WO2023197347A1 - 摄像头的校准方法及校准装置 - Google Patents

摄像头的校准方法及校准装置 Download PDF

Info

Publication number
WO2023197347A1
WO2023197347A1 PCT/CN2022/087895 CN2022087895W WO2023197347A1 WO 2023197347 A1 WO2023197347 A1 WO 2023197347A1 CN 2022087895 W CN2022087895 W CN 2022087895W WO 2023197347 A1 WO2023197347 A1 WO 2023197347A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
axis
sample
photosensitive chip
lens
Prior art date
Application number
PCT/CN2022/087895
Other languages
English (en)
French (fr)
Inventor
王宝友
高峰
张文兵
Original Assignee
苏州华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州华星光电技术有限公司 filed Critical 苏州华星光电技术有限公司
Priority to US17/758,069 priority Critical patent/US20240179296A1/en
Publication of WO2023197347A1 publication Critical patent/WO2023197347A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/47Image sensors with pixel address output; Event-driven image sensors; Selection of pixels to be read out based on image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals

Definitions

  • the present application relates to the field of camera technology, and specifically to a camera calibration method and a camera calibration device.
  • the current AA technology uses a three-axis or six-axis adjustment device to combine COMS (Complementary Metal Metal) Oxide Semiconductor (Complementary Metal Oxide Semiconductor) clamps the imaging chip and lights the chip, and then gradually adjusts the Z-axis position of the chip or lens by moving upward or downward to achieve the best imaging effect, allowing the production of a
  • COMS Complementary Metal Metal
  • Complementary Metal Oxide Semiconductor Complementary Metal Oxide Semiconductor
  • Embodiments of the present application provide a camera calibration method and a calibration device, which can improve the problem of long CT in producing a camera product.
  • An embodiment of the present application provides a calibration method for a camera, which is used to calibrate a camera.
  • the camera includes a lens and a photosensitive chip.
  • the calibration method includes:
  • each of the pixel areas includes multiple sub-pixels, and the Z-axis coordinate is the Z-axis coordinate of the lens relative to the photosensitive chip;
  • the step of obtaining the functional relationship between the spacing of multiple pixel areas and the Z-axis coordinate includes:
  • the sample camera is of the same model as the camera to be calibrated, and the The clarity of the better picture is higher than the clarity of the picture acquired by the sample camera in at least one other location;
  • the functional relationship between the spacing of the pixel areas and the Z-axis coordinate is generated according to the spacing of the plurality of sample pixel areas and the plurality of Z-axis coordinates of the samples.
  • the step of obtaining the spacing of multiple sample pixel areas and the Z-axis coordinates of multiple samples in multiple better pictures acquired by the sample camera within the optimal imaging position interval includes:
  • the step of controlling the movement of the sample camera to a better imaging position and multiple peripheral positions around the better imaging position includes:
  • the sample camera is controlled to move along the positive and negative directions of the Z-axis to a plurality of peripheral positions around the optimal imaging position, taking the optimal imaging position as a starting point.
  • the method further includes:
  • the clarity of the picture acquired by the camera at the final Z-axis coordinate is higher than the clarity of the image acquired by the camera at the predicted Z-axis coordinate.
  • the Z-axis movement distance corresponding to each movement operation is less than the Z-axis movement distance from the initial position to the predicted Z-axis coordinate.
  • the number of the plurality of real-time pixel areas of the initial picture is no less than 5, and the number of the sample pixel areas of each of the better pictures is no less than 5.
  • the functional relationship is a linear functional relationship.
  • Embodiments of the present application also provide a camera calibration device for calibrating the camera.
  • the camera calibration device includes: a first clamping module for clamping the lens of the camera; a second clamping module , used to clamp the photosensitive chip of the camera; a memory, used to store program instructions; and a processor, electrically connected to the memory, the photosensitive chip, the first clamping module and the third At least one of the two clamping modules is used, and the processor is configured to execute the program instructions to implement the calibration method as described above.
  • the prediction of the lens and photosensitive chip of the camera to be calibrated is predicted through the functional relationship between the spacing of multiple pixel areas and the Z-axis coordinate.
  • the Z-axis coordinate controls one of the lens and the photosensitive chip to move from an initial position to the predicted Z-axis coordinate relative to the other of the lens and the photosensitive chip, skipping the step-by-step process in the prior art.
  • the initial position is adjusted to a plurality of intermediate positions between the predicted Z-axis coordinates, thereby improving the problem of a long cycle time for producing a camera product.
  • Figure 1 is a working schematic diagram of a camera calibration device provided by an embodiment of the present application.
  • Figure 2 is a module schematic diagram of the calibration device of the camera in Figure 1;
  • Figure 3A is a schematic diagram of the picture captured by the camera in Figure 1;
  • Figure 3B is a functional relationship diagram between the relative Z-axis coordinates of the camera lens and the photosensitive chip in Figure 1 and the distance between the pixel areas;
  • Figure 4 is a schematic flow chart of a camera calibration method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the change of the MTF value relative to the Z-axis coordinate of the picture taken by the camera in Figure 4;
  • FIG. 6 is a schematic flowchart of step S1 in FIG. 4 .
  • an embodiment of the present application provides a camera calibration device 100 , including a first clamping module 1 , a second clamping module 2 , a processor 3 , and a memory 4 .
  • the camera 6 includes a lens 60 and a photosensitive chip 61 .
  • the calibration device 100 of the camera 6 is used to calibrate the relative positions of the lens 60 and the photosensitive chip 61 in the Z-axis direction (Z direction in FIG. 1 ).
  • the Z-axis direction is the optical axis direction of the camera 6
  • the optical axis direction is perpendicular to the image plane of the camera 6 .
  • the first clamping module 1 may be a three-axis or six-axis clamper, used to clamp the lens 60 .
  • the second clamping module 2 may be a three-axis or six-axis clamper, used to clamp the photosensitive chip 61 .
  • the second clamping module 2 is used to clamp a circuit board 21 (PCB, Printed Circuit Board), and the circuit board 21 is used to electrically connect to the photosensitive chip 61 to light the photosensitive chip 61 .
  • PCB Printed Circuit Board
  • the memory 4 is electrically connected to the processor 3 and is used to store a plurality of program instructions.
  • the memory 4 may be disposed on the circuit board 21 .
  • the memory 4 may be a non-permanent memory in a computer-readable medium, a random access memory (Random Access Memory). Memory, RAM) and/or non-volatile memory, such as read-only memory (Read-Only Memory, ROM) or flash memory (Flash RAM).
  • the processor 3 is electrically connected to the first clamping module 1 and/or the second clamping module 2 to control the first clamping module 1 and/or the second clamping module 1 . Hold the movement of module 2.
  • the processor 3 is also electrically connected to the photosensitive chip 61 to process the picture 70 captured by the photosensitive chip 61 through the lens 60 .
  • the processor 3 may be disposed on the circuit board 21 .
  • the processor 3 may be a microcontroller unit (MCU), an integrated chip, a control circuit, etc.
  • the processor 3 is used to execute a plurality of the program instructions to implement a camera calibration method.
  • the camera calibration method includes:
  • Step S1 Obtain the functional relationship between the spacing of multiple pixel areas and the Z-axis coordinate.
  • the inventor found that the best position (that is, the best clear position) of the picture 70 taken by the same model of camera product is among the multiple pixel areas 71 (ie, Block, including multiple sub-pixels)
  • the distance P between them approaches a constant value.
  • the spacing between 5 or more pixel areas at the best clear position of the picture taken by the first camera is 5 or more pixels at the best clear position of the picture taken by the second camera of the same model.
  • the spacing between pixel areas of more than 5 pixels tends to be equal. As shown in FIG.
  • the inventor also found that there is a stable functional relationship between the spacing P between the plurality of pixel areas 71 and the Z-axis coordinate, where the Z-axis coordinate is the relative position of the lens 60 to the photosensitive chip 61 Z-axis coordinate. Therefore, the inventor took advantage of this rule and came up with the idea of automatically learning the best clear position for the same batch of camera products at one time, thereby saving calibration time for other products during the generation process. Therefore, the functional relationship between the spacing P and the Z-axis coordinate of multiple pixel areas of the same model product can be stored in the instruction library of the memory 4 for acquisition by the processor 3 .
  • the numerical index for measuring the sharpness of the picture 70 can be a spatial frequency response function (Spatial Frequency Response Function) at a selected frequency. frequency response (SFR) or optical transfer function (Modulation Transfer Function, MTF).
  • SFR spatial frequency response
  • MTF Modulation Transfer Function
  • Step S2 Obtain the spacing between multiple real-time pixel areas of the initial image acquired by the camera to be calibrated at the initial position.
  • Figure 5 is a schematic diagram of the change of the MTF value of the picture taken by the camera relative to the Z-axis coordinate.
  • the processor 3 can obtain the initial picture of the camera 6 at the initial position.
  • the processor 3 can obtain the spacing of multiple real-time pixel areas at the best definition position.
  • Step S3 Generate predicted Z-axis coordinates based on the spacing of multiple real-time pixel areas and the functional relationship.
  • the processor 3 can obtain the corresponding Z-axis coordinate, and use the obtained Z-axis coordinate as the predicted Z-axis coordinate.
  • Axis coordinate i.e. predicted position Z6.
  • Step S4 Control one of the lens 60 and the photosensitive chip 61 to move from the initial position to the predicted Z-axis coordinate relative to the other of the lens 60 and the photosensitive chip 61 .
  • the processor 3 sends the Z-axis coordinate to the first clamping module 1 and/or the second clamping module 2 to control the first clamping module 1 And/or the second clamping module 2 moves, so that the lens 60 and the photosensitive chip 61 clamped by the first clamping module 1 and the second clamping module 2
  • the other one of the lens 60 and the photosensitive chip 61 moves from the initial position to the predicted Z-axis coordinate.
  • one of the lens 60 and the photosensitive chip 61 moves directly from the starting position Z0 to the prediction position Z6 relative to the other of the lens 60 and the photosensitive chip 61, skipping the step-by-step process in the prior art.
  • Adjusting from the starting position Z0 to multiple intermediate positions in the predicted position Z6, such as Z1-Z5 reduces the adjustment time of the lens 60 and the photosensitive chip 61.
  • Step S5 Control one of the lens 60 and the photosensitive chip 61 to move to the final Z-axis coordinate through at least one movement operation relative to the other of the lens 60 and the photosensitive chip 61 .
  • the processor 3 can further control The first clamping module 1 and/or the second clamping module 2 perform at least one movement operation, so that one of the lens 60 and the photosensitive chip 61 is relative to the lens 60 and the photosensitive chip 61 Another one of the chips 61 moves to the final Z-axis coordinate (that is, the end position Z11).
  • the final Z-axis coordinate may be the Z-axis coordinate corresponding to the best imaging position (ie, the best position Z8), and the clarity of the picture acquired by the camera 6 at the final Z-axis coordinate is higher than the predicted Z-axis The clarity of the picture acquired by the camera 6 under the coordinates.
  • step S4 the camera 6 is controlled to move directly from the initial position to the predicted Z-axis coordinate by applying the calibration rule discovered by the inventor, the calibrated camera 6 is already close to the final Z-axis coordinate corresponding to the best imaging position, therefore, Next, you only need to fine-tune the Z-axis coordinate of the lens 60 of the calibrated camera 6 relative to the photosensitive chip 61 to quickly reach the final Z-axis coordinate. Therefore, the Z-axis movement distance corresponding to each movement operation (ie, fine-tuning operation) is less than the Z-axis movement distance from the initial position to the predicted Z-axis coordinate.
  • step S1 includes:
  • the optimal imaging position interval includes a optimal imaging position and a plurality of peripheral positions.
  • the processor 3 controls the first clamping module 1 and/or the second clamping module 2 to perform multiple movements, and analyzes the clarity of the pictures taken at the movement position reached in the last movement. By controlling the next motion parameters, one of the lens and the photosensitive chip of the sample camera can finally be controlled to move to a better imaging position relative to the other of the lens and the photosensitive chip.
  • the clarity of the corresponding better picture at the better imaging position is higher than the clarity of the picture acquired by the sample camera at at least one other position.
  • the better imaging position may be the best imaging position. Location.
  • the processor 3 uses the optimal imaging position as a starting point to control the movement of the first clamping module 1 and/or the second clamping module 2 to control all aspects of the sample camera.
  • One of the lens and the photosensitive chip performs multiple movements with respect to the other of the lens and the photosensitive chip at a certain distance (such as 10 micrometers) in the forward and reverse directions of the Z-axis, so as to Move to multiple peripheral positions around the preferred imaging position.
  • the number of the plurality of peripheral locations may be ten.
  • the processor 3 processes a plurality of the better pictures acquired by the sample camera at the better imaging position and multiple peripheral positions, thereby obtaining multiple images of the sample pixel areas. Spacing and Z-axis coordinates of multiple samples.
  • the processor 3 can generate the spacing between the pixel areas of the camera of the same model as the sample camera by analyzing the obtained spacings of the plurality of sample pixel areas and the plurality of Z-axis coordinates of the samples. The functional relationship with the Z-axis coordinate. Through experiments, it was further found that the spacing of the pixel areas has a stable linear relationship with the Z-axis coordinate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开一种摄像头的校准方法及校准装置。通过获取多个像素区域的间距与Z轴坐标的函数关系及待校准的摄像头在初始位置获取到的初始图片的多个实时像素区域的间距生成预测Z轴坐标,以控制镜头和感光芯片中的一个相对镜头和感光芯片中的另一个由初始位置运动至预测Z轴坐标。

Description

摄像头的校准方法及校准装置 技术领域
本申请涉及摄像头技术领域,具体涉及一种摄像头的校准方法及一种摄像头的校准装置。
背景技术
随着消费者对照片清晰度的要求越来越高,目前,应用于手机、车载、监控及电视机的摄像头对像素的要求越来越高。一方面,因为镜头的光轴中心与感光芯片的光轴中心由于模组制造过程中产生的误差,完美精度无法实现;另一方面,由于镜头镜片组装过程中的装配误差也会导致镜头与芯片组装完成后无法达到理论的成像效果,AA(Active Alignment,主动对焦)技术应运而生。
然而,当前的AA技术是通过三轴或六轴的调整装置将COMS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)成像芯片夹持住并将芯片点亮,然后逐步地通过向上或向下运动来调整芯片或镜头的Z轴位置,以达到最佳成像效果,使得生产一颗摄像头产品的CT(Circle Time,周期时间)较长。
技术问题
本申请实施例提供一种摄像头的校准方法及校准装置,可以改善生产一颗摄像头产品的CT较长的问题。
技术解决方案
本申请实施例提供一种摄像头的校准方法,用于校准摄像头,所述摄像头包括镜头和感光芯片,所述校准方法包括:
获取多个像素区域的间距与Z轴坐标的函数关系,每一所述像素区域包括多个子像素,所述Z轴坐标为所述镜头相对于所述感光芯片在Z轴上的坐标;
获取待校准的摄像头在初始位置获取到的初始图片的多个实时像素区域的间距;
根据多个所述实时像素区域的间距及所述函数关系生成预测Z轴坐标;以及
控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个由所述初始位置运动至所述预测Z轴坐标。
在一些实施例中,所述的获取多个像素区域的间距与Z轴坐标的函数关系的步骤,包括:
获取样本摄像头在较佳成像位置区间内获取的多个较佳图片的多个样本像素区域的间距及多个样本Z轴坐标,所述样本摄像头与待校准的所述摄像头的型号相同,所述较佳图片的清晰度高于所述样本摄像头在至少一个其他位置获取的图片的清晰度;以及
根据多个所述样本像素区域的间距及多个所述样本Z轴坐标生成所述像素区域的间距与所述Z轴坐标的所述函数关系。
在一些实施例中,所述的获取样本摄像头在较佳成像位置区间内获取到的多个较佳图片的多个样本像素区域的间距及多个样本Z轴坐标的步骤,包括:
控制所述样本摄像头运动至较佳成像位置和位于所述较佳成像位置周围的多个周边位置,所述较佳成像位置区间包括所述较佳成像位置及多个所述周边位置;以及
获取所述样本摄像头在所述较佳成像位置和多个所述周边位置处获取到的多个所述较佳图片的多个所述样本像素区域的间距及多个所述样本Z轴坐标。
在一些实施例中,所述的控制所述样本摄像头运动至较佳成像位置和位于所述较佳成像位置周围的多个周边位置的步骤,包括:
控制所述样本摄像头运动至所述较佳成像位置;以及
控制所述样本摄像头以所述较佳成像位置为起始点沿所述Z轴的正方向和反方向分别运动至所述较佳成像位置周围的多个所述周边位置。
在一些实施例中,在所述的控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个运动至所述预测Z轴坐标的步骤之后,还包括:
控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个,通过至少一次运动操作以运动至最终Z轴坐标。
在一些实施例中,最终Z轴坐标下的所述摄像头获取的图片的清晰度高于所述预测Z轴坐标下的所述摄像头获取的图片的清晰度。
在一些实施例中,每一所述运动操作对应的Z轴移动距离小于由所述初始位置运动至所述预测Z轴坐标的Z轴移动距离。
在一些实施例中,所述初始图片的多个所述实时像素区域的数量不少于5,每一所述较佳图片的所述样本像素区域的数量不少于5。
在一些实施例中,所述函数关系为线性函数关系。
本申请的实施例还提供一种摄像头的校准装置,用于校准摄像头,所述摄像头的校准装置包括:第一夹持模组,用于夹持所述摄像头的镜头;第二夹持模组,用于夹持所述摄像头的感光芯片;存储器,用于存储程序指令;以及处理器,电性连接于所述存储器、所述感光芯片,以及所述第一夹持模组和所述第二夹持模组中的至少一个,所述处理器用于执行所述程序指令以实现如上所述的校准方法。
有益效果
相较于现有技术,在本申请的实施例提供的摄像头的校准方法及校准装置中,通过多个像素区域的间距与Z轴坐标的函数关系预测待校准的摄像头的镜头和感光芯片的预测Z轴坐标,控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个由初始位置运动至所述预测Z轴坐标,跳过了现有技术中逐步从所述初始位置调校准至所述预测Z轴坐标之间的多个中间位置,由此,改善生产一颗摄像头产品的周期时间较长的问题。
附图说明
图1是本申请实施例提供的摄像头的校准装置的工作示意图;
图2是图1中的摄像头的校准装置的模块示意图;
图3A是图1中的摄像头获取的画面的示意图;
图3B是图1中的摄像头的镜头与感光芯片的相对Z轴坐标与像素区域的间距的函数关系图;
图4是本申请实施例提供的摄像头的校准方法的流程示意图;
图5是图4中的摄像头拍摄图片的MTF值相对Z轴坐标的变化的示意图;
图6是图4中的步骤S1的流程示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
如图1和图2所示,本申请的实施例提供一种摄像头的校准装置100,包括第一夹持模组1、第二夹持模组2、处理器3、以及存储器4。所述摄像头6包括镜头60和感光芯片61。所述摄像头6的校准装置100用于在Z轴方向(图1中的Z方向)上校准所述镜头60和所述感光芯片61的相对位置。示例性地,所述Z轴方向即为所述摄像头6的光轴方向,所述光轴方向与所述摄像头6的图像平面垂直。
所述第一夹持模组1可以是三轴或者六轴的夹持器,用于夹持镜头60。
所述第二夹持模组2可以是三轴或者六轴的夹持器,用于夹持感光芯片61。其中,所述第二夹持模组2用于夹持电路板21(PCB, Printed Circuit Board),所述电路板21用于电性连接于所述感光芯片61以点亮所述感光芯片61。
所述存储器4电性连接于所述处理器3,用于存储多个程序指令。示例性地,所述存储器4可以设置于所述电路板21上。所述存储器4可以是计算机可读介质中的非永久性存储器,随机存取存储器(Random Access Memory,RAM)和/或非易失性内存等形式,如只读存储器(Read-Only Memory,ROM)或闪存(Flash RAM)。
所述处理器3电性连接于所述第一夹持模组1和/或所述第二夹持模组2,以控制所述第一夹持模组1和/或所述第二夹持模组2的运动。所述处理器3还电性连接于所述感光芯片61以对所述感光芯片61通过所述镜头60拍摄的图片70进行处理。示例性地,所述处理器3可以设置于所述电路板21上。所述处理器3可以是微控制单元(micro controller unit,MCU)、集成芯片、控制电路等。所述处理器3用于执行多个所述程序指令,以实现一种摄像头的校准方法。
请参阅图4,所述摄像头的校准方法包括:
步骤S1、获取多个像素区域的间距与Z轴坐标的函数关系。
如图3A所示,通过实验,发明人发现,同一型号的摄像头产品拍摄的图片70的最佳位置(即最佳清晰位置)处的多个像素区域71(即Block,包括多个子像素)之间的间距P趋近于定值。示例性地,第一摄像头拍摄的图片的最佳清晰位置处的5个或5个以上的像素区域之间的间距,与型号相同的第二摄像头拍摄的图片的最佳清晰度位置处的5个或5个以上的像素区域之间的间距,趋近相等。如图3B所示,发明人还发现,多个像素区域71之间的间距P与Z轴坐标存在稳定的函数关系,其中,所述Z轴坐标为所述镜头60相对于所述感光芯片61的Z轴坐标。由此,发明人利用该规律,提出了对同一批摄像头产品,通过一次自动学习最佳清晰位置的方式,即可在生成过程中节省其他产品的校准时间的发明构思。因此,可以将同一型号产品的多个像素区域的间距P与Z轴坐标的函数关系存储在存储器4的指令库里,用于供处理器3获取。
具体地,衡量所述图片70的清晰度的数值指标可以采用选定频率下的空间频率响应函数(Spatial frequency response,SFR)或光学传递函数(Modulation Transfer Function,MTF)。
步骤S2、获取待校准的摄像头在初始位置获取的初始图片的多个实时像素区域的间距。
请参阅图5,图5为摄像头拍摄图片的MTF值相对Z轴坐标的变化的示意图。通过控制摄像头6在初始位置(即起始位Z0)进行拍照,所述处理器3可以获取所述摄像头6在所述初始位置的初始图片。通过对所述初始图片的数据进行分析,所述处理器3可以获取到最佳清晰度位置处的多个实时像素区域的间距。
步骤S3、根据多个所述实时像素区域的间距及所述函数关系生成预测Z轴坐标。
请参阅图5,通过将多个所述实时像素区域的间距代入到所述函数关系中,所述处理器3可以获取对应的Z轴坐标,并将获取到的Z轴坐标作为所述预测Z轴坐标(即预测位Z6)。
步骤S4、控制所述镜头60和所述感光芯片61中的一个相对所述镜头60和所述感光芯片61中的另一个由所述初始位置运动至所述预测Z轴坐标。
请参阅图5,所述处理器3将所述Z轴坐标发送至所述第一夹持模组1和/或所述第二夹持模组2,控制所述第一夹持模组1和/或所述第二夹持模组2进行运动,使得被所述第一夹持模组1和所述第二夹持模组2夹持的所述镜头60和所述感光芯片61中的一个相对所述镜头60和所述感光芯片61中的另一个由所述初始位置运动至所述预测Z轴坐标。这样,所述镜头60和所述感光芯片61中的一个相对所述镜头60和所述感光芯片61中的另一个直接从起始位Z0运动到预测位Z6,跳过了现有技术中逐步从起始位Z0调整至预测位Z6中的多个中间位置,如Z1-Z5(请见图中阴影部分),减少了所述镜头60和所述感光芯片61的调整时间。
步骤S5、控制所述镜头60和所述感光芯片61中的一个相对所述镜头60和所述感光芯片61中的另一个,通过至少一次运动操作以运动至最终Z轴坐标。
请参阅图5,由于所述预测Z轴坐标并不一定是对应于最佳成像位置的Z轴坐标,在控制所述摄像头6到达所述预测Z轴坐标后,所述处理器3可以进一步控制所述第一夹持模组1和/或所述第二夹持模组2进行至少一次运动操作,使得所述镜头60和所述感光芯片61中的一个相对所述镜头60和所述感光芯片61中的另一个,运动至最终Z轴坐标(即结束位Z11)。示例性地,最终Z轴坐标可以是最佳成像位置对应的Z轴坐标(即最佳位Z8),最终Z轴坐标下的所述摄像头6获取的图片的清晰度高于所述预测Z轴坐标下的所述摄像头6获取的图片的清晰度。
由于在步骤S4中,通过应用发明人发现的校准规律控制所述摄像头6由初始位置直接运动到预测Z轴坐标,被校准的摄像头6已经接近最佳成像位置对应的最终Z轴坐标,因此,接下来只需要对被校准的摄像头6的所述镜头60相对于所述感光芯片61的Z轴坐标进行微调,即可快速达到最终Z轴坐标。因此,每一所述运动操作(即微调操作)对应的Z轴移动距离小于由所述初始位置运动至所述预测Z轴坐标的Z轴移动距离。
请参阅图6,进一步地,所述步骤S1包括:
S10、获取样本摄像头在较佳成像位置区间内获取的多个较佳图片的多个样本像素区域的间距及多个样本Z轴坐标,所述样本摄像头与待校准的所述摄像头6的型号相同。
所述较佳成像位置区间包括较佳成像位置及多个所述周边位置。所述处理器3通过控制第一夹持模组1和/或所述第二夹持模组2进行多次运动,通过对上一次运动到达的运动位置处拍摄的图片的清晰度的分析来控制下一次的运动参数,最终可以控制所述样本摄像头的所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个运动至较佳成像位置。其中,所述较佳成像位置处对应的所述较佳图片的清晰度高于所述样本摄像头在至少一个其他位置获取的图片的清晰度,例如,所述较佳成像位置可以是最佳成像位置。
进一步地,所述处理器3以所述较佳成像位置为起始点,控制第一夹持模组1和/或所述第二夹持模组2进行运动,以控制所述样本摄像头的所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个沿所述Z轴的正方向和反方向分别间隔一定的距离(如10微米)进行多次运动,以运动至所述较佳成像位置周围的多个周边位置。示例性地,多个所述周边位置的数量可以是10。
所述处理器3通过对所述样本摄像头在所述较佳成像位置和多个所述周边位置处获取到的多个所述较佳图片进行处理,从而可以获取多个所述样本像素区域的间距及多个所述样本Z轴坐标。
S11、根据多个所述样本像素区域的间距及多个所述样本Z轴坐标生成所述像素区域的间距与所述Z轴坐标的所述函数关系。
所述处理器3通过对获取到的多个所述样本像素区域的间距及多个所述样本Z轴坐标的分析,可以生成在与所述样本摄像头型号相同的摄像头的所述像素区域的间距与所述Z轴坐标的所述函数关系。通过实验进一步发现,所述像素区域的间距与所述Z轴坐标呈稳定的线性关系。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种摄像头的校准方法,用于校准摄像头,所述摄像头包括镜头和感光芯片,其中,所述校准方法包括:
    获取多个像素区域的间距与Z轴坐标的函数关系,每一所述像素区域包括多个子像素,所述Z轴坐标为所述镜头相对于所述感光芯片的Z轴坐标;
    获取待校准的摄像头在初始位置获取到的初始图片的多个实时像素区域的间距;
    根据多个所述实时像素区域的间距及所述函数关系生成预测Z轴坐标;以及
    控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个由所述初始位置运动至所述预测Z轴坐标。
  2. 根据权利要求1所述的摄像头的校准方法,其中,所述的获取多个像素区域的间距与Z轴坐标的函数关系的步骤,包括:
    获取样本摄像头在较佳成像位置区间内获取的多个较佳图片的多个样本像素区域的间距及多个样本Z轴坐标,所述样本摄像头与待校准的所述摄像头的型号相同,所述较佳图片的清晰度高于所述样本摄像头在至少一个其他位置获取的图片的清晰度;以及
    根据多个所述样本像素区域的间距及多个所述样本Z轴坐标生成所述像素区域的间距与所述Z轴坐标的所述函数关系。
  3. 根据权利要求2所述的摄像头的校准方法,其中,所述的获取样本摄像头在较佳成像位置区间内获取到的多个较佳图片的多个样本像素区域的间距及多个样本Z轴坐标的步骤,包括:
    控制所述样本摄像头运动至较佳成像位置和位于所述较佳成像位置周围的多个周边位置,所述较佳成像位置区间包括所述较佳成像位置及多个所述周边位置;以及
    获取所述样本摄像头在所述较佳成像位置和多个所述周边位置处获取到的多个所述较佳图片的多个所述样本像素区域的间距及多个所述样本Z轴坐标。
  4. 根据权利要求3所述的摄像头的校准方法,其中,所述的控制所述样本摄像头运动至较佳成像位置和位于所述较佳成像位置周围的多个周边位置的步骤,包括:
    控制所述样本摄像头运动至所述较佳成像位置;以及
    控制所述样本摄像头以所述较佳成像位置为起始点沿所述Z轴的正方向和反方向分别运动至所述较佳成像位置周围的多个所述周边位置。
  5. 根据权利要求1所述的摄像头的校准方法,其中,在所述的控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个运动至所述预测Z轴坐标的步骤之后,还包括:
    控制所述镜头和所述感光芯片中的一个相对所述镜头和所述感光芯片中的另一个,通过至少一次运动操作以运动至最终Z轴坐标。
  6. 根据权利要求5所述的摄像头的校准方法,其中,最终Z轴坐标下的所述摄像头获取的图片的清晰度高于所述预测Z轴坐标下的所述摄像头获取的图片的清晰度。
  7. 根据权利要求5所述的摄像头的校准方法,其中,每一所述运动操作对应的Z轴移动距离小于由所述初始位置运动至所述预测Z轴坐标的Z轴移动距离。
  8. 根据权利要求2所述的摄像头的校准方法,其中,所述初始图片的多个所述实时像素区域的数量不少于5,每一所述较佳图片的所述样本像素区域的数量不少于5。
  9. 根据权利要求1所述的摄像头的校准方法,其中,所述函数关系为线性函数关系。
  10. 一种摄像头的校准装置,用于校准摄像头,其中,包括:
    第一夹持模组,用于夹持所述摄像头的镜头;
    第二夹持模组,用于夹持所述摄像头的感光芯片;
    存储器,用于存储程序指令;以及
    处理器,电性连接于所述存储器、所述感光芯片,以及所述第一夹持模组和所述第二夹持模组中的至少一个,所述处理器用于执行所述程序指令以实现如权利要求1所述的校准方法。
  11. 根据权利要求10所述的校准装置,其中,所述第一夹持模组包括三轴或六轴的夹持器,所述第二夹持模组包括三轴或六轴的夹持器。
  12. 根据权利要求10所述的校准装置,其中,所述第二夹持模组用于夹持与所述感光芯片电性连接的电路板,所述电路板用于点亮所述感光芯片。
  13. 根据权利要求12所述的校准装置,其中,所述存储器设置于所述电路板上。
  14. 根据权利要求10所述的校准装置,其中,所述存储器包括计算机可读介质中的非永久性存储器,随机存取存储器和/或非易失性内存。
  15. 根据权利要求14所述的校准装置,其中,所述存储器包括只读存储器或闪存。
  16. 根据权利要求12所述的校准装置,其中,所述处理器设置于所述电路板上。
  17. 根据权利要求10所述的校准装置,其中,所述处理器包括微控制单元、集成芯片或控制电路。
PCT/CN2022/087895 2022-04-11 2022-04-20 摄像头的校准方法及校准装置 WO2023197347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,069 US20240179296A1 (en) 2022-04-11 2022-04-20 Camera calibration method and calibration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210376237.4 2022-04-11
CN202210376237.4A CN114745539A (zh) 2022-04-11 2022-04-11 摄像头的校准方法及校准装置

Publications (1)

Publication Number Publication Date
WO2023197347A1 true WO2023197347A1 (zh) 2023-10-19

Family

ID=82281730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087895 WO2023197347A1 (zh) 2022-04-11 2022-04-20 摄像头的校准方法及校准装置

Country Status (3)

Country Link
US (1) US20240179296A1 (zh)
CN (1) CN114745539A (zh)
WO (1) WO2023197347A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044176A1 (en) * 2001-08-28 2003-03-06 Asahi Kogaku Kogyo Kabushiki Kaisha Optical axis adjusting device
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN110365969A (zh) * 2019-07-03 2019-10-22 惠州市德赛西威汽车电子股份有限公司 一种摄像头调校方法
CN113037948A (zh) * 2019-12-09 2021-06-25 宁波舜宇光电信息有限公司 自由曲面镜片、光学镜头和摄像模组及其组装方法
CN113406764A (zh) * 2021-07-13 2021-09-17 广东弘景光电科技股份有限公司 光学镜头镜片调芯方法及系统
CN114222108A (zh) * 2020-09-04 2022-03-22 余姚舜宇智能光学技术有限公司 主动校准定位方法及其系统和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044176A1 (en) * 2001-08-28 2003-03-06 Asahi Kogaku Kogyo Kabushiki Kaisha Optical axis adjusting device
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN110365969A (zh) * 2019-07-03 2019-10-22 惠州市德赛西威汽车电子股份有限公司 一种摄像头调校方法
CN113037948A (zh) * 2019-12-09 2021-06-25 宁波舜宇光电信息有限公司 自由曲面镜片、光学镜头和摄像模组及其组装方法
CN114222108A (zh) * 2020-09-04 2022-03-22 余姚舜宇智能光学技术有限公司 主动校准定位方法及其系统和电子设备
CN113406764A (zh) * 2021-07-13 2021-09-17 广东弘景光电科技股份有限公司 光学镜头镜片调芯方法及系统

Also Published As

Publication number Publication date
CN114745539A (zh) 2022-07-12
US20240179296A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US20220319895A1 (en) System and method for correcting non-ideal wafer topography
WO2017088469A1 (zh) 一种基于机械手臂的高精度自动光学检测系统和方法
CN110246193B (zh) 工业机器人末端相机在线标定方法
CN114636385B (zh) 基于光场相机的三维成像方法和系统及三维成像测量产线
CN109348129A (zh) 一种定焦摄像头的清晰度检测方法及系统
CN111791226B (zh) 通过机器人实现组装的方法、装置及机器人
TWI810595B (zh) 振鏡的參數調節方法、裝置、設備
WO2023061110A1 (zh) 坐标系标定方法、自动组装方法及装置
TW201732377A (zh) 通過調整鏡片實現光學系統成像質量的補償方法
US20210203835A1 (en) Device for testing autofocus function and method for using device
CN105301884A (zh) 对多点参照图像识别进行自动调焦的方法及系统
US9996932B2 (en) Method and system for multi-lens module alignment
WO2019062424A1 (zh) 一种基于图像处理的舞台灯自动对焦系统及方法
WO2023197347A1 (zh) 摄像头的校准方法及校准装置
CN117097872A (zh) 一种投影设备自动梯形校正系统及方法
CN111770329B (zh) 矫正感光元件位置的方法
CN112361982B (zh) 一种大幅面工件三维数据提取方法及系统
CN113079318A (zh) 晶边缺陷自动对焦系统及方法和计算机存储介质
CN110717944A (zh) 一种相机标定在智能手机、摄像头、数码相机里的应用
CN215701709U (zh) 一种可配置的手眼标定装置
CN110961778A (zh) 焊接工件的焊接区域自动识别方法、计算机装置及计算机可读存储介质
KR102280184B1 (ko) 위상 오토포커스 픽셀을 이용한 렌즈 모듈 액티브 얼라인 시스템
CN111563935B (zh) 一种蜂窝型材蜂窝孔视觉定位方法
CN113945363B (zh) 检测摄像头模组传感器位移性能的方法
CN111383277A (zh) 一种宽间距双摄模组aa方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17758069

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936991

Country of ref document: EP

Kind code of ref document: A1