WO2023197677A1 - 一种实现自然光照特征的室内照明方法及系统 - Google Patents

一种实现自然光照特征的室内照明方法及系统 Download PDF

Info

Publication number
WO2023197677A1
WO2023197677A1 PCT/CN2022/141899 CN2022141899W WO2023197677A1 WO 2023197677 A1 WO2023197677 A1 WO 2023197677A1 CN 2022141899 W CN2022141899 W CN 2022141899W WO 2023197677 A1 WO2023197677 A1 WO 2023197677A1
Authority
WO
WIPO (PCT)
Prior art keywords
sky
brightness
brightness distribution
lighting
ceiling
Prior art date
Application number
PCT/CN2022/141899
Other languages
English (en)
French (fr)
Inventor
冯昭扬
史毅华
梁斌豪
Original Assignee
广州市施亮照明科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市施亮照明科技有限公司 filed Critical 广州市施亮照明科技有限公司
Publication of WO2023197677A1 publication Critical patent/WO2023197677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to an indoor lighting control method and system, and in particular to an indoor lighting control method and system that realizes natural lighting characteristics.
  • the European patent EP3434074A1 which was published on January 30, 2019, discloses a central control system, a position sensor group, and a lighting group that is fixed but can be freely combined to a certain extent. According to the real-time collection of crowd dynamics and business in the target area, Or the location of office facilities or hardware changes, automatically debug the lighting system's combination of lamps in one or more target areas, select which lamp groups to light in different areas, and light those lamps in one area to form a preset spatial distribution , and control the illumination and color temperature of the target area, and can also combine real-time information with preset data to issue relevant instructions.
  • This patent can only control the switch, brightness and color temperature of fixed lighting fixtures in places such as shopping malls and offices where once the lighting hardware has been designed and arranged at fixed positions in the past, it is impossible to adjust the position of the lighting fixtures for possible position adjustments. Adjustment and automatic debugging cannot create a lighting atmosphere with changes in space, brightness, and color temperature by sensing the dynamics of customers in areas such as shopping malls to enhance customers' shopping interest.
  • the patent is actually composed of a large number of freely groupable lamps, distributed in all target areas, which can be automatically or controlled by a central control system to control switching, dimming, and color adjustment individually or in groups, and can accept signals from position sensors or A lighting system that controls real-time crowd dynamic information formed by signals from handheld electronic devices of the crowd.
  • the focus is to provide lighting functions designed in accordance with current commercial or office lighting standards for flexible spaces based on real-time correlation information.
  • This patent does not cover The issue of spatial distribution of overall brightness in a designated space naturally does not involve the issue of controlling the light distribution in the room to achieve natural lighting.
  • Chinese patent CN109246911A discloses a home lighting system with simulated outdoor lighting, including a processor, lighting equipment, a brightness detection module for detecting outdoor light brightness, and a brightness detection module for controlling the operation of lighting equipment.
  • the first control module and the sensor for detecting human body signals, the brightness detection module, the first control module, and the sensor are all connected to the processor; when the human body signal is detected and the outdoor light brightness is less than the preset brightness lower limit,
  • the processor drives the first control module to turn on the corresponding lighting equipment.
  • the lighting equipment includes a plurality of simulated outdoor lighting lamp groups. Each simulated outdoor lighting lamp group emits light of multiple wavelengths; each simulated outdoor lighting lamp Set includes 3 incandescent lamps, 2 halogen lamps and 1 LED lamp.
  • home lighting can simulate outdoor lighting, which can reduce visual fatigue to the greatest extent and prevent myopia; it can control the switch of lighting equipment according to the brightness of outdoor light, making the lighting system more intelligent, energy-saving and environmentally friendly. It can intelligently control the user's eye-use time to prevent myopia or myopia deepening. It does not involve the overall brightness spatial distribution of the designated space, and naturally does not involve the control room light distribution to achieve natural lighting.
  • the present invention proposes an indoor lighting method and system to achieve natural lighting characteristics, with the purpose of enabling the indoor space lighting distribution to achieve natural lighting characteristics.
  • One of the purposes of the present invention is to provide an indoor lighting method that realizes natural lighting characteristics, including the following steps:
  • the lighting method is controlled so that the fitting error between the ceiling illumination brightness distribution and the target brightness distribution is within 5%, where the target brightness distribution is obtained by horizontally projecting the illumination brightness distribution formed by a sky model that can reflect the sky brightness distribution.
  • the plane brightness distribution is consistent.
  • the method further includes: obtaining a sky model that can reflect the sky brightness distribution, and horizontally projecting the illumination brightness distribution formed by the sky model to obtain a plane brightness distribution.
  • the brightness distribution on the wall satisfies: the brightness value on the top of the wall is k ⁇ 5k and the brightness on the wall is from k to 5k on the top of the wall.
  • the gradient decreases to the bottom of the wall.
  • the sky model includes any one of the 15 types of relative sky brightness distribution models recorded in the CIE General Standard Sky or the non-patent document "Studying Sky Brightness Distribution Using Information Methods [D]", He Ying, PhD thesis of Chongqing University Any of the various sky brightness distribution models, sky brightness models, sky models, full climate models, and sky radiation brightness models recorded in "China Doctoral Dissertation Full-text Database Information Technology Series, Issue 6, 2009, I138-69" kind.
  • the fitting error is the average sum of the squared differences between the actual relative brightness value and the target relative brightness value of the feature points.
  • a step of obtaining sky information is also included.
  • the obtaining the sky model is specifically to obtain the corresponding sky model by obtaining the sky information.
  • the sky information includes sky type or real-time sky brightness distribution, where, when the sky information is a specific sky type, the acquired sky model is a sky brightness model corresponding to the specific sky type; when the sky information is a real-time sky brightness distribution , it is necessary to combine the characteristic points in the sky brightness distribution with the existing sky model and use the least squares method to fit, and obtain the sky model that is closest to the fitting result.
  • the real-time sky brightness distribution is obtained through a sky brightness scanner.
  • the lighting control method is to control the fitting error of the area of a circle with the center of the ceiling as the center and inscribed with the short side of the ceiling and the target brightness distribution within 5%; control the area of the ceiling outside the circle.
  • the wall brightness gradient decreases by 10% to 15% for every 10% of the total distance from top to bottom of the wall.
  • the lighting method includes using a light-emitting device to project light onto a ceiling surface with diffuse reflection characteristics according to the target brightness distribution, using a luminous ceiling ceiling to lay out the target brightness distribution on the ceiling surface, and using at least one surface light source to be placed on the ceiling surface. At least one of the target brightness distributions is laid out.
  • the second lighting method includes at least one of using a light-emitting device to project light onto a wall with diffuse reflection characteristics according to the target brightness distribution, and using at least one surface light source to place the target brightness distribution on the wall respectively.
  • the second object of the present invention is to provide an indoor lighting control system that realizes natural lighting characteristics, including:
  • a storage module used to store different plane illumination brightness distributions, which are obtained by horizontally projecting the illumination brightness formed by the sky model;
  • a control module used to control the lighting mode according to the plane brightness distribution retrieved from the storage module, the control module is electrically connected to the storage module;
  • a lighting module is used to realize the light brightness distribution on the ceiling, and the lighting module is electrically connected to the control module.
  • the system also includes a sky information acquisition module, where the user acquires sky type or real-time sky brightness distribution, and the sky information acquisition module is electrically connected to the storage module.
  • system further includes a second lighting module for realizing the light brightness distribution on the wall, and the second lighting module is electrically connected to the control module.
  • the vertical/horizontal illumination ratio is an indicator that correlates vertical illumination and reflects the ambient lighting conditions.
  • the vertical/horizontal illumination ratio Ev/Eh of a natural lighting environment that can make people feel comfortable outdoors and is suitable for human activities is 0.4 to 1 , this range is also exactly the range of the Ev/Eh value in the shade of a tree or shaded place.
  • the present invention creatively proposes to control the vertical/horizontal illumination ratio Ev/Eh of indoor space lighting to 0.4 to 1, and more preferably to 0.5 to 0.7, that is, to achieve the indoor space lighting characteristics as natural lighting characteristics.
  • planar illumination brightness distribution obtained by horizontally projecting the sky model can be directly applied to the control of indoor ceiling illumination brightness distribution, so that the vertical illumination value of indoor lighting can be maintained within the normal operation range of the physiological mechanism.
  • the vertical/horizontal illumination ratio Ev/Eh is maintained at 0.4 ⁇ 1.
  • the present invention also creatively found that based on the aforementioned control method, according to the shape of the ceiling, it can be further divided into inner and outer areas of the inscribed circle and the light brightness of the outer area of the circle is kept the same as the light brightness of the circle boundary.
  • the vertical/ The horizontal illumination ratio Ev/Eh is controlled at a more favorable level of 0.4-0.8, which significantly improves comfort.
  • the present invention also creatively discovered that, on the basis of the aforementioned control method, further considering the light distribution characteristics of the wall, it can reflect a more comfortable natural lighting environment by controlling the light brightness on the top of the wall to be maintained at 1-5 times that of the ceiling.
  • the brightness value generated by lighting at this location while maintaining a reduced gradient from the top of the wall to the corner of the wall can effectively ensure indoor space lighting, especially the vertical/horizontal illumination ratio at a height of 1.5m in the indoor space (that is, the position of the human eye when standing as agreed by general standards)
  • Ev/Eh is 0.5-0.7.
  • the present invention has the following effects:
  • the present invention can control the vertical/horizontal illumination ratio of indoor space illumination within a reasonable range of 0.4-1, thereby enabling the indoor space illumination distribution to achieve natural illumination characteristics.
  • the present invention can further control the vertical/horizontal illumination ratio in a smaller range of 0.4-0.8, thus significantly improving the comfort level.
  • the present invention can further control the indoor vertical/horizontal illumination ratio at 1.5m to a more reasonable 0.5-0.7, so that the human eye's senses are in a comfortable natural lighting environment. maintain good consistency.
  • Figure 1 shows the sky model obtained in Embodiment 1 and 2 of the present invention.
  • Figure 2 is the plane brightness distribution of the horizontal projection of the sky model in Embodiment 1 of the present invention.
  • Figure 3 is the plane brightness distribution of the horizontal projection of the sky model in Embodiment 2 of the present invention.
  • Figure 4 shows the sky model obtained in Embodiment 3 of the present invention.
  • Figure 5 is the plane brightness distribution of the horizontal projection of the sky model in Embodiment 3 of the present invention.
  • Figure 6 is a schematic diagram of wall brightness gradient in Embodiment 4 of the present invention.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • step 2) Calculate the illumination brightness formed by the sky model obtained in step 1) according to the diameter.
  • the circular surface is projected horizontally to obtain the plane brightness distribution, as shown in Figure 2. At this time, the relative brightness value of the circular surface boundary is 0.33;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a light-emitting device according to step 2) The resulting planar brightness distribution projects light onto a ceiling surface with diffuse reflective properties.
  • the control system used in the above method includes: a storage module used to store various sky models according to the diameter.
  • the plane brightness distribution obtained by horizontal projection of the circular surface; the control module is used to control the lighting module to project light onto the ceiling surface with diffuse reflection characteristics according to the plane brightness distribution obtained in step 2), the storage module and the control module
  • the module is electrically connected; the lighting module includes a light-emitting device, and the lighting module is electrically connected to the control module.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.47-1, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.54.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • step 2) Horizontally project the light brightness formed by the sky model obtained in step 1) according to a circular surface with a diameter of 4m to obtain a plane brightness distribution, as shown in Figure 3. At this time, the relative brightness value of the circular surface boundary is 0.33;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a luminous ceiling according to step 2 )
  • the obtained plane brightness distribution and step 2) The distribution layout ceiling target brightness distribution with a relative brightness value of 0.33 in the area outside the circular surface to the boundary of the ceiling.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.45-0.8, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.49.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • Obtain a sky model which is a Category 5 sky in the CIE general standard sky (i.e., the brightness distribution of a uniformly bright sky in GB/T20148-2006).
  • the brightness distribution of this sky is based on the zenith angle from 0° to 90°.
  • the relative brightness values of the feature points corresponding to each 10° can be 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 respectively, as shown in Figure 4;
  • step 2) Horizontally project the illumination brightness formed by the sky model obtained in step 1) according to a circular surface with a diameter of 4m to obtain a plane brightness distribution, as shown in Figure 5.
  • the relative brightness value of the circular surface boundary is 1;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a light-emitting device according to step 2)
  • the obtained planar brightness distribution and the distribution pattern of step 2) in which the relative brightness value of the area outside the circular surface to the boundary of the ceiling is 1 projects light onto the ceiling with diffuse reflection characteristics.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.55-0.8, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.59.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • a sky model which is the first type of sky in the CIE general standard sky (i.e., the standard cloudy sky in GB/T20148-2006, with sharp changes in brightness and tone, close to the zenith, and consistent brightness distribution in azimuth angles),
  • the brightness distribution of the sky is based on the relative brightness values of the feature points corresponding to every 10° of the zenith angle between 0° and 90°: 1, 0.99, 0.97, 0.93, 0.87, 0.79, 0.67, 0.51, 0.5, 0.33;
  • step 2) Calculate the illumination brightness formed by the sky model obtained in step 1) according to the diameter.
  • the circular surface is projected horizontally to obtain the plane brightness distribution. At this time, the relative brightness value of the circular surface boundary is 0.33;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a light-emitting device according to step 2) The resulting planar brightness distribution projects light onto a ceiling with diffuse reflection properties;
  • the relative brightness value of the light on the top of the wall after irradiation in step 3) is 0.36.
  • the relative brightness value is defined as K.
  • a light-emitting device is used to illuminate the wall from the top to the bottom of the wall for every 10% of the total distance.
  • the relative brightness value change gradient of the corresponding point is 1K, 0.89K, 0.79K, 0.68K, 0.57K, 0.49K, 0.43K, 0.36K, 0.32K, 0.28K, 0.23K.
  • the brightness distribution projects the light to a diffuse reflection Characteristics on the wall.
  • the control system used in the above method includes: a storage module used to store various sky models according to the diameter.
  • the plane brightness distribution obtained by horizontal projection of the circular surface; the control module is used to control the lighting module and the second lighting module to project light onto the ceiling surface with diffuse reflection characteristics according to the plane brightness distribution obtained in step 2), the storage
  • the module is electrically connected to the control module; the lighting module includes a light-emitting device that projects to the ceiling, and the lighting module is electrically connected to the control module; the second lighting module includes a light-emitting device that projects to the wall. Two lighting modules are electrically connected to the control module.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.52-0.7, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.55.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • the model is the 11th category of sky in the CIE general standard sky (that is, the white and blue sky in GB/T20148-2006, the brightness distribution of the clear corona).
  • the brightness distribution of the sky is based on the zenith angle of 0°.
  • the relative brightness values of the feature points corresponding to every 10° between 90° can be: 1, 0.65, 0.44, 0.33, 0.26, 0.22, 0.2, 0.2, 0.21, 0.21;
  • step 2) Horizontally project the light brightness formed by the sky model obtained in step 1) according to a circular surface with a diameter of 4m to obtain a plane brightness distribution.
  • the relative brightness value of the circular surface boundary is 0.21;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a luminous ceiling according to step 2 )
  • the plane brightness distribution obtained and step 2) the distribution layout ceiling target brightness distribution with a relative brightness value of 0.21 in the area outside the circular surface to the boundary of the ceiling;
  • the relative brightness value of the light on the top of the wall after irradiation in step 3) is 0.15.
  • the relative brightness value is defined as K.
  • a light-emitting device is used to increase the brightness intensity value of the top of the wall to 2K, and on the wall
  • the relative brightness value change gradient of the corresponding point for every 10% of the total distance from the top of the wall to the bottom of the wall is 2K, 1.96K, 1.54K, 1.36K, 1.2K, 1.06K, 0.92K, 0.82K, 0.72K, 0.64K, 0.56
  • the brightness distribution of K projects light onto a wall with diffuse reflection properties.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.5-0.7, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.53.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • step 2) Based on the sky type determined in step 1), select 15 types of sky models in the CIE general standard sky.
  • the brightness distribution of the sky is based on the characteristic points corresponding to every 10° of the zenith angle between 0° and 90°.
  • the relative brightness values can be 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 respectively, as shown in Figure 4;
  • step 3 Horizontally project the light brightness formed by the sky model obtained in step 2) according to a circular surface with a diameter of 4m to obtain a plane brightness distribution.
  • the relative brightness value of the circular surface boundary is 1;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a light-emitting device according to step 2)
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.55-0.8, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.59.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • step 2) Horizontally project the light brightness formed by the sky model obtained in step 1) according to a circular surface with a diameter of 4m to obtain a plane brightness distribution.
  • the relative brightness value of the circular surface boundary is 0.33;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a luminous ceiling according to step 2 )
  • the obtained planar brightness distribution and step 2) The distribution layout ceiling target brightness distribution with a relative brightness value of 0.33 from the area outside the circular surface to the boundary of the ceiling;
  • the relative brightness value of the light on the top of the wall after irradiation in step 3) is 0.22.
  • the relative brightness value is defined as K.
  • a light-emitting device is used to increase the brightness intensity value of the top of the wall to 2K, and on the wall
  • the relative brightness value change gradient of the corresponding point for every 10% of the total distance from the top of the wall to the bottom of the wall is 2K, 1.7K, 1.44K, 1.22K, 1.04K, 0.88K, 0.76K, 0.64K, 0.54K, 0.46K, 0.38
  • the brightness distribution of K projects light onto a wall with diffuse reflection properties.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.52-0.7, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.55.
  • An indoor lighting method to achieve natural lighting characteristics including the following steps:
  • the model is the non-patent document "Studying sky brightness distribution using information method [D]", He Ying, Chongqing University doctoral thesis, China Doctoral Dissertation Full-text Database Information Technology Series, 2009 Issue 6, I138-69" Kittler all-clear sky brightness distribution model, the brightness distribution of the sky when the Linke turbidity is 2.45, the brightness distribution of the sky corresponds to every 10° of the zenith angle between 0° and 90°
  • the relative brightness values of the feature points can be: 1, 0.65, 0.45, 0.33, 0.26, 0.23, 0.22, 0.24, 0.29, 0.32;
  • step 2) Calculate the illumination brightness formed by the sky model obtained in step 1) according to the diameter.
  • the circular surface is projected horizontally to obtain the plane brightness distribution. At this time, the relative brightness value of the circular surface boundary is 0.32;
  • step 2 In a typical indoor space with dimensions of 4m ⁇ 4m ⁇ 3m (length, width and height), ceiling reflectivity of 70%, wall reflectivity of 80%, and ground reflectivity of 40%, use a light-emitting device according to step 2) The resulting planar brightness distribution projects light onto a ceiling surface with diffuse reflective properties.
  • the control system used in the above method includes: a storage module used to store various sky models according to the diameter.
  • the plane brightness distribution obtained by horizontal projection of the circular surface; the control module is used to control the lighting module to project light onto the ceiling surface with diffuse reflection characteristics according to the plane brightness distribution obtained in step 2), the storage module and the control module
  • the module is electrically connected; the lighting module includes a light-emitting device, and the lighting module is electrically connected to the control module.
  • the ratio of vertical illumination to horizontal illumination at any point in the 1.5m-high reference layer of the space is 0.5-1, and the ratio of vertical illumination to horizontal illumination at a height of 1.5m in the center of the space is 0.52.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

本发明提供了一种实现自然光照特征的室内照明方法,包括1)获取天空模型,将所述的天空模型形成的光照亮度分布进行水平投影,得到平面亮度分布;2)控制照明方式使天花面的光照亮度分布与所述平面亮度分布保持一致,可实现理想的室内空间照明的垂直/水平照度比值。本发明通过控制天花面的光照亮度分布,从而使室内空间光照分布实现自然光照特征。

Description

一种实现自然光照特征的室内照明方法及系统 技术领域
本发明涉及一种室内照明的控制方法及系统,具体涉及一种实现自然光照特征的室内照明的控制方法及系统。
背景技术
数百万年以来,人类昼出夜伏,生命活动与日出日落的自然规律息息相关。户外自然光照给人类带来完整丰富的视觉信息,同时通过生理和心理机制在维持司辰节律、保持免疫功能正常、眼球发育、促进注意力修复和积极情绪心理等诸多方面发挥作用。然而,现代人90%的白天时间可能是在室内度过的,但室内照明仅关注工作面,光空间分布缺乏整体布局考虑,与人类数百万年进化适应的自然光照环境相距甚远。通过参照户外自然光照亮度分布特征,对空间进行整体亮度布局,是一种将室内照明与户外自然光照环境建立合理关联的方法,根本目的是提升室内照明的人因价值。
公开日为2019年1月30日的欧洲专利EP3434074A1公开了一种可以通过中央控制系统、位置传感器群和位置固定但可一定程度自由组合的灯具群,根据实时收集的目标区域的人群动态、商业或办公用设施或硬件的位置变化,自动调试照明系统在一个或多个目标区域的灯具组合、选择在不同区域点亮哪些灯具组群、在一个区域内点亮那些灯具形成预设的空间分布、以及控制目标区域的照度和色温,也可以将实时信息与预设数据结合发出相关指令。该专利对于在如商场和办公场所这些以往一旦按固定位置设计和布置了照明硬件后通常只能控制这些固定照明灯具的开关、亮度和色温,无法就可能发生的位置调整对照明灯具的位置进行调整和自动调试,也不能在如商场这些区域通过感知顾客的动态而营造包括具有空间、亮度、色温变化的照明气氛而提升顾客的购物兴趣。该专利实际上是一个由大量可自由编组的灯具组成,分布在所有目标区域,可被中央控制系统自动或受控地单独或分组控制开关、调光、调色,并可接受来自位置传感器或来自人群手持电子设备发出的信号形成的实时人群动态信息进行实时调控的照明系统,其重点在于为灵活变化的空间根据实时关联信息提供按现行商业或办公 照明标准设计的照明功能,该专利未涉及指定空间的整体亮度空间分布问题,自然也不会涉及关于控制室光照分布实现自然光照的问题。
公开日为2019年1月18日的中国专利CN109246911A公开了一种具有模拟户外光照的家庭照明系统,包括处理器、照明设备、用于检测户外光线亮度的亮度检测模块、用于控制照明设备工作的第一控制模块和用于检测人体信号的传感器,所述亮度检测模块、第一控制模块、传感器皆与所述处理器连接;在检测到人体信号且户外光线亮度小于预设亮度下限时,所述处理器驱动第一控制模块,以开启对应的照明设备,所述照明设备包括多个模拟户外光照灯组,每个模拟户外光照灯组发出多种波长的光;每个模拟户外光照灯组包括3只白炽灯、2只卤素灯和1只LED灯。该专利要解决的问题是家庭照明能够模拟户外光照,能够最大程度的减轻视疲劳,预防近视眼;能够根据户外光线亮度的大小控制照明设备的开关,使照明系统更具有智能化、节能环保,能够智能控制用户用眼时间,预防近视或者近视加深,未涉及指定空间的整体亮度空间分布问题,自然也不会涉及关于控制室光照分布实现自然光照的问题。
发明内容
基于现有技术中存在的上述问题,本发明提出一种实现自然光照特征的室内照明方法及系统,其目的在于使室内空间光照分布实现自然光照特征。
本发明的目的之一在于提供一种实现自然光照特征的室内照明方法,包括如下步骤:
控制照明方式使天花面的光照亮度分布与目标亮度分布的拟合误差在5%以内,其中,所述目标亮度分布与将能够反映天空亮度分布的天空模型形成的光照亮度分布进行水平投影得到的平面亮度分布一致。
进一步的,在控制照明方式前还包括:获取能够反映天空亮度分布的天空模型,将所述的天空模型形成的光照亮度分布进行水平投影,得到平面亮度分布。
进一步的,还包括获取经在控制照明方式后得到的墙顶最高亮度值k,并控制第二照明方式使墙面亮度分布满足:墙顶的亮度值为k~5k且墙面亮度自墙顶至墙底梯度降低。
进一步的,所述天空模型包括CIE一般标准天空记载的15种类型相对天空 亮度分布模型中的任意一种或非专利文献“用信息法研究天空亮度分布[D],何荥,重庆大学博士论文,中国博士学位论文全文数据库信息科技辑,2009年第6期,I138-69”中记载的各类天空亮度分布模型、天空亮度模型、天空模型、全气候模型、天空辐射亮度模型中的任意一种。
进一步的,所述拟合误差为特征点的实际相对亮度值与目标相对亮度值差值平方和的均值,所述特征点不少于10个,且包括天花面中心和边界特征点。
进一步的,在获取能够反映天空亮度分布的天空模型之前还包括获取天空信息的步骤,所述获取天空模型具体为通过获取所述天空信息得到对应的天空模型。
进一步的,所述天空信息包括天空类型或实时天空亮度分布,其中,当天空信息为具体天空类型时,获取的天空模型为具体天空类型对应的天空亮度模型;当天空信息为实时天空亮度分布时,需要将天空亮度分布中的特征点结合现有天空模型利用最小二乘法进行拟合,获取与拟合结果最为贴近的天空模型。
进一步的,所述实时天空亮度分布通过天空亮度扫描仪获得。
进一步的,所述控制照明方式为控制以天花面中心为圆心并与天花面短边内切的圆的区域与所述目标亮度分布的拟合误差在5%以内;圆以外的天花面区域控制为如下任一方式:1)平均光照亮度与该圆边界的光照亮度一致;2)以该圆边界的光照亮度为基准向天花面边界布局呈渐暗的亮度分布,且圆边界至天花面边界区域光照亮度保持均匀度在0.7以上;3)以该圆边界的光照亮度为基准向天花面边界布局呈渐亮的亮度分布,且圆边界至天花面边界区域光照亮度保持均匀度在0.7以上
进一步的,所述墙面亮度梯度降低的幅度为墙面自上到下每10%总长距离的递减程度为10%到15%。
进一步的,所述照明方式包括采用发光装置根据目标亮度分布将光线投射到具有漫反射特性的天花面上、采用发光天花顶棚布局天花面目标亮度分布、采用至少一个面光源分别置于天花表面中布局目标亮度分布的至少一种。
进一步的,所述第二照明方式包括采用发光装置根据目标亮度分布将光线投射到具有漫反射特性的墙面上、采用至少一个面光源分别置于墙面中布局目标亮度分布的至少一种。
本发明的目的之二在于提供一种实现自然光照特征的室内照明控制系统,包 括:
存储模块,用于存储不同的平面光照亮度分布,所述平面亮度分布通过对天空模型形成的光照亮度进行水平投影得到;
控制模块,用于依据从存储模块中调取的平面亮度分布控制照明方式,所述控制模块与所述存储模块电连接;
照明模块,用于实现天花面的光照亮度分布,所述照明模块与所述控制模块电连接。
进一步的,所述系统还包括天空信息获取模块,用户获取天空类型或实时天空亮度分布,所述天空信息获取模块与所述存储模块电连接。
进一步的,所述系统还包括第二照明模块,用于实现墙面的光照亮度分布,所述第二照明模块与所述控制模块电连接。
在户外的树荫或多云天下,在避开强烈太阳直射光的同时,仍可以获得人体所需与光照关联的生理机制正常运作的0.3~5000勒克斯的垂直照度值。垂直/水平照度比值是一个关联垂直照度并反映环境光照情况的指标,其中我们发现在户外能让人感到舒适且适于人活动的自然光照环境的垂直/水平照度比值Ev/Eh为0.4~1,该范围也正好是树荫或遮荫处的Ev/Eh值的范围,当比值低于该下限值或高于该上限值时人眼将产生明显的不适感。基于此,本发明创造性地提出了将室内空间照明的垂直/水平照度比值Ev/Eh控制在0.4~1,更优选的控制为0.5~0.7,即实现室内空间光照特征为自然光照特征。
本发明创造性地发现,通过将天空模型进行水平投影得到平面光照亮度分布可以直接应用于室内天花面光照亮度分布的控制,由此即能满足室内照明的垂直照度值保持在生理机制正常运作范畴,同时垂直/水平照度比值Ev/Eh保持在0.4~1。
本发明还创造性地发现,在前述控制方法的基础上,根据天花面的形状,将其划分为内切圆内外区域并保持圆外区域的光照亮度与圆边界光照亮度相同可以进一步的将垂直/水平照度比值Ev/Eh控制在更有利的水平0.4-0.8,明显提高了舒适度。
本发明还创造性地发现,在前述控制方法的基础上,进一步的考虑墙面的光照分布特性,能够反映更舒适的自然光照环境,通过控制墙顶的光照亮度保持在 1-5倍于天花面照明在该位置产生的亮度值同时保持墙顶至墙角梯度降低时能够有效保障室内空间照明,尤其是室内空间高1.5m处(即一般标准约定的站立时人眼位置)的垂直/水平照度比值Ev/Eh为0.5-0.7。
由此,相对于现有技术本发明具有如下效果:
1、本发明通过控制天花面的光照亮度分布,能够将室内空间照明的垂直/水平照度比值控制在合理范围0.4-1,从而使室内空间光照分布实现自然光照特征。
2、本发明通过进一步控制天花面的光照亮度分布,能够进一步将垂直/水平照度比值控制在更小的范围0.4-0.8,由此明显提高了舒适度。
3、本发明通过控制墙面的光照亮度分布,能够进一步将室内控制1.5m处的垂直/水平照度比值控制在更为合理的0.5-0.7,使人眼的感官处于其在舒适的自然光照环境下保持良好的一致性。
附图说明
图1为本发明实施例1、实施例2获取的天空模型
图2为本发明实施例1天空模型水平投影的平面亮度分布
图3为本发明实施例2天空模型水平投影的平面亮度分布
图4为本发明实施例3获取的天空模型
图5为本发明实施例3天空模型水平投影的平面亮度分布
图6为本发明实施例4墙面亮度梯度示意图
具体实施方式
实施例1
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为CIE一般标准天空中的第1类天空(即GB/T20148-2006中阴天天空,亮度色调急剧变化,接近天顶,方位角一致的亮度分布),该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.99、0.97、0.93、0.87、0.79、0.67、0.51、0.5、0.33,如图1所示;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为
Figure PCTCN2022141899-appb-000001
的圆面进行水平投影,得到平面亮度分布,如图2所示,此时圆面边界的相对亮度值为0.33;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光装置根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上。
上述方法采用的控制系统包括:储存模块,用于存储各类天空模型按照直径为
Figure PCTCN2022141899-appb-000002
的圆面进行水平投影得到的平面亮度分布;控制模块,用于控制照明模块根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上,所述存储模块与所述控制模块电连接;照明模块,包括发光装置,所述照明模块与所述控制模块电连接。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.47-1,空间中央高度1.5m处的垂直照度与水平照度之比为0.54。
实施例2
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为CIE一般标准天空中的第1类天空(即GB/T20148-2006中标准阴天天空,亮度色调急剧变化,接近天顶,方位角一致的亮度分布),该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.99、0.97、0.93、0.87、0.79、0.67、0.51、0.5、0.33,如图1所示;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为4m的圆面进行水平投影,得到平面亮度分布,如图3所示,此时圆面边界的相对亮度值为0.33;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光天花顶棚根据步骤2)得到的平面亮度分布以及步骤2)圆面以外至天花面边界的区域相对亮度值为0.33的分布布局天花面目标亮度分布。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.45-0.8,空间中央高度1.5m处的垂直照度与水平照度之比为0.49。
实施例3
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为CIE一般标准天空中的第5类天空(即GB/T20148-2006中均匀亮度天空的亮度分布),该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是1、1、1、1、1、1、1、1、1、1,如图4所示;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为4m的圆面进行水平投影,得到平面亮度分布,如图5所示,此时圆面边界的相对亮度值为1;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光装置根据步骤2)得到的平面亮度分布以及步骤2)圆面以外至天花面边界的区域相对亮度值为1的分布方式将光线投射到具有漫反射特性的天花面上。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.55-0.8,空间中央高度1.5m处的垂直照度与水平照度之比为0.59。
实施例4
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为CIE一般标准天空中的第1类天空(即GB/T20148-2006中标准阴天天空,亮度色调急剧变化,接近天顶,方位角一致的亮度分布),该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.99、0.97、0.93、0.87、0.79、0.67、0.51、0.5、0.33;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为
Figure PCTCN2022141899-appb-000003
的圆面进行水平投影,得到平面亮度分布,此时圆面边界的相对亮度值为0.33;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光装置根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上;
4)通过测定,经步骤3)照射后的墙顶光照相对亮度值为0.36,定义该相对亮度值为K,此时采用发光装置使在墙面上按墙顶至墙底每10%总长距离对应 点的相对亮度值变化梯度为1K、0.89K、0.79K、0.68K、0.57K、0.49K、0.43K、0.36K、0.32K、0.28K、0.23K的亮度分布将光线投射到具有漫反射特性的墙面上。
上述方法采用的控制系统包括:储存模块,用于存储各类天空模型按照直径为
Figure PCTCN2022141899-appb-000004
的圆面进行水平投影得到的平面亮度分布;控制模块,用于控制照明模块和第二照明模块根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上,所述存储模块与所述控制模块电连接;照明模块,包括向天花面投射的发光装置,所述照明模块与所述控制模块电连接;第二照明模块,包括向墙面投射的发光装置,所述第二照明模块与所述控制模块电连接。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.52-0.7,空间中央高度1.5m处的垂直照度与水平照度之比为0.55。
实施例5
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为CIE一般标准天空中的第11类天空(即GB/T20148-2006中白蓝天空,清晰日冕的亮度分布),该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.65、0.44、0.33、0.26、0.22、0.2、0.2、0.21、0.21;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为4m的圆面进行水平投影,得到平面亮度分布,此时圆面边界的相对亮度值为0.21;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光天花顶棚根据步骤2)得到的平面亮度分布以及步骤2)圆面以外至天花面边界的区域相对亮度值为0.21的分布布局天花面目标亮度分布;
4)通过测定,经步骤3)照射后的墙顶光照相对亮度值为0.15,定义该相对亮度值为K,此时采用发光装置使墙顶亮度强度值增大到2K,并在墙面上按墙顶至墙底每10%总长距离对应点的相对亮度值变化梯度为2K、1.96K、1.54K、1.36K、1.2K、1.06K、0.92K、0.82K、0.72K、0.64K、0.56K的亮度分布将光线投射到具有漫反射特性的墙面上。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.5-0.7,空间中央高度1.5m处的垂直照度与水平照度之比为0.53。
实施例6
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)通过天空亮度扫描仪获取165个点的天空亮度,对上述特征点结合CIE一般标准天空中的15类天空模型按最小二乘法进行拟合,得出与拟合结果最贴近的天空类型为第5类天空(即GB/T20148-2006中均匀亮度天空的亮度分布);
2)根据本步骤1)确定的天空类型,选取得到CIE一般标准天空中的15类天空模型,该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是1、1、1、1、1、1、1、1、1、1,如图4所示;
3)将步骤2)得到的天空模型形成的光照亮度按照直径为4m的圆面进行水平投影,得到平面亮度分布,此时圆面边界的相对亮度值为1;
4)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光装置根据步骤2)得到的平面亮度分布以及步骤2)圆面以外至天花面边界的区域相对亮度值为1的分布方式将光线投射到具有漫反射特性的天花面上。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.55-0.8,空间中央高度1.5m处的垂直照度与水平照度之比为0.59。
实施例7
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为非专利文献“用信息法研究天空亮度分布[D],何荥,重庆大学博士论文,中国博士学位论文全文数据库信息科技辑,2009年第6期,I138-69”中记载的Gillette和Pierpoint等人提出的部分有云天模型,该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.8、0.66、0.55、0.48、0.44、0.41、0.39、0.37、0.33;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为4m的圆面进行水平投影,得到平面亮度分布,此时圆面边界的相对亮度值为0.33;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光天花顶棚根据步骤2)得到的平面亮度分布以及步骤2)圆面以外至天花面边界的区域相对亮度值为0.33的分布布局天花面目标亮度分布;
4)通过测定,经步骤3)照射后的墙顶光照相对亮度值为0.22,定义该相对亮度值为K,此时采用发光装置使墙顶亮度强度值增大到2K,并在墙面上按墙顶至墙底每10%总长距离对应点的相对亮度值变化梯度为2K、1.7K、1.44K、1.22K、1.04K、0.88K、0.76K、0.64K、0.54K、0.46K、0.38K的亮度分布将光线投射到具有漫反射特性的墙面上。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.52-0.7,空间中央高度1.5m处的垂直照度与水平照度之比为0.55。
实施例8
一种实现自然光照特征的室内照明方法,包括如下步骤:
1)获取天空模型,所述模型为所述模型为非专利文献“用信息法研究天空亮度分布[D],何荥,重庆大学博士论文,中国博士学位论文全文数据库信息科技辑,2009年第6期,I138-69”中记载的Kittler全晴天亮度分布模型,Linke浑浊度为2.45时天空的亮度分布,该天空的亮度分布以天顶角0°到90°之间的每10°对应的特征点的相对亮度值可分别是:1、0.65、0.45、0.33、0.26、0.23、0.22、0.24、0.29、0.32;
2)将步骤1)得到的天空模型形成的光照亮度按照直径为
Figure PCTCN2022141899-appb-000005
的圆面进行水平投影,得到平面亮度分布,此时圆面边界的相对亮度值为0.32;
3)在尺寸为4m×4m×3m(长宽高)、天花反射率为70%、墙面反射率为80%、地面反射率为40%的典型室内空间中,采用发光装置根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上。
上述方法采用的控制系统包括:储存模块,用于存储各类天空模型按照直径为
Figure PCTCN2022141899-appb-000006
的圆面进行水平投影得到的平面亮度分布;控制模块,用于控制照明模块根据步骤2)得到的平面亮度分布将光线投射到具有漫反射特性的天花面上,所述存储模块与所述控制模块电连接;照明模块,包括发光装置,所述照明模块 与所述控制模块电连接。
经测定,该空间1.5m高基准层内任一点垂直照度与水平照度之比为0.5-1,空间中央高度1.5m处的垂直照度与水平照度之比为0.52。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种实现自然光照特征的室内照明方法,其特征在于:包括如下步骤:
    控制照明方式使天花面的光照亮度分布与目标亮度分布的拟合误差在5%以内,其中,所述目标亮度分布与将能够反映天空亮度分布的天空模型形成的光照亮度分布进行水平投影得到的平面亮度分布一致。
  2. 如权利要求1所述的方法,其特征在于:在控制照明方式前还包括:
    获取能够反映天空亮度分布的天空模型,将所述的天空模型形成的光照亮度分布进行水平投影,得到平面亮度分布。
  3. 如权利要求1或2所述的方法,其特征在于:还包括获取经在控制照明方式后得到的墙顶最高亮度值k,并控制第二照明方式使墙面亮度分布满足:墙顶的亮度值为k~5k且墙面亮度自墙顶至墙底梯度降低。
  4. 如权利要求1-3任一项所述的方法,其特征在于:所述天空模型包括CIE一般标准天空记载的15种类型相对天空亮度分布模型中的任意一种或非专利文献“用信息法研究天空亮度分布[D],何荥,重庆大学博士论文,中国博士学位论文全文数据库信息科技辑,2009年第6期,I138-69”中记载的各类天空亮度分布模型、天空亮度模型、天空模型、全气候模型、天空辐射亮度模型中的任意一种。
  5. 如权利要求1-3任一项所述的方法,其特征在于:所述拟合误差为特征点的实际相对亮度值与目标相对亮度值差值平方和的均值,所述特征点不少于10个,且包括天花面中心和边界特征点。
  6. 如权利要求1-3任一项所述的方法,其特征在于:在获取能够反映天空亮度分布的天空模型之前还包括获取天空信息的步骤,所述获取天空模型具体为通过获取所述天空信息得到对应的天空模型。
  7. 如权利要求6所述的方法,其特征在于:所述天空信息包括天空类型或实时天空亮度分布,其中,当天空信息为具体天空类型时,获取的天空模型为具体天空类型对应的天空亮度模型;当天空信息为实时天空亮度分布时,需要将实时天空亮度分布中的特征点相对现有天空模型利用最小二乘法进行拟合,获取与拟合结果最为贴近的天空模型。
  8. 如权利要求7所述的方法,其特征在于:所述实时天空亮度分布通过天空亮度扫描仪获得。
  9. 如权利要求1-3任一项所述的方法,其特征在于:所述控制照明方式为控制以天花面中心为圆心并与天花面短边内切的圆的区域与所述目标亮度分布的拟合误差在5%以内;圆以外的天花面区域控制为如下任一方式:1)平均光照亮度与该圆边界的光照亮度一致;2)以该圆边界的光照亮度为基准向天花面边界布局呈渐暗的亮度分布,且圆边界至天花面边界区域光照亮度保持均匀度在0.7以上;3)以该圆边界的光照亮度为基准向天花面边界布局呈渐亮的亮度分布,且圆边界至天花面边界区域光照亮度保持均匀度在0.7以上。
  10. 如权利要求1-3任一项所述的方法,其特征在于:所述墙面亮度梯度降低的幅度为墙面自上到下每10%总长距离的递减程度为10%到15%。
  11. 如权利要求1-3任一项所述的方法,其特征在于:所述照明方式包括采用发光装置根据目标亮度分布将光线投射到具有漫反射特性的天花面上、采用发光天花顶棚布局天花面目标亮度分布、采用至少一个面光源分别置于天花表面中布局目标亮度分布的至少一种。
  12. 如权利要求3所述的方法,其特征在于:所述第二照明方式包括采用发光装置根据目标亮度分布将光线投射到具有漫反射特性的墙面上、采用至少一个面光源分别置于墙面中布局目标亮度分布的至少一种。
  13. 一种实现自然光照特征的室内照明控制系统,其特征在于:包括:
    存储模块,用于存储不同的平面光照亮度分布,所述平面亮度分布通过对天空模型形成的光照亮度进行水平投影得到;
    控制模块,用于依据从存储模块中调取的平面亮度分布控制照明方式,所述控制模块与所述存储模块电连接;
    照明模块,用于实现天花面的光照亮度分布,所述照明模块与所述控制模块电连接。
  14. 如权利要求13所述的系统,其特征在于:所述系统还包括天空信息获取模块,用户获取天空类型或实时天空亮度分布,所述天空信息获取模块与所述存储模块电连接。
  15. 如权利要求13或14所述的系统,其特征在于:所述系统还包括第二照明模块,用于实现墙面的光照亮度分布,所述第二照明模块与所述控制模块电连接。
PCT/CN2022/141899 2022-03-04 2022-12-26 一种实现自然光照特征的室内照明方法及系统 WO2023197677A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202210209943 2022-03-04
CN202210393631.9 2022-04-14
CN202210393631.9A CN116744507A (zh) 2022-03-04 2022-04-14 一种实现自然光照特征的室内照明方法及系统

Publications (1)

Publication Number Publication Date
WO2023197677A1 true WO2023197677A1 (zh) 2023-10-19

Family

ID=87915672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141899 WO2023197677A1 (zh) 2022-03-04 2022-12-26 一种实现自然光照特征的室内照明方法及系统

Country Status (2)

Country Link
CN (1) CN116744507A (zh)
WO (1) WO2023197677A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485234A (zh) * 2006-06-28 2009-07-15 皇家飞利浦电子股份有限公司 根据目标光分布控制照明系统的方法
CN108052762A (zh) * 2017-12-26 2018-05-18 哈尔滨工业大学 一种基于局地光气候的严寒地区建筑自然采光性能仿真方法
US20190242539A1 (en) * 2018-02-08 2019-08-08 Cree, Inc. Environmental simulation for indoor spaces
CN214369924U (zh) * 2021-04-21 2021-10-08 吉林省远大光学检测技术有限公司 一种侧反式光学结构的模拟天窗环境的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485234A (zh) * 2006-06-28 2009-07-15 皇家飞利浦电子股份有限公司 根据目标光分布控制照明系统的方法
CN108052762A (zh) * 2017-12-26 2018-05-18 哈尔滨工业大学 一种基于局地光气候的严寒地区建筑自然采光性能仿真方法
US20190242539A1 (en) * 2018-02-08 2019-08-08 Cree, Inc. Environmental simulation for indoor spaces
CN214369924U (zh) * 2021-04-21 2021-10-08 吉林省远大光学检测技术有限公司 一种侧反式光学结构的模拟天窗环境的装置

Also Published As

Publication number Publication date
CN116744507A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US10894503B2 (en) Detector controlled headlight system
Karlen et al. Lighting design basics
US9668312B2 (en) Lighting system and a method of controlling a lighting system
CN104295988B (zh) 一种多光源作业灯
US11208029B2 (en) Adaptive headlight system
WO2013111134A1 (en) Detector controlled illuminating system
US20210204380A1 (en) Intelligent lighting control method based on the number of persons
CN207219101U (zh) 一种色温实时调节照明系统
EP3201516A1 (en) A luminaire and a method for providing task lighting and decorative lighting
CN105042399A (zh) 基于图像分析的台灯亮度自适应调节方法
CN207514660U (zh) 一种智能植物照明台灯
JP7382947B2 (ja) 等価メラノピックルクス(eml)クォータ
CN106982505A (zh) 灯光的智能开环调试系统及其调试方法
CN204083971U (zh) 一种多光源作业灯
WO2023197677A1 (zh) 一种实现自然光照特征的室内照明方法及系统
CN108055746A (zh) 利用智能手机控制环境照明的方法及其系统
JP4654842B2 (ja) 照明空間の雰囲気設計方法、および照明空間の雰囲気制御システム
CN206247179U (zh) 一种植物补光专用的智能型多色led投光灯
Miller et al. Pedestrian Friendly Outdoor Lighting
CN206835429U (zh) 智能灯光开环控制的修正系统
CN106993365A (zh) 智能灯光开环控制的修正系统及修正方法
CN206835428U (zh) 灯光的智能开环调试系统
CN114543985B (zh) 室内光环境评估设备
US11483913B2 (en) Environmental control system and method for simulating circadian rhythms
CN112584589B (zh) 一种基于大规模组网的多人感协同控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937304

Country of ref document: EP

Kind code of ref document: A1