WO2023197525A1 - 一种汽水分离器及其燃料电池系统 - Google Patents

一种汽水分离器及其燃料电池系统 Download PDF

Info

Publication number
WO2023197525A1
WO2023197525A1 PCT/CN2022/119511 CN2022119511W WO2023197525A1 WO 2023197525 A1 WO2023197525 A1 WO 2023197525A1 CN 2022119511 W CN2022119511 W CN 2022119511W WO 2023197525 A1 WO2023197525 A1 WO 2023197525A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
steam
hydrogen
water separator
water
Prior art date
Application number
PCT/CN2022/119511
Other languages
English (en)
French (fr)
Inventor
李勇
孔庆军
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Publication of WO2023197525A1 publication Critical patent/WO2023197525A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters

Definitions

  • the invention relates to a steam-water separator and its fuel cell system.
  • New energy sources Cars are considered an important part of the energy transition, and proton exchange membrane fuel cell vehicles are considered to be the most mature representatives of new energy vehicles in terms of power generation. It uses a chemical reaction between hydrogen and oxygen in the air to generate electrical energy to propel the car forward. It has a series of advantages such as simple structure, no pollution to the atmosphere, energy saving and high efficiency. Fuel cell vehicles basically produce no carbon dioxide. As a new generation of new energy vehicles, system optimization and the design and development of key components can make the fuel cell power system last longer.
  • the hydrogen circulation system is an important unit of the fuel cell power module. It is used to deliver hydrogen to the fuel cell stack and purify the hydrogen exhaust gas and recycle it.
  • Some hydrogen fuel cell systems use an ejector as a hydrogen circulation device. The ejector does not require additional power consumption, but the circulation system must be equipped with two functional devices, namely a steam-water separator to separate the hydrogen outlet discharge of the stack module. The liquid water is then discharged to improve the performance of the stack and protect the stack; the one-way valve is used in the low power stage to prevent the hydrogen outlet of the stack module from flowing back due to insufficient ejection capacity of the ejector, causing the liquid water to be unable to be discharged normally and causing damage.
  • Stack module is used to prevent the hydrogen outlet of the stack module from flowing back due to insufficient ejection capacity of the ejector, causing the liquid water to be unable to be discharged normally and causing damage.
  • the US9373855 patent ejector application is equipped with a one-way valve to prevent the backflow of the exhaust gas at the hydrogen outlet of the stack module, and other conventional ejector application patents are equipped with a water vapor separator; as mentioned above, the one-way valve and steam water
  • Each of the separators is provided individually, so the number of components increases and the assembly time of the product increases. Accordingly, productivity decreases, manufacturing costs increase, and system space is wasted.
  • the object of the present invention is to provide a steam-water separator and its fuel cell system, which can solve the problem that each of the one-way valve and the steam-water separator in the prior art is set up separately, so the number of components increases, and the assembly of the product Technical problems include increased time, reduced productivity, increased manufacturing costs, and wasted system space.
  • the object of the present invention is to provide a steam-water separator, which is characterized in that: it includes a shell, a gas-liquid separation cavity is provided inside the shell, and an air inlet and an air outlet are provided on the top of the shell, and the air inlet and the air outlet are connected with each other.
  • the vapor-liquid separation cavity is connected, and a plurality of flow channel baffles are provided in the vapor-liquid separation cavity.
  • the several flow channel baffles in the gas flow channel between the air inlet and the air outlet form a Tesla valve flow channel.
  • the above-mentioned several flow channel baffles include a first baffle, which extends downward from the top wall of the vapor-liquid separation cavity to the middle, and the bottom end of the first baffle forms an arc extending from bottom to top. Shape guide bending plate.
  • Several of the above-mentioned flow channel baffles also include a second flow channel baffle, which extends from bottom to top to the middle.
  • the first baffle and the second flow channel baffle separate the vapor-liquid separation cavity. It is divided into left and right parts.
  • the top of the second flow channel baffle and the arc-shaped guide bending plate form the first gate of the Tesla valve flow channel.
  • Several of the above-mentioned flow channel baffles also include a third flow channel baffle.
  • the third flow channel baffle is located in the vapor-liquid separation cavity on the right side, and the third flow channel baffle is separated from the vapor-liquid separation cavity.
  • the right side wall begins to curve upward, and the air outlet is located directly above the third flow channel baffle.
  • the bottom ends of the third flow channel baffle and the first baffle are composed of arc-shaped guide bending plates extending from bottom to top.
  • the second gate of the Tesla valve flow path is composed of arc-shaped guide bending plates extending from bottom to top.
  • the third gate of the Tesla valve flow channel is formed between the above-mentioned third flow channel baffle and the top of the first baffle.
  • an arc-shaped baffle is installed in a part of the vapor-liquid separation cavity on the left side, and the arc-shaped baffle guides the gas entering from the air inlet to the first gate.
  • Each group of arc-shaped deflectors described above is composed of two arc-shaped single plates, and the two arc-shaped single plates are spaced apart from each other.
  • the above-mentioned housing is also provided with a water storage chamber.
  • the water storage chamber is located below the vapor-liquid separation cavity and separated by a partition.
  • the partition is located on the left side wall of the second flow channel baffle and the vapor-liquid separation cavity.
  • a first drainage hole is provided to connect the vapor-liquid separation cavity and the water storage chamber.
  • the bottom water storage chamber drains water through the drainage port.
  • the second flow channel baffle extends upward from the partition to the middle.
  • At least one water guide strip is connected between the above-mentioned arc-shaped flow guide bending plate and the partition plate, and the bottom of the water guide strip is close to the first drainage hole.
  • a second drainage hole is provided at the bottom of the above-mentioned arc-shaped flow guide bent plate, and the top of the water guide strip is close to the second drainage hole.
  • a third drainage hole is provided on the above-mentioned partition between the second flow channel baffle and the right side wall of the vapor-liquid separation cavity; a fourth drainage hole is provided at the bottom of the third flow channel baffle.
  • the above-mentioned drain port is equipped with a drain valve, the air inlet is located at the top left side of the casing, the air outlet is located above the casing, and the drain port is located at the bottom right side of the casing.
  • the above-mentioned housing is cast in one piece.
  • a fuel cell system including a stack module, a fuel cell system controller, a hydrogen supply system, an air supply system and a cooling system, wherein: the output end of the hydrogen supply system is connected to the hydrogen inlet of the stack module to provide hydrogen for the stack module ; The output end of the air supply system is connected to the air inlet of the stack module to provide air for the stack module; the hydrogen outlet of the stack module is set to output the mixed gas after the reaction, and the hydrogen outlet is connected to the steam-water separator; It is characterized by:
  • the soda-water separator is the soda-water separator mentioned above.
  • the above-mentioned hydrogen supply system includes a hydrogen bottle, a stop valve, a pressure reducing valve and an ejector.
  • the hydrogen from the hydrogen bottle enters the hydrogen inlet of the stack module through the stop valve, the pressure reducing valve and the ejector.
  • the hydrogen in the stack module The outlet transports the reacted high-temperature hydrogen and water-gas mixed gas to the steam-water separator. It enters the steam-liquid separation cavity from the air inlet of the steam-water separator.
  • the hydrogen gas after the moisture is separated by the steam-water separator is discharged from the outlet and transported to The hydrogen return injection port of the ejector, the separated liquid is discharged from the steam-water separator;
  • the ejection capacity formed by the ejector is insufficient, and part of the hydrogen gas flows back from the outlet of the steam-water separator into the housing to the air inlet. Since the hydrogen gas counterflowing from the outlet passes through the air inlet Several flow channel baffles in the gas flow channel between the inlet and the gas outlet form a Tesla valve flow channel. According to the principle of the Tesla valve, the flow resistance of the counterflow hydrogen is large, so that it cannot flow back to the air inlet and is passed from the gas inlet. The reacted high-temperature hydrogen and water-gas mixed gas flows downstream from the hydrogen outlet of the stack module and is pushed back to the outlet and transported to the return hydrogen injection port of the ejector.
  • the present invention has the following effects:
  • a steam-water separator characterized by: including a shell, a vapor-liquid separation cavity is provided inside the shell, and an air inlet and an air outlet are provided on the top of the casing. The air inlet and the air outlet are connected with the vapor-liquid separation cavity. The cavity is connected, and there are a number of flow channel baffles in the vapor-liquid separation cavity.
  • Several flow channel baffles in the gas flow channel between the air inlet and the air outlet form a Tesla valve flow channel, and the flow through the Tesla valve
  • the principle of the channel enables the steam-water separator to function as a one-way valve.
  • the structure is reasonably arranged and compact, reducing the arrangement of parts, saving space, improving production efficiency, saving costs, and ensuring the reliability of the ejector hydrogen circulation system. ;
  • Figure 1 is a schematic diagram of the principle of the prior art
  • FIG. 2 is a perspective view provided by Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram provided by Embodiment 1 of the present invention.
  • Figure 4 is a top view provided by Embodiment 1 of the present invention.
  • Figure 5 is a cross-sectional view along A-A in Figure 4.
  • Figure 6 is a schematic diagram of the downstream fluid flow line of the steam-water separator provided in Embodiment 1 of the present invention.
  • Figure 7 is a schematic diagram of the counterflow fluid flow line of the steam-water separator provided in Embodiment 1 of the present invention.
  • Figure 8 is a front view provided by Embodiment 1 of the present invention.
  • Figure 9 is a cross-sectional view along B-B in Figure 8.
  • FIG. 10 is a schematic diagram provided by Embodiment 2 of the present invention.
  • FIG 11 is a control principle diagram provided by Embodiment 2 of the present invention.
  • this embodiment provides a steam-water separator, which is characterized in that it includes a housing 1, a vapor-liquid separation cavity 11 is provided inside the housing 1, and an inlet is provided on the top of the housing 1.
  • the air inlet 14 and the air outlet 15 are connected with the vapor-liquid separation cavity 11.
  • the vapor-liquid separation cavity 11 is provided with a number of flow channel baffles 3. Between the air inlet 14 and the air outlet 15 Several flow channel baffles 3 in the gas flow channel between them form a Tesla valve flow channel.
  • the steam-water separator can realize the function of a one-way valve, and the structural layout is reasonable and compact, reducing the need for The arrangement of components saves space, improves production efficiency, saves costs, and ensures the reliability of the ejector hydrogen circulation system.
  • the streamlined flow channel baffles 3 have a structure that facilitates gas flow and has a reasonable structural layout.
  • the above-mentioned plurality of flow channel baffles 3 include a first baffle 31 that extends downward from the top wall of the vapor-liquid separation cavity 11 to the middle.
  • the bottom end of the first baffle 31 forms a flow path from bottom to top.
  • the above-mentioned flow channel baffles 3 also include a second flow channel baffle 32.
  • the second flow channel baffle 32 extends from bottom to top to the middle.
  • the first baffle 31 and the second flow channel baffle 32 separate the vapor and liquid.
  • the separation cavity 11 is divided into left and right parts.
  • the top of the second flow channel baffle 32 and the arc-shaped guide bending plate 311 form the first gate 34 of the Tesla valve flow channel. According to the Tesla valve principle, the first gate 34 is passed through. The gate can effectively prevent the hydrogen outlet of the stack module from flowing back, causing the liquid water to be unable to be discharged normally and damaging the stack module.
  • the above-mentioned flow channel baffles 3 also include a third flow channel baffle 33.
  • the third flow channel baffle 33 is located in the vapor-liquid separation cavity 11 on the right side, and the third flow channel baffle 33 is separated from the vapor-liquid separation cavity 11.
  • the right side wall 111 of the cavity 11 begins to curve upward.
  • the air outlet 15 is located directly above the third flow channel baffle 33.
  • the bottom ends of the third flow channel baffle 33 and the first baffle 31 are arranged from bottom to top.
  • the extended arc-shaped guide bending plate 311 forms the second gate 35 of the Tesla valve flow channel. According to the Tesla valve principle, passing through the second gate can better effectively prevent the hydrogen outlet of the stack module from flowing back and causing liquid water to fail. Normal discharge will damage the stack module.
  • the third gate 36 of the Tesla valve flow path is formed between the above-mentioned third flow channel baffle 33 and the top of the first baffle 31.
  • the structure is reasonably arranged. According to the Tesla valve principle, better flow through the third gate can be achieved. It effectively prevents the hydrogen outlet of the stack module from flowing back, causing the liquid water to be unable to be discharged normally and damaging the stack module.
  • the steam-water separator when passing in the forward direction, the greater the pressure, the faster the speed; when passing in the reverse direction, the greater the pressure, the greater the resistance, the slower the speed, and even stops completely.
  • the steam-water separator can achieve a single function.
  • the function of the directional valve can also ensure the reliability of the ejector hydrogen circulation system.
  • an arc-shaped baffle 17 is provided in a part of the vapor-liquid separation cavity 11 on the left side.
  • the arc-shaped baffle 17 guides the gas entering from the air inlet 14 to the first gate 34.
  • the structure is reasonably arranged to facilitate the gas flow. guide.
  • Each set of the above-mentioned arc-shaped guide plates 17 is composed of two arc-shaped single plates 171, and the two arc-shaped single plates 171 are spaced apart from each other.
  • the above-mentioned housing 1 is also provided with a water storage chamber 12.
  • the water storage chamber 12 is located below the vapor-liquid separation cavity 11 and separated by a partition 13.
  • the partition 13 is provided with a second flow channel baffle 32 to separate the vapor and liquid.
  • a first drainage hole 131 is provided between the left side walls 114 of the cavity 11 to connect the vapor-liquid separation cavity 11 and the water storage chamber 12.
  • the bottom water storage chamber 12 drains water through the drainage port 16, and the second flow channel baffle 32 is drained from the water outlet 16.
  • the partition 13 extends upward to the middle, and the structure is reasonably arranged to facilitate drainage.
  • At least one water guide strip 18 is connected between the above-mentioned arc-shaped guide bending plate 311 and the partition 13.
  • the bottom of the water guide strip 18 is close to the first drainage hole 131.
  • the bottom of the above-mentioned arc-shaped deflector 311 is provided with a second drainage hole 312, and the top of the water guide strip 18 is close to the second drainage hole 312.
  • the structure is reasonably arranged to facilitate the flow of accumulated water on the arc-shaped deflector 311. In the water storage chamber 12.
  • the two water guide strips 18 are arranged obliquely on the front side wall 112 and the rear side wall 113 of the vapor-liquid separation cavity 11.
  • the structure is reasonably arranged to facilitate the separation of the mixed gas.
  • the liquid water is directed to the water storage chamber 12 for discharge.
  • the above-mentioned partition 13 is provided with a third drainage hole 132 between the second flow channel baffle 32 and the right side wall 111 of the vapor-liquid separation cavity 11; a fourth drainage hole is provided at the bottom of the third flow channel baffle 33. 331, the structure is reasonably arranged to prevent water accumulation in the vapor-liquid separation cavity 11, and the drainage effect is good.
  • the above-mentioned drain port 16 is equipped with a drain valve 4.
  • the air inlet 14 is located at the top left side of the housing 1.
  • the air outlet 15 is located above the housing 1.
  • the drain port 16 is located at the bottom right side of the housing 1. The structure is reasonably arranged.
  • the above-mentioned housing 1 is cast in one piece, which has strong integrity, reduces parts, is easy to install, and reduces costs.
  • a fuel cell system includes a stack module, a fuel cell system controller, a hydrogen supply system, an air supply system and a cooling system, wherein: the output end of the hydrogen supply system is connected to the stack module
  • the hydrogen inlet of the stack module provides hydrogen for the stack module;
  • the output end of the air supply system is connected to the air inlet of the stack module to provide air for the stack module;
  • the hydrogen outlet of the stack module is set to output the reacted mixed gas, and the hydrogen outlet is connected Soda-water separator;
  • the soda-water separator is the soda-water separator described in Embodiment 1.
  • the soda-water separator realizes the function of a one-way valve, and the structure is reasonably arranged. , compact, reducing the layout of parts, saving space, improving production efficiency, saving costs, and ensuring the reliability of the ejector hydrogen circulation system.
  • the above-mentioned hydrogen supply system includes a hydrogen bottle, a stop valve, a pressure reducing valve and an ejector.
  • the hydrogen from the hydrogen bottle enters the hydrogen inlet of the stack module through the stop valve, pressure reducing valve and ejector.
  • the hydrogen outlet of the stack module will The reacted high-temperature hydrogen and water-gas mixed gas is transported to the steam-water separator, and enters the steam-liquid separation cavity 11 from the air inlet 14 of the steam-water separator.
  • the hydrogen after the moisture is separated by the steam-water separator is discharged from the air outlet 15 for transportation.
  • To the hydrogen return injection port of the ejector the separated liquid is discharged from the steam-water separator;
  • a Tesla valve flow channel is formed through a plurality of flow channel baffles 3 arranged in the gas flow channel between the air inlet 14 and the gas outlet 15. According to the principle of the Tesla valve, the flow resistance of the counterflow hydrogen is large, so that it cannot The reacted high-temperature hydrogen and water gas mixed gas that flows countercurrently to the gas inlet 14 and flows downstream from the hydrogen outlet of the stack module is pushed back to the gas outlet 15 and transported to the return hydrogen injection port of the ejector.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种汽水分离器及其燃料电池系统,其特征在于:包括壳体,壳体里面设置汽液分离空腔,壳体的顶部设置有进气口、出气口,进气口和出气口与汽液分离空腔连通,汽液分离空腔内设有若干流道挡板,在进气口与出气口之间的气体流道内的若干流道挡板形成特斯拉阀流道,通过特斯拉阀流道的原理,使汽水分离器实现具有单向阀的功能,结构布置合理、紧凑,减少零部件的布置,节省空间,提高生产效率,节约成本,还能保证引射器氢气循环系统的可靠性。

Description

一种汽水分离器及其燃料电池系统 技术领域
本发明涉及一种汽水分离器及其燃料电池系统。
背景技术
随着我国国民经济的持续增长,人民生活水平的不断提高,汽车已经成为人们出行的必备工具,随着我国多个城市雾霾化的增加,让人们意识到发展新能源已经刻不容缓,新能源汽车被认为是能源转型的重要环节,而质子交换膜燃料电池汽车被认为目前新能源汽车产电量最为成熟的代表。它是以氢气与空气中的氧气发生化学反应产生电能,从而推动汽车前进,它具有结构简单、对大气没有污染、节能高效等一系列优点。燃料电池汽车基本不产生二氧化碳,作为新一代新能源汽车,系统的优化及关键零部件的设计与开发能够让燃料电池动力系统寿命更长久。
如图1所示,现有的燃料电池系统中,氢气循环系统是燃料电池动力模块的重要单元,用于向燃料电池堆输送氢气,并对氢气尾气进行净化后循环利用。部分氢燃料电池系统采用引射器作为氢气循环装置,引射器不需要额外增加功耗,但是循环系统中还要配置两个功能装置,分别是汽水分离器用于分离电堆模块的氢气出口排出的液态水后排出,提高电堆性能及保护电堆;单向阀用于在低功率阶段,由于引射器引射能力不足,防止电堆模块的氢气出口倒流造成液态水无法正常排出而损坏电堆模块。
US9373855专利引射器应用中设置有一个单向阀用于防止电堆模块的氢气出口的尾气倒流,及其它常规引射器应用专利都设置有水汽分离器;如上所述,单向阀与汽水分离器中的每个都单独地设置,因此元件的数量增加,并且产品的装配时间增加。相应地,生产率降低,制造成本增加,浪费系统空间。
发明内容
本发明的目的是提供一种汽水分离器及其燃料电池系统,能解决现有技术 中的单向阀与汽水分离器中的每个都单独地设置,因此元件的数量增加,并且产品的装配时间增加,生产率降低,制造成本增加,浪费系统空间的技术问题。
本发明的目的是通过下述技术方案予以实现的。
本发明的目的是提供一种汽水分离器,其特征在于:包括壳体,壳体里面设置汽液分离空腔,壳体的顶部设置有进气口、出气口,进气口和出气口与汽液分离空腔连通,汽液分离空腔内设有若干流道挡板,在进气口与出气口之间的气体流道内的若干流道挡板形成特斯拉阀流道。
上述所述的若干流道挡板是流线型。
上述所述的若干流道挡板包括第一挡板,第一挡板从汽液分离空腔的顶壁往下延伸到中部,第一挡板的底端形成一个由下往上伸展的弧形导流弯板。
上述所述的若干流道挡板还包括一第二流道挡板,第二流道挡板从下往上延伸到中部,第一挡板和第二流道挡板将汽液分离空腔分隔成左右两部分,第二流道挡板的顶端与弧形导流弯板组成特斯拉阀流道第一个闸口。
上述所述的若干流道挡板还包括一第三流道挡板,第三流道挡板位于右侧部分的汽液分离空腔,且第三流道挡板从汽液分离空腔的右侧壁开始弧形往上弯起,出气口位于第三流道挡板正上方,第三流道挡板与第一挡板的底端由下往上伸展的弧形导流弯板组成特斯拉阀流道第二个闸口。
上述所述的第三流道挡板与第一挡板顶部之间组成特斯拉阀流道第三个闸口。
上述所述的在左侧的一部分汽液分离空腔里面设置弧形导流板,弧形导流板将从进气口进入的气体导向第一个闸口。
上述所述的弧形导流板有2组,2组弧形导流板上下间隔布局。
上述所述的每组弧形导流板由2块弧形单板组成,2块弧形单板之间间隔分布。
上述所述的壳体内还设有储水室,储水室位于汽液分离空腔的下方并由隔板分隔,隔板上位于第二流道挡板与汽液分离空腔的左侧壁之间设置第一排水 孔以连通汽液分离空腔和储水室,底部储水室通过排水口来排水,第二流道挡板从隔板往上延伸到中部。
上述所述的弧形导流弯板与隔板之间连接至少一块导水条,导水条的底部靠近第一排水孔。
上述所述的弧形导流弯板的底部设有第二排水孔,导水条的顶部靠近第二排水孔。
上述所述的导水条设有两条,两条导水条倾斜布置在汽液分离空腔的前侧壁和后侧壁上。
上述所述的隔板上位于第二流道挡板与汽液分离空腔的右侧壁之间设置第三排水孔;第三流道挡板的底部设有第四排水孔。
上述所述的排水口安装有排水阀,进气口位于壳体的左侧顶部,出气口位于壳体的上方,排水口位于壳体的右侧底部。
上述所述的壳体为一体铸造成型的。
一种燃料电池系统,包括电堆模块、燃料电池系统控制器、供氢系统、空气供应系统和冷却系统,其中:供氢系统的输出端连接到电堆模块的氢气入口为电堆模块提供氢气;空气供应系统的输出端连接到电堆模块的空气入口为电堆模块提供空气;电堆模块的设置出氢口输出反应后的混合气体,出氢口连接汽水分离器;其特征在于:所述的汽水分离器是上述所述的汽水分离器。
上述所述的供氢系统包括氢气瓶、截止阀、减压阀和引射器,氢气瓶的氢气经过截止阀、减压阀和引射器进入电堆模块的氢气入口,电堆模块的氢气出口将反应后的高温氢气和水气混合气体输送到汽水分离器,从汽水分离器的进气口进入至汽液分离空腔,经过汽水分离器分离出水分后的氢气从出气口排出输送到引射器的回氢引射口,分离出来的液态从汽水分离器排出;
当燃料电池系统处于低功率时,引射器形成的引射能力不足,部分氢气从汽水分离器的出气口逆流到壳体内流向进气口处,由于从出气口逆流的氢气经过设置在进气口与出气口之间的气体流道内的若干流道挡板形成特斯拉阀流 道,根据特斯拉阀的原理,使逆流的氢气流动阻力大,从而无法逆流到进气口就被从电堆模块的氢气出口顺流的反应后的高温氢气和水气混合气体推回出气口输送到引射器的回氢引射口。
本发明与现有技术相比,具有如下效果:
1)一种汽水分离器,其特征在于:包括壳体,壳体里面设置汽液分离空腔,壳体的顶部设置有进气口、出气口,进气口和出气口与汽液分离空腔连通,汽液分离空腔内设有若干流道挡板,在进气口与出气口之间的气体流道内的若干流道挡板形成特斯拉阀流道,通过特斯拉阀流道的原理,使汽水分离器实现具有单向阀的功能,结构布置合理、紧凑,减少零部件的布置,节省空间,提高生产效率,节约成本,还能保证引射器氢气循环系统的可靠性;
2)本发明的其它优点在实施例部分展开详细描述。
附图说明
图1是现有技术的原理示意图;
图2是本发明实施例一提供的立体图;
图3是本发明实施例一提供的结构示意图;
图4是本发明实施例一提供的俯视图;
图5是图4中A-A的剖视图;
图6是本发明实施例一提供的汽水分离器顺流流体流线示意图;
图7是本发明实施例一提供的汽水分离器逆流流体流线示意图;
图8是本发明实施例一提供的正视图;
图9是图8中B-B的剖视图;
图10是本发明实施例二提供的原理图;
图11是本发明实施例二提供的控制原理图。
具体实施方式
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图2至图9所示,本实施例提供的是一种汽水分离器,其特征在于:包括壳体1,壳体1里面设置汽液分离空腔11,壳体1的顶部设置有进气口14、出气口15,进气口14和出气口15与汽液分离空腔11连通,汽液分离空腔11内设有若干流道挡板3,在进气口14与出气口15之间的气体流道内的若干流道挡板3形成特斯拉阀流道,通过特斯拉阀流道的原理,使汽水分离器实现具有单向阀的功能,结构布置合理、紧凑,减少零部件的布置,节省空间,提高生产效率,节约成本,还能保证引射器氢气循环系统的可靠性。
上述的若干流道挡板3是流线型,流线型的流道挡板3结构便于气体导流,结构布置合理。
上述的若干流道挡板3包括第一挡板31,第一挡板31从汽液分离空腔11的顶壁往下延伸到中部,第一挡板31的底端形成一个由下往上伸展的弧形导流弯板311。
上述的若干流道挡板3还包括一第二流道挡板32,第二流道挡板32从下往上延伸到中部,第一挡板31和第二流道挡板32将汽液分离空腔11分隔成左右两部分,第二流道挡板32的顶端与弧形导流弯板311组成特斯拉阀流道第一个闸口34,按照特斯拉阀原理通过第一个闸口可以有效防止电堆模块的氢气出口倒流造成液态水无法正常排出而损坏电堆模块。
上述的若干流道挡板3还包括一第三流道挡板33,第三流道挡板33位于右侧部分的汽液分离空腔11,且第三流道挡板33从汽液分离空腔11的右侧壁111开始弧形往上弯起,出气口15位于第三流道挡板33正上方,第三流道挡板33与第一挡板31的底端由下往上伸展的弧形导流弯板311组成特斯拉阀流道第二个闸口35,按照特斯拉阀原理通过第二个闸口可以更好的有效防止电堆模块的氢气出口倒流造成液态水无法正常排出而损坏电堆模块。
上述的第三流道挡板33与第一挡板31顶部之间组成特斯拉阀流道第三个闸口36,结构布置合理,按照特斯拉阀原理通过第三个闸口可以更好的有效防止电堆模块的氢气出口倒流造成液态水无法正常排出而损坏电堆模块。
根据特斯拉阀的原理:正向通过,压力越大,速度越快;反向通过,压力越大,阻力越大,速度越慢,乃至完全停止,通过该原理使汽水分离器实现具有单向阀的功能,还能保证引射器氢气循环系统的可靠性。
上述的在左侧的一部分汽液分离空腔11里面设置弧形导流板17,弧形导流板17将从进气口14进入的气体导向第一个闸口34,结构布置合理,便于气体导向。
上述的弧形导流板17有2组,2组弧形导流板17上下间隔布局。
上述的每组弧形导流板17由2块弧形单板171组成,2块弧形单板171之间间隔分布。
上述的壳体1内还设有储水室12,储水室12位于汽液分离空腔11的下方并由隔板13分隔,隔板13上位于第二流道挡板32与汽液分离空腔11的左侧壁114之间设置第一排水孔131以连通汽液分离空腔11和储水室12,底部储水室12通过排水口16来排水,第二流道挡板32从隔板13往上延伸到中部,结构布置合理,便于排水。
上述的弧形导流弯板311与隔板13之间连接至少一块导水条18,导水条18的底部靠近第一排水孔131,当携带液态水的气体经过导水条与导水条发碰撞时,液态水在重力的作用下,导水条将部分的液态水引流至储水室内,结构布置合理,排水效果好。
上述的弧形导流弯板311的底部设有第二排水孔312,导水条18的顶部靠近第二排水孔312,结构布置合理,便于弧形导流弯板311上的积水流至储水室12内。
上述的导水条18设有两条,两条导水条18倾斜布置在汽液分离空腔11的前侧壁112和后侧壁113上,结构布置合理,便于将混合气体中分离出来的液 态水引流至储水室12中排出。
上述的隔板13上位于第二流道挡板32与汽液分离空腔11的右侧壁111之间设置第三排水孔132;第三流道挡板33的底部设有第四排水孔331,结构布置合理,防止汽液分离空腔11积水,排水效果好。
上述的排水口16安装有排水阀4,进气口14位于壳体1的左侧顶部,出气口15位于壳体1的上方,排水口16位于壳体1的右侧底部,结构布置合理。
上述的壳体1为一体铸造成型的,整体性强,减少零件,安装简便,降低成本。
实施例二:
如图10和图11所示,一种燃料电池系统,包括电堆模块、燃料电池系统控制器、供氢系统、空气供应系统和冷却系统,其中:供氢系统的输出端连接到电堆模块的氢气入口为电堆模块提供氢气;空气供应系统的输出端连接到电堆模块的空气入口为电堆模块提供空气;电堆模块的设置出氢口输出反应后的混合气体,出氢口连接汽水分离器;其特征在于:所述的汽水分离器是实施例一所述的汽水分离器,通过特斯拉阀流道的原理,使汽水分离器实现具有单向阀的功能,结构布置合理、紧凑,减少零部件的布置,节省空间,提高生产效率,节约成本,还能保证引射器氢气循环系统的可靠性。
上述的供氢系统包括氢气瓶、截止阀、减压阀和引射器,氢气瓶的氢气经过截止阀、减压阀和引射器进入电堆模块的氢气入口,电堆模块的氢气出口将反应后的高温氢气和水气混合气体输送到汽水分离器,从汽水分离器的进气口14进入至汽液分离空腔11,经过汽水分离器分离出水分后的氢气从出气口15排出输送到引射器的回氢引射口,分离出来的液态从汽水分离器排出;
当燃料电池系统处于低功率时,引射器形成的引射能力不足,部分氢气从汽水分离器的出气口15逆流到壳体1内流向进气口14处,由于从出气口15逆流的氢气经过设置在进气口14与出气口15之间的气体流道内的若干流道挡板3 形成特斯拉阀流道,根据特斯拉阀的原理,使逆流的氢气流动阻力大,从而无法逆流到进气口14就被从电堆模块的氢气出口顺流的反应后的高温氢气和水气混合气体推回出气口15输送到引射器的回氢引射口。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (18)

  1. 一种汽水分离器,其特征在于:包括壳体(1),壳体(1)里面设置汽液分离空腔(11),壳体(1)的顶部设置有进气口(14)、出气口(15),进气口(14)和出气口(15)与汽液分离空腔(11)连通,汽液分离空腔(11)内设有若干流道挡板(3),在进气口(14)与出气口(15)之间的气体流道内的若干流道挡板(3)形成特斯拉阀流道。
  2. 根据权利要求1所述的一种汽水分离器,其特征在于:若干流道挡板(3)是流线型。
  3. 根据权利要求2所述的一种汽水分离器,其特征在于:若干流道挡板(3)包括第一挡板(31),第一挡板(31)从汽液分离空腔(11)的顶壁往下延伸到中部,第一挡板(31)的底端形成一个由下往上伸展的弧形导流弯板(311)。
  4. 根据权利要求3所述的一种汽水分离器,其特征在于:若干流道挡板(3)还包括一第二流道挡板(32),第二流道挡板(32)从下往上延伸到中部,第一挡板(31)和第二流道挡板(32)将汽液分离空腔(11)分隔成左右两部分,第二流道挡板(32)的顶端与弧形导流弯板(311)组成特斯拉阀流道第一个闸口(34)。
  5. 根据权利要求4所述的一种汽水分离器,其特征在于:若干流道挡板(3)还包括一第三流道挡板(33),第三流道挡板(33)位于右侧部分的汽液分离空腔(11),且第三流道挡板(33)从汽液分离空腔(11)的右侧壁(111)开始弧形往上弯起,出气口(15)位于第三流道挡板(33)正上方,第三流道挡板(33)与第一挡板(31)的底端由下往上伸展的弧形导流弯板(311)组成特斯拉阀流道第二个闸口(35)。
  6. 根据权利要求5所述的一种汽水分离器,其特征在于:第三流道挡板(33)与第一挡板(31)顶部之间组成特斯拉阀流道第三个闸口(36)。
  7. 根据权利要求3或4或5或6所述的一种汽水分离器,其特征在于:在左侧的一部分汽液分离空腔(11)里面设置弧形导流板(17),弧形导流板(17)将从进气口(14)进入的气体导向第一个闸口(34)。
  8. 根据权利要求7所述的一种汽水分离器,其特征在于:弧形导流板(17)有2组,2组弧形导流板(17)上下间隔布局。
  9. 根据权利要求8所述的一种汽水分离器,其特征在于:每组弧形导流板(17)由2块弧形 单板(171)组成,2块弧形单板(171)之间间隔分布。
  10. 根据权利要求9所述的一种汽水分离器,其特征在于:壳体(1)内还设有储水室(12),储水室(12)位于汽液分离空腔(11)的下方并由隔板(13)分隔,隔板(13)上位于第二流道挡板(32)与汽液分离空腔(11)的左侧壁(114)之间设置第一排水孔(131)以连通汽液分离空腔(11)和储水室(12),底部储水室(12)通过排水口(16)来排水,第二流道挡板(32)从隔板(13)往上延伸到中部。
  11. 根据权利要求10所述的一种汽水分离器,其特征在于:弧形导流弯板(311)与隔板(13)之间连接至少一块导水条(18),导水条(18)的底部靠近第一排水孔(131)。
  12. 根据权利要求11所述的一种汽水分离器,其特征在于:弧形导流弯板(311)的底部设有第二排水孔(312),导水条(18)的顶部靠近第二排水孔(312)。
  13. 根据权利要求12所述的一种汽水分离器,其特征在于:导水条(18)设有两条,两条导水条(18)倾斜布置在汽液分离空腔(11)的前侧壁(112)和后侧壁(113)上。
  14. 根据权利要求13所述的一种汽水分离器,其特征在于:隔板(13)上位于第二流道挡板(32)与汽液分离空腔(11)的右侧壁(111)之间设置第三排水孔(132);第三流道挡板(33)的底部设有第四排水孔(331)。
  15. 根据权利要求14所述的一种汽水分离器,其特征在于:排水口(16)安装有排水阀(4),进气口(14)位于壳体(1)的左侧顶部,出气口(15)位于壳体(1)的上方,排水口(16)位于壳体(1)的右侧底部。
  16. 根据权利要求15所述的一种汽水分离器,其特征在于:壳体(1)为一体铸造成型的。
  17. 一种燃料电池系统,包括电堆模块、燃料电池系统控制器、供氢系统、空气供应系统和冷却系统,其中:供氢系统的输出端连接到电堆模块的氢气入口为电堆模块提供氢气;空气供应系统的输出端连接到电堆模块的空气入口为电堆模块提供空气;电堆模块的设置出氢口输出反应后的混合气体,出氢口连接汽水分离器;其特征在于:所述的汽水分离器是权利要求1至权利要求16所述的任意一项汽水分离器。
  18. 根据权利要求17所述的一种燃料电池系统,其特征在于:所述的供氢系统包括氢气瓶、截止阀、减压阀和引射器,氢气瓶的氢气经过截止阀、减压阀和引射器进入电堆模块的氢气 入口,电堆模块的氢气出口将反应后的高温氢气和水气混合气体输送到汽水分离器,从汽水分离器的进气口(14)进入至汽液分离空腔(11),经过汽水分离器分离出水分后的氢气从出气口(15)排出输送到引射器的回氢引射口,分离出来的液态从汽水分离器排出;
    当燃料电池系统处于低功率时,引射器形成的引射能力不足,部分氢气从汽水分离器的出气口(15)逆流到壳体(1)内流向进气口(14)处,由于从出气口(15)逆流的氢气经过设置在进气口(14)与出气口(15)之间的气体流道内的若干流道挡板(3)形成特斯拉阀流道,根据特斯拉阀的原理,使逆流的氢气流动阻力大,从而无法逆流到进气口(14)就被从电堆模块的氢气出口顺流的反应后的高温氢气和水气混合气体推回出气口(15)输送到引射器的回氢引射口。
PCT/CN2022/119511 2022-04-11 2022-09-19 一种汽水分离器及其燃料电池系统 WO2023197525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210370711.2 2022-04-11
CN202210370711.2A CN114452724B (zh) 2022-04-11 2022-04-11 一种汽水分离器及其燃料电池系统

Publications (1)

Publication Number Publication Date
WO2023197525A1 true WO2023197525A1 (zh) 2023-10-19

Family

ID=81417777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119511 WO2023197525A1 (zh) 2022-04-11 2022-09-19 一种汽水分离器及其燃料电池系统

Country Status (2)

Country Link
CN (1) CN114452724B (zh)
WO (1) WO2023197525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443088A (zh) * 2023-12-22 2024-01-26 江西五十铃汽车有限公司 车用氢气燃料电池气水分离器和排水控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452724B (zh) * 2022-04-11 2022-07-15 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池系统
CN114865007A (zh) * 2022-06-02 2022-08-05 中国第一汽车股份有限公司 燃料电池气体循环系统、燃料电池和车辆
CN114784329B (zh) * 2022-06-20 2022-09-30 武汉众宇动力系统科技有限公司 燃料电池氢气循环系统及其气水分离器和排水排氢方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB288740A (en) * 1927-01-21 1928-04-19 John Tom Hickman Ward Improvements in apparatus for separating liquids from gases
JP2014154386A (ja) * 2013-02-08 2014-08-25 Aisan Ind Co Ltd 燃料電池システム
CN211605292U (zh) * 2020-03-27 2020-09-29 潍柴动力股份有限公司 一种膨胀水箱及膨胀水箱盖
CN214542298U (zh) * 2021-04-22 2021-10-29 山东凯格瑞森能源科技有限公司 一种用于大功率车载燃料电池的补气式引射器系统
CN114452724A (zh) * 2022-04-11 2022-05-10 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211907590U (zh) * 2020-03-14 2020-11-10 中山大洋电机股份有限公司 一种带水汽分离装置的氢气循环泵组件及应用的燃料电池
CN112057958B (zh) * 2020-08-17 2021-12-10 西安交通大学 一种气水分离组件、燃料电池氢气循环系统及应用
CN113471486B (zh) * 2021-07-07 2023-04-07 西安交通大学 一种用于氢燃料电池系统的一体式氢循环装置
CN113629273A (zh) * 2021-09-02 2021-11-09 山东凯格瑞森能源科技有限公司 一种应用于氢燃料电池的串联氢气循环系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB288740A (en) * 1927-01-21 1928-04-19 John Tom Hickman Ward Improvements in apparatus for separating liquids from gases
JP2014154386A (ja) * 2013-02-08 2014-08-25 Aisan Ind Co Ltd 燃料電池システム
CN211605292U (zh) * 2020-03-27 2020-09-29 潍柴动力股份有限公司 一种膨胀水箱及膨胀水箱盖
CN214542298U (zh) * 2021-04-22 2021-10-29 山东凯格瑞森能源科技有限公司 一种用于大功率车载燃料电池的补气式引射器系统
CN114452724A (zh) * 2022-04-11 2022-05-10 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443088A (zh) * 2023-12-22 2024-01-26 江西五十铃汽车有限公司 车用氢气燃料电池气水分离器和排水控制方法

Also Published As

Publication number Publication date
CN114452724B (zh) 2022-07-15
CN114452724A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023197525A1 (zh) 一种汽水分离器及其燃料电池系统
JP4470346B2 (ja) 車載用燃料電池システムおよび水素オフガス排出方法
CN211062794U (zh) 一种燃料电池供氢回氢引射器装置及燃料电池系统
CN100388531C (zh) 燃料电池堆设计和操作方法
WO2008029948A1 (fr) Système de pile à combustible
JP4361788B2 (ja) 一体化されたカソード排気凝縮器及びスタック冷却器を組み込んだ燃料電池システム
CN104380512A (zh) 燃料电池系统
CN113921862A (zh) 一种空气循环的燃料电池系统及其控制方法
CN114497628B (zh) 一种燃料电池系统
CN216935086U (zh) 一种燃料电池系统用气液分离器
CN209691860U (zh) 一种燃料电池发动机集成氢水分离装置
CN215342674U (zh) 一种用于氢燃料电池系统的气液分离装置
CN213878164U (zh) 燃料电池系统、燃料电池单元、电堆以及车辆
US20040033409A1 (en) Fuel cell block
CN106025309A (zh) 空间mea结构燃料电池
JP5494555B2 (ja) 燃料電池システム、および、燃料電池スタック
CN216755701U (zh) 一种水汽分离器及其应用的燃料电池系统
CN216909520U (zh) 一种燃料电池系统用气液分离装置
CN217405480U (zh) 一种分水组合件及采用上述分水组合件的燃料电池系统
CN115692786A (zh) 一种氢燃料电池的水汽分离器
CN112755660A (zh) 一种分水装置、燃料电池系统及其分水方法
CN212648290U (zh) 一种用于直接液体燃料电池的气液分离器
CN1270399C (zh) 一种燃料电池节氢和阳极排水方法
US7767356B2 (en) Common distribution device of fuel cell for vehicle
CN214012984U (zh) 一种氢能汽车燃料电池供氢系统的布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937162

Country of ref document: EP

Kind code of ref document: A1