the cyclone circulates on the guide surface 2 and continuously affects the impeller. 1 does work, thereby driving the impeller 1 to rotate, changing the single-action phenomenon of airflow in traditional blade design, thereby improving the efficiency of the wind collection device and achieving efficient utilization of wind energy.
  • the flow guide surface 2 is formed by rotating and stretching the flow guide curve 3 in the axial direction around the axis of the impeller 1.
  • the flow guide curve 3 rotates at a constant speed in the axial direction, so that the flow guide surface 2 is guided.
  • the spiral angle of the line connecting the 3 endpoints of the curve is constant.
  • the helix angle of the line connecting the end points of the flow guide curve 3 on the flow guide surface 2 can be changed within a certain range.
  • the flow guide curve 3 is mainly composed of a convex first logarithmic spiral 301 and a concave second logarithmic spiral 302 .
  • the smooth transition part of the first logarithmic spiral 301 and the second logarithmic spiral 302 is on the side close to the axis center line.
  • the guide surface 2 belongs to a separate whole, with one concave and one concave at both ends in the cross-sectional direction. It is composed of a flow guide curve 3 that is convex in a logarithmic spiral shape and approaches the axis.
  • the opening of the flow guide curve 3 is approximately 90 to 115°.
  • the present invention first introduces the logarithmic spiral structure and its related geometric and mathematical properties.
  • Logarithmic spirals are widely found in nature, ranging from nautilus shells, spider webs, and sunflowers to typhoons, the Milky Way, etc. It is a curve with a constant angle (strike angle) between the direction of motion of the moving point and the polar radius. It has good geometric and mathematical properties, such as intersecting the polar radius at a constant angle, that is, a fixed-angle characteristic; with the pole as the center After telescopic transformation, the resulting curve is still a logarithmic spiral; the radius of curvature is an increasing function of the polar angle, that is, a gradient characteristic.
  • is the strike angle
  • q is the independent variable polar angle
  • r 0 is the initial polar diameter
  • the cross-sections of the four guide surfaces 2 of the impeller 1 are formed by splicing four guide curves 3, and each guide curve 3 corresponds to one guide surface 2.
  • the extension line of the first logarithmic spiral 301 and the extension line of the second logarithmic spiral 302 defining a certain flow conduction curve 3 intersect at point A, and the third flow conduction curve 3
  • the end point of the logarithmic spiral 301 away from the intersection A is point B; the end point of the second logarithmic spiral 302 of the flow conduction curve 3 away from the intersection A is point C;
  • the length of the AB connection is defined as L 1 ;
  • the strike angle range of the first logarithmic spiral 301 and the second logarithmic spiral 302 is 60° to 80°.
  • the cross-sectional outer contour of the impeller 1 of the present invention is four diversion curves 3 connected end to end.
  • the design of the diversion curve 3 is supplemented by points A, B, and C, and the length of the connecting line AB and AC is As well as the limitation of ⁇ BAC, the four guide curves 3 are rotated and stretched in the axial direction around the axis line of the impeller 1 to form four guide surfaces 2, so that the guide surface 2 obtains a suitable opening size and wind receiving area.
  • the logarithmic spiral in the flow curve 3 has the characteristics of constant angle (strike angle) between the moving direction of the moving point and the polar diameter, variable curvature, etc., and through the layout of the logarithmic spiral line segment positions, the wind in different directions can
  • a cyclone is formed on the flow guide surface 2, as shown in Figures 8-1 and 8-2.
  • the cyclone circulates on the guide surface 2 and continuously performs work on the impeller 1, thereby driving the impeller 1 to rotate, changing the single-action phenomenon of airflow in traditional blade design, thus improving the efficiency of the wind collection device and realizing high-efficiency utilization of wind energy. use.
  • the number of guide surfaces 2 in this technical solution is only four.
  • the structure of the four guide surfaces 2 is a necessary technical feature to form a cyclone effect.
  • the number of blades is not limited. Excessive requirements, increase or decrease within a certain range will not cause any essential impact.
  • only the structure of four diversion surfaces 2 can be used. This is due to the requirement to form a cyclone on the opening of the diversion curve 3.
  • the ratio of the length L 1 of the AB connection and the length L 2 of the AC connection is limited to not exceed a certain range, thereby limiting the intersection point A to be near the mid-perpendicular line of the BC connection, that is, the first logarithmic spiral 301 and the second logarithmic spiral 301
  • the smooth transition area of the logarithmic spiral 302 is near the mid-perpendicular line of the BC connection, so the airflow is constrained and turned in the middle of the flow guide curve 3, and is further constrained by the concave second logarithmic spiral 302 to form a cyclone.
  • the first logarithmic spiral 301 and the second logarithmic spiral 302 of two adjacent flow guide curves 3 directly intersect in a sharp angle shape, that is, the four flow guide curves 3 are connected end to end.
  • point B is the intersection point of the first logarithmic spiral 301 of the flow conduction curve 3 and the second logarithmic spiral 302 of the adjacent flow conduction curve 3
  • point C is the second logarithm of the flow conduction curve 3
  • the intersection of the spiral 302 and the first logarithmic spiral 301 of the adjacent flow guide curve 3 is selected between 100 and 112°, which can make the deflection curve Line 3 achieves better diversion effect.
  • connection between two adjacent flow guide curves 3 can be chamfered.
  • the first logarithmic spiral 301 and the second pair of two adjacent flow guide curves 3 There is a rounded arc or curved arc for transition between the spiral lines 302, see Figure 6 .
  • the extension line of the first logarithmic spiral 301 and the extension line of the second logarithmic spiral 302 of the flow conduction curve 3 intersect at point A.
  • the first pair of the flow conduction curve 3 The end point of the logarithmic spiral 301 away from the intersection A is point B'; the end point of the second logarithmic spiral 302 of the flow conduction curve 3 away from the intersection A is point C'.
  • ⁇ B'AC' 90 ⁇ 115°
  • the connecting length of AB' is L 1
  • the rounded arc or the curved arc is only used for the splicing transition between two adjacent flow guide curves 3, and its length accounts for a small proportion and does not affect the guide formed by the rotation and stretching of the flow guide curve.
  • the effect of flow surface belongs to the scope of rights claimed by this application.
  • a smooth transition connection is adopted between the first logarithmic spiral 301 and the second logarithmic spiral 302 .
  • transitions can also be made through arcs, logarithmic spiral arcs and other curves.
  • the first logarithmic spiral 301 and the second logarithmic spiral 302 are connected by a circular arc smooth transition to ensure a suitable transition opening and avoid the first logarithmic spiral 301 and the second logarithmic spiral 301 from connecting with each other.
  • the opening of the transition between the spirals 302 is too large or too small.
  • the length of the first logarithmic spiral 301 and the second logarithmic spiral 302 should account for the main part.
  • the preferred range is more than 80%, and the more preferred range is 85% to 95%. %, that is to say, the intermediate curve used for smooth transition should not be too long.
  • the wind power collection device also includes two circular cover plates 4, and the two cover plates 4 are fixedly connected to both ends of the impeller 1 respectively.
  • the two ends of the guide surface 2 and the cover plate 4 are connected through sealing to ensure that the cover plate 4 and the impeller 1 are an integral structure. Since the cover plate 4 is sealed with the guide surface 2, the cyclone is sealed at both axial ends of the impeller 1, which is conducive to the formation of a stable and continuous cyclone near the cover plate 4, thereby making the cyclone work on the guide surface 2 The time is longer, thereby further improving the efficiency of wind energy utilization.
  • the diameter of impeller 1 is D 1
  • the height of impeller 1 as H
  • the diameter of cover plate 4 is D 2
  • the diameter D 1 of impeller 1 is the sum of the height H of impeller 1 and the diameter D 2 of cover plate 4 .
  • D 1 0.7 ⁇ 0.9H
  • D 2 0.95 ⁇ 1.1D 1 .
  • the angle range of the guide curve 3 located at both ends of the guide surface 2 relative to the axis of the impeller 1 is 80 to 100°. Within this rotation angle range, the outer wall of the impeller 1 can ensure that the water entering the impeller 1 is guided. The air flow can flow toward the cover plates 4 at both ends faster to form a continuous and stable cyclone.
  • the annular shape formed by the four sections of the flow conduction curve 3 is used as an inscribed circle, and the diameter of the inscribed circle is defined as D 3 , then D 3 ⁇ 0.5D 1 .
  • a more preferred range is 0.2D 1 ⁇ D 3 ⁇ 0.3D 1 .
  • the guide surface 2 can be recessed deeply enough to collect wind force, while leaving enough space for the installation of the rotating shaft 501 , and A more appropriate opening size is set through the points on each flow diversion curve 3 located on the inscribed circle.
  • the height of the impeller 1 is 2m
  • the diameter of the impeller 1 is 1.6m
  • the diameter of the cover plate 4 is 1.6m.
  • the mass of the wind collection device is 100KG.
  • the rotation speed of the wind collection device is about 200 rpm
  • the output torque is about 420N/m (excluding inertia moment).
  • the wind power collecting device can also be stacked and combined with multiple impellers 1 in the axial direction to form another impeller 1 with a higher height.
  • the diameter of this new impeller 1 can also be changed accordingly to achieve a higher height.
  • a rotating assembly 5 is fixedly connected to the bottom of the cover plate 4 .
  • the rotating assembly 5 includes a rotating shaft 501 , a bearing 502 and a bearing seat 503 .
  • One end of the rotating shaft 501 is fixedly connected to the bottom wall of the cover plate 4 , and the bearing 502 is rotationally connected in the bearing seat 503 and interference-fits with the rotating shaft 501 .
  • the provided rotating assembly 5 ensures a stable rotating effect of the wind power collection device and further improves the utilization rate of wind energy.
  • rotating component 5 in this embodiment can also be replaced by other devices with the same effect, which will not be described again.
  • the present invention also proposes a gas storage device, as shown in Figure 1, including a pressurizing device 6, a gas storage device 7, and the above-mentioned wind collection device.
  • the wind collection device converts the wind collected by the impeller 1 into The rotational force of the rotating shaft 501 drives the pressurizing device 6 to compress air, and the gas storage device 7 is used to store the gas compressed by the pressurizing device 6 .
  • the present invention also proposes a power generation system, as shown in Figure 1, including the above-mentioned gas storage device, a cyclone engine 8 and a generator 9.
  • the compressed air in the gas storage device 7 is used to drive the power generation system.
  • the cyclone engine 8 drives the generator 9 to generate electricity in a controllable and stable manner.
  • the power generation system includes a gas storage device 7, a cyclone engine 8 and a generator 9.
  • the compressed air in the gas storage device 7 is used to drive the cyclone engine 8 to drive the generator 9 to generate power in a controllable and stable manner.
  • the principle of cyclone engine 8 is to convert the energy of compressed air into mechanical energy, such as China Patent No. ZL201810944526.3 discloses a gas power device. Its structure adopts an outer ring, the inner ring surface of which is provided with a plurality of driving recesses in the circumferential direction; a core body, which is coaxially arranged in the outer ring and can be relative to the outer ring.
  • the outer ring surface of the core is provided with at least one nozzle, at least one row of ports, and at least one flushing channel between the nozzle and the discharge port; at least one air inlet channel connected to at least one nozzle; and at least one row of The gas channel is connected to at least one exhaust port; the gas enters from the air inlet channel, and is ejected step by step through the nozzle of the core and the secondary flow channel, acting on at least two driving recesses in the circumferential direction of the outer ring, causing these driving recesses The thrust pushes the outer ring to rotate and perform work to achieve power output. Finally, the gas is discharged through the exhaust channel through the exhaust port of the core.
  • the wind collection device can collect wind energy and convert it into the potential energy of compressed gas when the wind is strong.
  • the power generation system sets a valve on the pipe connecting the gas storage device 7 and the engine 8, and uses the opening size of the valve to control the speed and torque of the cyclone engine 8. , so that the generator 9 can output a stable and controllable current.
  • the above-mentioned power generation system is only one application mode of the technical solution disclosed in the present invention.
  • the compressed air generated by the technical solution disclosed in the present invention can also be used in gas filling stations as an aerodynamic generator.
  • Energy supplement package, and the hot and cold generator can also be used to realize different application scenarios such as supply of hot and cold air without electricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明提出了一种风力采集装置、储气设备和发电系统,该风力采集装置包括叶轮,所述叶轮的外侧壁由四个相互拼接的导流面组成,四个相互拼接的所述导流面的径向横截面对应为四条相互拼接的导流曲线,所述导流面由所述导流曲线绕叶轮的轴心线在轴向上旋转拉伸形成;所述导流曲线包括一段凸形的第一对数螺旋线以及一段凹形的第二对数螺旋线,所述导流曲线的所述第一对数螺旋线与所述第二对数螺旋线在靠近轴心线一侧平滑过渡连接。不同方向的风进入本发明叶轮的导流面形成气旋以推动叶轮旋转,将采集的风力转换为旋转轴的旋转力,可以用于驱动压缩装置进行空气压缩,压缩存储的空气可以带动气旋发动机实现稳定可控发电。

Description

一种风力采集装置、储气设备和发电系统
相关申请
本申请要求保护在2022年04月16日提交的申请号202210400442.X为的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明属于风力工程的技术领域,具体涉及一种风力采集装置、储气设备和发电系统。
背景技术
风能是一种清洁无公害的可再生能源,我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。风力驱动的原理是把风的动能转变成机械动能,再将机械能诸应用于诸如发电等其他领域。
例如,中国发明专利文献“CN201811623274.0”提出“利用风力收集压缩空气作为动力的发电系统”,通过压缩空气进行蓄能,将间歇式风能“拼接”起来,储存的压缩空气通过气体动力装置转化为机械能驱动发电机,从而实现稳定可控制地输出。但是该技术方案通过改造水平轴风机进行传动,不利水平轴风叶对风转向,容易引起“对风损失”,风能利用率低,且水平轴风机的叶片达到几十米甚至上百米,设置面积需求大,气动噪音大,成本高,安装难度大,不利于分布建设于城市区或居民区,难以实现商业化。
因此需要设计一种性价比高,低噪音,便于安装和维护,易于分布式 设置的风力采集装置。
发明内容
针对现有技术中常见的风机其对风能的利用率不佳的技术问题,本发明提出了一种风力采集装置、储气设备和发电系统,用以解决上述问题。
第一方面,本发明提出了一种风力采集装置,包括叶轮,所述叶轮的外侧壁由四个相互拼接的导流面组成,四个相互拼接的所述导流面的径向横截面对应为四条相互拼接的导流曲线,所述导流面由所述导流曲线绕叶轮的轴心线在轴向上旋转拉伸形成;所述导流曲线包括一段凸形的第一对数螺旋线以及一段凹形的第二对数螺旋线,所述导流曲线的所述第一对数螺旋线与所述第二对数螺旋线在靠近轴心线一侧平滑过渡连接;定义某一所述导流曲线的所述第一对数螺旋线的延长线与所述第二对数螺旋线的延长线相交于点A,该导流曲线的第一对数螺旋线远离交点A的端点为B;该导流曲线的第二对数螺旋线远离交点A的端点为C;其中,定义AB连线长度为L1,AC连线长度为L2;则L1=0.8~1.2L2;∠BAC=90~115°。
优选的,位于所述导流面两端的所述导流曲线相对所述叶轮的轴心线旋转的角度范围为80~100°。
优选的,所述第一对数螺旋线与第二对数螺旋线之间通过弧形曲线平滑过渡连接。
优选的,该风力采集装置还包括两圆形盖板,两所述盖板分别设置于所述叶轮的两端,所述导流面的两端与所述盖板密封连接。
进一步优选的,所述叶轮的直径为D1,所述叶轮的高度为H,所述叶轮的直径D1与所述叶轮的高度H的比例关系为D1=0.7~0.9H;所述盖板的直径为D2,则D2=0.90~1.1D1
进一步优选的,四段所述导流曲线的内切圆的直径为D3,则D3≤0.5D1
优选的,所述第一对数螺旋线和所述第二对数螺旋线的走向角范围为60~80°。
优选的,所述盖板连接有转动组件,所述转动组件包括旋转轴,所述旋转轴与盖板的底壁固定连接。
第二方面,本发明还提出了一种储气设备,包括加压装置、储气装置、以及如上所述的风力采集装置,所述风力采集装置将叶轮采集的风力转化为旋转轴的旋转力,旋转轴驱动所述加压装置进行空气压缩,所述储气装置用于储存所述加压装置压缩的气体。
第三方面,本发明还提出了一种发电系统,包括上述的储气设备,还包括气旋发动机和发电机,利用所述储气装置内的压缩空气驱动所述气旋发动机带动所述发电机可控稳定发电。
与现有技术相比,本发明的有益成果在于:
(1)本发明的叶轮采用了与传统风力驱动装置不同的设计思路,传统风力驱动装置的叶片为叶轮“月牙形”的凸起部分;本发明的“叶片”则是叶轮的凹型部分即导流面,该设计思路为使来自不同方向的风在叶轮的导流面内形成气旋;
(2)以对数螺旋线凸型线段和对数螺旋线凹型线段作为导流曲线的基本构成,特别讲究的是叶轮采用四个导流面相互拼接而成,叶轮的径向横截面外轮廓为四条导流曲线相互拼接,并辅之点ABC,以及AB、AC连线长度,∠BAC的限定,使导流面获得合适的开口大小和受风区域,通过对数螺旋线线段位置的布设,使得不同方向的风能够在导流面形成气旋,气旋在导流面循环作用,不断对叶轮做功,从而驱动叶轮旋转,改变传统叶片设计的气流单次作用的现象,从而提升风力采集装置的效率,实现风能的高效利用;
(3)本装置的成本较低,易于安装和运输,低噪音,适合分布式设置,满足不同地区的要求,在微风、强风甚至台风下均可以正常工作,能应用 于小型到大型风机,性价比高;
(4)进一步的,该风力采集装置还包括两圆形盖板,盖板的直径是叶轮直径的0.95~1.1倍,由于盖板与导流面密封设置,从而在叶轮的轴向两端构成相对封闭的空间,此设计有利于形成稳定、持续的气旋,使得气旋在导流面的做功时间更长,从而进一步提升风能利用效率。
附图说明
包括附图以提供对实施例的进一步理解并且附图被并入本说明书中并且构成本说明书的一部分。附图图示了实施例并且与描述一起用于解释本发明的原理。将容易认识到其它实施例和实施例的很多预期优点,因为通过引用以下详细描述,它们变得被更好地理解。附图的元件不一定是相互按照比例的。同样的附图标记指代对应的类似部件。
图1示出了根据本发明的一个实施例的整体结构示意图;
图2示出了根据本发明实施例的风力采集装置结构示意图;
图3示出了根据本发明实施例的风力采集装置中去除盖板后的俯视图;
图4示出了本发明中所述的对数螺旋线结构示意图;
图5示出了本发明实施例的风力采集装置中导流曲线的示意图;
图6示出了本发明实施例的风力采集装置中导流曲线的另一实施例的示意图;
图7示出了本发明实施例的风力采集装置中气流的示意图;
图8-1、8-2示出了本发明实施例的风力采集装置中气流的仿真图;
图9示出了本发明实施例的风力采集装置的局部剖面图;
图10示出了本发明实施例的应用场景的流程框图。
图中各编号的含义:1、叶轮;2、导流面;3、导流曲线;301、第一对数螺旋线;302、第二对数螺旋线;4、盖板;5、转动组件;501、旋转轴;502、轴承;503、轴承座;6、加压装置;7、储气装置;8、气旋发动 机;9、发电机。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
第一方面,本发明提出了一种风力采集装置,图1示出了根据本发明的一个实施例的风力采集装置的整体结构示意图,如图1和图2所示,该风力采集装置包括叶轮1以及转动组件5。叶轮1的外侧壁由四个导流面2组成,通过四个导流面2绕叶轮1的轴心线依次相互拼接成环,以构成叶轮1的外侧壁。
其中,参照图2和图3,与传统风机的叶片设计思路不同的是,传统风机的叶轮1针对其叶片(即叶轮的呈月牙形的凸起部分)进行设计,通过设计其叶片的凹型迎风面与相对于该迎风面的凸型背风面在受风时气流单次做功的压力差,从而获得其叶轮1的旋转力。而本发明的叶轮1针对导流面2进行设计,使来自不同方向的风在叶轮的导流面内形成气旋,从而令气流多次做功,提升叶轮的风能利用效率,此为本方案的核心发明点。
具体的,每一导流面2的径向横截面对应一条导流曲线3,导流曲线3整体由两端朝轴心靠近,即将由两端朝轴心线靠近以相连接的凸型 侧面和凹型侧面作为一个整体进行设计,设计方向为使得叶轮1受到来自各个方向的风共同作用在导流面2上,在叶轮1上形成气旋,气旋在导流面2循环作用,不断对叶轮1做功,从而驱动叶轮1旋转,改变传统叶片设计的气流单次作用的现象,从而提升风力采集装置的效率,实现风能的高效利用。
导流面2由导流曲线3绕叶轮1的轴心线在轴向上旋转拉伸形成,在本实施例中,导流曲线3在轴向上匀速旋转,使得导流面2上导流曲线3端点的连线的螺旋升角恒定。在其他实施例中,根据设计需要,导流面2上导流曲线3端点的连线的螺旋升角可在一定范围内变化。
导流曲线3主要由一段凸形的第一对数螺旋线301以及一段凹形的第二对数螺旋线302构成。其中,第一对数螺旋线301和第二对数螺旋线302的平滑过渡部分处于靠近轴心线的一侧,导流面2属于一个单独的整体,横截面方向上由两端一凹一凸呈对数螺旋线状朝轴心靠近的导流曲线3构成,该导流曲线3的开口约呈90~115°。
为了表达的连贯性,本发明首先介绍对数螺旋线结构及其相关的几何和数学特性。对数螺旋线广泛存在于自然界中,小至鹦鹉螺壳、蜘蛛网、向日葵大至台风、银河系等。它是一条动点运动方向与极径所夹的角(走向角)恒定不变的曲线,具有良好的几何和数学特性,如以恒定角度与极半径相交,即定角特性;以极点为中心作伸缩变换,所得曲线仍为对数螺旋线;曲率半径是极角的递增函数,即渐变特性。
对数螺旋线是指动点运动方向与极径所夹的角(走向角)始终恒定不变的一条曲线,如图4所示,为对数螺旋线结构示意图。它的极坐标解 析式为:

k=cotα
其中,α为走向角,q为自变量极角,r0为初始极径。由对数螺旋线性质可知,同一个走向角的不同初始极径的对数螺旋线族,其形状和性质是相同的。因此,对数螺旋线的几何形状取决于走向角。
叶轮1的四个导流面2的横截面由四条导流曲线3相互拼接而成,每一条导流曲线3对应一个导流面2。
参照图3和图5,进一步,定义某一导流曲线3的第一对数螺旋线301的延长线与第二对数螺旋线302的延长线相交于点A,该导流曲线3的第一对数螺旋线301远离交点A的端点为点B;该导流曲线3的第二对数螺旋线302远离交点A的端点为点C;定义AB连线长度为L1;AC连线长度为L2;其中L1=0.8~1.2L2;∠BAC=90~115°。其中,第一对数螺旋线301和第二对数螺旋线302的走向角范围为60~80°。
参照图2和图7,本发明的叶轮1的横截面外轮廓为四条导流曲线3首尾相连,对导流曲线3的设计辅之点A、B、C,并对AB、AC连线长度以及∠BAC的限定,四条导流曲线3绕叶轮1的轴心线在轴向上旋转拉伸形成四个导流面2,使导流面2获得合适的开口大小、受风区域,利用导流曲线3中对数螺旋线具有动点运动方向与极径所夹的角(走向角)恒定不变、变曲率等特性,并通过对数螺旋线线段位置的布设,使得不同方向的风能够在导流面2形成气旋,如图8-1和8-2所示。气旋在导流面2循环作用,不断对叶轮1做功,从而驱动叶轮1旋转,改变传统叶片设计的气流单次作用的现象,从而提升风力采集装置的效率,实现风能的高效利 用。
需要特别说明的是本技术方案中导流面2的数量有且仅有四个,四个导流面2的结构是形成气旋效果的必要技术特征,相比其他现有技术中对叶片数量无过多要求,在一定范围内增加和减少都不会造成本质影响不同,在本技术方案中,只能采用四个导流面2的结构,这是由于形成气旋的要求对导流曲线3开口大小要求的限制,由于导流曲线3是环绕轴心线相互拼接而成,如采用三个导流面2结构,其开口必然会在120°以上,将会导致气流旋转约束力过小,无法形成气旋;如采用五个导流面2,其开口大小会在72°以上附近,导致转角过急,无法形成气旋,且导流面2过多,会使得在接受一个方向的水平风时,单个导流面2的外侧壁轮廓面的受风区域不足,难以形成气旋。
本发明中,限定AB连线长度L1和AC连线长度L2的比值不超过一定范围,从而限定交点A在BC连线的中垂线附近,即第一对数螺旋线301和第二对数螺旋线302的平滑过渡区在BC连线的中垂线附近,从而气流在导流曲线3中部被约束转向,在凹型的第二对数螺旋线302进一步约束下形成气旋。
参照图5,在本实施例中,相邻两导流曲线3的第一对数螺旋线301和第二对数螺旋线302直接相交呈尖角状,即四条导流曲线3之间首尾相连。此时,B点为该导流曲线3的第一对数螺旋线301与相邻的导流曲线3的第二对数螺旋线302的交点;C点为导流曲线3的第二对数螺旋线302与相邻的导流曲线3的第一对数螺旋线301的交点。在此基础上,进一步的,∠BAC的范围选取在100~112°之间,能够使得导流曲 线3获得更佳的导流效果。
在其他实施例中,考虑到工艺等因素,可以对相邻两导流曲线3的连接处进行倒角处理,此时相邻两导流曲线3的第一对数螺旋线301与第二对数螺旋线302之间具有一段用于过渡的倒圆角弧或曲线弧,参照图6。
以其中一条导流曲线3为例,导流曲线3的第一对数螺旋线301的延长线与第二对数螺旋线302的延长线相交于点A,该导流曲线3的第一对数螺旋线301远离交点A的端点为点B';该导流曲线3的第二对数螺旋线302远离交点A的端点为点C'。其技术特征满足∠B'AC'=90~115°,AB'连线长度为L1,AC'连线长度为L2,其中L1=0.8~1.2L2。在这样的实施例中,倒圆角弧或曲线弧仅是用于相邻两导流曲线3之间的拼接过渡,其长度的占比较小,不影响导流曲线所旋转拉伸形成的导流面的功效,属于本申请所要求保护的权利范围。
进一步的,参照图3和图9,第一对数螺旋线301与第二对数螺旋线302之间采用平滑过渡连接。除了直接平滑过渡连接,还可以通过圆弧、对数螺旋弧等曲线进行衔接过渡。在此实施例中,第一对数螺旋线301与第二对数螺旋线302之间采用圆弧平滑过渡连接,以保障获得合适的过渡开口,避免第一对数螺旋线301与第二对数螺旋线302之间过渡的开口过大或者过小。需要注意的是,在导流曲线3中第一对数螺旋线301与第二对数螺旋线302的长度应该占主体部分,比较优选的范围为80%以上,更优选的为85%~95%,也就是说用来平滑过渡的中间曲线不宜过长。
进一步的,在本实施例中,该风力采集装置还包括两圆形盖板4,两盖板4分别固定连接于叶轮1的两端。其中,导流面2的两端与盖板4之间通过密封连接,以保证盖板4与叶轮1是一个整体的构造。由于盖板4与导流面2密封设置,从而在叶轮1的轴向两端对气旋进行封闭,有利于在盖板4附近形成稳定、持续的气旋,从而使得气旋在导流面2的做功时间更长,从而进一步提升风能利用效率。
进一步的,定义叶轮1的直径为D1,叶轮1的高度为H,盖板4的直径为D2,则叶轮1的直径D1与叶轮1的高度H、盖板4的直径D2之间存在如下比例关系:D1=0.7~0.9H,D2=0.95~1.1D1
具体的,位于导流面2两端的导流曲线3相对叶轮1的轴心线旋转的角度范围为80~100°,叶轮1的外侧壁在此旋转角度范围内,能够保证引导进入叶轮1的气流能够更快的涌向两端的盖板4,以形成持续、稳定的气旋。
其中,以四段导流曲线3所形成的环形做内切圆,定义该内切圆的直径为D3,则D3≤0.5D1。更优选的范围为0.2D1≤D3≤0.3D1,通过该优选范围即可以获得导流面2足够深的凹陷程度以采集风力,又留有足够的供旋转轴501安装的空间,以及通过每条导流曲线3上位于内切圆上的点设置更加合适的开口大小。
具体的,在此实施例中,叶轮1的高度为2m,叶轮1的直径为1.6m,盖板4的直径为1.6m。此时风力采集装置的质量为100KG,当风速为15m/s时,该风力采集装置的转速约200转/分,输出力矩约为420N/m(不含惯性矩)。
此外,该风力采集装置同样可以通过多个叶轮1在轴向上相互堆叠组合形成另外一个高度上更高的叶轮1,对应的,这个新的叶轮1的直径也可以做相应改变,以到达更好的采风效果,在此不多赘述。因此可知该风力采集装置的成本较低,易于安装和运输,合适分布式设置。
具体的,参照图9,在本实施例中,盖板4的底部固定连接有转动组件5,转动组件5包括旋转轴501、轴承502以及轴承座503。其中,旋转轴501的一端与盖板4的底壁固定连接,轴承502转动连接在轴承座503内且与旋转轴501过盈配合。通过设置的转动组件5确保改风力采集装置的转动效果稳定,进一步提高对风能的利用率。
需要指出的,此实施例中的转动组件5也可以其他具有相同效果的装置替代,在此不再展开赘述。
第二方面,本发明还提出了一种储气设备,如图1所示,包括加压装置6、储气装置7、以及上述的风力采集装置,风力采集装置将叶轮1采集的风力转化为旋转轴501的旋转力,旋转轴501驱动加压装置6进行空气压缩,储气装置7用于储存加压装置6压缩的气体。
第三方面,本发明还提出了一种发电系统,如图1所示,包括上述的储气设备,还包括气旋发动机8和发电机9,利用所述储气装置7内的压缩空气驱动所述气旋发动机8带动所述发电机9可控稳定发电。
其中发电系统,包括储气装置7,气旋发动机8和发电机9,利用所述储气装置7内的压缩空气驱动所述气旋发动机8带动所述发电机9可控稳定发电。
气旋发动机8原理在于将压缩空气的能量转化为机械能,比如中国 专利号ZL201810944526.3所公开的一种气体动力装置,其结构采用一外圈,其内环面周向上设有多个驱动凹部;一芯体,其同轴设置在外圈内并能相对外圈转动,芯体的外环面设有至少一喷口、至少一排口、以及位于喷口和排口之间的至少一次冲流道;至少一进气通道,其连通至少一喷口;以及至少一排气通道,其连通至少一排口;气体从进气通道进入,通过芯体的喷口及次冲流道的逐阶喷出,作用于外圈周向上的至少二驱动凹部,对这些驱动凹部产生推力推动外圈旋转做功,实现动力输出,最后,气体通过芯体的排口经排气通道排出。
风力采集装置可以在无论风大风小时收集风能转化为压缩气体的势能,发电系统通过在连通储气装置7与发动机8的管道上设置阀门,利用阀门的开口大小来控制气旋发动机8的转速和扭矩,以使发电机9输出稳定可控的电流。
参照图10,需要特别说明的是,上述的发电系统只是本发明公开的技术方案的其中一种应用方式,本发明公开的技术方案所产生的压缩空气还可以应用于加气站作为空气动力的能源补充配套,同时还可利用冷热发生器实现无电状态下的冷暖气供给等不同的应用场景。
以上描述了本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅 是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。措词‘包括’并不排除在权利要求未列出的元件或步骤的存在。元件前面的措词‘一’或‘一个’并不排除多个这样的元件的存在。在相互不同从属权利要求中记载某些措施的简单事实不表明这些措施的组合不能被用于改进。在权利要求中的任何参考符号不应当被解释为限制范围。

Claims (10)

  1. 一种风力采集装置,其特征在于,包括叶轮(1),所述叶轮(1)的外侧壁由四个相互拼接的导流面(2)组成,四个相互拼接的所述导流面(2)的径向横截面对应为四条相互拼接的导流曲线(3),所述导流面(2)由所述导流曲线(3)绕叶轮(1)的轴心线在轴向上旋转拉伸形成;
    所述导流曲线(3)包括一段凸形的第一对数螺旋线(301)以及一段凹形的第二对数螺旋线(302),所述导流曲线(3)的第一对数螺旋线(301)与第二对数螺旋线(302)在靠近轴心线一侧平滑过渡连接;定义某一导流曲线(3)的第一对数螺旋线(301)的延长线与第二对数螺旋线(302)的延长线相交于点A,该导流曲线(3)的第一对数螺旋线(301)远离交点A的端点为B;该导流曲线(3)的第二对数螺旋线(302)远离交点A的端点为C;
    其中,定义AB连线长度为L1,AC连线长度为L2;则L1=0.8~1.2L2;∠BAC=90~115°。
  2. 根据权利要求1所述的风力采集装置,其特征在于,位于所述导流面(2)两端的所述导流曲线(3)相对所述叶轮(1)的轴心线旋转的角度范围为80~100°。
  3. 根据权利要求1所述的风力采集装置,其特征在于,所述第一对数螺旋线(301)与第二对数螺旋线(302)之间通过弧形曲线平滑过渡连接。
  4. 根据权利要求1所述的风力采集装置,其特征在于,该风力采集装置还包括两圆形盖板(4),两所述盖板(4)分别设置于所述叶轮(1)的两端,所述导流面(2)的两端与所述盖板(4)密封连接。
  5. 根据权利要求4所述的风力采集装置,其特征在于,所述叶轮(1)的直径为D1,所述叶轮(1)的高度为H,所述叶轮(1)的直径D1与所述叶轮(1)的高度H的比例关系为D1=0.7~0.9H;所述盖板(4)的直径为 D2,则D2=0.95~1.1D1
  6. 根据权利要求5所述的风力采集装置,其特征在于,四段所述导流曲线(3)的内切圆的直径为D3,则D3≤0.5D1
  7. 根据权利要求1所述的风力采集装置,其特征在于,所述第一对数螺旋线(301)和所述第二对数螺旋线(302)的走向角范围为60~80°。
  8. 根据权利要求4所述的风力采集装置,其特征在于,所述盖板(4)连接有转动组件(5),所述转动组件(5)包括旋转轴(501),所述旋转轴(501)与盖板(4)的底壁固定连接。
  9. 一种储气设备,其特征在于,包括加压装置(6)、储气装置(7)、以及如权利要求1-8中任一所述的风力采集装置,所述风力采集装置将叶轮(1)采集的风力转化为旋转轴(501)的旋转力,旋转轴(501)驱动所述加压装置(6)进行空气压缩,所述储气装置(7)用于储存所述加压装置(6)压缩的气体。
  10. 一种发电系统,其特征在于,包括如权利要求9中所述的储气设备,还包括气旋发动机(8)和发电机(9),利用所述储气装置(7)内的压缩空气驱动所述气旋发动机(8)带动所述发电机(9)可控稳定发电。
PCT/CN2023/081953 2022-04-16 2023-03-16 一种风力采集装置、储气设备和发电系统 WO2023197818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210400442.XA CN114704426B (zh) 2022-04-16 2022-04-16 一种风力采集装置、储气设备和发电系统
CN202210400442.X 2022-04-16

Publications (1)

Publication Number Publication Date
WO2023197818A1 true WO2023197818A1 (zh) 2023-10-19

Family

ID=82175054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081953 WO2023197818A1 (zh) 2022-04-16 2023-03-16 一种风力采集装置、储气设备和发电系统

Country Status (2)

Country Link
CN (1) CN114704426B (zh)
WO (1) WO2023197818A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704426B (zh) * 2022-04-16 2024-06-11 传孚科技(厦门)有限公司 一种风力采集装置、储气设备和发电系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035983A (zh) * 2004-08-10 2007-09-12 1592834安大略有限公司 风力涡轮机装置
US20100327596A1 (en) * 2009-06-24 2010-12-30 Michael Anthony Williams Venturi Effect Fluid Turbine
US20110206526A1 (en) * 2010-02-23 2011-08-25 Roberts Gary D Vertical-axis wind turbine having logarithmic curved airfoils
CN103511178A (zh) * 2012-06-21 2014-01-15 王纯柱 一种垂直轴风力发电机桨叶叶型
CN204061044U (zh) * 2014-07-10 2014-12-31 科云特(天津)能源科技有限公司 一种垂直轴风力百千瓦发电机及其叶轮
DE102017004714A1 (de) * 2017-05-16 2018-11-22 Rüdiger Ufermann Savonius Turbine
CN110325741A (zh) * 2017-02-14 2019-10-11 太阳能焦耳知识产权控股有限公司 对螺旋风扇/泵/涡轮的改进
CN113503222A (zh) * 2021-08-04 2021-10-15 传孚科技(厦门)有限公司 一种加压系统和发电系统
CN114704426A (zh) * 2022-04-16 2022-07-05 传孚科技(厦门)有限公司 一种风力采集装置、储气设备和发电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037987A (zh) * 2006-03-17 2007-09-19 侯书奇 垂直轴风力发动机的三叶风能传递腔式风轮
WO2010071850A2 (en) * 2008-12-19 2010-06-24 Higher Dimension Materials, Inc. Multi-rotor vertical axis wind turbine
KR101375289B1 (ko) * 2011-03-30 2014-03-17 신종섭 나선형 사보니우스 로터용 조립부재 및 나선형 사보니우스 로터의 제작방법
JP3184859U (ja) * 2012-09-07 2013-07-25 康之 鈴木 発電装置用の回転軸,水力発電装置又は風力発電装置
CN113503223A (zh) * 2021-08-04 2021-10-15 传孚科技(厦门)有限公司 一种聚风装置和聚风装置驱动的设备
CN216922346U (zh) * 2022-04-16 2022-07-08 传孚科技(厦门)有限公司 一种风力采集装置、储气设备和发电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035983A (zh) * 2004-08-10 2007-09-12 1592834安大略有限公司 风力涡轮机装置
US20100327596A1 (en) * 2009-06-24 2010-12-30 Michael Anthony Williams Venturi Effect Fluid Turbine
US20110206526A1 (en) * 2010-02-23 2011-08-25 Roberts Gary D Vertical-axis wind turbine having logarithmic curved airfoils
CN103511178A (zh) * 2012-06-21 2014-01-15 王纯柱 一种垂直轴风力发电机桨叶叶型
CN204061044U (zh) * 2014-07-10 2014-12-31 科云特(天津)能源科技有限公司 一种垂直轴风力百千瓦发电机及其叶轮
CN110325741A (zh) * 2017-02-14 2019-10-11 太阳能焦耳知识产权控股有限公司 对螺旋风扇/泵/涡轮的改进
DE102017004714A1 (de) * 2017-05-16 2018-11-22 Rüdiger Ufermann Savonius Turbine
CN113503222A (zh) * 2021-08-04 2021-10-15 传孚科技(厦门)有限公司 一种加压系统和发电系统
CN114704426A (zh) * 2022-04-16 2022-07-05 传孚科技(厦门)有限公司 一种风力采集装置、储气设备和发电系统

Also Published As

Publication number Publication date
CN114704426A (zh) 2022-07-05
CN114704426B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
EP1834086B1 (en) Omni-directional wind turbine
US20080075599A1 (en) Fluid energy converter
WO2023197818A1 (zh) 一种风力采集装置、储气设备和发电系统
Kou et al. Modeling analysis and experimental research on a combined-type vertical axis wind turbine
CN216922346U (zh) 一种风力采集装置、储气设备和发电系统
WO2024007928A1 (zh) 一种风力发电机组的嵌入式风轮结构
CN112112754B (zh) 一种风力采集装置和风力发电装置
CN108730113B (zh) 适用于微风发电的微风聚能装置
EP3665387B1 (en) A rotor for a vertical axis wind turbine
CN101344071A (zh) 风车叶片
CN114776520B (zh) 一种savonius透平增压泵
Pellegri The complementary betz theory
CN202417814U (zh) 混合型垂直轴风力发电机风轮
CN213270122U (zh) 聚能型水平轴风力机
CN204572334U (zh) 一种低速风力双重引射混合器
US20100098543A1 (en) Rotor structure of wind turbine
CN105909465A (zh) 一种涡流离心式风力发电装置
AU2005318921B2 (en) Omni-directional wind turbine
CN104454331A (zh) 一种低速风力双重引射混合器
CN205805829U (zh) 一种涡流离心式风力发电装置
TWI762391B (zh) 全方向風力渦輪及全方向風力通風裝置
CN105508133B (zh) 一种流体元素的捕获装置和方法
CN104454339A (zh) 一种基于锥齿轮传动的垂直轴风机叶轮
CN212928059U (zh) 一种向心叶轮
GB2565294A (en) A rotor for a vertical axis wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787466

Country of ref document: EP

Kind code of ref document: A1