WO2023197146A1 - 一种粒子系统和粒子束的矫正方法 - Google Patents

一种粒子系统和粒子束的矫正方法 Download PDF

Info

Publication number
WO2023197146A1
WO2023197146A1 PCT/CN2022/086330 CN2022086330W WO2023197146A1 WO 2023197146 A1 WO2023197146 A1 WO 2023197146A1 CN 2022086330 W CN2022086330 W CN 2022086330W WO 2023197146 A1 WO2023197146 A1 WO 2023197146A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particle beam
electrode
lens
correction
Prior art date
Application number
PCT/CN2022/086330
Other languages
English (en)
French (fr)
Inventor
马泽
张文
贺佳坤
赵冲
张超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/086330 priority Critical patent/WO2023197146A1/zh
Publication of WO2023197146A1 publication Critical patent/WO2023197146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Definitions

  • the present application relates to the field of particle technology, and in particular, to a particle system and a particle beam correction method.
  • a particle system usually includes a particle source and multiple lens components.
  • the particle source is used to generate one particle beam or multiple particle beams; the lens assembly may include an aperture, an electromagnetic lens and other devices used to optically process the particle beam.
  • various components in the particle system will inevitably produce assembly errors during assembly. Therefore, when the particle beam propagates to the lens assembly, it may be misaligned or tilted, thus affecting the resolution of the particle system. problems such as decline.
  • the geomagnetic field or the magnetic field generated by some components in the particle system may also interfere with the propagation direction of the particle beam. Therefore, it may also cause problems such as a decrease in the resolution of the particle system.
  • the resolution of the particle system is usually improved by adjusting the assembly accuracy of each component. However, in actual operation, the adjustment accuracy is limited. In addition, this adjustment method cannot improve the adverse effects on the particle beam caused by the geomagnetic field or the magnetic field generated by some components in the particle system.
  • This application provides a correction method for particle systems and particle beams that can overcome resolution degradation caused by assembly errors, geomagnetic fields, and magnetic fields generated by some components.
  • the present application provides a particle system, including a particle source component, a particle corrector and a lens component.
  • the Particle Source component is used to generate particle beams.
  • the particle corrector includes N correction plates arranged in a stack. Each correction plate has M through holes and M electrode assemblies. The M through holes are used to receive particle beams generated by the particle source assembly. The M electrode assemblies are connected to the M through holes. The holes are arranged in one-to-one correspondence, and each electrode assembly is used to generate a correction electric field in the corresponding through hole to correct the propagation direction of the particle beam.
  • M is an integer greater than or equal to 1
  • N is an integer greater than or equal to 1.
  • the particle corrector can be used to change the propagation direction of the particle beam so that the optical axis of the particle beam is consistent with the target lens in the lens assembly.
  • the optical axes maintain a coincident or approximately coincident relative relationship.
  • the propagation of the particle beam can also be changed through the particle corrector direction so that the optical axis of the particle beam and the optical axis of the target lens maintain a relative relationship that coincides or approximately coincides. This allows for high-precision adjustment of the incident position and incident angle of the corrective particle beam when it propagates to the target lens. Therefore, the particle system can be guaranteed to have a higher resolution.
  • the particle source component can generate one particle beam or multiple particle beams.
  • the particle beam can pass through any through hole in the correction plate.
  • the multiple particle beams can pass through any through hole in the correction plate, or at least one particle beam passes through each through hole.
  • the particle straightener may include a control circuit electrically connected to the M electrode assemblies in each straightening plate for separately controlling the power supply of each electrode assembly.
  • the power supply control of the electrode assembly by the control circuit may include: controlling the power supply and off state of the electrode assembly, the size of the electric field formed, and the direction of the electric field.
  • the plane of the electrode assembly may be perpendicular to the central axis of the through hole, so that an electric field perpendicular to the central axis of the through hole can be generated in the through hole.
  • the plane of the electrode assembly can also be arranged at an angle with the central axis of the through hole.
  • the direction of the correction electric field formed by the electrode assembly in the through hole may be perpendicular to the central axis, or may be at an angle to the central axis.
  • the electrode assembly may include multiple electrodes, and the multiple electrodes may be disposed on the inner wall of the through hole and arranged in an array around the axis of the through hole, thereby facilitating the formation of a correction electric field with a relatively uniform electric field intensity within the through hole.
  • the number of electrodes included in the electrode assembly may be two, three or more.
  • the electrodes can also be arranged at other positions near the through holes. This application does not limit the number and placement positions of the electrodes.
  • control circuit can be connected to each electrode to control the power supply of each electrode separately.
  • the power supply control of the electrode by the control circuit may include: controlling the power supply and off state of the electrode and the size of the electric field formed.
  • the shapes of the electrodes can also be diverse.
  • the cross-sectional shape of the electrode may be square, rectangular, arcuate, trapezoidal, etc. This application does not limit the specific shape of the electrode.
  • the particle corrector can be located between the particle source component and the lens component.
  • the particle beam generated by the particle source component is angularly or positionally deflected by the particle corrector and then propagated to the lens component, so that the axis of the particle beam is aligned with the lens component.
  • the axes of the target lenses in the lens assembly are coincident, thereby ensuring the resolution of the particle system.
  • the particle corrector can also be located between any two lenses.
  • a particle corrector can be placed between each adjacent lens.
  • the present application also provides a particle beam correction method, which may include: causing a particle source to generate a particle beam, and causing the particle beam to pass through N through holes of the correction plate in sequence, wherein each through hole is provided with an electrode assembly, N is an integer greater than or equal to 1.
  • the control electrode assembly generates a correction electric field in the corresponding through hole to change the propagation direction of the particle beam.
  • controlling the electrode assembly to generate a correction electric field in the corresponding through hole may include: controlling the power supply and off state of the electrode assembly, the size of the electric field formed, and the direction of the electric field through a control circuit.
  • controlling the electrode assembly to generate a correction electric field in the corresponding through hole may include: separately controlling the power supply and off state of each electrode and the size of the formed electric field through a control circuit.
  • changing the propagation direction of the particle beam may specifically include: changing the incident position of the particle beam propagating to the target lens, and changing the incident angle of the particle beam propagating to the target lens.
  • Figure 1 is a schematic diagram of a propagation scene of a particle beam in a particle system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a propagation scene of a particle beam in another particle system provided by an embodiment of the present application;
  • Figure 3 is a schematic diagram of a propagation scene of a particle beam in another particle system provided by an embodiment of the present application;
  • Figure 4 is a schematic diagram of a propagation scene of a particle beam in another particle system provided by an embodiment of the present application.
  • Figure 5 is a schematic cross-sectional structural diagram of a particle corrector provided by an embodiment of the present application.
  • Figure 6 is a top view of a particle corrector provided by an embodiment of the present application.
  • Figure 7 is a top view of a particle corrector provided by an embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of another particle corrector provided by an embodiment of the present application.
  • Figure 9 is a schematic cross-sectional structural diagram of another particle corrector provided by an embodiment of the present application.
  • Figure 10 is a schematic cross-sectional structural diagram of another particle corrector provided by an embodiment of the present application.
  • Figure 11 is a schematic cross-sectional structural diagram of another particle straightener provided by an embodiment of the present application.
  • Figure 12 is a schematic cross-sectional structural diagram of another particle system provided by an embodiment of the present application.
  • Figure 13 is a schematic cross-sectional structural diagram of another particle system provided by an embodiment of the present application.
  • Figure 14 is a schematic cross-sectional structural diagram of another particle system provided by an embodiment of the present application.
  • Figure 15 is a top view of a particle corrector provided by an embodiment of the present application.
  • Figure 16 is a schematic three-dimensional structural diagram of an electrode assembly provided by an embodiment of the present application.
  • Figure 17 is a schematic plan view of an electrode assembly provided by an embodiment of the present application.
  • Figure 18 is a schematic three-dimensional structural diagram of another electrode assembly provided by an embodiment of the present application.
  • Figure 19 is a schematic plan view of another electrode assembly provided by an embodiment of the present application.
  • Figure 20 is a schematic three-dimensional structural diagram of another electrode assembly provided by an embodiment of the present application.
  • Figure 21 is a schematic plan view of another electrode assembly provided by an embodiment of the present application.
  • Figure 22 is a flow chart of a particle beam correction method provided by an embodiment of the present application.
  • Figure 23 is a flow chart of another particle beam correction method provided by an embodiment of the present application.
  • Figure 24 is a schematic cross-sectional structural diagram of a particle corrector provided by an embodiment of the present application.
  • Figure 25 is a schematic cross-sectional structural diagram of a particle corrector provided by an embodiment of the present application.
  • the propagation direction of the particle beam can be adjusted to reduce or avoid the problem of reduced resolution of the particle system due to factors such as assembly errors or magnetic fields.
  • the optical axis of the particle beam 01 in the particle system and the optical axis of the lens 02 should be in a coincident state, so that the lens 02 can process the particle beam 01 with higher precision.
  • the aberration produced by particle beam 01 is the smallest, thus ensuring a high resolution of the particle system.
  • the lens 02 may be an electromagnetic lens or an aperture. This application does not limit the specific type of lens 02.
  • particle systems are usually assembled from multiple parts. During assembly, assembly errors will inevitably occur, causing the optical axis of the particle beam 01 and the optical axis of the lens 02 to be in a non-coinciding state.
  • the optical axis of the particle beam 01 and the optical axis of the lens 02 may be parallel to each other but not coincident, and the optical axis of the particle beam 01 does not intersect with the optical center O of the lens 02 .
  • the optical axis of the particle beam 01 intersects the optical center O of the lens 02 , but the optical axis of the particle beam 01 forms an angle with the optical axis of the lens 02 .
  • the optical axis of the particle beam 01 does not intersect with the optical center O of the lens 02 , and the optical axis of the particle beam 01 forms an angle with the optical axis of the lens 02 .
  • lens 02 When the optical axis of particle beam 01 does not coincide with the optical axis of lens 02, lens 02 will increase the aberration of particle beam 01, ultimately reducing the resolution of the particle system.
  • the optical axis of the particle beam 01 and the optical axis of the lens 02 are usually made to coincide with each other as much as possible by improving the assembly accuracy to ensure the resolution of the particle system.
  • the adjustment effect of this method is limited. Even after higher-precision adjustment, there will still be assembly errors, and it cannot effectively ensure that the optical axis of the particle beam 01 and the optical axis of the lens 02 are coincident.
  • the particle system may contain one or more particle beams 01.
  • the particle system may contain one or more particle beams 01.
  • independent adjustment cannot be performed for each particle beam 01.
  • the geomagnetic field or the magnetic field generated by some components in the particle system will also affect the propagation direction of the particle beam 01 to varying degrees. Therefore, all particle beams 01 can only be adjusted uniformly by improving assembly accuracy, but cannot be adjusted to different degrees for each particle beam 01 .
  • embodiments of the present application provide a particle system that can overcome resolution degradation caused by assembly errors, geomagnetic fields, and magnetic fields generated by some components.
  • the particle corrector 10 includes a correction plate 11.
  • the correction plate 11 has a through hole 111 and an electrode assembly 112.
  • the electrode assembly 112 is used to generate a correction electric field in the through hole 111.
  • the correction electric field in the through hole 111 can change the propagation direction of the particle beam 01, so that the particle beam 01 can be directed to the lens 02 in the best propagation direction to ensure the resolution of the particle system. .
  • the particle corrector 10 can be used to change the propagation direction of the particle beam 01 so that the optical axis of the particle beam 01
  • the relative relationship between the optical axis of the lens 02 and the optical axis of the lens 02 is coincident or substantially coincident.
  • the particle corrector 10 can also be used to change the particle beam.
  • the propagation direction of the beam 01 is such that the optical axis of the particle beam 01 and the optical axis of the lens 02 maintain a relative relationship that coincides or substantially coincides with each other.
  • the structure of the particle corrector 10 may be diverse.
  • the particle straightener 10 includes a straightening plate 11 .
  • the correction plate 11 includes a through hole 111 and an electrode assembly 112.
  • only one particle beam 01 can pass through the through hole 111. That is, the correction plate 11 can adjust the propagation direction of a single particle beam 01 .
  • multiple particle beams 01 may pass through the through hole 111 at the same time. That is, the correction plate 11 can uniformly adjust the plurality of particle beams 01 .
  • the correction plate 11 can also adjust the propagation directions of the plurality of particle beams 01 respectively.
  • the correction plate 11 includes four through holes and four electrode assemblies.
  • the electrode assembly 112a is disposed in the through hole 111a for generating a correction electric field in the through hole 111a to adjust the propagation direction of the particle beam 01a.
  • the electrode assembly 112b is disposed in the through hole 111b and is used to generate a correction electric field in the through hole 111b to adjust the propagation direction of the particle beam O1b.
  • the electrode assembly 112c is disposed in the through hole 111c and is used to generate a correction electric field in the through hole 111c to adjust the propagation direction of the particle beam 01c.
  • the electrode assembly 112d is disposed in the through hole 111d and is used to generate a correction electric field in the through hole 111d to adjust the propagation direction of the particle beam 01d.
  • the correction plate may include M through holes and M electrode assemblies, and the M through holes and M electrode assemblies are arranged in one-to-one correspondence, so that each electrode assembly generates in the corresponding through hole Corrective electric field.
  • M is an integer greater than or equal to 1.
  • the particle straightener 10 may also include a plurality of stacked straightening plates 11, so that the propagation direction of the particle beam 01 can be better adjusted.
  • another embodiment provided by this application includes two stacked correction plates, namely a correction plate 11a and a correction plate 11b.
  • the correction plate 11a has a through hole 111a
  • the correction plate 11b has a through hole 111b.
  • the through hole 111a and the through hole 111b are coaxially arranged, and the diameters of the through hole 111a and the through hole 111b are substantially the same.
  • the electrode assembly 112a is used to generate a correction electric field in the through hole 111a
  • the electrode assembly 112b is used to generate a correction electric field in the through hole 111b.
  • the correction electric field generated by the electrode assembly 112a can deflect the propagation direction of the particle beam 01 for the first time, so as to change the propagation direction of the particle beam 01.
  • the correction electric field generated by the electrode assembly 112b can deflect the propagation direction of the particle beam 01 for a second time, so as to change the propagation direction of the particle beam 01.
  • the propagation direction of the particle beam 01 can be sequentially deflected by the correction plates 11a and 11b, so that the propagation direction of the particle beam 01 can be adjusted more effectively.
  • the correction plate 11 and the correction plate 11 not only the angle at which the particle beam 01 enters the lens 02 can be changed, but also the position at which the particle beam 01 enters the lens 02 can be changed.
  • Figure 3 when the particle beam 01 is not corrected by the particle corrector 10, the optical axis of the particle beam 01 intersects with the optical center O of the lens 02, but the optical axis of the particle beam 01 is sandwiched by the optical axis of the lens 02. horn. As shown in FIG. 10 , when the particle beam 01 is corrected by the particle corrector 10 , the optical axis of the particle beam 01 coincides with the optical axis of the lens 02 .
  • the particle straightener 10 may include one, two or more stacked straightening plates to adjust the propagation direction of the particle beam 01 at more levels.
  • the number of correction plates 11 included may be N, and the N correction plates 11 are stacked so that the N correction plates 11 can correct the particle beam 01
  • the propagation direction is adjusted N times.
  • N is an integer greater than or equal to 1.
  • the diameter of the through hole 111 in each correction plate 11 may be the same or different, and this application does not specifically limit this.
  • one particle corrector 10 may be provided in the particle system, or two or more particle correctors 10 may be provided according to the actual situation.
  • the particle system is provided with a particle source component 001 and a lens component (not shown in the figure).
  • the particle source assembly 001 may include components such as a particle source and a collimating lens. Among them, the particle source is used to generate particles; the collimating lens is used to collimate the particles so that the particles can propagate in a mutually parallel or nearly parallel state, thereby ensuring the propagation quality of the particle beam 01. It can be understood that in other embodiments, the particle source assembly 001 may also include a beam splitter or other components. This application does not limit the specific components of the particle source assembly 001.
  • the lens assembly includes a first lens 02a and a second lens 02b.
  • the first lens 02a and the second lens 02b may be diaphragms, electromagnetic lenses, etc. This application does not limit the specific types of the first lens 02a and the second lens 02b.
  • two particle straighteners are provided, namely the particle straightener 10a and the particle straightener 10b.
  • the particle corrector 10a is located between the particle source assembly and the first lens 02a, and the particle corrector 10b is located between the first lens 02a and the second lens 02.
  • the particle corrector 10a can adjust the propagation direction of the particle beam 01 so that the optical axis of the particle beam 01a coincides with the optical axis of the first lens 02a.
  • the particle corrector 10b can adjust the propagation direction of the particle beam 01 so that the optical axis of the particle beam 01 coincides with the optical axis of the second lens 02b, thereby ensuring that the particle system has a relatively high High resolution.
  • the optical axis of the particle beam 01 and the optical axis of the first lens 02 a are parallel to each other but do not overlap.
  • the optical axis of the particle beam 01 coincides with the optical axis of the first lens 02a.
  • the particle beam 01 is not corrected by the particle corrector 10b
  • the optical axis of the particle beam 01 and the optical axis of the second lens 02b are parallel to each other but do not overlap.
  • the optical axis of the particle beam 01 coincides with the optical axis of the second lens 02b.
  • the optical axis of the particle beam 01 intersects with the optical center O of the first lens 02a, but the optical axis of the particle beam 01 intersects with the optical center O of the first lens 02a.
  • the optical axes form an angle.
  • the optical axis of the particle beam 01 coincides with the optical axis of the first lens 02a.
  • the optical axis of the particle beam 01 intersects the optical center O of the second lens 02b, but the optical axis of the particle beam 01 forms an angle with the optical axis of the second lens 02b.
  • the optical axis of the particle beam 01 coincides with the optical axis of the second lens 02b.
  • the optical axis of the particle beam 01 does not intersect with the optical center O of the first lens 02a, and the optical axis of the particle beam 01 does not intersect with the first lens 02a
  • the optical axes are at an angle.
  • the optical axis of the particle beam 01 coincides with the optical axis of the first lens 02a.
  • the optical axis of the particle beam 01 does not intersect with the optical center O of the second lens 02b, and the optical axis of the particle beam 01 forms an angle with the optical axis of the second lens 02b.
  • the optical axis of the particle beam 01 coincides with the optical axis of the second lens 02b.
  • the propagation direction of the particle beam 01 can be better adjusted to improve the performance of the particle beam 01 between different lenses. position accuracy during inter-particle propagation, thereby ensuring the resolution of the particle system.
  • the lens assembly may also include three or more lenses.
  • three or more particle correctors can also be set up in the particle system to ensure that the particle beam is incident on the lens in a better propagation direction.
  • the electrode assembly can also be arranged in various ways.
  • the electrode assembly may include eight electrodes 1121 (one is marked in the figure), and the eight electrodes are disposed on the inner wall of the through hole 111 .
  • the eight electrodes 1121 can be evenly distributed along the central axis of the through hole 111, or the position of each electrode 1121 can be adaptively adjusted according to different needs. It can be understood that during specific arrangement, the electrode 1121 is not limited to being arranged on the inner wall of the through hole 111, but can also be arranged at other locations around or near the through hole 111; that is, it only needs to ensure that the electrode assembly can be positioned in the corresponding through hole. It is enough to generate a corrective electric field within 111.
  • a control circuit may also be provided in the particle corrector 10 to control the power on and off state of the electrode assembly, the magnitude of the electric field formed, and the direction of the electric field.
  • the control circuit can independently control the power supply of each electrode 1121, so that parameters such as the direction and intensity of the correction electric field can be accurately controlled. That is, through the plurality of electrodes 1121 and the control circuit, an electric field in any direction can be generated in a direction perpendicular to the axis of the through hole 111 (or it can also be understood that the direction of the electric field can be rotated 360° in a plane perpendicular to the axis of the through hole 111 ), therefore, the particle beam 01 can be deflected and positioned in any direction.
  • the plane of the electrode assembly may be perpendicular to the central axis of the through hole 111 , so that an electric field perpendicular to the central axis of the through hole 111 can be generated in the through hole 111 .
  • the electrode assembly includes eight electrodes 1121 arranged in a circular array.
  • the planes of the eight electrodes 1121 are parallel to the surface of the correction plate 11 .
  • the central axis of the through hole 111 is perpendicular to the surface of the correction plate 11. Therefore, when the planes of the eight electrodes 1121 are parallel to the surface of the correction plate 11, the plane of the electrode assembly is perpendicular to the through hole.
  • the electric field perpendicular to the central axis of the through hole 111 can be generated in the through hole 111 .
  • the plane where the electrode assembly is located can be any plane parallel to the correction plate 11 .
  • the plane of the electrode assembly may coincide with any one of the surfaces of the correction plate 11 , or it may be the central symmetry plane of the two surfaces of the correction plate 11 .
  • the control circuit can pass the required voltage to each electrode 1121 to form a correction electric field opposite to the first direction in the through hole 111, thereby causing the particle beam to deflect. 01 Deflect in the first direction.
  • the first direction refers to any direction perpendicular to the axis of the through hole 111 .
  • control circuit can also pass the required voltage to certain two or more electrodes to form a correction electric field in the through hole 111 .
  • control circuit can flexibly control the energization state of each electrode 1121 and the magnitude of the applied voltage according to different requirements, which will not be described again here.
  • the number of electrodes 1121 included in the electrode assembly is not limited to the eight mentioned above.
  • the electrode assembly may include 2, 3, 4 or more electrodes 1121, and the position arrangement of the multiple electrodes 1121 can be flexibly adjusted according to the actual situation, which is not limited in this application.
  • the shapes of the electrodes 1121 can also be diverse.
  • the electrode 1121 has an arc-shaped structure. Specifically, please refer to FIG. 17 . In the direction perpendicular to the central axis of the through hole 111 , the cross-section of the electrode 1121 is arc-shaped, and the inner arc surfaces of the eight electrodes 1121 are all facing the axis of the through hole 111 .
  • the electrode 1121 has a rectangular block structure. Specifically, referring to FIG. 19 , the electrode 1121 has a rectangular cross-section in a direction perpendicular to the central axis of the through hole 111 .
  • the electrode 1121 has a trapezoidal block structure. Specifically, referring to FIG. 21 , in the direction perpendicular to the central axis of the through hole 111 , the cross-section of the electrode 1121 is trapezoidal.
  • the shape and structure of the electrodes can be flexibly set according to different situations, which is not limited in this application.
  • the particle corrector can use a variety of different processing methods when adjusting the propagation direction of the particle beam.
  • Step S100 causing the particle source component to generate a particle beam
  • Step S200 Make the particle beam pass through the through holes of N correction plates in sequence.
  • Each through hole is provided with an electrode assembly, and N is an integer greater than or equal to 1.
  • Step S300 Control the electrode assembly to generate a correction electric field in the corresponding through hole to change the propagation direction of the particle beam.
  • step S300 the power supply and off state of the electrode assembly, the size of the electric field formed, and the direction of the electric field can be respectively controlled through the control circuit.
  • the electrode assembly contains multiple electrodes
  • the power supply and off state of each electrode and the size of the electric field formed can be controlled separately through the control circuit to form a corrective electric field.
  • each electrode can be powered, and a required voltage can be provided to each electrode according to the direction and intensity of the formed correction electric field.
  • each electrode can be powered according to the required correction electric field, or some electrodes can be selectively powered.
  • the working state of the particle corrector can also be adjusted according to the beam spot quality of the particle beam.
  • Step S100 causing the particle source component to generate a particle beam
  • Step S200 Make the particle beam pass through the through holes of N correction plates in sequence.
  • Step S300 Control the electrode assembly to generate a correction electric field in the corresponding through hole to change the incident position of the particle beam propagating to the target lens. At this time, the propagation angle of the particle beam does not change. Specifically, the angle of the particle beam remains consistent when it enters the particle corrector and when it exits the particle corrector.
  • Step S400 Control the electrode assembly to generate a correction electric field in the corresponding through hole to change the incident angle of the particle beam propagating to the target lens. At this time, the incident position of the particle beam when it propagates to the target lens does not change.
  • Step S500 Determine whether the beam spot quality is optimal.
  • Step S600 If the beam spot quality reaches the optimum, the particle corrector is allowed to maintain the correction electric field.
  • the particle beam spot quality is better or optimal, the adjustment of the particle beam 01 propagating to the incident position of the target lens 02 can be completed.
  • the particle beam 01 can pass exactly through the optical center O of the target lens 02 .
  • the angle between the particle beam 01 and the target lens 02 is adjusted.
  • the adjustment process when the quality of the particle beam spot is better or optimal, the adjustment of the angle between the particle beam 01 and the target lens 02 can be completed.
  • the particle beam spot quality is optimal, the axis of the particle beam 02 and the axis of the target lens 02 can exactly coincide, thereby ensuring the resolution of the particle system.
  • the propagation direction of particle beam 01 can be quickly and effectively adjusted to ensure the resolution of the particle system.
  • the angle between the particle beam 01 and the target lens 02 can also be adjusted first to make the optical axis of the particle beam 01 and the optical axis of the target lens 02 parallel to each other. Then, the incident position of the particle beam 01 propagating to the target lens 02 is adjusted so that the optical axis of the particle beam 01 coincides with the optical axis of the target lens 02 .
  • the incident position and incident angle of the particle beam 01 propagating to the target lens 02 can also be adjusted simultaneously, which is not specifically limited in this application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本申请提供了一种粒子系统和粒子束的矫正方法,涉及粒子技术领域,以解决粒子束与透镜组件不匹配的问题。本申请提供的粒子系统包括粒子源组件、粒子矫正器和透镜组件;粒子源组件用于产生粒子束,粒子矫正器包括N个堆叠设置的矫正板,每个矫正板具有M个通孔和M个电极组件,M个通孔用于接收粒子束,M个电极组件与M个通孔一一对应设置,每个电极组件用于在对应的通孔内产生矫正电场,以对粒子束的传播方向进行矫正;M为大于或等于1的整数,N为大于或等于1的整数。当粒子系统中存在装配误差或电磁干扰时,通过粒子矫正器可以改变粒子束的传播方向,以使粒子束的光轴与透镜的光轴保持重合或大致重合的相对关系,具有较高的调节效果。

Description

一种粒子系统和粒子束的矫正方法 技术领域
本申请涉及粒子技术领域,尤其涉及一种粒子系统和粒子束的矫正方法。
背景技术
在粒子系统中,由于所使用的粒子(如电子、离子等)具有较短的波长,因此,当粒子系统应用到显微成像等领域中时,可以提供优于传统光学系统的分辨率。在结构上,粒子系统中通常包括粒子源和多个透镜组件等。其中,粒子源用于产生一个粒子束或多个粒子束;透镜组件可以包括光阑及电磁透镜等用于对粒子束进行光学处理的器件。在实际应用中,粒子系统中的各组成组件在装配时会不可避免的产生装配误差,因此,粒子束在传播至透镜组件时,可能会产生错位或倾斜等情况,从而会造成粒子系统分辨率下降等问题。另外,地磁场或粒子系统中一些元件产生的磁场也可能会干扰粒子束的传播方向,因此,也会造成粒子系统分辨率下降等问题。在目前的解决方式中,通常通过调整各组成部件的装配精度来改善粒子系统的分辨率,但是,在实际操作时,调节精度有限。另外,这种调节方式也无法改善因地磁场或粒子系统中一些元件产生的磁场对粒子束所产生的不良影响。
发明内容
本申请提供了一种能够克服因装配误差、地磁场和一些元件所产生的磁场所导致的分辨率下降的粒子系统和粒子束的矫正方法。
一方面,本申请提供了一种粒子系统,包括粒子源组件、粒子矫正器和透镜组件。粒子源组件用于产生粒子束。粒子矫正器包括N个堆叠设置的矫正板,每个矫正板具有M个通孔和M个电极组件,M个通孔用于接收粒子源组件产生的粒子束,M个电极组件与M个通孔一一对应设置,每个电极组件用于在对应的通孔内产生矫正电场,以对粒子束的传播方向进行矫正。其中,M为大于或等于1的整数,N为大于或等于1的整数。当粒子系统中存在装配误差,而导致粒子束不能以较佳的传播方向射入透镜组件时,通过粒子矫正器可以改变粒子束的传播方向,以使粒子束的光轴与透镜组件中目标透镜的光轴保持重合或大致重合的相对关系。或者,当地磁场或粒子系统中一些元件产生的磁场使粒子束的传播方向发生变化,而导致粒子束不能以较佳的传播方向射入目标透镜时,通过粒子矫正器也可以改变粒子束的传播方向,以使粒子束的光轴与目标透镜的光轴保持重合或大致重合的相对关系。从而可以对矫正粒子束传播至目标透镜时的入射位置和入射角度进行较高精度的调节。因此,能够保证粒子系统具有较高的分辨率。
在一些实现方式中,粒子源组件可以产生一个粒子束,也可以产生多个粒子束。当粒子源组件产生一个粒子束时,该粒子束可以经过矫正板中的任一通孔。当粒子源组件产生多个粒子束时,多个粒子束可以经过矫正板中的任一通孔,或者,在每个通孔内均有至少一个粒子束穿过。
在具体应用时,粒子矫正器可以包括控制电路,控制电路与每个矫正板中的M个电极组件电连接,用于对每个电极组件的供电进行分别控制。其中,控制电路对电极组件的供电控制可以包括:对电极组件的供断电状态、所形成的电场的大小和电场的方向进行控制。从而可以根据实际需求产生不同方向和强度的矫正电场。
在具体设置时,电极组件的所在平面可以垂直于通孔的中心轴,以在通孔内能够产生垂直于通孔的中心轴方向的电场。当然,在其他的实现方式中,电极组件的所在平面也可以与通孔的中心轴呈夹角设置。或者,可以理解的是,电极组件在通孔内形成的矫正电场的方向可以与中心轴垂直,也可以与中心轴呈夹角。
其中,电极组件中可以包括多个电极,多个电极可以设置在通孔的内壁,且绕通孔的轴心阵列设置,从而便于在通孔内形成电场强度较为均匀的矫正电场。
在具体实施时,电极组件中所包含的电极的数量可以是两个、三个或者更多个。另外,电极也可以设置在通孔附近的其他位置,本申请对电极的数量和设置位置不作限制。
另外,控制电路可以与每个电极进行连接,以对每个电极的供电进行分别控制。其中,控制电路对电极的供电控制可以包括:对电极的供断电状态、所形成的电场的大小进行控制。当不同位置的电极所产生的电场的大小有所变化时,便可以使整个电极组件产生不同大小和方向的矫正电场。
在具体设置时,电极的形状也可以是多样的。例如,在垂直于通孔的轴心方向上,电极的截面形状可以是方形、矩形、弧形或者梯形等。本申请对电极的具体形状不作限定。
在具体实施时,粒子矫正器可以位于粒子源组件和透镜组件之间,粒子源组件产生的粒子束经过粒子矫正器进行角度偏转或位置偏转后传播至透镜组件,以使粒子束的轴心与透镜组件中目标透镜的轴心重合,从而能够保证粒子系统的分辨率。
当然,当透镜组件中包括多个沿粒子束的传播方向依次设置的透镜时,粒子矫正器还可以位于任意的两个透镜之间。或者,可以在每个相邻的透镜之间均设置粒子矫正器。
另外,本申请还提供了一种粒子束的矫正方法,可以包括:使粒子源产生粒子束,使粒子束依次通过N个矫正板的通孔,其中,每个通孔对应设置有电极组件,N为大于或等于1的整数。控制电极组件在对应的通孔内产生矫正电场,以改变粒子束的传播方向。
其中,控制电极组件在对应的通孔内产生矫正电场可以包括:通过控制电路对电极组件的供断电状态、所形成的电场的大小和电场的方向进行控制。
另外,当电极组件包括多个电极时,该控制电极组件在对应的通孔内产生矫正电场可以包括:通过控制电路对每个电极的供断电状态、所形成的电场的大小进行分别控制。
另外,改变所述粒子束的传播方向具体可以是:改变粒子束传播至目标透镜的入射位置,改变粒子束传播至目标透镜的入射角度。
在对粒子束的传播方向进行调整时,也可以其他的方法流程,本申请对此不作具体限定。
附图说明
图1为本申请实施例提供的一种粒子系统中粒子束的传播场景示意图;
图2为本申请实施例提供的另一种粒子系统中粒子束的传播场景示意图;
图3为本申请实施例提供的另一种粒子系统中粒子束的传播场景示意图;
图4为本申请实施例提供的另一种粒子系统中粒子束的传播场景示意图;
图5为本申请实施例提供的一种粒子矫正器的剖面结构示意图;
图6为本申请实施例提供的一种粒子矫正器的俯视图;
图7为本申请实施例提供的一种粒子矫正器的俯视图;
图8为本申请实施例提供的另一种粒子矫正器的剖面结构示意图;
图9为本申请实施例提供的另一种粒子矫正器的剖面结构示意图;
图10为本申请实施例提供的另一种粒子矫正器的剖面结构示意图;
图11为本申请实施例提供的另一种粒子矫正器的剖面结构示意图;
图12为本申请实施例提供的另一种粒子系统的剖面结构示意图;
图13为本申请实施例提供的另一种粒子系统的剖面结构示意图;
图14为本申请实施例提供的另一种粒子系统的剖面结构示意图;
图15为本申请实施例提供的一种粒子矫正器的俯视图;
图16为本申请实施例提供的一种电极组件的立体结构示意图;
图17为本申请实施例提供的一种电极组件的平面结构示意图;
图18为本申请实施例提供的另一种电极组件的立体结构示意图;
图19为本申请实施例提供的另一种电极组件的平面结构示意图;
图20为本申请实施例提供的另一种电极组件的立体结构示意图;
图21为本申请实施例提供的另一种电极组件的平面结构示意图;
图22为本申请实施例提供的一种粒子束的矫正方法的流程图;
图23为本申请实施例提供的另一种粒子束的矫正方法的流程图;
图24为本申请实施例提供的一种粒子矫正器的剖面结构示意图;
图25为本申请实施例提供的一种粒子矫正器的剖面结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供的粒子系统中,通过设置粒子矫正器,可以对粒子束的传播方向进行调整,以降低或避免因装配误差或磁场等因素而使粒子系统分辨率下降的问题。
如图1所示,在理想情况下,粒子系统中的粒子束01的光轴与透镜02的光轴应为重合的状态,以使透镜02能够对粒子束01进行较高精度的处理。此时,粒子束01所产生的像差最小,从而能够保证粒子系统具有较高的分辨率。在实际应用中,透镜02可以是电磁透镜或光阑等。本申请对透镜02的具体类型不作限制。
在实际情况下,粒子系统通常由多个部件组装而成。在进行装配时,会不可避免的产生装配误差,导致粒子束01的光轴与透镜02的光轴处于非重合的状态。
例如,如图2所示,在一些情况下,粒子束01的光轴与透镜02的光轴可能相互平行但不重合,粒子束01的光轴与透镜02的光心O不相交。
或者,如图3所示,在另一些情况下,粒子束01的光轴与透镜02的光心O相交,但粒子束01的光轴与透镜02的光轴呈夹角。
或者,如图4所示,在另一些情况下,粒子束01的光轴与透镜02的光心O不相交,且粒子束01的光轴与透镜02的光轴呈夹角。
当粒子束01的光轴与透镜02的光轴不重合时,透镜02会加大粒子束01的像差,最 终使粒子系统的分辨率降低。
在目前的粒子系统中,通常通过提高装配精度的方式来尽可能使粒子束01的光轴与透镜02的光轴重合,以保证粒子系统的分辨率。但是,这种方式调节作用有限,即使在进行较高精度的调节以后,还是会存在装配误差,不能有效保证粒子束01的光轴与透镜02的光轴处于重合的状态。
另外,在实际应用中,粒子系统中可能包含一个或多个粒子束01。当有多个粒子束01时,无法针对每个粒子束01进行独立的调节。另外,在一些情况下,地磁场或粒子系统中一些元件产生的磁场也会对粒子束01的传播方向造成不同程度的影响。因此,仅通过提高装配精度的方式仅能够对所有粒子束01进行统一调节,而无法针对每个粒子束01进行不同程度的调节。
为此,本申请实施例提供了一种能够克服因装配误差、地磁场以及一些元件所产生的磁场而导致的分辨率下降的粒子系统。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图5所示,在本申请提供的一个实施例中,粒子矫正器10包括矫正板11,矫正板11具有通孔111和电极组件112,电极组件112用于在通孔111内产生矫正电场。当粒子束01经过通孔111时,通孔111内的矫正电场可以改变粒子束01的传播方向,从而能够使粒子束01以最佳的传播方向射向透镜02,以保证粒子系统的分辨率。例如,当粒子系统中存在装配误差,而导致粒子束01不能以较佳的传播方向射入透镜02时,通过粒子矫正器10可以改变粒子束01的传播方向,以使粒子束01的光轴与透镜02的光轴保持重合或大致重合的相对关系。或者,当地磁场或粒子系统中一些元件产生的磁场使粒子束01的传播方向发生变化,而导致粒子束01不能以较佳的传播方向射入透镜02时,通过粒子矫正器10也可以改变粒子束01的传播方向,以使粒子束01的光轴与透镜02的光轴保持重合或大致重合的相对关系。
在具体实施时,粒子矫正器10的结构可以是多样的。
例如,如图5所示,在本申请提供的实施例中,粒子矫正器10中包括一个矫正板11。矫正板11包括一个通孔111和一个电极组件112。
如图5和图6所示,在具体应用时,可以仅有一个粒子束01经过通孔111。即矫正板11可以对单一的粒子束01的传播方向进行调整。
或者,如图7所示,也可以同时有多个粒子束01(图中示出有个16)经过通孔111。即矫正板11可以对多个粒子束01进行统一调节。
当然,在其他的实施方式中,矫正板11也可以对多个粒子束01的传播方向进行分别调节。
例如,如图8所示,在本申请提供的另一个实施例中,矫正板11包括四个通孔和四个电极组件。具体来说,电极组件112a设置在通孔111a内,用于在通孔111a内产生矫正电场,以对粒子束01a的传播方向进行调节。电极组件112b设置在通孔111b内,用于在通孔111b内产生矫正电场,以对粒子束01b的传播方向进行调节。电极组件112c设置在通孔111c内,用于在通孔111c内产生矫正电场,以对粒子束01c的传播方向进行调节。电极组件112d设置在通孔111d内,用于在通孔111d内产生矫正电场,以对粒子束01d的传播方向进行调节。
概括来说,在具体实施时,矫正板中可以包括M个通孔和M电极组件,M个通孔和M个电极组件一一对应设置,以使每个电极组件在对应的通孔内产生矫正电场。其中,M为大于或等于1的整数。
另外,在粒子矫正器10中还可以包括多个堆叠设置的矫正板11,从而可以对粒子束01的传播方向进行更好的调节。
例如,如图9所示,在本申请提供的另一个实施例中,包括两个堆叠设置的矫正板,分别为矫正板11a和矫正板11b。其中,矫正板11a具有通孔111a,矫正板11b具有通孔111b。通孔111a和通孔111b同轴设置,且通孔111a和通孔111b的孔径大致相同。电极组件112a用于在通孔111a内产生矫正电场,电极组件112b用于在通孔111b内产生矫正电场。
当粒子束01经过通孔111a时,电极组件112a所产生的矫正电场可以对粒子束01的传播方向进行第一次偏转,以改变粒子束01的传播方向。当粒子束01经过通孔111b时,电极组件112b所产生的矫正电场可以对粒子束01的传播方向进行第二次偏转,以改变粒子束01的传播方向。
概括来说,通过矫正板11a和矫正板11b可以对粒子束01的传播方向进行依次偏转,从而能够更加有效的对粒子束01的传播方向进行调整。或者,可以理解的是,通过矫正板11和矫正板11,不仅可以改变粒子束01射入透镜02时的角度,还能够改变粒子束01射入透镜02时的位置。
请结合参阅图2和图9。如图2所示,当粒子束01未经粒子矫正器10进行矫正时,粒子束01的光轴与透镜02的光轴相互平行但不重合。如图9所示,当粒子束01经粒子矫正器10进行矫正后,粒子束01的光轴与透镜02的光轴重合。
请结合参阅图3和图10。如图3所示,当粒子束01未经粒子矫正器10进行矫正时,粒子束01的光轴与透镜02的光心O相交,但粒子束01的光轴与透镜02的光轴呈夹角。如图10所示,当粒子束01经粒子矫正器10进行矫正后,粒子束01的光轴与透镜02的光轴重合。
请结合参阅图4和图11。如图4所示,当粒子束01未经粒子矫正器10进行矫正时,粒子束01的光轴与透镜02的光心O不相交,且粒子束01的光轴与透镜02的光轴呈夹角。 如图11所示,当粒子束01经粒子矫正器10进行矫正后,粒子束01的光轴与透镜02的光轴重合。
当然,在具体应用时,粒子矫正器10中可以包括一个、两个或者更多个堆叠设置的矫正板,以对粒子束01的传播方向进行更多层级的调节。
概括来说,在具体实施时,在粒子矫正器10中,所包含的矫正板11的数量可以是N个,且N个矫正板11堆叠设置,以使N个矫正板11能够对粒子束01的传播方向进行N次调节。其中,N为大于或等于1的整数。另外,在N个堆叠设置的矫正板11中,每个矫正板11中通孔111的孔径可以相同也可以不同,本申请对此不作具体限定。
在具体应用时,粒子系统中可以设置一个粒子矫正器10,或者,也可以根据实际情况设置两个或更多个粒子矫正器10。
例如,如图12所示,在本申请提供的一个实施例中,粒子系统中设有粒子源组件001和透镜组件(图中未标示出)。
在粒子源组件001中可以包括粒子源和准直透镜等器件。其中,粒子源用于产生粒子;准直透镜用于对粒子进行准直,以使粒子能够以相互平行或接近平行的状态进行传播,从而保证粒子束01的传播质量。可以理解的是,在其他的实施方式中,粒子源组件001中还可以包括分束板或其他器件,本申请对粒子源组件001的具体组成器件不作限制。
透镜组件包括第一透镜02a和第二透镜02b。在实际应用时,第一透镜02a和第二透镜02b可以是光阑或电磁透镜等,本申请对第一透镜02a和第二透镜02b的具体类型不作限制。
在本申请提供的实施例中,设有两个粒子矫正器,分别为粒子矫正器10a和粒子矫正器10b。其中,粒子矫正器10a位于粒子源组件和第一透镜02a之间,粒子矫正器10b位于第一透镜02a和第二透镜02之间。当粒子束01经过粒子矫正器10a时,粒子矫正器10a可以对粒子束01的传播方向进行调整,以使粒子束01a的光轴与第一透镜02a的光轴重合。当粒子束01经过粒子矫正器10b时,粒子矫正器10b可以对粒子束01的传播方向进行调整,以使粒子束01的光轴与第二透镜02b的光轴重合,从而保证粒子系统具有较高的分辨率。
具体来说,如图12所示,当粒子束01未经粒子矫正器10a进行矫正时,粒子束01的光轴与第一透镜02a的光轴相互平行但不重合。当粒子束01经粒子矫正器10a进行矫正后,粒子束01的光轴与第一透镜02a的光轴重合。当粒子束01未经粒子矫正器10b进行矫正时,粒子束01的光轴与第二透镜02b的光轴相互平行但不重合。当粒子束01经粒子矫正器10b进行矫正后,粒子束01的光轴与第二透镜02b的光轴重合。
如图13所示,当粒子束01未经粒子矫正器10a进行矫正时,粒子束01的光轴与第一透镜02a的光心O相交,但粒子束01的光轴与第一透镜02a的光轴呈夹角。当粒子束01经粒子矫正器10a进行矫正后,粒子束01的光轴与第一透镜02a的光轴重合。当粒子束01未经粒子矫正器10b进行矫正时,粒子束01的光轴与第二透镜02b的光心O相交,但粒子束01的光轴与第二透镜02b的光轴呈夹角。当粒子束01经粒子矫正器10b进行矫正后,粒子束01的光轴与第二透镜02b的光轴重合。
如图14所示,当粒子束01未经粒子矫正器10a进行矫正时,粒子束01的光轴与第一透镜02a的光心O不相交,且粒子束01的光轴与第一透镜02a的光轴呈夹角。当粒子束01经粒子矫正器10a进行矫正后,粒子束01的光轴与第一透镜02a的光轴重合。当粒子 束01未经粒子矫正器10b进行矫正时,粒子束01的光轴与第二透镜02b的光心O不相交,且粒子束01的光轴与第二透镜02b的光轴呈夹角。当粒子束01经粒子矫正器10b进行矫正后,粒子束01的光轴与第二透镜02b的光轴重合。
在本申请提供的实施例中,通过在粒子束01的传播路径中设置两个粒子矫正器10,从而可以对粒子束01的传播方向进行更好的调节,以提升粒子束01在不同透镜之间传播时的位置精度,从而保证粒子系统的分辨率。
可以理解的是,在其他的实施方式中,透镜组件中也可以包括三个或者更多个透镜。相应的,在粒子系统中也可以设置三个或者更多个粒子矫正器,以保证粒子束以较好的传播方向入射至透镜。
可以理解的是,本申请对透镜和粒子矫正器的设置数量和位置不作具体限定。
另外,在具体实施时,电极组件的设置方式也可以是多样的。
例如,如图15所示,在本申请提供的一个实施例中,电极组件可以包括八个电极1121(图中标示出一个),且八个电极设置在通孔111的内壁。在具体实施时,八个电极1121可以沿通孔111的中心轴均匀布设,也可以根据不同需求对每个电极1121的位置进行适应性调整。可以理解的是,在具体设置时,电极1121并不仅限于设置在通孔111的内壁,还可以设置在通孔111的外围或附近的其他位置;即只需保证电极组件能够在对应的通孔111内产生矫正电场即可。
另外,在粒子矫正器10中也可以设置控制电路,以对电极组件的供断电状态、所形成的电场的大小和电场的方向进行控制。在具体设置时,控制电路可以对每个电极1121的供电进行独立控制,从而可以对矫正电场方向、强度等参数进行精准的控制。即通过多个电极1121以及控制电路,可以在垂直于通孔111的轴心方向产生任意方向的电场(或者也可以理解为电场的方向可以在垂直于通孔111轴心的平面内360°旋转),因此,可以对粒子束01产生任意方向的偏转和位置偏移。
在具体设置时,电极组件的所在平面可以垂直于通孔111的中心轴,以在通孔111内能够产生垂直于通孔111的中心轴方向的电场。
例如,电极组件中包括八个环形阵列设置的电极1121。八个电极1121的所在平面平行于矫正板11的板面。具体来说,通孔111的中心轴是垂直于矫正板11的板面的,因此,八个电极1121的所在平面平行于矫正板11的板面时,电极组件的所在平面是垂直于通孔111的中心轴的,从而能够在通孔111内产生垂直于通孔111的中心轴方向的电场。其中,电极组件的所在平面可以是平行于矫正板11的任意平面。例如,电极组件的所在平面可以与矫正板11的其中任一板面重合,也可以是矫正板11的两个板面的中心对称面。
例如,当需要将粒子束01向第一方向偏转时,控制电路可以向每个电极1121通所需的电压,以在通孔111内形成与该第一方向相反的矫正电场,从而使粒子束01向第一方向进行偏转。其中,第一方向指的是在垂直于通孔111的轴心的任意方向。
当然,在其他的实施方式中,控制电路也可以向某两个或更多个电极通所需的电压,以在通孔111内形成矫正电场。
可以理解的是,在具体实施时,控制电路可以根据不同的需求,对每个电极1121的通电状态,和施加的电压大小进行灵活控制,在此不作赘述。
另外,在具体实施时,电极组件中所包含的电极1121的数量并不仅限于为上述的八个。例如,电极组件中可以包括2个、3个、4个或者更多个电极1121,且多个电极1121的位 置排布可以根据实际情况进行灵活调整,本申请对此不作限定。
另外,在具体设置时,电极1121的形状也可以是多样的。
例如,如图16所示,在本申请提供的一个实施例中,电极1121为弧状结构。具体来说,请结合参阅图17,在垂直于通孔111的中心轴的方向上,电极1121的截面为弧形,且八个电极1121的内弧面均朝向通孔111的轴心。
如图18所示,在本申请提供的另一个实施例中,电极1121为矩形的块状结构。具体来说,请结合参阅图19,在垂直于通孔111的中心轴的方向上,电极1121的截面为矩形。
如图20所示,在本申请提供的另一个实施例中,电极1121为梯形的块状结构。具体来说,请结合参阅图21,在垂直于通孔111的中心轴的方向上,电极1121的截面为梯形。
可以理解的是,在其他的实施方式中,电极的形状构造可以根据不同情况进行灵活设置,本申请对此不作限定。
可以理解的是,在具体应用时,为了使得粒子系统能够具备较高的分辨率,粒子矫正器在对粒子束的传播方向进行调节时,可以采用多种不同的处理方法。
例如,如图22所示,在本申请实施例提供的一种粒子束的矫正方法中,可以包括以下步骤:
步骤S100、使粒子源组件产生粒子束;
步骤S200、使粒子束依次经过N个矫正板的通孔。其中,每个通孔对应设置有电极组件,N为大于或等于1的整数。
步骤S300、控制电极组件在对应的通孔内产生矫正电场,以改变粒子束的传播方向。
具体来说,在步骤S300中,可以通过控制电路对电极组件的供断电状态、所形成的电场的大小和电场的方向进行分别控制。当电极组件中包含多个电极时,可以通过控制电路对每个电极的供断电状态、所形成的电场的大小进行分别控制,以形成矫正电场。具体来说,在形成矫正电场时,可以对每个电极进行供电,并根据所形成的矫正电场的方向和强度来向每个电极提供所需的电压大小。当然,在具体实施时,可以根据所需的矫正电场,对每个电极均供电,或者,选择性的对某些电极进行供电。
另外,在具体应用时,为了保证粒子系统的分辨率,也可以根据粒子束的束斑质量对粒子矫正器的工作状态进行调整。
例如,如图23所示,在进行实施时,可以进行以下步骤:
步骤S100、使粒子源组件产生粒子束;
步骤S200、使粒子束依次经过N个矫正板的通孔。
步骤S300、控制电极组件在对应的通孔内产生矫正电场,以改变粒子束传播至目标透镜的入射位置。此时,不改变粒子束的传播角度。具体来说,粒子束在射入粒子矫正器和射出粒子矫正器时,角度保持一致。
步骤S400、控制电极组件在对应的通孔内产生矫正电场,以改变粒子束传播至目标透镜的入射角度。此时,不改变粒子束传播至目标透镜时的入射位置。
步骤S500、判断束斑质量是否达到最佳。
步骤S600、若束斑质量达到最佳则使粒子矫正器保持该矫正电场。
若束斑质量未达到最佳则继续对矫正电场进行调整。
请结合参阅图24和图25。
在对粒子束01的传播方向进行矫正时,可以先调整粒子束01传播至目标透镜02的 入射位置。在调节过程中,得到粒子束斑质量较佳或最佳时,便可完成对粒子束01传播至目标透镜02入射位置的调整。例如,当粒子束斑质量最佳时,粒子束01可以恰好经过目标透镜02的光心O。
之后,再对粒子束01与目标透镜02的夹角进行调整,在调节过程中,得到粒子束斑质量较佳或最佳时,便可完成对粒子束01与目标透镜02夹角的调整。例如,当粒子束斑质量最佳时,粒子束02的轴心与目标透镜02的轴心可以恰好重合,从而能够保证粒子系统的分辨率。
通过这种方式,可以快速且有效的对粒子束01的传播方向进行调节,以保证粒子系统的分辨率。
当然,在另外的实施方式中,也可以首先调节粒子束01与目标透镜02之间的夹角,使粒子束01的光轴与目标透镜02的光轴相互平行。然后,调节粒子束01传播至目标透镜02的入射位置,以使粒子束01的光轴与目标透镜02的光轴重合。或者,在另外的实施方式中,也可以同时调节粒子束01传播至目标透镜02的入射位置和入射角度,本申请对此不作具体限定。

Claims (12)

  1. 一种粒子系统,其特征在于,包括粒子源组件、粒子矫正器和透镜组件;
    所述粒子源组件用于产生粒子束;
    所述粒子矫正器包括N个堆叠设置的矫正板;
    每个所述矫正板具有M个通孔和M个电极组件,所述M个通孔用于接收所述粒子源组件产生的所述粒子束;
    M个所述电极组件与M个所述通孔一一对应设置,每个所述电极组件用于在对应的所述通孔内产生矫正电场;
    其中,M为大于或等于1的整数,N为大于或等于1的整数。
  2. 根据权利要求1所述的粒子系统,其特征在于,所述粒子源组件用于产生至少一个所述粒子束,且每个所述通孔用于接收至少一个所述粒子束。
  3. 根据权利要求1或2所述的粒子系统,其特征在于,所述粒子矫正器还包括控制电路,所述控制电路与每个所述矫正板中的所述M个电极组件电连接,用于对所述M个电极组件的供电进行分别控制;
    其中,所述控制电路对所述电极组件的供电控制包括:对电极组件的供断电状态、所形成的电场的大小和电场方向进行控制。
  4. 根据权利要求1至3中任一所述的粒子系统,其特征在于,所述电极组件的所在平面垂直于所述通孔的中心轴。
  5. 根据权利要求3或4所述的粒子系统,其特征在于,每个所述电极组件包括多个电极,多个所述电极设置在所述通孔的内壁,且多个所述电极绕所述通孔的轴心阵列设置。
  6. 根据权利要求5所述的粒子系统,其特征在于,所述控制电路用于对每个电极的供电进行分别控制;
    其中,所述控制电路对所述电极的供电控制包括:对电极的供断电状态、所形成的电场的大小进行控制。
  7. 根据权利要求5或6所述的粒子系统,其特征在于,在垂直于所述通孔的轴心方向上,所述电极的截面为方形、矩形、弧形或梯形。
  8. 根据权利要求7所述的粒子系统,其特征在于,所述透镜组件包括多个透镜,多个所述透镜沿所述粒子束的传播方向依次设置;
    所述粒子系统还包括位于所述多个透镜之间的粒子矫正器。
  9. 一种粒子束的矫正方法,其特征在于,包括:
    使粒子源组件产生粒子束;
    使所述粒子束依次通过N个堆叠设置的矫正板的通孔,其中,每个所述通孔对应设置有电极组件,N为大于或等于1的整数;
    控制所述电极组件在对应的所述通孔内产生矫正电场,以改变所述粒子束的传播方向。
  10. 根据权利要求9所述的矫正方法,其特征在于,所述控制所述电极组件在对应的所述通孔内产生矫正电场包括:
    通过控制电路对所述电极组件的供断电状态、所形成的电场的大小和电场的方向进行控制。
  11. 根据权利要求9或10所述的矫正方法,其特征在于,所述电极组件包括多个电极, 所述控制所述电极组件在对应的所述通孔内产生矫正电场包括:
    通过控制电路对每个所述电极的供断电状态、所形成的电场的大小进行分别控制。
  12. 根据权利要求9至11中任一所述的矫正方法,其特征在于,所述改变所述粒子束的传播方向包括:
    改变所述粒子束传播至目标透镜的入射位置;
    改变所述粒子束传播至所述目标透镜的入射角度。
PCT/CN2022/086330 2022-04-12 2022-04-12 一种粒子系统和粒子束的矫正方法 WO2023197146A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086330 WO2023197146A1 (zh) 2022-04-12 2022-04-12 一种粒子系统和粒子束的矫正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086330 WO2023197146A1 (zh) 2022-04-12 2022-04-12 一种粒子系统和粒子束的矫正方法

Publications (1)

Publication Number Publication Date
WO2023197146A1 true WO2023197146A1 (zh) 2023-10-19

Family

ID=88328697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086330 WO2023197146A1 (zh) 2022-04-12 2022-04-12 一种粒子系统和粒子束的矫正方法

Country Status (1)

Country Link
WO (1) WO2023197146A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620693A (zh) * 2011-04-27 2014-03-05 迈普尔平版印刷Ip有限公司 包括用于操纵一条或多条带电粒子束的操纵器装置的带电粒子系统
CN109216143A (zh) * 2017-07-05 2019-01-15 Ict集成电路测试股份有限公司 带电粒子束装置和对样本进行成像或照明的方法件
US20200294757A1 (en) * 2019-03-11 2020-09-17 Hitachi High-Technologies Corporation Charged Particle Beam Apparatus
CN112840431A (zh) * 2018-10-19 2021-05-25 Ict半导体集成电路测试有限公司 带电粒子束设备、场曲校正器、及操作带电粒子束设备的方法
CN113169017A (zh) * 2018-10-01 2021-07-23 卡尔蔡司MultiSEM有限责任公司 多束式粒子束系统及其操作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620693A (zh) * 2011-04-27 2014-03-05 迈普尔平版印刷Ip有限公司 包括用于操纵一条或多条带电粒子束的操纵器装置的带电粒子系统
CN109216143A (zh) * 2017-07-05 2019-01-15 Ict集成电路测试股份有限公司 带电粒子束装置和对样本进行成像或照明的方法件
CN113169017A (zh) * 2018-10-01 2021-07-23 卡尔蔡司MultiSEM有限责任公司 多束式粒子束系统及其操作方法
CN112840431A (zh) * 2018-10-19 2021-05-25 Ict半导体集成电路测试有限公司 带电粒子束设备、场曲校正器、及操作带电粒子束设备的方法
US20200294757A1 (en) * 2019-03-11 2020-09-17 Hitachi High-Technologies Corporation Charged Particle Beam Apparatus

Similar Documents

Publication Publication Date Title
TWI732305B (zh) 帶電粒子射束設備、場曲校正器、及操作帶電粒子射束設備的方法
RU2589276C2 (ru) Система заряженных частиц, содержащая устройство-манипулятор для манипуляции одним или более пучками заряженных частиц
JP4949843B2 (ja) 荷電粒子ビームレット露光システム
TWI476807B (zh) 繪圖裝置與製造物品之方法
US8390201B2 (en) Multi-column electron beam exposure apparatus and magnetic field generation device
TW201248674A (en) Drawing apparatus and method of manufacturing article
JPH06103946A (ja) 可変軸スティグマトール
WO2023197146A1 (zh) 一种粒子系统和粒子束的矫正方法
KR101751309B1 (ko) 이온 빔을 조작하기 위한 시스템 및 방법
PL113840B1 (en) Picture tube with facilities for correction of electronbeam shapes
EP0179294A1 (en) Ion microbeam apparatus
US20110147605A1 (en) Electrostatic corrector
JPS6042825A (ja) 荷電ビ−ム露光装置
WO2023197099A1 (zh) 一种粒子矫正器和粒子系统
KR20240004701A (ko) 플라즈마 생성용 코일 구조 및 반도체 공정 디바이스
TWI501286B (zh) 離子佈植機
TW202127494A (zh) 帶電粒子束裝置及操作帶電粒子束裝置的方法
JP2016219292A (ja) 電子レンズおよびマルチコラム電子ビーム装置
JPS5983336A (ja) 荷電粒子線集束偏向装置
JP2020107559A (ja) イオン注入装置および測定装置
WO2021071357A1 (en) Device for generating a plurality of charged particle beamlets, and an inspection imaging or processing apparatus and method for using the same.
KR0141892B1 (ko) 음극선관의 편향수차보정방법 및 그 음극선관 및 화상표시장치
EP4327350A1 (en) Systems and methods of creating multiple electron beams
JP2022552896A (ja) アラインメント手段を有するマルチビーム荷電粒子源
JPH09222499A (ja) 偏向電磁石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936801

Country of ref document: EP

Kind code of ref document: A1