WO2023197457A1 - 一种小流量超声波水表 - Google Patents

一种小流量超声波水表 Download PDF

Info

Publication number
WO2023197457A1
WO2023197457A1 PCT/CN2022/102239 CN2022102239W WO2023197457A1 WO 2023197457 A1 WO2023197457 A1 WO 2023197457A1 CN 2022102239 W CN2022102239 W CN 2022102239W WO 2023197457 A1 WO2023197457 A1 WO 2023197457A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
detection section
ultrasonic
flow
hole
Prior art date
Application number
PCT/CN2022/102239
Other languages
English (en)
French (fr)
Inventor
李星来
唐国强
李朝阳
王甫
Original Assignee
重庆市伟岸测器制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆市伟岸测器制造股份有限公司 filed Critical 重庆市伟岸测器制造股份有限公司
Publication of WO2023197457A1 publication Critical patent/WO2023197457A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the invention belongs to the technical field of flow detection, relates to an ultrasonic flow detection device, and specifically relates to a small flow ultrasonic water meter.
  • ultrasonic flow meters are widely used in the field of fluid measurement, especially water pipe flow measurement.
  • the working principle of the ultrasonic flowmeter is that when ultrasonic waves propagate in the flowing fluid, there is a speed difference between propagation along the flow direction and propagation against the flow direction. Under the same propagation distance, the time of forward propagation and reverse propagation are different, and the received ultrasonic wave The frequency is also different. Based on this information, the fluid flow rate can be calculated and converted into flow rate.
  • the ultrasonic beam in order to ensure the accuracy of the measurement results, the ultrasonic beam must reach a certain propagation distance so that the propagation time difference or frequency change can be accumulated to an appropriate amount.
  • the two ultrasonic transducers of the through-beam ultrasonic sensor can be installed on both sides of the center line of the measurement flow channel and staggered from each other in the flow direction to ensure that the propagation distance meets the measurement requirements.
  • this method of arranging ultrasonic transducers cannot meet the requirements for effective propagation distance.
  • two ultrasonic transducers are arranged in a reflective manner, and the ultrasonic beam propagation path between the two is "V" or "W” shaped.
  • each reflection will reduce the energy of the ultrasonic beam and increase the difficulty of ultrasonic detection and reception.
  • the ultrasonic flowmeter also integrates a data processing module and a display module, so the structural design of the sensor affects the structural layout of the entire flowmeter. Conventional ultrasonic flowmeters do not meet the flow detection needs of small-diameter pipelines.
  • the present invention provides a small flow ultrasonic water meter.
  • a small flow ultrasonic water meter including a flow sensor, a signal processing module and a display module.
  • the flow sensor includes a flow tube and two ultrasonic transducers. Two of the ultrasonic transducers are installed on the flow tube. device, the signal output ends of the two ultrasonic transducers are connected to the signal input end of the signal processing module, and the signal output end of the signal processing module is connected to the signal input end of the display module.
  • the flow tube between the two ultrasonic transducers is a detection section, which is a straight pipe.
  • One of the ultrasonic transducers is installed and sealed at both ends of the detection section.
  • the two ultrasonic transducers are
  • the connection line of the energizer is along the direction of the tube core line of the detection section;
  • the two ends of the detection section are respectively connected with a liquid inlet section and a liquid outlet section.
  • the above-mentioned ultrasonic water meter also includes a housing, and the flow sensor is provided in the housing;
  • the two ends of the detection section are respectively connected to the outlet end of the liquid inlet section and the inlet end of the liquid outlet section.
  • the inlet end of the liquid inlet section is provided with a liquid inlet connector, and the outlet end of the liquid outlet section is provided with There is a liquid outlet connector;
  • the liquid inlet connector and the liquid outlet connector pass out of the housing respectively.
  • a partition is fixedly provided in the above-mentioned housing, and the partition separates the inner cavity of the housing into a sensor cavity and an electronic cavity;
  • the flow sensor is provided in the sensor cavity, and the signal processing module and display module are provided in the electronic cavity;
  • Two battery holes are penetrated through the partition plate, and the two battery holes are located on both sides of the detection section.
  • the sensor cavity and the local area of the electronic cavity facing each battery hole are connected to form a battery cavity.
  • a reinforcing plate is connected to the outer wall of the connection between the above-mentioned detection section and the liquid inlet section and the liquid outlet section respectively;
  • Mounting posts are respectively formed on the partition board corresponding to each of the reinforcing plates, and the mounting posts extend toward the corresponding reinforcing plates.
  • the reinforcing plates and the mounting posts are connected by screws to connect all the reinforcing plates.
  • the flow sensor is fixed.
  • the cross-sections of the inner holes of the above-mentioned liquid inlet section, detection section and liquid outlet section are all circular, and the inner holes of the three are connected to form a continuous curved measurement flow channel;
  • the ultrasonic transducer is located outside the measurement flow channel.
  • liquid outlet section and the liquid inlet section are located on both sides of the detection section, and their structures are consistent;
  • the inner hole of the liquid inlet section includes a first section and a second section, and the second section is connected between the first section and the inner hole of the detection section;
  • the outer arc of the liquid outlet of the inner hole of the second section is tangent to the corresponding end surface of the detection section, and the inner hole of the detection section is perpendicular to the hole center line of the second section;
  • the angle between the inner hole of the detection section and the hole center line of the first section is recorded as ⁇ , 0° ⁇ 90°, the first section and the second section are smoothly connected, and the The first section and the detection section are located on both sides of the tube core line of the second section.
  • the pipe core lines of the liquid inlet connector and the liquid outlet connector are on the same straight line, and the angle between the straight line and the detection section is 45°.
  • the diameter of the above-mentioned measurement flow channel is recorded as d, and d ⁇ 15mm.
  • both ends of the above-mentioned detection section are respectively connected to cylindrical transducer mounting seats.
  • the transducer mounting seats and the detection section are arranged on the same core line.
  • Each of the transducer mounting seats is One of the ultrasonic transducers is provided, and the probe end face of the ultrasonic transducer faces the inner hole of the detection section.
  • the inner hole of the above-mentioned transducer mounting base is a step hole, the small diameter end of the step hole faces the detection section and is connected with its inner hole, and the inner diameter of the step hole is not smaller than the inner diameter of the detection section. hole diameter;
  • the housing of the ultrasonic transducer is adapted to the shape of the step hole, and a sealing ring is sandwiched between the housing of the ultrasonic transducer and the step surface of the step hole;
  • a compression ring is provided at the outer end of the ultrasonic transducer, and the compression ring is threadedly matched with the inner wall of the large-diameter portion of the step hole, so that the ultrasonic transducer is fixed in the step hole;
  • the signal lead of the ultrasonic transducer passes through the hole of the compression ring.
  • the beneficial effects of the present invention are: it solves the problem in the existing technology that ultrasonic water meters cannot be used to measure the flow of small diameter pipes, and the transducer adopts a through-beam arrangement to achieve small and micro pipe diameters.
  • the flow measurement of pipelines has high measurement accuracy and the entire water meter has a compact structure.
  • Figure 1 is a front view of the present invention
  • Figure 2 is a cross-sectional view of A-A in Figure 1;
  • Figure 3 is a top view of Figure 1;
  • Figure 4 is a cross-sectional view of B-B in Figure 3
  • Figure 5 is a schematic structural diagram of the flow sensor
  • Figure 6 is a C-C cross-sectional view in Figure 5;
  • Figure 7 is a D-D cross-sectional view in Figure 5;
  • Figure 8 is a bottom view of Figure 5;
  • Figure 9 is a cross-sectional view along E-E in Figure 8 .
  • a small flow ultrasonic water meter includes a housing 400.
  • a partition 410 is fixedly installed inside the housing 400.
  • the partition 410 divides the inner cavity of the housing 400 into a sensor cavity 420. and electronic cavity 430.
  • the flow sensor 100 is disposed in the sensor cavity 420
  • the signal processing module 200 and the display module 300 are disposed in the electronic cavity 430 .
  • the flow sensor 100 includes a flow tube 110 and two ultrasonic transducers 140.
  • the two ultrasonic transducers 140 are installed opposite each other on the flow tube 110.
  • the signal output of the two ultrasonic transducers 140 is
  • the signal input end of the signal processing module 200 is connected to the signal input end of the signal processing module 200 .
  • the signal output end of the signal processing module 200 is connected to the signal input end of the display module 300 .
  • the flow tube between the two ultrasonic transducers 140 110 is a detection section 112, which is a straight pipe.
  • One of the ultrasonic transducers 140 is sealed and installed at both ends of the detection section 112.
  • the connection line of the two ultrasonic transducers 140 is along the detection section. 112 tube core line direction.
  • the partition 410 has two battery holes 411 penetrating through it.
  • the two battery holes 411 are respectively located on both sides of the detection section 112.
  • Each battery hole 411 faces a local area of the sensor cavity 420 and the electronic cavity 430. Connected to form a battery cavity for installing batteries.
  • the two ends of the detection section 112 are respectively connected to the liquid inlet section 111 and the liquid outlet section 113.
  • the two ends of the detection section 112 are respectively connected to the outlet end of the liquid inlet section 111 and the inlet end of the liquid outlet section 113.
  • the inlet end of the liquid inlet section 111 is provided with a liquid inlet connector 114
  • the outlet end of the liquid outlet section 113 is provided with a liquid outlet connector 115.
  • the liquid inlet connector 114 and the liquid outlet connector 115 pass out of the housing 400 respectively. Both the liquid outlet connector 115 and the liquid inlet connector 114 are processed with external threads at the ends.
  • the flow tube 110 of the ultrasonic sensor is composed of a liquid inlet section 111, a detection section 112 and a liquid outlet section 113 connected in sequence, forming a curved flow tube 110.
  • the inner hole sections of the liquid inlet section 111, the detection section 112 and the liquid outlet section 113 are all circular, and the inner holes of the three are connected to form a continuous curved measurement flow channel.
  • the inner hole center lines of the liquid inlet section 111, the detection section 112 and the liquid outlet section 113 are located on the same plane.
  • the ultrasonic transducer 140 is located outside the measurement flow channel.
  • the outer arc of the inner hole liquid outlet of the liquid inlet section 111 and the outer arc of the inner hole liquid inlet of the liquid outlet section 113 are respectively connected with the corresponding ends of the detection section 112 Face to face. It should be noted that the aforementioned outer arc refers to the arc on the side of the inner hole liquid outlet of the liquid inlet section 111 or the inner hole liquid inlet of the liquid outlet section 113 away from the center of the detection section 112 .
  • the connection between the liquid inlet section 111 and the detection section 112 must be a curved pipe, but at the same time, the inner hole outlet of the liquid inlet section 111 must be as close as possible to the detection section 112
  • the inner hole end of the liquid inlet section 111 is designed to be tangent to the inner hole end of the detection section 112, which is beneficial to the fluid filling the inner hole end of the detection section 112.
  • the liquid outlet section 113 and the liquid inlet section 111 are located on both sides of the detection section 112, and their structures are consistent.
  • the inner hole of the liquid inlet section 111 includes a first section 111a and a second section 111b, and the second section 111b is connected between the first section 111a and the inner hole of the detection section 112.
  • the inner hole of the detection section 112 is perpendicular to the hole center line of the second section 111b, and the outer arc of the liquid outlet of the inner hole of the second section 111b is tangent to the corresponding end surface of the detection section 112.
  • the angle between the inner hole of the section 112 and the hole center line of the first section 111a is denoted as ⁇ , 0° ⁇ 90°, the first section 111a and the second section 111b are smoothly connected, and The first section 111a and the detection section 112 are located on both sides of the core line of the second section 111b.
  • the inlet end of the liquid inlet section 111 and the outlet end of the liquid outlet section 113 respectively extend in a direction away from the center of the detection section 112 .
  • the pipe core lines of the liquid inlet connector 114 and the liquid outlet connector 115 are on the same straight line, and the angle between the straight line and the hole center line of the detection section 112 is 45°.
  • a reinforcing plate 130 is connected to the outer wall of the connection between the detection section 112, the liquid inlet section 111 and the liquid outlet section 113 respectively.
  • the reinforcing plate 130 extends along the plane where the center line of the measurement flow channel is located.
  • the partition 410 is formed with a mounting post 412 corresponding to each of the reinforcing plates 130.
  • the mounting posts 412 extend toward the corresponding reinforcing plate 130. There is a gap between the reinforcing plate 130 and the mounting post 412.
  • the flow sensor 100 is fixed through screw connection.
  • the part of one battery cavity corresponding to the sensor cavity 420 is located in the area between the detection section 112 and the liquid inlet section 111, and the part of the other battery cavity corresponding to the sensor cavity 420 is located between the detection section 112 and the liquid outlet section.
  • the installation method of the ultrasonic transducer 140 is as follows: as shown in Figures 7 and 9, the two ends of the detection section 112 are respectively connected to cylindrical transducer mounting seats 120, and the transducer mounting seats 120 are connected to the detection section. 112 are arranged on a common core line. Each of the transducer mounting seats 120 is provided with one ultrasonic transducer 140 . The probe end surface of the ultrasonic transducer 140 faces the inner hole of the detection section 112 .
  • the inner hole of the transducer mounting base 120 is a step hole.
  • the small diameter end of the step hole faces the detection section 112 and is connected with its inner hole.
  • the inner diameter of the step hole is not smaller than the inner hole of the detection section 112 aperture.
  • the connection between the small diameter part of the step hole and the inner hole of the detection section 112 forms a limiting step, so that the ultrasonic transducer 140 is positioned.
  • the housing of the ultrasonic transducer 140 is adapted to the shape of the stepped hole, and a sealing ring 160 is sandwiched between the housing of the ultrasonic transducer 140 and the stepped surface of the stepped hole to achieve a sealed installation.
  • a compression ring 150 is provided at the outer end of the ultrasonic transducer 140.
  • the compression ring 150 is threadedly engaged with the inner wall of the large diameter portion of the step hole, so that the ultrasonic transducer 140 is fixed in the step hole. Inside. The signal lead of the ultrasonic transducer 140 passes through the hole of the compression ring 150 .
  • Lead holes are provided on the partition 410 close to each ultrasonic transducer 140 .
  • the signal leads of the two ultrasonic transducers 140 pass through the corresponding lead holes and are connected to the signal processing module 200 .
  • the ultrasonic water meter of this embodiment is particularly suitable for installation on small micro-pipes for flow measurement, such as water flow measurement for direct drinking water dispensers.
  • the inner diameter of the measurement flow channel is recorded as d, preferably d ⁇ 15mm, that is, the sensor of this embodiment is particularly suitable for pipes with a size of DN15 or below, such as DN8 pipes.
  • the present invention solves the problem in the prior art that ultrasonic water meters cannot be used to measure the flow of small-diameter pipelines.
  • the transducer adopts a through-beam arrangement to realize the flow of small- and micro-diameter pipelines. Measurement, high measurement accuracy, and the entire water meter has a compact structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种小流量超声波水表,包括流量传感器(100)、信号处理模块(200)和显示模块(300),流量传感器(100)包括流量管(110)和两个超声波换能器(140),在流量管(110)上对射安装有两个超声波换能器(140),两个超声波换能器(140)的信号输出端连接信号处理模块(200)的信号输入端,信号处理模块(200)的信号输出端连接显示模块(300)的信号输入端,两个超声波换能器(140)之间的流量管(110)为检测段(112),检测段(112)为直管,检测段(112)的两端分别密封安装有一个超声波换能器(140),两个超声波换能器(140)的连线沿着检测段(112)的管心线方向;检测段(112)的两端分别连接有进液段(111)和出液段(113)。超声波换能器(140)采用对射型布置方式实现小微管径管道的流量测量,测量精度高,整个水表结构紧凑。

Description

一种小流量超声波水表 技术领域
本发明属于流量检测技术领域,涉及超声流量检测装置,具体涉及一种小流量超声波水表。
背景技术
基于超声波在流体内的传播特性以及超声波换能器器件的经济性和结构简洁性等优点,超声波流量计在流体测量领域广泛使用,特别是水管流量测量。超声波流量计的工作原理为利用超声波在流动的流体中传播时,顺着流向传播与逆着流向传播存在速度差,同样的传播距离下,顺向传播与逆向传播的时间不同,接收到的超声波频率也不同,根据这些信息可以计算流体流速,从而换算为流量。根据超声波流量计的工作原理可知,为保证测量结果的准确性,超声波束必须达到一定的传播距离,才能使传播时差或频率改变累积到适当的量。对于大口径测量流道,对射型超声波传感器的两个超声波换能器可以分别安装在测量流道中心线两侧,并在流动方向上相互错开,就能够保证传播距离符合测量要求。但是对于小口径测量流道,采用这种布设超声波换能器的方式无法满足达到有效传播距离的要求。在一些设计中,两个超声波换能器采用反射型布设方式,两者之间的超声波束传播路径为“V”型或“W”型。但是每次反射都将使超声波束能量降低,增大超声波探测接收困难。另一方面,对于小口径测量流道,采用反射型布设时,超声波在流体中传播速度或频率变化累积量仍然不够显著。此外,超声波流量计还集成了数据处理模块和显示器模块,因此传感器的结构设计影响整个流量计的结构布局。常规的超声波流量计不满足小口径管道的流量检测需要。
发明内容
有鉴于此,本发明提供一种小流量超声波水表。
其技术方案如下:
一种小流量超声波水表,包括流量传感器、信号处理模块和显示模块,所述流量传感器包括流量管和两个超声波换能器,在所述流量管上对射安装有两个所述超声波换能器,两个所述超声波换能器的信号输出端连接所述信号处理模块的信号输入端,所述信号处理模块的信号输出端连接所述显示模块的信号输入端,其关键在于,
两个所述超声波换能器之间的所述流量管为检测段,该检测段为直管,该检测段的两端分别密封安装有一个所述超声波换能器,两个所述超声波换能器的连线沿着所述检测段的管心线方向;
所述检测段的两端分别连接有进液段和出液段。
作为优选技术方案,上述超声波水表还包括壳体,所述壳体内设置有所述流量传感器;
所述检测段的两端分别连接所述进液段的出口端和所述出液段的进口端,所述进液段的进口端设置有进液接头,所述出液段的出口端设置有出液接头;
所述进液接头和出液接头分别穿出所述壳体外。
作为优选技术方案,上述壳体内固定设置有隔板,该隔板将所述壳体内腔分隔为传感器腔和电子腔;
所述传感器腔内设置有所述流量传感器,所述电子腔内设置有所述信号处理模块和显示模块;
所述隔板上贯穿有两个电池孔,两个电池孔分别位于所述检测段两侧,每个所述电池孔正对的所述传感器腔和电子腔局部区域连通以形成电池腔。
作为优选技术方案,上述检测段与进液段和出液段的连接处外壁之间分 别连接有加强板;
所述隔板上对应每块所述加强板分别成型有安装柱,所述安装柱向相应的所述加强板伸出,所述加强板与所述安装柱之间通过螺钉连接,以将所述流量传感器固定。
作为优选技术方案,上述进液段、检测段和出液段的内孔截面均为圆形,三者的内孔连接以形成连续的弯曲的测量流道;
所述超声波换能器位于所述测量流道以外。
作为优选技术方案,上述出液段与所述进液段分居于所述检测段两侧,二者结构一致;
所述进液段的内孔包括第一段和第二段,所述第二段连接在所述第一段和所述检测段的内孔之间;
所述第二段的内孔出液口外侧圆弧与所述检测段相应端面相切,所述检测段的内孔与所述第二段的孔心线垂直;
所述检测段的内孔与所述第一段的孔心线夹角记为θ,0°<θ<90°,所述第一段与所述第二段之间平滑过渡连接,并且所述第一段与所述检测段分居于所述第二段管心线两侧。
作为优选技术方案,上述进液接头和出液接头的管心线在同一直线上,该直线与所述检测段的夹角为45°。
作为优选技术方案,上述测量流道的直径记为d,d≤15mm。
作为优选技术方案,上述检测段的两端分别连接有筒状的换能器安装座,所述换能器安装座与所述检测段共管心线设置,每个所述换能器安装座内设置有一个所述超声波换能器,所述超声波换能器的探头端面正对所述检测段的内孔。
作为优选技术方案,上述换能器安装座的内孔为台阶孔,所述台阶孔的 小径端朝向所述检测段并与其内孔连通,所述台阶孔的内径不小于所述检测段的内孔孔径;
所述超声波换能器的壳体与所述台阶孔形状相适应,所述超声波换能器的壳体与所述台阶孔的台阶面之间夹设有密封圈;
所述超声波换能器的外端设置有抵紧环,该抵紧环与所述台阶孔的大径部内壁螺纹配合,以使所述超声波换能器固定在所述台阶孔内;
所述超声波换能器的信号引线从所述抵紧环的孔内穿出。
与现有技术相比,本发明的有益效果:解决了现有技术中超声波水表不能用于小管径管道流量测量的使用需求的难题,换能器采用对射型布置方式实现小微管径管道的流量测量,测量精度高,整个水表结构紧凑。
附图说明
图1为本发明的主视图;
图2为图1中A-A剖视图;
图3为图1的俯视图;
图4为图3中B-B剖视图
图5为流量传感器的结构示意图;
图6为图5中C-C剖视图;
图7为图5中D-D剖视图;
图8为图5的仰视图;
图9为图8中E-E剖视图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
如图1~4所示,一种小流量超声波水表,包括壳体400,所述壳体400内固定设置有隔板410,该隔板410将所述壳体400内腔分隔为传感器腔420 和电子腔430。所述传感器腔420内设置有流量传感器100,所述电子腔430内设置有信号处理模块200和显示模块300。
所述流量传感器100包括流量管110和两个超声波换能器140,两个所述超声波换能器140对射安装在所述流量管110上,两个所述超声波换能器140的信号输出端连接所述信号处理模块200的信号输入端,所述信号处理模块200的信号输出端连接所述显示模块300的信号输入端,两个所述超声波换能器140之间的所述流量管110为检测段112,该检测段112为直管,该检测段112的两端分别密封安装有一个所述超声波换能器140,两个超声波换能器140的连线沿着所述检测段112的管心线方向。
所述隔板410上贯穿有两个电池孔411,两个电池孔411分别位于所述检测段112两侧,每个所述电池孔411正对的所述传感器腔420和电子腔430局部区域连通以形成电池腔,用于安装电池。
所述检测段112的两端分别连接有进液段111和出液段113,所述检测段112的两端分别连接所述进液段111的出口端和所述出液段113的进口端,所述进液段111的进口端设置有进液接头114,所述出液段113的出口端设置有出液接头115。所述进液接头114和出液接头115分别穿出所述壳体400外。出液接头115和进液接头114均加工有端部外螺纹。
如图5~9所示,超声波传感器的流量管110由顺次连接的进液段111、检测段112和出液段113组成,形成弯曲的流量管110。为保证液体流动阻力最小,所述进液段111、检测段112和出液段113的内孔截面均为圆形,三者的内孔连接以形成连续的弯曲的测量流道。所述进液段111、检测段112和出液段113的内孔孔心线位于同一平面内。超声波换能器140位于所述测量流道以外。
结合图7和图9可以看到,所述进液段111的内孔出液口外侧圆弧以及 所述出液段113的内孔进液口外侧圆弧分别与所述检测段112相应端面相切。需要说明的是,前述的外侧圆弧是指进液段111的内孔出液口或出液段113的内孔进液口远离检测段112中心的一侧圆弧。由于必须为超声波换能器140的安装预留空间,所以进液段111与检测段112的连接处必须为弯曲管道,但同时进液段111的内孔出液口必须尽可能靠近检测段112的内孔端部,故将进液段111的内孔出液口设计为与检测段112的内孔端面相切,有利于流体填充满检测段112的内孔端部。
结合图5、6、8和9,所述出液段113与所述进液段111分居于所述检测段112两侧,二者结构一致。所述进液段111的内孔包括第一段111a和第二段111b,所述第二段111b连接在所述第一段111a和所述检测段112的内孔之间。所述检测段112的内孔与所述第二段111b的孔心线垂直,所述第二段111b的内孔出液口外侧圆弧与所述检测段112相应端面相切,所述检测段112的内孔与所述第一段111a的孔心线夹角记为θ,0°<θ<90°,所述第一段111a与所述第二段111b之间平滑过渡连接,并且所述第一段111a与所述检测段112分居于所述第二段111b管心线两侧。
这样设计的目的在于,整个测量流道的转弯部越少、弯曲度越小,则流体流过整个流量管110的阻力和用时越小。因此,优选θ=45°,一方面,流体从进入流量管110到流出流量管的过程中流动方向变化相对较小,另一方面也使得整个流量管110结构较紧凑。
为方便与外部管道连接,进液段111的进口端与出液段113的出口端分别向远离检测段112中心的方向延伸。
本实施例中,所述进液接头114和出液接头115的管心线在同一直线上,该直线与所述检测段112孔心线的夹角为45°。
如图5和8所示,所述检测段112与进液段111和出液段113的连接处外 壁之间分别连接有加强板130,加强板130沿着测量流道的中心线所在平面延伸。所述隔板410上对应每块所述加强板130分别成型有安装柱412,所述安装柱412向相应的所述加强板130伸出,所述加强板130与所述安装柱412之间通过螺钉连接,以将所述流量传感器100固定。
为使整个水表结构紧凑,其中一个电池腔对应于传感器腔420的部分位于检测段112与进液段111之间的区域,另一个电池腔对应于传感器腔420的部分位于检测段112与出液段113之间的区域。
超声波换能器140的安装方式如下:如图7和9所示,检测段112的两端分别连接有筒状的换能器安装座120,所述换能器安装座120与所述检测段112共管心线设置,每个所述换能器安装座120内设置有一个所述超声波换能器140,所述超声波换能器140的探头端面正对所述检测段112的内孔。
所述换能器安装座120的内孔为台阶孔,所述台阶孔的小径端朝向所述检测段112并与其内孔连通,所述台阶孔的内径不小于所述检测段112的内孔孔径。台阶孔的小径部与检测段112的内孔连接处形成限位台阶,使得超声波换能器140被定位。所述超声波换能器140的壳体与所述台阶孔形状相适应,所述超声波换能器140的壳体与所述台阶孔的台阶面之间夹设有密封圈160,实现密封安装。
所述超声波换能器140的外端设置有抵紧环150,该抵紧环150与所述台阶孔的大径部内壁螺纹配合,以使所述超声波换能器140固定在所述台阶孔内。所述超声波换能器140的信号引线从所述抵紧环150的孔内穿出。
所述隔板410上靠近每个超声波换能器140的部位分别开设有引线孔,两个超声波换能器140的信号引线分别从相应的引线孔穿过,连接到信号处理模块200。
本实施例的超声水表尤其适用于安装在小微管道上进行流量测量,例如 直饮水饮水机的出水流量测量。将测量流道的内径记为d,优选d≤15mm,即本实施例的传感器特别适用于DN15或以下尺寸管道,如DN8管。
本发明通过传感器结构的优化创新设计,解决了现有技术中超声波水表不能用于小管径管道流量测量的使用需求的难题,换能器采用对射型布置方式实现小微管径管道的流量测量,测量精度高,整个水表结构紧凑。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (10)

  1. 一种小流量超声波水表,包括流量传感器(100)、信号处理模块(200)和显示模块(300),所述流量传感器(100)包括流量管(110)和两个超声波换能器(140),在所述流量管(110)上对射安装有两个所述超声波换能器(140),两个所述超声波换能器(140)的信号输出端连接所述信号处理模块(200)的信号输入端,所述信号处理模块(200)的信号输出端连接所述显示模块(300)的信号输入端,其特征在于:
    两个所述超声波换能器(140)之间的所述流量管(110)为检测段(112),该检测段(112)为直管,该检测段(112)的两端分别密封安装有一个所述超声波换能器(140),两个所述超声波换能器(140)的连线沿着所述检测段(112)的管心线方向;
    所述检测段(112)的两端分别连接有进液段(111)和出液段(113)。
  2. 根据权利要求1所述的一种小流量超声波水表,其特征在于:还包括壳体(400),所述壳体(400)内设置有所述流量传感器(100);
    所述检测段(112)的两端分别连接所述进液段(111)的出口端和所述出液段(113)的进口端,所述进液段(111)的进口端设置有进液接头(114),所述出液段(113)的出口端设置有出液接头(115);
    所述进液接头(114)和出液接头(115)分别穿出所述壳体(400)外。
  3. 根据权利要求2所述的一种小流量超声波水表,其特征在于:所述壳体(400)内固定设置有隔板(410),该隔板(410)将所述壳体(400)内腔分隔为传感器腔(420)和电子腔(430);
    所述传感器腔(420)内设置有所述流量传感器(100),所述电子腔(430)内设置有所述信号处理模块(200)和显示模块(300);
    所述隔板(410)上贯穿有两个电池孔(411),两个电池孔(411)分别位于所述检测段(112)两侧,每个所述电池孔(411)正对的所述传感器腔 (420)和电子腔(430)局部区域连通以形成电池腔。
  4. 根据权利要求3所述的一种小流量超声波水表,其特征在于:所述检测段(112)与进液段(111)和出液段(113)的连接处外壁之间分别连接有加强板(130);
    所述隔板(410)上对应每块所述加强板(130)分别成型有安装柱(412),所述安装柱(412)向相应的所述加强板(130)伸出,所述加强板(130)与所述安装柱(412)之间通过螺钉连接,以将所述流量传感器(100)固定。
  5. 根据权利要求1~4任意一项所述的一种小流量超声波水表,其特征在于:所述进液段(111)、检测段(112)和出液段(113)的内孔截面均为圆形,三者的内孔连接以形成连续的弯曲的测量流道;
    所述超声波换能器(140)位于所述测量流道以外。
  6. 根据权利要求5所述的一种小流量超声波水表,其特征在于:所述出液段(113)与所述进液段(111)分居于所述检测段(112)两侧,二者结构一致;
    所述进液段(111)的内孔包括第一段(111a)和第二段(111b),所述第二段(111b)连接在所述第一段(111a)和所述检测段(112)的内孔之间;
    所述第二段(111b)的内孔出液口外侧圆弧与所述检测段(112)相应端面相切,所述检测段(112)的内孔与所述第二段(111b)的孔心线垂直;
    所述检测段(112)的内孔与所述第一段(111a)的孔心线夹角记为θ,0°<θ<90°,所述第一段(111a)与所述第二段(111b)之间平滑过渡连接,并且所述第一段(111a)与所述检测段(112)分居于所述第二段(111b)管心线两侧。
  7. 根据权利要求6所述的一种小流量超声波水表,其特征在于:所述进液接头(114)和出液接头(115)的管心线在同一直线上,该直线与所述检 测段(112)的夹角为45°。
  8. 根据权利要求5所述的一种小流量超声波水表,其特征在于:所述测量流道的直径记为d,d≤15mm。
  9. 根据权利要求1所述的一种小流量超声波水表,其特征在于:所述检测段(112)的两端分别连接有筒状的换能器安装座(120),所述换能器安装座(120)与所述检测段(112)共管心线设置,每个所述换能器安装座(120)内设置有一个所述超声波换能器(140),所述超声波换能器(140)的探头端面正对所述检测段(112)的内孔。
  10. 根据权利要求9所述的一种小流量超声波水表,其特征在于:所述换能器安装座(120)的内孔为台阶孔,所述台阶孔的小径端朝向所述检测段(112)并与其内孔连通,所述台阶孔的内径不小于所述检测段(112)的内孔孔径;
    所述超声波换能器(140)的壳体与所述台阶孔形状相适应,所述超声波换能器(140)的壳体与所述台阶孔的台阶面之间夹设有密封圈(160);
    所述超声波换能器(140)的外端设置有抵紧环(150),该抵紧环(150)与所述台阶孔的大径部内壁螺纹配合,以使所述超声波换能器(140)固定在所述台阶孔内;
    所述超声波换能器(140)的信号引线从所述抵紧环(150)的孔内穿出。
PCT/CN2022/102239 2022-04-14 2022-06-29 一种小流量超声波水表 WO2023197457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210393520.8 2022-04-14
CN202210393520.8A CN114877960A (zh) 2022-04-14 2022-04-14 一种小流量超声波水表

Publications (1)

Publication Number Publication Date
WO2023197457A1 true WO2023197457A1 (zh) 2023-10-19

Family

ID=82669614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102239 WO2023197457A1 (zh) 2022-04-14 2022-06-29 一种小流量超声波水表

Country Status (2)

Country Link
CN (1) CN114877960A (zh)
WO (1) WO2023197457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117288282A (zh) * 2023-10-31 2023-12-26 青岛乾程科技股份有限公司 一种超声波气表模组及超声波流量计

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080271543A1 (en) * 2004-12-21 2008-11-06 Hans Hecht Ultrasonic Flow Rate Meter Having a Pressure Sensor
CN204575153U (zh) * 2015-04-29 2015-08-19 韩小明 一种高精度超声波水表
CN105547387A (zh) * 2016-01-20 2016-05-04 重庆市伟岸测器制造股份有限公司 直通型流量传感器
CN206440317U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计
CN208818268U (zh) * 2018-10-15 2019-05-03 重庆智慧水务有限公司 一种超声波水表的测量管段
CN211954290U (zh) * 2020-03-19 2020-11-17 重庆市伟岸测器制造股份有限公司 带阀门的超声水表流量管
CN112097843A (zh) * 2020-09-17 2020-12-18 浙江大学 一种基于超声换能器的高灵敏度超声流量计及其方法
CN216246570U (zh) * 2021-10-12 2022-04-08 重庆智慧水务有限公司 超声波计量用流道芯体、流道结构与超声波水表

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080271543A1 (en) * 2004-12-21 2008-11-06 Hans Hecht Ultrasonic Flow Rate Meter Having a Pressure Sensor
CN204575153U (zh) * 2015-04-29 2015-08-19 韩小明 一种高精度超声波水表
CN105547387A (zh) * 2016-01-20 2016-05-04 重庆市伟岸测器制造股份有限公司 直通型流量传感器
CN206440317U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计
CN208818268U (zh) * 2018-10-15 2019-05-03 重庆智慧水务有限公司 一种超声波水表的测量管段
CN211954290U (zh) * 2020-03-19 2020-11-17 重庆市伟岸测器制造股份有限公司 带阀门的超声水表流量管
CN112097843A (zh) * 2020-09-17 2020-12-18 浙江大学 一种基于超声换能器的高灵敏度超声流量计及其方法
CN216246570U (zh) * 2021-10-12 2022-04-08 重庆智慧水务有限公司 超声波计量用流道芯体、流道结构与超声波水表

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117288282A (zh) * 2023-10-31 2023-12-26 青岛乾程科技股份有限公司 一种超声波气表模组及超声波流量计

Also Published As

Publication number Publication date
CN114877960A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
US8590397B2 (en) Ultrasonic flow meter including a transducer having conical face
WO2010070891A1 (ja) 超音波式流量計
WO2012063437A1 (ja) 超音波流量計測装置
WO2023197457A1 (zh) 一种小流量超声波水表
CN106871981A (zh) 一种用于超声波燃气、水、热表或流量计的流道结构
EP2037231A1 (en) Ultrasonic flow measurement device
WO2018068764A1 (zh) 一种大口径超声波流量计
CN117309074A (zh) 一种小口径塑壳同轴非接触式测量水表
US6820500B2 (en) Small pipe bore ultrasonic flowmeter detector
CN206430775U (zh) 用于超声波燃气、水、热表或流量计的流道结构
CN202304909U (zh) 一种可清洗直通式w反射型超声波管段结构
CN211717528U (zh) 一种内置式斜反射多声道超声波流量测量模块及流量计
CN108871478A (zh) 一种超声波流量计
CN111272240A (zh) 一种内置式斜反射多声道超声波流量测量模块及流量计
CN201508256U (zh) 可清洗型超声波热量表流量测量管
RU2331851C2 (ru) Ультразвуковой расходомер
CN217542018U (zh) 小口径流道超声波流量传感器
CN107490406B (zh) 一种超声涡街流量计
CN220932135U (zh) 一种适配大口径超声波流量计声波信号增强的管状结构
CN205562077U (zh) 一种超声波热量表管道及超声波热量表
CN216348891U (zh) 一种大口径物联网远传水表
JP2020529599A (ja) 流量計および測定チャネル
CN216385833U (zh) 一种dn15口径换能器立柱固定对射式超声波水表
EP0744596A1 (en) Ultrasonic flow meter
CN215639608U (zh) 一种超声流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937095

Country of ref document: EP

Kind code of ref document: A1