WO2023197760A1 - 集成模块、显示模组、感光触控交互系统及方法 - Google Patents

集成模块、显示模组、感光触控交互系统及方法 Download PDF

Info

Publication number
WO2023197760A1
WO2023197760A1 PCT/CN2023/078359 CN2023078359W WO2023197760A1 WO 2023197760 A1 WO2023197760 A1 WO 2023197760A1 CN 2023078359 W CN2023078359 W CN 2023078359W WO 2023197760 A1 WO2023197760 A1 WO 2023197760A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
touch
signal
module
photosensitive sensor
Prior art date
Application number
PCT/CN2023/078359
Other languages
English (en)
French (fr)
Inventor
王朝
朱卫强
Original Assignee
深圳市洲明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210373546.6A external-priority patent/CN114637430A/zh
Priority claimed from CN202210375057.4A external-priority patent/CN114816114A/zh
Priority claimed from CN202210373530.5A external-priority patent/CN114637432A/zh
Application filed by 深圳市洲明科技股份有限公司 filed Critical 深圳市洲明科技股份有限公司
Publication of WO2023197760A1 publication Critical patent/WO2023197760A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • This application relates to the field of display technology, and in particular to an integrated module, a display module, a photosensitive touch interaction system and a method.
  • the detection sensor that implements the touch function is generally separated from the display, that is, an additional touch system independent of the display structure is used to realize the touch of the corresponding display. control function.
  • the present application provides an integrated module, including an integrated substrate, a first surface of which is provided with a number of pixels, and a second surface of which is provided with photosensitive sensors, and the integrated substrate is respectively connected with The plurality of pixels and the photosensitive sensor are electrically connected; the integrated substrate is also provided with a light guide through hole penetrating the first surface and the second surface, and the photosensitive surface of the photosensitive sensor is facing The light guide through hole.
  • the light guide through holes are filled with light guide pillars.
  • the light guide through hole is filled with a plurality of filters.
  • the plurality of pixel points are distributed in a matrix on the first surface, and each of the pixel points includes three lamp bead chips and a common electrode pad, and the three lamp bead chips and a common electrode pad are The common electrode pads are distributed in a field shape.
  • the common electrode pad of the pixel point located adjacent to the light-guiding through hole is located immediately adjacent to the light-guiding through hole.
  • a sealant layer is further provided on the first surface of the integrated substrate to seal and protect the plurality of pixels.
  • a plurality of driver chips are further provided on the second surface of the integrated substrate, and the plurality of driver chips are electrically connected to the integrated substrate.
  • a black glue layer is further provided on the second surface of the integrated substrate to seal and protect the plurality of driver chips and the photosensitive sensor.
  • this application provides a display module including several of the above integrated modules.
  • the display module further includes a module PCB board, and a plurality of the integrated modules are fixed in a matrix distribution on one side surface of the module PCB board.
  • the present application also provides a photosensitive touch interaction system, which is applied to a display module including a plurality of integrated modules.
  • Each integrated module is provided with a number of pixels on its front side; the photosensitive touch control system
  • the interactive system includes a main controller and a number of photosensitive sensors.
  • the photosensitive sensors are arranged in one-to-one correspondence with the integrated modules.
  • Each photosensitive sensor is arranged on the back side of the corresponding integrated module, and each photosensitive sensor is arranged on the back side of the integrated module.
  • the photoelectric sensing layer of the photosensitive sensor faces the light guide through hole of the corresponding integrated module, and the main controller is electrically connected to the plurality of photosensitive sensors respectively.
  • the photosensitive sensor further includes a signal value output module, wherein the photoelectric sensing layer is configured to sense the light intensity at the light guide through hole, generate a corresponding electrical signal, and send it to the Signal value output module; the signal value output module is configured to detect the size of the electrical signal sent from the photoelectric induction layer, obtain the corresponding signal value and feed it back to the main control Controller.
  • the material of the photoelectric sensing layer is selected from any one of selenium, germanium, cadmium sulfide, and gallium arsenide.
  • the signal value output module is a voltage comparator, the non-inverting input terminal of the voltage comparator inputs the reference voltage signal output by the main controller, and the inverting input terminal of the voltage comparator inputs
  • the electrical signal output by the photoelectric induction layer, the output end of the voltage comparator is electrically connected to the main controller, so that the main controller learns the photoelectric induction based on the level signal output by the voltage comparator.
  • the signal value of the electrical signal output by the layer is a voltage comparator, the non-inverting input terminal of the voltage comparator inputs the reference voltage signal output by the main controller, and the inverting input terminal of the voltage comparator inputs
  • the electrical signal output by the photoelectric induction layer, the output end of the voltage comparator is electrically connected to the main controller, so that the main controller learns the photoelectric induction based on the level signal output by the voltage comparator.
  • the signal value of the electrical signal output by the layer is a voltage comparator, the non-inverting input terminal of the voltage comparat
  • the main controller includes a signal monitoring module and a touch interaction module, wherein the signal monitoring module is configured to monitor the real-time output signal of each of the photosensitive sensors; the touch interaction module, It is configured to determine whether touch interaction is currently occurring in the display module and perform corresponding touch interaction positioning based on the output signal of each of the photosensitive sensors.
  • the signal monitoring module includes a mutation signal detection unit and a mutation signal statistics unit, wherein the mutation signal detection unit is configured as a photosensitive sensor that detects whether an output signal mutation currently occurs; the mutation signal statistics unit , configured to obtain the position and number of photosensitive sensors with sudden changes in output signals when a photosensitive sensor with a sudden change in output signal currently occurs.
  • the mutation signal detection unit is further configured to detect the signal change value of the corresponding photosensitive sensor when the output signal of any of the photosensitive sensors changes, and detect when the signal change value is greater than the When a preset threshold is reached, it is determined that the output signal of the corresponding photosensitive sensor suddenly changes.
  • the touch interaction module includes a first judgment execution unit, a second judgment execution unit and a third judgment execution unit, wherein the first judgment execution unit is configured so that no sudden change in the output signal occurs currently.
  • the second judgment execution unit is configured to output signals when the current
  • the third judgment execution unit is configured to judge that a touch interaction in the form of surface touch is currently occurring in the display module when the number of photosensitive sensors that currently experience sudden changes in output signals is greater than one but less than the second preset threshold, and Execute the preset surface touch interaction positioning method to perform corresponding touch interaction positioning.
  • the light guide through hole is filled with a light guide column; and/or the light guide through hole is filled with a plurality of filters.
  • the display module further includes a module PCB board, and a plurality of the integrated modules are fixed on one side surface of the module PCB board in a matrix distribution, and the back side of each integrated module
  • the photosensitive sensors are all electrically connected to the main controller fixed on the module PCB board.
  • this application also provides a photosensitive touch interaction method, which is applied to a display module including multiple integrated modules.
  • Each integrated module is provided with a number of pixels and a photosensitive sensor.
  • the touch interaction method includes the following steps: monitoring the output signals of each photosensitive sensor of the display module in real time; judging whether touch interaction is currently occurring in the display module according to the output signal of each photosensitive sensor and performing corresponding Touch interactive positioning.
  • the step of monitoring the real-time output signal of each photosensitive sensor of the display module specifically includes: detecting whether a photosensitive sensor with a sudden change in output signal currently occurs, and detecting when a photosensitive sensor with a sudden change in output signal currently occurs. , obtain the location and number of photosensitive sensors with sudden changes in output signals.
  • the step of detecting whether a photosensitive sensor whose output signal suddenly changes occurs currently includes: if the output signal of any of the photosensitive sensors changes, detecting the signal change value of the corresponding photosensitive sensor, and When the signal change value is greater than the first preset threshold, it is determined that the corresponding photosensitive sensor currently has an output signal mutation.
  • the step of determining whether touch interaction occurs in the display module and performing corresponding touch interaction positioning based on the output signal of each photosensitive sensor specifically includes: if there is currently no sudden change in the output signal. If the number of photosensitive sensors or photosensitive sensors with sudden changes in output signals is greater than the second preset threshold, it is determined that the display module does not currently have touch interaction; if the number of photosensitive sensors with sudden changes in output signals is only one, then Determine that the display module is currently experiencing touch interaction in the form of a touch, and execute a preset touch interaction positioning method to perform corresponding touch interaction positioning; if the number of photosensitive sensors that currently have sudden changes in output signals is greater than one but If the value is less than the second preset threshold, it is determined that the display module is currently experiencing touch interaction in the form of surface touch, and a preset surface touch interaction positioning method is executed to perform corresponding touch interaction positioning.
  • the preset touch interactive positioning method includes the following steps: sequentially lighting each pixel point on the integrated module where the photosensitive sensor with an output signal mutation is located to obtain each When the pixel points are lit, the corresponding photosensitive sensor The light intensity signal output by the sensor; compare and sort the light intensity signal corresponding to each pixel point when it is lit, and select the pixel with the strongest light intensity signal corresponding to the pixel point when it is lit. The coordinates of the point are determined as the coordinates of the touch point.
  • the preset point-touch interactive positioning method includes the following steps: selecting four pixel points located at the outer four corners of the integrated module where the photosensitive sensor whose output signal changes suddenly is located; time-sharing points Light the four pixel points to obtain the light intensity signal output by the corresponding photosensitive sensor when each pixel point is lit; according to the corresponding light intensity signal when the four pixel points are lit in time-sharing The light intensity signal is used to solve the point deviation, and the corresponding touch point coordinates are calculated.
  • the preset point-touch interactive positioning method includes the following steps: performing a refresh operation of a preset pattern on the integrated module where the photosensitive sensor experiencing a sudden change in output signal is located, and obtaining the preset pattern
  • the corresponding light intensity signal output by the photosensitive sensor is compared with the preset database to obtain the coordinates of the pixel corresponding to the light intensity signal to determine the coordinates of the touch point.
  • the method for establishing the preset database includes the following steps: performing a refresh operation of a preset pattern on each integrated module, and recording the touch when the current integrated module performs a refresh operation. When each pixel is clicked, the corresponding light intensity signal output by the photosensitive sensor is used to establish the preset database.
  • the preset touch interactive positioning method includes the following steps: lighting up each pixel point on the integrated module where the photosensitive sensor with a sudden change in output signal is located in a time-sharing manner to determine each When the pixel point is lit, whether the light intensity signal output by the corresponding photosensitive sensor is greater than the third preset threshold; when the pixel point is lit, the light intensity signal output by the corresponding photosensitive sensor is greater than the preset threshold value
  • the coordinates of the pixel points are determined as touch point coordinates.
  • the preset surface touch interaction positioning method includes the following steps: calculating the outline of the touch surface based on the position and output signal intensity of each photosensitive sensor that currently experiences a sudden change in output signal, and calculating the outline of the touch surface according to the touch
  • the outline of the control surface determines the coordinates of the touch point.
  • Figure 1 is a schematic front structural view of an integrated module provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the back of the integrated module shown in Figure 1.
  • Figure 3 is a schematic cross-sectional structural diagram of the integrated module shown in Figure 1.
  • FIG. 4 is a schematic structural diagram of a display module provided by another embodiment of the present application.
  • Figure 5 is a partial enlarged structural diagram of the display module shown in Figure 4.
  • Figure 6 is a connection block diagram of a photosensitive touch interaction system provided by an embodiment of the present application.
  • FIG. 7 is a schematic connection block diagram of the photosensitive sensor of the photosensitive touch interactive system shown in FIG. 6 .
  • FIG. 8 is a schematic connection block diagram of the main controller of the photosensitive touch interactive system shown in FIG. 6 .
  • FIG. 9 is a flow chart of a preset touch interactive positioning method provided by an embodiment of the present application.
  • FIG. 10 is another flow chart of a preset touch interactive positioning method provided by an embodiment of the present application.
  • Figure 11 is another flow chart of a preset touch interactive positioning method provided by an embodiment of the present application.
  • Figure 12 is another flow chart of a preset touch interactive positioning method provided by an embodiment of the present application.
  • Figure 13 is a flow chart of a photosensitive touch interaction method provided by an embodiment of the present application.
  • FIG. 14 is a specific flow chart of step S120 of the photosensitive touch interaction method shown in FIG. 13 .
  • the first is to install an infrared frame outside the screen, use an infrared tube to detect the infrared light reflected from the touch point, and calculate the accurate coordinates of the touch point to complete the touch refresh.
  • the advantages of this method are low cost, low delay, and the ability to quickly and accurately determine the coordinates of the touch point.
  • the disadvantage is that the placement of the infrared tube requires a border around the screen, making it impossible to achieve borderless display.
  • the second method is to lay a layer of metal grid on the surface of the screen, and use wires of conductive metals such as copper and their oxides to densely spread on the conductive layer of the PET substrate to form a regular-shaped grid.
  • the screen can be touched through induction Implement signal transmission function. Its advantages are low cost, simple manufacturing process, high yield, rollable, and low sheet resistance; its disadvantage is that moiré fringes may occur, which is difficult to completely overcome.
  • the third method is to place a camera in front of the screen, first spray a layer of protective film on the screen surface, and use the preset camera in front of the screen to capture the touch points and perform image processing to achieve precise positioning of the screen touch points. Its advantages are high positioning accuracy and good screen integration effect; its disadvantage is high latency, and each time it is necessary to select the camera placement position and debug the touch system based on the on-site conditions.
  • the detection sensors that implement the touch function are all set independently from the display screen. That is, these three solutions all implement the display screen through an additional touch system that is independent of the display screen structure. Touch functionality. Although this can bring benefits such as low cost, low technical implementation difficulty, and easy maintenance, it inevitably increases the complexity of the display structure. At the same time, it also affects the display effect of the display, and there is touch delay. The problem.
  • the embodiment of the present application provides an integrated module 100.
  • the integrated module 100 includes an integrated substrate 110.
  • a number of pixels 120 are provided on the first surface of the integrated substrate 110.
  • the second surface of the integrated substrate 110 is A photosensitive sensor 130 is provided, and the integrated substrate 110 is electrically connected to a plurality of pixels 120 and the photosensitive sensor 130 respectively.
  • the integrated substrate 110 is also provided with a light guide through hole 111 penetrating the first surface and the second surface, and the photosensitive surface of the photosensitive sensor 130 faces the light guide through hole 111 .
  • the photosensitive sensor 130 in order to better realize the photosensitive detection of the photosensitive sensor 130 , the photosensitive sensor 130 can be disposed in the center of the second surface.
  • the light guide hole 111 It is also opened in the center of the integrated substrate 110, so that a number of pixels 120 can be more regularly distributed around the light guide hole 111, thereby reducing the difficulty of positioning the photosensitive sensor 130 after photosensitive detection.
  • the light guide post 140 is filled in the light guide through hole 111 .
  • the light irradiating on the light guide through hole 111 can be uniformly guided to the photosensitive sensor 130 , that is, The light guide column 140 plays the role of light guide and light uniformity, so that the bundled light is evenly distributed in the light guide cross section.
  • the light guide through hole 111 can also be filled with a number of filters (not shown). These filters can be used to filter infrared light and ultraviolet light so that the photosensitive sensor 130 will not react to invisible light and avoid interference caused by invisible light.
  • these filters can also be used to only allow light of a specific band to pass through, so that only the light of a specific band of light emitted by the pixels 120 affects the photosensitive sensor, which is convenient for detecting light for touch positioning.
  • bandpass filtering without adding filters and only through software control or hardware circuitry.
  • each pixel point 120 includes three lamp bead chips and a common electrode pad 124 .
  • Three lamp bead chips and one common electrode pad 124 are distributed in a field shape, that is, three lamp bead chips and one common electrode pad 124 are distributed in a 2*2 matrix.
  • the three lamp bead chips may be a red lamp bead chip 121, a green lamp bead chip 122 and a blue lamp bead chip 123 respectively.
  • the red lamp bead wafer 121, the green lamp bead wafer 122, the blue lamp bead wafer 123 and the common electrode pad 124 are arranged in a field shape in the same preset arrangement.
  • the photosensitive sensor 130 in order to ensure that the light guide through hole 111 has The larger size space allows the photosensitive sensor 130 to receive the reflected light from the lamp beads in front, and can redirect the distribution of lamp beads in the pixels 120 around the light guide through hole 111 .
  • the common electrode pad 124 is mainly used to connect the positive electrode or the negative electrode (choose one of the two) of each lamp bead in the corresponding pixel point 120, its size can be made smaller.
  • the lamp beads in the outline around the light guide through hole 111 can be distributed in a direction such that the common electrode pad 124 of the pixel point 120 provided adjacent to the light guide through hole 111 is placed close to the light guide through hole 111, thereby providing the light guide through hole.
  • Hole 111 reserves a larger size space.
  • the edge of the light guide through hole 111 can be circular in the simplest case, which facilitates processing.
  • the diameter of the circular hole of the light guide through hole 111 is 0.5mm. Through the outline design of the cross opening, its effective photosensitive diameter can be expanded to more than 1mm, thereby greatly improving the sensitivity of the photosensitive sensor 130 Spend.
  • a sealant layer 150 is also provided on the first surface of the integrated substrate 110 to seal and protect several pixels 120 .
  • the main material of the sealant layer 150 can be epoxy resin, which in most cases is mixed with melanin and other materials to protect the internal electrical packaging and improve the contrast and consistency of the picture.
  • a plurality of driver chips 160 are also provided on the second surface of the integrated substrate 110 , and the plurality of driver chips 160 are electrically connected to the integrated substrate 110 .
  • a black glue layer 170 is also provided on the second surface of the integrated substrate 110 to seal and protect a plurality of driving chips 160 and photosensitive sensors 130 .
  • the photosensitive sensor 130 and several driver chips 160 can be directly welded and fixed on the second surface of the integrated substrate 110 and then sealed and protected by the black glue layer 170 .
  • the photosensitive sensor 160 is mainly used to receive light from the light guide column 140 and generate a photoelectric reaction.
  • the driver chip 160 After forming a corresponding electrical signal, it can be directly introduced into the driver chip 160 to continue to output to the corresponding touch system, or it can be directly output. to the corresponding touch system.
  • the driver chip 160 is used to receive display driving data to drive the lamp beads of the pixel points 120 to display.
  • the driver chip 160 can be packaged in a die bonding process and electrically connected to the integrated substrate 110 through the gold wire 11 .
  • the gold wire 11 here can also directly connect the induced current of the photosensitive sensor 130 to the pad pin 12 output.
  • the pad pins 12 are used to connect external devices, and the external parts of the driver chip 160 are connected to the pad pins 12 through gold wires 11 .
  • a typical size of the integrated module 100 in the embodiment of the present application is 4x4mm.
  • 16 pixels 120, 1 photosensitive sensor 130 and 1 Driving chip 160 when the photosensitive sensor 130 has a signal output, it means that the touch point falls within the size range of the integrated module 100.
  • What the photosensitive sensor 130 needs to do is to collect the reflected light intensities of the touch contour illuminated by different pixel points 120 in different time segments, thereby determining that the touch contour is closer to 16 pixels in this integrated module 100 Which one to click and determine it as a touch point.
  • each pixel point 120 is arranged in a 4*4 format, and among these 16 pixel points 120, each pixel point 120 has a red lamp bead chip 121, a green lamp bead chip 122, a blue lamp bead chip 123 and a common Pole pad 124.
  • the three-color lamp bead chips emit light according to a specific ratio to form white light.
  • the driver chip 160 that drives these lamp bead chips is integrated on the back, and the bare chip is fixed and packaged using a bonding process.
  • driver chips 160 and the number of pixels 120 are not specifically limited.
  • One driver chip 160 corresponding to 16 pixels 120 can be used as a typical value.
  • two driver chips 160 can also be used to correspond to 64 pixels 120 and packaged as an integrated module, or in other quantities.
  • the packaging form of the driver chip 160 is not limited. QFN packaging and bare die bonding packaging are both low-cost solutions in practical applications, but other fixing methods are not excluded.
  • the pixels 120 have different sizes, and the integrated module 100 with different resolutions can be packaged. Taking an integrated module with a size of 4*4mm as an example, pixels with sizes ranging from P1 to P0.5 can be packaged on it.
  • the packaged pixel 120 can be packaged as 4*4 , 5*5, 6*6, 7*7, or 8*8 arrangement.
  • the spacing between pixels in these arrangements decreases successively.
  • the driving form and driving scheme will also be adjusted accordingly.
  • the cost of the base can be reduced and the cost of packaging can be further reduced.
  • the design process is also simplified to the chip select combination of the integrated module 100 .
  • the above-mentioned photosensitive sensor 130 can be made of many kinds of materials, such as selenium, germanium, cadmium sulfide, gallium arsenide, etc.
  • cadmium sulfide photometry is a commonly used material for detecting light intensity.
  • Cadmium sulfide is an inorganic substance with the chemical formula CdS. There are two types of crystals: ⁇ -form is lemon yellow powder, and ⁇ -form is orange-red powder.
  • Cadmium sulfide is slightly soluble in water, soluble in acid, and slightly soluble in ammonia. It can be used to make fireworks, glass glazes, enamels, luminescent materials, and pigments.
  • High-purity cadmium sulfide is a good semiconductor and has a strong photoelectric effect on visible light. It can be used to make photoelectric tubes and solar cells. It can also be used as the photosensitive sensor 130 of the present application in combination with the requirements of the photosensitive sensor 130 of the present application.
  • the present application also provides a display module 200.
  • the display module 200 includes a plurality of the above-mentioned integrated modules 100 and a module PCB board (not shown), and a plurality of integrated modules. 100 are arranged in a matrix and fixed on one side surface of the module PCB board.
  • the integrated module 100 of the present application is a module with pixel dot packaging on the front and conventional IC bare chip packaging on the back.
  • the integrated module 100 is attached to a double-sided PCB, that is, the module PCB in this embodiment has a double-sided structure and can be used to transmit data and current, and the display data can be driven and processed by the driver on the integrated module 100
  • the driver chip can drive and control the corresponding integrated module 100 one-to-one.
  • the driver chip on the integrated module 100 its signals include row control signals and column control signals.
  • the row and column signals can be shared through a single chip to fully utilize the chip performance.
  • the aforementioned two driver chips 160 corresponding to 64 pixels 120 also share row and column signals, which can save two chips.
  • the above-mentioned integrated module 100 is connected to the module PCB board through solder joints, and can also be fixed on the module PCB board through adhesive material connection, ball soldering connection, etc.
  • the module PCB board with a double-panel structure mainly includes a DC module that supplies power to the integrated module 100, a data transmission channel, etc.
  • the height of the sealant layer of the bare chip is usually slightly higher than the solder joint. At this time, if the integrated module 100 is placed on a flat module On the PCB board, since the bottom is held up by the sealant, the solder points cannot touch the pads.
  • a small hole is usually opened on the integrated module 100 at a position corresponding to the higher part of the sealant layer, so that the top of the sealant layer can fall into the hole, and at the same time, the integrated module 100 can be Structural positioning.
  • the hole position is specifically an array of small holes, which can be a through hole or a controlled depth hole.
  • the above-mentioned integrated modules 100 are generally in close contact with each other, but there may also be a certain gap between the integrated modules 100 , which is consistent with the gap between the pixels 120 .
  • the integrated modules 120 are structurally separated and packaged from each other. Based on this, the sealant layer is not uniformly packaged on the entire display module, but is dispersedly packaged on a single integrated module 100 to achieve sealing of the adhesive layer. It has also been explained previously that the size of the integrated module itself is very small, so the amount of sealing glue required for a single integrated module 100 is very low, and glue filling can be achieved very quickly.
  • the glue filling process of the integrated module 100 can be directly implemented by using the existing glue filling process of SMD (Surface Mounted Devices) lamp beads, because the size of a single integrated module 100 is much larger than the current size of a single SMD lamp bead. At present, the surface of each SMD lamp bead is encapsulated with a layer of sealant. The cost of implementation is very low and the process is very mature, so we will not elaborate here.
  • SMD Surface Mounted Devices
  • Each integrated module 100 is packaged, which is equivalent to packaging 16 pixels 120 at the same time.
  • each integrated module 100 due to its small size, small quantity, uniform specifications, higher tape-out and processing speed, it is suitable for mass production.
  • each integrated module 100 has several pad pins 12 connected to the module PCB.
  • the size of the integrated module 100 is large, so the area of the pad pins 12 is also large, which greatly
  • the connection strength of a single integrated module 100 on the module PCB board is improved, and combined with the sealing layer structure of surface-dispersed packaging, it lays the foundation for convenient writing and touch interaction.
  • the advantage of separately packaging the integrated modules 100 and filling them with glue is that the overall light leakage of the integrated module 100 itself can be reduced. Every 16 pixels 120 is a group, and the light leakage will occur in a single integrated module 100, but it will not Will be accumulated over the entire display module 200. Thereby, the light leakage of the display module 200 is reduced.
  • the main reason for the boundary light leakage of the display module 200 itself is that part of the light emitted by the pixel point 120 is reflected inside the boundary of the light-transmitting sealant layer. After multiple reflections, the light leakage is finally Emitted from the side edges of the sealing layer, the overall light leakage at the side edges of the display module 200 is the result of the joint action of multiple pixels 120 on the board.
  • the sealing layer on the COB packaging module is not integrated.
  • the 16 pixels 120 and the integrated module 100 are packaged in a distributed manner, and the corresponding adhesive layers are also scattered on each integrated module 100. This causes the light leakage of the pixels 120 to The display module 200 is consumed internally, and there will be no overall light leakage.
  • multiple display modules 200 are spliced together to form a larger display screen.
  • the gaps between the integrated modules 100 of the present application can hide the splicing gaps of the display modules 200 to a certain extent, so that the splicing gaps between the display modules 200 do not look obvious, achieving seamless splicing.
  • the integrated module 100 is not sealed in one piece, but is separated. This results in two kinds of gaps when the display modules 200 are spliced together. One is the gap between the display modules 200 , and the other is the gap between the integrated modules 100 .
  • the seams between the integrated modules 100 have extremely high consistency, and the effect is much better than the seams between the display modules 200 . But judging from the size gap, the two are actually the same. This allows the seams between the integrated modules 1000 to cover up the imperfections in the seams between the display modules 200, achieving a blurred visual seam effect, and overall improving the consistency of the picture.
  • the integrated module includes an integrated substrate.
  • a plurality of pixels are provided on the first surface of the integrated substrate.
  • a photosensitive sensor is provided on the second surface of the integrated substrate.
  • the integrated substrate is connected to a plurality of pixels respectively. and the light-sensitive sensor are electrically connected; the integrated substrate is also provided with a light-guiding through hole penetrating the first surface and the second surface, and the light-sensitive surface of the light-sensitive sensor faces the light-guiding through hole.
  • the photosensitive sensor and the pixels are not on the same level, but on the front and back surfaces of the integrated substrate. In this way, the size of the photosensitive sensor will not be affected. Normal encapsulation to pixels.
  • each integrated module can be used as a minimum resolution unit to achieve corresponding touch detection and positioning.
  • the pixels on the integrated module are emitted as the detection light source to detect the touch object.
  • the pixels of the corresponding integrated module will illuminate the surface of the touch object to form corresponding reflected light.
  • Electrical signals can be generated based on the light intensity of these reflected lights to determine the position of the touch object, thereby realizing real-time touch interaction of the display module.
  • this application realizes the touch interaction of the display module through an integrated packaging structure, which can effectively simplify the system structure of the display module without affecting the display effect of the display screen, and there is no touch delay. shortcomings of time. Therefore, this technical solution can solve the problem in the prior art that when realizing screen touch for large-size display screens, an additional touch system is used to realize the touch function of the corresponding display screen, which complicates the system structure of the display screen. At the same time, it also affects the display effect of the display screen and has technical problems such as the shortcomings of touch delay.
  • the present application also provides a photosensitive touch interaction system 300, which is applied to include several sets of In the display module 200 of the integrated module 100, a plurality of pixels 120 are provided on the front side of each integrated module 100.
  • the photosensitive touch interaction system 300 includes a main controller 310 and a plurality of photosensitive sensors 130.
  • the several photosensitive sensors 130 are arranged in one-to-one correspondence with a plurality of integrated modules 100.
  • Each photosensitive sensor 130 is arranged on the back side of the corresponding integrated module 100, and each The photoelectric sensing layer 131 of a photosensitive sensor 130 faces the light guide through hole 111 of the corresponding integrated module 100, and the main controller 310 is electrically connected to several photosensitive sensors 130 respectively.
  • the photosensitive sensor 130 in order to better realize the photosensitive detection of the photosensitive sensor 130 , the photosensitive sensor 130 can be specifically disposed in the center of the corresponding integrated module 100 , and at the same time, the light guide through hole 111 is also Opened in the center of the integrated module 100, this allows a number of pixels 120 to be more regularly distributed around the light guide holes 111, thereby reducing the touch positioning of each photosensitive sensor 130 after the photosensitive detection. Calculation difficulty.
  • the light guide post 140 can be filled in the light guide through hole 111 , so that the light irradiating on the light guide through hole 111 can be uniformly guided to the photosensitive sensor 130 through the arrangement of the light guide post 140 , that is, it can guide the light sensor 130 .
  • the function of light and uniform light makes the bundled light evenly distributed in the light guide section.
  • several filters can also be filled in the light guide through hole 111. These filters can be used to filter infrared light and ultraviolet light so that the photosensitive sensor 130 will not react to invisible light and avoid interference caused by visible light.
  • these filters can also be used to allow only the light of a specific wavelength band to pass through, so that only the light of a specific wavelength band in the light emitted by the pixel point 120 affects the photosensitive sensor 130, so as to facilitate touch positioning as detection light.
  • bandpass filtering without adding filters and only through software control or hardware circuitry.
  • each pixel 120 includes three lamp bead chips and a common pole.
  • the soldering pad, three lamp bead chips and a common electrode pad are distributed in a field shape.
  • the three lamp bead chips may be red lamp bead chips, green lamp bead chips and blue lamp bead chips respectively.
  • the red lamp bead chips, the green lamp bead chips, the blue lamp bead chips and the common electrode pads are arranged in a field shape in the same preset arrangement, but in order to ensure that the light guide through hole 111 has a larger size
  • the distribution of the lamp bead in the pixel points 120 around the light guide through hole 111 is diverted. Since the common electrode pad is mainly used to connect the positive electrode or the negative electrode (choose one of the two) of each lamp bead in the corresponding pixel point 120, its size can be made smaller.
  • the lamp beads in the outline around the light guide through hole 111 can be distributed in a direction such that the common electrode pad of the pixel point 120 set adjacent to the light guide through hole 111 is placed close to the light guide through hole 111 to provide light guide through holes.
  • Hole 111 reserves a larger size space.
  • the edge of the light guide through hole 111 can be circular in the simplest case, which facilitates processing.
  • the diameter of the circular hole of the light guide through hole 111 is 0.5mm. Through the outline design of the cross opening, its effective photosensitive diameter can be expanded to more than 1mm, thereby greatly improving the sensitivity of the photosensitive sensor 130 Spend.
  • the display module 200 also includes a module PCB board (not shown), and a number of integrated modules 100 are fixed on one side of the module PCB board in a matrix distribution.
  • the photosensitive sensor 130 on the back side of each integrated module 100 is electrically connected to the main controller 310 fixed on the module PCB.
  • the photosensitive sensor 130 includes a signal value output module 132 in addition to the photoelectric sensing layer 131 .
  • the photoelectric sensing layer 131 is mainly configured to sense the light intensity at the light guide through hole 111 and generate a corresponding signal value output module 132 . The electrical signal is sent to the signal value output module 132.
  • the signal value output module 132 is mainly configured to detect the magnitude of the electrical signal sent from the photoelectric sensing layer 131, obtain the corresponding signal value, and feed it back to the main controller 310.
  • the photosensitive touch interaction system 300 can use the pixel points 120 on the integrated module 100 to emit light as a detection light source, so that when the touch object is close to an integrated module 100, the pixel point 120 of the corresponding integrated module 100 will illuminate. corresponding reflected light rays are formed on the surface of the touch object.
  • the photoelectric sensing layer 131 of the photosensitive sensor 130 of the corresponding integrated module 100 detects these reflected light rays through the light guide through hole 111, based on these reflected light rays,
  • the light intensity generates corresponding electrical signals and sends them to the signal value output module 132.
  • the signal value output module 132 detects the magnitude of these electrical signals.
  • the corresponding signal value is obtained and fed back to the main controller 310 to determine the touch object. position, thereby realizing real-time touch interaction of the display module 200.
  • the material of the photoelectric sensing layer 131 is selected from any one of selenium, germanium, cadmium sulfide, and gallium arsenide.
  • cadmium sulfide photometry is also a commonly used material for detecting light intensity.
  • Cadmium sulfide is an inorganic substance with the chemical formula CdS. There are two types of crystals: ⁇ -form is lemon yellow powder, and ⁇ -form is orange-red powder.
  • Cadmium sulfide is slightly soluble in water, soluble in acid, and slightly soluble in ammonia. It can be used to make fireworks, glass glazes, enamels, luminescent materials, and pigments.
  • High-purity cadmium sulfide is a good semiconductor and has a strong photoelectric effect on visible light. It can be used to make photoelectric tubes and solar cells. It can also be used as the photoelectric sensing layer 131 of the photosensitive sensor 130 of the present application in combination with the requirements of the photosensitive sensor 130 of the present application.
  • the signal value output module 132 is a voltage comparator.
  • the non-inverting input terminal of the voltage comparator is input to the reference voltage signal V2 output by the main controller 310 , and the inverting input terminal of the voltage comparator is input.
  • Input photoelectric sensing layer 131 output telecommunications No. V1, the output end of the voltage comparator is electrically connected to the main controller 310, so that the main controller 310 can obtain the signal value of the electrical signal output by the photoelectric sensing layer 131 according to the level signal output by the voltage comparator.
  • the signal value can specifically be a voltage value, and the photoelectric sensing layer 131 outputs a volt signal, that is, the photoelectric sensing layer 131 generates an induced voltage (that is, the electrical signal V1) after being exposed to light. After the induced voltage is transmitted, it will interact with the signal from the upper level.
  • the reference voltage signal V2 of the machine (specifically, it can be the main controller 310) is compared, and the current signal value is obtained through a standard comparison algorithm.
  • the voltage value of the electrical signal V1 is 0.48mV.
  • the main controller 310 will first input a standard voltage of 1mV (ie, the reference voltage signal V2).
  • the main controller 310 After comparison with the voltage comparator, it is determined that V2>V1, and then the output terminal of the voltage comparator outputs High level, after the main controller 310 determines that V2>V1 according to the output result of the voltage comparator, it will halve the output voltage and output a 0.5mV reference voltage signal V2. The voltage comparator will continue to output high voltage according to the comparison result. level, the main controller 310 then outputs a 0.25mV reference voltage signal V2 based on the comparison result of the voltage comparator. The voltage comparator will output a low level. At this time, the output voltage of the main controller 310 increases by half and outputs 0.375mV. The reference voltage signal V2 is gradually approximated thereby to detect the output of the photosensitive sensor 130 with a specific accuracy. Based on the sample and hold circuit, the signal value of the current output signal of the photosensitive sensor 130 can be detected accurately and time-divided.
  • each photosensitive sensor 130 will continuously receive optical signals and then generate corresponding electrical signals.
  • the photosensitive touch interaction system 300 can detect the output values of each photosensitive sensor 130 on the display module 200 in a region-by-region and time-sharing manner through a polling detection mechanism.
  • the duration of detecting photosensitive output is within the duration of one frame of screen refresh, which is 16.67ms.
  • the photosensitive touch interaction system 300 polls each area for a duration of 1.667 ms, which is a very short time, and for the output of the entire photosensitive sensor 130 in the corresponding area, this time It's a pretty generous value.
  • the photosensitive touch interaction system 300 can process the photosensitive data with lower accuracy to reduce the system burden.
  • the photosensitive sensor 130 can be accurately positioned.
  • the photosensitive touch interaction system 300 does not actually need to read too many changes in photosensitive output, it only needs to meet the touch requirements.
  • the touch delay is 20 to 30 ms, there is no delay for human writing.
  • the photosensitive touch interaction system 300 only needs to collect the output of the photosensitive sensor 130 once in one frame to meet the touch requirements.
  • the display interface of the display module 200 is divided into ten equal sizes, and the photosensitive touch interaction system 300 polls the display interface once at a time interval of 16.67ms, which is equivalent to only 1.667 seconds spent collecting photosensitive output in each area. ms.
  • the photosensitive touch interaction system 300 receives all the photosensitive signal output of the corresponding area, that is, the photovoltaic value within this frame time.
  • the voltage value can be regarded as different within this frame time. It changes, but it changes dynamically across several frames in the entire time segment.
  • the main controller 310 includes a signal monitoring module 311 and a touch interaction module 312 , where the signal monitoring module 311 can be configured to monitor the output signals of each photosensitive sensor 130 in real time.
  • the touch interaction module 312 may be configured to determine whether touch interaction is currently occurring in the display module 200 and perform corresponding touch interaction positioning based on the output signal of each photosensitive sensor 130 .
  • the photosensitive touch interaction system 300 can use the pixels 120 on each integrated module 100 of the display module 200 to emit light as a detection light source (that is, when the touch object is close to an integrated module 100, the corresponding integrated module 100 The light emitted by the pixels 120 will illuminate the surface of the touch object to form corresponding reflected light.
  • the photosensitive sensor 130 located on the back side of the corresponding integrated module 100 detects these reflected light through the light guide hole 111, it can The light intensity of these reflected light rays generates electrical signals), and the main controller 310 can monitor the output signals of each photosensitive sensor 130 in real time to determine whether the display module 200 is currently based on the output signal of each photosensitive sensor 130. Touch interaction occurs and corresponding touch interaction positioning is performed, thereby realizing real-time touch interaction of the display module 200 .
  • the signal monitoring module 311 may specifically include a mutation signal detection unit and a mutation signal statistics unit (not shown), wherein the mutation signal detection unit may be configured to detect whether an output signal mutation currently occurs.
  • the sudden change signal statistics unit is configured to obtain the position and number of the photosensitive sensors with sudden changes in output signals when a photosensitive sensor with a sudden change in output signal currently occurs.
  • the output of the photosensitive sensor 130 fluctuates in a limited frequency band. This is because the signals received by the photosensitive sensor 130 are mostly weak signal flows, including the integrated module 100 Internal light leakage, external ambient light, and reflection from objects at a certain distance in front of the screen are characterized by diffuse reflection and strong light disorder. Only a small part of the light source will enter the photosensitive sensor and cause the signal output of the photosensitive sensor 130 , and the fluctuation caused by this kind of light will fall into a stable frequency band in the long run, that is, the output signal of the photosensitive sensor 130 will stably change within this frequency band, which is the noise floor.
  • the display module 200 of the present application in order to distinguish the touch signal and the interference signal, it needs to rely on the signal change characteristics of each photosensitive sensor 130.
  • touch signals the change characteristics they bring are significantly different from other factors, which can be specifically reflected in the dynamic changes of touch signals.
  • the amplitude is more dramatic than other changes, that is, the photosensitive sensor 130 will have a sudden change point in the length of time.
  • the output signal of the photosensitive sensor 130 (specifically, it can output a voltage value) will significantly increase, which means The touch signal appears, or decreases significantly, which means the touch signal disappears. Based on this feature, the display module can determine that the change comes from the touch signal.
  • the above-mentioned mutation signal detection unit can also be specifically configured to detect the signal change value of the corresponding photosensitive sensor 130 when the output signal of any photosensitive sensor 130 changes, and when the signal change value is greater than the first preset threshold, determine the corresponding The photosensitive sensor currently has a sudden change in the output signal.
  • the output signal of the photosensitive sensor 130 as a voltage value as an example, if the voltage value output by the photosensitive sensor 130 suddenly increases, and the amplitude of the increase is greater than the first preset threshold (the first preset threshold can be adjusted appropriately based on actual detection accuracy requirements) Adjust settings), it can be determined that the corresponding photosensitive sensor 130 currently has an output signal mutation.
  • the number, position and corresponding output signal value of these photosensitive sensors 130 that are judged to have output signal sudden changes can be used to subsequently determine whether the display module 200 is currently The basis for touch interaction to occur and corresponding touch interaction positioning.
  • the above-mentioned touch interaction module 312 may specifically include a first judgment execution unit, a second judgment execution unit and a third judgment execution unit (not shown), wherein the first judgment execution unit It may be configured to determine that no touch interaction is currently occurring in the display module when there is currently no photosensitive sensor with an output signal sudden change or the number of photosensitive sensors with an output signal sudden change is greater than the second preset threshold.
  • the second judgment execution unit may be configured to judge that a touch interaction in the form of a touch is currently occurring in the display module when there is only one photosensitive sensor with an output signal sudden change, and execute a preset touch interaction positioning method, so as to Perform corresponding touch interaction positioning.
  • the third determination execution unit may be configured to determine that a touch interaction in the form of surface touch is currently occurring in the display module when the number of photosensitive sensors currently experiencing sudden changes in output signals is greater than one but less than the second preset threshold, and execute the preset Surface touch interaction positioning method to perform corresponding touch interaction positioning.
  • the sudden change in the output signal of the photosensitive sensor 130 may be caused by direct light.
  • Direct light is usually caused by spotlights, direct sunlight, etc. irradiating the screen, and There will not be a big change within a few frames, so it can be distinguished by judging whether this drastic change occurs on multiple integrated modules.
  • the above-mentioned first judgment execution unit can pass Detect whether the number of photosensitive sensors with sudden changes in output signals is greater than the second preset threshold (the second preset threshold can be reasonably adjusted and set according to actual detection accuracy requirements) to determine whether it is the output of the photosensitive sensor 130 caused by direct light. signal mutation.
  • touch interaction modes can be very rich. Specifically, you can click the screen with a stylus with a reflective surface to produce reflections at the click location to achieve touch positioning. You can also slide your finger directly, and the light will reflect on your finger to achieve touch positioning. When faced with distant touch, laser irradiation can also be used to sharply enhance the light in the illuminated area, thereby achieving touch positioning.
  • the above touch interaction modes are divided according to the number of photosensitive sensors they affect, and can be roughly divided into two touch interaction types. One is the touch interaction type in the form of point touch, such as the above-mentioned stylus clicking on the screen, laser The touch form of irradiation has a small contact area and only affects the output signal of one photosensitive sensor 130.
  • the second judgment execution unit can make a judgment when detecting that there is only one photosensitive sensor with a current sudden change in the output signal.
  • the display module is currently undergoing touch interaction in the form of a touch. At the same time, its contact area is small, and the contact position may only be one of the pixels 120 of the integrated module 100. Therefore, it needs to be further accurately positioned.
  • the third judgment execution unit will Further execute the preset touch interaction positioning method to perform corresponding touch interaction positioning.
  • the other is a touch interaction type in the form of surface touch. For example, the above-mentioned touch form of finger sliding has a large contact area and will affect the output signals of more than one photosensitive sensor 130, but it is different from the above-mentioned direct light exposure.
  • each photosensitive sensor 130 are calculated to obtain the outline of the touch surface (the corresponding touch surface outline can be obtained with the de-aliasing algorithm), and the touch point coordinates can be determined based on the outline of the touch surface. Achieve smoother touch interaction in the form of surface touch.
  • the third judgment execution unit determines that the display module 200 is currently experiencing touch interaction in the form of surface touch, it needs to further execute the preset surface touch interaction positioning method (the specific process is as follows: according to the current sudden change in the output signal of each photosensitive sensor. 130's position and output signal strength, calculate the outline of the touch surface, and determine the touch point coordinates according to the outline of the touch surface) to perform corresponding touch interaction positioning.
  • the preset surface touch interaction positioning method the specific process is as follows: according to the current sudden change in the output signal of each photosensitive sensor. 130's position and output signal strength, calculate the outline of the touch surface, and determine the touch point coordinates according to the outline of the touch surface
  • the photosensitive touch interaction system 300 of the embodiment of the present application is applied to a specific display module 200, and its photosensitive sensor 130
  • the plurality of pixels 120 of the integrated module 100 corresponding to the display module 200 are not on the same level, but on the front and back surfaces of the corresponding integrated module 100. In this way, there will be no problem due to the volume of the photosensitive sensor 130. problem, which affects the normal packaging of 120 pixels.
  • each integrated module 100 on the display module 200 can be used as a minimum resolution unit to achieve corresponding touch detection and positioning, specifically as follows:
  • the pixel points 120 on the integrated module 100 are used to emit light as a detection light source, so that when the touch object approaches an integrated module 100, the light emitted by the pixel point 120 of the corresponding integrated module 100 will illuminate the surface of the touch object to form a corresponding reflection.
  • the photosensitive sensor 130 of the corresponding integrated module 100 detects these reflected lights through the light guide through hole 111, it can generate an electrical signal based on the intensity of these reflected lights to determine the position of the touch object, thereby realizing the display.
  • the preset touch interaction positioning method executed in the above-mentioned second judgment execution unit may specifically include the following steps:
  • Step S11 Light up each pixel on the integrated module where the photosensitive sensor whose output signal suddenly changes is located in order to obtain the light intensity signal output by the corresponding photosensitive sensor when each pixel is lit.
  • the main task of touch interactive positioning is to determine which pixel point 120 on the integrated module 100 the outline is closer to, thereby determining the coordinates of the pixel point 120 as Touch point coordinates.
  • each pixel 120 on the integrated module 100 where the photosensitive sensor 130 with a sudden change in output signal is located can be lit in sequence to obtain the light intensity signal output by the corresponding photosensitive sensor 130 when each pixel 120 is lit. , that is, when each pixel 120 on the integrated module 100 is lit individually, the light intensity signal output by the corresponding photosensitive sensor 130 is recorded once.
  • Step S12 Compare and sort the corresponding light intensity signals when each pixel is lit, and determine the coordinates of the pixel with the strongest corresponding light intensity signal when the pixel is lit as the touch point coordinates.
  • the corresponding light intensity signal when each pixel point is lit can be compared and sorted.
  • the coordinates of the pixel point with the strongest light intensity signal when the pixel point is lit are determined as the touch point coordinates. This is because which pixel point 120 the touched touch contour is closest to when it is lit alone, The light intensity signal output by the corresponding photosensitive sensor 130 should be the strongest.
  • the preset touch interaction positioning method executed in the second judgment execution unit may also include the following steps:
  • Step S21 Select four pixels located at the outer four corners of the integrated module where the photosensitive sensor whose output signal suddenly changes is located.
  • the main task of touch interactive positioning is to determine which pixel point 120 on the integrated module 100 the outline is closer to, thereby determining the coordinates of the pixel point 120 as Touch point coordinates.
  • the integrated module 100 where the photosensitive sensor 130 whose output signal changes suddenly is located is selected.
  • the four pixels located in the four outer corners are the upper left corner, upper right corner, lower left corner and lower right corner of the 4X4 matrix distribution.
  • Step S22 Light up four pixels in a time-divided manner to obtain the light intensity signal output by the corresponding photosensitive sensor when each pixel is lit.
  • the four pixels can be lit in time to obtain the time when each pixel is lit.
  • the light intensity signal output by the corresponding photosensitive sensor That is, when the pixel point 120 in the upper left corner of the integrated module 100 is lit alone, when the pixel point 120 in the upper right corner is lit alone, when the pixel point 120 in the lower left corner is lit alone, and when the pixel point 120 in the lower right corner is lit alone, respectively.
  • the light intensity signal output by the corresponding photosensitive sensor 130 is recorded once, and a total of four light intensity signals corresponding to when four pixel points are lit are obtained.
  • Step S23 Solve the point deviation based on the corresponding light intensity signals when the four pixel points are lighted in time, and calculate the corresponding touch point coordinates.
  • the point deviation can be solved based on the light intensity signals corresponding to the four pixel points when they are lit at different times, and the corresponding touch control can be calculated Point coordinates. For example, you can calculate the difference between the first light intensity signal and the fourth light intensity signal, the difference between the second light intensity signal and the third light intensity signal, and then determine the true value based on these two differences. The distance relationship between the touch point and these four pixels (the judgment is based on the closer the real touch point is to which pixel 120, when it is lit alone, the stronger the light intensity signal output by the corresponding photosensitive sensor 130) , to calculate the corresponding touch point coordinates.
  • the preset touch interaction positioning method executed in the second judgment execution unit may also include the following steps:
  • Step S31 Perform a refresh operation of the preset pattern on the integrated module where the photosensitive sensor whose output signal suddenly changes is located, and obtain the light intensity signal output by the corresponding photosensitive sensor when the preset pattern is refreshed.
  • the main task of touch interactive positioning is to determine which pixel point 120 on the integrated module 100 the outline is closer to, thereby determining the coordinates of the pixel point 120 as Touch point coordinates.
  • a preset database can be established first, and the establishment process is as follows: perform a refresh operation of the preset pattern on each integrated module 100, and when the current integrated module 100 performs a refresh operation, record the touch points on each When a pixel is selected, the corresponding photosensitive sensor outputs a light intensity signal to establish a preset database.
  • each pixel 120 is touched in turn, and the light intensity signal output by the corresponding photosensitive sensor is recorded to form the pixel 120 in the preset database (specifically It can be represented by the one-to-one correspondence between the coordinates of the corresponding pixel points 120) and the light intensity signal (specifically, the magnitude value of the light intensity signal).
  • the preset pattern refresh operation can be performed on the integrated module where the photosensitive sensor whose output signal suddenly changes is located, and the corresponding photosensitive sensor output when the preset pattern is refreshed can be obtained.
  • the default pattern is the same pattern as the default pattern used to create the default database.
  • Step S32 Compare the coordinates of the pixel corresponding to the light intensity signal in the preset database to determine the coordinates of the touch point.
  • the coordinates of the pixel points corresponding to the light intensity signal can be obtained by comparison in the preset database to determine are the coordinates of the touch point.
  • the preset touch interaction positioning method executed in the second judgment execution unit may also include the following steps:
  • Step S41 Light up each pixel on the integrated module where the photosensitive sensor whose output signal suddenly changes is located in a time-sharing manner to determine whether the light intensity signal output by the corresponding photosensitive sensor is greater than the third preset when each pixel is lit. threshold.
  • the main task of touch interactive positioning is to determine which pixel point 120 on the integrated module 100 the outline is closer to, thereby determining the coordinates of the pixel point 120 as Touch point coordinates.
  • a third preset threshold can be set first.
  • the size of the third preset threshold can be set based on the size of the light intensity signal output by the corresponding photosensitive sensor when the pixel where the touch point is located is individually lit.
  • each pixel on the integrated module where the photosensitive sensor with a sudden change in the output signal is located can be illuminated in a time-sharing manner to determine when each pixel is illuminated. Whether the light intensity signal output by the photosensitive sensor is greater than the third preset threshold
  • Step S42 Determine the coordinates of the pixel points whose light intensity signal output by the corresponding photosensitive sensor is greater than the third preset threshold when the pixel points are lit as touch point coordinates.
  • the preset touch interactive positioning methods in the above examples can achieve further precise positioning in the integrated module 100 to perform corresponding touch interactive positioning.
  • Those skilled in the art will conduct the following on the display module 200 of the embodiment of the present application. When you touch interactive positioning, you can choose one to use.
  • Each of the above modules and units can be implemented in whole or in part through software, hardware and combinations thereof.
  • Each of the above modules can be embedded in the processor in the form of hardware or independent of the processor, or can be stored in the memory in the form of software, so that the processor can call and execute the operations corresponding to each of the above modules.
  • the photosensitive touch interaction system provided by the embodiment of the present application is used in a display module including several integrated modules. Each integrated module is provided with a number of pixels on its front side; the photosensitive touch interactive system includes a main controller and several Photosensitive sensors. Several photosensitive sensors are arranged in one-to-one correspondence with several integrated modules. Each photosensitive sensor is arranged on the back side of the corresponding integrated module, and the photoelectric sensing layer of each photosensitive sensor faces the light guide through hole of the corresponding integrated module. , the main controller is electrically connected to several photosensitive sensors. In this way, the photosensitive touch interaction system is applied to a specific display module, and its photosensitive sensor is not on the same level as the pixels of the corresponding integrated module of the display module, but on the front of the corresponding integrated module.
  • each integrated module on the display module can be used as a minimum resolution unit to achieve corresponding touch detection and positioning.
  • the pixel luminescence is used as the detection light source, so that when the touch object is close to an integrated module, the pixel luminescence of the corresponding integrated module will illuminate the surface of the touch object to form corresponding reflected light.
  • the corresponding integrated module After the photosensitive sensor detects the reflected light through the light guide hole, it can generate an electrical signal based on the intensity of the reflected light to determine the position of the touch object, thereby realizing real-time touch interaction of the display module. It can be seen that this application realizes touch interaction of the display module through an integrated packaging structure, which can effectively simplify the system structure of the display module without affecting the display effect of the display module, and there is no touch Disadvantages of delay control. Therefore, this technical solution can solve the existing technical solution of using an additional touch system to realize the touch function of the corresponding display screen when implementing screen touch for large-size display screens, making the system structure of the display screen change. While gaining complexity, it also affects the display effect of the display screen and has technical problems such as touch delay.
  • the photosensitive touch interaction method may specifically include the following steps:
  • Step S110 Monitor the output signals of each photosensitive sensor of the display module in real time.
  • the photosensitive touch interaction method in the embodiment of the present application is mainly used in a display module including a plurality of integrated modules 100 as shown in FIGS.
  • each integrated module 100 is provided with a plurality of pixels 120 and a photosensitive sensor 130.
  • the photosensitive sensor 130 and the several pixels 120 are not on the same level. , but on the front and back surfaces of the integrated substrate 110 , so that the normal packaging of several pixels 120 will not be affected due to the volume of the photosensitive sensor 130 .
  • a plurality of pixels 120 can be distributed in a matrix on the front of the integrated substrate 110 to subsequently form the display surface of the display module, and the photosensitive sensor 130 can be fixed on the back of the integrated substrate 110 and located at the center of the back, so that The photosensitive sensor 130 can detect the light intensity on the front side of the integrated substrate 110.
  • a light guide through hole 111 is also provided in the center of the integrated substrate 110, and the photosensitive surface of the photosensitive sensor 130 faces the light guide through hole 111.
  • some light guide structures such as light guide pillars, etc., may be provided in the light guide through holes 111.
  • the output of the photosensitive sensor 130 fluctuates in a limited frequency band.
  • the signals received by the photosensitive sensor 130 are mostly weak signal flows, including those inside the integrated module 100
  • Light leakage, external ambient light, and reflection from objects at a certain distance in front of the screen are characterized by diffuse reflection and strong light disorder. Only a small part of the light source will enter the photosensitive sensor and cause the signal output of the photosensitive sensor 130. Furthermore, the fluctuation caused by this type of light will fall into a stable frequency band in the long run, that is, the output signal of the photosensitive sensor 130 will stably change within this frequency band, which is the noise floor.
  • the display module of the present application in order to distinguish between touch signals and interference signals, it needs to rely on the signal change characteristics of each photosensitive sensor 130 .
  • the change characteristics it brings are significantly different from other factors. This can be reflected in the fact that the dynamic change amplitude of the touch signal is more rapid than other changes, that is, the photosensitive sensor 130 will change in time. There is a sudden change point in the length. After this point, the output signal of the photosensitive sensor 130 (specifically, the output voltage value) will increase significantly, which means the touch signal appears, or decrease significantly, which means the touch signal disappears. Based on this feature, the display module can determine that the change comes from the touch signal.
  • the process of detecting whether a photosensitive sensor with an output signal mutation currently occurs can be as follows: if the output signal of any photosensitive sensor changes, detect the signal change value of the corresponding photosensitive sensor, and detect when the signal change value is greater than the first preset When the threshold is reached, it is judged that the corresponding photosensitive sensor currently has a sudden change in the output signal.
  • the output signal of the photosensitive sensor 130 as a voltage value as an example, if the voltage value output by the photosensitive sensor 130 suddenly increases, and the amplitude of the increase is greater than the first preset threshold (the first preset threshold can be adjusted appropriately based on actual detection accuracy requirements) Adjust settings), it can be determined that the corresponding photosensitive sensor 130 currently has an output signal mutation.
  • the number, position and corresponding output signal value of these photosensitive sensors 130 that are determined to be output signal mutations can be used to subsequently determine whether the display module currently has a sudden change. Touch interaction and the basis for corresponding touch interaction positioning.
  • Step S120 Based on the output signals of each photosensitive sensor, determine whether touch interaction is currently occurring in the display module and perform corresponding touch interaction positioning.
  • the sudden change in the output signal of the photosensitive sensor 130 may also be caused by direct light exposure. Yes, direct light is usually caused by spotlights, direct sunlight, etc. irradiating the screen, and there will be no major changes within a few frames. Therefore, it can be judged whether this drastic change occurs on multiple integrated modules. to differentiate.
  • the process of executing the method step "based on the output signals of each photosensitive sensor, determining whether touch interaction occurs in the display module and performing corresponding touch interaction positioning" is as follows:
  • Step S121 If there is currently no photosensitive sensor with a sudden change in output signal or the number of photosensitive sensors with sudden change in output signal is greater than the second preset threshold, it is determined that the display module does not currently have a touch interaction.
  • Step S122 If there is only one photosensitive sensor with an output signal mutation, it is determined that a touch interaction in the form of a touch is currently occurring in the display module, and the preset touch interaction positioning method is executed to perform the corresponding touch. Interactive positioning.
  • Step S123 If the number of photosensitive sensors that currently experience sudden changes in output signals is greater than one but less than the second preset threshold, determine that the display module is currently experiencing touch interaction in the form of surface touch, and execute the preset surface touch interaction positioning method. , for corresponding touch interaction positioning.
  • the display module does not currently have touch interaction
  • the sudden change in the output signal of the sensor 130 is usually caused by direct light irradiation on the screen, such as spotlights, direct sunlight, etc. It usually shines on a large area on the screen, causing the output signal of the multiple photosensitive sensors 130 to suddenly change.
  • the second preset threshold can be reasonably adjusted and set according to actual detection accuracy requirements
  • the touch interaction mode can be very rich, you can either click the screen with a stylus with a reflective surface to produce reflections at the click position to achieve touch positioning; you can also directly slide your finger and the light will be generated when it hits the finger. Reflective to achieve touch positioning.
  • laser irradiation can also be used to sharply enhance the light in the illuminated area, thereby achieving touch positioning.
  • the above touch interaction modes are divided according to the number of photosensitive sensors they affect, and can be roughly divided into two touch interaction types.
  • One is the touch interaction type in the form of point touch, such as the above-mentioned stylus clicking on the screen, laser
  • the touch form of irradiation has a small contact area and only affects the output signal of one photosensitive sensor 130.
  • the contact area is small, and the contact position may only be one of the pixels 120 of the integrated module 100. Therefore, it needs to be further accurately positioned, that is, the preset touch interaction positioning method is executed. to perform corresponding touch interactive positioning.
  • the other is a touch interaction type in the form of surface touch.
  • the above-mentioned touch form of finger sliding has a large contact area and will affect the output signals of more than one photosensitive sensor 130, but it is different from the above-mentioned direct light exposure.
  • the display module is currently experiencing touch interaction in the form of surface touch.
  • its contact area Larger, touch positioning is usually performed across multiple integrated modules 100 , which means that touch positioning within a single integrated module 100 is meaningless to the display module, and only through each photosensitive sensor 130 that currently experiences a sudden change in the output signal.
  • the position and output signal strength are calculated to obtain the outline of the touch surface (which can be combined with the de-aliasing algorithm to obtain the corresponding touch surface outline). Then the touch point coordinates can be determined based on the outline of the touch surface to achieve a smoother surface. Touch interaction.
  • the preset surface touch interaction positioning method is executed (the process is as follows: based on the position and output signal intensity of each photosensitive sensor that currently experiences a sudden change in the output signal, the The outline of the touch surface, and determine the coordinates of the touch point based on the outline of the touch surface) to perform corresponding touch interaction positioning.
  • the photosensitive touch interaction method provided by the embodiment of the present application is applied to a display module including multiple integrated modules.
  • Each integrated module is provided with a number of pixels and a photosensitive sensor, so that each integrated module can be used as a display module.
  • a minimum resolution unit of the group realizes the following photosensitive touch interaction process: first, real-time output signal monitoring of each photosensitive sensor of the display module is performed. Then, based on the output signals of each photosensitive sensor, it is determined whether touch interaction is currently occurring in the display module and corresponding touch interaction positioning is performed.
  • the above-mentioned preset touch interactive positioning method may specifically include steps S11 and S12 as described above, as shown in FIG. 9 .
  • steps S11 and S12 are also referred to the aforementioned embodiments and will not be repeated here.
  • the above-mentioned preset touch interactive positioning method may also specifically include steps S21 to S23 as described above, as shown in FIG. 10 .
  • steps S21 to S23 are also referred to the aforementioned embodiments and will not be repeated here.
  • the above-mentioned preset touch interactive positioning method may also specifically include steps S31 and S32 as described above, as shown in FIG. 11 .
  • steps S31 and S32 are also referred to the aforementioned embodiments and will not be repeated here.
  • the above-mentioned preset touch interactive positioning method may also specifically include steps S41 and S42 as described above, as shown in FIG. 12 .
  • steps S41 and S42 are also referred to the aforementioned embodiments and will not be repeated here.
  • the preset touch interactive positioning methods in the above examples can achieve further precise positioning in the integrated module 110 to perform corresponding touch interactive positioning.
  • Those skilled in the art will click on the display module according to the embodiment of the present application. Touch interactive positioning to select one and use it.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种集成模块、显示模组、感光触控交互系统及方法。该集成模块(100)包括集成基板(110),集成基板(110)的第一表面设置有若干像素点(120),集成基板(110)的第二表面设置有感光传感器(130),集成基板(110)分别与若干像素点(120)及感光传感器(130)电性连接;集成基板(110)上还开设有贯穿第一表面及第二表面的导光通孔(111),且感光传感器(130)的感光表面正对导光通孔(130)。所述显示模组(200)包括若干上述集成模块(100)。所示感光触控交互系统及方法应用于所述显示模组中。

Description

集成模块、显示模组、感光触控交互系统及方法
相关申请
本申请要求申请日为2022年4月11日、申请号为202210373546.6、名称为“一种集成模块与显示模组”的中国专利申请,申请日为2022年4月11日、申请号为202210373530.5、名称为“一种感光触控交互系统”的中国专利申请,以及申请日为2022年4月11日、申请号为202210375057.4、名称为“一种感光触控交互方法”的中国专利申请的优先权,在此将前述三件专利申请的全文引入作为参考。
技术领域
本申请涉及显示技术领域,特别涉及一种集成模块、显示模组、感光触控交互系统及方法。
背景技术
当前,针对大尺寸LED显示屏的屏幕触控方案,实现触控功能的检测传感器一般与显示屏独立开,即通过独立于显示屏结构之外的额外的触控系统来实现相应显示屏的触控功能。
发明内容
第一方面,本申请提供了一种集成模块,包括集成基板,所述集成基板的第一表面设置有若干像素点,所述集成基板的第二表面设置有感光传感器,所述集成基板分别与所述若干像素点及所述感光传感器电性连接;所述集成基板上还开设有贯穿所述第一表面及所述第二表面的导光通孔,且所述感光传感器的感光表面正对所述导光通孔。
在一些实施方式中,所述导光通孔内填充有导光柱。
在一些实施方式中,所述导光通孔内填充有若干滤镜。
在一些实施方式中,所述若干像素点呈矩阵分布在所述第一表面,每一所述像素点均包括三个灯珠晶片以及一个公共极焊盘,所述三个灯珠晶片以及一个公共极焊盘呈田字形分布。
在一些实施方式中,邻近所述导光通孔设置的所述像素点的所述公共极焊盘紧邻所述导光通孔设置。
在一些实施方式中,所述集成基板的第一表面还设置有密封胶层,以密封保护所述若干像素点。
在一些实施方式中,所述集成基板的第二表面还设置有若干驱动芯片,所述若干驱动芯片与所述集成基板电性连接。
在一些实施方式中,所述集成基板的第二表面还设置有黑胶层,以密封保护所述若干驱动芯片及所述感光传感器。
第二方面,本申请提供了一种显示模组,包括若干上述的集成模块。
在一些实施方式中,所述显示模组还包括模组PCB板,若干所述集成模块呈矩阵分布固设在所述模组PCB板的一侧表面上。
第三方面,本申请还提供了一种感光触控交互系统,应用于包括若干集成模块的显示模组中,每一所述集成模块的正侧对应设置有若干像素点;所述感光触控交互系统包括主控制器以及若干感光传感器,所述若干感光传感器与所述若干集成模块一一对应设置,每一所述感光传感器对应设置在相应的所述集成模块的背侧,且每一所述感光传感器的光电感应层正对相应的所述集成模块的导光通孔,所述主控制器分别与所述若干感光传感器电性连接。
在一些实施方式中,所述感光传感器还包括信号值输出模块,其中,所述光电感应层,配置为感应所述导光通孔处的光线强度,生成相应的电信号,并发送给所述信号值输出模块;所述信号值输出模块,配置为对所述光电感应层发送过来的所述电信号进行大小检测,得到相应的信号值并反馈给所述主控 制器。
在一些实施方式中,所述光电感应层的材料选自硒、锗、硫化镉、砷化镓中的任意一种。
在一些实施方式中,所述信号值输出模块为一电压比较器,所述电压比较器的同相输入端输入所述主控制器输出的参考电压信号,所述电压比较器的反相输入端输入所述光电感应层输出的电信号,所述电压比较器的输出端与所述主控制器电性连接,使得所述主控制器根据所述电压比较器输出的电平信号获知所述光电感应层输出的电信号的信号值。
在一些实施方式中,所述主控制器包括信号监测模块与触控交互模块,其中,所述信号监测模块,配置为对各个所述感光传感器进行实时输出信号监测;所述触控交互模块,配置为根据各个所述感光传感器的输出信号,判断所述显示模组当前是否发生触控交互及进行相应的触控交互定位。
在一些实施方式中,所述信号监测模块包括突变信号检测单元与突变信号统计单元,其中,所述突变信号检测单元,配置为检测当前是否出现输出信号突变的感光传感器;所述突变信号统计单元,配置为在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
在一些实施方式中,所述突变信号检测单元,还配置为在任一所述感光传感器的输出信号发生变化时,检测相应的所述感光传感器的信号变化值,并在所述信号变化值大于第一预设阈值时,判断相应的所述感光传感器当前出现输出信号突变。
在一些实施方式中,所述触控交互模块包括第一判断执行单元,第二判断执行单元以及第三判断执行单元,其中,所述第一判断执行单元,配置为在当前没有出现输出信号突变的感光传感器或出现输出信号突变的感光传感器的数量多于第二预设阈值时,判断所述显示模组当前没有发生触控交互;所述第二判断执行单元,配置为在当前出现输出信号突变的感光传感器的数量仅为一个时,判断所述显示模组当前发生点触形式的触控交互,并执行预设的点触交互定位方法,以进行相应的触控交互定位;所述第三判断执行单元,配置为在当前出现输出信号突变的感光传感器的数量大于一个但少于所述第二预设阈值时,则判断所述显示模组当前发生面触形式的触控交互,并执行预设的面触交互定位方法,以进行相应的触控交互定位。
在一些实施方式中,所述导光通孔内填充有导光柱;和/或,所述导光通孔内填充有若干滤镜。
在一些实施方式中,所述显示模组还包括模组PCB板,若干所述集成模块呈矩阵分布固设在所述模组PCB板的一侧表面上,且每一所述集成模块背侧的所述感光传感器均与固设在所述模组PCB板上的所述主控制器电性连接。
第四方面,本申请还提供了一种感光触控交互方法,应用于包括多个集成模块的显示模组中,每一所述集成模块对应设置有若干像素点及一感光传感器,所述感光触控交互方法包括以下步骤:对所述显示模组的各个感光传感器进行实时输出信号监测;根据各个所述感光传感器的输出信号,判断所述显示模组当前是否发生触控交互及进行相应的触控交互定位。
在一些实施方式中,所述对所述显示模组的各个感光传感器进行实时输出信号监测的步骤具体包括:检测当前是否出现输出信号突变的感光传感器,并在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
在一些实施方式中,所述检测当前是否出现输出信号突变的感光传感器的步骤具体包括:若任一所述感光传感器的输出信号发生变化时,检测相应的所述感光传感器的信号变化值,并在所述信号变化值大于第一预设阈值时,判断相应的所述感光传感器当前出现输出信号突变。
在一些实施方式中,所述根据各个所述感光传感器的输出信号,判断所述显示模组是否发生触控交互及进行相应的触控交互定位的步骤具体包括:若当前没有出现输出信号突变的感光传感器或出现输出信号突变的感光传感器的数量多于第二预设阈值,则判断所述显示模组当前没有发生触控交互;若当前出现输出信号突变的感光传感器的数量仅为一个,则判断所述显示模组当前发生点触形式的触控交互,并执行预设的点触交互定位方法,以进行相应的触控交互定位;若当前出现输出信号突变的感光传感器的数量大于一个但少于所述第二预设阈值,则判断所述显示模组当前发生面触形式的触控交互,并执行预设的面触交互定位方法,以进行相应的触控交互定位。
在一些实施方式中,所述预设的点触交互定位方法包括以下步骤:依次点亮出现输出信号突变的感光传感器所在的所述集成模块上的每一所述像素点,以获取每一所述像素点点亮时,相应的所述感光传 感器输出的光强信号;对每一所述像素点点亮时对应的所述光强信号进行对比排序,将所述像素点点亮时对应的所述光强信号最强的所述像素点的坐标判定为触控点坐标。
在一些实施方式中,所述预设的点触交互定位方法包括以下步骤:选出输出信号突变的感光传感器所在的所述集成模块上的位于外围四角的四个所述像素点;分时点亮所述四个所述像素点,以获取每一所述像素点点亮时,相应的所述感光传感器输出的光强信号;根据所述四个所述像素点分时点亮时对应的所述光强信号进行对点偏差求解,计算得到相应的触控点坐标。
在一些实施方式中,所述预设的点触交互定位方法包括以下步骤:在出现输出信号突变的感光传感器所在的所述集成模块上进行预设图案的刷新操作,并获取所述预设图案刷新时相应的所述感光传感器输出的光强信号;在预设数据库中比对得到所述光强信号对应的所述像素点的坐标,以判断为触控点坐标。
在一些实施方式中,所述预设数据库的建立方法,包括以下步骤:在每一所述集成模块上进行预设图案的刷新操作,并在当前所述集成模块进行刷新操作时,记录触控点在每一所述像素点时,相应的所述感光传感器输出的光强信号,以建立所述预设数据库。
在一些实施方式中,所述预设的点触交互定位方法包括以下步骤:分时点亮出现输出信号突变的感光传感器所在的所述集成模块上的每一所述像素点,以判断每一所述像素点点亮时,相应的所述感光传感器输出的光强信号是否大于第三预设阈值;将所述像素点点亮时对应的所述感光传感器输出的光强信号大于预设阈值的所述像素点的坐标判定为触控点坐标。
在一些实施方式中,所述预设的面触交互定位方法包括以下步骤:根据当前出现输出信号突变的各感光传感器的位置及输出信号强度,计算得到触控面的轮廓,并根据所述触控面的轮廓判断触控点坐标。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的集成模块的正面结构示意图。
图2为图1所示集成模块的背面结构示意图。
图3为图1所示集成模块的剖视结构示意图。
图4为本申请另一实施例提供的显示模组的结构示意图。
图5为图4所示显示模组的局部Ⅰ放大结构示意图。
图6为本申请一实施例提供的感光触控交互系统的连接框图。
图7为图6所示感光触控交互系统的感光传感器的原理连接框图。
图8为图6所示感光触控交互系统的主控制器的原理连接框图。
图9为本申请一实施例提供的预设的点触交互定位方法的一种流程框图。
图10为本申请一实施例提供的预设的点触交互定位方法的另一种流程框图。
图11为本申请一实施例提供的预设的点触交互定位方法的另一种流程框图。
图12为本申请一实施例提供的预设的点触交互定位方法的另一种流程框图。
图13本申请一实施例提供的感光触控交互方法的流程框图。
图14为图13所示感光触控交互方法的步骤S120的具体流程框图。
具体实施方式
下面结合附图对本申请的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本申请,但并不构成对本申请的限定。此外,下面所描述的本申请各个实施方式中所涉 及的技术特征只要彼此之间未构成冲突就可以相互组合。
当前,针对大尺寸LED显示屏的屏幕触控方案,较为成熟的方法有三种。第一种是在屏幕外加装一个红外边框,利用红外对管检测触控点点位反射的红外光,计算出触控点的准确坐标,从而完成触控刷新。这种方式的优点在于成本低,延迟低,能够快速、精确的确定触控点坐标。不过缺点在于红外对管的安置位置,需使屏幕保留一圈边框,无法实现无边框显示。第二种是在屏幕表面铺设一层金属网格,利用铜等导电金属及其氧化物的丝线密布在PET基材导电层上,形成形状规则的网格,基于贴合的导电膜通过感应触摸实现信号传输功能。其优点是低成本,制程简单,良率高,可卷曲,低方阻;缺点是可能产生莫尔条纹,难以完全克服。第三种是在屏幕前方安置摄像头,先在屏幕表面喷涂一层保护膜,通过屏前预设的摄像头拍摄触控点位,进行图像处理,实现屏幕触控点的精确定位。其优势在于定位精度高,屏幕一体效果好;缺点在于延迟较高,每次都需要结合现场情况,选择摄像头的安放位置,调试触控系统。
可见,在上述三种方案中,其实现触控功能的检测传感器相对于显示屏都是独立设置,即这三种方案均通过独立于显示屏结构的额外的触控系统来实现该显示屏的触控功能。这样做虽然可带来成本低、技术实现难度低、易于维护等好处,但均不可避免地增加了显示屏结构的复杂性,同时,亦影响了显示屏的显示效果,且存在触控延时的问题。
如图1至图3所示,本申请实施例提供一种集成模块100,该集成模块100包括集成基板110,集成基板110的第一表面设置有若干像素点120,集成基板110的第二表面设置有感光传感器130,集成基板110分别与若干像素点120及感光传感器130电性连接。集成基板110上还开设有贯穿所述第一表面及所述第二表面的导光通孔111,且感光传感器130的感光表面正对导光通孔111。
在本实施例中,如图1至图3所示,为更好地实现感光传感器130的感光检测,感光传感器130具体可设置于所述第二表面的正中心,同时,导光通孔111亦开设于集成基板110的正中心,这样可使得若干像素点120更规则地分布在导光通孔111的四周,进而降低感光传感器130在感光检测后的定位计算难度。
在一些示例中,如图3所示,在导光通孔111内填充有导光柱140,通过设置导光柱140可将照射到导光通孔111上的光线均匀引导到感光传感器130上,即导光柱140起到导光、匀光的作用,使得集束的光线均匀的分布在导光截面。同时,导光通孔111内还可填充有若干滤镜(未图示),这些滤镜可用于过滤红外光和紫外光,使感光传感器130不会对不可见光反应,避免不可见光造成干扰。同时,这些滤镜也可以用于仅让特定波段的光线通过,仅使像素点120发出的光线中特定波段的光线影响感光传感器,方便作为检测光线进行触控定位。同样的,也可以不添加滤镜,仅通过软件控制或者硬件电路,实现带通滤波。
在一些示例中,如图1至图3所示,若干像素点120呈矩阵分布在集成基板110的第一表面,每一像素点120均包括三个灯珠晶片以及一个公共极焊盘124,三个灯珠晶片以及一个公共极焊盘124呈田字形分布,即,三个灯珠晶片以及一个公共极焊盘124呈2*2矩阵式分布。三个灯珠晶片可以分别是红色灯珠晶片121、绿色灯珠晶片122以及蓝色灯珠晶片123。正常来说,红色灯珠晶片121、绿色灯珠晶片122、蓝色灯珠晶片123以及公共极焊盘124按照预设同样的排列方式进行田字形分布排列,但为了保证导光通孔111有较大的尺寸空间,以便于感光传感器130接收前方灯珠的反射光线,可以对导光通孔111周围的像素点120的灯珠分布做转向处理。一实施例中,由于公共极焊盘124的作用主要为连接相应像素点120中各灯珠的正极或者负极(二选一),其尺寸可以做得更小一点。故在导光通孔111周围轮廓的灯珠就可以转变一个方向分布,使得邻近导光通孔111设置的像素点120的公共极焊盘124紧邻导光通孔111设置,从而为导光通孔111预留更大的尺寸空间。导光通孔111的边沿,最简单的情况可以是一个圆形的,这样方便加工。因为目前主流的封装技术条件下,该导光通孔111的圆孔直径是0.5mm,通过十字开孔的轮廓设计,其有效感光直径可以扩大到1mm以上,从而极大提升感光传感器130的敏感度。
在一些示例中,如图1至图3所示,集成基板110的第一表面还设置有密封胶层150,以密封保护若干像素点120。密封胶层150的主要材料可以是环氧树脂,多数情况下会混杂黑色素等材料,起到保护内部电气封装以及提高画面对比度和一致性的作用。
在一些示例中,如图1至图3所示,集成基板110的第二表面还设置有若干驱动芯片160,若干驱动芯片160与集成基板110电性连接。同时,集成基板110的第二表面还设置有黑胶层170,以密封保护若干驱动芯片160及感光传感器130。其中,感光传感器130和若干驱动芯片160可直接焊接固定在集成基板110的第二表面上后,通过黑胶层170密封保护。感光传感器160主要用于接收来自导光柱140的光线,并产生光电反应,形成相应的电信号后,既可直接导入驱动芯片160,以继续向上输出至相应的触控系统,亦可将直接输出至相应的触控系统。驱动芯片160用于接收显示驱动数据,以驱动像素点120的灯珠显示。驱动芯片160可以邦定工艺裸晶封装,通过金线11与集成基板110建立电气连接,这里的金线11也可直接将感光传感器130的感生电流连接至焊盘引脚12输出。焊盘引脚12是用以连接外部器件的管脚,驱动芯片160的对外部分都通过金线11连接在焊盘引脚12上。
在一些示例中,如图1至图3所示,本申请实施例中的集成模块100的一个典型尺寸是4x4mm,在这一个尺寸上安装16个像素点120,1个感光传感器130及1个驱动芯片160,当这一感光传感器130有信号输出时,说明触控点落到了该集成模块100的尺寸范围内。而感光传感器130需要做的,就是采集到触控轮廓在不同时间片段内,经由不同像素点120照射下的反射光强,从而确定触控轮廓在这一集成模块100中,更靠近16个像素点中的哪一个,并将其判定为触控点。这16个像素点120是按照4*4排列的,而这16像素点120当中,每个像素点120又分别有红色灯珠晶片121、绿色灯珠晶片122、蓝色灯珠晶片123以及公共极焊盘124。三色灯珠晶片按照特定的配比发光,就能够组成白光。驱动这些灯珠晶片工作的驱动芯片160被集成在背面,以邦定工艺进行裸晶固定封装。
需要说明的是,驱动芯片160的数量以及像素点120的数量,是不做具体限定的。一个驱动芯片160对应16个像素点120可以作为一个典型值。但同样可以用两个驱动芯片160对应64个像素点120,作为一个集成模块来封装,或者其它数量。而驱动芯片160的封装形式也是不做限定的,QFN封装和裸晶邦定封装都是在实际应用中的低成本解决方案,但不排除其它的固定方式。同样的模块尺寸下,像素点120的尺寸不同,可以封装实现不同分辨率的集成模块100。以4*4mm尺寸的集成模块为例,其上可以封装从P1-P0.5的尺寸规格的像素点,即不考虑像素点120的体积的情况下,封装的像素点120可以按照4*4、5*5、6*6、7*7、或8*8排列,这些排列中像素点之间的间距是逐次递减的。而递减的过程中,驱动形式和驱动方案也会有相应的调整。在加工流片的过程中,就可以降低基座的成本,进一步降低封装的成本。而设计流程也被简化为对集成模块100的片选组合。
另外,上述提到的感光传感器130的制作材料可以有许多种,例如硒、锗、硫化镉、砷化镓等。其中硫化镉测光是常用的检测光强的材料。硫化镉是一种无机物,化学式为CdS,晶体有两种:α-式呈柠檬黄色粉末,β-式呈桔红色粉末。硫化镉微溶于水,溶于酸,微溶于氨水,可用于制焰火、玻璃釉、瓷釉、发光材料、颜料。高纯度硫化镉是良好的半导体,对可见光有强烈的光电效应,可用于制光电管、太阳能电池。也可以结合本申请感光传感器130的要求,作为本申请的感光传感器130来使用。
如图4及图5所示,本申请另一方面还提供了一种显示模组200,该显示模组200包括若干上述的集成模块100以及模组PCB板(未图示),若干集成模块100呈矩阵分布固设在模组PCB板的一侧表面上。
在一些示例中,本申请的集成模块100是正面像素点封装,背面常规IC裸晶封装的模块。所述集成模块100贴敷于双面PCB板上,即本实施例中的模组PCB板为双面板结构,可用于传输数据和电流,而显示数据的驱动和处理可由集成模块100上的驱动芯片执行,该驱动芯片可一对一驱动控制相应的集成模块100。对于每个集成模块100来说,其接收的数据量小,巨量数据通过巨量的传输信道得到转移。对于集成模块100上的驱动芯片,其信号包括行控制信号和列控制信号,通过单片芯片就可以实现行列信号共用,充分发挥芯片效能。而前述的两个驱动芯片160对应64个像素点120的形式,也是采用行列信号共用的,可以省下两片晶片。
上述集成模块100是通过焊点连接至模组PCB板上的,也可以采用粘性材料连接、球焊连接等形式固定在模组PCB板上。双面板结构的模组PCB板主要包含为集成模块100供电的DC模块、数据传输信道等。另外,采用裸晶封装的集成模块100连接在模组PCB板上时,通常裸晶的密封胶层的高度是要稍微高于焊点的,这时如果将集成模块100放在平整的模组PCB板上,由于底部被密封胶撑高,焊点是接触不到焊盘的。为使集成模块100与模组PCB板紧密贴合,同时使集成模块100的焊盘引脚 与模组PCB板的焊盘贴合,通常会在集成模块100上与密封胶层高出部分对应的位置开一个小孔,让密封胶层顶部落入孔内,同时实现对集成模块100的结构定位。该孔位具体就是阵列式的小孔,可以是通孔,也可以是控深孔。
在一些示例中,上述集成模块100之间一般是紧密贴合的,但是集成模块100与集成模块100之间亦可以保留一定的缝隙,与像素点120间的缝隙一致。集成模块120之间从结构上是彼此分离封装的。基于此,密封胶层也并不是统一的封装在整张显示模组上的,而是分散的封装在单个集成模块100上,实现胶层的密封。前面也说明了集成模块本身尺寸很小,所以单个集成模块100的密封灌胶用量很低,可以很快速的实现灌胶。而对集成模块100的灌胶工艺,可以直接采用现有的对SMD(Surface Mounted Devices)灯珠的灌胶工艺实现,因为单个集成模块100的尺寸是远大于当前单个SMD灯珠的尺寸的,而目前每颗SMD灯珠的表面都会封装一层密封胶层,其实现的成本很低,工艺也很成熟,故在这里不做展开说明。
每封装了一片集成模块100,相当于同时封装了16个像素点120。而对每个集成模块100来说,由于体积小,数量少,规格统一,流片和加工速度更高,适合大规模生产。如图2所示,每个集成模块100都有数个焊盘引脚12与模组PCB板连接,集成模块100的尺寸很大,故焊盘引脚12的面积也很大,这就大大的提高了单个集成模块100在模组PCB板上的连接强度,配合表面分散封装的密封层结构,为方便的书写触控交互打下基础。对集成模块100分别封装,分别灌胶的优势在于,可以使集成模块100本身的整体漏光减小,每16个像素点120为一组,其漏光在单个集成模块100内就出现了,但不会在整个显示模组200上累加。从而减小显示模组200的拼缝漏光。
以COB(Chips on Board)封装模组为例,显示模组200本身产生边界漏光的主要原因,是像素点120发出的部分光线在透光的密封胶层边界内部形成反射,多次反射后最终从密封层的侧边沿射出,显示模组200侧边沿的整体漏光,是由板上多个像素点120共同作用的结果。COB封装模组上的密封层不是一体式的,16个像素点120与集成模块100呈分布式封装,对应的胶层也是分散在每个集成模块100上,这就使得像素点120的漏光在显示模组200内部就被消耗了,不会出现整体漏光的情况。
在一些示例中,多个显示模组200拼接在一起,可形成更大尺寸的显示屏。现有的显示模组200的拼接工艺中,存在一定的拼接缝隙。而本申请集成模块100之间的缝隙却可以在一定程度上将显示模组200的拼接缝隙给隐藏起来,使得显示模组200间的拼缝看起来并不明显,实现无缝化拼接。与COB拼接相比,集成模块100的封装形式中,集成模块100并不是被一体式的密封的,而是分体式的。这就导致了显示模组200的拼接起来会存在两种缝隙,一种是显示模组200之间的拼缝,另一种是集成模块100之间的拼缝。得益于当下封装工艺,集成模块100之间的拼缝有着极高一致性,其效果要远优于显示模组200之间的拼缝。但从尺寸间隙上看,两者其实是一致的。这就使得集成模块1000之间的拼缝可以掩盖显示模组200之间的拼缝的瑕疵,实现糊化的视觉美缝效果,从整体上提升了画面的一致性。
本申请实施例提供的集成模块与显示模组,其集成模块包括集成基板,集成基板的第一表面设置有若干像素点,集成基板的第二表面设置有感光传感器,集成基板分别与若干像素点及感光传感器电性连接;集成基板上还开设有贯穿第一表面及所述第二表面的导光通孔,且感光传感器的感光表面正对导光通孔。这样一来,在集成模块的封装结构中,感光传感器与像素点并不在一个层面上,而是在集成基板的正反两个表面上,这样,就不会因为感光传感器的体积问题,而影响到像素点的正常封装。当显示模组通过若干上述集成模块组成时,每一集成模块可作为一个最小分辨单元,实现相应的触控检测定位,具体为利用集成模块上的像素点发光作为检测光源,以在触控物体靠近某一集成模块时,相应集成模块的像素点发光会照射到该触控物体的表面而形成相应的反射光线,同时,相应集成模块的感光传感器通过导光通孔检测到这些反射光线后,可基于这些反射光线的光线强度产生电信号,来确定该触控物体的位置,进而实现该显示模组的实时触控交互。可见,本申请是通过一体式封装结构来实现显示屏模组的触控交互的,可在有效简化显示模组的系统结构的同时,不会影响显示屏的显示效果,及不存在触控延时的缺点。因而,本技术方案可有解决现有技术中针对大尺寸显示屏实现屏幕触控时均采用额外的触控系统来实现相应显示屏的触控功能的技术方案使得显示屏的系统结构变得复杂性的同时,亦影响了显示屏的显示效果及存在触控延时的缺点的技术问题。
请参考图1、图3-5及图6,本申请另一方面还提供一种感光触控交互系统300,应用于包括若干集 成模块100的显示模组200中,每一集成模块100的正侧对应设置有若干像素点120。感光触控交互系统300包括主控制器310以及若干感光传感器130,若干感光传感器130与若干集成模块100一一对应设置,每一感光传感器130对应设置在相应的集成模块100的背侧,且每一感光传感器130的光电感应层131正对相应的集成模块100的导光通孔111,主控制器310分别与若干感光传感器130电性连接。
在本实施例中,如图3-6所示,为更好地实现感光传感器130的感光检测,感光传感器130具体可设置于相应的集成模块100的正中心,同时,导光通孔111亦开设于集成模块100的正中心,这样可使得若干像素点120更规则地分布在导光通孔111的四周,进而降低各感光传感器130的感光检测后,主控制器310对其的触控定位计算难度。
在一些示例中,可在导光通孔111内填充有导光柱140,以通过导光柱140的设置,使得照射到导光通孔111上的光线均匀引导到感光传感器130上,即起到导光、匀光的作用,使得集束的光线均匀的分布在导光截面。同时,还可在导光通孔111内填充有若干滤镜(未图示),这些滤镜可用于过滤红外光和紫外光,使感光传感器130不会对不可见光反应,避免可见光造成干扰。同时,这些滤镜也可以用于仅让特定波段的光线通过,仅使像素点120发出光线中的特定波段的光线影响感光传感器130,方便作为检测光线进行触控定位。同样的,也可以不添加滤镜,仅通过软件控制或者硬件电路,实现带通滤波。
在一些示例中,如图1、图3及图5所示,若干像素点120呈矩阵分布在相应的集成模块100的正侧,每一像素点120均包括三个灯珠晶片以及一个公共极焊盘,三个灯珠晶片以及一个公共极焊盘呈田字形分布。三个灯珠晶片可以分别是红色灯珠晶片、绿色灯珠晶片以及蓝色灯珠晶片。正常来说,红色灯珠晶片、绿色灯珠晶片、蓝色灯珠晶片以及公共极焊盘按照预设同样的排列方式进行田字形分布排列,但为了保证导光通孔111有较大的尺寸空间,以便于感光传感器130接收前方灯珠的反射光线,对导光通孔111周围的像素点120的灯珠分布做了转向处理。由于公共极焊盘的作用主要为连接相应像素点120中各灯珠的正极或者负极(二选一),其尺寸可以做得更小一点。故在导光通孔111周围轮廓的灯珠,就可以转变一个方向分布,使得邻近导光通孔111设置的像素点120的公共极焊盘紧邻导光通孔111设置,来为导光通孔111预留更大的尺寸空间。导光通孔111的边沿,最简单的情况可以是一个圆形的,这样方便加工。因为目前主流的封装技术条件下,该导光通孔111的圆孔直径是0.5mm,通过十字开孔的轮廓设计,其有效感光直径可以扩大到1mm以上,从而极大提升感光传感器130的敏感度。
在一些示例中,如图1、图3至图6所示,显示模组200还包括模组PCB板(未图示),若干集成模块100呈矩阵分布固设在模组PCB板的一侧表面上,且每一集成模块100背侧的感光传感器130均与固设在模组PCB板上的主控制器310电性连接。此时,如图7所示,感光传感器130除了包括光电感应层131外,还包括信号值输出模块132,其中,光电感应层131主要配置为感应导光通孔111处的光线强度,生成相应的电信号,并发送给信号值输出模块132。而信号值输出模块132主要配置为对光电感应层131发送过来的电信号进行大小检测,得到相应的信号值并反馈给主控制器310。这样一来,本感光触控交互系统300可利用集成模块100上的像素点120发光作为检测光源,以在触控物体靠近某一集成模块100时,相应集成模块100的像素点120发光会照射到该触控物体的表面而形成相应的反射光线,与之同时,相应集成模块100的感光传感器130的光电感应层131通过导光通孔111检测到这些反射光线后,可基于这些反射光线的光线强度生成相应的电信号,并发送给信号值输出模块132,以通过信号值输出模块132对这些电信号进行大小检测,得到相应的信号值后反馈给主控制器310来确定该触控物体的位置,进而实现该显示模组200的实时触控交互。
在一些示例中,如图7所示,上述光电感应层131的材料选自硒、锗、硫化镉、砷化镓中的任意一种。其中硫化镉测光也是常用的检测光强的材料。硫化镉是一种无机物,化学式为CdS,晶体有两种:α-式呈柠檬黄色粉末,β-式呈桔红色粉末。硫化镉微溶于水,溶于酸,微溶于氨水,可用于制焰火、玻璃釉、瓷釉、发光材料、颜料。高纯度硫化镉是良好的半导体,对可见光有强烈的光电效应,可用于制光电管、太阳能电池。也可以结合本申请感光传感器130的要求,作为本申请的感光传感器130的光电感应层131来使用。
在一些示例中,如图7所示,上述信号值输出模块132为一电压比较器,电压比较器的同相输入端输入主控制器310输出的参考电压信号V2,电压比较器的反相输入端输入光电感应层131输出的电信 号V1,电压比较器的输出端与主控制器310电性连接,使得主控制器310根据电压比较器输出的电平信号获知光电感应层131输出的电信号的信号值。该信号值具体可为电压值,光电感应层131以伏值信号输出,即光电感应层131在受到光照后产生感生电压(即电信号V1),感生电压传递出来以后,会与来自上位机(具体可以是主控制器310)的参考电压信号V2进行比较,通过标准的比较算法,求出当前的信号值。例如电信号V1的电压值是0.48mV,主控制器310首先会输入一个1mV的标准电压(即参考电压信号V2),通过电压比较器比较后确定V2>V1,而后电压比较器的输出端输出高电平,主控制器310根据电压比较器的输出结果确定是V2>V1后,再将输出电压减半,输出一个0.5mV的参考电压信号V2,电压比较器会根据比较结果继续输出高电平,主控制器310根据电压比较器的比较结果再输出一个0.25mV的参考电压信号V2,电压比较器就会输出低电平,主控制器310此时输出电压就增半,输出0.375mV的参考电压信号V2,以此逐渐逼近,在特定的精度下检测到感光传感器130的输出。基于采样保持电路,就可以精确的,分时的检测出当前的感光传感器130的输出信号的信号值。
需要说明的是,显示模组200在进行内容显示的时候,各个感光传感器130会不断的接收到光信号,进而产生相应的电信号。本感光触控交互系统300可通过轮询检测机制,分区域的、分时的对显示模组200上的各个感光传感器130的输出值进行检测。检测感光输出的时长在屏幕刷新的一帧画面的时长以内,即16.67ms。具体来说,本感光触控交互系统300对每一区域的轮询,其时长是1.667ms,该时长是一个极短的时间,而对于对应区域内的整个感光传感器130的输出来说,这是一个相当相当宽裕的值。本感光触控交互系统300在进行轮询的过程中,对感光数据的可以以较低的精确度进行处理,以降低系统负担,当出现触控信号特征后,对感光传感器130进行精确定位。在一帧的时间中,本感光触控交互系统300其实并不需要读太多次感光输出的变化,仅需要满足触控要求即可。本领域技术人员可以理解,触控的延迟在20~30ms时,对人的书写来说就已经感受不到延迟了。在一帧的时间中,本感光触控交互系统300仅需在一帧时间内采集一次感光传感器130的输出,即可满足触控需求。例如将显示模组200的显示界面等大小分割成十个,以16.67ms为时间间隔,本感光触控交互系统300在显示界面上轮询一遍,相当于每个区域采集感光输出耗时仅1.667ms。在这1.667ms内,本感光触控交互系统300接收的是对应区域的全部感光信号输出,即在这一帧时间内的感光伏值,伏值高低在这一帧时间内可以看作是不变的,但从整个时间片段上数帧来说是动态变化的。
在一些示例中,如图8所示,上述主控制器310包括信号监测模块311与触控交互模块312,其中,信号监测模块311可配置为对各个感光传感器130进行实时输出信号监测。触控交互模块312可配置为根据各个感光传感器130的输出信号,判断显示模组200当前是否发生触控交互及进行相应的触控交互定位。这样一来,本感光触控交互系统300便可利用显示模组200的各集成模块100上的像素点120发光作为检测光源(即利用触控物体靠近某一集成模块100时,相应集成模块100的像素点120发光会照射到该触控物体的表面而形成相应的反射光线,同时,位于相应集成模块100背侧的感光传感器130通过导光通孔111检测到这些反射光线后,便可基于这些反射光线的光线强度产生电信号的特性),其主控制器310便可通过对各个感光传感器130进行实时输出信号监测,以根据各个感光传感器130的输出信号,来判断显示模组200当前是否发生触控交互及进行相应的触控交互定位,进而实现该显示模组200的实时触控交互。
在一些示例中,如图8所示,信号监测模块311具体可包括突变信号检测单元与突变信号统计单元(未图示),其中,突变信号检测单元具体可配置为检测当前是否出现输出信号突变的感光传感器。突变信号统计单元,配置为在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
需要说明的是,在没有明显的外部环境光突变情况下,感光传感器130的输出是在一个有限的频段波动的,这是因为感光传感器130接收的信号大都是微弱的信号流,包括集成模块100内部漏光、外部环境光、屏前一定距离的物体反光,这类光线的特征是漫反射,光线无序性较强,仅有少部分光源会射入感光传感器,并引起感光传感器130的信号输出,进而这类光线造成的波动,从长时间来看会落入一个稳定的频段内,即感光传感器130的输出信号会在这一频段内稳定变换,是为底噪声。对于本申请的显示模组200而言,其要分辨触控信号和干扰信号,就需要依托各个感光传感器130的信号变化特征。对于触控信号来说,其带来的变化特征和其它因素有着显著的不同,具体可体现在触控信号的动态变化 幅值相较于其它变化来说更急剧,即感光传感器130会在时间长度上有一个突变的点,在这个点之后感光传感器130的输出信号(具体可以输出电压值)会显著提高,意味着触控信号出现,或者显著降低,意味着触控信号消失。显示模组基于此特征,就可以判定变化情况来自触控信号。因而,上述突变信号检测单元具体还可配置为在任一感光传感器130的输出信号发生变化时,检测相应的感光传感器130的信号变化值,并在信号变化值大于第一预设阈值时,判断相应的感光传感器当前出现输出信号突变。以感光传感器130的输出信号为电压值为例,若感光传感器130输出的电压值突然增大,且增大的幅度大于第一预设阈值(第一预设阈值可根据实际检测精度需要进行合理调整设置),则可判断相应的感光传感器130当前出现了输出信号突变,这些判断为输出信号突变的感光传感器130的数量、位置及相应的输出信号值均可作为后续判断显示模组200当前是否发生触控交互及进行相应的触控交互定位的依据。
在一些示例中,如图8所示,上述触控交互模块312具体可包括第一判断执行单元,第二判断执行单元以及第三判断执行单元(未图示),其中,第一判断执行单元可配置为在当前没有出现输出信号突变的感光传感器或出现输出信号突变的感光传感器的数量多于第二预设阈值时,判断显示模组当前没有发生触控交互。第二判断执行单元可配置为在当前出现输出信号突变的感光传感器的数量仅为一个时,判断显示模组当前发生点触形式的触控交互,并执行预设的点触交互定位方法,以进行相应的触控交互定位。第三判断执行单元可配置为在当前出现输出信号突变的感光传感器的数量大于一个但少于第二预设阈值时,则判断显示模组当前发生面触形式的触控交互,并执行预设的面触交互定位方法,以进行相应的触控交互定位。
需要说明的,会引起感光传感器130的输出信号突变的,除了是触控信号外,还可能是光线直射引起的,光线直射的情况通常是射灯、阳光直射等照射在屏幕上引起的,而且在数帧的时间内不会有大的变化,故可以通过判断这种剧变是否在多个集成模块上发生来进行区分。因而,对上述第一判断执行单元中提到的“出现输出信号突变的感光传感器的数量多于第二预设阈值的情形,亦判断显示模组当前没有发生触控交互”,主要是用于排除这些光线直射引起的感光传感器130的输出信号突变的情况,光线直射一般是照射在屏幕上的大片区域,引起多个感光传感器130的输出信号突变的,因而,上述第一判断执行单元可通过检测出现输出信号突变的感光传感器的数量是否多于第二预设阈值(第二预设阈值可根据实际检测精度需要进行合理调整设置),来判断其是否是光线直射引起的感光传感器130的输出信号突变的情况。
另外,由于触控交互模式可以十分丰富。具体来说,既可以通过带反射面的触控笔点击屏幕,以在点击位置产生反光,实现触控定位。也可以直接通过手指滑动,光线在打到手指上产生反光,实现触控定位。在面对远处触控时,还可以通过激光照射,使得被照射区域光线急剧增强,从而实现触控定位。上述这些触控交互模式按其影响到感光传感器的数量进行划分,可大致分为两者触控交互类型,一种是点触形式的触控交互类型,例如上述的触控笔点击屏幕、激光照射的触控形式,其接触面积较小,仅影响到一个感光传感器130的输出信号,因而,第二判断执行单元可在检测到当前出现输出信号突变的感光传感器的数量仅为一个时,判断显示模组当前发生点触形式的触控交互,同时,其接触面积较小,可能接触位置仅为集成模块100的其中一个像素点120,因而,其需进一步精准定位,第三判断执行单元会进一步执行预设的点触交互定位方法,以进行相应的触控交互定位。另一种是面触形式的触控交互类型,例如上述的手指滑动的触控形式,其接触面积较大,会影响到一个以上的感光传感器130的输出信号,但又有别于上述光线直射的影响,因而,第三判断执行单元可在检测到当前出现输出信号突变的感光传感器的数量大于一个但少于第二预设阈值时,判断显示模组当前发生面触形式的触控交互,同时,其接触面积较大,通常会跨过多个集成模块100来进行触控定位,意味着单个集成模块100内的触控定位对显示模组来说没有意义,仅通过当前出现输出信号突变的各感光传感器130的位置及输出信号强度,计算得到触控面的轮廓(可配合去锯齿化算法来得到相应的触控面轮廓),便可根据触控面的轮廓判断触控点坐标,实现较为平滑的面触形式的触控交互。因而,第三判断执行单元在判断显示模组200当前发生面触形式的触控交互时,需进一步执行预设的面触交互定位方法(具体过程如下:根据当前出现输出信号突变的各感光传感器130的位置及输出信号强度,计算得到触控面的轮廓,并根据触控面的轮廓判断触控点坐标),以进行相应的触控交互定位。
这样一来,本申请实施例的感光触控交互系统300应用在特定的显示模组200上,其感光传感器 130与该显示模组200相应的集成模块100的若干像素点120并不在一个层面上,而是在相应的集成模块100的正反两个表面上,这样,就不会因为感光传感器130的体积问题,而影响到像素点120的正常封装。当感光触控交互系统300对这显示模组200进行感光触控交互时,可将这显示模组200上的每一集成模块100作为一个最小分辨单元,实现相应的触控检测定位,具体为利用集成模块100上的像素点120发光作为检测光源,以在触控物体靠近某一集成模块100时,相应集成模块100的像素点120发光会照射到该触控物体的表面而形成相应的反射光线,同时,相应集成模块100的感光传感器130通过导光通孔111检测到这些反射光线后,可基于这些反射光线的光线强度产生电信号,来确定该触控物体的位置,进而实现该显示模组200的实时触控交互。可见,本申请是通过一体式封装结构来实现显示屏模组200的触控交互的,其可在有效简化显示模组200的系统结构的同时,不会影响显示模组200的显示效果,及不存在触控延时的缺点。
在一些示例中,如图9所示,上述第二判断执行单元中执行的预设的点触交互定位方法具体可包括以下步骤:
步骤S11:依次点亮出现输出信号突变的感光传感器所在的集成模块上的每一像素点,以获取每一像素点点亮时,相应的感光传感器输出的光强信号。
当点触的触控轮廓移动到集成模块100上时,点触交互定位的主要工作就是确定该轮廓距离该集成模块100上的哪个像素点120更近,从而将该像素点120的坐标判定为触控点坐标。此时,可先依次点亮出现输出信号突变的感光传感器130所在的集成模块100上的每一像素点120,以获取每一像素点120点亮时,相应的感光传感器130输出的光强信号,即在集成模块100上的每一像素点120单独点亮时,均记录一次相应的感光传感器130输出的光强信号。
步骤S12:对每一像素点点亮时对应的光强信号进行对比排序,将像素点点亮时对应的光强信号最强的像素点的坐标判定为触控点坐标。
当通过上述方法步骤“记录好每一像素点120单独点亮时,相应的感光传感器130输出的光强信号”后,便可对每一像素点点亮时对应的光强信号进行对比排序,将像素点点亮时对应的光强信号最强的像素点的坐标判定为触控点坐标,这是因为,点触的触控轮廓离哪一像素点120最近,其在单独点亮时,相应的感光传感器130输出的光强信号应为最强。
在一些示例中,如图10所示,上述第二判断执行单元中执行的预设的点触交互定位方法具体亦可包括以下步骤:
步骤S21:选出输出信号突变的感光传感器所在的集成模块上的位于外围四角的四个像素点。
当点触的触控轮廓移动到集成模块100上时,点触交互定位的主要工作就是确定该轮廓距离该集成模块100上的哪个像素点120更近,从而将该像素点120的坐标判定为触控点坐标。此时,以集成模块100上的若干像素点120的数量为16个为例,其可形成4X4的矩阵分布,点触交互定位时,选出输出信号突变的感光传感器130所在的集成模块100上的位于外围四角的四个像素点,即选出该4X4的矩阵分布上的左上角、右上角、左下角以及右下角四个像素点。
步骤S22:分时点亮四个像素点,以获取每一像素点点亮时,相应的感光传感器输出的光强信号。
通过上述方法步骤选出该4X4的矩阵分布上的左上角、右上角、左下角以及右下角四个像素点后,可分时点亮四个像素点,以获取每一像素点点亮时,相应的感光传感器输出的光强信号。即依次在集成模块100上的左上角像素点120单独点亮时、右上角像素点120单独点亮时、左下角像素点120单独点亮时以及右下角像素点120单独点亮时,均分别记录一次相应的感光传感器130输出的光强信号,共得到四个像素点分别点亮时对应的四个光强信号。
步骤S23:根据四个像素点分时点亮时对应的光强信号进行对点偏差求解,计算得到相应的触控点坐标。
通过上述方法步骤得到四个像素点分别点亮时对应的四个光强信号后,可根据四个像素点分时点亮时对应的光强信号进行对点偏差求解,计算得到相应的触控点坐标。例如,可以是分别求出第一个光强信号与第四个光强信号的差值、第二个光强信号与第三个光强信号的差值,再根据这两个差值判断真实触控点分别距离这四个像素点的远近关系(判断依据为真实触控点离哪一像素点120越近,其在单独点亮时,相应的感光传感器130输出的光强信号越强),以计算得到相应的触控点坐标。
在一些示例中,如图11所示,上述第二判断执行单元中执行的预设的点触交互定位方法具体亦可包括以下步骤:
步骤S31:在出现输出信号突变的感光传感器所在的集成模块上进行预设图案的刷新操作,并获取预设图案刷新时相应的感光传感器输出的光强信号。
当点触的触控轮廓移动到集成模块100上时,点触交互定位的主要工作就是确定该轮廓距离该集成模块100上的哪个像素点120更近,从而将该像素点120的坐标判定为触控点坐标。此时,可先建立一个预设数据库,其建立过程具体如下:在每一集成模块100上进行预设图案的刷新操作,并在当前集成模块100进行刷新操作时,记录触控点在每一像素点时,相应的感光传感器输出的光强信号,以建立预设数据库。即集成模块100的若干像素点120显示某一预设图案时,依次点触每一像素点120,并记录相应的感光传感器输出的光强信号,以在预设数据库中形成像素点120(具体可以相应的像素点120的坐标表示)与光强信号(具体为光强信号的大小值)的一一对应的关系。这样,在执行预设的点触交互定位方法时,便可在出现输出信号突变的感光传感器所在的集成模块上进行预设图案的刷新操作,并获取预设图案刷新时相应的感光传感器输出的光强信号。该预设图案跟建立预设数据库的预设图案为同一图案。
步骤S32:在预设数据库中比对得到光强信号对应的像素点的坐标,以判断为触控点坐标。
基于上述表述可知,通过上述方法步骤获取得的预设图案刷新时相应的感光传感器输出的光强信号后,便可在预设数据库中比对得到光强信号对应的像素点的坐标,以判断为触控点坐标。
在一些示例中,如图12所示,上述第二判断执行单元中执行的预设的点触交互定位方法具体亦可包括以下步骤:
步骤S41:分时点亮出现输出信号突变的感光传感器所在的集成模块上的每一像素点,以判断每一像素点点亮时,相应的感光传感器输出的光强信号是否大于第三预设阈值。
当点触的触控轮廓移动到集成模块100上时,点触交互定位的主要工作就是确定该轮廓距离该集成模块100上的哪个像素点120更近,从而将该像素点120的坐标判定为触控点坐标。此时,可先设定一个第三预设阈值,当某一像素点120单独点亮时,相应的感光传感器130的光强信号或者超过第三预设阈值时,则判断有触控信号,且该像素点120的坐标为触控点坐标。因而,该第三预设阈值的大小设置,具体可以触控点所在像素点单独点亮时,相应的感光传感器输出的光强信号的大小值为依据进行设置。这样,在执行预设的点触交互定位方法时,便可通过分时点亮出现输出信号突变的感光传感器所在的集成模块上的每一像素点,来判断每一像素点点亮时,相应的感光传感器输出的光强信号是否大于第三预设阈值
步骤S42:将像素点点亮时对应的感光传感器输出的光强信号大于第三预设阈值的像素点的坐标判定为触控点坐标。
基于上述表述可知,当某一像素点120单独点亮时,相应的感光传感器130的光强信号或者超过第三预设阈值时,则判断有触控信号,且该像素点120的坐标为触控点坐标。因而,可将像素点120点亮时对应的感光传感器输出的光强信号大于第三预设阈值的像素点120的坐标判定为触控点坐标。
上述示例中的预设的点触交互定位方法其均可实现集成模块100内的进一步精准定位,来进行相应的触控交互定位,本领域技术人员,在对本申请实施例的显示模组200进行点触交互定位时可择一进行使用即可。
上述各个模块和单元可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于处理器中,也可以以软件形式存储于存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请实施例提供的感光触控交互系统,其应用于包括若干集成模块的显示模组中,每一集成模块的正侧对应设置有若干像素点;感光触控交互系统包括主控制器以及若干感光传感器,若干感光传感器与若干集成模块一一对应设置,每一感光传感器对应设置在相应的集成模块的背侧,且每一感光传感器的光电感应层正对相应的集成模块的导光通孔,主控制器分别与若干感光传感器电性连接。这样一来,本感光触控交互系统应用在特定的显示模组上,其感光传感器与该显示模组相应的集成模块的若干像素点并不在一个层面上,而是在相应的集成模块的正反两个表面上,这样,就不会因为感光传感器的体 积问题,而影响到像素点的正常封装。当感光触控交互系统对这显示模组进行感光触控交互时,可将这显示模组上的每一集成模块作为一个最小分辨单元,实现相应的触控检测定位,具体为利用集成模块上的像素点发光作为检测光源,以在触控物体靠近某一集成模块时,相应集成模块的像素点发光会照射到该触控物体的表面而形成相应的反射光线,与之同时,相应集成模块的感光传感器通过导光通孔检测到这些反射光线后,可基于这些反射光线的光线强度产生电信号,来确定该触控物体的位置,进而实现该显示模组的实时触控交互。可见,本申请是通过一体式封装结构来实现显示屏模组的触控交互的,其可在有效简化显示模组的系统结构的同时,不会影响显示模组的显示效果,及不存在触控延时的缺点。因而,本技术方案,其可有解决现有技术中针对大尺寸显示屏实现屏幕触控时均采用额外的触控系统来实现相应显示屏的触控功能的技术方案使得显示屏的系统结构变得复杂性的同时,亦影响了显示屏的显示效果及存在触控延时的缺点的技术问题。
如图13所示,本申请另一方面还提供一种感光触控交互方法,该感光触控交互方法具体可包括以下步骤:
步骤S110:对显示模组的各个感光传感器进行实时输出信号监测。
具体地,本申请实施例的感光触控交互方法主要应用于包括多个如图1至3所示的集成模块100的显示模组中,若干集成模块100具体可呈矩阵分布固设在显示模组的模组PCB板上,每一集成模块100对应设置有若干像素点120及一感光传感器130,同时,在集成模块100的封装结构中,感光传感器130与若干像素点120并不在一个层面上,而是在集成基板110的正反两个表面上,这样,就不会因为感光传感器130的体积问题,而影响到若干像素点120的正常封装。
若干像素点120可呈矩阵分布在集成基板110的正面,以便后续形成显示模组的显示表面,而感光传感器130具体可固设在集成基板110的背面,且位于背面的正中心位置,为使得感光传感器130可检测到集成基板110的正面处的光线强度,集成基板110的正中心还开设有一导光通孔111,且感光传感器130的感光表面正对导光通孔111。为使得集成基板110的正面处的光线可均匀导向感光传感器130的感光表面,其导光通孔111内可设置一些导光结构,如导光柱等。
此时,针对上述的显示模组进行感光触控交互时,需先对显示模组的各个感光传感器进行实时输出信号监测,其具体过程如下:检测当前是否出现输出信号突变的感光传感器,并在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
一般而言,在没有明显的外部环境光突变情况下,感光传感器130的输出是在一个有限的频段波动的,这是因为感光传感器130接收的信号大都是微弱的信号流,包括集成模块100内部漏光、外部环境光、屏前一定距离的物体反光,这类光线的特征是漫反射,光线无序性较强,仅有少部分光源会射入感光传感器,并引起感光传感器130的信号输出,进而这类光线造成的波动,从长时间来看会落入一个稳定的频段内,即感光传感器130的输出信号会在这一频段内稳定变换,是为底噪声。对于本申请的显示模组而言,其要分辨触控信号和干扰信号,就需要依托各个感光传感器130的信号变化特征。对于触控信号来说,其带来的变化特征和其它因素有着显著的不同,具体可体现在触控信号的动态变化幅值相较于其它变化来说更急剧,即感光传感器130会在时间长度上有一个突变的点,在这个点之后感光传感器130的输出信号(具体可以输出电压值)会显著提高,意味着触控信号出现,或者显著降低,意味着触控信号消失。显示模组基于此特征,就可以判定变化情况来自触控信号。
为此,检测当前是否出现输出信号突变的感光传感器的过程可以如下:若任一感光传感器的输出信号发生变化时,检测相应的感光传感器的信号变化值,并在信号变化值大于第一预设阈值时,判断相应的感光传感器当前出现输出信号突变。以感光传感器130的输出信号为电压值为例,若感光传感器130输出的电压值突然增大,且增大的幅度大于第一预设阈值(第一预设阈值可根据实际检测精度需要进行合理调整设置),则可判断相应的感光传感器130当前出现了输出信号突变,这些判断为输出信号突变的感光传感器130的数量、位置及相应的输出信号值均可作为后续判断显示模组当前是否发生触控交互及进行相应的触控交互定位的依据。
步骤S120:根据各个感光传感器的输出信号,判断显示模组当前是否发生触控交互及进行相应的触控交互定位。
一般而言,会引起感光传感器130的输出信号突变的,除了是触控信号外,还可能是光线直射引起 的,光线直射的情况通常是射灯、阳光直射等照射在屏幕上引起的,而且在数帧的时间内不会有大的变化,故可以通过判断这种剧变是否在多个集成模块上发生来进行区分。此时,如图3所示,执行本方法步骤“根据各个感光传感器的输出信号,判断显示模组是否发生触控交互及进行相应的触控交互定位”的过程如下:
步骤S121:若当前没有出现输出信号突变的感光传感器或出现输出信号突变的感光传感器的数量多于第二预设阈值,则判断显示模组当前没有发生触控交互。
步骤S122:若当前出现输出信号突变的感光传感器的数量仅为一个,则判断显示模组当前发生点触形式的触控交互,并执行预设的点触交互定位方法,以进行相应的触控交互定位。
步骤S123:若当前出现输出信号突变的感光传感器的数量大于一个但少于第二预设阈值,则判断显示模组当前发生面触形式的触控交互,并执行预设的面触交互定位方法,以进行相应的触控交互定位。
对于上述方法步骤中提到“出现输出信号突变的感光传感器的数量多于第二预设阈值的情形,亦判断显示模组当前没有发生触控交互”,主要是用于排除光线直射引起的感光传感器130的输出信号突变的情况,光线直射的情况通常是射灯、阳光直射等照射在屏幕上引起的,其一般是照射在屏幕上的大片区域,引起多个感光传感器130的输出信号突变的,因而,可通过检测出现输出信号突变的感光传感器的数量是否多于第二预设阈值(第二预设阈值可根据实际检测精度需要进行合理调整设置),来判断其是否是光线直射引起的感光传感器130的输出信号突变的情况。
另外,由于触控交互模式可以十分丰富,既可以通过带反射面的触控笔点击屏幕,以在点击位置产生反光,实现触控定位;也可以直接通过手指滑动,光线在打到手指上产生反光,实现触控定位。在面对远处触控时,还可以通过激光照射,使得被照射区域光线急剧增强,从而实现触控定位。上述这些触控交互模式按其影响到感光传感器的数量进行划分,可大致分为两者触控交互类型,一种是点触形式的触控交互类型,例如上述的触控笔点击屏幕、激光照射的触控形式,其接触面积较小,仅影响到一个感光传感器130的输出信号,因而,可在检测到当前出现输出信号突变的感光传感器的数量仅为一个时,判断显示模组当前发生点触形式的触控交互,同时,其接触面积较小,可能接触位置仅为集成模块100的其中一个像素点120,因而,其需进一步精准定位,即执行预设的点触交互定位方法,以进行相应的触控交互定位。另一种是面触形式的触控交互类型,例如上述的手指滑动的触控形式,其接触面积较大,会影响到一个以上的感光传感器130的输出信号,但又有别于上述光线直射的影响,因而,可在检测到当前出现输出信号突变的感光传感器的数量大于一个但少于第二预设阈值时,判断显示模组当前发生面触形式的触控交互,同时,其接触面积较大,通常会跨过多个集成模块100来进行触控定位,意味着单个集成模块100内的触控定位对显示模组来说没有意义,仅通过当前出现输出信号突变的各感光传感器130的位置及输出信号强度,计算得到触控面的轮廓(可配合去锯齿化算法来得到相应的触控面轮廓),便可根据触控面的轮廓判断触控点坐标,实现较为平滑的面触形式的触控交互。因而,但判断显示模组当前发生面触形式的触控交互时,执行预设的面触交互定位方法(过程如下:根据当前出现输出信号突变的各感光传感器的位置及输出信号强度,计算得到触控面的轮廓,并根据触控面的轮廓判断触控点坐标),以进行相应的触控交互定位。
本申请实施例提供的感光触控交互方法,其应用于包括多个集成模块的显示模组中,每一集成模块对应设置有若干像素点及一感光传感器,使得每一集成模块可作为显示模组的一个最小分辨单元,实现以下的感光触控交互过程:先对显示模组的各个感光传感器进行实时输出信号监测。再根据各个感光传感器的输出信号,判断显示模组当前是否发生触控交互及进行相应的触控交互定位。其工作原理具体为利用集成模块上的像素点发光作为检测光源,以在触控物体靠近某一集成模块时,相应集成模块的像素点发光会照射到该触控物体的表面而形成相应的反射光线,与之同时,相应集成模块的感光传感器通过导光通孔检测到这些反射光线后,可基于这些反射光线的光线强度产生电信号,来确定该触控物体的位置,进而实现该显示模组的实时触控交互。可见,本申请是通过一体式封装结构来实现显示屏模组的触控交互的,其可在有效简化显示模组的系统结构的同时,不会影响显示屏的显示效果,及不存在触控延时的缺点。
在一些示例中,上述提到的预设的点触交互定位方法具体可包括如前所述的步骤S11及步骤S12,如图9所示。对于步骤S11和步骤S12的说明和限定也一并参阅前述实施例,在此不再重复。
在一些示例中,上述提到的预设的点触交互定位方法具体亦可包括如前所述的步骤S21至步骤S23,如图10所示。对于步骤S21至步骤S23的说明和限定也一并参阅前述实施例,在此不再重复。
在一些示例中,上述提到的预设的点触交互定位方法具体亦可包括如前所述的步骤S31及步骤S32,如图11所示。对于步骤S31和步骤S32的说明和限定也一并参阅前述实施例,在此不再重复。
在一些示例中,上述提到的预设的点触交互定位方法具体亦可包括如前所述的步骤S41和步骤S42,如图12所示。对于步骤S41和步骤S42的说明和限定也一并参阅前述实施例,在此不再重复。
上述示例中的预设的点触交互定位方法其均可实现集成模块110内的进一步精准定位,来进行相应的触控交互定位,本领域技术人员,在对本申请实施例的显示模组进行点触交互定位可择一进行使用即可。
以上结合附图对本申请的实施方式作了详细说明,但本申请不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本申请原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本申请的保护范围内。

Claims (20)

  1. 一种集成模块,包括集成基板,所述集成基板的第一表面设置有若干像素点,所述集成基板的第二表面设置有感光传感器,所述集成基板分别与所述若干像素点及所述感光传感器电性连接;所述集成基板上还开设有贯穿所述第一表面及所述第二表面的导光通孔,且所述感光传感器的感光表面正对所述导光通孔。
  2. 根据权利要求1所述的集成模块,其中,所述导光通孔内填充有导光柱。
  3. 根据权利要求1所述的集成模块,其中,所述导光通孔内填充有若干滤镜。
  4. 根据权利要求1-3任一项所述的集成模块,其中,所述若干像素点呈矩阵分布在所述第一表面,每一所述像素点均包括三个灯珠晶片以及一个公共极焊盘,邻近所述导光通孔设置的所述像素点的所述公共极焊盘紧邻所述导光通孔设置。
  5. 根据权利要求1-4任一项所述的集成模块,其中,所述集成基板的第二表面还设置有若干驱动芯片,所述若干驱动芯片与所述集成基板电性连接。
  6. 一种显示模组,包括若干如权利要求1-5任一项所述的集成模块,还包括模组PCB板,若干所述集成模块呈矩阵分布固设在所述模组PCB板的一侧表面上。
  7. 一种感光触控交互系统,应用于包括若干集成模块的显示模组中,每一所述集成模块的正侧对应设置有若干像素点;所述感光触控交互系统包括主控制器以及若干感光传感器,所述若干感光传感器与所述若干集成模块一一对应设置,每一所述感光传感器对应设置在相应的所述集成模块的背侧,且每一所述感光传感器的光电感应层正对相应的所述集成模块的导光通孔,所述主控制器分别与所述若干感光传感器电性连接。
  8. 根据权利要求7所述的感光触控交互系统,其中,所述感光传感器还包括信号值输出模块,其中,
    所述光电感应层,配置为感应所述导光通孔处的光线强度,生成相应的电信号,并发送给所述信号值输出模块;
    所述信号值输出模块,配置为对所述光电感应层发送过来的所述电信号进行大小检测,得到相应的信号值并反馈给所述主控制器。
  9. 根据权利要求8所述的感光触控交互系统,其中,所述信号值输出模块为一电压比较器,所述电压比较器的同相输入端输入所述主控制器输出的参考电压信号,所述电压比较器的反相输入端输入所述光电感应层输出的电信号,所述电压比较器的输出端与所述主控制器电性连接,使得所述主控制器根据所述电压比较器输出的电平信号获知所述光电感应层输出的电信号的信号值。
  10. 根据权利要求7-9任一项所述的感光触控交互系统,其中,所述主控制器包括信号监测模块与触控交互模块,其中,
    所述信号监测模块,配置为对各个所述感光传感器进行实时输出信号监测;
    所述触控交互模块,配置为根据各个所述感光传感器的输出信号,判断所述显示模组当前是否发生触控交互及进行相应的触控交互定位。
  11. 根据权利要求10所述的感光触控交互系统,其中,所述信号监测模块包括突变信号检测单元与突变信号统计单元,其中,
    所述突变信号检测单元,配置为检测当前是否出现输出信号突变的感光传感器;
    所述突变信号统计单元,配置为在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
  12. 根据权利要求11所述的感光触控交互系统,其中,所述突变信号检测单元,还配置为在任一所述感光传感器的输出信号发生变化时,检测相应的所述感光传感器的信号变化值,并在所述信号变化值大于第一预设阈值时,判断相应的所述感光传感器当前出现输出信号突变。
  13. 一种感光触控交互方法,应用于包括多个集成模块的显示模组中,每一所述集成模块对应设置有若干像素点及一感光传感器,所述感光触控交互方法包括以下步骤:
    实时监测所述显示模组的各个感光传感器的输出信号;
    根据各个所述感光传感器的输出信号,判断所述显示模组当前是否发生触控交互及进行相应的触控交互定位。
  14. 根据权利要求13所述的感光触控交互方法,其中,所述实时监测所述显示模组的各个感光传感器的输出信号的步骤具体包括:
    检测当前是否出现输出信号突变的感光传感器,并在当前出现输出信号突变的感光传感器时,获取出现输出信号突变的感光传感器的位置及数量。
  15. 根据权利要求13-14任一项所述的感光触控交互方法,其中,所述根据各个所述感光传感器的输出信号,判断所述显示模组是否发生触控交互及进行相应的触控交互定位的步骤具体包括:
    若当前没有出现输出信号突变的感光传感器或出现输出信号突变的感光传感器的数量多于第二预设阈值,则判断所述显示模组当前没有发生触控交互;
    若当前出现输出信号突变的感光传感器的数量仅为一个,则判断所述显示模组当前发生点触形式的触控交互,并执行预设的点触交互定位方法,以进行相应的触控交互定位;
    若当前出现输出信号突变的感光传感器的数量大于一个但少于所述第二预设阈值,则判断所述显示模组当前发生面触形式的触控交互,并执行预设的面触交互定位方法,以进行相应的触控交互定位。
  16. 根据权利要求15所述的感光触控交互方法,其中,所述预设的点触交互定位方法包括以下步骤:
    依次点亮出现输出信号突变的感光传感器所在的所述集成模块上的每一所述像素点,以获取每一所述像素点点亮时,相应的所述感光传感器输出的光强信号;以及
    对每一所述像素点点亮时对应的所述光强信号进行对比排序,将所述像素点点亮时对应的所述光强信号最强的所述像素点的坐标判定为触控点坐标。
  17. 根据权利要求15所述的感光触控交互方法,其中,所述预设的点触交互定位方法包括以下步骤:
    选出输出信号突变的感光传感器所在的所述集成模块上的位于外围四角的四个所述像素点;
    分时点亮所述四个所述像素点,以获取每一所述像素点点亮时,相应的所述感光传感器输出的光强信号;以及
    根据所述四个所述像素点分时点亮时对应的所述光强信号进行对点偏差求解,计算得到相应的触控点坐标。
  18. 根据权利要求15所述的感光触控交互方法,其中,所述预设的点触交互定位方法包括以下步骤:
    在出现输出信号突变的感光传感器所在的所述集成模块上进行预设图案的刷新操作,并获取所述预设图案刷新时相应的所述感光传感器输出的光强信号;以及
    在预设数据库中比对得到所述光强信号对应的所述像素点的坐标,以判断为触控点坐标。
  19. 根据权利要求15所述的感光触控交互方法,其中,所述预设的点触交互定位方法包括以下步骤:
    分时点亮出现输出信号突变的感光传感器所在的所述集成模块上的每一所述像素点,以判断每一所述像素点点亮时,相应的所述感光传感器输出的光强信号是否大于第三预设阈值;以及
    将所述像素点点亮时对应的所述感光传感器输出的光强信号大于预设阈值的所述像素点的坐标判定为触控点坐标。
  20. 根据权利要求15-19任一项所述的感光触控交互方法,其中,所述预设的面触交互定位方法包括以下步骤:
    根据当前出现输出信号突变的各感光传感器的位置及输出信号强度,计算得到触控面的轮廓,并根据所述触控面的轮廓判断触控点坐标。
PCT/CN2023/078359 2022-04-11 2023-02-27 集成模块、显示模组、感光触控交互系统及方法 WO2023197760A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210375057.4 2022-04-11
CN202210373546.6A CN114637430A (zh) 2022-04-11 2022-04-11 一种集成模块与显示模组
CN202210375057.4A CN114816114A (zh) 2022-04-11 2022-04-11 一种感光触控交互方法
CN202210373530.5A CN114637432A (zh) 2022-04-11 2022-04-11 一种感光触控交互系统
CN202210373530.5 2022-04-11
CN202210373546.6 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197760A1 true WO2023197760A1 (zh) 2023-10-19

Family

ID=88328816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078359 WO2023197760A1 (zh) 2022-04-11 2023-02-27 集成模块、显示模组、感光触控交互系统及方法

Country Status (1)

Country Link
WO (1) WO2023197760A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070195A (ja) * 2002-08-09 2004-03-04 Toto Ltd タッチパネル
CN101751188A (zh) * 2010-01-27 2010-06-23 汕头超声显示器(二厂)有限公司 内置感应的显示装置
CN101819340A (zh) * 2009-08-21 2010-09-01 程抒一 红外多点触摸屏
CN105094616A (zh) * 2015-08-12 2015-11-25 小米科技有限责任公司 触摸屏控制方法及装置
CN105637456A (zh) * 2013-09-23 2016-06-01 高通股份有限公司 集成光收集光导与场序色彩显示器
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备
CN109298804A (zh) * 2018-10-23 2019-02-01 京东方科技集团股份有限公司 触控电路及其驱动方法、触控基板及显示装置
US20210004555A1 (en) * 2019-07-03 2021-01-07 Qualcomm Incorporated Multifunctional, multimodal, under-display sensor
CN114637430A (zh) * 2022-04-11 2022-06-17 深圳市洲明科技股份有限公司 一种集成模块与显示模组
CN114637432A (zh) * 2022-04-11 2022-06-17 深圳市洲明科技股份有限公司 一种感光触控交互系统
CN114816114A (zh) * 2022-04-11 2022-07-29 深圳市洲明科技股份有限公司 一种感光触控交互方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070195A (ja) * 2002-08-09 2004-03-04 Toto Ltd タッチパネル
CN101819340A (zh) * 2009-08-21 2010-09-01 程抒一 红外多点触摸屏
CN101751188A (zh) * 2010-01-27 2010-06-23 汕头超声显示器(二厂)有限公司 内置感应的显示装置
CN105637456A (zh) * 2013-09-23 2016-06-01 高通股份有限公司 集成光收集光导与场序色彩显示器
CN105094616A (zh) * 2015-08-12 2015-11-25 小米科技有限责任公司 触摸屏控制方法及装置
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备
CN109298804A (zh) * 2018-10-23 2019-02-01 京东方科技集团股份有限公司 触控电路及其驱动方法、触控基板及显示装置
US20210004555A1 (en) * 2019-07-03 2021-01-07 Qualcomm Incorporated Multifunctional, multimodal, under-display sensor
CN114637430A (zh) * 2022-04-11 2022-06-17 深圳市洲明科技股份有限公司 一种集成模块与显示模组
CN114637432A (zh) * 2022-04-11 2022-06-17 深圳市洲明科技股份有限公司 一种感光触控交互系统
CN114816114A (zh) * 2022-04-11 2022-07-29 深圳市洲明科技股份有限公司 一种感光触控交互方法

Similar Documents

Publication Publication Date Title
US10417473B2 (en) Optical imaging system with variable light field for biometrics application
CN106096595B (zh) 一种指纹识别模组、其制作方法及指纹识别显示装置
CN101952981B (zh) 光检测装置及图像显示装置
EP2141688B1 (en) Display device, display control method and electronic device
US20100220077A1 (en) Image input device, image input-output device and electronic unit
CN107480661B (zh) 一种光学指纹传感器的光路和具有其的光学指纹传感器
CN105136637B (zh) 用于检测空气中的颗粒物的传感器及其制造方法
JP2012084883A (ja) ウェーハレベル発光ダイオード(led)チップのための検出方法及び検出装置並びにそれらのプローブカード
CN104318199A (zh) 复合式光学传感器及其制作方法和使用方法
CN106547010A (zh) 基于自动曝光的x射线平板探测器
CN209327746U (zh) 显示屏组件及电子设备
CN103512655B (zh) 信息处理装置和方法、以及光电转换装置
CN109445160A (zh) 显示模组及显示装置
CN109669575A (zh) 显示面板及其触控检测方法、显示装置
TWI496057B (zh) 光學觸控系統及觸控偵測方法
CN112271176A (zh) 一种可交互的cob显示模组及其制造方法、显示屏
WO2023197760A1 (zh) 集成模块、显示模组、感光触控交互系统及方法
CN111312793B (zh) 一种电子设备
WO2022089401A1 (zh) 封装结构及电子设备
CN114637432A (zh) 一种感光触控交互系统
TW202005130A (zh) 光學感測系統及電子顯示系統
CN114637430A (zh) 一种集成模块与显示模组
CN110298324A (zh) 电子设备及电子设备的控制方法
CN110112199A (zh) 影像感测显示装置以及影像处理方法
CN208044249U (zh) 一种显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787408

Country of ref document: EP

Kind code of ref document: A1