WO2023197412A1 - 一种基于冗余电极的电化学传感器及其衰减补偿方法 - Google Patents

一种基于冗余电极的电化学传感器及其衰减补偿方法 Download PDF

Info

Publication number
WO2023197412A1
WO2023197412A1 PCT/CN2022/095146 CN2022095146W WO2023197412A1 WO 2023197412 A1 WO2023197412 A1 WO 2023197412A1 CN 2022095146 W CN2022095146 W CN 2022095146W WO 2023197412 A1 WO2023197412 A1 WO 2023197412A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sensor
redundant
original
electrode sensor
Prior art date
Application number
PCT/CN2022/095146
Other languages
English (en)
French (fr)
Inventor
张绍达
郑星语
曹洪阳
Original Assignee
深圳可孚生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳可孚生物科技有限公司 filed Critical 深圳可孚生物科技有限公司
Publication of WO2023197412A1 publication Critical patent/WO2023197412A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration

Definitions

  • the present invention relates to the field of electrochemical sensors, and specifically to an electrochemical sensor based on redundant electrodes and an attenuation compensation method thereof.
  • Electrochemical sensors generally use three-electrode technology, adding a reference electrode to remove the influence of current changes on the electrochemical reaction bias. Electrochemical sensors are used in many fields, especially in the medical field, which have high requirements for sensor sensitivity and output accuracy. Otherwise, medical accidents may occur or even endanger the lives of patients.
  • the traditional approach is to use empirical compensation values, or to measure the attenuation curve and fit it into a function formula, and then compensate for the attenuated part in actual use, so as to obtain an output result that is as close to the true value as possible. Doing so will cause some problems, such as: the empirical compensation value is relatively fixed and cannot reflect the subtle differences in signal output of each sensor; the measured attenuation curve itself is nonlinear, and the empirical value-fitting-compensation regression process Errors are continuously introduced during the process, resulting in a certain error between the final result and the actual result.
  • the present invention provides an electrochemical sensor based on redundant electrodes and an attenuation compensation method thereof.
  • An electrochemical sensor based on redundant electrodes including an interface base and a probe head.
  • the interface base is provided with three electrical connection terminals, including a first terminal, a second terminal and a third terminal;
  • the probe head is provided with an original electrode.
  • sensor and a redundant electrode sensor the redundant electrode sensor is located at the outer end of the probe head;
  • the original electrode sensor and the redundant electrode sensor are both equipped with a counter electrode, a working electrode and a reference electrode, and the original electrode
  • the sensor and the redundant electrode sensor share a counter electrode; the first terminal is connected to the counter electrode, the second terminal is connected to the working electrode, and the third terminal is connected to the reference electrode.
  • the counter electrode is located on the back surface of the probe head.
  • the counter electrode extends from the original electrode sensor to the redundant electrode sensor.
  • the working electrode includes the first working electrode of the original electrode sensor and the second working electrode of the redundant electrode sensor;
  • the reference electrode includes the original electrode sensor. the first reference electrode and the second reference electrode of the redundant electrode sensor.
  • the present invention also provides an electrochemical sensor attenuation compensation method based on redundant electrodes, which includes the following steps:
  • step S1 the redundant electrode sensors are tested and fitted to obtain the specific forms and parameters of F1(C), F2(T), and F3(t), including:
  • Concentration function formula F1(C) k*C+b, where k and b are constants;
  • Temperature function formula F2(T) a 2 *T 2 +a 1 *T+a 0 , where a 0 , a 1 , and a 2 are constants;
  • the time function formula F3(t) log(a 4 )/log(t), where a 4 is a constant, is obtained by fitting after measurement.
  • step S4 includes:
  • S402. Determine the glucose concentration of the solution where the original electrode sensor is located.
  • the present invention makes the original electrode sensor and the redundant electrode sensor on the same substrate, and both share a counter electrode, ensuring a high degree of similarity between the redundant electrode and the original electrode; the present invention first obtains the characteristics of the redundant electrode sensor, including mastering its After time decay performance, the known characteristics of the redundant electrode sensor are then used to predict the measurement results of the unknown original electrode sensor, and a more accurate result can be calculated without additional attenuation compensation, abandoning the traditional empirical compensation method and The attenuation curve fitting method avoids introducing errors and the results are more accurate.
  • Figure 1 is a schematic diagram of the front structure of the present invention
  • Figure 2 is a schematic diagram of the back structure of the present invention.
  • Figure 3 is a flow chart of the method of the present invention.
  • Probe head 21. Counter electrode; 221. First working electrode; 222. Second working electrode; 231. First reference electrode; 232. Second reference electrode.
  • an electrochemical sensor based on redundant electrodes includes an interface base 1 and a probe head 2.
  • the interface base 1 is provided with three electrical connection terminals for powering the sensor and outputting signals. Specifically It includes a first terminal 11, a second terminal 12 and a third terminal 13.
  • the second terminal 12 is used for power supply, and the first terminal 11 and the third terminal 13 are used for outputting signals.
  • the probe head 2 is distributed with a counter electrode 21, a working electrode and a reference electrode for electrochemical reactions.
  • the first terminal 11 is connected to the counter electrode 21, the second terminal 12 is connected to the working electrode, and the third terminal 13 is connected to the reference electrode; the connection is specific
  • the method is to connect the terminals to the electrodes through printed lines.
  • the probe head 2 of the present invention is provided with an original electrode sensor and a redundant electrode sensor.
  • the redundant electrode sensor is located at the outer end of the probe head 2, which facilitates the removal of the redundant electrode sensor at the outer end during operation.
  • Both the original electrode sensor and the redundant electrode sensor are provided with a counter electrode 21, a working electrode and a reference electrode, and the original electrode sensor and the redundant electrode sensor share a counter electrode 21;
  • the working electrode includes the first working electrode 221 of the original electrode sensor and The second working electrode 222 of the redundant electrode sensor;
  • the reference electrode includes the first reference electrode 231 of the original electrode sensor and the second reference electrode 232 of the redundant electrode sensor.
  • the first terminal 11 is connected to the common counter electrode 21
  • the second terminal 12 is connected to the first working electrode 221 and the second working electrode 222
  • the third terminal 13 is connected to the first reference electrode 231 and the second reference electrode 232.
  • the counter electrode 21, the first working electrode 221 and the first reference electrode 231 constitute the original electrode sensor in the upper half of the probe part 2.
  • the counter electrode 21, the second working electrode 222 and the second reference electrode 232 The redundant electrode sensor that forms the lower half of the probe head 2.
  • the counter electrode 21 is located on the back side of the probe head 2 , and the two sets of working electrodes and reference electrodes are located on the front side of the probe head 2 .
  • the length of the counter electrode 21 is lengthened, and the counter electrode 21 extends from the original electrode sensor to the redundant electrode sensor. Since the original electrode sensor and the redundant electrode sensor are made on the same substrate, their characteristics are very similar.
  • the present invention also provides an electrochemical sensor attenuation compensation method based on redundant electrodes, using the electrochemical sensor of the above scheme, including the following steps:
  • Concentration function formula F1(C) k*C+b, where k and b are constants;
  • Temperature function formula F2(T) a 2 *T 2 +a 1 *T+a 0 , where a 0 , a 1 , and a 2 are constants;
  • the time function formula F3(t) log(a 4 )/log(t), where a 4 is a constant, is obtained by fitting after measurement.
  • step S4 includes:
  • S402. Determine the glucose concentration of the solution where the original electrode sensor is located.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于冗余电极的电化学传感器及衰减补偿方法,包括接口底座(1)和探头部(2),接口底座(1)设有三个电气连接端子,探头部(2)设有原电极传感器和冗余电极传感器,冗余电极传感器位于探头部(2)的外端;原电极传感器和冗余电极传感器均设有对电极(21)、工作电极和参比电极,且原电极传感器和冗余电极传感器共用一个对电极(21);第一端子(11)连接对电极(21),第二端子(12)连接工作电极,第三端子(13)连接参比电极。实现原电极传感器和冗余电极传感器特性相似度非常高,利用已知的冗余电极传感器的特性来预测未知的原电极传感器的测量结果,计算得出较精准的修正值,无需额外进行衰减补偿,摒弃了传统的经验性补偿方法和衰减曲线拟合方法,避免引入误差。

Description

一种基于冗余电极的电化学传感器及其衰减补偿方法 技术领域
本发明涉及电化学传感器领域,具体的说,是涉及一种基于冗余电极的电化学传感器及其衰减补偿方法。
背景技术
现有电化学传感器一般使用三电极技术,通过添加参比电极以去除电流变化对电化学反应偏压的影响。电化学传感器在诸多领域都有使用,特别是医疗领域,对传感器的灵敏度、输出精度都有较高要求,不然可能造成医疗事故甚至危害患者生命。
应用在医疗领域中,以人体葡萄糖浓度测量为例,虽然主要控制传感器灵敏度的酶在理论上不会伴随化学反应的过程而减少,但是实际应用中有效参与化学反应的酶在不断地减少,活性也会随着环境的变化而逐渐变低。
传统的做法是使用经验性的补偿值,或是通过实测衰减曲线并拟合成函数公式,再在实际使用中把衰减掉的部分补偿回去,从而得到尽量接近真实值的输出结果。这样做会带来一些问题,比如:经验补偿值比较固定,并不能反映出每个传感器在信号输出方面的细微差别;实测的衰减曲线本身为非线性,在经验值-拟合-补偿回归的过程中不断地引入误差,导致最终结果跟实际结果之间存在一定的误差。
以上问题,值得解决。
发明内容
为了克服现有的技术的不足,本发明提供一种基于冗余电极的电化学传感器及其衰减补偿方法。
本发明技术方案如下所述:
一种基于冗余电极的电化学传感器,包括接口底座和探头部,所述接口底座设有三个电气连接端子,包括第一端子、第二端子和第三端子;所述探头部设有原电极传感器和冗余电极传感器,所述冗余电极传感器位于探头部的外端;所述原电极传感器和所述冗余电极传感器均设有对电极、工作电极和参比电极,且所述原电极传感器和所述冗余电极传感器共用一个对电极;所述第一端子连接所述对电极,所述第二端子连接所述工作电极,所述第三端子连接所述参比电极。
根据上述方案的本发明,其特征在于,所述对电极位于所述探头部的背面。
根据上述方案的本发明,其特征在于,所述对电极从所述原电极传感器延伸至所述冗余电极传感器。
根据上述方案的本发明,其特征在于,所述工作电极包括所述原电极传感器的第一工作电极和所述冗余电极传感器的第二工作电极;所述参比电极包括所述原电极传感器的第一参比电极和所述冗余电极传感器的第二参比电极。
另一方面,本发明还提供一种基于冗余电极的电化学传感器衰减补偿方法,包括以下步骤:
S1、算出冗余电极传感器的电流响应公式;
S2、将冗余电极传感器切除,获得原电极传感器;
S3、用原电极传感器测某一时刻的电流信号It、溶液温度T、传感器的工作时间t;
S4、利用冗余电极传感器的特性预测原电极传感器的结果。
根据上述方案的本发明,其特征在于,步骤S1中所述冗余电极传感器的电流响应公式Ic=F1(C)*F2(T)*F3(t),其中C为溶液浓度,T为溶液温度,t为传感器的工作时间。
进一步的,在步骤S1中,对冗余电极传感器的测试并拟合得到F1(C)、F2(T)、F3(t)的具体形式和参数,包括:
浓度函数式F1(C)=k*C+b,其中k、b为常数;
温度函数式F2(T)=a 2*T 2+a 1*T+a 0,其中a 0、a 1、a 2为常数;
时间函数式F3(t)=log(a 4)/log(t),其中a 4为常数,由测量后拟合得到。
根据上述方案的本发明,其特征在于,步骤S4包括:
S401、将步骤S3测得的各个参数代入公式It=F1(C)*F2(T)*F3(t)
将已知量It、F2(T)和F3(t)代入公式It=F1(C)*F2(T)*F3(t);
S402、反推出原电极传感器所处溶液的葡萄糖浓度
反推出F1(C),即可获得原电极传感器所处的溶液浓度C。
根据上述方案的本发明,其有益效果在于:
本发明在同一基板上面制作原电极传感器和冗余电极传感器,两者共用一个对电极,确保了冗余电极与原电极的高度相似性;本发明先获取冗余电极传感器的特性,包括掌握其时间衰减性能后,再利用已知的冗余电极传感器的特性来预测未知的原电极传感器的测量结果,计算得出较精准的结果,无需额外进行衰减补偿,摒弃了传统的经验性补偿方法和衰减曲线拟合方法,避免引入误差,结果更精准。
附图说明
图1为本发明的正面结构示意图;
图2为本发明的背面结构示意图;
图3为本发明的方法流程图。
在图中,1、接口底座;11、第一端子;12、第二端子;13、第三端子;
2、探头部;21、对电极;221、第一工作电极;222、第二工作电极;231、第一参比电极;232、第二参比电极。
具体实施方式
为了更好地理解本发明的目的、技术方案以及技术效果,以下结合附图和实施例对本发明进行进一步的讲解说明。同时声明,以下所描述的实施例仅用于解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是为了便于描述,不能理解为对本技术方案的限制。
如图1和图2所示,,一种基于冗余电极的电化学传感器,包括接口底座1和探头部2,接口底座1设有三个电气连接端子,用来给传感器供电和输出信号,具体包括第一端子11、第二端子12和第三端子13,例如第二端子12用于供电,第一端子11和第三端子13用于输出信号。探头部2分布有用于电化学反应的对电极21、工作电极和参比电极,第一端子11连接对电极21,第二端子12连接工作电极,第三端子13连接参比电极;该连接具体方式是通过印刷的线路将端子与电极连接。
本发明的探头部2设有原电极传感器和冗余电极传感器,冗余电极传感器位于探头部2的外端,方便操作过程中将外端的冗余电极传感器切除。
原电极传感器和冗余电极传感器均设有对电极21、工作电极和参比电极,且原电极传感器和冗余电极传感器共用一个对电极21;工作电极包括原电极传感器的第一工作电极221和冗余电极传感器的第二工作电极222;参比电极包括原电极传感器的第一参比电极231和冗余电极传感器的第二参比电极232。
电气连接上,第一端子11连接共用的对电极21,第二端子12连接第一工作电极221 和第二工作电极222,第三端子13连接第一参比电极231和第二参比电极232。
综上所述,对电极21、第一工作电极221和第一参比电极231组成了探头部2上半段的原电极传感器,对电极21、第二工作电极222和第二参比电极232组成了探头部2下半段的冗余电极传感器。
在本发明中,对电极21位于探头部2的背面,两组工作电极和参比电极位于探头部2的正面。相比于传统的电化学传感器,对电极21的长度加长,对电极21从原电极传感器延伸至冗余电极传感器。由于原电极传感器和冗余电极传感器是同一基板上面制作的,所以它们的特性相似度非常高。
如图3所示,本发明还提供了一种基于冗余电极的电化学传感器衰减补偿方法,使用上述方案的电化学传感器,包括以下步骤:
S1、算出冗余电极传感器的电流响应公式;
S2、将冗余电极传感器切除,获得原电极传感器;
S3、用原电极传感器测某一时刻的电流信号It、溶液温度T、传感器的工作时间t;
S4、利用冗余电极传感器的特性预测原电极传感器的结果。
在本实施例中,步骤S1中冗余电极传感器的电流响应公式Ic=F1(C)*F2(T)*F3(t),其中C为溶液浓度,T为溶液温度,t为传感器的工作时间;具体地,通过对冗余电极传感器的测试并拟合得到F1(C)、F2(T)、F3(t)的具体形式和参数,包括:
浓度函数式F1(C)=k*C+b,其中k、b为常数;
温度函数式F2(T)=a 2*T 2+a 1*T+a 0,其中a 0、a 1、a 2为常数;
时间函数式F3(t)=log(a 4)/log(t),其中a 4为常数,由测量后拟合得到。
在本实施例中,步骤S4包括:
S401、将步骤S3测得的各个参数代入公式It=F1(C)*F2(T)*F3(t)
因原电极与冗余电极的高度相似性,故可以利用冗余电极传感器的电流响应公式表示原 电极传感器的电流公式,故得出It=F1(C)*F2(T)*F3(t),并将已知量It、F2(T)和F3(t)代入公式It=F1(C)*F2(T)*F3(t);
S402、反推出原电极传感器所处溶液的葡萄糖浓度
反推出F1(C),即可获得原电极传感器所处的溶液浓度C。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种基于冗余电极的电化学传感器,其特征在于,包括接口底座和探头部,所述接口底座设有三个电气连接端子,包括第一端子、第二端子和第三端子;
    所述探头部设有原电极传感器和冗余电极传感器,所述冗余电极传感器位于探头部的外端;所述原电极传感器和所述冗余电极传感器均设有对电极、工作电极和参比电极,且所述原电极传感器和所述冗余电极传感器共用一个对电极;
    所述第一端子连接所述对电极,所述第二端子连接所述工作电极,所述第三端子连接所述参比电极。
  2. 根据权利要求1所述的基于冗余电极的电化学传感器,其特征在于,所述对电极位于所述探头部的背面。
  3. 根据权利要求1所述的基于冗余电极的电化学传感器,其特征在于,所述对电极从所述原电极传感器延伸至所述冗余电极传感器。
  4. 根据权利要求1所述的基于冗余电极的电化学传感器,其特征在于,所述工作电极包括所述原电极传感器的第一工作电极和所述冗余电极传感器的第二工作电极;所述参比电极包括所述原电极传感器的第一参比电极和所述冗余电极传感器的第二参比电极。
  5. 一种基于冗余电极的电化学传感器衰减补偿方法,包括以下步骤:
    S1、算出冗余电极传感器的电流响应公式;
    S2、将冗余电极传感器切除,获得原电极传感器;
    S3、用原电极传感器测某一时刻的电流信号It、溶液温度T、传感器的工作时间t;
    S4、利用冗余电极传感器的特性预测原电极传感器的结果。
  6. 根据权利要求5所述的基于冗余电极的电化学传感器衰减补偿方法,其特征在于,步骤S1中所述冗余电极传感器的电流响应公式Ic=F1(C)*F2(T)*F3(t),其中C为溶液浓度,T为溶液温度,t为传感器的工作时间。
  7. 根据权利要求6所述的基于冗余电极的电化学传感器衰减补偿方法,其特征在于, 步骤S1中,对冗余电极传感器的测试并拟合得到F1(C)、F2(T)、F3(t)的具体形式和参数,包括:
    浓度函数式F1(C)=k*C+b,其中k、b为常数;
    温度函数式F2(T)=a 2*T 2+a 1*T+a 0,其中a 0、a 1、a 2为常数;
    时间函数式F3(t)=log(a 4)/log(t),其中a 4为常数,由测量后拟合得到。
  8. 根据权利要求5所述的基于冗余电极的电化学传感器衰减补偿方法,其特征在于,步骤S4包括:
    S401、将步骤S3测得的各个参数代入公式It=F1(C)*F2(T)*F3(t)
    将已知量It、F2(T)和F3(t)代入公式It=F1(C)*F2(T)*F3(t);
    S402、反推出原电极传感器所处溶液的葡萄糖浓度
    反推出F1(C),即可获得原电极传感器所处溶液的葡萄糖浓度C。
PCT/CN2022/095146 2022-04-14 2022-05-26 一种基于冗余电极的电化学传感器及其衰减补偿方法 WO2023197412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210387572.4A CN115372428A (zh) 2022-04-14 2022-04-14 一种基于冗余电极的电化学传感器及其衰减补偿方法
CN202210387572.4 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023197412A1 true WO2023197412A1 (zh) 2023-10-19

Family

ID=84060772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095146 WO2023197412A1 (zh) 2022-04-14 2022-05-26 一种基于冗余电极的电化学传感器及其衰减补偿方法

Country Status (3)

Country Link
US (1) US20230333052A1 (zh)
CN (1) CN115372428A (zh)
WO (1) WO2023197412A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005508A1 (en) * 2012-06-29 2014-01-02 Dexcom, Inc. Devices, systems, and methods to compensate for effects of temperature on implantable sensors
CN104535627A (zh) * 2014-12-17 2015-04-22 浙江大学 葡萄糖传感系统
CN110133089A (zh) * 2019-05-31 2019-08-16 广州钰芯传感科技有限公司 一种电化学传感器自动内校准系统及校准方法
CN111239229A (zh) * 2020-02-24 2020-06-05 江苏鱼跃医疗设备股份有限公司 一种双通道电化学生物传感器及测量血红素浓度的方法
CN111432723A (zh) * 2017-12-13 2020-07-17 美敦力泌力美公司 伪正交冗余葡萄糖传感器、系统和方法
CN111479504A (zh) * 2017-12-13 2020-07-31 美敦力泌力美公司 用于连续葡萄糖监测的方法和系统
CN113124746A (zh) * 2021-04-20 2021-07-16 哈尔滨工业大学(威海) 基于冗余传感器的穿戴式柔性电容型传感器及自标定方法
CN113340969A (zh) * 2019-06-24 2021-09-03 深圳硅基传感科技有限公司 无需指血校准的葡萄糖传感器的出厂校准方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005508A1 (en) * 2012-06-29 2014-01-02 Dexcom, Inc. Devices, systems, and methods to compensate for effects of temperature on implantable sensors
CN104535627A (zh) * 2014-12-17 2015-04-22 浙江大学 葡萄糖传感系统
CN111432723A (zh) * 2017-12-13 2020-07-17 美敦力泌力美公司 伪正交冗余葡萄糖传感器、系统和方法
CN111479504A (zh) * 2017-12-13 2020-07-31 美敦力泌力美公司 用于连续葡萄糖监测的方法和系统
CN110133089A (zh) * 2019-05-31 2019-08-16 广州钰芯传感科技有限公司 一种电化学传感器自动内校准系统及校准方法
CN113340969A (zh) * 2019-06-24 2021-09-03 深圳硅基传感科技有限公司 无需指血校准的葡萄糖传感器的出厂校准方法
CN111239229A (zh) * 2020-02-24 2020-06-05 江苏鱼跃医疗设备股份有限公司 一种双通道电化学生物传感器及测量血红素浓度的方法
CN113124746A (zh) * 2021-04-20 2021-07-16 哈尔滨工业大学(威海) 基于冗余传感器的穿戴式柔性电容型传感器及自标定方法

Also Published As

Publication number Publication date
CN115372428A (zh) 2022-11-22
US20230333052A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US6645368B1 (en) Meter and method of using the meter for determining the concentration of a component of a fluid
US7638033B2 (en) Biosensor system
JP2800981B2 (ja) 誤表示防止フェールセーフ機能付バイオセンシングメータ
TWI547687B (zh) 血液樣本之血糖值的校正方法及其校正系統
US20110139634A1 (en) System and method for measuring analyte concentration with interferant correction
JPH08502590A (ja) 差込可能メモリーキーを伴うバイオセンシングメータ
CN102128932A (zh) 电化学生物感测试纸、生物感测器装置、分析物测量系统
CN107636452B (zh) 改进的生物传感器系统分析物测量
KR101299275B1 (ko) 바이오센서 측정기, 바이오센서 측정 시스템 및 바이오센서측정 방법
CN103983669A (zh) 检测试片、检测装置及检测方法
KR101357134B1 (ko) 전기화학적 바이오센서, 휴대용 계측기 및 이들을 사용한 혈액시료 중 분석대상물질의 농도 측정방법
CN109142488A (zh) 一种带阻抗识别的电化学试纸及其使用方法
US10718728B2 (en) In-vitro sensor using a tetrapolar impedance measurement
JPH11101796A (ja) 尿マルチセンサ
WO2023197412A1 (zh) 一种基于冗余电极的电化学传感器及其衰减补偿方法
CN106093170B (zh) 分析物浓度的检测方法
WO2023197413A1 (zh) 一种基于伴生传感器的电化学传感器
TWI580958B (zh) 分析物濃度的檢測方法
CN114660149A (zh) 一种电化学试纸及检测方法
TWI531789B (zh) 血液樣本之血糖值的校正方法
US9546975B2 (en) Examination method for detecting abnormal electrochemical testing strip
US20240027388A1 (en) Auto-calibration ph sensor
EP4283289A1 (en) Circuit system and method
JPH04191650A (ja) イオン測定装置
WO2024216700A1 (zh) 一种水质检测装置、数据处理方法及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937051

Country of ref document: EP

Kind code of ref document: A1