WO2023197269A1 - 接收、发送信号的方法及装置、存储介质 - Google Patents

接收、发送信号的方法及装置、存储介质 Download PDF

Info

Publication number
WO2023197269A1
WO2023197269A1 PCT/CN2022/086922 CN2022086922W WO2023197269A1 WO 2023197269 A1 WO2023197269 A1 WO 2023197269A1 CN 2022086922 W CN2022086922 W CN 2022086922W WO 2023197269 A1 WO2023197269 A1 WO 2023197269A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial
dmrs
res
available
frequency domain
Prior art date
Application number
PCT/CN2022/086922
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/086922 priority Critical patent/WO2023197269A1/zh
Priority to CN202280000886.2A priority patent/CN114938702A/zh
Publication of WO2023197269A1 publication Critical patent/WO2023197269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications, and in particular, to methods and devices for receiving and transmitting signals, and storage media.
  • the LTE reference signal may cause serious interference to the NR system, causing the NR PDCCH (Physical Downlink Control Channel, Physical downlink control channel) performance is degraded and its capacity is severely limited, limiting the performance and scheduling flexibility of the NR system.
  • NR PDCCH Physical Downlink Control Channel
  • embodiments of the present disclosure provide a method and device for receiving and transmitting signals, and a storage medium, which effectively improves the channel estimation performance of the NR system in a DSS (Dynamic Spectrum Sharing) scenario. Improve the transmission performance of NR PDCCH.
  • DSS Dynamic Spectrum Sharing
  • a method for receiving a signal is provided.
  • the method is performed by a terminal and includes:
  • candidate REs corresponding to the first DMRS are determined in a shifting manner; wherein the resources corresponding to the first initial RE and the second initial RE are the same; in the candidate REs On the available REs, the first DMRS is detected and received; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the reference signals of the second system.
  • determining the candidate RE corresponding to the first DMRS by shifting based on the first initial RE includes:
  • REs located within the first movement range are determined as the candidate REs.
  • determining the first movement range by shifting based on the first initial RE includes:
  • the frequency domain range obtained by shifting in the first direction is determined as the first movement range.
  • determining the first movement range based on the first initial RE includes:
  • the first stop shifting condition is met, and based on the first initial RE, sequential shifting is performed in the frequency domain in the second direction;
  • the frequency domain range obtained by shifting in the first direction and the second direction is determined as the first movement range.
  • determining the first movement range based on the first initial RE includes:
  • the first stop shifting condition is satisfied, and based on the first initial RE, sequential shifting is performed in the frequency domain in the second direction;
  • the first stop shift condition is met again, and based on the first initial RE, move one time unit in the third direction in the time domain;
  • Shifting in the third direction satisfies the second stop shifting condition, and the frequency domain range obtained by shifting in the first direction and the second direction and shifting in the third direction are The resulting time domain range is determined as the first movement range.
  • the first direction is any of the following:
  • the first direction is a direction in which frequency increases
  • the second direction is a direction in which frequency decreases
  • the first direction is a direction in which the frequency decreases
  • the second direction is a direction in which the frequency increases.
  • the third direction is a direction in which time units increase.
  • the first stop shifting condition includes that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency units;
  • the second stop shifting condition includes that the number of time units moved is equal to a predetermined maximum number of time units.
  • the maximum number of frequency units is equal to 3.
  • the maximum number of time units is equal to the number of time units lasting for the control resource set CORESET where the first DMRS is located.
  • detecting and receiving the first DMRS on the available REs among the candidate REs includes:
  • the method also includes:
  • a signal receiving method is provided, and the method is executed by a terminal, including:
  • the first DMRS is detected and received.
  • the determination of available REs includes:
  • the available REs are determined.
  • determining the first proportion of the second initial RE within the first frequency domain includes:
  • the first ratio is obtained by determining the ratio of the number of the second initial REs in the first frequency domain range to the total number of REs included in the first frequency domain range.
  • determining the available REs in the candidate RE set based on the available RE index set includes:
  • the RE indicated by the available RE index set is determined as the available RE.
  • the first frequency domain range is any of the following:
  • the BWP (Bandwidth Part, partial bandwidth) frequency domain range where the PDCCH is located;
  • a resource block RB range within the frequency domain range where the PDCCH is located
  • a method for transmitting a signal is provided, the method being executed by a base station, including:
  • the first DMRS is sent on the available REs among the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the reference signals of the second system.
  • determining the candidate RE corresponding to the first DMRS by shifting based on the first initial RE includes:
  • REs located within the first movement range are determined as the candidate REs.
  • determining the first movement range by shifting based on the first initial RE includes:
  • the frequency domain range obtained by shifting in the first direction is determined as the first movement range.
  • determining the first movement range by shifting based on the first initial RE includes:
  • the first stop shifting condition is met, and based on the first initial RE, sequential shifting is performed in the frequency domain in the second direction;
  • the frequency domain range obtained by shifting in the first direction and the second direction is determined as the first movement range.
  • determining the first movement range by shifting based on the first initial RE includes:
  • the first stop shifting condition is satisfied, and based on the first initial RE, sequential shifting is performed in the frequency domain in the second direction;
  • the first stop shift condition is met again, and based on the first initial RE, move one time unit in the third direction in the time domain;
  • Shifting in the third direction satisfies the second stop shifting condition, and the frequency domain range obtained by shifting in the first direction and the second direction and shifting in the third direction are The resulting time domain range is determined as the first movement range.
  • the first direction is any of the following:
  • the first direction is a direction in which frequency increases
  • the second direction is a direction in which frequency decreases
  • the first direction is a direction in which frequency decreases
  • the second direction is a direction corresponding to frequency increase.
  • the third direction is a direction in which time units increase.
  • the first stop shifting condition includes that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency units;
  • the second stop shifting condition includes that the number of time units moved is equal to a predetermined maximum number of time units.
  • the maximum number of frequency units is equal to 3.
  • the maximum number of time units is equal to the number of time units that the control resource set CORESET in which the first DMRS is located lasts.
  • sending the first DMRS on the available REs among the candidate REs includes:
  • the first DMRS is sent on the determined available REs in the fourth direction; wherein the fourth direction is the number of the available REs determined in the first direction and the second direction. Most shifting directions.
  • the method also includes:
  • a method for transmitting a signal is provided, the method being executed by a base station, including:
  • the first DMRS is sent.
  • the determination of available REs includes:
  • the available REs are determined.
  • determining the first proportion of the second initial RE within the first frequency domain includes:
  • the first ratio is obtained by determining the ratio of the number of the second initial REs in the first frequency domain range to the total number of REs included in the first frequency domain range.
  • determining the available REs in the candidate RE set based on the available RE index set includes:
  • the RE indicated by the available RE index set is determined as the available RE.
  • the first frequency domain range is any of the following:
  • the partial bandwidth BWP frequency domain range where the PDCCH is located
  • a resource block RB range within the frequency domain range where the PDCCH is located
  • a device for receiving a signal including:
  • a processing module configured to determine the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system
  • the processing module is further configured to determine a second initial RE corresponding to the reference signal of the second system
  • the processing module is further configured to determine the candidate RE corresponding to the first DMRS through a shift method based on the first initial RE; wherein the resources corresponding to the first initial RE and the second initial RE same;
  • a receiving module configured to detect and receive the first DMRS on available REs among the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the second DMRS.
  • the reference signal of the second system is the first DMRS on available REs among the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the second DMRS.
  • a device for receiving a signal including:
  • a processing module configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module is further configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module is further configured to determine available REs; wherein the resources corresponding to the first initial RE and the second initial RE are the same, and the available REs are within the first frequency domain range corresponding to the PDCCH. Not occupied by other reference signals, the other reference signals include the second DMRS or the reference signal of the second system;
  • the receiving module is configured to detect and receive the first DMRS on the available RE.
  • a device for sending a signal including:
  • a processing module configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module is further configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module is further configured to determine the candidate RE corresponding to the first DMRS through a shift method based on the first initial RE; wherein the resources corresponding to the first initial RE and the second initial RE same;
  • a sending module configured to send the first DMRS on available REs in the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the Reference signal for the second system.
  • a device for sending a signal including:
  • a processing module configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module is further configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module is further configured to determine available REs; wherein the resources corresponding to the first initial RE and the second initial RE are the same, and the available REs are within the first frequency domain range corresponding to the PDCCH. Not occupied by other reference signals, the other reference signals include the second DMRS or the reference signal of the second system;
  • the sending module is configured to send the first DMRS on the available RE.
  • a computer-readable storage medium stores a computer program, and the computer program is used to perform any one of the above method for receiving a signal.
  • a computer-readable storage medium stores a computer program, and the computer program is used to perform any of the above-mentioned methods for sending signals.
  • a communication device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute the executable instructions to implement the steps of the method for receiving a signal described in any one of the above.
  • a signal transmission device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute the executable instructions to implement the steps of the method for sending signals described in any one of the above.
  • the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH can be effectively avoided, while the system capacity of the NR PDCCH is increased, and the NR system performance is improved.
  • FIGS. 1A to 1C are schematic diagrams of CRS resource mapping relationships in the time and frequency domain according to an exemplary embodiment.
  • Figure 2 is a schematic diagram of PCFICH and 4-port CRS multiplexing according to an exemplary embodiment.
  • Figure 3 is a schematic flowchart of PCFICH according to an exemplary embodiment.
  • Figure 4 is a schematic diagram of PCFICH and PHICH multiplexing according to an exemplary embodiment.
  • Figure 5A is a schematic diagram of NR PDCCH DMRS and LTE 4-port CRS multiplexing according to an exemplary embodiment.
  • Figure 5B is a schematic diagram showing the coexistence of NR PDCCH DMRS and LTE reference signals according to an exemplary embodiment.
  • Figure 6 is a schematic diagram of another NR PDCCH DMRS and LTE 4-port CRS multiplexing according to an exemplary embodiment.
  • Figure 7 is another schematic diagram of PCFICH and PHICH multiplexing according to an exemplary embodiment.
  • Figure 8 is a schematic flowchart of a method of receiving signals according to an exemplary embodiment.
  • Figure 9 is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 10 is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 11 is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • FIG. 12A is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 12B is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 13 is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 14 is a schematic flowchart of another method of receiving signals according to an exemplary embodiment.
  • Figure 15 is a schematic flowchart of a method of sending signals according to an exemplary embodiment.
  • Figure 16 is a schematic flowchart of another method of sending signals according to an exemplary embodiment.
  • Figure 17A is a schematic diagram illustrating a method of determining available REs according to an exemplary embodiment.
  • FIG. 17B is a schematic diagram illustrating another method of determining available REs according to an exemplary embodiment.
  • Figure 18 is a schematic diagram illustrating another method of determining available REs according to an exemplary embodiment.
  • Figure 19 is a schematic diagram illustrating another method of determining available REs according to an exemplary embodiment.
  • Figure 20 is a block diagram of a device for receiving signals according to an exemplary embodiment.
  • Figure 21 is a block diagram of another device for receiving signals according to an exemplary embodiment.
  • Figure 22 is a block diagram of a device for sending signals according to an exemplary embodiment.
  • Figure 23 is a block diagram of another device for sending signals according to an exemplary embodiment.
  • Figure 24 is a schematic structural diagram of a device for receiving signals according to an exemplary embodiment of the present disclosure.
  • Figure 25 is a schematic structural diagram of a device for sending signals according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • LTE CRS Cell-specific Reference Signal
  • the NR terminal In the frequency band where LTE and NR coexist, LTE CRS (Cell-specific Reference Signal) needs to be continuously transmitted, which will cause very strong interference to the NR system.
  • the NR terminal In the current protocol, in order to avoid the degradation of NR PDCCH performance caused by strong interference from the LTE system, the NR terminal only detects PDCCH candidates that do not have any overlap with the LTE CRS. However, considering that LTE CRS supports up to 4 ports, at this time CRS occupies 6 OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols in one slot.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR PDCCH can only be transmitted on the remaining 8 OFDM symbols, and cannot be transmitted within a CORESET (Control Resource set, control resource set) with a duration of 3 consecutive symbols, thus seriously causing Restricts the capacity and transmission performance of NR PDCCH.
  • CORESET Control Resource set, control resource set
  • Rel-18 (Release-18, version 18) WID supports NR PDCCH transmission on the symbol where the CRS is located.
  • the NR system will be subject to strong and continuous interference from CRS. If there is NR DMRS (Demodulatin Reference Signal, demodulation reference signal) transmission on the resources occupied by CRS transmission, it will seriously affect PDCCH transmission. performance.
  • NR DMRS Demodulatin Reference Signal, demodulation reference signal
  • PHICH Physical hybrid ARQ indicator channel, physical HARQ indicator channel
  • PCFICH Physical control format indicator channel, physical control format indicator channel
  • control channels PHICH and PCFICH are continuously transmitted within a certain frequency domain within the REG (Resource Element Group) defined by LTE, and PHICH can be transmitted in the 0th, 1st, and 2nd of an LTE subframe.
  • REG Resource Element Group
  • PHICH can be transmitted in the 0th, 1st, and 2nd of an LTE subframe.
  • the mapping rules of the CRS, PHICH, PCFICH and NR DMRS in the time-frequency domain are as follows:
  • CRS is mainly used for downlink channel quality detection, such as RSRP (Reference Signal Receiving Power) and other indicators, as well as downlink channel estimation, and for coherent demodulation on the terminal side.
  • PCFICH channel that is, the physical control format indication channel, carries information CFI (Control Field Indicator, control indicator) to indicate the number of OFDM symbols occupied by the control channel (PDCCH and PHICH) in the subframe.
  • CFI Control Field Indicator, control indicator
  • the CFI carries 2 bits (bits) of information , modulated through QPSK (Quadrature Phase Shift Keying, quadrature phase shift keying).
  • the PCFICH channel is always mapped to the first OFDM symbol or DwPTS (downlink pilot time slot) of the downlink subframe.
  • DwPTS downlink pilot time slot
  • the starting offset position is the number of REs occupied by one.
  • REG consists of 4 consecutive REs in the cell, excluding cell-specific reference signals. If a RE is reserved for cell-specific reference signals (CRS), this RE cannot be used to form a REG. And the four REs belonging to the same REG must be located in the same OFDM symbol.
  • CRS cell-specific reference signals
  • PHICH carries ACK (Acknowledge, confirmation) and NACK (Non-Acknowledge, non-confirmation) information of HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • the base station uses the PHICH channel to notify the UE whether it has correctly received a message on PUSCH. Transmission, the terminal decides to retransmit or send new data to the base station based on the information indicated by the PHICH, as shown in Figure 3, for example.
  • the PHICH duration is configured by the high-level parameter phich-duration, see protocol 36.211 for details.
  • Frequency domain index k′ i and mapping REG Define n l′ as the number of REGs that are not allocated PCFICH on OFDM symbol l′ in the subframe. If the high-level parameter phich-duration indicates the normal CP scenario,
  • the extended PHICH duration in the scene MBSFN subframe or the extended PHICH duration in subframes 1 and 6 of frame structure type 2, or the same as the DwPTS duration configured in the special subframe in frame structure type 3
  • the corresponding REG index is:
  • TDD Time Division Duplex, time division multiplexing
  • the frequency domain position is as follows:
  • c(i) is a pseudo-random sequence, and the initial value is
  • N ID ⁇ 0,1,...,65535 ⁇ is configured by the high-level parameter pdcch-DMRS-ScramblingID, otherwise,
  • n 0,1,...
  • k is the subcarrier index within the OFDM symbol
  • l is the symbol index within the slot
  • the antenna port p 2000.
  • DMRS is transmitted on the 1st, 5th, and 9th subcarriers in an RB.
  • PHICH and PCFICH are the essential cell-level control channels of LTE. Similar to CRS, they will also cause strong interference to NR PDCCH DMRS. In the scenario where PHICH and/or PCFICH exist, if based on the existing mechanism, NR PDCCH DMRS avoids conflicts by shifting the RE in the frequency domain. In the scenario where PCFICH and/or PHICH and CRS coexist, DMRS may need to be offset by multiple REs, and the corresponding DMRS channel estimation error on this RE is large, as shown in Figure 5B.
  • DMRS transmission may not be performed, and DMRS may only be transmitted on the symbol without LTE CRS.
  • the above scenario is applicable to the scenario where there is a symbol that does not transmit LTE CRS within the PDCCH CORESET time domain, as shown in Figure 6 shown.
  • DMRS is only transmitted on the symbol where the LTE reference signal is not transmitted.
  • PDCCH CORESET occupies up to 3 OFDM symbols.
  • PHICH may occupy all OFDM symbols where CORESET is located. There is no scenario where the corresponding symbol in CORESET does not transmit CRS, as shown in Figure 7, for example.
  • the presence of LTE CRS, PCFICH, and PHICH may cause serious interference to the PDCCH, thus severely limiting its capacity and limiting the performance and scheduling flexibility of the NR system.
  • the present disclosure provides the following methods and devices for receiving and transmitting signals, and storage media.
  • the method for receiving signals provided by the present disclosure is first introduced from the terminal side.
  • Figure 8 is a flow chart of a method for receiving a signal according to an embodiment. It can be executed by a terminal. The method can include the following steps:
  • step 801 the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS corresponding to the PDCCH of the NR system
  • the terminal may determine the first initial RE (Resource) based on the DMRS related mechanism determined by the existing protocol. Element, resource unit).
  • step 802 a second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanism.
  • step 803 based on the first initial RE, candidate REs corresponding to the first DMRS are determined in a shifting manner.
  • the terminal may determine candidate REs through shifting when the resources corresponding to the first initial RE and the second initial RE are the same.
  • the resources that are the same include but are not limited to time domain resources and frequency domain resources.
  • the number of candidate REs may be one or more, which is not limited in this disclosure.
  • step 804 the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the terminal side can determine candidate REs by means of frequency shift and/or time domain shift, and detect and receive the first DMRS on available REs among the candidate REs.
  • the terminal side can effectively avoid the interference from LTE.
  • the reference signal of the system interferes with the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • Figure 9 is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal.
  • the method can include the following steps:
  • step 901 the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 902 a second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanism.
  • step 903 based on the first initial RE, a first movement range is determined by shifting.
  • step 904 REs located within the first movement range are determined as the candidate REs.
  • all REs located within the first movement range may be determined as candidate REs.
  • step 905 the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the terminal may determine all REs within the first mobility range as candidate REs to perform rate matching around the reference signal of the LTE system, determine available REs, and detect and receive the first DMRS on the available REs.
  • the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH can be effectively avoided, while the system capacity of the NR PDCCH is increased and the performance of the NR system is improved.
  • Figure 10 is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal.
  • the method can include the following steps:
  • step 1001 the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1002 a second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanism.
  • step 1003 based on the first initial RE, sequential shifting is performed in the frequency domain in the first direction.
  • the first direction may be a direction in which frequency increases, or the first direction may be a direction in which frequency decreases.
  • the determination of the first direction may be agreed upon by a protocol, or may be indicated by signaling sent by the base station, which is not limited in this disclosure.
  • step 1004 if the first stop shifting condition is met, the frequency domain range obtained by shifting in the first direction is determined as the first movement range.
  • the first stop shifting condition may include that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency units.
  • the way to predetermine the maximum number of frequency units delta may be based on protocol predefinition, or based on signaling instructions sent by the base station, or based on terminal reporting capabilities, which is not limited in this disclosure.
  • the first DMRS is transmitted on the 1st subcarrier within the RB
  • the distance between the 1st subcarrier and the 5th subcarrier The number of spaced REs can be used as the maximum number of frequency units, that is, the maximum number of frequency units delta is equal to 3.
  • the terminal sequentially shifts in the direction of increasing frequency based on the first initial RE, and stops shifting when the number of moved REs is 3.
  • the frequency domain range obtained at this time can be determined as the first Movement range.
  • the maximum number of frequency units here is the maximum number of REs that the terminal can move when shifting to the frequency increase mode based on the first initial RE.
  • the number of REs that the terminal can move in the direction of frequency increase or decrease can be less than or equal to 3, for example, it can be 1, 2 or 3.
  • the terminal sequentially shifts in the direction of frequency reduction based on the first initial RE, and stops shifting when the number of moved REs reaches the maximum number of frequency units.
  • the obtained frequency domain range at this time can be determined as the first movement range.
  • step 1005 REs located within the first movement range are determined as the candidate REs.
  • step 1006 the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the candidate REs include multiple available REs
  • the terminal can detect and receive the first RE on the available RE that is shifted in the first direction based on the first initial RE and has the smallest number of moved REs. 1 DMRS.
  • step 1006 can be replaced by 1007 (not shown in Figure 10):
  • step 1007 it is determined that the available RE does not exist among the candidate REs, and the first DMRS is not received.
  • rate matching can be performed around the reference signal of the LTE system to detect and receive the first DMRS on the available RE. If there is no available RE in the candidate RE, the terminal can punch the first DMRS, that is, The first DMRS is not received. In the DSS scenario, it effectively avoids the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • Figure 11 is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal.
  • the method can include the following steps:
  • step 1101 the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1102 a second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the terminal can determine the second initial RE based on related signaling and 36.211 related mechanism.
  • step 1103 based on the first initial RE, sequential shifting is performed in the frequency domain in the first direction.
  • the first direction may be a direction in which frequency increases, or the first direction may be a direction in which frequency decreases.
  • the determination of the first direction may be agreed upon by a protocol, or may be indicated by signaling sent by the base station, which is not limited in this disclosure.
  • step 1104 if the first stop shifting condition is met, sequential shifting is performed in the frequency domain in the second direction based on the first initial RE.
  • the first stop shifting condition may include that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency units.
  • the method of predetermining the maximum number of frequency units can be determined based on protocol predefinition, or based on signaling instructions sent by the base station, or based on the terminal reporting capability, which is not covered by this disclosure. limited.
  • the maximum number of frequency units can be equal to 3.
  • the terminal can perform sequential shifting in the frequency domain to the second direction based on the first initial RE.
  • the first direction is the direction in which the frequency increases
  • the second direction is the direction in which the frequency decreases
  • the first direction is the direction in which the frequency decreases
  • the second direction is the direction in which the frequency increases. direction.
  • step 1105 the first stop shifting condition is satisfied again, and the frequency domain range obtained by shifting in the first direction and the second direction is determined as the first movement range.
  • the frequency domain range obtained by shifting in the above two directions is determined as the first movement range.
  • DMRS is transmitted on the 1st, 5th, and 9th subcarriers within an RB.
  • the first initial RE index corresponding to the first DMRS is 5. It is shifted in the direction of increasing frequency until the RE with index 8 and the RE with index 8. 5 is used as the starting point, and the shift is performed in the direction of decreasing frequency until the RE with index 2.
  • the frequency domain ranges corresponding to these REs can be used as the first shift range.
  • step 1106 REs located within the first movement range are determined as the candidate REs.
  • step 1107 the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the candidate REs include multiple available REs
  • the terminal may detect and receive the first DMRS on the available REs determined in the fourth direction.
  • the fourth direction is the shift direction in which the determined number of available REs is the largest among the first direction and the second direction.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the fourth direction based on the first initial RE and has the smallest number of moved REs.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the second direction based on the first initial RE and has the smallest number of moved REs.
  • step 1107 can be replaced by 1108 (not shown in Figure 11):
  • step 1108 it is determined that the available RE does not exist among the candidate REs, and the first DMRS is not received.
  • rate matching can be performed around the reference signal of the LTE system to detect and receive the first DMRS on the available RE. If there is no available RE in the candidate RE, the terminal can punch the first DMRS, that is, The first DMRS is not received.
  • the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH can be effectively avoided, while the system capacity of the NR PDCCH is increased and the performance of the NR system is improved.
  • Figure 12A is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal. The method can include the following steps:
  • step 1201 the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1202 a second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanisms.
  • step 1203 based on the first initial RE, sequential shifting is performed in the frequency domain in the first direction.
  • the first direction may be a direction in which frequency increases, or the first direction may be a direction in which frequency decreases.
  • the determination of the first direction may be agreed upon by a protocol, or may be indicated by signaling sent by the base station, which is not limited in this disclosure.
  • step 1204 if the first stop shifting condition is met, sequential shifting is performed in the frequency domain in the second direction based on the first initial RE.
  • the first stop shifting condition may include that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency resources.
  • the maximum number of frequency resources delta can be determined based on protocol predefinition, or based on signaling instructions sent by the base station, or based on the terminal reporting capability.
  • the maximum number of frequency resources delta may be equal to 3.
  • the terminal can perform sequential shifting in the frequency domain to the second direction based on the first initial RE.
  • the first direction is a direction in which frequency increases
  • the second direction is a direction in which frequency decreases
  • the first direction is a direction in which frequency decreases
  • the second direction is a direction in which frequency increases.
  • step 1205 the first stop shift condition is met again, and one time unit is moved to the third direction in the time domain.
  • the third direction is the direction in which the time unit increases.
  • step 1206 the shifting is continued according to the shifting sequence of the first direction, the second direction, and the third direction.
  • the terminal after the terminal moves a time unit in the third direction in the time domain, based on the first initial RE, the terminal can sequentially move in the frequency domain corresponding to the moved time unit in the first direction. bit, satisfying the first stop shifting condition, the terminal can sequentially shift in the second direction in the frequency domain corresponding to the moved time unit based on the first initial RE. If the first stop shift condition is met again, the terminal continues to move in the third direction in the time domain for one time unit.
  • the first stop shifting condition includes that the number of frequency domain resources to be moved is equal to the number of frequency domain resources that the control resource set in which the first DMRS is located lasts.
  • the shifting is continuously performed in the frequency domain and then the time domain.
  • step 1207 shifting in the third direction satisfies the second stop shifting condition, and the frequency domain range obtained by shifting in the first direction and the second direction and the frequency domain range obtained by shifting in the third direction are The time domain range obtained by shifting in three directions is determined as the first movement range.
  • the second stop shifting condition includes that the number of moving time units is equal to a predetermined maximum number of time units.
  • the maximum number of time units may be predefined based on the protocol, or determined based on the signaling indication sent by the base station, or may be determined based on the terminal reporting capability, which is not limited in this disclosure.
  • the maximum number of time units may be the number of time units lasting for the control resource set CORESET where the first DMRS is located. It should be noted that when the terminal moves in the third direction, the number of moving time units may be less than or equal to the maximum number of time units.
  • step 1208 REs located within the first movement range are determined as the candidate REs.
  • step 1209 the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the candidate REs include multiple available REs
  • the terminal may detect and receive the first DMRS on the available REs determined in the fourth direction.
  • the fourth direction is the determined frequency domain shift direction with the largest number of available REs.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the fourth direction based on the first initial RE and has the smallest number of moved REs.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the second direction based on the first initial RE and has the smallest number of moved REs.
  • step 1209 can be replaced with 1210 (not shown in Figure 12A):
  • step 1210 it is determined that the available RE does not exist among the candidate REs, and the first DMRS is not received.
  • rate matching can be performed around the reference signal of the LTE system to detect and receive the first DMRS on the available RE. If there is no available RE in the candidate RE, the terminal can punch the first DMRS, that is, The first DMRS is not received. In the DSS scenario, it effectively avoids the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • FIG. 12B is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal.
  • the method may include the following steps:
  • step 1201' the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is determined.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1202' the second initial RE corresponding to the reference signal of the second system is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanisms.
  • step 1203' sequential shifting is performed in the frequency domain in the first direction based on the first initial RE.
  • the first direction may be a direction in which frequency increases, or the first direction may be a direction in which frequency decreases.
  • the determination of the first direction may be agreed upon by a protocol, or may be indicated by signaling sent by the base station, which is not limited in this disclosure.
  • step 1204' the first stop shift condition is met, and based on the first initial RE, one time unit is moved in the third direction in the time domain.
  • the first stop shifting condition may include that the number of frequency domain resources to be moved is equal to a predetermined maximum number of frequency resources.
  • the way to predetermine the maximum number of frequency resources delta can be based on protocol predefinition, or based on signaling instructions sent by the base station, or based on the terminal reporting capability. This disclosure is useful for This is not a limitation.
  • the maximum number of frequency resources delta may be equal to 3.
  • the first direction is a direction in which the frequency increases, or the first direction is a direction in which the frequency decreases.
  • the third direction is the direction in which time units increase.
  • step 1205 the shifting is continued according to the shifting sequence in the first direction and the third direction.
  • the terminal after the terminal moves a time unit in the third direction in the time domain, based on the first initial RE, the terminal can sequentially move in the frequency domain corresponding to the moved time unit in the first direction. bit, if the first stop shifting condition is met, the terminal can continue to move one time unit in the third direction in the time domain.
  • the first stop shifting condition includes that the number of frequency domain resources to be moved is equal to the maximum number of frequency domain resources.
  • the shifting is continuously performed in the frequency domain and then the time domain.
  • step 1206' shifting in the third direction satisfies the second stop shifting condition, and the frequency domain range obtained by shifting in the first direction and the frequency domain range obtained by shifting in the third direction are The resulting time domain range is determined as the first movement range.
  • the second stop shifting condition includes that the number of moving time units is equal to a predetermined maximum number of time units.
  • the method of predetermining the maximum number of time units may be predefined based on the protocol, or may be determined based on the signaling indication sent by the base station, or may be determined based on the terminal reporting capability, which is not limited in this disclosure.
  • the maximum number of time units may be the number of time units lasting for the control resource set CORESET where the first DMRS is located. It should be noted that when the terminal moves in the third direction, the number of time units moved may be less than or equal to the maximum number of time units.
  • step 1207' REs located within the first movement range are determined as the candidate REs.
  • step 1208' the first DMRS is detected and received on available REs among the candidate REs.
  • available REs refer to REs among candidate REs that are not occupied by other reference signals.
  • the other reference signals may be any second DMRS different from the first DMRS, or the other reference signals may be the second DMRS.
  • the reference signal of the system and the reference signal of the second system may be at least one of CRS, PCFICH, and PHICH of LTE.
  • the candidate REs include multiple available REs
  • the terminal may detect and receive the first DMRS on the available REs determined in the fourth direction.
  • the fourth direction is the determined frequency domain shift direction with the largest number of available REs.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the fourth direction based on the first initial RE and has the smallest number of moved REs.
  • the terminal may detect and receive the first DMRS on an available RE that is shifted in the second direction based on the first initial RE and has the smallest number of moved REs.
  • step 1208' can be replaced by 1209' (not shown in Figure 12B):
  • step 1209' it is determined that the available RE does not exist among the candidate REs, and the first DMRS is not received.
  • rate matching can be performed around the reference signal of the LTE system to detect and receive the first DMRS on the available RE. If there is no available RE in the candidate RE, the terminal can punch the first DMRS, that is, The first DMRS is not received. In the DSS scenario, it effectively avoids the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • rate matching can be performed around the reference signal of the LTE system to detect and receive the first DMRS on the available RE. If there is no available RE in the candidate RE, the terminal can punch the first DMRS, that is, The first DMRS is not received. In the DSS scenario, it effectively avoids the interference of the reference signal from the LTE system to the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • the above-mentioned maximum frequency unit number delta may be greater than 0 or less than 0, wherein the first direction may be represented by the positive or negative value of delta.
  • delta greater than 0 corresponds to the first direction of increasing frequency
  • delta less than 0 corresponds to the first direction of decreasing frequency.
  • the time unit in the third direction may be an OFDM symbol.
  • the terminal determines the candidate REs through shifting, and then detects and receives the first DMRS on the available REs among the candidate REs. If there is no available RE among the candidate REs, the terminal does not receive the first DMRS.
  • the present disclosure also provides another method of receiving signals.
  • Figure 13 is a flow chart of a method for receiving a signal according to an embodiment. It can be executed by a terminal. The method can include the following steps:
  • step 1301 determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1302 a second initial RE where the reference signal of the second system is located is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanism.
  • step 1303 available REs are determined.
  • the resources corresponding to the first initial RE and the second initial RE are the same, and the available RE is not occupied by other reference signals in the first frequency domain range corresponding to the PDCCH, so
  • the other reference signals include a second DMRS or a reference signal of the second system.
  • the first frequency domain range can be the BWP frequency domain range where the PDCCH is located, or the first frequency domain range can be an RB (Resource Block, resource block) range within the frequency domain where the PDCCH is located, or the first frequency domain range can be is the CORESET frequency domain range corresponding to the PDCCH.
  • RB Resource Block, resource block
  • step 1304 the first DMRS is detected and received on the available RE.
  • the frequency domain resources corresponding to the PDCCH are composed of multiple RBs.
  • any RB is used as a unit for explanation.
  • the first DMRS is detected and received.
  • the terminal can directly determine the available REs, detect and receive the first DMRS on the available REs, perform rate matching around the reference signals of the LTE system, and effectively avoid the reference signals from the LTE system on the PDCCH of the NR in the DSS scenario.
  • DMRS interference while increasing the system capacity of NR PDCCH and improving NR system performance.
  • Figure 14 is a flow chart of a method of receiving signals according to an embodiment, which can be executed by a terminal.
  • the method can include the following steps:
  • step 1401 determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located.
  • the first system may be an NR system
  • the first DMRS may be any DMRS related to the PDCCH of the NR system
  • the terminal may determine the first initial RE based on the above DMRS related mechanism.
  • step 1402 a second initial RE where the reference signal of the second system is located is determined.
  • the second system may be an LTE system
  • the reference signal of the second system may be at least one of LTE's CRS, PCFICH, and PHICH.
  • the terminal may determine the third system based on the above-mentioned CRS, PCFICH, and PHICH related mechanisms. Two initial RE.
  • the NR terminal can determine the second initial RE based on related signaling and 36.211 related mechanisms.
  • step 1403 a first proportion of the second initial RE is determined within the first frequency domain range.
  • the first frequency domain range may be the BWP frequency domain range where the PDCCH is located, or the first frequency domain range may be an RB range within the frequency domain where the PDCCH is located, or the first frequency domain range may be the CORESET frequency range corresponding to the PDCCH. domain scope.
  • the frequency domain resources corresponding to the PDCCH are composed of multiple RBs.
  • any one of the RBs is used as a unit for description.
  • the first DMRS is detected and received.
  • the ratio of the number of the second initial REs to the total number of REs included in the first frequency domain range may be determined to obtain the first ratio.
  • step 1404 based on the first ratio, a set of available RE indexes is determined.
  • Correspondences between different first proportions ⁇ and different sets of available RE indexes may be predefined through the protocol.
  • the terminal may determine the available RE index value corresponding to the first ratio according to the above corresponding relationship.
  • step 1405 the second initial RE is removed in the first frequency domain range to obtain a candidate RE set.
  • step 1406 the available REs are determined in the candidate RE set based on the available RE index set.
  • each RE in the candidate RE set may be renumbered in ascending order of the corresponding index to determine the index value of each RE in the candidate RE set.
  • the candidate RE set is ⁇ 1, 2, 4, 5, 7, 8, 10, 11 ⁇
  • the renumbered candidate RE set is ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the terminal may determine the RE indicated by the available RE index set as the available RE in the candidate RE set. For example, if the available RE index is ⁇ 1, 4, 7 ⁇ , the terminal determines the RE with the index ⁇ 1, 4, 7 ⁇ in the candidate RE set as the available RE.
  • the available RE index indicates the RE after each RE in the candidate RE set is renumbered according to the index. Taking the available RE index as ⁇ 1, 4, 7 ⁇ as an example, the candidate RE set is not renumbered.
  • the RE with index ⁇ 2, 7, 11 ⁇ is determined to be an available RE.
  • step 1407 the first DMRS is detected and received on the available RE.
  • the terminal can determine the available REs according to the proportion of the second initial REs in the first frequency domain, effectively avoiding interference from the reference signal from the LTE system to the DMRS of the NR PDCCH in the DSS scenario, while improving Increase the system capacity of NR PDCCH and improve NR system performance.
  • Figure 15 is a flow chart of a method of sending signals according to an embodiment. It can be executed by a base station. The method can include the following steps:
  • step 1501 determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located.
  • the way in which the base station determines the first initial RE is similar to that on the terminal side, and will not be described again here.
  • step 1502 a second initial RE where the reference signal of the second system is located is determined.
  • the way in which the base station determines the second initial RE is similar to that on the terminal side, and will not be described again here.
  • step 1503 based on the first initial RE, candidate REs corresponding to the first DMRS are determined in a shifting manner.
  • the resources corresponding to the first initial RE and the second initial RE are the same.
  • step 1504 the first DMRS is sent on the available REs among the candidate REs.
  • the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the reference signals of the second system.
  • the base station can determine the first shift range through the shift method, determine the REs within the first movement range as candidate REs, and send the first DMRS on the available REs in the candidate REs.
  • it is effective It avoids interference from the reference signal from the LTE system to the DMRS of the NR PDCCH, while increasing the system capacity of the NR PDCCH and improving the NR system performance.
  • the base station may first determine the first movement range by shifting based on the first initial RE, and determine REs located within the first movement range as the candidate REs.
  • Methods for determining the first movement range include any of the following:
  • Method 1 Based on the first initial RE, sequentially shift in the first direction in the frequency domain, satisfy the first stop shifting condition, and determine the frequency domain range obtained by shifting in the first direction. is the first movement range.
  • Method 2 Based on the first initial RE, sequentially shift in the first direction in the frequency domain to satisfy the first stop shifting condition, and based on the first initial RE, sequentially shift in the second direction in the frequency domain Shift, meet the first stop shifting condition again, and determine the frequency domain range obtained by shifting in the first direction and the second direction as the first movement range.
  • Method 3 Based on the first initial RE, sequentially shift in the first direction in the frequency domain; satisfy the first stop shifting condition, based on the first initial RE, sequentially shift in the second direction in the frequency domain Shift; meet the first stop shifting condition again, based on the first initial RE, move one time unit in the third direction in the time domain; according to the first direction, the second direction, the The shifting sequence in the third direction, continue to shift; shifting in the third direction satisfies the second stop shifting condition, and the shift obtained by shifting in the first direction and the second direction is The frequency domain range and the time domain range obtained by shifting in the third direction are determined as the first movement range.
  • Figure 16 is a flow chart of a method of sending signals according to an embodiment. It can be executed by a base station. The method can include the following steps:
  • step 1601 determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located.
  • step 1602 determine the second initial RE where the reference signal of the second system is located
  • step 1603 available REs are determined.
  • the resources corresponding to the first initial RE and the second initial RE are the same, and the available REs are not occupied by other reference signals within the first frequency domain range corresponding to the PDCCH.
  • the other reference signals include a second DMRS or a reference signal of the second system;
  • step 1604 the first DMRS is sent on the available RE.
  • the base station can directly determine the available REs based on the first proportion of the second initial REs in the first frequency domain range, and send the first DMRS on the available REs.
  • the base station can effectively avoid the interference from the LTE system.
  • the interference of the reference signal to the DMRS of the NR PDCCH simultaneously increases the system capacity of the NR PDCCH and improves the NR system performance.
  • Embodiment 1 assumes that the NR system and the LTE system transmit on the same frequency band. At this time, LTE CRS needs to be sent continuously. At the same time, LTE PHICH and PCFICH will also be transmitted. In the following, LTE RS will be used to represent one or more of LTE CRS, PHICH, PCFICH or other LTE transmission signals, which will not be described again here.
  • the base station transmits NR PDCCH and the corresponding modulation and demodulation signal DMRS on OFDM symbols where LTE RS exists, and the LTE RS and NR PDCCH have an intersection in the frequency domain. And the time-frequency domain position of the LTE RS is notified by the base station to the terminal through RRC signaling, or the terminal determines it in other ways.
  • the schematic diagrams in this embodiment take PCI (Physical Cell Identifier, physical cell identifier) equal to 0 as an example to illustrate the present invention. specific plan.
  • a possible implementation manner is that when the NR PDCCH DMRS collides with the LTE RS RE, that is, the first initial RE and the second initial RE correspond to the same resource, and are shifted in the frequency domain based on the first initial RE until the first DMRS and the second initial RE conflict.
  • the LTE RS has no conflict and can be shifted in the direction of frequency increase. If it still conflicts with the LTE RS/other NR PDCCH DMRS after shifting delta (or
  • the first DMRS collides with the reference signal of the second system, that is, the first initial RE and the second initial RE correspond to the same resource, and are shifted in the frequency domain based on the first initial RE until they match the
  • the above LTE RS has no conflict and can be shifted in the direction of frequency reduction. If it still conflicts with LTE RS/other NR PDCCH DMRS after shifting delta (or
  • the frequency domain is shifted in the direction of increasing frequency. bit, until there is no conflict with the LTE RS. If, after shifting delta (or
  • One possible implementation is to ensure joint channel estimation of DMRS in the time domain.
  • the RE index where the corresponding DMRS transmission is located is the same, that is, the first initial RE index corresponding to the first DMRS is the same.
  • the same shift operation is performed in the frequency domain, as shown in Figure 17B.
  • the first initial RE position corresponding to the first DMRS in this disclosure refers to the time-frequency domain position determined based on the existing protocol, which will not be described again.
  • NR DMRS performs frequency domain shifting
  • Embodiment 1 may also use the frequency domain range determined by shifting in the first direction as the first movement range, determine the REs within the first movement range as candidate REs, and then detect and detect the available REs in the candidate REs. After receiving the first DMRS solution, the base station side sends the first DMRS solution on the available REs among the candidate REs. That is, whether there is an available RE is not detected before determining the first movement range.
  • Embodiment 2 assumes that the NR system and the LTE system transmit on the same frequency band. At this time, LTE CRS needs to be sent continuously. At the same time, LTE PHICH/PCFICH will also be transmitted. In the following, LTE RS will be used to represent one or more of LTE CRS, PHICH, PCFICH or other LTE transmission signals, which will not be described again here.
  • the base station transmits NR PDCCH and the corresponding modulation and demodulation signal DMRS on OFDM symbols where LTE RS exists, and the LTE RS and NR PDCCH have intersection in the frequency domain.
  • the time-frequency domain position of the LTE RS is notified by the base station to the terminal through RRC signaling, or the terminal determines it through other methods.
  • the schematic diagrams in this embodiment take PCI equal to 0 as an example to illustrate the specific solution of the present invention.
  • the time-frequency domain position of DMRS transmission can also be determined in the order of frequency domain first and then time domain.
  • One possible implementation includes:
  • Step 1 Shift in the frequency domain based on the first initial RE.
  • the frequency domain shift can be shifted to a high RE index or to a low RE index. It can also be shifted in the direction of increasing frequency first. After shifting delta REs, if REs that do not conflict with LTE RS or other DMRS REs are still determined, the REs are shifted in the direction of frequency reduction.
  • the specific method is the same as in Embodiment 1, which will not be described again here.
  • Step 2 Based on the first initial RE, move one time unit in the third direction in the time domain.
  • the third direction is the direction in which time units increase.
  • Step 3 Continue shifting according to the shifting sequence of the first direction, the second direction, and the third direction.
  • One possible implementation is that for different DMRS corresponding to the same terminal, the above DMRS conflict handling mechanism is executed one by one in the order of frequency domain RE index from low to high and time domain OFDM symbol index from low to high. For the same RE, The priority of the DMRS transmitted at this location is associated with the order of conflict handling.
  • the first mobility range can be determined, and all REs within the first mobility range are determined as candidate REs. Available REs are determined among the candidate REs.
  • the terminal side detects and receives the first DMRS on the available REs.
  • the base station side detects and receives the first DMRS on the available REs.
  • the first DMRS is sent on the available RE.
  • the parameter delta By defining the parameter delta to determine the way in which NR DMRS performs frequency domain shifting and time domain shifting, it is ensured that when NR PDCCH is sent on the LTE CRS symbol, useful information will not be lost and the decoding performance of PDCCH is ensured.
  • the first DMRS considering that the first DMRS is mainly used for channel estimation within a certain RE range, if it is determined that there is no condition for transmitting the PDCCH in the frequency domain range, the first DMRS can be discarded.
  • the above embodiment also avoids waste of PDCCH DMRS transmission on the basis of ensuring PDCCH performance.
  • whether there is an available RE may also be determined during the process of determining the first mobility range. Once the available RE is determined, the determination of the first mobility range may be stopped and the first DMRS may be received or transmitted on the available RE. .
  • Embodiment 3 assumes that the NR system and the LTE system transmit on the same frequency band. At this time, LTE CRS needs to be sent continuously. At the same time, LTE PHICH and PCFICH will also be transmitted. In the following, LTE RS will be used to represent one or more of LTE CRS, PHICH, PCFICH or other LTE transmission signals, which will not be described again here.
  • the base station transmits NR PDCCH and the corresponding modulation and demodulation signal DMRS on OFDM symbols where LTE RS exists, and the LTE RS and NR PDCCH have intersection in the frequency domain.
  • the time-frequency domain position of the LTE RS is notified by the base station to the terminal through RRC signaling, or the terminal determines it through other methods.
  • the schematic diagrams in this embodiment take PCI equal to 0 as an example to illustrate the specific solution of the present invention.
  • the available REs are determined based on the proportion of REs occupied by LTE RS transmission in the entire RB, that is, the first proportion of the second initial REs in the first frequency domain range.
  • the first proportion is associated with the overhead factor ⁇ , and different available RE index sets are flexibly defined.
  • the available RE index set can be determined based on a predefined method, or can also be determined through signaling instructions. The present invention does not limit this. .
  • the factor ⁇ (the first ratio) is associated with different sets of available RE indexes, where the DMRS index defined by the DMRS pattern is the remaining RE definition excluding the RE index occupied by the LTE RS,
  • the corresponding relationship between the factor ⁇ and the available RE index set is as shown in Table 1, and the corresponding method of determining the available REs is as shown in Figure 19.
  • the relationship between the first ratio and the available RE index set can also be shown in Table 2.
  • Table 1 and Table 2 illustrate the corresponding relationship between the first ratio and the available RE index set by way of example, and other specific content that can express the corresponding relationship between the two also falls within the scope of the present disclosure.
  • the first ratio ⁇ is 1, which means that all REs in one RB are occupied by reference signals, and there is no position where DMRS can be transmitted at this time. Therefore, the available RE index set is empty at this time.
  • the REs that can transmit DMRS can be ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ , renumbered as ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ , the corresponding DMRS can be at the index of 1,5, 9 is transmitted on the RE corresponding to 1, 5, and 9 corresponding to REs with RE indexes 2, 7, and 11 within the RB range.
  • Embodiment 3 uses a method similar to rate matching to redefine the available RE index set, which can effectively avoid conflicts with LTE RS, thereby improving channel estimation performance and thereby improving PDCCH transmission performance.
  • the present disclosure also provides an application function implementation device embodiment.
  • Figure 20 is a block diagram of a device for receiving signals according to an exemplary embodiment, including:
  • the processing module 2001 is configured to determine the first initial resource unit RE corresponding to the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system;
  • the processing module 2001 is also configured to determine the second initial RE corresponding to the reference signal of the second system
  • the processing module 2001 is further configured to determine the candidate RE corresponding to the first DMRS through a shift method based on the first initial RE; wherein the first initial RE and the second initial RE correspond to The resources are the same;
  • the receiving module 2002 is configured to detect and receive the first DMRS on the available REs among the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or The reference signal of the second system.
  • Figure 21 is a block diagram of a device for receiving signals according to an exemplary embodiment, including:
  • the processing module 2101 is configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module 2101 is also configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module 2101 is also configured to determine available REs; wherein the resources corresponding to the first initial RE and the second initial RE are the same, and the available REs are in the first frequency domain range corresponding to the PDCCH. is not occupied by other reference signals, the other reference signals include the second DMRS or the reference signal of the second system;
  • the receiving module 2102 is configured to detect and receive the first DMRS on the available RE.
  • Figure 22 is a block diagram of a device for sending signals according to an exemplary embodiment, including:
  • the processing module 2201 is configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module 2201 is also configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module 2201 is also configured to determine the candidate RE corresponding to the first DMRS through a shift method based on the first initial RE; wherein the first initial RE and the second initial RE correspond to The resources are the same;
  • the sending module 2202 is configured to send the first DMRS on the available REs in the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the second DMRS.
  • the reference signal of the second system is configured to send the first DMRS on the available REs in the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the second DMRS.
  • the reference signal of the second system is configured to send the first DMRS on the available REs in the candidate REs; wherein the available REs are not occupied by other reference signals, and the other reference signals are the second DMRS or the second DMRS.
  • Figure 23 is a block diagram of a device for sending signals according to an exemplary embodiment, including:
  • the processing module 2301 is configured to determine the first initial resource unit RE where the first demodulation reference signal DMRS of the downlink control channel PDCCH of the first system is located;
  • the processing module 2301 is also configured to determine the second initial RE where the reference signal of the second system is located;
  • the processing module 2301 is also configured to determine available REs; wherein the resources corresponding to the first initial RE and the second initial RE are the same, and the available REs are in the first frequency domain range corresponding to the PDCCH. is not occupied by other reference signals, the other reference signals include the second DMRS or the reference signal of the second system;
  • the sending module 2302 is configured to send the first DMRS on the available RE.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in a place, or can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • the present disclosure also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to perform any of the above-mentioned methods for receiving signals.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above-mentioned methods for sending signals.
  • the present disclosure also provides a device for receiving signals, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to perform any of the above-mentioned methods for receiving signals.
  • FIG. 24 is a block diagram of a device 2400 for receiving signals according to an exemplary embodiment.
  • the device 2400 may be a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle-mounted user equipment, an iPad, a smart TV and other terminals.
  • device 2400 may include one or more of the following components: processing component 2402, memory 2404, power supply component 2406, multimedia component 2408, audio component 2410, input/output (I/O) interface 2412, sensor component 2416, and Communication component 2418.
  • Processing component 2402 generally controls the overall operations of device 2400, such as operations associated with display, phone calls, random access of data, camera operations, and recording operations.
  • the processing component 2402 may include one or more processors 2420 to execute instructions to complete all or part of the steps of the above method of receiving signals.
  • processing component 2402 may include one or more modules that facilitate interaction between processing component 2402 and other components.
  • processing component 2402 may include a multimedia module to facilitate interaction between multimedia component 2408 and processing component 2402.
  • the processing component 2402 can read executable instructions from the memory to implement the steps of the signal receiving method provided by the above embodiments.
  • Memory 2404 is configured to store various types of data to support operations at device 2400. Examples of such data include instructions for any application or method operating on device 2400, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2404 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 2406 provides power to various components of device 2400.
  • Power supply components 2406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2400.
  • Multimedia component 2408 includes a display screen that provides an output interface between the device 2400 and the user.
  • multimedia component 2408 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2410 is configured to output and/or input audio signals.
  • audio component 2410 includes a microphone (MIC) configured to receive external audio signals when device 2400 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 2404 or sent via communications component 2418.
  • audio component 2410 also includes a speaker for outputting audio signals.
  • the I/O interface 2412 provides an interface between the processing component 2402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2416 includes one or more sensors for providing various aspects of status assessment for device 2400 .
  • the sensor component 2416 can detect the open/closed state of the device 2400, the relative positioning of components, such as the display and keypad of the device 2400, and the sensor component 2416 can also detect a change in position of the device 2400 or a component of the device 2400. , the presence or absence of user contact with the device 2400 , device 2400 orientation or acceleration/deceleration and temperature changes of the device 2400 .
  • Sensor component 2416 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2416 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2416 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communications component 2418 is configured to facilitate wired or wireless communications between device 2400 and other devices.
  • Device 2400 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • communication component 2418 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2418 also includes a near field communications (NFC) module to facilitate short-range communications.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2400 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented and used to perform any of the above-described methods of receiving signals on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented and used to perform any of the above-described methods of receiving signals on the terminal side.
  • a non-transitory machine-readable storage medium including instructions is also provided, such as a memory 2404 including instructions, which instructions can be executed by the processor 2420 of the device 2400 to complete the above method of receiving a signal.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the present disclosure also provides a device for sending signals, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to perform any of the above-mentioned methods for sending signals.
  • FIG. 25 is a schematic structural diagram of a device 2500 for sending signals according to an exemplary embodiment.
  • Apparatus 2500 may be provided as a base station.
  • apparatus 2500 includes a processing component 2522, a wireless transmit/receive component 2524, an antenna component 2526, and a wireless interface-specific signal processing portion.
  • the processing component 2522 may further include at least one processor.
  • One of the processors in the processing component 2522 may be configured to perform any of the above-described methods of sending signals.

Abstract

本公开提供一种接收、发送信号的方法及装置、存储介质,其中,所述接收信号的方法包括:确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;确定第二系统的参考信号对应的第二初始RE;基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。本公开可以有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。

Description

接收、发送信号的方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及接收、发送信号的方法及装置、存储介质。
背景技术
当LTE(Long Term Evolution,长期演进)系统与NR(New Radio,新空口)系统在相同的频段共存时,LTE的参考信号可能会对NR系统造成严重干扰,使得NR PDCCH(Physical Downlink Control Channel,物理下行控制信道)性能下降,其容量严重受限,限制了NR系统的性能和调度的灵活性。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种接收、发送信号的方法及装置、存储介质,在DSS(Dynamic Spectrum Sharing,动态频谱共享)场景下有效提高NR系统的信道估计性能,提升NR PDCCH的传输性能。
根据本公开实施例的第一方面,提供一种接收信号的方法,所述方法由终端执行,包括:
确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;
确定第二系统的参考信号对应的第二初始RE;
基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述 第二系统的参考信号。
可选地,所述基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE,包括:
基于所述第一初始RE,通过移位方式确定第一移动范围;
将位于所述第一移动范围内的RE确定为所述候选RE。
可选地,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
可选地,所述基于所述第一初始RE,确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围确定为所述第一移动范围。
可选地,所述基于所述第一初始RE,确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
再次满足所述第一停止移位条件,基于所述第一初始RE,在时域上向第三方向移动一个时间单元;
按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位;
在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
可选地,所述第一方向为以下任一项:
频率增加的方向;
频率减小的方向。
可选地,所述第一方向为频率增加的方向,所述第二方向为频率减小的方向;或者,
所述第一方向为频率减小的方向,所述第二方向为频率增加的方向。
可选地,所述第三方向为时间单元增加的方向。
可选地,所述第一停止移位条件包括移动的频域资源数目等于预先确定的最大频率单元数;
第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
可选地,所述最大频率单元数等于3。
可选地,所述最大时间单元数等于所述第一DMRS所在的控制资源集合CORESET持续的时间单元数。
可选地,采用以下方式中任一项确定最大频率单元数:
基于协议预定义;基于基站发送的信令的指示;基于终端上报能力。
可选地,采用以下方式中任一项确定最大时间单元数:
基于协议预定义;基于基站发送的信令的指示;基于终端上报能力。
可选地,所述在所述候选RE中的可用RE上,检测并接收所述第一DMRS,包括:
在第四方向上所确定的所述可用RE上,检测并接收所述第一DMRS;其中,所述第四方向是所述第一方向和所述第二方向中所确定的所述可用RE的数目最多的移位方向。
可选地,所述方法还包括:
确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
根据本公开实施例的第二方面,提供一种信号接收方法,所述方法由终端执行,包括:
确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
确定第二系统的参考信号所在的第二初始RE;
确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
在所述可用RE上,检测并接收所述第一DMRS。
可选地,所述确定可用RE,包括:
在所述第一频域范围内,确定所述第二初始RE所占的第一比例;
基于所述第一比例,确定可用RE索引集合;其中,所述第一比例与所述可用RE索引集合之间存在预设的对应关系;
在所述第一频域范围内除去所述第二初始RE,得到候选RE集合;
基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE。
可选地,所述在所述第一频域范围内,确定所述第二初始RE所占的第一比例,包括:
确定第一频域范围所述第二初始RE的数目与所述第一频域范围所包括的RE总数目的比值,得到所述第一比例。
可选地,所述基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE,包括:
对所述候选RE集合中的每个RE按照对应索引由小到大的顺序重新编号,确定所述候选RE集合中每个RE的索引值;
在所述候选RE集合中,将所述可用RE索引集合所指示的RE确定为所述可用RE。
可选地,所述第一频域范围为以下任一项:
PDCCH所在的BWP(Bandwidth Part,部分带宽)频域范围;
PDCCH所在频域范围内的一个资源块RB范围;或
PDCCH所对应的控制资源集合CORESET频域范围。
根据本公开实施例的第三方面,提供一种发送信号的方法,所述方法由基站执行,包括:
确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
确定第二系统的参考信号所在的第二初始RE;
基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
在所述候选RE中的可用RE上,发送所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
可选地,所述基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE,包括:
基于所述第一初始RE,通过移位方式确定第一移动范围;
将位于所述第一移动范围内的RE确定为所述候选RE。
可选地,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
可选地,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向 上进行移位所得到的频域范围确定为所述第一移动范围。
可选地,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
基于所述第一初始RE,在频域上向第一方向进行顺序移位;
满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
再次满足所述第一停止移位条件,基于所述第一初始RE,在时域上向第三方向移动一个时间单元;
按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位;
在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
可选地,所述第一方向为以下任一项:
频率增加的方向;
频率减小的方向。
可选地,所述第一方向为频率增加的方向,所述第二方向为频率减小的方向;或者,
所述第一方向为频率减小的方向,所述第二方向为对应频率增加的方向。
可选地,所述第三方向为时间单元增加的方向。
可选地,所述第一停止移位条件包括移动的频域资源数目等于预先确定的最大频率单元数;
第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
可选地,所述最大频率单元数等于3。
可选地,所述最大时间单元数等于所述第一DMRS所在的控制资源集 合CORESET持续的时间单元数。
可选地,采用以下方式中任一项确定最大频率单元数:
基于协议预定义;基于基站发送的信令的指示;基于终端上报能力。
可选地,采用以下方式中任一项确定最大时间单元数:
基于协议预定义;基于基站发送的信令的指示;基于终端上报能力。可选地,所述在所述候选RE中的可用RE上,发送所述第一DMRS,包括:
在第四方向上所确定的所述可用RE上,发送所述第一DMRS;其中,所述第四方向是所述第一方向和所述第二方向中所确定的所述可用RE的数目最多的移位方向。
可选地,所述方法还包括:
确定所述候选RE中不存在所述可用RE,不发送所述第一DMRS。
根据本公开实施例的第四方面,提供一种发送信号的方法,所述方法由基站执行,包括:
确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
确定第二系统的参考信号所在的第二初始RE;
确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
在所述可用RE上,发送所述第一DMRS。
可选地,所述确定可用RE,包括:
在所述第一频域范围内,确定所述第二初始RE所占的第一比例;
基于所述第一比例,确定可用RE索引集合;其中,所述第一比例与所述可用RE索引集合之间存在预设的对应关系;
在所述第一频域范围内除去所述第二初始RE,得到候选RE集合;
基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE。
可选地,所述在所述第一频域范围内,确定所述第二初始RE所占的第一比例,包括:
确定第一频域范围内所述第二初始RE的数目与所述第一频域范围所包括的RE总数目的比值,得到所述第一比例。
可选地,所述基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE,包括:
对所述候选RE集合中的每个RE按照对应索引由小到大的顺序重新编号,确定所述候选RE集合中每个RE的索引值;
在所述候选RE集合中,将所述可用RE索引集合所指示的RE确定为所述可用RE。
可选地,所述第一频域范围为以下任一项:
PDCCH所在的部分带宽BWP频域范围;
PDCCH所在频域范围内的一个资源块RB范围;或
PDCCH所对应的控制资源集合CORESET频域范围。
根据本公开实施例的第五方面,提供一种接收信号的装置,包括:
处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;
所述处理模块,还被配置为确定第二系统的参考信号对应的第二初始RE;
所述处理模块,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
接收模块,被配置为在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
根据本公开实施例的第六方面,提供一种接收信号的装置,包括:
处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块,还被配置为确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
接收模块,被配置为在所述可用RE上,检测并接收所述第一DMRS。
根据本公开实施例的第七方面,提供一种发送信号的装置,包括:
处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
发送模块,被配置为在在所述候选RE中的可用RE上,发送所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
根据本公开实施例的第八方面,提供一种发送信号的装置,包括:
处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块,还被配置为确定可用RE;其中,所述第一初始RE与 所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
发送模块,被配置为在所述可用RE上,发送所述第一DMRS。
根据本公开实施例的第九方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一项所述的接收信号的方法。
根据本公开实施例的第十方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一项所述的发送信号的方法。
根据本公开实施例的第十一方面,提供一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述可执行指令以实现上述任一项所述的接收信号的方法的步骤。
根据本公开实施例的第十二方面,提供一种信号传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述可执行指令以实现上述任一项所述的发送信号的方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,可以有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A至图1C是根据一示例性实施例示出的CRS在时频域资源映射关系示意图。
图2是根据一示例性实施例示出的一种PCFICH与4端口的CRS复用示意图。
图3是根据一示例性实施例示出的一种PCFICH流程示意图。
图4是根据一示例性实施例示出的一种PCFICH与PHICH复用示意图。
图5A是根据一示例性实施例示出的一种NR PDCCH DMRS与LTE 4端口CRS复用示意图。
图5B是根据一示例性实施例示出的一种NR PDCCH DMRS与LTE参考信号共存示意图。
图6是根据一示例性实施例示出的另一种NR PDCCH DMRS与LTE 4端口CRS复用示意图。
图7是根据一示例性实施例示出的另一种PCFICH与PHICH复用示意图。
图8是根据一示例性实施例示出的一种接收信号的方法流程示意图。
图9是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图10是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图11是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图12A是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图12B是根据一示例性实施例示出的另一种接收信号的方法流程示意 图。
图13是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图14是根据一示例性实施例示出的另一种接收信号的方法流程示意图。
图15是根据一示例性实施例示出的一种发送信号的方法流程示意图。
图16是根据一示例性实施例示出的另一种发送信号的方法流程示意图。
图17A是根据一示例性实施例示出的一种确定可用RE的示意图。
图17B是根据一示例性实施例示出的另一种确定可用RE的示意图。
图18是根据一示例性实施例示出的另一种确定可用RE的示意图。
图19是根据一示例性实施例示出的另一种确定可用RE的示意图。
图20是根据一示例性实施例示出的一种接收信号的装置框图。
图21是根据一示例性实施例示出的另一种接收信号的装置框图。
图22是根据一示例性实施例示出的一种发送信号的装置框图。
图23是根据一示例性实施例示出的另一种发送信号的装置框图。
图24是本公开根据一示例性实施例示出的一种接收信号的装置的一结构示意图。
图25是本公开根据一示例性实施例示出的一种发送信号的装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在LTE与NR共存的频段上,LTE CRS(Cell-specific Reference Signal小区级参考信号)要持续发送,会对NR系统造成非常强烈的干扰。在目前的协议中,为了避免来自LTE系统的强干扰造成NR PDCCH性能的下降,NR终端只检测与LTE CRS没有任何重叠的PDCCH candidate(候选)。但是,考虑到LTE CRS最多支持4端口,此时CRS在一个slot(时隙)内占据6个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。在这种情况下,NR PDCCH只能在剩余的8个OFDM符号上传输,且无法采用duration(持续时长)为3个连续符号的CORESET(Control Resource set,控制资源集合)内传输,从而严重的制约了NR PDCCH的容量以及传输性能。为进一步提高DSS场景下PDCCH资源利用效率,提升PDCCH容量,Rel-18(Release-18,版本18)WID支持NR PDCCH在CRS所在symbol(符号)上进行传输。
在所述DSS场景中,对于NR系统来说,会受到CRS强烈且持续的干扰,若CRS传输所占资源上有NR DMRS(Demodulatin Reference Signal,解调参考信号)传输,将会严重影响PDCCH传输性能。
从另一个角度来说,PHICH(Physical hybrid ARQ indicator channel, 物理HARQ指示信道)、PCFICH(Physical control format indicator channel,物理控制格式指示信道)作为LTE的小区级essential(必要)信号,若传输所占RE与NR PDCCH DMRS所占RE有冲突,也会对其造成严重干扰,从而降低PDCCH传输性能。
与CRS不同,控制信道PHICH、PCFICH在一定频域范围内,在LTE定义的REG(Resource Element Group,资源单元组)范围内连续传输,且PHICH可以在一个LTE子帧的第0、1、2个OFDM符号上传输,所述CRS、PHICH、PCFICH以及NR DMRS在时频域的映射规则如下所示:
CRS:
CRS主要用于下行信道质量检测,如RSRP(Reference Signal Receiving Power,参考信号接收功率)等指标,以及下行信道估计,以及用于终端侧的相干解调。CRS的天线端口可配,最多可以配置4个天线端口,且CRS只能在子载波间隔Δf=15kHz的子帧上传输。
对于slot n s天线端口p上传输的CRS序列符号
Figure PCTCN2022086922-appb-000001
其与OFDM资源(k,l)的映射关系如下所示:
k=6m+(v+v shift)mod6
Figure PCTCN2022086922-appb-000002
Figure PCTCN2022086922-appb-000003
Figure PCTCN2022086922-appb-000004
其中,
Figure PCTCN2022086922-appb-000005
等于LTE DL(Down Link,下行链路)配置带宽所占RB数,
Figure PCTCN2022086922-appb-000006
等于一个slot内所占OFDM符号数,小区级符号偏移
Figure PCTCN2022086922-appb-000007
小区序号(PCI,
Figure PCTCN2022086922-appb-000008
)由高层信令配置,变量v与天线端口p,OFDM符号l关系如下所示:
Figure PCTCN2022086922-appb-000009
值得注意的是,若资源单元(k,l)用于传输特定天线端口的CRS,所述资源不能用于其他天线端口的CRS资源传输。
对于不同天线端口,对应CRS在时频域资源映射关系例如图1A至图1C所示(v shift=0),分别对应的CRS天线端口数目为1、2、4。
PCFICH:
PCFICH信道,即物理控制格式指示信道,承载信息CFI(Control Field Indicator,控制指示符)来指示子帧中控制信道(PDCCH和PHICH)占用的OFDM符号个数,所述CFI携带2bits(比特)信息,通过QPSK(Quadrature Phase Shift Keying,正交相移键控)进行调制。
考虑到只有解码出PCFICH信道才能知道控制区域的大小,因此
PCFICH信道总是映射在下行子帧的第一个OFDM符号或DwPTS(下行导频时隙),同时,为了获得频域上的分集增益,组成PCFICH信道的4个REG将均匀分布在整个带宽中。
对于天线端口p映射的第i个资源组,其对应REG包含RE索引如下所示:
z (p)(0)is mapped to the resource-element group represented by
Figure PCTCN2022086922-appb-000010
z (p)(1)is mapped to the resource-element group represented by
Figure PCTCN2022086922-appb-000011
z (p)(2)is mapped to the resource-element group represented by
Figure PCTCN2022086922-appb-000012
z (p)(3)is mapped to the resource-element group represented by
Figure PCTCN2022086922-appb-000013
其中,起始偏移位置
Figure PCTCN2022086922-appb-000014
为一个所占的RE数。
值得注意的是,REG由小区内不包括小区特定参考信号在内的4个连 续RE组成,若某个RE为小区特定参考信号(CRS)预留,则该RE不能用来组REG。且属于同一个REG的4个RE,必须位于同一个OFDM符号内。
Figure PCTCN2022086922-appb-000015
端口CRS为例,对应频域位置例如图2所示。
PHICH:
PHICH携带HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)的ACK(Acknowledge,确认)、NACK(Non-Acknowledge,非确认)信息,基站通过PHICH信道来通知UE是否已经在PUSCH上正确接收了一个传输,终端根据PHICH指示的信息决定重传还是发送新的数据给基站,例如图3所示。
定义映射到天线端口p的第i组(对应映射到第i∈{0,1,2}个REG)PHICH序列为
Figure PCTCN2022086922-appb-000016
所述序列z (p)(i)属于PHICH组m'(对于extended CP,m'=m/2,m为PHICH组索引),映射到的RE(k′,l′) i满足如下条件:
Figure PCTCN2022086922-appb-000017
所述PHICH duration由高层参数phich-duration配置,具体见协议36.211。
频域索引k′ i与映射REG
Figure PCTCN2022086922-appb-000018
定义n l′为子帧内OFDM符号l′上未分配PCFICH的REG数量,若高层参数phich-duration指示normal CP场景下,
Figure PCTCN2022086922-appb-000019
其中,在场景MBSFN子帧中的扩展PHICH持续时间,或帧结构类型2的子帧1和6中的扩展PHICH持续时间,或与帧结构类型3中的特殊子帧配置的DwPTS持续时间相同的子帧中的扩展PHICH持续时间下,对应REG索引:
Figure PCTCN2022086922-appb-000020
以TDD(Time Division Duplex,时分复用)extended(扩展)PHICH duration,
Figure PCTCN2022086922-appb-000021
m i=1(uplink-downlink configuration=0,子帧0),
Figure PCTCN2022086922-appb-000022
其中,N g=2,4端口CRS,PHICH对应时域位置如下所示:
l′ 0=0,
Figure PCTCN2022086922-appb-000023
l′ 1=1,
Figure PCTCN2022086922-appb-000024
l′ 2=2,
Figure PCTCN2022086922-appb-000025
频域位置则如下所示:
m'=0时,
Figure PCTCN2022086922-appb-000026
m'=1时,
Figure PCTCN2022086922-appb-000027
m'=6时,
Figure PCTCN2022086922-appb-000028
对应PHICH和PCFICH的频域位置如图4所示。
PDCCH DMRS:
序列产生
对于一个slot内的OFDM符号 l,对应序列r l(m)等于:
Figure PCTCN2022086922-appb-000029
c(i)为伪随机序列,初始值为
Figure PCTCN2022086922-appb-000030
其中,
Figure PCTCN2022086922-appb-000031
为帧内slot索引,N ID∈{0,1,...,65535}由高层参数pdcch-DMRS-ScramblingID配置,否则,
Figure PCTCN2022086922-appb-000032
资源映射
Figure PCTCN2022086922-appb-000033
序列r l(m)映射到资源单元(k,l) p,μ,应遵循如下规则:
Figure PCTCN2022086922-appb-000034
Figure PCTCN2022086922-appb-000035
k′=0,1,2
n=0,1,...
其中,
Figure PCTCN2022086922-appb-000036
为传输功率参数,k为OFDM符号内子载波索引,l为slot内symbol索引,天线端口p=2000。
基于上述公式,在PDCCH DMRS存在的RB内,DMRS在一个RB内的第1,5,9个子载波上传输。
当NR PDCCH DMRS与LTE CRS RE发生冲突时,NR PDCCH DMRS RE在频域上做移位,直至与所述LTE CRS没有冲突以围绕CRS进行rate matching,但是用于PDSCH解调的DMRS仍然不能与CRS有任何冲突,如图5A所示:
如前所述,PHICH、PCFICH作为LTE的essential的小区级的控制信道,与CRS类似,也会对NR PDCCH DMRS造成强干扰,在PHICH和/或PCFICH存在的场景下,若基于现有机制,NR PDCCH DMRS通过在频域RE上做移位的方式避免冲突。在PCFICH和/或PHICH与CRS共存的场景下,DMRS可能需要偏移多个RE,对应DMRS在该RE上的信道估 计误差较大,如图5B所示。
在传输LTE CRS的OFDM symbol上,也可以不进行DMRS传输,只在没有LTE CRS的symbol上传输DMRS,所述场景适用于PDCCH CORESET时域范围内存在未传输LTE CRS的symbol的场景,例如图6所示。
若基于相关机制,只在不传输LTE参考信号所在symbol上传输DMRS,现有机制下,PDCCH CORESET最长占据3个OFDM符号,在某些场景下,PHICH可能会占据CORESET所在的所有OFDM符号,不存在CORESET内对应symbol不传输CRS的场景,例如图7所示。
当LTE系统与NR系统在相同的频段共存时,LTE CRS、PCFICH、PHICH存在可能会对PDCCH造成严重干扰,从而使得其容量严重受限,限制了NR系统的性能和调度的灵活性。
为了解决上述技术问题,本公开提供了以下接收、发送信号的方法及装置、存储介质。
下面先从终端侧介绍一下本公开提供的接收信号的方法。
本公开实施例提供了一种接收信号的方法,参照图8所示,图8是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤801中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH对应的任一DMRS,终端可以基于现有协议确定的DMRS相关机制来确定第一初始RE(Resource Element,资源单元)。
在步骤802中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤803中,基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE。
在本公开实施例中,终端可以在第一初始RE与第二初始RE对应的资源相同的情况下,通过移位方式确定候选RE。其中,资源相同包括但不限于时域资源、频域资源相同,候选RE的数目可以为一个或多个,本公开对此不作限定。
在步骤804中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
上述实施例中,终端侧可以通过频率移位和/或时域移位的方式确定候选RE,并在候选RE中的可用RE上检测并接收第一DMRS,在DSS场景下可以有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,参照图9所示,图9是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤901中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤902中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号 可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤903中,基于所述第一初始RE,通过移位方式确定第一移动范围。
在步骤904中,将位于所述第一移动范围内的RE确定为所述候选RE。
在本公开实施例中,可以将位于第一移动范围内的所有RE均确定为候选RE。
在步骤905中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
上述实施例中,终端可以将第一移动范围内的所有RE均确定为候选RE,以便围绕LTE系统的参考信号进行速率匹配,确定可用RE,并在可用RE上检测并接收第一DMRS,在DSS场景下可以有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,参照图10所示,图10是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1001中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1002中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1003中,基于所述第一初始RE,在频域上向第一方向进行顺序移位。
在本公开实施例中,第一方向可以为频率增加的方向,或者,第一方向可以为频率减小的方向。第一方向的确定可以由协议进行约定,或者,可以由基站发送信令进行指示,本公开对此不作限定。
在步骤1004中,满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
在本公开实施例中,第一停止移位条件可以包括移动的频域资源数目等于预先确定的最大频率单元数。
预先确定最大频率单元数delta的方式可以是基于协议预定义来确定,也可以基于基站发送的信令指示来确定,还可以基于终端上报能力来确定,本公开对此不作限定。
可选地,考虑到DMRS在一个RB内的第1,5,9个子载波上传输,如果第一DMRS在该RB内的第1个子载波上传输,第1个子载波与第5个子载波之间间隔的RE数可以作为最大频率单元数,即最大频率单元数delta等于3。
在一个可能的实现方式中,终端基于第一初始RE向频率增加的方向进行顺序移位,在移动的RE数为3时停止移位,此时得到的频域范围可以确定为所述第一移动范围。
需要说明的是,这里的最大频率单元数是终端基于第一初始RE向频率增加方式进行移位时移动的最大RE数,终端可以向频率增加或减小的 方向移动的RE数可以小于或等于3,例如可以为1、2或3。
在一个可能的实现方式中,终端基于第一初始RE向频率减小的方向进行顺序移位,在移动的RE数为最大频率单元数时停止移位,此时得到的频域范围可以确定为所述第一移动范围。
在步骤1005中,将位于所述第一移动范围内的RE确定为所述候选RE。
在步骤1006中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
在一个可能的实现方式中,候选RE中包括了多个可用RE,终端可以在基于第一初始RE向第一方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
在一个可能的实现方式中,步骤1006可以替换为1007(图10中未示出):
在步骤1007中,确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
上述实施例中,可以围绕LTE系统的参考信号进行速率匹配,从而在可用RE上检测并接收第一DMRS,如果候选RE中不存在可用RE,则终端可以对该第一DMRS进行打孔,即不接收该第一DMRS。在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,参照图11所示,图11是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1101中,确定第一系统的下行控制信道PDCCH的第一解调参 考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1102中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1103中,基于所述第一初始RE,在频域上向第一方向进行顺序移位。
在本公开实施例中,第一方向可以为频率增加的方向,或者,第一方向可以为频率减小的方向。第一方向的确定可以由协议进行约定,或者,可以由基站发送信令进行指示,本公开对此不作限定。
在步骤1104中,满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位。
在本公开实施例中,第一停止移位条件可以包括移动的频域资源数目等于预先确定的最大频率单元数。
在一个可能的实现方式中,预先确定最大频率单元数的方式可以基于协议预定义来确定,也可以基于基站发送的信令指示来确定,还可以基于终端上报能力来确定,本公开对此不作限定。可选地,最大频率单元数可以等于3。
在本公开实施例中,终端在第一方向上进行顺序移位满足第一停止移位条件,则终端可以基于第一初始RE在频域上向第二方向进行顺序移位。其中,所述第一方向为频率增加的方向,所述第二方向为频率减小的方向,或者,所述第一方向为所述频率减小的方向,所述第二方向为频率增加的 方向。
在步骤1105中,再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围确定为所述第一移动范围。
在本公开实施例中,将在上述两个方向上间移位所得到的频域范围均确定为第一移动范围。
例如,DMRS在一个RB内的第1,5,9个子载波上传输,第一DMRS对应的第一初始RE索引为5,向频率增大的方向进行移位直到索引为8的RE以及以索引5为起点,向频率减小的方向进行移位直到索引为2的RE,这些RE对应的频域范围均可以作为第一移位范围。
在步骤1106中,将位于所述第一移动范围内的RE确定为所述候选RE。
在步骤1107中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
在一个可能的实现方式中,候选RE中包括了多个可用RE,终端可以在第四方向上所确定的所述可用RE上,检测并接收所述第一DMRS。其中,所述第四方向是所述第一方向和所述第二方向中所确定的所述可用RE的数目最多的移位方向。
进一步地,终端可以在基于第一初始RE向第四方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
例如,第一方向上确定的可用RE数目为1,第二方向上确定的可用RE数目为2,则第四方向为第二方向。进一步地,终端可以在基于第一初始RE向第二方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
在一个可能的实现方式中,步骤1107可以替换为1108(图11中未示出):
在步骤1108中,确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
上述实施例中,可以围绕LTE系统的参考信号进行速率匹配,从而在可用RE上检测并接收第一DMRS,如果候选RE中不存在可用RE,则终端可以对该第一DMRS进行打孔,即不接收该第一DMRS。在DSS场景下,可以有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,参照图12A所示,图12A是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1201中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1202中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1203中,基于所述第一初始RE,在频域上向第一方向进行顺序移位。
在本公开实施例中,第一方向可以为频率增加的方向,或者,第一方向可以为频率减小的方向。第一方向的确定可以由协议进行约定,或者, 可以由基站发送信令进行指示,本公开对此不作限定。
在步骤1204中,满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位。
在本公开实施例中,第一停止移位条件可以包括移动的频域资源数目等于预先确定的最大频率资源数。
在一个可能的实现方式中,最大频率资源数delta可以基于协议预定义来确定,也可以基于基站发送的信令指示来确定,还可以基于终端上报能力来确定。可选地,最大频率资源数delta可以等于3。
在本公开实施例中,终端在第一方向上进行顺序移位满足第一停止移位条件,则终端可以基于第一初始RE在频域上向第二方向进行顺序移位。其中,所述第一方向为频率增加的方向,所述第二方向为频率减小的方向,或者,所述第一方向为频率减小的方向,所述第二方向为频率增加的方向。
在步骤1205中,再次满足所述第一停止移位条件,在时域上向第三方向移动一个时间单元。
在本公开实施例中,第三方向为时间单元增加的方向。
在步骤1206中,按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位。
在本公开实施例中,终端可以在时域上向第三方向移动了一个时间单元后,基于所述第一初始RE,在移动后的时间单元对应的频域上向第一方向进行顺序移位,满足第一停止移位条件,终端可以基于第一初始RE,在移动后的时间单元对应的频域上向第二方向进行顺序移位。再次满足第一停止移位条件,则终端继续在时域上向第三方向移动一个时间单元。第一停止移位条件包括移动的频域资源数目等于所述第一DMRS所在的控制资源集合持续的频域资源数。
基于上述过程,按照先频域再时域的方式不断进行移位。
在步骤1207中,在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述 第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
在本公开实施例中,第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
在一个可能的实现方式中,最大时间单元数可以基于协议预定义,或者基于基站发送的信令指示确定,或者可以基于终端上报能力确定,本公开对此不作限定。
在一个可能的实现方式中,最大时间单元数可以为第一DMRS所在的控制资源集合CORESET持续的时间单元数。需要说明的是,终端向第三方向进行移位时,移动的时间单元数目可以小于或等于该最大时间单元数。
在步骤1208中,将位于所述第一移动范围内的RE确定为所述候选RE。
在步骤1209中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
在一个可能的实现方式中,候选RE中包括了多个可用RE,终端可以在第四方向上所确定的所述可用RE上,检测并接收所述第一DMRS。其中,所述第四方向是所确定的所述可用RE的数目最多的频域移位方向。进一步地,终端可以在基于第一初始RE向第四方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
例如,第一方向上确定的可用RE数目为1,第二方向上确定的可用RE数目为2,则第四方向为第二方向。进一步地,终端可以在基于第一初始RE向第二方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
在一个可能的实现方式中,步骤1209可以替换为1210(图12A中未 示出):
在步骤1210中,确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
上述实施例中,可以围绕LTE系统的参考信号进行速率匹配,从而在可用RE上检测并接收第一DMRS,如果候选RE中不存在可用RE,则终端可以对该第一DMRS进行打孔,即不接收该第一DMRS。在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些实施例中,参照图12B所示,图12B是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1201’中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1202’中,确定第二系统的参考信号对应的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1203’中,基于所述第一初始RE,在频域上向第一方向进行顺序移位。
在本公开实施例中,第一方向可以为频率增加的方向,或者,第一方向可以为频率减小的方向。第一方向的确定可以由协议进行约定,或者,可以由基站发送信令进行指示,本公开对此不作限定。
在步骤1204’中,满足第一停止移位条件,基于所述第一初始RE,在 时域上向第三方向移动一个时间单元。
在本公开实施例中,第一停止移位条件可以包括移动的频域资源数目等于预先确定的最大频率资源数。
在一个可能的实现方式中,预先确定最大频率资源数delta的方式可以是基于协议预定义来确定,也可以基于基站发送的信令指示来确定,还可以基于终端上报能力来确定,本公开对此不作限定。可选地,最大频率资源数delta可以等于3。
其中,所述第一方向为频率增加的方向,或者,所述第一方向为频率减小的方向。第三方向为时间单元增加的方向。
在步骤1205中,按照所述第一方向、所述第三方向的移位顺序,继续进行移位。
在本公开实施例中,终端可以在时域上向第三方向移动了一个时间单元后,基于所述第一初始RE,在移动后的时间单元对应的频域上向第一方向进行顺序移位,满足第一停止移位条件,终端可以继续在时域上向第三方向移动一个时间单元。第一停止移位条件包括移动的频域资源数目等于最大频域资源数。
基于上述过程,按照先频域再时域的方式不断进行移位。
在步骤1206’中,在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
在本公开实施例中,第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
在一个可能的实现方式中,预先确定最大时间单元数的方式可以基于协议预定义,或者基于基站发送的信令指示确定,或者可以基于终端上报能力确定,本公开对此不作限定。
在一个可能的实现方式中,最大时间单元数可以为第一DMRS所在的控制资源集合CORESET持续的时间单元数。需要说明的是,终端向第三 方向进行移位时,移动的时间单元数目可以小于或等于该最大时间单元数。
在步骤1207’中,将位于所述第一移动范围内的RE确定为所述候选RE。
在步骤1208’中,在所述候选RE中的可用RE上,检测并接收所述第一DMRS。
在本公开实施例中,可用RE是指候选RE中未被其他参考信号占用的RE,其中,其他参考信号可以为不同于第一DMRS的任一第二DMRS,或者其他参考信号可以为第二系统的参考信号,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项。
在一个可能的实现方式中,候选RE中包括了多个可用RE,终端可以在第四方向上所确定的所述可用RE上,检测并接收所述第一DMRS。其中,所述第四方向是所确定的所述可用RE的数目最多的频域移位方向。进一步地,终端可以在基于第一初始RE向第四方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
例如,第一方向上确定的可用RE数目为1,第二方向上确定的可用RE数目为2,则第四方向为第二方向。进一步地,终端可以在基于第一初始RE向第二方向进行移位,且移动的RE数目最少的可用RE上,检测并接收该第一DMRS。
在一个可能的实现方式中,步骤1208’可以替换为1209’(图12B中未示出):
在步骤1209’中,确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
上述实施例中,可以围绕LTE系统的参考信号进行速率匹配,从而在可用RE上检测并接收第一DMRS,如果候选RE中不存在可用RE,则终端可以对该第一DMRS进行打孔,即不接收该第一DMRS。在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
上述实施例中,可以围绕LTE系统的参考信号进行速率匹配,从而在可用RE上检测并接收第一DMRS,如果候选RE中不存在可用RE,则终端可以对该第一DMRS进行打孔,即不接收该第一DMRS。在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些实施例中,上述最大频率单元数delta可以大于0或小于0,其中可以通过delta的正负表示第一方向。例如delta大于0对应第一方向为频率增加的方向,delta小于0对应第一方向为频率减小的方向。
在一些实施例中,第三方向上的时间单元可以为OFDM符号。在确定第一移动范围时,OFDM索引值越小,优先级越高。
上述实施例中,终端通过移位方式来确定候选RE,进而在候选RE中的可用RE上检测并接收第一DMRS,如果在候选RE中不存在可用RE,则终端不接收第一DMRS。除了上述方式之外,本公开还提供了另一种接收信号的方法。
本公开实施例提供了一种接收信号的方法,参照图13所示,图13是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1301中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1302中,确定第二系统的参考信号所在的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的, NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1303中,确定可用RE。
在本公开实施例中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号。
其中,第一频域范围可以为PDCCH所在的BWP频域范围,或者第一频域范围可以为PDCCH所在频域范围内的一个RB(Resource Block,资源块)范围,或者第一频域范围可以为PDCCH所对应的CORESET频域范围。
在步骤1304中,在所述可用RE上,检测并接收所述第一DMRS。
需要说明的是PDCCH对应的频域资源是由多个RB组成的,本公开中以任一个RB为单位进行说明。在该RB的可用RE上,检测并接收第一DMRS。
上述实施例中,终端可以直接确定可用RE,并在可用RE上检测并接收第一DMRS,围绕LTE系统的参考信号进行速率匹配,在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,参照图14所示,图14是根据一实施例示出的一种接收信号的方法流程图,可以由终端执行,该方法可以包括以下步骤:
在步骤1401中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE。
在本公开实施例中,第一系统可以为NR系统,第一DMRS可以是与NR系统的PDCCH的任一DMRS,终端可以基于上述的DMRS相关机制来确定第一初始RE。
在步骤1402中,确定第二系统的参考信号所在的第二初始RE。
在本公开实施例中,第二系统可以为LTE系统,第二系统的参考信号 可以为LTE的CRS、PCFICH、PHICH中的至少一项,终端可以基于上述的CRS、PCFICH、PHICH相关机制确定第二初始RE。
其中,若第二系统的参考信号为PCFICH或PHICH,与CRS类似的,NR终端可以基于相关信令和36.211相关机制确定第二初始RE。
在步骤1403中,在第一频域范围内,确定所述第二初始RE所占的第一比例。
其中,第一频域范围可以为PDCCH所在的BWP频域范围,或者第一频域范围可以为PDCCH所在频域范围内的一个RB范围,或者第一频域范围可以为PDCCH所对应的CORESET频域范围。
需要说明的是PDCCH对应的频域资源是由多个RB组成的,本公开中以其中任一个RB为单位进行说明。在该RB的可用RE上,检测并接收第一DMRS。
在一个可能的实现方式中,可以确定所述第二初始RE的数目与所述第一频域范围所包括的RE总数目的比值,从而得到所述第一比例。
在步骤1404中,基于所述第一比例,确定可用RE索引集合。
在本公开实施例中,第一比例与所述可用RE索引集合之间存在预设的对应关系。
可以通过协议预定义不同的第一比例α与不同的可用RE索引集合之间的对应关系。
终端可以根据上述对应关系确定第一比例所对应的可用RE索引值。
在步骤1405中,在所述第一频域范围内除去所述第二初始RE,得到候选RE集合。
在步骤1406中,基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE。
在本公开实施例中,可以对候选RE集合中的每个RE按照对应索引由小到大的顺序重新编号,确定所述候选RE集合中每个RE的索引值。例如,候选RE集合为{1,2,4,5,7,8,10,11},重新编号后的候选RE 集合为{0,1,2,3,4,5,6,7}。
进一步地,终端可以在所述候选RE集合中,将所述可用RE索引集合所指示的RE确定为所述可用RE。例如,可用RE索引为{1,4,7},则终端将候选RE集合中的索引为{1,4,7}的RE确定为可用RE。
这里需要说明的是,可用RE索引指示的是候选RE集合中对每个RE按照索引重新编号后的RE,以可用RE索引为{1,4,7}为例,候选RE集合中未重新编号时索引为{2,7,11}(重新编号后索引为{1,4,7})的RE确定为可用RE。
在步骤1407中,在所述可用RE上,检测并接收所述第一DMRS。
上述实施例中,终端可以根据第二初始RE在第一频域范围内所占的比例确定可用RE,在DSS场景下有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
下面再从基站侧介绍一下本公开提供的发送信号的方法。
本公开实施例提供了一种发送信号的方法,参照图15所示,图15是根据一实施例示出的一种发送信号的方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤1501中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE。
基站确定第一初始RE的方式与终端侧类似,在此不再赘述。
在步骤1502中,确定第二系统的参考信号所在的第二初始RE。
基站确定第二初始RE的方式与终端侧类似,在此不再赘述。
在步骤1503中,基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE。
其中,所述第一初始RE与所述第二初始RE对应的资源相同。
在步骤1504中,在所述候选RE中的可用RE上,发送所述第一DMRS。
其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第 二DMRS或所述第二系统的参考信号。
上述实施例中,基站可以通过移位方式确定第一移位范围,将第一移动范围内的RE确定为候选RE,在候选RE中的可用RE上发送第一DMRS,在DSS场景下,有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
在一些可选实施例中,基站可以先基于第一初始RE通过移位方式确定第一移动范围,将位于所述第一移动范围内的RE确定为所述候选RE。
确定第一移动范围的方式包括以下任一项:
方式一、基于所述第一初始RE,在频域上向第一方向进行顺序移位,满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
具体实现方式与终端侧图10所示实施例的实现方式类似,在此不再赘述。
方式二、基于所述第一初始RE,在频域上向第一方向进行顺序移位,满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位,再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围确定为所述第一移动范围。
具体实现方式与终端侧图11所示实施例的实现方式类似,在此不再赘述。
方式三、基于所述第一初始RE,在频域上向第一方向进行顺序移位;满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;再次满足所述第一停止移位条件,基于所述第一初始RE,在时域上向第三方向移动一个时间单元;按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位;在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
具体实现方式与终端侧图12A或图12B所示实施例的实现方式类似,在此不再赘述。
本公开实施例提供了一种发送信号的方法,参照图16所示,图16是根据一实施例示出的一种发送信号的方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤1601中,确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE。
在步骤1602中,确定第二系统的参考信号所在的第二初始RE;
在步骤1603中,确定可用RE。
其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
在步骤1604中,在所述可用RE上,发送所述第一DMRS。
具体实现方式与终端侧图13至图14所示实施例的实现方式类似,在此不再赘述。
上述实施例中,基站可以直接基于第二初始RE在第一频域范围内所占第一比例确定可用RE,并在可用RE上发送第一DMRS,在DSS场景下,有效规避来自LTE系统的参考信号对NR的PDCCH的DMRS的干扰,同时提高了NR PDCCH的系统容量,改善NR系统性能。
为了便于理解本公开提供的上述方法,对上述接收、发送信号的方法进一步举例说明如下。
实施例1,假设NR系统和LTE系统在相同的频段上传输。此时,LTE CRS需要持续发送。同时,也会传输LTE PHICH、PCFICH。下述将以LTE RS表示LTE CRS、PHICH、PCFICH或者其他LTE传输信号的一种或多种,在此不再赘述。
在本实施例中,基站在存在LTE RS的OFDM符号上传输NR PDCCH以及对应调制解调信号DMRS,所述LTE RS与NR PDCCH在频域上有交 集。且LTE RS的时频域位置由基站通过RRC信令通知终端,或终端通过其他方式确定,本实施例中的示意图均以PCI(Physical Cell Identifier,物理小区标识)等于0为例,阐述本发明的具体方案。
在本实施例中,第一参数值delta可以通过信令的方式配置,也可由预定义的方式确定,或者可以基于终端上报能力来确定。示例性地,delta=3,或者,delta=-3,参delta为整数,其可以大于0,也可以小于0。delta大于0或者小于0可以与频域移位的方向相关联,示例性地,delta>0对应第一方面为频率增加的方向,delta<0对应第一方面为频率减小的方向。
一种可能的实施方式,当NR PDCCH DMRS与LTE RS RE发生冲突,即第一初始RE与第二初始RE对应相同资源,基于第一初始RE在频域上进行移位,直至第一DMRS与所述LTE RS没有冲突,可以向频率增加的方向移位,若移位delta(或|delta|)个RE后,仍与LTE RS/其他NR PDCCH DMRS冲突,打孔第一DMRS,即终端侧不接收该第一DMRS,基站不发送第一DMRS,例如图17A所示。
一种可能的实施方式,第一DMRS与第二系统的参考信号发生冲突,即第一初始RE与第二初始RE对应相同资源,基于第一初始RE在频域上进行移位,直至与所述LTE RS没有冲突,可以向频率减小的方向移位,若移位delta(或|delta|)个RE后,仍与LTE RS/其他NR PDCCH DMRS冲突,打孔第一DMRS,即终端侧不接收该第一DMRS,基站不发送第一DMRS。
一种可能的实施方式,当第一DMRS与第二系统的参考信号发生冲突,即第一初始RE与第二初始RE对应相同资源,基于第一初始RE在频域上向频率增加的方向移位,直至与所述LTE RS没有冲突,若移位delta(或|delta|)个RE后,仍与LTE RS/第二DMRS冲突,基于第一初始RE向频率减小的方向移位,直至与所述LTE RS没有冲突,若移位delta(或|delta|)个RE后,仍与LTE RS/其他NR PDCCH DMRS冲突,打孔上述第一DMRS。
一种可能的实施方式,为保证DMRS在时域上的联合信道估计,在PDCCH CORESET持续OFDM符号范围内,对应DMRS传输所在RE index相同,即:与第一DMRS对应的第一初始RE索引相同的DMRS,在频域执行相同的移位操作,如图17B所示。
值得注意的是,本公开中的第一DMRS对应的第一初始RE位置是指基于现有协议确定的时频域位置,后续不再赘述。
通过定义参数delta确定NR DMRS进行频域移位的方式,保证了在所述LTE CRS符号上发送NR PDCCH时,不会造成有用信息的丢失,保证了PDCCH的解码性能。同时,考虑到DMRS主要用于一定RE范围内的信道估计,若判断所在频域范围内并无传输PDCCH的条件,所述第一DMRS可以丢弃。
实施例1也可以将向第一方向进行移位所确定的频域范围作为第一移动范围,并将第一移动范围内的RE确定为候选RE,进而在候选RE中的可用RE上检测并接收第一DMRS的方案,基站侧在候选RE中的可用RE上发送第一DMRS的方案。即不会在确定第一移动范围之前检测是否存在可用RE。
上述实施例中,在保证PDCCH性能的基础上,避免了PDCCH DMRS传输的浪费。
实施例2,假设NR系统和LTE系统在相同的频段上传输。此时,LTE CRS需要持续发送。同时,也会传输LTE PHICH/PCFICH。下述将以LTE RS表示LTE CRS、PHICH、PCFICH或者其他LTE传输信号的一种或多种,在此不再赘述。
在本实施例中,基站在存在LTE RS的OFDM符号上传输NR PDCCH以及对应调制解调信号DMRS,所述LTE RS与NR PDCCH在频域上有交集。且LTE RS的时频域位置由基站通过RRC信令通知终端,或终端通过其他方式确定,本实施例中的示意图均以PCI等于0为例,阐述本发明的具体方案。
基于实施例一确定的参数delta,若第一DMRS与第二系统的参考信号发生冲突时,还可以按照先频域后时域的顺序,确定DMRS传输的时频域位置。
一种可能的实施方式包括:
步骤一:基于第一初始RE在频域上进行移位,频域移位可以向高RE index移位,也可以向低RE index进行移位,还可以先向频率增加的方向移位,在移位delta个RE后,仍未确定满足未与LTE RS或其他DMRS RE冲突的RE,再向频率减少的方向移位,具体方式与实施例1相同,在此不再赘述。
步骤二:基于所述第一初始RE,在时域上向第三方向移动一个时间单元。
所述第三方向为时间单元增加的方向。
步骤三:按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位。
一种可能的实施方式,对于相同终端对应的不同DMRS,按照频域RE index由低到高,时域OFDM符号index由低到高的顺序逐个执行上述DMRS冲突处理机制,对于同一RE来说,在该位置传输的DMRS的优先级与冲突处理的先后顺序相关联。
通过上述方式可以确定第一移动范围,并将第一移动范围内的所有RE均确定为候选RE,在候选RE中确定可用RE,终端侧在可用RE上检测并接收第一DMRS,基站侧在可用RE上发送第一DMRS。
示例性地,一种可能的实施场景如图18所示。
通过定义参数delta确定NR DMRS进行频域移位以及时域移位的方式,保证了在所述LTE CRS符号上发送NR PDCCH时,不会造成有用信息的丢失,保证了PDCCH的解码性能。同时,考虑到第一DMRS主要用于一定RE范围内的信道估计,若判断所在频域范围内并无传输PDCCH的条件,所述第一DMRS可以丢弃。上述实施例同样在保证PDCCH性能 的基础上,避免了PDCCH DMRS传输的浪费。
还需要说明的是,也可以在确定第一移动范围的过程中确定是否存在可用RE,一旦确定可用RE可以停止继续确定第一移动范围,并在该可用RE上进行第一DMRS的接收或发送。
实施例3,假设NR系统和LTE系统在相同的频段上传输。此时,LTE CRS需要持续发送。同时,也会传输LTE PHICH、PCFICH。下述将以LTE RS表示LTE CRS、PHICH、PCFICH或者其他LTE传输信号的一种或多种,在此不再赘述。
在本实施例中,基站在存在LTE RS的OFDM符号上传输NR PDCCH以及对应调制解调信号DMRS,所述LTE RS与NR PDCCH在频域上有交集。且LTE RS的时频域位置由基站通过RRC信令通知终端,或终端通过其他方式确定,本实施例中的示意图均以PCI等于0为例,阐述本发明的具体方案。
在本实施例中,基于LTE RS传输所占RE在整个RB中所占比例,即第二初始RE在第一频域范围内所占的第一比例来确定可用RE。第一比例与开销因子α相关联,灵活定义不同的可用RE索引集合,所述可用RE索引集合可以基于预定义的方式确定,也可以通过信令指示的方式确定,本发明对此不做限制。
确定LTE RS开销因子α,所述因子α(第一比例)与不同的可用RE索引集合相关联,其中,DMRS pattern定义的DMRS索引为排除掉LTE RS所占RE索引之外剩余的RE定义,示例性地,因子α与可用RE索引集合的对应关系例如表1所示,对应的确定可用RE的方式例如图19所示。
表1
Figure PCTCN2022086922-appb-000037
Figure PCTCN2022086922-appb-000038
示例性地,第一比例与可用RE索引集合的关联关系还可以如表2所示。
表2
Figure PCTCN2022086922-appb-000039
值得注意的是,表1、表2以举例的方式,阐述了第一比例与可用RE索引集合的对应关系,其他能够表示两者对应关系的具体内容也属于本公开的保护范围。
其中,第一比例α为1说明1个RB内的所有RE均被参考信号占用,此时没有可以传输DMRS的位置。所以此时可用RE索引集合为空。
另外,上述对应关系还可以通过信令指示的方式确定,本发明对此不再赘述。
以2端口CRS为例,在symbol0上,其中一种配置,CRS在0和6上传输,对应开销因子等于2/12=1/6,可以传输DMRS的RE可以为{1,2,3,4,5,7,8,9,10,11},重新编号为{0,1,2,3,4,5,6,7,8,9}则对应DMRS可以在索引为1,5,9对应的RE上传输,所述1,5,9对应RB范围内RE索引为2,7,11的RE。
实施例3采用类似rate matching(速率匹配)的方式,在重新定义可用RE索引集合,可以有效避免与LTE RS的冲突,从而提升信道估计性能,进而提升PDCCH的传输性能。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图20,图20是根据一示例性实施例示出的一种接收信号的装置 框图,包括:
处理模块2001,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;
所述处理模块2001,还被配置为确定第二系统的参考信号对应的第二初始RE;
所述处理模块2001,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
接收模块2002,被配置为在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
参照图21,图21是根据一示例性实施例示出的一种接收信号的装置框图,包括:
处理模块2101,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块2101,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块2101,还被配置为确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
接收模块2102,被配置为在所述可用RE上,检测并接收所述第一DMRS。
参照图22,图22是根据一示例性实施例示出的一种发送信号的装置框图,包括:
处理模块2201,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块2201,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块2201,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
发送模块2202,被配置为在在所述候选RE中的可用RE上,发送所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
参照图23,图23是根据一示例性实施例示出的一种发送信号的装置框图,包括:
处理模块2301,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
所述处理模块2301,还被配置为确定第二系统的参考信号所在的第二初始RE;
所述处理模块2301,还被配置为确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
发送模块2302,被配置为在所述可用RE上,发送所述第一DMRS。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存 储有计算机程序,所述计算机程序用于执行上述任一所述的接收信号的方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的发送信号的方法。
相应地,本公开还提供了一种接收信号的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一所述的接收信号的方法。
图24是根据一示例性实施例示出的一种接收信号的装置2400的框图。例如装置2400可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载用户设备、ipad、智能电视等终端。
参照图24,装置2400可以包括以下一个或多个组件:处理组件2402,存储器2404,电源组件2406,多媒体组件2408,音频组件2410,输入/输出(I/O)接口2412,传感器组件2416,以及通信组件2418。
处理组件2402通常控制装置2400的整体操作,诸如与显示,电话呼叫,数据随机接入,相机操作和记录操作相关联的操作。处理组件2402可以包括一个或多个处理器2420来执行指令,以完成上述的接收信号的方法的全部或部分步骤。此外,处理组件2402可以包括一个或多个模块,便于处理组件2402和其他组件之间的交互。例如,处理组件2402可以包括多媒体模块,以方便多媒体组件2408和处理组件2402之间的交互。又如,处理组件2402可以从存储器读取可执行指令,以实现上述各实施例提供的一种接收信号的方法的步骤。
存储器2404被配置为存储各种类型的数据以支持在装置2400的操作。这些数据的示例包括用于在装置2400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机 存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2406为装置2400的各种组件提供电力。电源组件2406可以包括电源管理系统,一个或多个电源,及其他与为装置2400生成、管理和分配电力相关联的组件。
多媒体组件2408包括在所述装置2400和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件2408包括一个前置摄像头和/或后置摄像头。当装置2400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2410被配置为输出和/或输入音频信号。例如,音频组件2410包括一个麦克风(MIC),当装置2400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2404或经由通信组件2418发送。在一些实施例中,音频组件2410还包括一个扬声器,用于输出音频信号。
I/O接口2412为处理组件2402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2416包括一个或多个传感器,用于为装置2400提供各个方面的状态评估。例如,传感器组件2416可以检测到装置2400的打开/关闭状态,组件的相对定位,例如所述组件为装置2400的显示器和小键盘,传感器组件2416还可以检测装置2400或装置2400一个组件的位置改变,用户与装置2400接触的存在或不存在,装置2400方位或加速/减速和装置2400的温度变化。传感器组件2416可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2416还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一 些实施例中,该传感器组件2416还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2418被配置为便于装置2400和其他设备之间有线或无线方式的通信。装置2400可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件2418经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2418还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的接收信号的方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器2404,上述指令可由装置2400的处理器2420执行以完成上述接收信号的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种发送信号的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一所述的发送信号的方法。
如图25所示,图25是根据一示例性实施例示出的一种发送信号的装置2500的一结构示意图。装置2500可以被提供为基站。参照图25,装置2500包括处理组件2522、无线发射/接收组件2524、天线组件2526、以及 无线接口特有的信号处理部分,处理组件2522可进一步包括至少一个处理器。
处理组件2522中的其中一个处理器可以被配置为用于执行上述任一所述的发送信号的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种接收信号的方法,其特征在于,所述方法由终端执行,包括:
    确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;
    确定第二系统的参考信号对应的第二初始RE;
    基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
    在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE,包括:
    基于所述第一初始RE,通过移位方式确定第一移动范围;
    将位于所述第一移动范围内的RE确定为所述候选RE。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
  4. 根据权利要求2所述的方法,其特征在于,所述基于所述第一初始RE,确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
    再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围确定为所述第一移动范围。
  5. 根据权利要求2所述的方法,其特征在于,所述基于所述第一初始RE,确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
    再次满足所述第一停止移位条件,基于所述第一初始RE,在时域上向第三方向移动一个时间单元;
    按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位;
    在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述第一方向为以下任一项:
    频率增加的方向;
    频率减小的方向。
  7. 根据权利要求4或5所述的方法,其特征在于,
    所述第一方向为频率增加的方向,所述第二方向为频率减小的方向;或者,
    所述第一方向为频率减小的方向,所述第二方向为频率增加的方向。
  8. 根据权利要求5所述的方法,其特征在于,所述第三方向为时间单元增加的方向。
  9. 根据权利要求3-5任一项所述的方法,其特征在于,所述第一停止移位条件包括移动的频域资源数目等于预先确定的最大频率单元数;
    第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
  10. 根据权利要求4或5所述的方法,其特征在于,所述在所述候选 RE中的可用RE上,检测并接收所述第一DMRS,包括:
    在第四方向上所确定的所述可用RE上,检测并接收所述第一DMRS;其中,所述第四方向是所述第一方向和所述第二方向中所确定的所述可用RE的数目最多的移位方向。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述候选RE中不存在所述可用RE,不接收所述第一DMRS。
  12. 一种信号接收方法,其特征在于,所述方法由终端执行,包括:
    确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    确定第二系统的参考信号所在的第二初始RE;
    确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
    在所述可用RE上,检测并接收所述第一DMRS。
  13. 根据权利要求12所述的方法,其特征在于,所述确定可用RE,包括:
    在所述第一频域范围内,确定所述第二初始RE所占的第一比例;
    基于所述第一比例,确定可用RE索引集合;其中,所述第一比例与所述可用RE索引集合之间存在预设的对应关系;
    在所述第一频域范围内除去所述第二初始RE,得到候选RE集合;
    基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述第一频域范围内,确定所述第二初始RE所占的第一比例,包括:
    确定第一频域范围内所述第二初始RE的数目与所述第一频域范围所包括的RE总数目的比值,得到所述第一比例。
  15. 根据权利要求13所述的方法,其特征在于,所述基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE,包括:
    对所述候选RE集合中的每个RE按照对应索引由小到大的顺序重新编号,确定所述候选RE集合中每个RE的索引值;
    在所述候选RE集合中,将所述可用RE索引集合所指示的RE确定为所述可用RE。
  16. 一种发送信号的方法,其特征在于,所述方法由基站执行,包括:
    确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    确定第二系统的参考信号所在的第二初始RE;
    基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
    在所述候选RE中的可用RE上,发送所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
  17. 根据权利要求16所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE,包括:
    基于所述第一初始RE,通过移位方式确定第一移动范围;
    将位于所述第一移动范围内的RE确定为所述候选RE。
  18. 根据权利要求17所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,将在所述第一方向上进行移位所得到的频域范围确定为所述第一移动范围。
  19. 根据权利要求17所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
    再次满足所述第一停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围确定为所述第一移动范围。
  20. 根据权利要求17所述的方法,其特征在于,所述基于所述第一初始RE,通过移位方式确定第一移动范围,包括:
    基于所述第一初始RE,在频域上向第一方向进行顺序移位;
    满足第一停止移位条件,基于所述第一初始RE,在频域上向第二方向进行顺序移位;
    再次满足所述第一停止移位条件,基于所述第一初始RE,在时域上向第三方向移动一个时间单元;
    按照所述第一方向、所述第二方向、所述第三方向的移位顺序,继续进行移位;
    在所述第三方向进行移位满足第二停止移位条件,将在所述第一方向和所述第二方向上进行移位所得到的频域范围以及在所述第三方向上进行移位所得到的时域范围确定为所述第一移动范围。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述第一方向为以下任一项:
    频率增加的方向;
    频率减小的方向。
  22. 根据权利要求19或20所述的方法,其特征在于,
    所述第一方向为频率增加的方向,所述第二方向为频率减小的方向;或者,
    所述第一方向为频率减小的方向,所述第二方向为频率增加的方向。
  23. 根据权利要求20所述的方法,其特征在于,所述第三方向为时间单元增加的方向。
  24. 根据权利要求18-20任一项所述的方法,其特征在于,所述第一 停止移位条件包括移动的频域资源数目等于预先确定的最大频率单元数;
    第二停止移位条件包括移动的时间单元数目等于预先确定的最大时间单元数。
  25. 根据权利要求19或20所述的方法,其特征在于,所述在所述候选RE中的可用RE上,发送所述第一DMRS,包括:
    在第四方向上所确定的所述可用RE上,发送所述第一DMRS;其中,所述第四方向是所述第一方向和所述第二方向中所确定的所述可用RE的数目最多的移位方向。
  26. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    确定所述候选RE中不存在所述可用RE,不发送所述第一DMRS。
  27. 一种发送信号的方法,其特征在于,所述方法由基站执行,包括:
    确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    确定第二系统的参考信号所在的第二初始RE;
    确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
    在所述可用RE上,发送所述第一DMRS。
  28. 根据权利要求27所述的方法,其特征在于,所述确定可用RE,包括:
    在所述第一频域范围内,确定所述第二初始RE所占的第一比例;
    基于所述第一比例,确定可用RE索引集合;其中,所述第一比例与所述可用RE索引集合之间存在预设的对应关系;
    在所述第一频域范围内除去所述第二初始RE,得到候选RE集合;
    基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE。
  29. 根据权利要求28所述的方法,其特征在于,所述在所述第一频域范围内,确定所述第二初始RE所占的第一比例,包括:
    确定第一频域范围内所述第二初始RE的数目与所述第一频域范围所包括的RE总数目的比值,得到所述第一比例。
  30. 根据权利要求28所述的方法,其特征在于,所述基于所述可用RE索引集合,在所述候选RE集合中,确定所述可用RE,包括:
    对所述候选RE集合中的每个RE按照对应索引由小到大的顺序重新编号,确定所述候选RE集合中每个RE的索引值;
    在所述候选RE集合中,将所述可用RE索引集合所指示的RE确定为所述可用RE。
  31. 一种接收信号的装置,其特征在于,包括:
    处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS对应的第一初始资源单元RE;
    所述处理模块,还被配置为确定第二系统的参考信号对应的第二初始RE;
    所述处理模块,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
    接收模块,被配置为在所述候选RE中的可用RE上,检测并接收所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
  32. 一种接收信号的装置,其特征在于,包括:
    处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
    所述处理模块,还被配置为确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
    接收模块,被配置为在所述可用RE上,检测并接收所述第一DMRS。
  33. 一种发送信号的装置,其特征在于,包括:
    处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
    所述处理模块,还被配置为基于所述第一初始RE,通过移位方式确定所述第一DMRS对应的候选RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同;
    发送模块,被配置为在在所述候选RE中的可用RE上,发送所述第一DMRS;其中,所述可用RE未被其他参考信号占用,所述其他参考信号为第二DMRS或所述第二系统的参考信号。
  34. 一种发送信号的装置,其特征在于,包括:
    处理模块,被配置为确定第一系统的下行控制信道PDCCH的第一解调参考信号DMRS所在的第一初始资源单元RE;
    所述处理模块,还被配置为确定第二系统的参考信号所在的第二初始RE;
    所述处理模块,还被配置为确定可用RE;其中,所述第一初始RE与所述第二初始RE对应的资源相同,所述可用RE在所述PDCCH所对应的第一频域范围内未被其他参考信号占用,所述其他参考信号包括第二DMRS或所述第二系统的参考信号;
    发送模块,被配置为在所述可用RE上,发送所述第一DMRS。
  35. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-15任一项所述的接收信号的方法。
  36. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求16-30任一项所述的发送信号的方法。
  37. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述可执行指令以实现上述权利要求1-15任一项所述的接收信号的方法的步骤。
  38. 一种信号传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述可执行指令以实现上述权利要求16-30任一项所述的发送信号的方法的步骤。
PCT/CN2022/086922 2022-04-14 2022-04-14 接收、发送信号的方法及装置、存储介质 WO2023197269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/086922 WO2023197269A1 (zh) 2022-04-14 2022-04-14 接收、发送信号的方法及装置、存储介质
CN202280000886.2A CN114938702A (zh) 2022-04-14 2022-04-14 接收、发送信号的方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086922 WO2023197269A1 (zh) 2022-04-14 2022-04-14 接收、发送信号的方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023197269A1 true WO2023197269A1 (zh) 2023-10-19

Family

ID=82867673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086922 WO2023197269A1 (zh) 2022-04-14 2022-04-14 接收、发送信号的方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN114938702A (zh)
WO (1) WO2023197269A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988071A (zh) * 2019-05-24 2020-11-24 中兴通讯股份有限公司 一种lte和nr用户空分复用的方法
CN113411148A (zh) * 2020-03-17 2021-09-17 中国移动通信集团福建有限公司 移频方法、装置、电子设备及存储介质
CN113615115A (zh) * 2019-03-21 2021-11-05 瑞典爱立信有限公司 Lte下行链路子帧中nr控制信息的发送
CN113873565A (zh) * 2020-06-30 2021-12-31 中国移动通信集团设计院有限公司 同频干扰定位方法、装置、设备及存储介质
CN114189308A (zh) * 2020-09-15 2022-03-15 中兴通讯股份有限公司 用户终端控制方法、基站及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615115A (zh) * 2019-03-21 2021-11-05 瑞典爱立信有限公司 Lte下行链路子帧中nr控制信息的发送
CN111988071A (zh) * 2019-05-24 2020-11-24 中兴通讯股份有限公司 一种lte和nr用户空分复用的方法
CN113411148A (zh) * 2020-03-17 2021-09-17 中国移动通信集团福建有限公司 移频方法、装置、电子设备及存储介质
CN113873565A (zh) * 2020-06-30 2021-12-31 中国移动通信集团设计院有限公司 同频干扰定位方法、装置、设备及存储介质
CN114189308A (zh) * 2020-09-15 2022-03-15 中兴通讯股份有限公司 用户终端控制方法、基站及存储介质

Also Published As

Publication number Publication date
CN114938702A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2019169634A1 (zh) 信息传输方法、装置、系统及存储介质
US20190053195A1 (en) Method And Apparatus
EP3993544A1 (en) Coexistence interference reporting method and apparatus, mobile terminal, and storage medium
US20220279489A1 (en) Information scheduling methods and apparatuses, transceiving methods and apparatuses, base stations and user equipment
WO2018098623A1 (zh) 确定传输时间间隔的方法、装置及基站、用户设备
EP4319421A1 (en) Default beam determination method and apparatus, and communication device
WO2019191878A1 (zh) 数据传输方法、装置、系统及存储介质
CN115516793A (zh) 混合自动重传请求harq的传输方法、装置及通信设备
CN112655264A (zh) 传输块大小的确定方法、装置及通信设备
WO2019095201A1 (zh) 物理层资源映射方法、装置、用户设备及基站
CN112823485B (zh) 上行控制信息处理方法及装置、通信设备及存储介质
WO2024092460A1 (zh) 信息处理、信息发送方法及装置、存储介质
EP3598817A1 (en) Resource allocation method, device and system
CN112514316A (zh) 联合调度多个传输块的方法、装置、通信设备及存储介质
US20220303063A1 (en) Method and device for determining resource multiplexing, method and device for information demodulation and medium thereof
US20220286233A1 (en) Data transmission method and device, and storage medium
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
WO2023197269A1 (zh) 接收、发送信号的方法及装置、存储介质
WO2023077446A1 (zh) 一种物理上行控制信道资源确定方法、装置及存储介质
US20230073253A1 (en) Data transmission method, data transmission apparatus and storage medium
EP4109996A1 (en) Uplink transmission processing method and apparatus, and communication device, and storage medium
CN112640562A (zh) 资源确定方法、资源确定装置及存储介质
CN114080771B (zh) Pucch的信息传输方法及装置、通信设备及存储介质
WO2023201495A1 (zh) 物理下行控制信道接收、发送方法和装置
EP4319238A1 (en) Method and apparatus for determining default beam, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936917

Country of ref document: EP

Kind code of ref document: A1