WO2023197345A1 - Oled显示面板和oled显示装置 - Google Patents

Oled显示面板和oled显示装置 Download PDF

Info

Publication number
WO2023197345A1
WO2023197345A1 PCT/CN2022/087789 CN2022087789W WO2023197345A1 WO 2023197345 A1 WO2023197345 A1 WO 2023197345A1 CN 2022087789 W CN2022087789 W CN 2022087789W WO 2023197345 A1 WO2023197345 A1 WO 2023197345A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
connection terminal
metal
layer
voltage
Prior art date
Application number
PCT/CN2022/087789
Other languages
English (en)
French (fr)
Inventor
万之君
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/756,641 priority Critical patent/US20240164154A1/en
Publication of WO2023197345A1 publication Critical patent/WO2023197345A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, and in particular, to an OLED display panel and an OLED display device.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • OLED Organic Light-Emitting Diode, organic light-emitting diode Due to material limitations of the electron transport layer and electron injection layer, the electron transport layer and electron injection layer can only be formed by evaporation, and the cathode is also formed by evaporation during the formation process. Since the cathode needs to overlap and conduct with the metal traces on the transistor during formation, the film formation area of the cathode needs to be larger than the film formation area of the electron injection layer and the electron transport layer, which will result in the need for at least two masks. , Designing multiple cavities to form cathodes and electron injection layers/electron transport layers with different film formation areas results in low production efficiency of OLED display devices.
  • OLED display devices have a technical problem of low preparation efficiency of the OLED display device due to different masks for the cathode and the electron injection layer/electron transport layer.
  • Embodiments of the present application provide an OLED display panel and an OLED display device to alleviate the low production efficiency of the OLED display device caused by the different masks of the cathode and the electron injection layer/electron transport layer in the existing OLED display device. question.
  • An embodiment of the present application provides an OLED display panel, which includes:
  • a driving circuit layer is provided on one side of the substrate.
  • the driving circuit layer includes metal terminals.
  • the metal terminals include first metal terminals and second metal terminals. The first metal terminal and the second metal terminal Insulation settings;
  • a light-emitting functional layer is provided on the side of the driving circuit layer away from the substrate, the light-emitting functional layer includes an electron injection layer, an electron transport layer and a common electrode layer;
  • An encapsulation layer disposed on the side of the light-emitting functional layer away from the driving circuit layer;
  • the OLED display panel includes a display area and an overlapping area. In the overlapping area, an electron injection layer and an electron transport layer are provided between the common electrode layer and the metal terminal.
  • the first metal terminal One side of the first metal terminal is connected to the high potential voltage terminal, the other side of the first metal terminal is connected to the electron transport layer, one side of the second metal terminal is connected to the electron transport layer, and the other side of the second metal terminal is connected to the electron transport layer. It is connected to a low potential voltage terminal, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer.
  • the first metal terminal and the second metal terminal are respectively disposed in overlapping areas on both sides of the display area.
  • the first metal terminal includes a plurality of positive connection terminals
  • the second metal terminal includes a plurality of negative connection terminals
  • the positive connection terminals are disposed on bridges on both sides of the display area.
  • the negative connecting terminal is arranged in the overlapping area on both sides of the display area
  • the positive connecting terminal is arranged corresponding to the negative connecting terminal.
  • the positive connection terminal includes a first positive connection terminal and a second positive connection terminal
  • the negative connection terminal includes a first negative connection terminal and a second negative connection terminal
  • the The first positive connection terminal and the first negative connection terminal are arranged in the overlapping area on one side of the display area
  • the second positive connection terminal and the second negative connection terminal are arranged in the In the overlapping area on the other side of the display area
  • the first positive connection terminal is electrically connected to the first negative connection terminal
  • the second positive connection terminal is electrically connected to the second negative connection terminal.
  • the positive connection terminal includes a third positive connection terminal and a fourth positive connection terminal
  • the negative connection terminal includes a third negative connection terminal and a fourth negative connection terminal
  • the The third positive connection terminal and the fourth positive connection terminal are provided in the terminal area on one side of the display area, and the third negative connection terminal and the fourth negative connection terminal are provided in the display area.
  • the terminal area on the other side, the third positive connection terminal is electrically connected to the third negative connection terminal, and the fourth positive connection terminal is electrically connected to the fourth negative connection terminal.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the electron The turn-on voltage of the injection layer and the electron transport layer.
  • the temperature range of the overlapping area is 50 degrees Celsius to 120 degrees Celsius.
  • the material of the common electrode layer includes a metal material, and a voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the first migration voltage of the metal material.
  • the material of the electron injection layer includes a first conductive material
  • the material of the electron transport layer includes an organic material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the The second migration voltage of the electron injection layer.
  • the electron transport layer is doped with a second conductive material, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the third migration voltage of the second conductive material.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • at least one of the electron injection layer and the electron transport layer is doped with a third conductive material. material, the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the fourth migration voltage of the third conductive material.
  • the OLED display device includes an OLED display panel and a power supply.
  • the OLED display panel includes:
  • a driving circuit layer is provided on one side of the substrate.
  • the driving circuit layer includes metal terminals.
  • the metal terminals include first metal terminals and second metal terminals. The first metal terminal and the second metal terminal Insulation settings;
  • a light-emitting functional layer is provided on the side of the driving circuit layer away from the substrate, the light-emitting functional layer includes an electron injection layer, an electron transport layer and a common electrode layer;
  • An encapsulation layer disposed on the side of the light-emitting functional layer away from the driving circuit layer;
  • the OLED display panel includes a display area and an overlapping area. In the overlapping area, an electron injection layer and an electron transport layer are provided between the common electrode layer and the metal terminal.
  • the first metal terminal One side of the first metal terminal is connected to the high potential voltage terminal, the other side of the first metal terminal is connected to the electron transport layer, one side of the second metal terminal is connected to the electron transport layer, and the other side of the second metal terminal is connected to the electron transport layer. It is connected to a low potential voltage terminal, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer.
  • the high-potential voltage terminal is connected to the positive terminal of the power supply, and the low-potential voltage terminal is connected to the negative terminal of the power supply.
  • the first metal terminal and the second metal terminal are respectively disposed in overlapping areas on both sides of the display area.
  • the first metal terminal includes a plurality of positive connection terminals
  • the second metal terminal includes a plurality of negative connection terminals
  • the positive connection terminals are disposed on bridges on both sides of the display area.
  • the negative connecting terminal is arranged in the overlapping area on both sides of the display area
  • the positive connecting terminal is arranged corresponding to the negative connecting terminal.
  • the positive connection terminal includes a first positive connection terminal and a second positive connection terminal
  • the negative connection terminal includes a first negative connection terminal and a second negative connection terminal
  • the The first positive connection terminal and the first negative connection terminal are arranged in the overlapping area on one side of the display area
  • the second positive connection terminal and the second negative connection terminal are arranged in the In the overlapping area on the other side of the display area
  • the first positive connection terminal is electrically connected to the first negative connection terminal
  • the second positive connection terminal is electrically connected to the second negative connection terminal.
  • the positive connection terminal includes a third positive connection terminal and a fourth positive connection terminal
  • the negative connection terminal includes a third negative connection terminal and a fourth negative connection terminal
  • the The third positive connection terminal and the fourth positive connection terminal are provided in the terminal area on one side of the display area, and the third negative connection terminal and the fourth negative connection terminal are provided in the display area.
  • the terminal area on the other side, the third positive connection terminal is electrically connected to the third negative connection terminal, and the fourth positive connection terminal is electrically connected to the fourth negative connection terminal.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the electron The turn-on voltage of the injection layer and the electron transport layer.
  • the temperature range of the overlapping area is 50 degrees Celsius to 120 degrees Celsius.
  • the material of the common electrode layer includes a metal material, and a voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the first migration voltage of the metal material.
  • the present application provides an OLED display panel and an OLED display device;
  • the OLED display panel includes a substrate, a driving circuit layer, a light-emitting functional layer and a packaging layer.
  • the driving circuit layer is provided on one side of the substrate.
  • the driving circuit layer includes metal terminals.
  • the terminal includes a first metal terminal and a second metal terminal.
  • the first metal terminal and the second metal terminal are insulated.
  • the light-emitting functional layer is provided on a side of the driving circuit layer away from the substrate.
  • the light-emitting functional layer includes an electron injection layer and an electron transport layer. and a common electrode layer.
  • the encapsulation layer is disposed on the side of the light-emitting functional layer away from the driving circuit layer.
  • the OLED display panel includes a display area and an overlapping area.
  • electron injection is provided between the common electrode layer and the metal terminal.
  • layer and the electron transport layer the first metal terminal is connected to the high potential voltage terminal, the other side of the first metal terminal is connected to the electron transport layer, one side of the second metal terminal is connected to the electron transport layer, and the other side of the second metal terminal is connected to the low voltage terminal.
  • the potential voltage terminals are connected, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer.
  • the first metal terminal and the second metal terminal are connected through the high potential voltage terminal and the low potential voltage terminal respectively.
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer, so that even if electrons are injected into the layer
  • the conductivity of the common electrode layer and the electron transport layer is poor.
  • the electron injection layer and the electron transport layer can be burned through or electron migration can be used to achieve continuity between the common electrode layer and the metal terminals, so that the OLED display panel can work normally.
  • Figure 1 is a first schematic diagram of an OLED display panel provided by an embodiment of the present application.
  • FIG. 2 is a second schematic diagram of an OLED display panel provided by an embodiment of the present application.
  • Figure 3 is a third schematic diagram of an OLED display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram comparing the design of the mask plate of the OLED display panel provided by the embodiment of the present application and the design of the mask plate of the existing OLED display panel.
  • FIG. 5 is a schematic diagram of an OLED display device provided by an embodiment of the present application.
  • Embodiments of the present application are aimed at the technical problem of low preparation efficiency of OLED display devices caused by different masks for cathodes and electron injection layers/electron transport layers in existing OLED display devices, and provide an OLED display panel and an OLED display device. To solve the above technical problems.
  • the OLED display panel 1 includes:
  • the driving circuit layer 12 is provided on one side of the substrate 11.
  • the driving circuit layer 12 includes a metal terminal 127d.
  • the metal terminal 127d includes a first metal terminal 127b and a second metal terminal 127c.
  • the first metal terminal 127b is insulated from the second metal terminal 127c;
  • the light-emitting functional layer 13 is provided on the side of the driving circuit layer 12 away from the substrate 11.
  • the light-emitting functional layer 13 includes an electron injection layer 132e, an electron transport layer 132d and a common electrode layer 134;
  • the encapsulation layer 14 is provided on the side of the light-emitting functional layer 13 away from the driving circuit layer 12;
  • the OLED display panel 1 includes a display area 151 and an overlapping area 152.
  • an electron injection layer 132e and an electron transport layer are provided between the common electrode layer 134 and the metal terminal 127d.
  • 132d one side of the first metal terminal 127b is connected to the high potential voltage terminal 212, the other side of the first metal terminal 127b is connected to the electron transport layer 132d, and one side of the second metal terminal 127c is connected to the electron transport layer 132d.
  • the transmission layer 132d is connected, and the other side of the second metal terminal 127c is connected to the low-potential voltage terminal 214.
  • the voltage difference between the high-potential voltage terminal 212 and the low-potential voltage terminal 214 is greater than that of the metal terminal 127d and the low-potential voltage terminal 214.
  • the turn-on voltage of the common electrode layer 134 is provided in the overlapping area 152.
  • Embodiments of the present application provide an OLED display panel.
  • the OLED display panel can use a metal mask to form the electron injection layer, the electron transport layer and the common electrode layer. Improve the preparation efficiency of OLED display panels and reduce costs.
  • the first metal terminal and the second metal terminal are connected through the high potential voltage terminal and the low potential voltage terminal respectively.
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than that between the metal terminal and the low potential voltage terminal.
  • the turn-on voltage of the common electrode layer makes it possible for the common electrode layer to connect with the metal by burning through the electron injection layer and electron transport layer or through electron migration, even if the electron injection layer and electron transport layer have poor conductivity.
  • the continuity of the terminals enables the OLED display panel to operate normally.
  • the conduction voltage of the metal terminal and the common electrode layer refers to the voltage that can conduct the metal terminal and the common electrode layer when the voltage is input. Specifically, it can be by making the voltage larger and passing the current to breakdown the electrons.
  • the injection layer and the electron transport layer are used to connect the metal terminals and the common electrode layer.
  • the voltage at this time can be used as the turn-on voltage, or the input voltage can cause the metal particles to migrate under the action of the electric field to connect the metal terminals and the common electrode. layer, the voltage at this time can be used as the turn-on voltage, and the turn-on voltage of the present application is not limited to the above example, and will be described in detail in the following embodiments.
  • the high potential voltage terminal 212 is connected to the first metal terminal 127b through the first metal wiring 211
  • the low potential voltage terminal 214 is connected to the second metal terminal 127c through the second metal wiring 213.
  • Figure 2 is a perspective view, the high-potential voltage terminal, the low-potential voltage terminal, the first metal trace and the second metal trace are shown outside the OLED display panel.
  • the high-potential voltage terminal will be The terminal, the low potential voltage terminal, the first metal trace and the second metal trace are arranged in the OLED display panel to protect each trace and the terminal and facilitate the connection between the terminals.
  • the first metal trace, the second metal trace, the high potential voltage end, and the low potential voltage end can all be formed through the source and drain layers, but the embodiments of the present application are not limited to this.
  • the space occupied by the source and drain layer by the line, the second metal line, the high potential voltage terminal, and the low potential voltage terminal can be formed by the first metal layer, the second metal layer and the light shielding layer.
  • the common electrode layer is marked with reference numeral 134 in Figure 2, and the reference numeral 134 indicates the boundary of the common electrode layer.
  • the boundary of the common electrode layer can be identified as the boundary of the electron injection layer and the electron transport layer, which is represented by the number 134
  • the boundary of the common electrode layer can also be the boundary of the electron injection layer and the electron transport layer.
  • the first metal terminal 127b and the second metal terminal 127c are respectively disposed in the overlapping areas 152 on both sides of the display area 151 .
  • the first metal terminal and the second metal terminal respectively connected to the high potential voltage terminal and the low potential voltage terminal in the overlapping areas on both sides, when the common electrode layer and the metal terminal are connected, the current will sequentially flow from the first metal terminal to the low potential voltage terminal.
  • the metal traces go to the first metal terminal, then from the first metal terminal to the electron transport layer and the electron injection layer on the first metal terminal, and then from the electron injection layer on the first metal terminal to the common electrode layer, Since the common electrode layer is arranged on the entire surface and conducts electricity on the entire surface, the current will reach the electron injection layer on the second metal terminal from the common electrode, and then from the electron injection layer on the second metal terminal to the electron transport layer and the second metal terminal, and then From the second metal terminal to the second metal trace, a loop is obtained from the high potential voltage end to the low potential voltage end, and the common electrode layer and the metal terminal are connected.
  • the first metal terminal and the second metal terminal are arranged on both sides of the display area to realize the connection between the common electrode layer and the metal terminal.
  • the embodiments of the present application are not limited to this.
  • the first metal terminal and the second metal terminal can be arranged on one side of the display area.
  • the positive connection terminal and the negative connection in the following embodiments may also be arranged in an overlapping area on one side of the display area, which will not be described in detail in the following embodiments.
  • the first metal terminal 127b includes a plurality of forward connection terminals (such as a first forward connection terminal 311 and a second forward connection terminal 312)
  • the second The metal terminal 127c includes a plurality of negative connection terminals (such as a first negative connection terminal 313 and a second negative connection terminal 314)
  • the positive connection terminals are arranged in the overlapping areas 152 on both sides of the display area 151.
  • the negative connection terminal is arranged in the overlapping areas 152 on both sides of the display area 151
  • the positive connection terminal is arranged corresponding to the negative connection terminal.
  • the positive connection terminal includes a first positive connection terminal 311 and a second positive connection terminal 312
  • the negative connection terminal includes a first negative connection terminal 313
  • the second negative connection terminal 314 the first positive connection terminal 311 and the first negative connection terminal 313 are provided in the overlapping area 152 on one side of the display area 151, the second positive connection terminal 314
  • the connection terminal 312 and the second negative connection terminal 314 are disposed in the overlapping area 152 on the other side of the display area 151, and the first positive connection terminal 311 is electrically connected to the first negative connection Terminal 313, the second positive connection terminal 312 is electrically connected to the second negative connection terminal 314.
  • the electrical connection in the embodiment of the present application means that the current flows from one end to the other end. Since the first metal terminal and the second metal terminal in the present application are insulated, the electrical connection in the embodiment of the present application It does not include the physical connection between the two ends.
  • the electrical connection between the first positive connection terminal and the first negative connection terminal means that the current will be routed from the first positive connection terminal to the first negative connection terminal, or the current will flow from the first negative connection terminal to the first negative connection terminal. Routing the first positive connection terminal to the connection terminal does not refer to the physical connection between the first positive connection terminal and the first negative connection terminal. In the following embodiments, the electrical connection shall also be based on this. In the following embodiments, no Again.
  • the positive connection terminal includes a third positive connection terminal and a fourth positive connection terminal
  • the negative connection terminal includes a third negative connection terminal and a fourth negative connection terminal
  • the third positive connection terminal and the fourth positive connection terminal are arranged in a terminal area on one side of the display area, and the third negative connection terminal and the fourth negative connection terminal are arranged in the display area.
  • the third positive connection terminal is electrically connected to the third negative connection terminal
  • the fourth positive connection terminal is electrically connected to the fourth negative connection terminal.
  • the common connection terminal By arranging the positive connection terminal in the terminal area on one side of the display area and the negative connection terminal in the terminal area on the other side of the display area, and then connecting the positive connection terminals on both sides with the negative connection terminals, the common The electrode layer is electrically connected to the metal terminal, and at the same time, through the corresponding connections of multiple connection terminals, multiple electrical connections between the common electrode layer and the metal terminal are achieved.
  • the positive connection terminal includes a fifth positive connection terminal and a sixth positive connection terminal
  • the negative connection terminal includes a fifth negative connection terminal and a sixth negative connection terminal
  • the fifth positive connection terminal and the fifth negative connection terminal are arranged in the terminal area on one side of the display area
  • the sixth positive connection terminal and the sixth negative connection terminal are arranged on the other side of the display area.
  • the terminal area on one side, the fifth positive connection terminal is electrically connected to the sixth negative connection terminal
  • the sixth positive connection terminal is electrically connected to the fifth negative connection terminal.
  • the common electrode layer and the metal terminal are connected, and through a connection
  • the corresponding connections of the terminals realize multiple connections between the common electrode layer and the metal terminals.
  • connection methods are described in detail using the first to sixth positive connection terminals and the first to sixth negative connection terminals.
  • first, second to sixth in the embodiments of the present application do not specifically refer to a certain connection terminal, and multiple connection methods can be used to implement metal terminals and connections without conflict, provided they do not conflict.
  • the conduction of the common electrode layer will not be described again here.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the The turn-on voltage of the electron injection layer and the electron transport layer.
  • the current can break down the electron injection layer and the electron transport layer, or the temperature rise caused by the voltage can
  • the electron injection layer and the electron transport layer are burned through, and the materials of the metal terminal and the common electrode layer are all conductive materials, so that the metal terminal and the common electrode layer can be connected, so that a common electrode layer and the electron injection layer can be formed using a mask.
  • the common electrode layer and metal terminals can also be connected.
  • the temperature range of the overlapping area is 50 degrees Celsius to 120 degrees Celsius. Since the electron injection layer and the electron transport layer are both organic materials, when the input voltage causes the temperature of the overlap area to rise, the electron injection layer and the electron transport layer will be burned through, causing the common electrode layer and metal terminals to be in the overlap area. Welding together achieves conduction between the common electrode layer and the metal terminal. Between 50 degrees Celsius and 120 degrees Celsius, the stability of the metal terminal and the common electrode layer is better, and the common electrode layer and the metal terminal will not be damaged due to temperature rise. Being burned affects the display effect.
  • the sum of the thickness of the electron injection layer and the electron transport layer is less than 200 nanometers.
  • the common electrode layer is made of a metal material, and a voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the first migration voltage of the metal material.
  • the metal particles in the common electrode layer It will migrate to the electron injection layer and electron transport layer, thereby improving the conductivity of the electron injection layer and electron transport layer, achieving conduction between the common electrode layer and the metal terminal, and improving the preparation efficiency of the display panel.
  • the first migration voltage refers to the voltage that can cause the metal material to migrate and conduct the metal terminal and the common electrode layer. For example, when the voltage is 2 volts, the metal material can migrate and conduct the metal terminal and the common electrode layer. Then 2 volts can be set as the first migration voltage.
  • the material of the common electrode layer includes silver or silver alloy. Since silver has a high mobility, using silver as the material of the common electrode layer can improve the migration effect, thereby improving the conduction between the metal terminals and the common electrode layer. Effect.
  • OLED display panels include top-emitting OLED display panels and bottom-emitting OLED display panels.
  • silver is used as the common electrode layer in top-emitting OLED display panels.
  • the thickness of the common electrode layer can be made smaller, for example, the thickness of the common electrode layer is 10 nanometers to 30 nanometers, thereby ensuring the transmittance of the top-emitting OLED display panel, while for bottom-emitting OLED display panels OLED display devices can make the common electrode layer thicker to increase reflectivity.
  • the common electrode layer is arranged in a single layer.
  • the thickness of the common electrode layer is reduced and the migration effect of particles is improved, thereby making the common electrode layer and the metal terminal conductive.
  • the common electrode layer may also be provided in multiple layers, one of which is made of silver or silver alloy.
  • the material of the electron injection layer includes a first conductive material
  • the material of the electron transport layer includes an organic material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than The second migration voltage of the electron injection layer.
  • the common electrode layer and metal terminals are conductive materials, they can be conductive when the common electrode layer, electron injection layer and electron transport layer are formed using the same mask. Common electrode layer and metal terminals.
  • the materials of the electron injection layer include lithium and ytterbium.
  • the second migration voltage refers to the voltage that causes the conductive material in the electron injection layer to migrate and conducts the metal terminals and the common electrode layer.
  • the voltage is 2 volts
  • the conductive material can migrate and conduct the metal terminals and the common electrode layer.
  • 2 volts can be set as the second migration voltage.
  • the electron transport layer is doped with a second conductive material, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the third migration of the second conductive material. Voltage.
  • the third migration voltage refers to the voltage that enables the conductive material in the electron transport layer to migrate and connect the metal terminals and the common electrode layer.
  • the conductive material can migrate and connect the metal terminals and the common electrode layer.
  • 2 volts can be set as the third migration voltage.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • at least one of the electron injection layer and the electron transport layer is doped with a third Conductive material, the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the fourth migration voltage of the third conductive material.
  • the doped metal forms a microscopic-like structure when the voltage is input.
  • the metal filaments enable the electron injection layer and the electron transport layer to form a path, conduct the metal terminal and the common electrode layer, and can conduct the common electrode layer when the common electrode layer, electron injection layer and electron transport layer are formed using the same mask. and metal terminals to improve the preparation efficiency of OLED display panels.
  • the fourth migration voltage refers to the voltage that enables the conductive material in the electron transport layer and/or to migrate and conduct the metal terminal and the common electrode layer.
  • the conductive material can migrate and conduct the connection.
  • 2 volts can be set as the fourth migration voltage.
  • first conductive material, the second conductive material and the third conductive material may be the same material or different materials.
  • the first to fourth migration voltages and the turn-on voltage are used to describe the voltages in different setting modes, but the first to fourth and the names of each voltage do not limit a certain voltage.
  • the specific values of The second migration voltage and the first migration voltage may also be smaller than the second migration voltage.
  • the electron injection layer is made of organic material
  • the electron transport layer is made of organic material
  • the common electrode layer is made of metal material
  • the electron injection layer is made of conductive material
  • the electron transport layer is made of organic material.
  • the electron injection layer and the electron transport layer are made of organic material.
  • the layer is made of organic material and is doped with conductive material as an example, respectively.
  • the embodiments of the present application include multiple combined embodiments, but not all embodiments are listed one by one. Two embodiments are used as examples in the following embodiments.
  • the material of the electron transport layer includes an organic material
  • the material of the electron injection layer includes an organic material
  • at least one layer of the electron transport layer and the electron injection layer is doped with a conductive material
  • the material of the common electrode layer includes a metal material
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the turn-on voltage of the electron injection layer and the electron transport layer.
  • the turn-on voltage is high, under the action of the electric field, the electron injection layer and the electron transport layer will be burned through, and at the same time, the metal particles in the common electrode layer, the conductive particles in the electron injection layer and/or the electron transport layer will migrate, so that at the same time
  • the metal terminals and the common electrode layer are connected in multiple ways, so that when the common electrode layer, electron injection layer and electron transport layer are formed using the same mask, the common electrode layer and the metal terminal can be connected, thereby improving the preparation efficiency of the OLED display panel. .
  • the electron transport layer may be made of an organic material
  • the electron injection layer may be made of a conductive material
  • the electron transport layer may be doped with a conductive material
  • the common electrode layer may be made of a metal material.
  • the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the turn-on voltage of the electron injection layer and the electron transport layer.
  • the above embodiments have been described in detail by taking the voltage-controlled conduction of the common electrode layer and the metal terminal as an example.
  • the voltage needs to be determined based on the overlap area between the common electrode layer and the metal terminal, the materials of the electron injection layer and the electron transport layer, the thickness of the electron injection layer and the electron transport layer, the material of the common electrode layer and the circuit design. to determine the size of the current, so as to conduct the common electrode layer and the metal terminal while avoiding damage to the common electrode layer.
  • the conduction of the common electrode layer and the metal terminal can be controlled through current and time.
  • the specific current and time are determined based on the above factors and will not be described again here.
  • FIG 4 is the design scheme of the mask plate of the existing OLED display panel. It can be seen from (a) in Figure 4 that the electron injection layer and the electron transport layer cannot conduct the common The film formation area of the electrode layer and the metal terminal, the electron injection layer and the electron transport layer needs to be smaller than the film formation area of the common electrode layer.
  • the boundary 413 of the electron injection layer and/or the electron transport layer is located under the boundary 411 of the common electrode layer.
  • the boundary 415 of the mask is different from the boundary 412 of the second mask, so that the electron injection layer and the electron transport layer can be close to the boundary 416 of the display area without covering the overlap area 414. Therefore, the existing OLED display device Different masks need to be used to form the common electrode layer, electron injection layer and electron transport layer.
  • this application forms the electron injection layer, electron transport layer and common electrode layer by using a mask.
  • the boundary 424 of the display area and the overlap area 152 are not changed, the boundary of the mask is There is only one 423.
  • the boundary 422 of the electron injection layer and/or the electron transport layer basically overlaps or even overlaps with the boundary 421 of the common electrode layer.
  • the common electrode layer and the metal terminal are connected through the above embodiment, so that the same mask is used to form electrons.
  • the injection layer, electron transport layer and common electrode layer improve the preparation efficiency of OLED display panels and reduce costs.
  • the driving circuit layer 12 includes an active layer 121 , a first gate insulation layer 122 , a first metal layer 123 , a second gate insulation layer 124 , and a second metal layer 125 , interlayer insulating layer 126, source and drain layer 127 and planarization layer 128.
  • the source-drain layer 127 includes a source electrode 127a and a drain electrode.
  • the light-emitting functional layer 13 includes a pixel electrode layer 131 , a light-emitting material layer 132 and a pixel definition layer 133 .
  • the luminescent material layer 132 includes a hole injection layer 132a, a hole transport layer 132b and a luminescent layer 132c.
  • the OLED display device includes an OLED display panel 1 and a power supply 51.
  • the OLED display panel 1 includes:
  • the driving circuit layer 12 is provided on one side of the substrate 11.
  • the driving circuit layer 12 includes a metal terminal 127d.
  • the metal terminal 127d includes a first metal terminal 127b and a second metal terminal 127c.
  • the first metal terminal 127b is insulated from the second metal terminal 127c;
  • the light-emitting functional layer 13 is provided on the side of the driving circuit layer 12 away from the substrate 11.
  • the light-emitting functional layer 13 includes an electron injection layer 132e, an electron transport layer 132d and a common electrode layer 134;
  • the encapsulation layer 14 is provided on the side of the light-emitting functional layer 13 away from the driving circuit layer 12;
  • the OLED display panel 1 includes a display area 151 and an overlapping area 152.
  • an electron injection layer 132e and an electron transport layer are provided between the common electrode layer 134 and the metal terminal 127d.
  • 132d one side of the first metal terminal 127b is connected to the high potential voltage terminal 212, the other side of the first metal terminal 127b is connected to the electron transport layer 132d, and one side of the second metal terminal 127c is connected to the electron transport layer 132d.
  • the transmission layer 132d is connected, and the other side of the second metal terminal 127c is connected to the low-potential voltage terminal 214.
  • the voltage difference between the high-potential voltage terminal 212 and the low-potential voltage terminal 214 is greater than that of the metal terminal 127d and the low-potential voltage terminal 214.
  • the turn-on voltage of the common electrode layer 134 is provided in the overlapping area 152.
  • Embodiments of the present application provide an OLED display device.
  • the OLED display device includes an OLED display panel and a power supply.
  • the OLED display panel can use a metal mask to form an electron injection layer and an electron transmission layer in an overlapping area.
  • the injection layer, electron transport layer and common electrode layer improve the preparation efficiency of the OLED display panel.
  • the first metal terminal and the second metal terminal are respectively connected through the high potential voltage terminal and the low potential voltage terminal, and the high potential voltage terminal and the low potential voltage terminal are connected respectively.
  • the voltage difference at the voltage terminal is greater than the turn-on voltage of the metal terminal and the common electrode layer, so that even if the electron injection layer and electron transport layer have poor conductivity, under the action of voltage, the electron injection layer and electron transport layer can be burned through or the electrons can pass through. Migrate to achieve continuity between the common electrode layer and the metal terminal, allowing the OLED display panel to operate normally.
  • the high potential voltage terminal is connected to the positive pole of the power supply, and the low potential voltage terminal is connected to the negative pole of the power supply.
  • the first metal terminal and the second metal terminal are respectively disposed in overlapping areas on both sides of the display area.
  • the first metal terminal includes a plurality of positive connection terminals
  • the second metal terminal includes a plurality of negative connection terminals
  • the positive connection terminal is disposed on the The negative connection terminal is arranged in the overlapping area on both sides of the display area, and the positive connection terminal is arranged corresponding to the negative connection terminal.
  • the positive connection terminal includes a first positive connection terminal and a second positive connection terminal
  • the negative connection terminal includes a first negative connection terminal, a second positive connection terminal and a second positive connection terminal.
  • Negative connection terminal, the first positive connection terminal and the first negative connection terminal are arranged in the overlapping area on one side of the display area, the second positive connection terminal and the second negative connection terminal are The forward connection terminal is arranged in the overlapping area on the other side of the display area, and the first forward connection terminal is electrically connected to the first negative connection terminal, and the second forward connection terminal is electrically connected to The second negative connecting terminal.
  • the positive connection terminal includes a third positive connection terminal and a fourth positive connection terminal
  • the negative connection terminal includes a third negative connection terminal
  • a fourth Negative connection terminal the third positive connection terminal and the fourth positive connection terminal are provided in the terminal area on one side of the display area
  • the third negative connection terminal and the fourth negative connection Terminals are provided in a terminal area on the other side of the display area
  • the third positive connection terminal is electrically connected to the third negative connection terminal
  • the fourth positive connection terminal is electrically connected to the fourth Negative connection terminal.
  • the material of the electron injection layer includes an organic material
  • the material of the electron transport layer includes an organic material
  • the temperature range of the overlap area is 50 degrees Celsius to 120 degrees Celsius.
  • the material of the common electrode layer includes a metal material, and the voltage difference between the high potential voltage terminal and the low potential voltage terminal is greater than the first voltage of the metal material. migration voltage.
  • the material of the electron injection layer includes a conductive material
  • the material of the electron transport layer includes an organic material
  • Embodiments of the present application provide an OLED display panel and an OLED display device.
  • the OLED display panel includes a substrate, a driving circuit layer, a light-emitting functional layer and a packaging layer.
  • the driving circuit layer is disposed on one side of the substrate, and the driving circuit layer includes metal terminals.
  • the metal terminal includes a first metal terminal and a second metal terminal, the first metal terminal and the second metal terminal are insulated, the light-emitting functional layer is provided on the side of the driving circuit layer away from the substrate, the light-emitting functional layer includes an electron injection layer, an electron The transmission layer and the common electrode layer, and the encapsulation layer are arranged on the side of the light-emitting functional layer away from the driving circuit layer.
  • the OLED display panel includes a display area and an overlapping area. In the overlapping area, there is a device between the common electrode layer and the metal terminal.
  • the electron injection layer and the electron transport layer, the first metal terminal is connected to the high potential voltage terminal, the other side of the first metal terminal is connected to the electron transport layer, one side of the second metal terminal is connected to the electron transport layer, and the other side of the second metal terminal It is connected to the low-potential voltage terminal, and the voltage difference between the high-potential voltage terminal and the low-potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer.
  • this application can use a metal mask to form the electron injection layer, the electron transport layer and the common electrode layer, thereby improving the preparation efficiency of the OLED display panel.
  • the voltage terminal and the low-potential voltage terminal are connected to the first metal terminal and the second metal terminal respectively.
  • the voltage difference between the high-potential voltage terminal and the low-potential voltage terminal is greater than the conduction voltage of the metal terminal and the common electrode layer, so that even if the electron injection layer and electron transmission The conductivity of the layer is poor.
  • the electron injection layer and electron transport layer can be burned through or electron migration can be used to achieve continuity between the common electrode layer and the metal terminal, so that the OLED display panel can work normally.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示面板和OLED显示装置;该OLED显示面板通过使得电子注入层(132e)和电子传输层(132d)设置在搭接区(152),可以采用一个金属掩膜版形成电子注入层(132e)、电子传输层(132d)和公共电极层(134),提高OLED显示面板的制备效率、降低成本,同时,通过高电位电压端(212)和低电位电压端(214)分别连接第一金属端子(127b)和第二金属端子(127c),实现公共电极层(134)与金属端子(127d)的导通。

Description

OLED显示面板和OLED显示装置 技术领域
本申请涉及显示技术领域,尤其是涉及一种OLED显示面板和OLED显示装置。
背景技术
随着显示技术的发展,为了降低成本,会采用喷墨打印的方式形成OLED(Organic Light-Emitting Diode,有机发光二极管)显示器件中的空穴注入层、空穴传输层和发光层。而由于电子传输层和电子注入层的材料限制,导致电子传输层和电子注入层只能采用蒸镀的方式形成,而阴极在形成过程中也会采用蒸镀的方式形成。由于阴极在形成时需要与晶体管上的金属走线搭接导通,因此,需要使得阴极的成膜面积大于电子注入层和电子传输层的成膜面积,而这会导致至少需要两个掩模版、设计多个腔体以形成不同成膜面积的阴极和电子注入层/电子传输层,导致OLED显示器件的制备效率较低。
所以,现有OLED显示器件存在阴极和电子注入层/电子传输层的掩模版不同所导致的OLED显示器件的制备效率较低的技术问题。
技术问题
本申请实施例提供一种OLED显示面板和OLED显示装置,用以缓解现有OLED显示器件存在阴极和电子注入层/电子传输层的掩模版不同所导致的OLED显示器件的制备效率较低的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种OLED显示面板,该OLED显示面板包括:
衬底;
驱动电路层,设置于所述衬底一侧,所述驱动电路层包括金属端子,所述金属端子包括第一金属端子和第二金属端子,所述第一金属端子与所述第二金属端子绝缘设置;
发光功能层,设置于所述驱动电路层远离所述衬底的一侧,所述发光功能层包括电子注入层、电子传输层和公共电极层;
封装层,设置于所述发光功能层远离所述驱动电路层的一侧;
其中,所述OLED显示面板包括显示区和搭接区,在所述搭接区,所述公共电极层与所述金属端子之间设有电子注入层和电子传输层,所述第一金属端子一侧连接高电位电压端,所述第一金属端子另一侧与所述电子传输层连接,所述第二金属端子一侧与所述电子传输层连接,所述第二金属端子另一侧与低电位电压端连接,所述高电位电压端与所述低电位电压端的电压差大于所述金属端子和所述公共电极层的导通电压。
在一些实施例中,所述第一金属端子与所述第二金属端子分别设置于所述显示区两侧的搭接区内。
在一些实施例中,所述第一金属端子包括多个正向连接端子,所述第二金属端子包括多个负向连接端子,所述正向连接端子设置于所述显示区两侧的搭接区内,所述负向连接端子设置于所述显示区两侧的搭接区内,且所述正向连接端子与所述负向连接端子对应设置。
在一些实施例中,所述正向连接端子包括第一正向连接端子、第二正向连接端子,所述负向连接端子包括第一负向连接端子、第二负向连接端子,所述第一正向连接端子和所述第一负向连接端子设置于所述显示区一侧的搭接区内,所述第二正向连接端子和所述第二负向连接端子设置于所述显示区另一侧的搭接区内,且所述第一正向连接端子电连接至所述第一负向连接端子,所述第二正向连接端子电连接至所述第二负向连接端子。
在一些实施例中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。
在一些实施例中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。
在一些实施例中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。
在一些实施例中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。
在一些实施例中,所述电子注入层的材料包括第一导电材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层的第二迁移电压。
在一些实施例中,所述电子传输层中掺杂有第二导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第二导电材料的第三迁移电压。
在一些实施例中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述电子注入层和所述电子传输层中的至少一个中掺杂有第三导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第三导电材料的第四迁移电压。
同时,本申请实施例提供一种OLED显示装置,该OLED显示装置包括OLED显示面板和电源,所述OLED显示面板包括:
衬底;
驱动电路层,设置于所述衬底一侧,所述驱动电路层包括金属端子,所述金属端子包括第一金属端子和第二金属端子,所述第一金属端子与所述第二金属端子绝缘设置;
发光功能层,设置于所述驱动电路层远离所述衬底的一侧,所述发光功能层包括电子注入层、电子传输层和公共电极层;
封装层,设置于所述发光功能层远离所述驱动电路层的一侧;
其中,所述OLED显示面板包括显示区和搭接区,在所述搭接区,所述公共电极层与所述金属端子之间设有电子注入层和电子传输层,所述第一金属端子一侧连接高电位电压端,所述第一金属端子另一侧与所述电子传输层连接,所述第二金属端子一侧与所述电子传输层连接,所述第二金属端子另一侧与低电位电压端连接,所述高电位电压端与所述低电位电压端的电压差大于所述金属端子和所述公共电极层的导通电压。
在一些实施例中,所述高电位电压端与所述电源的正极连接,所述低电位电压端与所述电源的负极连接。
在一些实施例中,所述第一金属端子与所述第二金属端子分别设置于所述显示区两侧的搭接区内。
在一些实施例中,所述第一金属端子包括多个正向连接端子,所述第二金属端子包括多个负向连接端子,所述正向连接端子设置于所述显示区两侧的搭接区内,所述负向连接端子设置于所述显示区两侧的搭接区内,且所述正向连接端子与所述负向连接端子对应设置。
在一些实施例中,所述正向连接端子包括第一正向连接端子、第二正向连接端子,所述负向连接端子包括第一负向连接端子、第二负向连接端子,所述第一正向连接端子和所述第一负向连接端子设置于所述显示区一侧的搭接区内,所述第二正向连接端子和所述第二负向连接端子设置于所述显示区另一侧的搭接区内,且所述第一正向连接端子电连接至所述第一负向连接端子,所述第二正向连接端子电连接至所述第二负向连接端子。
在一些实施例中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。
在一些实施例中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。
在一些实施例中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。
在一些实施例中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。
有益效果
本申请提供一种OLED显示面板和OLED显示装置;该OLED显示面板包括衬底、驱动电路层、发光功能层和封装层,驱动电路层设置于衬底一侧,驱动电路层包括金属端子,金属端子包括第一金属端子和第二金属端子,第一金属端子和第二金属端子绝缘设置,发光功能层设置于驱动电路层远离衬底的一侧,发光功能层包括电子注入层、电子传输层和公共电极层,封装层设置于发光功能层远离驱动电路层的一侧,其中,OLED显示面板包括显示区和搭接区,在搭接区,公共电极层与金属端子之间设有电子注入层和电子传输层,第一金属端子连接高电位电压端,第一金属端子另一侧与电子传输层连接,第二金属端子一侧与电子传输层连接,第二金属端子另一侧与低电位电压端连接,高电位电压端与低电位电压端的电压差大于金属端子和公共电极层的导通电压。本申请通过使得电子注入层和电子传输层设置在搭接区,可以采用一个金属掩膜版形成电子注入层、电子传输层和公共电极层,提高OLED显示面板的制备效率、降低成本,同时,通过高电位电压端和低电位电压端分别连接第一金属端子和第二金属端子,高电位电压端和低电位电压端的电压差大于金属端子和公共电极层的导通电压,使得即使电子注入层和电子传输层的导电性较差,在电压的作用下可以通过烧通电子注入层和电子传输层或者通过电子迁移,实现公共电极层与金属端子的导通,使OLED显示面板正常工作。
附图说明
图1为本申请实施例提供的OLED显示面板的第一种示意图。
图2为本申请实施例提供的OLED显示面板的第二种示意图。
图3为本申请实施例提供的OLED显示面板的第三种示意图。
图4为本申请实施例提供的OLED显示面板的掩模版的设计与现有OLED显示面板的掩模版的设计的对比示意图。
图5为本申请实施例提供的OLED显示装置的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例针对现有OLED显示器件存在阴极和电子注入层/电子传输层的掩模版不同所导致的OLED显示器件的制备效率较低的技术问题,提供一种OLED显示面板和OLED显示装置,用以解决上述技术问题。
如图1、图2所示,本申请实施例提供一种OLED显示面板,该OLED显示面板1包括:
衬底11;
驱动电路层12,设置于所述衬底11一侧,所述驱动电路层12包括金属端子127d,所述金属端子127d包括第一金属端子127b和第二金属端子127c,所述第一金属端子127b与所述第二金属端子127c绝缘设置;
发光功能层13,设置于所述驱动电路层12远离所述衬底11的一侧,所述发光功能层13包括电子注入层132e、电子传输层132d和公共电极层134;
封装层14,设置于所述发光功能层13远离所述驱动电路层12的一侧;
其中,所述OLED显示面板1包括显示区151和搭接区152,在所述搭接区152,所述公共电极层134与所述金属端子127d之间设有电子注入层132e和电子传输层132d,所述第一金属端子127b一侧连接高电位电压端212,所述第一金属端子127b另一侧与所述电子传输层132d连接,所述第二金属端子127c一侧与所述电子传输层132d连接,所述第二金属端子127c另一侧与所述低电位电压端214连接,所述高电位电压端212与所述低电位电压端214的电压差大于所述金属端子127d和所述公共电极层134的导通电压。
本申请实施例提供一种OLED显示面板,该OLED显示面板通过使得电子注入层和电子传输层设置在搭接区,可以采用一个金属掩膜版形成电子注入层、电子传输层和公共电极层,提高OLED显示面板的制备效率、降低成本,同时,通过高电位电压端和低电位电压端分别连接第一金属端子和第二金属端子,高电位电压端和低电位电压端的电压差大于金属端子和公共电极层的导通电压,使得即使电子注入层和电子传输层的导电性较差,在电压的作用下可以通过烧通电子注入层和电子传输层或者通过电子迁移,实现公共电极层与金属端子的导通,使OLED显示面板正常工作。
需要说明的是,金属端子和公共电极层的导通电压是指在输入电压时,能够将金属端子和公共电极层导通的电压,具体的,可以是通过使电压较大通过电流击穿电子注入层和电子传输层从而导通金属端子和公共电极层,则此时的电压可以作为导通电压,也可以是通过输入电压使得金属粒子在电场作用下发生迁移从而导通金属端子和公共电极层,则此时的电压可以作为导通电压,且本申请的导通电压不仅限于上述举例,在下述实施例进行详细说明。
需要说明的是,在图2中,高电位电压端212通过第一金属走线211与第一金属端子127b连接,低电位电压端214通过第二金属走线213与第二金属端子127c连接,由于图2为透视图,因此示出的高电位电压端、低电位电压端、第一金属走线和第二金属走线位于OLED显示面板外,但在实际设计过程中,会将高电位电压端、低电位电压端、第一金属走线和第二金属走线设置在OLED显示面板内,以便于对各走线和端子进行保护,且便于端子之间的连接。
具体的,例如第一金属走线、第二金属走线、高电位电压端、低电位电压端均可以通过源漏极层形成,但本申请实施例不限于此,例如为了避免第一金属走线、第二金属走线、高电位电压端、低电位电压端对源漏极层空间的占用,可以通过第一金属层、第二金属层和遮光层形成。
需要说明的是,图2中以标号134标示公共电极层,同时,标号134示出公共电极层的边界,但实际上由于本申请中的公共电极层、电子注入层和电子传输层采用同一掩模版形成,虽然可能存在一定的误差,导致公共电极层与电子注入层和电子传输层不能完全重合,但公共电极层的边界可以认定为电子注入层和电子传输层的边界,即标号134所代表的公共电极层的边界也可以是电子注入层和电子传输层的边界,金属端子和公共电极层之间设有电子注入层和电子传输层,即公共电极层与电子注入层和电子传输层可以采用同一掩模版形成。
在一种实施例中,如图2所示,所述第一金属端子127b与所述第二金属端子127c分别设置于所述显示区151两侧的搭接区152内。通过将分别连接高电位电压端和低电位电压端的第一金属端子和第二金属端子设置在两侧的搭接区内,使得在导通公共电极层和金属端子时,电流会依次从第一金属走线到第一金属端子,然后从第一金属端子到第一金属端子上的电子传输层、电子注入层的部分,然后从第一金属端子上的电子注入层的部分到公共电极层,由于公共电极层整面设置且整面导电,电流会从公共电极到达第二金属端子上的电子注入层,然后从第二金属端子上的电子注入层到电子传输层和第二金属端子,然后从第二金属端子到第二金属走线,从而得到从高电位电压端至低电位电压端的回路,导通公共电极层和金属端子。
上述实施例中以第一金属端子和第二金属端子设置在显示区的两侧以实现公共电极层和金属端子的连接进行了详细说明。但本申请实施例不限于此,例如为了节省空间,可以将第一金属端子和第二金属端子设置在显示区的一侧,相应的,下述实施例中的正向连接端子和负向连接端子的设置方式也可以采用显示区一侧的搭接区设置的方式,在下述实施例不赘述。
在一种实施例中,如图3所示,所述第一金属端子127b包括多个正向连接端子(例如第一正向连接端子311和第二正向连接端子312),所述第二金属端子127c包括多个负向连接端子(例如第一负向连接端子313和第二负向连接端子314),所述正向连接端子设置于所述显示区151两侧的搭接区152内,所述负向连接端子设置于所述显示区151两侧的搭接区152内,且所述正向连接端子与所述负向连接端子对应设置。通过设置多个正向连接端子和多个负向连接端子,在公共电极层与金属端子导通时,可以通过多个连接端子的导通实现不同信号的传递或者通过多个连接端子的导通,避免在某一金属端子的连接出现断路问题时,仍然能够通过其他金属端子实现公共电极层与金属端子的导通。
在一种实施例中,如图3所示,所述正向连接端子包括第一正向连接端子311、第二正向连接端子312,所述负向连接端子包括第一负向连接端子313、第二负向连接端子314,所述第一正向连接端子311和所述第一负向连接端子313设置于所述显示区151一侧的搭接区152内,所述第二正向连接端子312和所述第二负向连接端子314设置于所述显示区151另一侧的搭接区152内,且所述第一正向连接端子311电连接至所述第一负向连接端子313,所述第二正向连接端子312电连接至所述第二负向连接端子314。通过将第一正向连接端子和同侧的第一负向连接端子电连接,将第二正向连接端子和同侧的第二负向连接端子电连接,实现了公共电极层与金属端子的两处导通。
需要说明的是,本申请实施例中的电连接是指电流会从一端走向另一端,由于本申请中的第一金属端子和第二金属端子绝缘设置,因此,本申请实施例中的电连接不包括两端物理连接,例如第一正向连接端子与第一负向连接端子电连接,是指电流会从第一正向连接端子走线第一负向连接端子,或者电流从第一负向连接端子走线第一正向连接端子,而不是指第一正向连接端子与第一负向连接端子物理连接,在下述实施例中电连接也以此为准,在下述实施例中不再赘述。
在一种实施例中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。通过将正向连接端子设置在显示区一侧的端子区,将负向连接端子设置在显示区另一侧的端子区,然后将两侧的正向连接端子与负向连接端子连接,使得公共电极层与金属端子导通,同时通过多个连接端子的对应连接,实现公共电极层和金属端子的多处导通。
在一种实施例中,所述正向连接端子包括第五正向连接端子、第六正向连接端子,所述负向连接端子包括第五负向连接端子、第六负向连接端子,所述第五正向连接端子和第五负向连接端子设置于所述显示区一侧的端子区,所述第六正向连接端子和所述第六负向连接端子设置于所述显示区另一侧的端子区,且所述第五正向连接端子电连接至所述第六负向连接端子,所述第六正向连接端子电连接至所述第五负向连接端子。通过将正向连接端子和负向连接端子设置在显示区两侧,并通过两侧的正向连接端子和负向连接端子电连接,实现公共电极层和金属端子的导通,且通过个连接端子的对应连接,实现公共电极层和金属端子的多处导通。
上述实施例中以第一正向连接端子至第六正向连接端子、第一负向连接端子至第六负向连接端子对多种连接方式进行了详细说明。但需要说明的是,本申请实施例中第一、第二至第六并不特指某一连接端子,且多个连接方式在不冲突的前提下,可以使用多种连接方式实现金属端子和公共电极层的导通,在此不再赘述。
针对电子注入层和电子传输层的材料为有机材料时无法导通金属端子和公共电极层,导致需要采用两个不同的掩模版分别形成公共电极层与电子注入层和电子传输层,显示装置的制备较低的问题。在一种实施例中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。在电子注入层和电子传输层的材料为有机材料时,电子注入层和电子传输层的导电性较差,通过第一金属端子和第二金属端子分别连接高电位电压端和低电位电压端,使得高电位电压端和低电位电压端之间的电压差大于电子注入层和电子传输层的导通电压,则此时电流能够击穿电子注入层和电子传输层,或者电压导致的气温上升能够烧通电子注入层和电子传输层,而金属端子和公共电极层的材料均为导电材料,使得金属端子和公共电极层能够导通,从而使得在采用一个掩模版形成公共电极层、电子注入层和电子传输层时,也能导通公共电极层和金属端子。
在一种实施例中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。由于电子注入层和电子传输层均为有机材料,因此,在输入电压导致搭接区的温度上升时,电子注入层和电子传输层会被烧通,使得公共电极层和金属端子在搭接区熔接在一起,实现公共电极层和金属端子的导通,而在50摄氏度至120摄氏度之间,金属端子和公共电极层的稳定性较好,不会因为温度的上升导致公共电极层和金属端子被烧伤,影响显示效果。
具体的,电子注入层的厚度和电子传输层的厚度之和小于200纳米,通过降低电子注入层和电子传输层的厚度,使得电子注入层和电子传输层能够被烧通。
针对电子注入层和电子传输层的材料为有机材料时无法导通金属端子和公共电极层,导致需要采用两个不同的掩模版分别形成公共电极层与电子注入层和电子传输层,显示装置的制备较低的问题。在一种实施例中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。通过将公共电极层的材料设置为金属材料,且使得高电位电压端和低电位电压端之间的电压差大于金属材料的第一迁移电压,使得在输入电压时,公共电极层中的金属粒子会迁移至电子注入层和电子传输层,从而提高电子注入层和电子传输层的导电性,实现公共电极层和金属端子的导通,提高显示面板的制备效率。
具体的,第一迁移电压是指能够使得金属材料发生迁移并导通金属端子和公共电极层的电压,例如电压为2伏特时,能够使金属材料发生迁移并导通金属端子和公共电极层,则可以设定2伏特为第一迁移电压。
具体的,所述公共电极层的材料包括银或者银合金,由于银的迁移率较高,采用银作为公共电极层的材料,则可以提高迁移效果,从而提高金属端子和公共电极层的导通效果。
具体的,针对OLED显示面板包括顶发光OLED显示面板和底发光OLED显示面板,顶发光OLED显示面板采用银作为公共电极层会导致透过率较低的问题,因此,本申请实施例在采用银或者银合金作为顶发光OLED显示面板时,可以使公共电极层的厚度较小,例如公共电极层的厚度为10纳米至30纳米,从而保证顶发光OLED显示面板的透过率,而对于底发光OLED显示器件,可以使公共电极层较厚,从而提高反射率。
在一种实施例中,所述公共电极层为单层设置,通过采用单层设置的方式减小公共电极层的厚度,同时提高粒子的迁移效果,从而使公共电极层和金属端子导通。但本申请实施例不限于此,公共电极层也可以为多层设置,其中一层为银或者银合金形成。
针对电子注入层和电子传输层的材料为有机材料时无法导通金属端子和公共电极层,导致需要采用两个不同的掩模版分别形成公共电极层与电子注入层和电子传输层,显示装置的制备较低的问题。在一种实施例中,所述电子注入层的材料包括第一导电材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层的第二迁移电压。通过采用导电材料作为电子注入层的材料,并使得高电位电压端和低电位电压端之间的电压差大于电子注入层的第二迁移电压,使得在输入电压时,电子注入层中的导电粒子能够进行迁移,在电场的作用下迁移至电子传输层,而由于公共电极层和金属端子为导电材料,使得在采用同一掩模版形成公共电极层、电子注入层和电子传输层时,能够导通公共电极层和金属端子。
具体的,所述电子注入层的材料包括锂、镱。
具体的,第二迁移电压是指使得电子注入层中的导电材料发生迁移并导通金属端子和公共电极层的电压,例如电压为2伏特时,能够使导电材料发生迁移并导通金属端子和公共电极层,则可以设定2伏特为第二迁移电压。
在一种实施例中,所述电子传输层中掺杂有第二导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第二导电材料的第三迁移电压。通过在电子传输层中掺杂导电材料,并使得该导电材料能够进行迁移,在金属端子和公共电极层之间形成通路,从而导通公共电极层和金属端子。
具体的,第三迁移电压是指使得电子传输层中的导电材料发生迁移并导通金属端子和公共电极层的电压,例如电压为2伏特时,能够使导电材料发生迁移并导通金属端子和公共电极层,则可以设定2伏特为第三迁移电压。
针对电子注入层和电子传输层的材料为有机材料时无法导通金属端子和公共电极层,导致需要采用两个不同的掩模版分别形成公共电极层与电子注入层和电子传输层,显示装置的制备较低的问题。在一种实施例中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述电子注入层和所述电子传输层中的至少一个中掺杂有第三导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第三导电材料的第四迁移电压。通过在电子注入层和电子传输层中掺杂导电材料,并使得高电位电压端和低电位电压端之间的电压差大于导电材料的迁移电压,使得在输入电压时,掺杂金属形成类似微观金属细丝,使电子注入层和电子传输层能够形成通路,导通金属端子和公共电极层,在采用同一掩模版形成公共电极层、电子注入层和电子传输层时,能够导通公共电极层和金属端子,提高OLED显示面板的制备效率。
具体的,第四迁移电压是指使得电子传输层和/或中的导电材料发生迁移并导通金属端子和公共电极层的电压,例如电压为2伏特时,能够使导电材料发生迁移并导通金属端子和公共电极层,则可以设定2伏特为第四迁移电压。
需要说明的是,第一导电材料、第二导电材料和第三导电材料可以为同一材料,也可以为不同材料。
需要说明的是,上述实施例中以第一迁移电压至第四迁移电压、导通电压说明了不同设置方式下的电压,但第一至第四、以及各电压的名称并不限定某一电压的具体数值,也不限定某一电压大于另一电压,例如第一迁移电压并不一定大于第二迁移电压,第一迁移电压根据需要可以与第二迁移电压相同、第一迁移电压可以大于第二迁移电压、第一迁移电压也可以小于第二迁移电压。
需要说明的是,上述实施例以电子注入层为有机材料、电子传输层为有机材料,公共电极层为金属材料,电子注入层为导电材料、电子传输层为有机材料,电子注入层和电子传输层为有机材料且掺杂导电材料为例分别进行了详细说明。但由于上述实施例中部分特征不存在冲突,因此本申请实施例可以将多个特征作为一个实施例,本申请实施例不限于上述实施例,在特征不冲突时可以将多个特征组合作为一个实施例,以进一步提高公共电极层和金属端子的导通效果。
具体的,为了说明多个特征可以组合作为一个实施例,本申请实施例包括多个组合的实施例,但不一一列举所有实施例,在下述实施例中以两实施例进行举例说明。
在一种实施例中,所述电子传输层的材料包括有机材料、所述电子注入层的材料包括有机材料,所述电子传输层和所述电子注入层中的至少一层掺杂有导电材料,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。通过使得电子传输层和电子注入层中掺杂导电材料,使公共电极层的材料包括金属材料,同时使得高电位电压端和低电位电压端之间的电压差大于电子注入层和电子传输层的导通电压,则在电场的作用下,电子注入层和电子传输层会被烧通、同时公共电极层的金属粒子、电子注入层和/或电子传输层中的导电粒子会发生迁移,使得同时通过多个方式导通金属端子和公共电极层,从而在采用同一掩模版形成公共电极层、电子注入层和电子传输层时,能够导通公共电极层和金属端子,提高OLED显示面板的制备效率。
具体的,还可以使所述电子传输层的材料包括有机材料、所述电子注入层的材料包括导电材料,所述电子传输层中掺杂有导电材料,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。本申请实施例以此为例,不再赘述。
上述实施例以电压控制导通公共电极层和金属端子为例进行了详细说明。对于电压的具体控制,需要根据公共电极层与金属端子的搭接面积、电子注入层和电子传输层的材料、电子注入层和电子传输层的厚度、公共电极层的材料和电路设计来确定电压的大小,以确定电流的大小,从而能够导通公共电极层和金属端子的同时,避免损伤公共电极层。
具体的,可以通过电流和时间来控制导通公共电极层和金属端子,具体的电流和时间根据上述因素进行确定,在此不再赘述。
如图4所示,图4中的(a)为现有OLED显示面板的掩模版的设计方案,从图4中的(a)可以看到,由于电子注入层和电子传输层无法导通公共电极层和金属端子,电子注入层和电子传输层的成膜面积需要小于公共电极层的成膜面积,电子注入层和/或电子传输层的边界413位于公共电极层的边界411下,第一掩模版的边界415与第二掩模版的边界412不同,这样才能使得电子注入层和电子传输层靠近显示区的边界416,而不会覆盖在搭接区414上,因此,现有OLED显示器件需要采用不同的掩模版形成公共电极层与电子注入层和电子传输层。
如图4中的(b)所示,本申请通过采用一个掩模版形成电子注入层、电子传输层和公共电极层,在不改变显示区的边界424和搭接区152时,掩模版的边界423只有一个,电子注入层和/或电子传输层的边界422与公共电极层的边界421基本重合甚至重合,并通过上述实施例中导通公共电极层和金属端子,从而采用同一掩模版形成电子注入层、电子传输层和公共电极层,提高OLED显示面板的制备效率,降低成本。
在一种实施例中,如图1所示,驱动电路层12包括有源层121、第一栅极绝缘层122、第一金属层123、第二栅极绝缘层124、第二金属层125、层间绝缘层126、源漏极层127和平坦化层128。
在一种实施例中,如图1所示,源漏极层127包括源极127a和漏极。
在一种实施例中,如图1所示,发光功能层13包括像素电极层131、发光材料层132和像素定义层133。
在一种实施例中,如图1所示,发光材料层132包括空穴注入层132a、空穴传输层132b和发光层132c。
同时,如图1、图2、图5所示,本申请实施例提供一种OLED显示装置,该OLED显示装置包括OLED显示面板1和电源51,所述OLED显示面板1包括:
衬底11;
驱动电路层12,设置于所述衬底11一侧,所述驱动电路层12包括金属端子127d,所述金属端子127d包括第一金属端子127b和第二金属端子127c,所述第一金属端子127b与所述第二金属端子127c绝缘设置;
发光功能层13,设置于所述驱动电路层12远离所述衬底11的一侧,所述发光功能层13包括电子注入层132e、电子传输层132d和公共电极层134;
封装层14,设置于所述发光功能层13远离所述驱动电路层12的一侧;
其中,所述OLED显示面板1包括显示区151和搭接区152,在所述搭接区152,所述公共电极层134与所述金属端子127d之间设有电子注入层132e和电子传输层132d,所述第一金属端子127b一侧连接高电位电压端212,所述第一金属端子127b另一侧与所述电子传输层132d连接,所述第二金属端子127c一侧与所述电子传输层132d连接,所述第二金属端子127c另一侧与所述低电位电压端214连接,所述高电位电压端212与所述低电位电压端214的电压差大于所述金属端子127d和所述公共电极层134的导通电压。
本申请实施例提供一种OLED显示装置,该OLED显示装置包括OLED显示面板和电源,该OLED显示面板通过使得电子注入层和电子传输层设置在搭接区,可以采用一个金属掩膜版形成电子注入层、电子传输层和公共电极层,提高OLED显示面板的制备效率,同时,通过高电位电压端和低电位电压端分别连接第一金属端子和第二金属端子,高电位电压端和低电位电压端的电压差大于金属端子和公共电极层的导通电压,使得即使电子注入层和电子传输层的导电性较差,在电压的作用下可以通过烧通电子注入层和电子传输层或者通过电子迁移,实现公共电极层与金属端子的导通,使OLED显示面板正常工作。
在一种实施例中,所述高电位电压端与所述电源的正极连接,所述低电位电压端与所述电源的负极连接。
在一种实施例中,在OLED显示装置中,所述第一金属端子与所述第二金属端子分别设置于所述显示区两侧的搭接区内。
在一种实施例中,在OLED显示装置中,所述第一金属端子包括多个正向连接端子,所述第二金属端子包括多个负向连接端子,所述正向连接端子设置于所述显示区两侧的搭接区内,所述负向连接端子设置于所述显示区两侧的搭接区内,且所述正向连接端子与所述负向连接端子对应设置。
在一种实施例中,在OLED显示装置中,所述正向连接端子包括第一正向连接端子、第二正向连接端子,所述负向连接端子包括第一负向连接端子、第二负向连接端子,所述第一正向连接端子和所述第一负向连接端子设置于所述显示区一侧的搭接区内,所述第二正向连接端子和所述第二负向连接端子设置于所述显示区另一侧的搭接区内,且所述第一正向连接端子电连接至所述第一负向连接端子,所述第二正向连接端子电连接至所述第二负向连接端子。
在一种实施例中,在OLED显示装置中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。
在一种实施例中,在OLED显示装置中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。
在一种实施例中,在OLED显示装置中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。
在一种实施例中,在OLED显示装置中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。
在一种实施例中,在OLED显示装置中,所述电子注入层的材料包括导电材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层的第二迁移电压。
根据上述实施例可知:
本申请实施例提供一种OLED显示面板和OLED显示装置,该OLED显示面板包括衬底、驱动电路层、发光功能层和封装层,驱动电路层设置于衬底一侧,驱动电路层包括金属端子,金属端子包括第一金属端子和第二金属端子,第一金属端子和第二金属端子绝缘设置,发光功能层设置于驱动电路层远离衬底的一侧,发光功能层包括电子注入层、电子传输层和公共电极层,封装层设置于发光功能层远离驱动电路层的一侧,其中,OLED显示面板包括显示区和搭接区,在搭接区,公共电极层与金属端子之间设有电子注入层和电子传输层,第一金属端子连接高电位电压端,第一金属端子另一侧与电子传输层连接,第二金属端子一侧与电子传输层连接,第二金属端子另一侧与低电位电压端连接,高电位电压端与低电位电压端的电压差大于金属端子和公共电极层的导通电压。本申请通过使得电子注入层和电子传输层设置在搭接区,可以采用一个金属掩膜版形成电子注入层、电子传输层和公共电极层,提高OLED显示面板的制备效率,同时,通过高电位电压端和低电位电压端分别连接第一金属端子和第二金属端子,高电位电压端和低电位电压端的电压差大于金属端子和公共电极层的导通电压,使得即使电子注入层和电子传输层的导电性较差,在电压的作用下可以通过烧通电子注入层和电子传输层或者通过电子迁移,实现公共电极层与金属端子的导通,使OLED显示面板正常工作。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种OLED显示面板和OLED显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种OLED显示面板,其包括:
    衬底;
    驱动电路层,设置于所述衬底一侧,所述驱动电路层包括金属端子,所述金属端子包括第一金属端子和第二金属端子,所述第一金属端子与所述第二金属端子绝缘设置;
    发光功能层,设置于所述驱动电路层远离所述衬底的一侧,所述发光功能层包括电子注入层、电子传输层和公共电极层;
    封装层,设置于所述发光功能层远离所述驱动电路层的一侧;
    其中,所述OLED显示面板包括显示区和搭接区,在所述搭接区,所述公共电极层与所述金属端子之间设有电子注入层和电子传输层,所述第一金属端子一侧连接高电位电压端,所述第一金属端子另一侧与所述电子传输层连接,所述第二金属端子一侧与所述电子传输层连接,所述第二金属端子另一侧与低电位电压端连接,所述高电位电压端与所述低电位电压端的电压差大于所述金属端子和所述公共电极层的导通电压。
  2. 如权利要求1所述的OLED显示面板,其中,所述第一金属端子与所述第二金属端子分别设置于所述显示区两侧的搭接区内。
  3. 如权利要求1所述的OLED显示面板,其中,所述第一金属端子包括多个正向连接端子,所述第二金属端子包括多个负向连接端子,所述正向连接端子设置于所述显示区两侧的搭接区内,所述负向连接端子设置于所述显示区两侧的搭接区内,且所述正向连接端子与所述负向连接端子对应设置。
  4. 如权利要求3所述的OLED显示面板,其中,所述正向连接端子包括第一正向连接端子、第二正向连接端子,所述负向连接端子包括第一负向连接端子、第二负向连接端子,所述第一正向连接端子和所述第一负向连接端子设置于所述显示区一侧的搭接区内,所述第二正向连接端子和所述第二负向连接端子设置于所述显示区另一侧的搭接区内,且所述第一正向连接端子电连接至所述第一负向连接端子,所述第二正向连接端子电连接至所述第二负向连接端子。
  5. 如权利要求3所述的OLED显示面板,其中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。
  6. 如权利要求1所述的OLED显示面板,其中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。
  7. 如权利要求1所述的OLED显示面板,其中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。
  8. 如权利要求1所述的OLED显示面板,其中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。
  9. 如权利要求1所述的OLED显示面板,其中,所述电子注入层的材料包括第一导电材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层的第二迁移电压。
  10. 如权利要求9所述的OLED显示面板,其中,所述电子传输层中掺杂有第二导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第二导电材料的第三迁移电压。
  11. 如权利要求1所述的OLED显示面板,其中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述电子注入层和所述电子传输层中的至少一个中掺杂有第三导电材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述第三导电材料的第四迁移电压。
  12. 一种OLED显示装置,其包括OLED显示面板和电源,所述OLED显示面板包括:
    衬底;
    驱动电路层,设置于所述衬底一侧,所述驱动电路层包括金属端子,所述金属端子包括第一金属端子和第二金属端子,所述第一金属端子与所述第二金属端子绝缘设置;
    发光功能层,设置于所述驱动电路层远离所述衬底的一侧,所述发光功能层包括电子注入层、电子传输层和公共电极层;
    封装层,设置于所述发光功能层远离所述驱动电路层的一侧;
    其中,所述OLED显示面板包括显示区和搭接区,在所述搭接区,所述公共电极层与所述金属端子之间设有电子注入层和电子传输层,所述第一金属端子一侧连接高电位电压端,所述第一金属端子另一侧与所述电子传输层连接,所述第二金属端子一侧与所述电子传输层连接,所述第二金属端子另一侧与低电位电压端连接,所述高电位电压端与所述低电位电压端的电压差大于所述金属端子和所述公共电极层的导通电压。
  13. 如权利要求12所述的OLED显示装置,其中,所述高电位电压端与所述电源的正极连接,所述低电位电压端与所述电源的负极连接。
  14. 如权利要求12所述的OLED显示装置,其中,所述第一金属端子与所述第二金属端子分别设置于所述显示区两侧的搭接区内。
  15. 如权利要求12所述的OLED显示装置,其中,所述第一金属端子包括多个正向连接端子,所述第二金属端子包括多个负向连接端子,所述正向连接端子设置于所述显示区两侧的搭接区内,所述负向连接端子设置于所述显示区两侧的搭接区内,且所述正向连接端子与所述负向连接端子对应设置。
  16. 如权利要求15所述的OLED显示装置,其中,所述正向连接端子包括第一正向连接端子、第二正向连接端子,所述负向连接端子包括第一负向连接端子、第二负向连接端子,所述第一正向连接端子和所述第一负向连接端子设置于所述显示区一侧的搭接区内,所述第二正向连接端子和所述第二负向连接端子设置于所述显示区另一侧的搭接区内,且所述第一正向连接端子电连接至所述第一负向连接端子,所述第二正向连接端子电连接至所述第二负向连接端子。
  17. 如权利要求15所述的OLED显示装置,其中,所述正向连接端子包括第三正向连接端子、第四正向连接端子,所述负向连接端子包括第三负向连接端子、第四负向连接端子,所述第三正向连接端子和所述第四正向连接端子设置于所述显示区一侧的端子区,所述第三负向连接端子和所述第四负向连接端子设置于所述显示区另一侧的端子区,且所述第三正向连接端子电连接至所述第三负向连接端子,所述第四正向连接端子电连接至所述第四负向连接端子。
  18. 如权利要求12所述的OLED显示装置,其中,所述电子注入层的材料包括有机材料,所述电子传输层的材料包括有机材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述电子注入层和所述电子传输层的导通电压。
  19. 如权利要求12所述的OLED显示装置,其中,在所述高电位电压端和所述低电位电压端输入电压时,所述搭接区的温度范围为50摄氏度至120摄氏度。
  20. 如权利要求12所述的OLED显示装置,其中,所述公共电极层的材料包括金属材料,所述高电位电压端和所述低电位电压端之间的电压差大于所述金属材料的第一迁移电压。
PCT/CN2022/087789 2022-04-11 2022-04-20 Oled显示面板和oled显示装置 WO2023197345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/756,641 US20240164154A1 (en) 2022-04-11 2022-04-20 Oled display panel and oled display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210376331.X 2022-04-11
CN202210376331.XA CN114784204A (zh) 2022-04-11 2022-04-11 Oled显示面板和oled显示装置

Publications (1)

Publication Number Publication Date
WO2023197345A1 true WO2023197345A1 (zh) 2023-10-19

Family

ID=82428752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087789 WO2023197345A1 (zh) 2022-04-11 2022-04-20 Oled显示面板和oled显示装置

Country Status (3)

Country Link
US (1) US20240164154A1 (zh)
CN (1) CN114784204A (zh)
WO (1) WO2023197345A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175414A (ja) * 2012-02-27 2013-09-05 Canon Inc 表示装置の製造方法
US20140048778A1 (en) * 2012-08-16 2014-02-20 Samsung Display Co., Ltd. Display Apparatus
CN107632743A (zh) * 2017-11-01 2018-01-26 武汉华星光电技术有限公司 触控式oled显示面板以及显示装置
CN107845655A (zh) * 2016-09-18 2018-03-27 上海和辉光电有限公司 Oled显示器件、显示装置以及显示器件的制备方法
CN108987445A (zh) * 2018-07-16 2018-12-11 京东方科技集团股份有限公司 一种阵列基板、电致发光显示面板及显示装置
CN110047886A (zh) * 2019-04-11 2019-07-23 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器及其制作方法
CN110212091A (zh) * 2019-06-13 2019-09-06 京东方科技集团股份有限公司 蒸镀掩膜板、oled显示基板及其制作方法、显示装置
CN111224004A (zh) * 2019-11-08 2020-06-02 深圳市华星光电半导体显示技术有限公司 Oled显示面板和oled显示装置
CN112133737A (zh) * 2018-11-28 2020-12-25 上海天马微电子有限公司 显示面板和显示装置
CN112382646A (zh) * 2020-11-10 2021-02-19 昆山国显光电有限公司 Oled显示面板及触控显示屏幕
CN113053923A (zh) * 2021-03-15 2021-06-29 武汉华星光电半导体显示技术有限公司 显示面板和显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175414A (ja) * 2012-02-27 2013-09-05 Canon Inc 表示装置の製造方法
US20140048778A1 (en) * 2012-08-16 2014-02-20 Samsung Display Co., Ltd. Display Apparatus
CN107845655A (zh) * 2016-09-18 2018-03-27 上海和辉光电有限公司 Oled显示器件、显示装置以及显示器件的制备方法
CN107632743A (zh) * 2017-11-01 2018-01-26 武汉华星光电技术有限公司 触控式oled显示面板以及显示装置
CN108987445A (zh) * 2018-07-16 2018-12-11 京东方科技集团股份有限公司 一种阵列基板、电致发光显示面板及显示装置
CN112133737A (zh) * 2018-11-28 2020-12-25 上海天马微电子有限公司 显示面板和显示装置
CN110047886A (zh) * 2019-04-11 2019-07-23 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器及其制作方法
CN110212091A (zh) * 2019-06-13 2019-09-06 京东方科技集团股份有限公司 蒸镀掩膜板、oled显示基板及其制作方法、显示装置
CN111224004A (zh) * 2019-11-08 2020-06-02 深圳市华星光电半导体显示技术有限公司 Oled显示面板和oled显示装置
CN112382646A (zh) * 2020-11-10 2021-02-19 昆山国显光电有限公司 Oled显示面板及触控显示屏幕
CN113053923A (zh) * 2021-03-15 2021-06-29 武汉华星光电半导体显示技术有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US20240164154A1 (en) 2024-05-16
CN114784204A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN113920943B (zh) 显示装置及其制作方法
US8643002B2 (en) Organic light emitting diode display
CN103646950B (zh) 像素结构
CN102222683A (zh) 平板显示器设备及其制造方法
CN104716156A (zh) 一种有机发光显示装置及其制备方法
US20230172014A1 (en) Display panel, method for manufacturing display panel, and display device
KR20120066353A (ko) 유기 발광 표시 장치
CN105355633A (zh) 制作阵列基板的方法和阵列基板
CN104752476A (zh) 有机发光显示装置及其制造方法
CN111540771A (zh) Oled阵列基板、显示面板及显示装置
WO2024011951A1 (zh) 一种显示面板及显示装置
US20230165111A1 (en) Light-emitting substrate and light-emitting apparatus
US8766286B2 (en) Organic opto-electric device and a method for manufacturing an organic opto-electric device
WO2022246886A1 (zh) 阵列基板及其制备方法
CN103824809A (zh) 像素结构及其制造方法
CN112038289B (zh) 一种阵列基板、显示面板以及阵列基板的制作方法
WO2023197345A1 (zh) Oled显示面板和oled显示装置
CN115811918A (zh) 一种显示面板及显示装置
WO2021190049A1 (zh) 显示基板及其制作方法、和显示面板
CN214226912U (zh) 一种显示面板和显示装置
WO2021036676A1 (zh) 阵列基板、显示面板和显示装置
TW201517283A (zh) 電極結構與使用電極結構的太陽能電池
CN108346668B (zh) 一种显示基板及其制造方法、显示器件
US20240114711A1 (en) Oled display panel
KR100717758B1 (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17756641

Country of ref document: US