WO2023195712A1 - Carbon dioxide utilization system - Google Patents

Carbon dioxide utilization system Download PDF

Info

Publication number
WO2023195712A1
WO2023195712A1 PCT/KR2023/004451 KR2023004451W WO2023195712A1 WO 2023195712 A1 WO2023195712 A1 WO 2023195712A1 KR 2023004451 W KR2023004451 W KR 2023004451W WO 2023195712 A1 WO2023195712 A1 WO 2023195712A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
carbon dioxide
gas
secondary battery
accommodating space
Prior art date
Application number
PCT/KR2023/004451
Other languages
French (fr)
Korean (ko)
Inventor
김건태
김정원
표세원
양예진
Original Assignee
주식회사 디알엠카탈리스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220041756A external-priority patent/KR20230143007A/en
Priority claimed from KR1020220042541A external-priority patent/KR20230143516A/en
Priority claimed from KR1020220060476A external-priority patent/KR20230160656A/en
Priority claimed from KR1020220061049A external-priority patent/KR20230161255A/en
Application filed by 주식회사 디알엠카탈리스트 filed Critical 주식회사 디알엠카탈리스트
Publication of WO2023195712A1 publication Critical patent/WO2023195712A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B5/00Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning

Definitions

  • This application relates to a system for producing hydrogen using carbon dioxide.
  • Carbon dioxide emissions by industry type are highest from energy sources such as power plants, and carbon dioxide generated from cement/steel/refining industries, including power generation, accounts for half of global emissions.
  • the field of carbon dioxide conversion/utilization can be broadly divided into chemical conversion, biological conversion, and direct utilization, and technical categories include catalyst, electrochemistry, bioprocess, light utilization, inorganic (carbonation), and polymer.
  • Carbon dioxide is generated from various industries and processes, and since carbon dioxide reduction cannot be achieved with one technology, various approaches are needed to reduce carbon dioxide.
  • PCC precipitated calcium carbonate
  • the first purpose of solving the above problem is as follows.
  • a cathode portion including a first aqueous solution containing potassium hydroxide accommodated in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution containing chlorine ions (Cl - ) accommodated in the second accommodating space, and a metal anode at least partially immersed in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and a carbon dioxide treatment unit communicating with the first accommodating space and having a first aqueous solution accommodated in the third accommodating space.
  • the second purpose of solving the above problem is as follows.
  • a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution;
  • An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ), and a metal anode at least partially immersed in the second aqueous solution.
  • a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and a carbon dioxide treatment unit provided with a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space and injecting a carbon dioxide-containing gas into the third accommodating space.
  • an elution reactor for eluting calcium ions from a calcium-containing material using an eluting agent to generate a second aqueous solution containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied and produces calcium carbonate (CaCO 3 ) through a reaction.
  • the third purpose to solve the above problem is as follows.
  • a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage; A power supply device connecting the cathode and anode; And a calcium carbonate generator connected to the first accommodating space and the third accommodating space to generate calcium carbonate (CaCO 3 (S) ); When power is supplied to the power supply device, hydrogen gas and calcium carbonate are generated.
  • the purpose is to provide a water electrolysis system that generates electricity.
  • the fourth purpose to solve the above problem is as follows.
  • a first electrode unit including a first aqueous solution accommodated in the first accommodating space, and a first electrode at least partially submerged in the first aqueous solution
  • a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution
  • a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage
  • a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution
  • a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage;
  • the first technical solution related to the first objective is as follows.
  • a secondary battery includes a cathode portion including a first aqueous solution containing potassium hydroxide accommodated in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution; an anode unit including a second aqueous solution containing chlorine ions (Cl-) accommodated in the second accommodating space, and a metal anode at least partially submerged in the second aqueous solution;
  • the carbon dioxide treatment unit may separate un-ionized carbon dioxide gas from the carbon dioxide gas flowing into the first aqueous solution of the third accommodation space to prevent it from being supplied to the cathode unit.
  • the carbon dioxide treatment unit may separate the non-ionized carbon dioxide gas using a difference in specific gravity from the first aqueous solution.
  • the carbon dioxide processing unit may collect the non-ionized carbon dioxide gas from an upper portion of the water surface of the first aqueous solution in the third accommodation space.
  • the carbon dioxide treatment unit is located below the water surface of the first aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  • the cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
  • the carbon dioxide treatment unit may be located above the water surface of the first aqueous solution in the third accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
  • the second aqueous solution may contain one or more cations selected from the group consisting of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), aluminum (Al), and lithium (Li). .
  • the second aqueous solution may include seawater.
  • the cathode portion contains at least one carbonate selected from the group consisting of sodium bicarbonate (NaHCO 3 ), potassium bicarbonate (KHCO 3 ), calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ). can do.
  • NaHCO 3 sodium bicarbonate
  • KHCO 3 potassium bicarbonate
  • CaCO 3 calcium carbonate
  • MgCO 3 magnesium carbonate
  • a combined power generation system includes the secondary battery, which generates hydrogen using carbon dioxide as a raw material during a discharge process; and a fuel cell supplied with hydrogen generated from the secondary battery as fuel.
  • the second technical solution related to the second purpose is as follows.
  • An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ), and a metal anode at least partially immersed in the second aqueous solution.
  • connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage;
  • the anode unit oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and carbon dioxide gas flows into the first aqueous solution in the third accommodation space, thereby generating the first aqueous solution.
  • Hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the aqueous solution and the carbon dioxide gas, and the cathode unit combines the water (H 2 O) with the electrons generated at the anode to produce hydroxide ions ( It is characterized by the generation of OH - ) and hydrogen gas (H 2 ).
  • the carbon dioxide treatment unit may separate un-ionized carbon dioxide gas from the carbon dioxide gas flowing into the first aqueous solution of the third accommodation space to prevent it from being supplied to the cathode unit.
  • the carbon dioxide treatment unit is located below the water surface of the first aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  • the cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
  • the carbon dioxide treatment unit may be located above the water surface of the first aqueous solution in the third accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
  • the carbon dioxide processing unit may further include a carbon dioxide circulation supply unit supplying the non-ionized carbon dioxide gas to the first aqueous solution in the third accommodation space.
  • the first aqueous solution may include one or more compounds selected from the group consisting of KOH and KHCO 3 .
  • the eluent remains in the first accommodation space, and the calcium carbonate (CaCO 3 ) may be generated in the second accommodation space.
  • a method for producing calcium carbonate according to another aspect includes an elution step of eluting calcium ions from a calcium-containing material using an eluting agent to produce a second aqueous solution; and a calcium carbonate generation step of reacting the carbon dioxide-containing gas and the second aqueous solution with sodium hydroxide (NaOH) generated during discharging of the secondary battery according to claim 1 to produce calcium carbonate (CaCO 3 ).
  • NaOH sodium hydroxide
  • the third technical solution related to the third objective is as follows.
  • the calcium carbonate generating unit includes a reactor that generates calcium carbonate (CaCO 3(S) ); A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor; A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; and a third inlet that connects the third accommodating space and the reactor and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the third accommodating space.
  • CaCO 3(S) calcium carbonate
  • the anode may include an oxygen evolution reaction catalyst.
  • the cathode may include carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film.
  • the cathode may further include a hydrogen evolution reaction catalyst.
  • the carbon dioxide treatment unit may further include a carbon dioxide treatment unit that communicates with the first accommodation space and includes a third aqueous solution accommodated in the third accommodation space.
  • the carbon dioxide treatment unit is located below the water surface of the third aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows. and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  • the cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
  • the carbon dioxide treatment unit may further include a carbon dioxide circulation supply unit that resupplies the non-ionized carbon dioxide gas to the third aqueous solution in the third accommodation space.
  • the first or second aqueous solution may be an alkaline aqueous solution containing alkaline metal ions.
  • Alkaline metal ions in the second accommodation space may move to the first accommodation space through the ion exchange membrane.
  • the fourth technical solution related to the fourth objective is as follows.
  • a composite secondary battery includes a first electrode portion including a first aqueous solution accommodated in a first accommodating space, and a first electrode at least partially submerged in the first aqueous solution; a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution; a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage; a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution; a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage; And a power supply connected to the second electrode and the third electrode; and, when discharging, the first electrode unit allows carbon dioxide gas to flow into the first aqueous solution in the first accommodation space so that the first aqueous solution
  • the composite secondary battery includes a reactor that generates calcium carbonate (CaCO 3(S) ); A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor; A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; And a third inlet connecting the third receiving space and the reactor and injecting the remaining liquid after the calcium carbonate (CaCO 3 (S) ) production reaction into the third receiving space.
  • Calcium carbonate (CaCO 3 (S) ) comprising a. It may include a creation unit.
  • the composite secondary battery may further include a carbon dioxide treatment unit that communicates with the first accommodating space and includes a fourth aqueous solution accommodated in the fourth accommodating space.
  • the carbon dioxide treatment unit may separate unionized carbon dioxide gas from the fourth aqueous solution and prevent it from being supplied to the first electrode unit.
  • the carbon dioxide treatment unit is located below the water surface of the fourth aqueous solution in the fourth accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the fourth accommodating space.
  • the first electrode unit may be located above the water surface of the first aqueous solution accommodated in the first accommodation space and may further include a first outlet for discharging hydrogen gas generated during discharge.
  • the carbon dioxide treatment unit may further include a carbon dioxide circulation supply unit that re-supplies the non-ionized carbon dioxide gas to the fourth aqueous solution in the fourth accommodation space.
  • an oxygen evolution reaction (OER) and a chlorine evolution reaction (CER) may occur.
  • the third electrode unit may be located above the water surface of the third aqueous solution accommodated in the third accommodation space and may further include a second outlet for discharging oxygen gas and chlorine gas generated when power is supplied to the power supply device.
  • the third electrode unit may further include a residual liquid circulation supply unit that re-supplies the remaining liquid after reaction to the fourth aqueous solution in the fourth receiving space when power is supplied to the power supply device.
  • the secondary battery according to one embodiment has the advantage of being able to produce various carbonates and hydrogen, an eco-friendly fuel, with high purity using seawater, a sustainable raw material, and carbon dioxide, a greenhouse gas.
  • the water electrolysis system has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
  • a composite secondary battery according to one aspect has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
  • the composite secondary battery according to one aspect can regenerate the metal of the electrode consumed by discharge according to the application of power to the power supply device, so it is possible to economically and efficiently produce calcium carbonate through the application of power to the power supply device without replacing the metal. There are advantages to this.
  • Figure 1 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the discharge process of a secondary battery using carbon dioxide according to another embodiment.
  • Figure 3 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment.
  • Figure 5 is a schematic diagram schematically showing a calcium carbonate manufacturing facility using a secondary battery according to another embodiment.
  • Figure 6 is a graph showing the XRD analysis results of calcium carbonate (CaCO3) produced as a result of operating the calcium carbonate production facility manufactured according to Example 1.
  • Figure 7 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to an embodiment.
  • Figure 8 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to another embodiment.
  • Figure 9 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to an embodiment.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • the variable when a range is stated for a variable, the variable will be understood to include all values within the stated range, including the stated endpoints of the range.
  • the range “5 to 10” includes the values 5, 6, 7, 8, 9, and 10, as well as any subranges such as 6 to 10, 7 to 10, 6 to 9, 7 to 9, etc. It will be understood that it also includes any values between integers that fall within the scope of the stated range, such as 5.5, 6.5, 7.5, 5.5 to 8.5, and 6.5 to 9, etc.
  • the range “10% to 30%” includes values such as 10%, 11%, 12%, 13%, etc. and all integers up to and including 30%, as well as 10% to 15%, 12% to 12%, etc. It will be understood that it includes any subranges, such as 18%, 20% to 30%, etc., and any value between reasonable integers within the range of the stated range, such as 10.5%, 15.5%, 25.5%, etc.
  • a cathode portion including a first aqueous solution containing potassium hydroxide accommodated in the first accommodation space, and a cathode at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution containing chlorine ions (Cl - ) accommodated in the second accommodating space, and a metal anode at least partially immersed in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage;
  • a secondary battery including a carbon dioxide treatment unit that communicates with the first accommodation space and includes a first aqueous solution accommodated in the third accommodation space, when discharging, the anode unit oxidizes chlorine ions (Cl - ) into chlorine.
  • a cathode portion including a first aqueous solution included in the first accommodation space, and a cathode at least partially submerged in the first aqueous solution;
  • An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chloride ions (Cl-), and a metal anode at least partially immersed in the second aqueous solution.
  • a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage;
  • a carbon dioxide treatment unit provided with a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space and injecting a carbon dioxide-containing gas into the third accommodating space.
  • H high-purity hydrogen gas
  • a cathode portion including a first aqueous solution contained in the first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage;
  • a power supply device connecting the cathode and anode;
  • a water electrolysis system including a calcium carbonate generator connected to the first accommodation space and the third accommodation space to generate calcium carbonate (CaCO 3 (S) ), when power is supplied to the power supply device, oxygen and chlorine, etc., as well as producing hydrogen and calcium carbonate with high purity.
  • a first electrode unit including a first aqueous solution accommodated in the first accommodating space, and a first electrode at least partially submerged in the first aqueous solution
  • a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution
  • a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage
  • a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution
  • a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage
  • a composite secondary battery including a power supply connected to the second electrode and the third electrode, not only can hydrogen be produced with high purity, but also
  • FIG. 1 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
  • the secondary battery 100 according to an embodiment of the present invention includes a cathode portion 110, an anode portion 150, and a connection portion connecting the cathode portion 110 and the anode portion 150. 190).
  • the secondary battery 100 can produce hydrogen (H 2 ), an eco-friendly fuel, by using carbon dioxide gas (CO2), a greenhouse gas, as a raw material during the discharge process.
  • H 2 hydrogen
  • CO2 carbon dioxide gas
  • the cathode portion 110 may include a first aqueous solution 115 contained in the first receiving space 111 and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
  • the first aqueous solution 115 may be an alkaline aqueous solution (in this example, CO 2 dissolved in a strong basic solution of 1M KOH is used), seawater, tap water, distilled water, etc., and preferably, dissolves carbon dioxide. It may be an alkaline aqueous solution for ease of use.
  • the first aqueous solution 115 may be a strongly basic solution of 1M KOH, and may be used by further eluting CO 2 during subsequent discharge.
  • the cathode 118 may have one side in contact with the first electrolyte, but preferably may be positioned so that at least a portion of the cathode 118 is submerged in the first electrolyte.
  • the cathode 118 may be a cathode for forming an electric circuit, and is not particularly limited as long as it contains a material that can reduce electrons at the cathode, for example, carbon paper, carbon fiber, carbon felt, It may be one or more selected from the group consisting of carbon cloth, metal foam, and metal thin film.
  • the cathode 118 may further include a catalyst within the cathode to promote the reduction reaction.
  • a catalyst within the cathode to promote the reduction reaction.
  • it may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably, may further include a platinum catalyst with the highest hydrogen generation reaction activity.
  • the cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
  • the first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115.
  • the first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115.
  • Carbon dioxide which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113.
  • the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114.
  • a carbon dioxide elution reaction may occur in the cathode portion 110 during the discharge process.
  • the anode unit 150 may include a second aqueous solution 155 contained in the second receiving space 151 and an anode 158 that is at least partially submerged in the second aqueous solution 155.
  • the second aqueous solution 155 may be seawater, tap water, distilled water, etc., and preferably contains chlorine ions (Cl - ) as anions, potassium (K), sodium (Na), calcium (Ca), It may be a neutral solution that contains one or more cations selected from the group consisting of magnesium (Mg), aluminum (Al), and lithium (Li), thereby suppressing the oxygen evolution reaction, which is a competing reaction.
  • the second aqueous solution 155 may be a 1M KCl solution or seawater containing a compound containing chloride ions (Cl - ).
  • the anode 158 may have one side in contact with the second electrolyte, but preferably may be positioned so that at least a portion of the anode 158 is submerged in the second electrolyte.
  • the anode 158 is a metal anode that forms an electric circuit, and oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ).
  • CER including catalysts, e.g., the group consisting of metal oxide catalysts, perovskite oxide catalysts, metal sulfide catalysts (e.g. NiS), metal carbide catalysts (e.g. WC), and carbon catalysts. It may be selected from, and more specifically, it may be selected from the group consisting of metal oxide catalysts and perovskite oxide catalysts.
  • the metals of the metal oxide catalyst, metal sulfide catalyst, and metal carbide catalyst include Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au. It may be at least one type selected from the group consisting of.
  • the metal oxide catalyst may be an oxide of a metal selected from the group consisting of Co, Ni, Mn, Ru, and Ir.
  • a second connector 154 communicating with the second receiving space 151 is formed in the anode portion 150.
  • the second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
  • connection portion 190 may include a connection passage 191 connecting the cathode portion 110 and the anode portion 150, and a cation exchange membrane 192 installed inside the connection passage 191.
  • connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to form the first receiving space of the cathode portion 110 ( 111 and the second accommodation space 151 of the anode unit 150 may be connected.
  • a cation exchange membrane 192 may be installed inside the connection passage 191.
  • the cation exchange membrane 192 may be installed to block the interior of the connection passage 191.
  • the cation exchange membrane (membrane) 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150 to resolve ion imbalance occurring during the discharge process.
  • the second aqueous solution ( Cations contained in 155) may move to the first aqueous solution 115.
  • the membrane capable of moving cations to the cation exchange membrane 192 is Nafion (Nafion 117, 212, 211, etc.), a fluororesin-based cation exchange membrane developed by DuPont in the United States. can be used.
  • FIG. 2 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment.
  • the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, a carbon dioxide treatment portion 120, and a carbon dioxide It may include a circulation supply unit 130 and a connection pipe 140 that communicates the cathode unit 110 and the carbon dioxide treatment unit 120.
  • the carbon dioxide treatment unit 120 may be accommodated in the third accommodation space 121 and may be provided with a first aqueous solution 115 that is the same as the first aqueous solution 115 of the cathode unit 110.
  • the carbon dioxide treatment unit 120 includes a second inlet 122 through which carbon dioxide flows into the third accommodation space 121, a communication port 123 to which the connection pipe 140 is connected, and an upper portion of the third accommodation space 121. It may include a second outlet 124 located at.
  • the second inlet 122 may be located above the communication port 123 in the third receiving space 121, and may be located below the second outlet 124 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the third receiving space 121 through the second inlet 122, and the first aqueous solution 115 is also supplied through the second inlet 122 as needed. It can be.
  • the second outlet 124 is located above the water level of the second inlet 122 and the first aqueous solution 115 in the third accommodation space 121. Carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus not ionized in the third accommodation space 121 through the second outlet 124 floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the second outlet 124 may be supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity.
  • the secondary battery according to another embodiment has a carbon dioxide treatment unit, so that the carbon dioxide gas flowing into the third accommodation space is not dissolved in the first aqueous solution and thus the unionized carbon dioxide gas cannot move to the first accommodation space of the cathode unit.
  • high purity hydrogen gas can be obtained by separately discharging the non-ionized carbon dioxide gas through the second outlet 124, which is different from the first outlet through which hydrogen gas generated from the secondary battery is discharged.
  • the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port 123 is located below the second inlet 122 in the third accommodation space 121, and a connection pipe 140 may be connected to the communication port 123.
  • the third accommodating space 121 may be in communication with the first accommodating space 111 through the communication port 123.
  • connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 123 of the third accommodation space 121.
  • the first accommodating space 111 and the third accommodating space 121 may be communicated through the connecting passage 141 formed inside the connecting pipe 140.
  • the carbon dioxide circulation supply unit 130 may circulate the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 and re-supply it.
  • the carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus is not ionized is in the cathode unit 110. It fails to move to the first accommodating space 111 and rises, collects in the space above the water surface of the first aqueous solution 115 in the third accommodating space 121, and is then discharged through the second outlet 124 and the second outlet 124.
  • the carbon dioxide gas discharged through is supplied to the third receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 and recycled.
  • the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • Figure 1 or Figure 2 shows the discharging process of the secondary battery 100.
  • carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode unit 110 as shown in the following [Reaction Formula 1].
  • carbon dioxide (CO 2 ) supplied to the cathode unit 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first aqueous solution 115 to form hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
  • hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated.
  • the generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
  • the generated bicarbonate (HCO 3 - ) reacts with cations moving from the anode unit 150 through the connection unit 190 to produce sodium bicarbonate (NaHCO 3 ), potassium bicarbonate (KHCO 3 ), and calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ).
  • One or more carbonates selected from the group consisting of may be produced.
  • the anode 158 undergoes an oxidation reaction as shown in [Reaction Formula 4] through a chlorine generation reaction.
  • a composite power generation system including the above-described secondary battery and a fuel cell supplied as fuel with hydrogen generated from the secondary battery can be provided.
  • the hydrogen fuel cell can generate water and electrical energy through a chemical reaction between hydrogen and oxygen.
  • the hydrogen fuel cell may be a solid oxide fuel cell (SOFC).
  • the combined power generation system has the advantage that efficiency can be significantly improved by constructing a hydrogen fuel cell and a secondary battery as one system and receiving hydrogen gas generated from the secondary battery as fuel. There is.
  • FIG. 3 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
  • the secondary battery 100 according to an embodiment of the present invention includes a cathode portion 110, an anode portion 150, and a connection portion connecting the cathode portion 110 and the anode portion 150. 190).
  • the secondary battery 100 uses carbon dioxide gas (CO 2 ), a greenhouse gas, as a raw material during the discharge process to produce hydrogen (H 2 ), an eco-friendly fuel, and calcium carbonate (CaCO 3 ), a carbonate.
  • CO 2 carbon dioxide gas
  • H 2 hydrogen
  • CaCO 3 calcium carbonate
  • the cathode portion 110 may include a first aqueous solution 115 contained in the first receiving space 111 and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
  • the first aqueous solution 115 may be a neutral aqueous solution, a slightly alkaline aqueous solution, seawater, tap water, distilled water, etc., and may preferably be a slightly alkaline aqueous solution with a pH of about 10.
  • the first aqueous solution 115 may be a strongly basic solution of 1M NaOH, and during subsequent discharge, CO 2 may be further dissolved and may be a weakly alkaline solution of 1M KHCO 3 .
  • the cathode 118 may have one side in contact with the first electrolyte, but preferably may be positioned so that at least a portion of the cathode 118 is submerged in the first electrolyte.
  • the cathode 118 may be a cathode for forming an electric circuit, and is not particularly limited as long as it contains a material that can reduce electrons at the cathode, for example, carbon paper, carbon fiber, carbon felt, It may be one or more selected from the group consisting of carbon cloth, metal foam, and metal thin film.
  • the cathode 118 may further include a catalyst within the cathode to promote the reduction reaction.
  • a catalyst within the cathode to promote the reduction reaction.
  • it may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably may further include, a platinum catalyst having excellent hydrogen generation activity at various pH.
  • the cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
  • the first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115.
  • the first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115.
  • Carbon dioxide which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113.
  • the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114.
  • a carbon dioxide elution reaction may occur in the cathode portion 110 during the discharge process.
  • the anode unit 150 may include a second aqueous solution 155 contained in the second receiving space 151 and an anode 158 that is at least partially submerged in the second aqueous solution 155.
  • the second aqueous solution 155 may be seawater, tap water, distilled water, etc., and preferably contains chlorine ions (Cl - ) as anions and calcium ions (Ca 2+ ) that can produce calcium carbonate. It may be a solution in which carbon chloride (CaCl 2 ) is dissolved.
  • the second aqueous solution 155 may be a carbon chloride (CaCl 2 ) solution dissolved in a concentration of 0.1M to 2.0M.
  • the anode 158 may have one side in contact with the second electrolyte, but preferably may be positioned so that at least a portion of the anode 158 is submerged in the second electrolyte.
  • the anode 158 is an oxidizing electrode forming an electric circuit, and is not particularly limited as long as it can oxidize chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and is a chlorine generation reaction catalyst,
  • it may include one or more selected from the group consisting of a metal oxide catalyst, a perovskite oxide catalyst, a metal sulfide catalyst, a metal carbide catalyst, and a carbon catalyst, and preferably, the chlorine generation
  • the reaction catalyst may be at least one selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au.
  • a second connector 154 communicating with the second receiving space 151 is formed in the anode portion 150.
  • the second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
  • connection portion 190 may include a connection passage 191 connecting the cathode portion 110 and the anode portion 150, and a cation exchange membrane 192 installed inside the connection passage 191.
  • connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to form the first receiving space of the cathode portion 110 ( 111 and the second accommodation space 151 of the anode unit 150 may be connected.
  • a cation exchange membrane 192 may be installed inside the connection passage 191.
  • the cation exchange membrane 192 may be installed to block the interior of the connection passage 191.
  • the cation exchange membrane (membrane) 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150 to resolve ion imbalance occurring during the discharge process.
  • the second aqueous solution ( Calcium ions (Ca 2+ ) contained in 155) may move to the first aqueous solution 115.
  • a fluororesin-based cation exchange membrane developed by DuPont in the United States, is used. You can.
  • FIG. 4 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment.
  • the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, a carbon dioxide treatment portion 120, and a carbon dioxide It may include a circulation supply unit 130 and a connection pipe 140 that communicates the cathode unit 110 and the carbon dioxide treatment unit 120.
  • the carbon dioxide treatment unit 120 may be accommodated in the third accommodation space 121 and may be provided with a first aqueous solution 115 that is the same as the first aqueous solution 115 of the cathode unit 110.
  • the carbon dioxide treatment unit 120 includes a second inlet 122 through which carbon dioxide flows into the third accommodation space 121, a communication port 123 to which the connection pipe 140 is connected, and an upper portion of the third accommodation space 121. It may include a second outlet 124 located at.
  • the second inlet 122 may be located above the communication port 123 in the third receiving space 121, and may be located below the second outlet 124 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the third receiving space 121 through the second inlet 122, and the first aqueous solution 115 is also supplied through the second inlet 122 as needed. It can be.
  • the second outlet 124 is located above the water level of the second inlet 122 and the first aqueous solution 115 in the third accommodation space 121. Carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus not ionized in the third accommodation space 121 through the second outlet 124 floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the second outlet 124 may be supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity.
  • the secondary battery according to another embodiment has a carbon dioxide treatment unit, so that the carbon dioxide gas flowing into the third accommodation space is not dissolved in the first aqueous solution and thus the unionized carbon dioxide gas cannot move to the first accommodation space of the cathode unit.
  • high purity hydrogen gas can be obtained by separately discharging the non-ionized carbon dioxide gas through the second outlet 124, which is different from the first outlet through which hydrogen gas generated from the secondary battery is discharged.
  • the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port 123 is located below the second inlet 122 in the third accommodation space 121, and a connection pipe 140 may be connected to the communication port 123.
  • the third accommodating space 121 may be in communication with the first accommodating space 111 through the communication port 123.
  • connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 123 of the third accommodation space 121.
  • the first accommodating space 111 and the third accommodating space 121 may be communicated through a connection passage formed inside the connecting pipe 140.
  • the carbon dioxide circulation supply unit 130 may circulate the carbon dioxide gas discharged through the second outlet 124 to the second inlet 122 and re-supply it.
  • the carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus is not ionized is in the cathode unit 110. It fails to move to the first accommodating space 111 and rises, collects in the space above the water surface of the first aqueous solution 115 in the third accommodating space 121, and is then discharged through the second outlet 124 and the second outlet 124.
  • the carbon dioxide gas discharged through is supplied to the third receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 and recycled.
  • the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • FIG. 3 or Figure 4 shows the discharging process of the secondary battery 100.
  • carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode unit 110 as shown in the following [Reaction Formula 5].
  • carbon dioxide (CO 2 ) supplied to the cathode unit 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first aqueous solution 115 to form hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
  • water (H 2 O) receives electrons (e - ) and generates hydrogen (H 2 ) gas and hydroxide ions (OH - ).
  • hydroxide ions (OH - ) generated from water (H 2 O) and bicarbonate (HCO 3 - ) generated from carbon dioxide react with calcium ions (Ca 2+ ) that have moved through the cation exchange membrane to form calcium carbonate ( CaCO 3 ) can be produced.
  • hydroxide ions may remain in the first accommodation space and may be reintroduced through a circulation process.
  • the hydrogen cation (H+) receives electrons (e - ) and generates hydrogen (H 2 ) gas.
  • the generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
  • an oxidation reaction such as chlorine generation reaction occurs in the anode 158 as shown in [Reaction Formula 8].
  • hydrogen ions generated by carbon dioxide eluted from the first aqueous solution 115 may receive electrons from the cathode 118, be reduced to hydrogen gas, and be discharged through the first outlet 113.
  • Figure 5 is a schematic diagram schematically showing a calcium carbonate manufacturing facility using a secondary battery according to another embodiment.
  • the calcium carbonate production facility includes an elution reactor that elutes calcium ions from a calcium-containing material using an eluent to produce a second aqueous solution containing calcium ions (Ca 2+ ) and chloride ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied, and which generates calcium carbonate (CaCO 3 ) through a reaction.
  • an elution reactor that elutes calcium ions from a calcium-containing material using an eluent to produce a second aqueous solution containing calcium ions (Ca 2+ ) and chloride ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied, and which generates calcium carbonate (CaCO 3 ) through a reaction.
  • the elution reactor is supplied with an eluent and a calcium-containing material, and calcium ions are eluted from the calcium-containing material by the eluent to produce an aqueous calcium salt solution, preferably calcium ions (Ca 2+ ) and chloride ions (Cl - ).
  • a second aqueous solution containing The eluting agent reacts with the calcium-containing material and contributes to eluting the calcium contained in the calcium-containing material in the form of calcium ions (Ca 2+ ).
  • the type is not particularly limited, but may be an ammonium salt.
  • the ammonium is preferably, for example, at least one selected from the group consisting of ammonium chloride, ammonium nitrate, and ammonium acetate.
  • the calcium-containing material is not particularly limited as long as it is a material capable of eluting calcium ions using an eluent, but for example, waste cement, waste concrete, coal ash, fly ash, iron slag, low-grade quicklime (CaO), calcium chloride (CaCl 2 ), it may be one or more selected from the group consisting of wollastonite, limestone, olivine, serpentine, asbestos, and deinked ash.
  • calcium salt aqueous solution containing calcium ions (Ca 2+ ) and chloride ions (Cl - ) is obtained according to the following reaction equation 9: A second aqueous solution can be produced.
  • the generated second aqueous solution can be supplied to the fuel cell, and in addition to the fuel cell, carbon dioxide-containing gas can be supplied to the fuel cell.
  • the sodium bicarbonate and calcium carbonate production facility has the advantage of being able to ultimately produce calcium carbonate at a high concentration by directly supplying hydroxide ions generated by the fuel cell reaction without the need to additionally supply sodium hydroxide. There is.
  • pure carbon dioxide can be used as the carbon dioxide-containing gas
  • any gas containing carbon dioxide can also be suitably used, such as industrial by-product gas or power plant exhaust gas.
  • steel exhaust gas high purity carbon dioxide
  • FOG FINEX off gas
  • FINEX tail gas FSG
  • blast furnace gas BFG
  • converter gas coal power plant exhaust gas
  • gas power plant It may be one or more selected from the group consisting of flue gas, incinerator flue gas, glass melting flue gas, thermal facility flue gas, petrochemical process flue gas, petrochemical process process gas, pre-/post-combustion flue gas, and gasifier flue gas.
  • carbon dioxide-containing gas may be introduced into the third receiving space in the carbon dioxide treatment unit of the secondary battery using steel exhaust gas and high purity carbon dioxide.
  • the secondary battery can produce calcium carbonate, a high value-added material, at high concentration, and calcium carbonate, a solid material, can be recovered using a solid-liquid separation device (not shown).
  • a method for producing calcium carbonate can be provided using a calcium carbonate production facility using a secondary battery.
  • an elution step of eluting calcium ions from a calcium-containing material using an eluting agent to generate a second aqueous solution eluting agent to generate a second aqueous solution
  • any content explaining the manufacturing method overlaps with the content described in the secondary battery or calcium carbonate manufacturing facility, it can be omitted.
  • Example 1 Confirmation of purity and solid phase of calcium carbonate produced using calcium carbonate production equipment
  • a second aqueous solution of 1M calcium chloride (CaCl 2 ) was prepared using calcium chloride (CaCl 2 ) as a calcium-containing material and ammonium chloride as an eluent, and supplied to the second receiving space of the anode part of the fuel cell. Meanwhile, carbon dioxide is supplied to 1M KOH, the first aqueous solution contained in the first accommodation space of the cathode part of the fuel cell, so that carbon dioxide is dissolved in the first aqueous solution and 1M potassium hydrogen carbonate (KHCO 3 ), which is a saturated solution in a slightly alkaline environment, is added.
  • KHCO 3 potassium hydrogen carbonate
  • a calcium carbonate manufacturing facility was manufactured using the solution.
  • Figure 6 is a graph showing the XRD analysis results of calcium carbonate (CaCO 3 ) produced as a result of operating the calcium carbonate production facility manufactured according to Example 1.
  • the crystalline phase of calcium carbonate (CaCO 3 ) produced through the calcium carbonate production facility manufactured above was confirmed, and it was also confirmed that more than 99% of the solid phase of calcium carbonate was formed in the form of calcite.
  • FIG. 7 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to an embodiment.
  • a cathode portion 110 including a first aqueous solution 115 accommodated in the first accommodating space 111, and a cathode 118 at least partially submerged in the first aqueous solution 115;
  • An anode portion 150 including a second aqueous solution 155 accommodated in the second accommodating space 151, and an anode 158 at least partially submerged in the second aqueous solution;
  • a power supply device 160 connecting the cathode 118 and anode 158; a connecting portion 190 including a connecting passage 191 that communicates the first accommodating space 111 and the second accommodating space 151, and an ion exchange membrane 192 provided in the connecting passage;
  • a calcium carbonate generating unit 120 connected to the first accommodating space 111 and the second accommodating space 151 to generate calcium carbonate (CaCO 3 (S) ).
  • the cathode portion 110 may include a first aqueous solution 115 accommodated in the first accommodation space 111, and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
  • the first aqueous solution 115 is an aqueous electrolyte. Specifically, it may be an alkaline aqueous solution in which an alkali metal hydroxide (e.g., LiOH, NaOH, or KOH) is dissolved in water, and is preferably an alkaline aqueous solution in which carbon dioxide is easily dissolved. It may be an aqueous KOH solution.
  • an alkali metal hydroxide e.g., LiOH, NaOH, or KOH
  • the first aqueous solution 115 may be obtained by eluting CO 2 from a strong basic solution of 1M KOH.
  • the cathode 118 is an electrode for forming a water electrolysis system and may be a reduction electrode that receives electrons (e - ) and generates hydrogen gas (H 2 ).
  • the cathode 118 may be a material that can cause a reduction reaction through electrons (e - ) generated when power is supplied to the power supply device.
  • the cathode 118 may be one or more selected from the group consisting of carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film.
  • the cathode 118 may further include a catalyst within the cathode to promote the reduction reaction. Specifically, it may include a hydrogen evolution reaction catalyst.
  • the cathode 118 may include one or more selected from the group consisting of a platinum catalyst, a carbon-based catalyst, a carbon-metal composite catalyst, and a perovskite oxide catalyst, preferably , it may further include a platinum catalyst known to have the highest catalytic activity for the hydrogen generation reaction in an aqueous electrolyte.
  • the cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
  • the first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115.
  • the first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115.
  • Carbon dioxide which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during the water electrolysis process can be discharged to the outside through the first outlet 113.
  • the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114.
  • a carbon dioxide elution reaction may occur in the cathode 110 during the water electrolysis process.
  • the anode 150 may include a second aqueous solution 155 accommodated in the second accommodating space 151, and an anode 158 at least partially submerged in the second aqueous solution 155, and preferably, the electronic It may be an oxidation electrode part where an oxidation reaction that generates (e - ) occurs.
  • the second aqueous solution 155 is an aqueous electrolyte. Specifically, it may be an alkaline aqueous solution in which an alkali metal hydroxide (e.g., LiOH, NaOH, or KOH) is dissolved in water, and is preferably oxidized through an oxygen generation reaction. It may be a high-concentration KOH aqueous solution that facilitates the reduction reaction.
  • an alkali metal hydroxide e.g., LiOH, NaOH, or KOH
  • KOH high-concentration KOH aqueous solution that facilitates the reduction reaction.
  • the second aqueous solution 155 may be a 1M KOH or 6M KOH strongly basic solution.
  • the anode 158 may have one side in contact with the second electrolyte 155, but is preferably positioned so that at least part of the anode 158 is submerged in the second electrolyte 155.
  • the anode 158 is an oxidizing electrode that forms a water electrolysis system, and can generate electrons (e - ) through the oxidation reactions of oxygen evolution reaction (OER) and chlorine evolution reaction (CER), and preferably, generate oxygen.
  • Reaction (Oxygen Evolution Reaction, OER) catalyst may be included.
  • the oxygen generation reaction catalyst included in the anode may be one or more selected from the group consisting of a metal oxide catalyst, a perovskite oxide catalyst, a metal sulfide catalyst, a metal carbide catalyst, and a carbon catalyst, wherein , the metal contained in the oxygen evolution reaction catalyst is selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au. There may be at least one type.
  • the anode unit 150 may further include a third inlet 127, a second outlet 153, and a second connector 154 that communicate with the second accommodation space 151.
  • the third inlet 127 may be located at the lower part of the second receiving space 151 so as to be located below the water surface of the second aqueous solution 155.
  • the second outlet 153 may be located at the upper part of the second receiving space 151 so as to be above the water surface of the second aqueous solution 155.
  • the remaining liquid remaining after generating calcium carbonate in the calcium carbonate (CaCO 3 (S) ) generating unit 120 may be injected into the second receiving space 151 through the third inlet 127.
  • Oxygen (O 2 ) and chlorine (Cl 2 ) which are gases generated when power is supplied to the power supply device, may be discharged to the outside through the second outlet 153.
  • the third inlet 127 and the second outlet 153 may be selectively opened and closed at appropriate times by a valve or the like when the power supply device is supplied with power.
  • the anode part 150 may be formed with a second connector 154 communicating with the second receiving space 151.
  • the second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
  • connection part 190 is a connection passage 191 connecting the first accommodation space 111 of the cathode unit 110 and the second accommodation space 151 of the anode unit 150, and the interior of the connection passage 191. It may be provided with an ion exchange membrane (membrane) 192 installed in the.
  • membrane membrane
  • connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to connect the first connector 114 of the cathode portion 110.
  • the receiving space 111 and the second receiving space 151 of the anode unit 150 may be connected.
  • An ion exchange membrane 192 may be provided inside the first connection passage 191.
  • the ion exchange membrane 192 may be installed to block the interior of the connection passage 191.
  • the ion exchange membrane 192 only allows the movement of ions between the cathode portion 110 and the anode portion 150, thereby resolving ion imbalance occurring during the water electrolysis process.
  • alkali metal ions, specifically potassium ions (K + ), contained in the second electrolyte solution 155 can move to the first electrolyte solution 115 by the ion exchange membrane 192.
  • Nafion a fluororesin-based cation exchange membrane developed by DuPont in the United States, may be used as the ion exchange membrane 192.
  • the calcium carbonate generating unit 120 includes a reactor 121 that generates calcium carbonate (CaCO 3(S) ); A first inlet 123 that connects the first accommodation space 111 and the reactor 121 and injects bicarbonate ions (HCO 3 - ) in the first accommodation space 111 into the reactor 121; A second inlet 125 connected to the reactor 121 and introducing calcium ions (Ca 2+ ) into the reactor 121; and a third inlet 127 that connects the second accommodation space 151 and the reactor 121 and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the second accommodation space 151; may include.
  • the first inlet 123 connects the first accommodating space 111 and the reactor 121, and bicarbonate ions (HCO 3 - ), which are the product after reaction in the first accommodating space 111, are converted into calcium carbonate (CaCO 3(S) ) can be introduced into the reactor 121 of the production unit 120.
  • bicarbonate ions HCO 3 -
  • CaCO 3(S) calcium carbonate
  • KHCO 3(aq) which is a product after reaction in the first receiving space 111, may be introduced into the reactor 121.
  • the second inlet 125 is connected to the reactor 121, and reacts with bicarbonate ions (HCO 3 - ) introduced into the reactor 121 through the first inlet 123 to produce calcium carbonate (CaCO 3 (S). ) Calcium ions (Ca 2+ ) that can generate can be introduced.
  • CaCl 2(aq) may be added to the reactor 121.
  • the reactor 121 reacts with bicarbonate ions (HCO 3 - ) introduced from the first inlet 123 and calcium ions (Ca 2+ ) introduced from the second inlet 125 to produce calcium carbonate (CaCO 3 (S) ) is produced, and residues may remain after the production reaction.
  • bicarbonate ions HCO 3 -
  • Ca 2+ calcium ions
  • S calcium carbonate
  • the residue may be KCl (aq) .
  • the third inlet 127 is connected to the second receiving space 151 and the reactor 121, and the remaining liquid after the production reaction in the reactor 121 is injected into the second receiving space 151 to form the anode 158. It is possible to provide a solution that progresses the oxygen evolution reaction (OER) and the chlorine evolution reaction (CER).
  • OER oxygen evolution reaction
  • CER chlorine evolution reaction
  • FIG. 8 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to another embodiment.
  • the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, and a cathode portion 110.
  • 1 Calcium carbonate generating unit 120, carbon dioxide processing unit 130, carbon dioxide circulation supply unit 135, and cathode unit 110 connecting the accommodation space 111 and the second accommodation space 151 of the anode unit 150. It may include a first connection pipe 140 that communicates with the carbon dioxide treatment unit 130.
  • the carbon dioxide processing unit 130 may be in communication with the first accommodation space 111.
  • the third aqueous solution 135 accommodated in the third accommodating space 131 in the carbon dioxide treatment unit 130 may be the same aqueous solution as the first aqueous solution 115 of the cathode unit 110.
  • the carbon dioxide treatment unit 130 includes a second inlet 132 through which carbon dioxide flows into the third accommodation space 131, a communication port (not shown) to which the connection pipe 140 is connected, and a third accommodation space 131. It may include a third outlet 133 located at the top.
  • the second inlet 132 may be located above the communication port (not shown) in the fourth receiving space 131 and below the water level of the third outlet 133 and the third aqueous solution 135.
  • Carbon dioxide gas which is used as a fuel in the water electrolysis process, can flow into the third receiving space 131 through the second inlet 132, and a third aqueous solution 135 can also be supplied through the second inlet 132 as needed. can be supplied.
  • the third outlet 133 is located above the water level of the second inlet 132 and the third aqueous solution 135 in the third accommodation space 131. Carbon dioxide gas that is not dissolved in the fourth aqueous solution 135 in the fourth accommodating space 131 through the third outlet 133 and thus is not ionized floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the third outlet 133 may be supplied to the second inlet 132 through the carbon dioxide circulation supply unit 135.
  • the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity.
  • the water electrolysis system according to another embodiment has a carbon dioxide treatment unit 130, so that among the carbon dioxide introduced into the third accommodation space 131, the carbon dioxide gas that is not dissolved in the third aqueous solution and thus not ionized is disposed of in the cathode unit 110.
  • the non-ionized carbon dioxide gas is discharged separately through the third outlet 133, making a difference from the first outlet 113 through which hydrogen gas generated in the water electrolysis system is discharged.
  • the second inlet 132 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port (not shown) is located below the second inlet 132 in the third receiving space 131, and a connection pipe 140 may be connected to the communication port (not shown).
  • the third accommodation space 131 may be in communication with the first accommodation space 111 through the connection pipe 140 connected to the communication port (not shown).
  • connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port (not shown) of the third accommodation space 131.
  • the first accommodating space 111 and the third accommodating space 121 may be communicated through a connection passage (not shown) formed inside the connecting pipe 140.
  • the carbon dioxide circulation supply unit 135 may circulate the carbon dioxide gas discharged through the third outlet 133 to the second inlet 132 and re-supply it.
  • the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution 135 is connected to the first electrode unit 110.
  • the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 132 through the carbon dioxide circulation supply unit 135.
  • the water electrolysis process of the water electrolysis system (100, 100a) is as follows.
  • Figure 7 or Figure 8 shows the water electrolysis process of the water electrolysis system (100, 100a).
  • carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode portion 110 as shown in the following [Reaction Formula 10].
  • the cathode unit 110 produces hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
  • hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated.
  • the generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
  • the aqueous solution containing bicarbonate (HCO 3 - ) generated from the complex hydrogen generation reaction may be introduced into the reactor 121 of the calcium carbonate (CaCO 3 (S) ) production unit through the first inlet 123 along with positive ions.
  • the cation contained in the aqueous solution containing bicarbonate may be one or more types selected from the group consisting of potassium cation (K + ), sodium cation (Na + ), lithium (Li + ), and magnesium (Mg + ).
  • an aqueous solution of KHCO 3 (aq) may be introduced into the reactor 121.
  • Bicarbonate (HCO 3 - ) introduced into the reactor 121 is an aqueous solution containing calcium ions (Ca 2+ ) introduced into the reactor through the second inlet 125 and a calcium carbonate production reaction as shown in [Reaction Formula 13]. It comes true.
  • the anion contained in the aqueous solution containing calcium ion (Ca 2+ ) is selected from the group consisting of chlorine anion (Cl - ), hydroxide ion (OH - ), fluorine (F - ), and bromine (Br - ). There may be more than one type.
  • an aqueous CaCl 2 (aq) solution may be introduced into the reactor 121.
  • the remaining liquid may be injected into the anode unit 150 through the third inlet 127.
  • it may include cations contained in an aqueous solution containing bicarbonate and anions contained in an aqueous solution containing calcium ions (Ca 2+ ).
  • it may be an aqueous KCl (aq) solution.
  • the water electrolysis system has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
  • FIG. 9 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to an embodiment.
  • a first electrode portion including a first aqueous solution 115 accommodated in the first accommodation space 111 and a first electrode 118 at least partially submerged in the first aqueous solution 115 ( 110);
  • a second electrode unit 150 including a second aqueous solution 155 accommodated in the second accommodating space 151, and a second electrode 158 at least partially submerged in the second aqueous solution;
  • a first connection portion 190 including a connection passage 191 that communicates the first accommodation space 111 and the second accommodation space 151, and a cation exchange membrane 192 provided in the connection passage;
  • a third electrode unit 170 including a third aqueous solution 175 accommodated in the third accommodating space 171, and a third electrode 178 at least partially submerged in the third aqueous solution 175;
  • a second connection portion including a connection passage 191' that communicates the second accommodation space 151 and the third accommodation
  • the first electrode unit 110 may include a first aqueous solution 115 accommodated in the first accommodation space 111, and a first electrode 118 at least partially submerged in the first aqueous solution 115.
  • it may be a reduction electrode unit capable of generating hydrogen gas.
  • the first aqueous solution 115 may be a neutral aqueous solution, an alkaline aqueous solution, seawater, tap water, or distilled water, and may preferably be an alkaline aqueous solution in which carbon dioxide is easily dissolved.
  • the first aqueous solution 115 may be a strongly basic solution of 1M NaOH, and may be used by further eluting CO 2 during subsequent discharge.
  • One side of the first electrode 118 may be in contact with the first electrolyte, but preferably, it may be positioned so that at least a portion is submerged in the first electrolyte.
  • the first electrode 118 may be a reduction electrode capable of forming an electric circuit and generating hydrogen gas during discharge.
  • the first electrode 118 is made of materials that can cause a reduction reaction through electrons (e - ) generated from the second electrode, such as carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film. It may be one or more types selected from the group consisting of.
  • the first electrode 118 may further include a catalyst in the first electrode to promote a reduction reaction.
  • a catalyst in the first electrode may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably, may further include a platinum catalyst having excellent electrochemical activity for the hydrogen generation reaction.
  • the first electrode unit 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first accommodation space 111.
  • the first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115.
  • the first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115.
  • Carbon dioxide which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113.
  • the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114.
  • a carbon dioxide elution reaction may occur in the first electrode unit 110 during the discharge process.
  • the second electrode unit 150 may include a second aqueous solution 155 accommodated in the second receiving space 151, and a second electrode 158 at least partially submerged in the second aqueous solution 155.
  • it may be an oxidation electrode part where an oxidation reaction that generates electrons (e - ) occurs.
  • the second aqueous solution 155 can promote the electrochemical reaction of the metal electrode unit 158, and preferably, a high concentration alkaline aqueous solution with dominant conductivity of cation Na + or K + can be used.
  • the second aqueous solution 155 may be a 1M NaOH or 6M NaOH strongly basic solution.
  • the second electrode 158 may have one side in contact with the second electrolyte 155, but is preferably positioned so that at least part of the second electrode 158 is submerged in the second electrolyte 155.
  • the second electrode 158 is an oxide electrode made of a metal material that forms an electric circuit, and is not particularly limited as long as it can generate electrons (e - ) through an oxidation reaction.
  • a metal material that forms an electric circuit
  • ) may be an alloy containing one type of metal or two or more types selected from the group consisting of ), and preferably includes zinc (Zn) or aluminum (Al), which has high electrochemical reaction and high voltage in an alkaline environment. .
  • a second connector 154 communicating with the second receiving space 151 is formed in the second electrode portion 150.
  • the second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
  • the first connection portion 190 includes a first connection passage 191 connecting the first accommodating space 111 of the first electrode portion 110 and the second accommodating space 151 of the second electrode portion 150, and A cation exchange membrane 192 installed inside the first connection passage 191 may be provided.
  • the first connection passage 191 extends between the first connector 114 formed on the first electrode portion 110 and the second connector 154 formed on the second electrode portion 150.
  • the first accommodating space 111 of the first electrode unit 110 and the second accommodating space 151 of the second electrode unit 150 may be connected.
  • a cation exchange membrane 192 may be provided inside the first connection passage 191.
  • the cation exchange membrane 192 may be installed to block the interior of the first connection passage 191.
  • the cation exchange membrane 192 allows only the movement of ions between the first electrode portion 110 and the first electrode portion 150 to resolve ion imbalance occurring during the discharge process, preferably, Cations contained in the second aqueous solution 155 may move to the first aqueous solution 115.
  • a membrane capable of moving cations to the cation exchange membrane 192 Nafion-212, 217, a fluororesin-based cation exchange membrane developed by DuPont in the United States, etc. You can use it.
  • the third electrode unit 170 may include a third aqueous solution 175 accommodated in the third accommodation space 171, and a third electrode 178 that is at least partially submerged in the third aqueous solution 175. .
  • the third electrode 178 and the second electrode 158 are connected to the power supply and are connected to the power supply.
  • oxidation reactions of oxygen evolution reaction (OER) and chlorine evolution reaction (CER) may occur in the third electrode 178.
  • the third aqueous solution 175 may be a neutral or slightly alkaline aqueous solution or an aqueous electrolyte containing Cl - ions.
  • the third aqueous solution 175 may be a potassium chloride (KCl) solution.
  • KCl potassium chloride
  • the third electrode 178 may have one side in contact with the third electrolyte 175, but is preferably positioned so that at least part of the third electrode 178 is submerged in the third electrolyte 175.
  • the third electrode 178 is an oxidizing electrode made of metal that forms an electric circuit with the second electrode 158, and generates electrons (e - ) through the oxidation reactions of the oxygen evolution reaction (OER) and the chlorine evolution reaction (CER).
  • OER oxygen evolution reaction
  • CER chlorine evolution reaction
  • metal oxide catalysts perovskite oxide catalysts
  • metal sulfide catalysts metal carbide catalysts
  • carbon catalysts or an alloy containing two or more kinds It may include Pt, Ir, and IrOx, which are noble metal-based catalysts.
  • the third electrode unit 170 may further include a third inlet 127, a second outlet 173, and a third connector 174 that communicate with the third accommodation space 171.
  • the third inlet 127 may be located below the third accommodating space 171 so as to be below the water surface of the third aqueous solution 175.
  • the second outlet 173 may be located at the upper part of the third accommodation space 171 so as to be above the water surface of the third aqueous solution 175.
  • the remaining liquid remaining after generating calcium carbonate in the calcium carbonate (CaCO 3 (S) ) generating unit 120 may be injected into the third receiving space 171 through the third inlet 127.
  • Oxygen (O 2 ) and chlorine (Cl 2 ) which are gases generated when power is supplied to the power supply device, may be discharged to the outside through the third outlet 173.
  • the third inlet 127 and the second outlet 173 may be selectively opened and closed at appropriate times by a valve or the like when the power supply device is supplied with power.
  • a third connector 174 communicating with the second receiving space 151 is formed in the third electrode portion 170.
  • the third connector 174 is located below the water surface of the third aqueous solution 175, and the second connector 190' may be connected to the third connector 174.
  • the second connection part 190' is a second connection passage 191' connecting the second accommodation space 151 of the second electrode unit 150 and the third accommodation space 171 of the third electrode unit 170. , and an exchange membrane 192' installed inside the second connection passage 191'.
  • the second connection passage 191' extends between the second connector 154 formed in the second electrode portion 150 and the third connector 174 formed in the third electrode portion 170.
  • the second accommodating space 151 of the second electrode unit 150 and the third accommodating space 171 of the third electrode unit 170 may be connected.
  • a cation exchange membrane 192' may be provided inside the second connection passage 191'.
  • the exchange membrane 192' may be installed to block the interior of the second connection passage 191'.
  • the exchange membrane 192' allows only the movement of ions between the first electrode portion 110 and the first electrode portion 150, thereby resolving ion imbalance occurring during the discharge process.
  • Cations contained in the third aqueous solution 175 may move to the second aqueous solution 155.
  • the membrane capable of moving positive ions (K+, Na+, etc.) to the exchange membrane 192 is Nafion (Nafion 212, 217), a fluororesin-based cation exchange membrane developed by DuPont in the United States. etc.) can be used.
  • the composite secondary battery 100 includes a reactor 121 that generates calcium carbonate (CaCO 3 (S) ); A first inlet 123 that connects the first accommodation space 111 and the reactor 121 and injects bicarbonate ions (HCO 3 - ) in the first accommodation space 111 into the reactor 121; A second inlet 125 connected to the reactor 121 and introducing calcium ions (Ca 2+ ) into the reactor 121; and a third inlet 127 that connects the third accommodation space 171 and the reactor 121 and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the third accommodation space 171; It may include a calcium carbonate (CaCO 3 (S) ) generating unit 120 containing.
  • CaCO 3 (S) calcium carbonate
  • the first inlet 123 connects the first accommodating space 111 and the reactor 121, and bicarbonate ions (HCO 3 - ), which are the product after reaction in the first accommodating space 111, are converted into calcium carbonate (CaCO 3(S) ) can be introduced into the reactor 121 of the production unit 120, and preferably, after reaction in the first receiving space 111, the product KHCO 3(aq) is introduced into the reactor 121. It can be.
  • the second inlet 125 is connected to the reactor 121, and reacts with bicarbonate ions (HCO 3 - ) introduced into the reactor 121 through the first inlet 123 to produce calcium carbonate (CaCO 3 (S). )
  • Calcium ions (Ca 2+ ) capable of producing ) can be added, preferably CaCl 2 (aq) .
  • the reactor 121 reacts with bicarbonate ions (HCO 3 - ) introduced from the first inlet 123 and calcium ions (Ca 2+ ) introduced from the second inlet 125 to produce calcium carbonate (CaCO 3 (S) ) is produced, and a residue may remain after the production reaction.
  • the residue may be KCl (aq) .
  • the third inlet 127 is connected to the third receiving space 171 and the reactor 121, and injects the remaining liquid after the production reaction in the reactor 121 into the third receiving space 171 to form a third electrode 178. ), it is possible to provide a solution that progresses the oxygen generation reaction (OER) and the chlorine generation reaction (CER).
  • OER oxygen generation reaction
  • CER chlorine generation reaction
  • FIG. 10 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to another embodiment.
  • the secondary battery 100a includes a first electrode portion 110, a second electrode portion 150, and a first connection portion connecting the first electrode portion 110 and the second electrode portion 150. 190), a third electrode unit 170, a second connection unit 190' connecting the second electrode unit 150 and the third electrode unit 170, and a second connection unit 190' connecting the first electrode unit 110 and the third electrode unit.
  • the first electrode unit 110 the second electrode unit 150, the first connection unit 190, the third electrode unit 170, the second connection unit 190', and the calcium carbonate generating unit 120.
  • Content that overlaps with the content described in the embodiment shown in FIG. 1 may be omitted.
  • the carbon dioxide treatment unit 130 is in communication with the first accommodation space 111, and the fourth aqueous solution 135 accommodated in the fourth accommodation space 131 is the first aqueous solution 115 of the first electrode unit 110. It may be the same aqueous solution as.
  • the carbon dioxide processing unit 130 includes a second inlet 132 through which carbon dioxide flows into the fourth accommodation space 131, a communication port 133 to which the connection pipe 140 is connected, and an upper portion of the fourth accommodation space 131. It may include a third outlet 134 located at.
  • the second inlet 132 may be located above the communication port 133 in the fourth receiving space 131, and may be located below the third outlet 134 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the fourth receiving space 131 through the second inlet 132, and a fourth aqueous solution 135 is also supplied through the second inlet 132 as needed. It can be.
  • the third outlet 134 is located above the water level of the second inlet 132 and the first aqueous solution 115 in the fourth accommodation space 131. Carbon dioxide gas that is not dissolved in the fourth aqueous solution 135 in the fourth accommodating space 131 through the third outlet 134 and thus is not ionized floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the third outlet 134 may be supplied to the second inlet 132 through the carbon dioxide circulation supply unit 135.
  • the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity.
  • the secondary battery according to another embodiment has a carbon dioxide treatment unit 130, so that among the carbon dioxide flowing into the third accommodation space 131, the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution is stored in the first electrode unit 110. ), the non-ionized carbon dioxide gas is separately discharged through the second outlet 134, thereby making the difference from the first outlet 113 through which hydrogen gas generated from the secondary battery is discharged. There is an advantage in being able to obtain high purity hydrogen gas.
  • the second inlet 132 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port 133 is located below the second inlet 132 in the fourth accommodation space 131, and a connection pipe 140 may be connected to the communication port 133.
  • the fourth accommodating space 131 may be communicated with the first accommodating space 111 through the communication port 133.
  • connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 133 of the fourth accommodation space 131.
  • the first accommodating space 111 and the fourth accommodating space 121 may be communicated through the connecting passage 141 formed inside the connecting pipe 140.
  • the carbon dioxide circulation supply unit 135 may circulate the carbon dioxide gas discharged through the third outlet 134 to the second inlet 132 and re-supply it.
  • the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution 135 is connected to the first electrode unit 110.
  • the carbon dioxide gas discharged through 134) is supplied to the fourth accommodation space 131 through the second inlet 132 by the carbon dioxide circulation supply unit 135 and is recycled.
  • the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 132 through the carbon dioxide circulation supply unit 135.
  • the secondary battery according to another embodiment further includes a carbon dioxide circulation supply unit 135, the third electrode unit 170 receives the remaining liquid after the reaction as a fourth compartment when power is supplied from the power supply device 160. It further includes a residual liquid circulation supply unit 180 that re-supplies the fourth aqueous solution 135 in the space 131.
  • the secondary battery according to another embodiment has the advantage of eliminating the need for continuous supply of positive ions, for example, additional supply of K+ or Na+ for carbon dioxide capture, as it further includes a residual liquid circulation supply unit 180.
  • the discharging process of the secondary batteries 100 and 100a is as follows.
  • Figure 9 or Figure 10 shows the discharging process of the secondary batteries 100 and 100a.
  • carbon dioxide is injected as a raw material for hydrogen production into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide is performed in the first electrode unit 110 as shown in [Reaction Formula 16]. It comes true.
  • the first electrode unit 110 converts carbon dioxide (CO 2 ) supplied to the first electrode unit 110 into hydrogen cations (H + ) and bicarbonate (HCO 3 - ) can be produced.
  • hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated.
  • the generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
  • the aqueous solution containing bicarbonate (HCO 3 - ) generated from the complex hydrogen generation reaction may be introduced into the reactor 121 of the calcium carbonate (CaCO 3 (S) ) production unit through the first inlet 123 along with positive ions.
  • the cation contained in the aqueous solution containing bicarbonate may be one or more types selected from the group consisting of potassium cation (K + ), sodium cation (Na + ), lithium (Li + ), and magnesium (Mg + ).
  • an aqueous solution of KHCO 3 (aq) may be introduced into the reactor 121.
  • Bicarbonate (HCO 3 - ) introduced into the reactor 121 is combined with an aqueous solution containing calcium ions (Ca 2+ ) introduced into the reactor through the second inlet 125 and a calcium carbonate production reaction as shown in [Reaction Formula 19]. It comes true.
  • the anion contained in the aqueous solution containing calcium ion (Ca 2+ ) is selected from the group consisting of chlorine anion (Cl - ), hydroxide ion (OH - ), fluorine (F - ), and bromine (Br - ). There may be more than one type.
  • an aqueous CaCl 2 (aq) solution may be introduced into the reactor 121.
  • the remaining liquid may be injected into the third electrode unit 170 through the third inlet 127.
  • it may include cations contained in an aqueous solution containing bicarbonate and anions contained in an aqueous solution containing calcium ions (Ca 2+ ).
  • it may be an aqueous KCl (aq) solution.
  • OER oxygen generation reaction
  • the reduction reaction of the metal production reaction can occur simultaneously depending on the application of power to the power supply device 160.
  • the second electrode 158 of the second electrode unit 150 is zinc, a reaction occurs as shown in [Reaction Formula 26], and the second electrode 158 of the second electrode unit 150 is aluminum. In this case, the reaction proceeds as shown in [Reaction Formula 27].
  • the composite secondary battery according to one embodiment is capable of producing high-purity hydrogen gas and calcium carbonate through a spontaneous discharge reaction of the secondary battery, but is consumed by discharge according to the application of power to the power supply device of the third electrode and the second electrode. Since the metal of the second electrode can be regenerated, there is an advantage in that calcium carbonate can be produced economically and efficiently by applying power to the power supply device without replacing the metal of the second electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a secondary battery for producing hydrogen from a neutral aqueous solution containing chlorine ions (Cl-), and a combined power generation system comprising same. The present invention has the advantage of producing various carbonates and hydrogen, an eco-friendly fuel, with high purity by using seawater, a sustainable raw material, and carbon dioxide, a greenhouse gas, as raw materials.

Description

이산화탄소 활용 시스템Carbon dioxide utilization system
본원은 이산화탄소를 이용하여 수소를 생산하는 시스템에 관한 것이다.This application relates to a system for producing hydrogen using carbon dioxide.
최근 산업화와 더불어 온실가스의 배출이 지속적으로 증가하고 있으며, 온실가스 중 이산화탄소가 가장 큰 비중을 차지하고 있다. 산업 유형별 이산화탄소 배출량은 발전소 등 에너지 공급원에서 가장 많고, 발전을 포함한 시멘트/철강/정제 산업 등에서 발생되는 이산화탄소가 전 세계 발생량의 절반을 차지하고 있다. 이산화탄소 전환/활용 분야는 크게 화학적 전환, 생물학적 전환, 직접 활용으로 구분할 수 있으며, 기술적 범주로는 촉매, 전기화학, 바이오공정, 광활용, 무기(탄산)화, 폴리머 등으로 구분지을 수 있다. 이산화탄소는 다양한 산업 및 공정에서 발생되고, 하나의 기술로 이산화탄소 저감을 달성할 수 없기 때문에 이산화탄소 저감을 위한 다양한 접근 방식이 필요하다.Recently, with industrialization, greenhouse gas emissions are continuously increasing, and carbon dioxide accounts for the largest proportion of greenhouse gases. Carbon dioxide emissions by industry type are highest from energy sources such as power plants, and carbon dioxide generated from cement/steel/refining industries, including power generation, accounts for half of global emissions. The field of carbon dioxide conversion/utilization can be broadly divided into chemical conversion, biological conversion, and direct utilization, and technical categories include catalyst, electrochemistry, bioprocess, light utilization, inorganic (carbonation), and polymer. Carbon dioxide is generated from various industries and processes, and since carbon dioxide reduction cannot be achieved with one technology, various approaches are needed to reduce carbon dioxide.
현재 미국 에너지성 DOE(Department Of Energy)는 이산화탄소를 저감하기 위한 기술로 CCS(Carbon Capture Storage)와 CCU (CC & Utilization)이 복합된 CCUS 기술에 관심을 두고 다각적 기술 개발을 추진 중이다. CCUS 기술은 효과적인 온실가스 감축 방안으로 인정받고 있으나, 고 투자 비용, 유해 포집제의 대기 방출 가능성, 낮은 기술 성숙도의 문제에 직면하고 있다. 또한, 에너지 및 기후 정책적 관점에서 CCUS는 온실가스 배출량을 실질적으로 감축하는 수단을 제공하지만 기술의 실현에는 보완 사항이 많다. 따라서, 보다 효율적으로 이산화탄소 포집, 저장 및 활용하는 새로운 개념의 지속 사용가능한 한계돌파형(breakthrough) 기술 개발이 요구되고 있다.Currently, the U.S. Department of Energy (DOE) is interested in CCUS technology, which is a combination of CCS (Carbon Capture Storage) and CCU (CC & Utilization), as a technology to reduce carbon dioxide and is pursuing multifaceted technology development. CCUS technology is recognized as an effective greenhouse gas reduction method, but it faces the problems of high investment costs, the possibility of releasing harmful collectors into the air, and low technology maturity. Additionally, from an energy and climate policy perspective, CCUS provides a means to substantially reduce greenhouse gas emissions, but there are many complements to the realization of the technology. Therefore, there is a need to develop a new sustainable breakthrough technology that captures, stores, and utilizes carbon dioxide more efficiently.
한편, 경질 탄산칼슘(침강성 탄산칼슘)(PCC, precipitated calcium carbonate)을 제조하는 방법은 크게 칼슘이 녹아있는 용액에 탄산가스를 주입하는 방법과 용해된 칼슘염 용액에 용해 가능한 카보네이트 용액을 혼합하여 생산하는 방법 등이 있다.Meanwhile, the method of producing precipitated calcium carbonate (PCC) is largely produced by injecting carbon dioxide gas into a solution containing dissolved calcium and mixing a soluble carbonate solution with a dissolved calcium salt solution. There are ways to do it, etc.
그러나 가스상으로 이산화탄소를 주입하는 경우에는 이산화탄소를 따로 확보해야 하며, 품질 제어 등이 용이하지 않은 문제가 있다. 또한, 반응하지 못한 일부의 이산화탄소는 반응 중에 대기로 방출되고, 소성 공정에서 이산화탄소가 발생하여 환경오염을 야기한다. 더욱이, 제조공정이 복잡하고, 석회석을 1000℃ 이상의 고온으로 소성하여 중간물질인 생석회를 제조함으로써 제조비용이 증대된다. However, when injecting carbon dioxide in gaseous form, carbon dioxide must be secured separately, and quality control is not easy. Additionally, some of the carbon dioxide that fails to react is released into the atmosphere during the reaction, and carbon dioxide is generated during the firing process, causing environmental pollution. Moreover, the manufacturing process is complicated, and the manufacturing cost increases by calcining limestone at a high temperature of 1000°C or higher to produce quicklime, an intermediate material.
따라서, 이산화탄소 발생량을 저감하고 탄산칼슘 제조비용을 낮추기 위해서는 칼슘성분을 석회석에 공급해서는 안 되고 이산화탄소와 결합하지 않는 칼슘원을 사용하여야 하는 문제가 있다.Therefore, in order to reduce the amount of carbon dioxide generated and lower the cost of producing calcium carbonate, there is a problem that calcium components should not be supplied to limestone and a calcium source that does not bind to carbon dioxide should be used.
한편, 용해된 칼슘염 용액에 용해 가능한 카보네이트 용액을 혼합하여 생산하는 방법으로 액상으로 탄산칼슘을 제조하는 경우에는, 탄산염 등을 추가로 확보해야 하므로 비용이 증가되는 문제가 있다.On the other hand, when liquid calcium carbonate is produced by mixing a dissolved calcium salt solution with a soluble carbonate solution, there is a problem of increased cost because additional carbonate, etc. must be secured.
상기 문제를 해결하기 위한 첫번째 목적은 다음과 같다.The first purpose of solving the above problem is as follows.
제1 수용 공간에 수용되는 수산화칼륨을 포함하는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 수용 공간에 수용되는 염소이온(Cl-)을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부; 상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및 상기 제1 수용 공간과 연통되어, 제3 수용 공간에 수용되는 제1 수용액을 구비하는 이산화탄소 처리부;를 포함하는 이차전지에 관한 것이다.A cathode portion including a first aqueous solution containing potassium hydroxide accommodated in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution containing chlorine ions (Cl - ) accommodated in the second accommodating space, and a metal anode at least partially immersed in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and a carbon dioxide treatment unit communicating with the first accommodating space and having a first aqueous solution accommodated in the third accommodating space.
상기 문제를 해결하기 위한 두번째 목적은 다음과 같다.The second purpose of solving the above problem is as follows.
제1 수용 공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 수용 공간에 수용되어 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 칼슘염을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부; 상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및 상기 제1 수용 공간과 연통되는 제3 수용 공간에 수용되는 제1 수용액을 구비하고, 이산화탄소 함유가스가 제3 수용공간으로 투입되는 이산화탄소 처리부;를 포함하는 이차전지에 관한 것이다.a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution; An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ), and a metal anode at least partially immersed in the second aqueous solution. wealth; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and a carbon dioxide treatment unit provided with a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space and injecting a carbon dioxide-containing gas into the third accommodating space.
또한, 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액을 생성하는 용출 반응기; 및 이산화탄소 함유 가스, 및 상기 제2 수용액이 공급되며, 반응에 의해 탄산칼슘(CaCO3)을 생성하는 이차전지를 포함하는 탄산칼슘 제조 설비에 관한 것이다.In addition, an elution reactor for eluting calcium ions from a calcium-containing material using an eluting agent to generate a second aqueous solution containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied and produces calcium carbonate (CaCO 3 ) through a reaction.
또한, 상기 이차전지 및 탄산칼슘 제조설비를 이용한 탄산칼슘 제조방법에 관한 것이다.Additionally, it relates to a method for producing calcium carbonate using the secondary battery and calcium carbonate production equipment.
상기 문제를 해결하기 위한 세번째 목적은 다음과 같다.The third purpose to solve the above problem is as follows.
제1 수용공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드(anode)를 구비하는 캐소드부; 제2 수용공간에 포함된 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드(Cathode)를 구비하는 애노드부; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 이온교환막을 구비하는 연결부; 상기 캐소드(anode)와 애노드(Cathode)를 연결하는 전원공급장치; 및 상기 제1 수용공간, 및 제3 수용공간으로 연결되어 탄산칼슘(CaCO3(S))을 생성시키는 탄산칼슘 생성부;를 포함하여, 전원공급장치에 전원공급 시, 수소기체 및 탄산칼슘이 발생하는 수전해시스템을 제공하는 것을 목적으로 한다.a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage; A power supply device connecting the cathode and anode; And a calcium carbonate generator connected to the first accommodating space and the third accommodating space to generate calcium carbonate (CaCO 3 (S) ); When power is supplied to the power supply device, hydrogen gas and calcium carbonate are generated. The purpose is to provide a water electrolysis system that generates electricity.
상기 문제를 해결하기 위한 네번째 목적은 다음과 같다.The fourth purpose to solve the above problem is as follows.
제1 수용공간에 수용되는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 제1 전극을 포함하는 제1 전극부; 제2 수용공간에 수용되는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 제2 전극를 포함하는 제2 전극부; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 양이온 교환막을 포함하는 제1 연결부; 제3 수용공간에 수용되는 제3 수용액, 및 상기 제3 수용액에 적어도 일부가 잠기는 제3 전극을 포함하는 제3 전극부; 상기 제2 수용공간과 상기 제3 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 교환막을 포함하는 제2 연결부; 및 상기 제2 전극과 제3 전극에 연결되는 전원공급장치;를 포함하는 복합이차전지를 제공하는 것을 목적으로 한다.a first electrode unit including a first aqueous solution accommodated in the first accommodating space, and a first electrode at least partially submerged in the first aqueous solution; a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution; a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage; a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution; a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage; The object is to provide a composite secondary battery including a power supply connected to the second electrode and the third electrode.
첫번째 목적과 관련한 첫번째 기술적 해결방법은 아래와 같다.The first technical solution related to the first objective is as follows.
일 측면에 따른 이차전지는 제1 수용 공간에 수용되는 수산화칼륨을 포함하는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 수용 공간에 수용되는 염소이온(Cl-)을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부;A secondary battery according to one aspect includes a cathode portion including a first aqueous solution containing potassium hydroxide accommodated in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution; an anode unit including a second aqueous solution containing chlorine ions (Cl-) accommodated in the second accommodating space, and a metal anode at least partially submerged in the second aqueous solution;
상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및 상기 제1 수용 공간과 연통되어, 제3 수용 공간에 수용되는 제1 수용액을 구비하는 이산화탄소 처리부;를 포함하며, 방전 시, 상기 애노드부는 염소이온(Cl )이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 상기 제3 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어서 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3-)이 생성되고, 상기 캐소드부는 상기 수소이온(H+)과 상기 캐소드의 전자가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 한다.a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and a carbon dioxide treatment unit that communicates with the first accommodation space and includes a first aqueous solution accommodated in the third accommodation space. When discharging, the anode unit oxidizes chlorine ions (Cl) to produce chlorine gas (Cl2). Electrons (e-) are generated, and carbon dioxide gas flows into the first aqueous solution in the third accommodation space, and hydrogen ions (H+) and bicarbonate ions (HCO3-) are generated by the reaction of the first aqueous solution and the carbon dioxide gas. The cathode part is characterized in that hydrogen gas (H2) is generated by combining the hydrogen ions (H+) with the electrons of the cathode.
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 할 수 있다.The carbon dioxide treatment unit may separate un-ionized carbon dioxide gas from the carbon dioxide gas flowing into the first aqueous solution of the third accommodation space to prevent it from being supplied to the cathode unit.
상기 이산화탄소 처리부는, 상기 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액과의 비중 차이를 이용하여 분리할 수 있다.The carbon dioxide treatment unit may separate the non-ionized carbon dioxide gas using a difference in specific gravity from the first aqueous solution.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액의 수면 상부에서 수집할 수 있다.The carbon dioxide processing unit may collect the non-ionized carbon dioxide gas from an upper portion of the water surface of the first aqueous solution in the third accommodation space.
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및 상기 유입구보다 아래에 위치하여, 상기 제3 수용 공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함할 수 있다.The carbon dioxide treatment unit is located below the water surface of the first aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
상기 캐소드부는 상기 제1 수용 공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함할 수 있다.The cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함할 수 있다.The carbon dioxide treatment unit may be located above the water surface of the first aqueous solution in the third accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액으로 공급하는 이산화탄소 순환 공급부를 더 포함할 수 있다.The carbon dioxide processing unit may further include a carbon dioxide circulation supply unit supplying the non-ionized carbon dioxide gas to the first aqueous solution in the third accommodation space.
상기 제2 수용액은 칼륨(K), 나트륨(Na), 칼슘(Ca), 마그네슘(Mg), 알루미늄(Al), 및, 리튬 (Li)로 이루어진 군으로부터 선택된 1종 이상의 양이온을 포함할 수 있다.The second aqueous solution may contain one or more cations selected from the group consisting of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), aluminum (Al), and lithium (Li). .
상기 제2 수용액은 해수를 포함할 수 있다.The second aqueous solution may include seawater.
상기 이차전지는 방전 시, 캐소드부는 탄산수소나트륨(NaHCO3), 탄산수소칼륨(KHCO3), 탄산칼슘(CaCO3), 및 탄산마그네슘(MgCO3)로 이루어진 군으로부터 선택된 1종 이상의 탄산염을 포함할 수 있다.When the secondary battery is discharged, the cathode portion contains at least one carbonate selected from the group consisting of sodium bicarbonate (NaHCO 3 ), potassium bicarbonate (KHCO 3 ), calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ). can do.
다른 일 측면에 따른 복합 발전 시스템은 방전 과정에서 이산화탄소를 원료로 사용하여 수소를 발생시키는, 상기 이차전지; 및 상기 이차전지에서 발생한 수소를 연료로 공급받는 연료전지;를 포함하는 것을 특징으로 한다.A combined power generation system according to another aspect includes the secondary battery, which generates hydrogen using carbon dioxide as a raw material during a discharge process; and a fuel cell supplied with hydrogen generated from the secondary battery as fuel.
두번째 목적과 관련한 두번째 기술적 해결방법은 아래와 같다.The second technical solution related to the second purpose is as follows.
일 측면에 따른 이차전지는 제1 수용 공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부;A secondary battery according to one aspect includes a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution;
제2 수용 공간에 수용되어 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 칼슘염을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부;An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ), and a metal anode at least partially immersed in the second aqueous solution. wealth;
상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and
상기 제1 수용 공간과 연통되는 제3 수용 공간에 수용되는 제1 수용액을 구비하고, 이산화탄소 함유가스가 제3 수용공간으로 투입되는 이산화탄소 처리부;를 포함하며,It includes a carbon dioxide treatment unit having a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space, and injecting a carbon dioxide-containing gas into the third accommodating space,
방전 시, 상기 애노드부는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 상기 제3 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어서 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 캐소드부는 상기 물(H20)과 상기 애노드에서 발생된 전자가 결합되어 수산화이온(OH-)과 수소기체(H2)가 발생하는 것을 특징으로 한다.During discharging, the anode unit oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and carbon dioxide gas flows into the first aqueous solution in the third accommodation space, thereby generating the first aqueous solution. Hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the aqueous solution and the carbon dioxide gas, and the cathode unit combines the water (H 2 O) with the electrons generated at the anode to produce hydroxide ions ( It is characterized by the generation of OH - ) and hydrogen gas (H 2 ).
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 할 수 있다.The carbon dioxide treatment unit may separate un-ionized carbon dioxide gas from the carbon dioxide gas flowing into the first aqueous solution of the third accommodation space to prevent it from being supplied to the cathode unit.
상기 이산화탄소 처리부는, 상기 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액과의 비중 차이를 이용하여 분리할 수 있다.The carbon dioxide treatment unit may separate the non-ionized carbon dioxide gas using a difference in specific gravity from the first aqueous solution.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액의 수면 상부에서 수집할 수 있다.The carbon dioxide processing unit may collect the non-ionized carbon dioxide gas from an upper portion of the water surface of the first aqueous solution in the third accommodation space.
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및 상기 유입구보다 아래에 위치하여, 상기 제3 수용 공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함할 수 있다.The carbon dioxide treatment unit is located below the water surface of the first aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
상기 캐소드부는 상기 제1 수용 공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함할 수 있다.The cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
상기 이산화탄소 처리부는 상기 제3 수용 공간의 상기 제1 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함할 수 있다.The carbon dioxide treatment unit may be located above the water surface of the first aqueous solution in the third accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액으로 공급하는 이산화탄소 순환 공급부를 더 포함할 수 있다.The carbon dioxide processing unit may further include a carbon dioxide circulation supply unit supplying the non-ionized carbon dioxide gas to the first aqueous solution in the third accommodation space.
상기 제1 수용액은 KOH, 및 KHCO3로 이루어지는 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.The first aqueous solution may include one or more compounds selected from the group consisting of KOH and KHCO 3 .
상기 이차전지 방전 시, 캐소드부는 양이온교환막을 통해 이동한 칼슘이온(Ca2+)이 수산화이온(OH-)과 중탄산염(HCO3 -)과 반응을 통해 탄산칼슘(CaCO3)을 생산할 수 있다.When the secondary battery is discharged, the cathode unit can produce calcium carbonate ( CaCO 3 ) through the reaction of calcium ions (Ca 2+ ) that have moved through the cation exchange membrane with hydroxide ions (OH - ) and bicarbonate (HCO 3 - ).
다른 일 측면에 따른 탄산칼슘 제조 설비는 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액을 생성하는 용출 반응기; 및 이산화탄소 함유 가스, 및 상기 제2 수용액이 공급되며, 반응에 의해 탄산칼슘(CaCO3)을 생성하는 이차전지를 포함한다.According to another aspect, a calcium carbonate production facility includes an elution reactor for eluting calcium ions from a calcium-containing material using an eluent to generate a second aqueous solution containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied, and which generates calcium carbonate (CaCO 3 ) through a reaction.
상기 이차전지 방전 시, 상기 용출제는 제1 수용공간에 남아있고, 상기 탄산칼슘(CaCO3)은 제2 수용 공간에서 생성될 수 있다.When the secondary battery is discharged, the eluent remains in the first accommodation space, and the calcium carbonate (CaCO 3 ) may be generated in the second accommodation space.
상기 용출제는 암모늄염일 수 있다.The eluent may be an ammonium salt.
상기 이산화탄소 함유 가스는 제철 배가스, 고순도 이산화탄소, 파이넥스 오프 가스(FOG, FINEX off gas), 파이넥스 테일 가스(FTG, FINEX tail gas), 고로 가스(BFG, Blast furnace gas), 전로 가스, 석탄 발전소 배가스, 가스 발전소 배가스, 소각로 배가스, 유리용해 배가스, 열설비 배가스, 석유화학공정 배가스, 석유화학공정 공정가스, 연소전/후 배가스 및 가스화기 배가스로 이루어진 군에서 선택된 하나 이상일 수 있다.The carbon dioxide-containing gas includes steel exhaust gas, high-purity carbon dioxide, FOG (FINEX off gas), FINEX tail gas (FTG), blast furnace gas (BFG), converter gas, coal-fired power plant exhaust gas, It may be one or more selected from the group consisting of gas power plant off-gas, incinerator off-gas, glass melting off-gas, thermal facility off-gas, petrochemical process off-gas, petrochemical process process gas, pre-/post-combustion off-gas, and gasifier off-gas.
상기 칼슘 함유 물질은 폐시멘트, 폐콘크리트, 석탄재, 비산재, 제철 슬래그, 생석회(CaO), 염화칼슘(CaCl2), 규회석, 석회석, 감람석, 사문석, 석면 및 탈묵회로 이루어진 군에서 선택된 하나 이상일 수 있다.The calcium-containing material may be one or more selected from the group consisting of waste cement, waste concrete, coal ash, fly ash, iron slag, quicklime (CaO), calcium chloride (CaCl 2 ), wollastonite, limestone, olivine, serpentine, asbestos, and deinked ash. .
다른 일 측면에 따른 탄산칼슘 제조방법은 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 제2 수용액을 생성하는 용출 단계; 및 이산화탄소 함유 가스 및 상기 제2 수용액을, 제1항에 따른 이차전지 방전 시 발생하는 수산화나트륨(NaOH)와 반응시켜 탄산칼슘(CaCO3)을 생성하는 탄산칼슘 생성 단계를 포함한다.A method for producing calcium carbonate according to another aspect includes an elution step of eluting calcium ions from a calcium-containing material using an eluting agent to produce a second aqueous solution; and a calcium carbonate generation step of reacting the carbon dioxide-containing gas and the second aqueous solution with sodium hydroxide (NaOH) generated during discharging of the secondary battery according to claim 1 to produce calcium carbonate (CaCO 3 ).
세번째 목적과 관련한 세번째 기술적 해결방법은 아래와 같다.The third technical solution related to the third objective is as follows.
일 측면에 따른 수전해시스템은 제1 수용공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드(anode)를 구비하는 캐소드부; 제2 수용공간에 포함된 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드(Cathode)를 구비하는 애노드부; 상기 캐소드(anode)와 애노드(Cathode)를 연결하는 전원공급장치; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 이온교환막을 구비하는 연결부; 및 상기 제1 수용공간, 및 제3 수용공간으로 연결되어 탄산칼슘(CaCO3(S))을 생성시키는 탄산칼슘 생성부;를 포함하고, 전원공급장치에 전원공급 시, 상기 캐소드부에서 제1 전해액으로 이산화탄소 기체가 유입되어 상기 제1 전해액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 수소이온(H+)과 전원공급으로 공급된 전자(e-)가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 한다.A water electrolysis system according to one aspect includes a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution; A power supply device connecting the cathode and anode; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage; And a calcium carbonate generator connected to the first accommodating space and the third accommodating space to generate calcium carbonate (CaCO 3 (S) ); When supplying power to the power supply device, the first accommodating space is connected to the first accommodating space and the third accommodating space. Carbon dioxide gas flows into the electrolyte solution, and hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the first electrolyte solution and the carbon dioxide gas, and the hydrogen ions (H + ) and the power supply are supplied. It is characterized in that electrons (e - ) are combined to generate hydrogen gas (H 2 ).
상기 탄산칼슘 생성부는 탄산칼슘(CaCO3(S))을 생성시키는 반응기; 상기 제1 수용공간과 반응기를 연결하고, 제1 수용공간의 중탄산이온(HCO3 -)을 반응기로 투입시키는 제1 투입구; 상기 반응기와 연결되고, 칼슘이온(Ca2+)을 반응기로 투입시키는 제2 투입구; 및 상기 제3 수용공간과 반응기를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제3 수용공간으로 투입시키는 제3 투입구;를 포함할 수 있다.The calcium carbonate generating unit includes a reactor that generates calcium carbonate (CaCO 3(S) ); A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor; A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; and a third inlet that connects the third accommodating space and the reactor and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the third accommodating space.
상기 애노드는 산소 발생 반응(oxygen evolution reaction) 촉매를 포함할 수 있다.The anode may include an oxygen evolution reaction catalyst.
상기 산소 발생 반응 촉매는 금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매, 금속 탄화물 촉매, 및 탄소 촉매로 이루어진 군에서 선택된 1종 이상일 수 있다.The oxygen evolution reaction catalyst may be one or more selected from the group consisting of metal oxide catalysts, perovskite oxide catalysts, metal sulfide catalysts, metal carbide catalysts, and carbon catalysts.
상기 산소 발생 반응 촉매에 포함된 금속은 Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, 및 Au 로 이루어진 군에서 선택되는 적어도 1종 이상일 수 있다.The metal contained in the oxygen evolution reaction catalyst is selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au. There may be at least one type.
상기 캐소드는 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막을 포함할 수 있다.The cathode may include carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film.
상기 캐소드는 발생 반응(hydrogen evolution reaction) 촉매를 더 포함할 수 있다.The cathode may further include a hydrogen evolution reaction catalyst.
상기 이산화탄소 처리부는 상기 제1 수용공간과 연통되어, 제3 수용공간에 수용되는 제3 수용액을 포함하는 이산화탄소 처리부;를 더 포함할 수 있다.The carbon dioxide treatment unit may further include a carbon dioxide treatment unit that communicates with the first accommodation space and includes a third aqueous solution accommodated in the third accommodation space.
상기 이산화탄소 처리부는 상기 제3 수용공간으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제3 수용액으로부터 분리하여 상기 애노드부로 공급되지 않도록 할 수 있다.The carbon dioxide treatment unit may separate unionized carbon dioxide gas from the carbon dioxide gas flowing into the third accommodation space from the third aqueous solution and prevent it from being supplied to the anode unit.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용액과의 비중 차이를 이용하여 분리할 수 있다.The carbon dioxide treatment unit may separate the non-ionized carbon dioxide gas using a difference in specific gravity from the third aqueous solution.
상기 이산화탄소 처리부는 상기 제3 수용공간의 상기 제3 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및 상기 유입구보다 아래에 위치하여, 상기 제3 수용공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함할 수 있다.The carbon dioxide treatment unit is located below the water surface of the third aqueous solution in the third accommodation space and includes an inlet through which carbon dioxide gas flows. and a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
상기 캐소드부는 상기 제1 수용공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소기체를 배출시키는 제1 배출구를 더 포함할 수 있다.The cathode unit may further include a first outlet that is located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharges hydrogen gas generated during discharge.
상기 이산화탄소 처리부는 상기 제3 수용공간의 상기 제3 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함할 수 있다.The carbon dioxide treatment unit may be located above the water surface of the third aqueous solution in the third accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제3 수용액으로 재공급하는 이산화탄소 순환 공급부를 더 포함할 수 있다.The carbon dioxide treatment unit may further include a carbon dioxide circulation supply unit that resupplies the non-ionized carbon dioxide gas to the third aqueous solution in the third accommodation space.
상기 제1 수용액 또는 제2 수용액은 알칼리성 금속이온을 포함하는 알칼리성 수용액일 수 있다.The first or second aqueous solution may be an alkaline aqueous solution containing alkaline metal ions.
상기 제2 수용공간 내 알칼리성 금속이온은 이온교환막을 통해 제1 수용공간으로 이동할 수 있다.Alkaline metal ions in the second accommodation space may move to the first accommodation space through the ion exchange membrane.
네번째 목적과 관련한 네번째 기술적 해결방법은 아래와 같다.The fourth technical solution related to the fourth objective is as follows.
일 측면에 따른 복합이차전지는 제1 수용공간에 수용되는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 제1 전극을 포함하는 제1 전극부; 제2 수용공간에 수용되는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 제2 전극를 포함하는 제2 전극부; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 양이온 교환막을 포함하는 제1 연결부; 제3 수용공간에 수용되는 제3 수용액, 및 상기 제3 수용액에 적어도 일부가 잠기는 제3 전극을 포함하는 제3 전극부; 상기 제2 수용공간과 상기 제3 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 교환막을 포함하는 제2 연결부; 및 상기 제2 전극과 제3 전극에 연결되는 전원공급장치;를 포함하고,방전 시, 상기 제1 전극부는 제1 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 제2 전극부는 산화반응을 통해 전자(e-)를 발생시키며, 상기 제1 전극부는 상기 수소이온(H+)과 상기 제2 전극부에서 발생한 전자(e-)가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 한다.A composite secondary battery according to one aspect includes a first electrode portion including a first aqueous solution accommodated in a first accommodating space, and a first electrode at least partially submerged in the first aqueous solution; a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution; a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage; a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution; a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage; And a power supply connected to the second electrode and the third electrode; and, when discharging, the first electrode unit allows carbon dioxide gas to flow into the first aqueous solution in the first accommodation space so that the first aqueous solution and the carbon dioxide Hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the gas, the second electrode unit generates electrons (e - ) through an oxidation reaction, and the first electrode unit generates the hydrogen ions ( It is characterized in that hydrogen gas (H 2 ) is generated by combining H + ) and electrons (e - ) generated in the second electrode portion.
상기 복합이차전지는 탄산칼슘(CaCO3(S))을 생성시키는 반응기; 상기 제1 수용공간과 반응기를 연결하고, 제1 수용공간의 중탄산이온(HCO3 -)을 반응기로 투입시키는 제1 투입구; 상기 반응기와 연결되고, 칼슘이온(Ca2+)을 반응기로 투입시키는 제2 투입구; 및 상기 제3 수용공간과 반응기를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제3 수용공간으로 투입시키는 제3 투입구;를 포함하는 탄산칼슘(CaCO3(S)) 생성부를 포함할 수 있다.The composite secondary battery includes a reactor that generates calcium carbonate (CaCO 3(S) ); A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor; A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; And a third inlet connecting the third receiving space and the reactor and injecting the remaining liquid after the calcium carbonate (CaCO 3 (S) ) production reaction into the third receiving space. Calcium carbonate (CaCO 3 (S) ) comprising a. It may include a creation unit.
상기 복합이차전지는 상기 제1 수용 공간과 연통되어, 제4 수용공간에 수용되는 제4 수용액을 포함하는 이산화탄소 처리부;를 더 포함할 수 있다.The composite secondary battery may further include a carbon dioxide treatment unit that communicates with the first accommodating space and includes a fourth aqueous solution accommodated in the fourth accommodating space.
상기 이산화탄소 처리부는 상기 제4 수용공간으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제4 수용액으로부터 분리하여 상기 제1 전극부로 공급되지 않도록 할 수 있다.The carbon dioxide treatment unit may separate unionized carbon dioxide gas from the fourth aqueous solution and prevent it from being supplied to the first electrode unit.
상기 이산화탄소 처리부는 상기 제4 수용공간의 상기 제4 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및 상기 유입구보다 아래에 위치하여, 상기 제4 수용공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함할 수 있다.The carbon dioxide treatment unit is located below the water surface of the fourth aqueous solution in the fourth accommodation space and includes an inlet through which carbon dioxide gas flows; and a communication port located below the inlet and formed to communicate with the first accommodating space in the fourth accommodating space.
상기 제1 전극부는 상기 제1 수용공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함할 수 있다.The first electrode unit may be located above the water surface of the first aqueous solution accommodated in the first accommodation space and may further include a first outlet for discharging hydrogen gas generated during discharge.
상기 이산화탄소 처리부는 상기 제4 수용공간의 상기 제4 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함할 수 있다.The carbon dioxide treatment unit may be located above the water surface of the fourth aqueous solution in the fourth accommodation space and may further include a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
상기 이산화탄소 처리부는 상기 이온화되지 않은 이산화탄소 기체를 상기 제4 수용 공간의 상기 제4 수용액으로 재공급하는 이산화탄소 순환 공급부를 더 포함할 수 있다.The carbon dioxide treatment unit may further include a carbon dioxide circulation supply unit that re-supplies the non-ionized carbon dioxide gas to the fourth aqueous solution in the fourth accommodation space.
상기 제3 전극부는 전원공급장치의 전원공급 시, 산소발생반응(Oxygen Evolution Reaction; OER) 및 염소발생반응(Chlorine evolution reaction; CER)이 일어날 수 있다.When the third electrode unit is supplied with power from a power supply device, an oxygen evolution reaction (OER) and a chlorine evolution reaction (CER) may occur.
상기 제3 전극부는 상기 제3 수용공간에 수용되는 제3 수용액의 수면보다 위에 위치하여, 전원공급장치의 전원공급 시 발생한 산소기체 및 염소기체를 배출시키는 제2 배출구를 더 포함할 수 있다.The third electrode unit may be located above the water surface of the third aqueous solution accommodated in the third accommodation space and may further include a second outlet for discharging oxygen gas and chlorine gas generated when power is supplied to the power supply device.
상기 제3 전극부는 전원공급장치의 전원공급 시, 반응 후 잔여액을 제4 수용공간의 제4 수용액으로 재공급하는 잔여액 순환공급부를 더 포함할 수 있다.The third electrode unit may further include a residual liquid circulation supply unit that re-supplies the remaining liquid after reaction to the fourth aqueous solution in the fourth receiving space when power is supplied to the power supply device.
첫번째 기술적 해결방법과 관련한 첫번째 발명의 효과는 아래와 같다.The effects of the first invention in relation to the first technical solution are as follows.
일 구현예에 따른 이차전지는 지속 사용가능한 원료인 해수 등과 온실 가스인 이산화탄소를 원료로 하여 여러 탄산염 등과 친환경 연료인 수소를 고순도로 생산할 수 있는 장점이 있다.The secondary battery according to one embodiment has the advantage of being able to produce various carbonates and hydrogen, an eco-friendly fuel, with high purity using seawater, a sustainable raw material, and carbon dioxide, a greenhouse gas.
본 발명의 효과는 이상에서 언급한 효과로 한정되지 않는다. 본 발명의 효과는 이하의 설명에서 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 할 것이다.The effects of the present invention are not limited to the effects mentioned above. The effects of the present invention should be understood to include all effects that can be inferred from the following description.
두번째 기술적 해결방법과 관련한 두번째 발명의 효과는 아래와 같다.The effects of the second invention related to the second technical solution are as follows.
일 측면에 따른 이차전지는 수소를 고순도로 생산할 수 있고, 상기 이차전지를 사용하는 탄산칼슘 제조설비는 탄산염인 탄산칼슘을 고순도로 생산할 수 있는 장점이 있다.A secondary battery according to one aspect can produce hydrogen with high purity, and a calcium carbonate production facility using the secondary battery has the advantage of being able to produce calcium carbonate, a carbonate, with high purity.
세번째 기술적 해결방법과 관련한 세번째 발명의 효과는 아래와 같다.The effects of the third invention related to the third technical solution are as follows.
일 측면에 따른 수전해시스템은 산소 및 염소 등을 생산할 뿐만 아니라 수소 및 탄산칼슘을 고순도로 생산할 수 있는 장점이 있다.The water electrolysis system according to one aspect has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
네번째 기술적 해결방법과 관련한 네번째 발명의 효과는 아래와 같다.The effects of the fourth invention related to the fourth technical solution are as follows.
일 측면에 따른 복합이차전지는 산소 및 염소 등을 생산할 뿐만 아니라 수소 및 탄산칼슘을 고순도로 생산할 수 있는 장점이 있다.A composite secondary battery according to one aspect has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
또한, 일 측면에 따른 복합이차전지는 전원공급장치의 전원인가에 따라 방전으로 소모되는 전극의 금속을 다시 재생할 수 있으므로, 금속 교체없이 전원공급장치의 전원인가를 통해 탄산칼슘을 경제적이고 효율적으로 생산할 수 있는 장점이 있다.In addition, the composite secondary battery according to one aspect can regenerate the metal of the electrode consumed by discharge according to the application of power to the power supply device, so it is possible to economically and efficiently produce calcium carbonate through the application of power to the power supply device without replacing the metal. There are advantages to this.
도 1에는 본 발명의 일 구현예에 따른 따른 이산화탄소를 이용한 이차전지의 방전과정을 도시한 모식도이다.Figure 1 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
도 2은 다른 일 구현예에 따른 이산화탄소를 이용하는 이차전지의 방전 과정을 도시한 모식도이다.Figure 2 is a schematic diagram showing the discharge process of a secondary battery using carbon dioxide according to another embodiment.
도 3에는 본 발명의 일 구현예에 따른 따른 이산화탄소를 이용한 이차전지의 방전과정을 도시한 모식도이다.Figure 3 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention.
도 4는 다른 일 구현예에 따른 이산화탄소를 이용하는 이차전지의 방전 과정을 도시한 모식도이다.Figure 4 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment.
도 5는 또 다른 일 구현예에 따라 이차전지를 사용하는 탄산칼슘 제조 설비를 개략적으로 도시한 모식도이다.Figure 5 is a schematic diagram schematically showing a calcium carbonate manufacturing facility using a secondary battery according to another embodiment.
도 6은 실시예 1에 따라 제작한 탄산칼슘 제조 설비를 구동한 결과 생성된 탄산칼슘(CaCO3)의 XRD 분석 결과 값을 나타낸 그래프이다.Figure 6 is a graph showing the XRD analysis results of calcium carbonate (CaCO3) produced as a result of operating the calcium carbonate production facility manufactured according to Example 1.
도 7에는 일 구현예에 따른 수전해시스템의 수전해과정을 도시한 모식도이다.Figure 7 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to an embodiment.
도 8은 다른 일 구현예에 따른 수전해시스템의 수전해과정을 도시한 모식도이다.Figure 8 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to another embodiment.
도 9에는 일 구현예에 따른 따른 이산화탄소를 이용한 복합이차전지의 방전과정을 도시한 모식도이다.Figure 9 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to an embodiment.
도 10은 다른 일 구현예에 따른 이산화탄소를 이용하는 복합이차전지의 방전 과정을 도시한 모식도이다.Figure 10 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to another embodiment.
이상의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages will be easily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, it is not limited to the embodiments described here and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content will be thorough and complete and the technical ideas can be sufficiently conveyed to those skilled in the art.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하부에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof. Additionally, when a part of a layer, membrane, region, plate, etc. is said to be “on” another part, this includes not only being “directly above” the other part, but also cases where there is another part in between. Conversely, when a part of a layer, membrane, region, plate, etc. is said to be "underneath" another part, this includes not only being "immediately below" the other part, but also cases where there is another part in between.
달리 명시되지 않는 한, 본 명세서에서 사용된 성분, 반응 조건, 폴리머 조성물 및 배합물의 양을 표현하는 모든 숫자, 값 및/또는 표현은, 이러한 숫자들이 본질적으로 다른 것들 중에서 이러한 값을 얻는 데 발생하는 측정의 다양한 불확실성이 반영된 근사치들이므로, 모든 경우 "약"이라는 용어에 의해 수식되는 것으로 이해되어야 한다. 또한, 본 기재에서 수치범위가 개시되는 경우, 이러한 범위는 연속적이며, 달리 지적되지 않는 한 이러한 범 위의 최소값으로부터 최대값이 포함된 상기 최대값까지의 모든 값을 포함한다. 더 나아가, 이러한 범위가 정수를 지칭하는 경우, 달리 지적되지 않는 한 최소값으로부터 최대값이 포함된 상기 최대값까지를 포함하는 모든 정수가 포함된다.Unless otherwise specified, all numbers, values, and/or expressions used herein expressing quantities of components, reaction conditions, polymer compositions, and formulations are intended to represent, among other things, how such numbers inherently occur in obtaining such values. Since they are approximations reflecting the various uncertainties of measurement, they should be understood in all cases as being qualified by the term "approximately". Additionally, where a numerical range is disclosed herein, such range is continuous and, unless otherwise indicated, includes all values from the minimum to the maximum of such range inclusively. Furthermore, when such range refers to an integer, all integers from the minimum value up to and including the maximum value are included, unless otherwise indicated.
본 명세서에 있어서, 범위가 변수에 대해 기재되는 경우, 상기 변수는 상기 범위의 기재된 종료점들을 포함하는 기재된 범위 내의 모든 값들을 포함하는 것으로 이해될 것이다. 예를 들면, "5 내지 10"의 범위는 5, 6, 7, 8, 9, 및 10의 값들뿐만 아니라 6 내지 10, 7 내지 10, 6 내지 9, 7 내지 9 등의 임의의 하위 범위를 포함하고, 5.5, 6.5, 7.5, 5.5 내지 8.5 및 6.5 내지 9 등과 같은 기재된 범위의 범주에 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다. 또한 예를 들면, "10% 내지 30%"의 범위는 10%, 11%, 12%, 13% 등의 값들과 30%까지를 포함하는 모든 정수들뿐만 아니라 10% 내지 15%, 12% 내지 18%, 20% 내지 30% 등의 임의의 하위 범위를 포함하고, 10.5%, 15.5%, 25.5% 등과 같이 기재된 범위의 범주 내의 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다.In this specification, when a range is stated for a variable, the variable will be understood to include all values within the stated range, including the stated endpoints of the range. For example, the range "5 to 10" includes the values 5, 6, 7, 8, 9, and 10, as well as any subranges such as 6 to 10, 7 to 10, 6 to 9, 7 to 9, etc. It will be understood that it also includes any values between integers that fall within the scope of the stated range, such as 5.5, 6.5, 7.5, 5.5 to 8.5, and 6.5 to 9, etc. Also, for example, the range "10% to 30%" includes values such as 10%, 11%, 12%, 13%, etc. and all integers up to and including 30%, as well as 10% to 15%, 12% to 12%, etc. It will be understood that it includes any subranges, such as 18%, 20% to 30%, etc., and any value between reasonable integers within the range of the stated range, such as 10.5%, 15.5%, 25.5%, etc.
종래 온실가스 배출량을 감축하는 수단은 많이 제공되고 있으나 보다 효율적으로 이산화탄소 포집, 저장 및 활용하는 새로운 개념의 지속 사용가능한 한계돌파형(breakthrough) 기술 개발이 요구되고 있는 실정이었다. 뿐만 아니라, 이산화탄소 발생량을 저감하고 탄산칼슘 제조비용을 낮추기 위해서는 칼슘성분을 석회석에 공급해서는 안 되고 이산화탄소와 결합하지 않는 칼슘원을 사용해야하는 문제점이 있었다.Although many means have been provided to reduce conventional greenhouse gas emissions, there is a need to develop a new concept of sustainable breakthrough technology that captures, stores, and utilizes carbon dioxide more efficiently. In addition, in order to reduce carbon dioxide emissions and lower the cost of producing calcium carbonate, there was a problem that calcium components should not be supplied to limestone and a calcium source that does not bind to carbon dioxide should be used.
이에, 본 발명자들은 상기 문제점을 해결하기 위해 예의 연구한 결과, 제1 수용 공간에 수용되는 수산화칼륨을 포함하는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 수용 공간에 수용되는 염소이온(Cl-)을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부; 상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및 상기 제1 수용 공간과 연통되어, 제3 수용 공간에 수용되는 제1 수용액을 구비하는 이산화탄소 처리부;를 포함하는 이차전지의 경우, 방전 시, 상기 애노드부는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 상기 제3 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어서 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 캐소드부는 상기 수소이온(H+)과 상기 캐소드의 전자가 결합되어 고순도의 수소기체(H2)가 발생하는 것을 발견하고 이를 완성하였다.Accordingly, the present inventors conducted intensive research to solve the above problem, and as a result, a cathode portion including a first aqueous solution containing potassium hydroxide accommodated in the first accommodation space, and a cathode at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution containing chlorine ions (Cl - ) accommodated in the second accommodating space, and a metal anode at least partially immersed in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; In the case of a secondary battery including a carbon dioxide treatment unit that communicates with the first accommodation space and includes a first aqueous solution accommodated in the third accommodation space, when discharging, the anode unit oxidizes chlorine ions (Cl - ) into chlorine. Gas (Cl 2 ) and electrons (e - ) are generated, and carbon dioxide gas flows into the first aqueous solution in the third accommodation space to generate hydrogen ions (H + ) and It was discovered that bicarbonate ions (HCO 3 - ) are generated, and the cathode unit combines the hydrogen ions (H + ) with the electrons of the cathode to generate high purity hydrogen gas (H 2 ).
또한, 본 발명자들은 상기 문제점을 해결하기 위해 예의 연구한 결과, 제1 수용 공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 수용 공간에 수용되어 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함 하는 칼슘염을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부; 상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및 상기 제1 수용 공간과 연통되는 제3 수용 공간에 수용되는 제1 수용액을 구비하고, 이산화탄소 함유가스가 제3 수용공간으로 투입되는 이산화탄소 처리부;를 포함하는 이차전지의 경우 고순도의 수소기체(H2)를 생산할 뿐만 아니라, 상기 이차전지를 사용한 탄산칼슘 제조 설비는 탄산염인 탄산칼슘을 고순도로 생산할 수있다는 것을 발견하고 본 발명을 완성하였다.In addition, as a result of intensive research by the present inventors to solve the above problem, the present inventors have found: a cathode portion including a first aqueous solution included in the first accommodation space, and a cathode at least partially submerged in the first aqueous solution; An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chloride ions (Cl-), and a metal anode at least partially immersed in the second aqueous solution. wealth; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; And a carbon dioxide treatment unit provided with a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space and injecting a carbon dioxide-containing gas into the third accommodating space. In the case of a secondary battery comprising a high-purity hydrogen gas (H In addition to producing 2 ), the present invention was completed by discovering that the calcium carbonate production facility using the secondary battery can produce calcium carbonate, a carbonate, with high purity.
또한, 본 발명자들은 상기 문제점을 해결하기 위해 예의 연구한 결과, 제1 수용공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드(anode)를 구비하는 캐소드부; 제2 수용공간에 포함된 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드(Cathode)를 구비하는 애노드부; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 이온교환막을 구비하는 연결부; 상기 캐소드(anode)와 애노드(Cathode)를 연결하는 전원공급장치; 및 상기 제1 수용공간, 및 제3 수용공간으로 연결되어 탄산칼슘(CaCO3(S))을 생성시키는 탄산칼슘 생성부;를 포함하는 수전해시스템의 경우, 전원공급장치에 전원공급 시, 산소 및 염소 등을 생산할 뿐만 아니라 수소 및 탄산칼슘을 고순도로 생산할 수 있는 것을 발견하고 이를 완성하였다.In addition, as a result of intensive research by the present inventors to solve the above problem, the present inventors have found: a cathode portion including a first aqueous solution contained in the first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution; an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution; a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage; A power supply device connecting the cathode and anode; In the case of a water electrolysis system including a calcium carbonate generator connected to the first accommodation space and the third accommodation space to generate calcium carbonate (CaCO 3 (S) ), when power is supplied to the power supply device, oxygen and chlorine, etc., as well as producing hydrogen and calcium carbonate with high purity.
또한, 본 발명자들은 상기 문제점을 해결하기 위해 예의 연구한 결과, 제1 수용공간에 수용되는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 제1 전극을 포함하는 제1 전극부; 제2 수용공간에 수용되는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 제2 전극를 포함하는 제2 전극부; 상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 양이온 교환막을 포함하는 제1 연결부; 제3 수용공간에 수용되는 제3 수용액, 및 상기 제3 수용액에 적어도 일부가 잠기는 제3 전극을 포함하는 제3 전극부; 상기 제2 수용공간과 상기 제3 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 교환막을 포함하는 제2 연결부; 및 상기 제2 전극과 제3 전극에 연결되는 전원공급장치;를 포함하는 복합이차전지의 경우, 수소를 고순도로 생산할 수 있을 뿐만 아니라, 산소 및 수소를 생산할 수 있고, 탄산칼슘을 고순도로 생산할 수 있는 효과가 있다는 것을 발견하고 복합이차전지를 완성하였다.In addition, as a result of intensive research by the present inventors to solve the above problem, the present inventors have found: a first electrode unit including a first aqueous solution accommodated in the first accommodating space, and a first electrode at least partially submerged in the first aqueous solution; a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution; a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage; a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution; a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage; In the case of a composite secondary battery including a power supply connected to the second electrode and the third electrode, not only can hydrogen be produced with high purity, but also oxygen and hydrogen can be produced, and calcium carbonate can be produced with high purity. It was discovered that it was effective and a composite secondary battery was completed.
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세하게 설명한다.Hereinafter, the configuration and operation of an embodiment of the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명의 일 구현예에 따른 따른 이산화탄소를 이용한 이차전지의 방전과정을 도시한 모식도이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 이차전지(100)는 방전 과정에서 온실가스인 이산화탄소 기체(CO2)를 원료로 사용하여 친환경 연료인 수소(H2)를 생산할 수 있다.Figure 1 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention. Referring to FIG. 1, the secondary battery 100 according to an embodiment of the present invention includes a cathode portion 110, an anode portion 150, and a connection portion connecting the cathode portion 110 and the anode portion 150. 190). The secondary battery 100 can produce hydrogen (H 2 ), an eco-friendly fuel, by using carbon dioxide gas (CO2), a greenhouse gas, as a raw material during the discharge process.
상기 캐소드부(110)는 제1 수용 공간(111)에 담긴 제1 수용액(115), 제1 수용액(115)에 적어도 일부가 잠기는 캐소드(cathode)(118)를 구비할 수 있다. The cathode portion 110 may include a first aqueous solution 115 contained in the first receiving space 111 and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
상기 제1 수용액(115)은 알칼리성 수용액(본 실시예에서는 1M KOH의 강염기성 용액에서 CO2를 용리시킨 것이 사용됨), 해수, 수돗물 및 증류수 등이 사용될 수 있고, 바람직하게는, 이산화탄소의 용해를 용이하게 하기 위한 알칼리성 수용액일 수 있다.The first aqueous solution 115 may be an alkaline aqueous solution (in this example, CO 2 dissolved in a strong basic solution of 1M KOH is used), seawater, tap water, distilled water, etc., and preferably, dissolves carbon dioxide. It may be an alkaline aqueous solution for ease of use.
일 실시예에 따라, 상기 제1 수용액(115)는 1M KOH의 강염기성 용액일 수 있고, 추후 방전 시 CO2를 더 용리시켜 사용될 수 있다.According to one embodiment, the first aqueous solution 115 may be a strongly basic solution of 1M KOH, and may be used by further eluting CO 2 during subsequent discharge.
상기 캐소드(118)는 일측이 상기 제1 전해질에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제1 전해질에 적어도 일부가 잠기도록 위치할 수 있다.The cathode 118 may have one side in contact with the first electrolyte, but preferably may be positioned so that at least a portion of the cathode 118 is submerged in the first electrolyte.
상기 캐소드(118)는 전기 회로를 형성하기 위한 환원전극일 수 있고, 캐소드에서 전자를 환원할 수 있는 물질을 포함하는 것이라면 특별하게 제한되지 않으며, 예를 들여, 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막로 이루어진 군으로부터 선택된 1종 이상일수 있다.The cathode 118 may be a cathode for forming an electric circuit, and is not particularly limited as long as it contains a material that can reduce electrons at the cathode, for example, carbon paper, carbon fiber, carbon felt, It may be one or more selected from the group consisting of carbon cloth, metal foam, and metal thin film.
상기 캐소드(118)는 환원반응 촉진을 위해 촉매를 캐소드 내에 더 포함할 수 있다. 구체적으로, 수소 발생 반응(hydrogen evolution reaction) 촉매일 수 있고, 예를 들어, 백금 촉매, 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 및 페로브스카이트 산화물 촉매로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는, 수소 발생 반응 활성도가 가장 뛰어난 백금 촉매를 더 포함할 수 있다.The cathode 118 may further include a catalyst within the cathode to promote the reduction reaction. Specifically, it may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably, may further include a platinum catalyst with the highest hydrogen generation reaction activity.
캐소드부(110)는 제1 수용 공간(111)과 연통되는 제1 유입구(112), 제1 배출구(113), 및 제1 연결구(114)를 더 포함할 수 있다.The cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
상기 제1 유입구(112)는 제1 수용액(115)의 수면보다 아래에 위치하도록 제1 수용 공간(111)의 하부에 위치할 수 있다. 제1 배출구(113)는 제1 수용액(115)의 수면보다 위에 위치하도록 제1 수용 공간(111)의 상부에 위치할 수 있다. 제1 유입구(112)를 통해 방전 과정에서 원료로 사용되는 이산화탄소가 제1 수용 공간(111)으로 유입되는데, 필요 시 제1 수용액(115)도 유입될 수 있다. 제1 배출구(113)를 통해서는 충·방전 과정에서 생성된 가스가 외부로 배출될 수 있다. 도시되지는 않았으나, 유입구(112)와 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 상기 제1 연결구(114)는 제1 수용액(115)의 수면보다 아래에 위치하며, 제1 연결구(114)에 연결부(190)가 연결된다. 캐소드부(110)는 방전 과정에서 이산화탄소 용리 반응이 일어날 수 있다.The first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115. The first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115. Carbon dioxide, which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113. Although not shown, the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging. The first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114. A carbon dioxide elution reaction may occur in the cathode portion 110 during the discharge process.
상기 애노드부(150)는 제2 수용 공간(151)에 담긴 제2 수용액(155), 및 제2 수용액(155)에 적어도 일부가 잠기는 애노드(anode)(158)를 구비할 수 있다.The anode unit 150 may include a second aqueous solution 155 contained in the second receiving space 151 and an anode 158 that is at least partially submerged in the second aqueous solution 155.
상기 제2 수용액(155)은 해수, 수돗물 및 증류수 등이 사용될 수 있고, 바람직하게는, 음이온으로 염소이온(Cl-)을 포함하고, 칼륨(K), 나트륨(Na), 칼슘(Ca), 마그네슘(Mg), 알루미늄(Al), 및, 리튬(Li)로 이루어진 군으로부터 선택된 1종 이상의 양이온을 포함하여, 경쟁반응인 산소발생반응이 보다 억제되는 중성 용액일 수 있다.The second aqueous solution 155 may be seawater, tap water, distilled water, etc., and preferably contains chlorine ions (Cl - ) as anions, potassium (K), sodium (Na), calcium (Ca), It may be a neutral solution that contains one or more cations selected from the group consisting of magnesium (Mg), aluminum (Al), and lithium (Li), thereby suppressing the oxygen evolution reaction, which is a competing reaction.
일 실시예에 따라, 상기 제2 수용액(155)는 1M KCl 용액이거나, 염소이온(Cl-)을 포함하는 화합물이 포함된 해수일 수 있다.According to one embodiment, the second aqueous solution 155 may be a 1M KCl solution or seawater containing a compound containing chloride ions (Cl - ).
상기 애노드(158)는 일측이 상기 제2 전해질에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제2 전해질에 적어도 일부가 잠기도록 위치할 수 있다.The anode 158 may have one side in contact with the second electrolyte, but preferably may be positioned so that at least a portion of the anode 158 is submerged in the second electrolyte.
상기 애노드(158)은 전기 회로를 이루는 금속 재질의 산화전극으로써, 염소이온(Cl-)을 산화시켜 염소기체(Cl2)와 전자(e-)를 발생시킬 수 있는 염소 발생 반응 (Chlorine Evolution Reaction; CER) 촉매를 포함하는 것, 예를 들어, 금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매(예를 들어 NiS), 금속 탄화물 촉매(예를 들어 WC), 및 탄소 촉매로 이루어진 군에서 선택되는 것일 수 있고, 더욱 구체적으로는 금속 산화물 촉매 및 페로브스카이트 산화물 촉매로 이루어진 군에서 선택되는 것일 수 있다. 상기 금속 산화물 촉매, 금속 황화물 촉매, 및 금속 탄화물 촉매의 금속은 Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, 및 Au 로 이루어진 군에서 선택되는 적어도 1종일 수 있다. 구체적으로는, 상기 금속 산화물 촉매는 Co, Ni, Mn, Ru, 및 Ir로 이루어진 군에서 선택되는 금속의 산화물일 수 있다.The anode 158 is a metal anode that forms an electric circuit, and oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ). ; CER) including catalysts, e.g., the group consisting of metal oxide catalysts, perovskite oxide catalysts, metal sulfide catalysts (e.g. NiS), metal carbide catalysts (e.g. WC), and carbon catalysts. It may be selected from, and more specifically, it may be selected from the group consisting of metal oxide catalysts and perovskite oxide catalysts. The metals of the metal oxide catalyst, metal sulfide catalyst, and metal carbide catalyst include Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au. It may be at least one type selected from the group consisting of. Specifically, the metal oxide catalyst may be an oxide of a metal selected from the group consisting of Co, Ni, Mn, Ru, and Ir.
상기 애노드부(150)에는 제2 수용공간(151)과 연통되는 제2 연결구(154)가 형성된다. 제2 연결구(154)는 제2 수용액(155)의 수면보다 아래에 위치하며, 제2 연결구(154)에 연결부(190)가 연결될 수 있다.A second connector 154 communicating with the second receiving space 151 is formed in the anode portion 150. The second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191), 및 연결 통로(191)의 내부에 설치되는 양이온 교환막(membrane)(192)를 구비할 수 있다.The connection portion 190 may include a connection passage 191 connecting the cathode portion 110 and the anode portion 150, and a cation exchange membrane 192 installed inside the connection passage 191.
상기 연결 통로(191)는 캐소드부(110)에 형성된 제1 연결구(114)와 애노드부(150)에 형성된 제2 연결구(154)의 사이에 연장되어서 캐소드부(110)의 제1 수용 공간(111)과 애노드부(150)의 제2 수용 공간(151)을 연통시킬 수 있다. 상기 연결통로(191)의 내부에 양이온 교환막(membrane)(192)을 설치할 수 있다.The connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to form the first receiving space of the cathode portion 110 ( 111 and the second accommodation space 151 of the anode unit 150 may be connected. A cation exchange membrane 192 may be installed inside the connection passage 191.
상기 양이온 교환막(membrane)(192)은 연결 통로(191)의 내부를 막는 형태로 설치될 수 있다. 상기 양이온 교환막(membrane)(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용하여 방전과정에서 생기는 이온 불균형을 해소할 수 있고, 바람직하게는, 제2 수용액(155)에 포함된 양이온이 제1 수용액(115)으로 이동할 수 있다. The cation exchange membrane 192 may be installed to block the interior of the connection passage 191. The cation exchange membrane (membrane) 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150 to resolve ion imbalance occurring during the discharge process. Preferably, the second aqueous solution ( Cations contained in 155) may move to the first aqueous solution 115.
일 실시예에 따르면, 상기 양이온 교환막(membrane)(192)으로 양이온을 이동시킬 수 있는 막으로써, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion 117, 212, 211 등)을 사용할 수 있다.According to one embodiment, the membrane capable of moving cations to the cation exchange membrane 192 is Nafion (Nafion 117, 212, 211, etc.), a fluororesin-based cation exchange membrane developed by DuPont in the United States. can be used.
도 2은 다른 일 구현예에 따른 이산화탄소를 이용하는 이차전지의 방전 과정을 도시한 모식도이다. 도 2을 참조하면, 이차전지(100a)는 캐소드부(110), 애노드부(150), 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190), 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130), 및 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함할 수 있다.Figure 2 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment. Referring to FIG. 2, the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, a carbon dioxide treatment portion 120, and a carbon dioxide It may include a circulation supply unit 130 and a connection pipe 140 that communicates the cathode unit 110 and the carbon dioxide treatment unit 120.
상기 캐소드부(110)와 애노드부(150) 및 연결부(190)와 관련된 내용 중 도 1에 도시된 일 실시예에서 설명된 내용과 중복되는 내용은 생략할 수 있다.Among the content related to the cathode portion 110, the anode portion 150, and the connection portion 190, content that overlaps with the content described in the embodiment shown in FIG. 1 may be omitted.
상기 이산화탄소 처리부(120)는 제3 수용 공간(121)에 수용되고 캐소드부(110)의 제1 수용액(115)과 동일한 수용액인 제1 수용액(115)을 구비할 수 있다.The carbon dioxide treatment unit 120 may be accommodated in the third accommodation space 121 and may be provided with a first aqueous solution 115 that is the same as the first aqueous solution 115 of the cathode unit 110.
상기 이산화탄소 처리부(120)는 제3 수용 공간(121)으로 이산화탄소가 유입되는 제2 유입구(122), 연결관(140)이 연결되는 연통구(123), 및 제3 수용 공간(121)의 상부에 위치하는 제2 배출구(124)를 포함할 수 있다.The carbon dioxide treatment unit 120 includes a second inlet 122 through which carbon dioxide flows into the third accommodation space 121, a communication port 123 to which the connection pipe 140 is connected, and an upper portion of the third accommodation space 121. It may include a second outlet 124 located at.
상기 제2 유입구(122)는 제3 수용 공간(121)에서 연통구(123)보다 위에 위치하고, 제2 배출구(124) 및 제1 수용액(115)의 수면보다 아래에 위치할 수 있다. 제2 유입구(122)를 통해 방전 과정에서 연료로 사용되는 이산화탄소 기체가제3 수용 공간(121)으로 유입될 수 있고, 제2 유입구(122)를 통해 필요에 따라 제1 수용액(115)도 공급될 수 있다. The second inlet 122 may be located above the communication port 123 in the third receiving space 121, and may be located below the second outlet 124 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the third receiving space 121 through the second inlet 122, and the first aqueous solution 115 is also supplied through the second inlet 122 as needed. It can be.
상기 제2 배출구(124)는 제3 수용 공간(121)에서 제2 유입구(122) 및 제1 수용액(115)의 수면보다 위에 위치한다. 제2 배출구(124)를 통해 제3 수용 공간(121)에서 제1 수용액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 비중차이로 인해 상부로 뜨게되어 최종적으로 외부로 배출된다. 제2 배출구(124)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급될 수 있다.The second outlet 124 is located above the water level of the second inlet 122 and the first aqueous solution 115 in the third accommodation space 121. Carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus not ionized in the third accommodation space 121 through the second outlet 124 floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the second outlet 124 may be supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이를 통해 제1 배출구에서 배출되는 수소(H2)가스의 순도가 높아지는 장점이 있다. 즉, 기존에는 이산화탄소 처리부를 따로 포함하지 않아 이온화되지 않은 이산화탄소 기체와 이차전지에서 발생한 수소가스가 혼합되어 배출되어 순도가 낮아지는 단점이 있었다. 그러나, 다른 일 실시예에 따른 이차전지는 이산화탄소 처리부를 둠으로써 제3 수용 공간으로 유입된 이산화탄소 중 제1 수용액에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부의 제1 수용 공간으로 이동하지 못하므로, 제2 배출구(124)를 통해 이온화되지 않은 이산화탄소 가스를 따로 배출시킴으로써 이차전지에서 발생한 수소가스가 배출하는 제1 배출구와 차이를 두어 순도 높은 수소가스를 얻을 수 있는 장점이 있다.This has the advantage of increasing the purity of hydrogen (H 2 ) gas discharged from the first outlet. In other words, the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity. However, the secondary battery according to another embodiment has a carbon dioxide treatment unit, so that the carbon dioxide gas flowing into the third accommodation space is not dissolved in the first aqueous solution and thus the unionized carbon dioxide gas cannot move to the first accommodation space of the cathode unit. There is an advantage in that high purity hydrogen gas can be obtained by separately discharging the non-ionized carbon dioxide gas through the second outlet 124, which is different from the first outlet through which hydrogen gas generated from the secondary battery is discharged.
한편, 상기 제2 유입구(122)와 제1 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.Meanwhile, the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
상기 연통구(123)는 제3 수용 공간(121)에서 제2 유입구(122)보다 아래에 위치하며, 연통구(123)에는 연결관(140)이 연결될 수 있다. 상기 연통구(123)를 통해 제3 수용 공간(121)은 제1 수용 공간(111)과 연통될 수 있다.The communication port 123 is located below the second inlet 122 in the third accommodation space 121, and a connection pipe 140 may be connected to the communication port 123. The third accommodating space 121 may be in communication with the first accommodating space 111 through the communication port 123.
상기 연결관(140)은 제1 수용 공간(111)의 제1 유입구(112)와 제3 수용 공간(121)의 연통구(123)을 연결할 수 있다. 상기 연결관(140)의 내부에 형성되는 연결 통로(141)를 통해 제1 수용 공간(111)과 제3 수용 공간(121)이 연통될 수 있다.The connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 123 of the third accommodation space 121. The first accommodating space 111 and the third accommodating space 121 may be communicated through the connecting passage 141 formed inside the connecting pipe 140.
이산화탄소 순환 공급부(130)는 제2 배출구(224)를 통해 배출되는 이산화탄소 가스를 제 2유입구(122)로 순환시켜서 재공급할 수 있다.The carbon dioxide circulation supply unit 130 may circulate the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 and re-supply it.
즉, 제2 유입구(122)를 통해 이산화탄소 처리부(120)의 제3 수용 공간(121)으로 유입된 이산화탄소 중 제1 수용액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 수용 공간(111)으로 이동하지 못하고 상승하여 제3 수용 공간(121) 내 제1 수용액(115)의 수면 위 공간에 모인 후 제2 배출구(124)를 통해 배출되고 제2 배출구(124)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(130)에 의해 제2 유입구(122)를 통해 제3 수용 공간(121)으로 공급되어서 재활용된다.That is, among the carbon dioxide gas that flows into the third accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122, the carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus is not ionized is in the cathode unit 110. It fails to move to the first accommodating space 111 and rises, collects in the space above the water surface of the first aqueous solution 115 in the third accommodating space 121, and is then discharged through the second outlet 124 and the second outlet 124. The carbon dioxide gas discharged through is supplied to the third receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 and recycled.
따라서, 다른 일 실시예에 따른 이차전지는 이온화되지 않은 이산화탄소 가스를 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급시킬 수 있으므로 전지의 에너지 효율을 높일 수 있는 장점이 있다.Therefore, the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이제, 위에서 구성 중심으로 설명된 이차전지(100)의 방전 과정을 설명한다. 도 1 또는 도 2은 이차전지(100)의 방전 과정이 함께 도시되어 있다. 이를 참조하면, 제1 유입구(112)를 통해 제1 수용액(115)으로 수소 생산의 원료로서 이산화탄소가 주입되며, 캐소드부(110)에서는 다음 [반응식 1]과 같은 이산화탄소의 화학적 용리 반응이 이루어진다.Now, the discharging process of the secondary battery 100 described above in terms of configuration will be described. Figure 1 or Figure 2 shows the discharging process of the secondary battery 100. Referring to this, carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode unit 110 as shown in the following [Reaction Formula 1].
[반응식 1][Scheme 1]
H2O(l) + CO2(g) → H+(aq) + HCO3 -(aq)H 2 O(l) + CO 2 (g) → H + (aq) + HCO 3 - (aq)
즉, 캐소드부(110)에서는 캐소드부(110)에 공급된 이산화탄소(CO2)가 제1 수용액(115)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성될 수 있다.That is, in the cathode unit 110, carbon dioxide (CO 2 ) supplied to the cathode unit 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first aqueous solution 115 to form hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
또한, 캐소드부(110)에서는 다음 [반응식 2]와 같은 전기적 반응이 이루어진다.Additionally, an electrical reaction occurs in the cathode unit 110 as shown in [Reaction Formula 2].
[반응식 2] [Scheme 2]
2H+(aq) + 2e- → H2(g)2H + (aq) + 2e - → H 2 (g)
즉, 캐소드부(110)에서 수소 양이온(H+)은 전자(e-)를 받아서 수소(H2) 기체가 발생하게 된다. 발생된 수소(H2) 기체는 제1 배출구(113)를 통해서 외부로 배출된다.That is, in the cathode part 110, hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
아울러, 캐소드부(110)에서는 다음 [반응식 3]과 같은 복합 수소발생 반응이 이루어진다.In addition, a complex hydrogen generation reaction occurs in the cathode unit 110 as shown in [Reaction Formula 3].
[반응식 3] [Scheme 3]
2H2O(l) + 2CO2(g) + 2e- → H2(g) + 2HCO3 - (aq)2H 2 O(l) + 2CO 2 (g) + 2e - → H 2 (g) + 2HCO 3 - (aq)
이에 따라 생성된 중탄산염(HCO3 -)은 애노드부(150)에서 연결부(190)를 통해 이동한 양이온과 반응하여 탄산수소나트륨(NaHCO3), 탄산수소칼륨(KHCO3), 탄산칼슘(CaCO3), 및 탄산마그네슘(MgCO3)로 이루어진 군으로부터 선택된 1종 이상의 탄산염이 생성될 수 있다.As a result, the generated bicarbonate (HCO 3 - ) reacts with cations moving from the anode unit 150 through the connection unit 190 to produce sodium bicarbonate (NaHCO 3 ), potassium bicarbonate (KHCO 3 ), and calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ). One or more carbonates selected from the group consisting of may be produced.
그리고, 애노드부(150)에서는 애노드(158)가 염소 발생 반응으로 다음 [반응식 4]와 같은 산화 반응이 이루어진다.And, in the anode unit 150, the anode 158 undergoes an oxidation reaction as shown in [Reaction Formula 4] through a chlorine generation reaction.
[반응식 4][Scheme 4]
2Cl-(aq) → Cl2(g) + 2e- 2Cl - (aq) → Cl 2 (g) + 2e -
결과적으로, 상기 반응식들을 통해 알 수 있는 바와 같이, 방전 시, 금속 애노드(158)는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 애노드부(150)의 제2 수용액(155)에 포함된 양이온이 양이온 교환막(192)을 통과하여 캐소드부(110)의 제1 수용액(115)으로 이동함으로써, 이산화탄소 공급에 따른 제1 수용액의 변화를 막을 수 있다. 한편, 제1 수용액(115)에서 용리된 이산화탄소에 의해 생성된 수소 이온이 캐소드(118)로 부터 전자를 받아서 수소 기체로 환원되어서, 제1 배출구(113)를 통해 배출될 수 있다.As a result, as can be seen through the above reaction equations, during discharge, chlorine ions (Cl - ) are oxidized in the metal anode 158 to generate chlorine gas (Cl 2 ) and electrons (e - ), and the anode part ( Cations contained in the second aqueous solution 155 of 150 pass through the cation exchange membrane 192 and move to the first aqueous solution 115 of the cathode unit 110, thereby preventing changes in the first aqueous solution due to carbon dioxide supply. there is. Meanwhile, hydrogen ions generated by carbon dioxide eluted from the first aqueous solution 115 may receive electrons from the cathode 118, be reduced to hydrogen gas, and be discharged through the first outlet 113.
또한, 또 다른 일 실시예에 따르면, 전술한 이차전지, 및 상기 이차전지에서 발생한 수소를 연료로 공급받는 연료전지를 포함하는 복합 발전 시스템을 제공할 수 있다.In addition, according to another embodiment, a composite power generation system including the above-described secondary battery and a fuel cell supplied as fuel with hydrogen generated from the secondary battery can be provided.
또 다른 일 실시예에 따라, 상기 수소 연료전지는 수소와 산소의 화학반응에 의해 물이 생성됨과 아울러 전기에너지를 발생시킬 수 있다. 구체적으로, 상기 수소 연료전지는 고체 산화물연료전지(SOFC)일 수 있다. According to another embodiment, the hydrogen fuel cell can generate water and electrical energy through a chemical reaction between hydrogen and oxygen. Specifically, the hydrogen fuel cell may be a solid oxide fuel cell (SOFC).
종래, 수소 연료전지는 친환경적인 측면에서 많은 장점을 가지고 있지만, 메탄-수증기 개질에 의해 추출된 수소를 공급받아야 한다. 하지만, 또 다른 일 구현예에 따른 복합 발전시스템은 수소 연료전지와 이차전지가 하나의 시스템으로 구축됨으로써, 이차전지로부터 발생하는 수소 가스를 연료로 공급받음으로써, 효율이 현저하게 향상될 수 있는 장점이 있다.Conventionally, hydrogen fuel cells have many advantages in terms of environmental friendliness, but they must be supplied with hydrogen extracted through methane-steam reforming. However, the combined power generation system according to another embodiment has the advantage that efficiency can be significantly improved by constructing a hydrogen fuel cell and a secondary battery as one system and receiving hydrogen gas generated from the secondary battery as fuel. There is.
도 3에는 본 발명의 일 구현예에 따른 따른 이산화탄소를 이용한 이차전지의 방전과정을 도시한 모식도이다. 도 3을 참조하면, 본 발명의 일 실시예에 따른 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 이차전지(100)는 방전 과정에서 온실가스인 이산화탄소 기체(CO2)를 원료로 사용하여 친환경 연료인 수소(H2)와 탄산염인 탄산칼슘(CaCO3)를 생산할 수 있다.Figure 3 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to an embodiment of the present invention. Referring to FIG. 3, the secondary battery 100 according to an embodiment of the present invention includes a cathode portion 110, an anode portion 150, and a connection portion connecting the cathode portion 110 and the anode portion 150. 190). The secondary battery 100 uses carbon dioxide gas (CO 2 ), a greenhouse gas, as a raw material during the discharge process to produce hydrogen (H 2 ), an eco-friendly fuel, and calcium carbonate (CaCO 3 ), a carbonate.
상기 캐소드부(110)는 제1 수용 공간(111)에 담긴 제1 수용액(115), 제1 수용액(115)에 적어도 일부가 잠기는 캐소드(cathode)(118)를 구비할 수 있다. The cathode portion 110 may include a first aqueous solution 115 contained in the first receiving space 111 and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
상기 제1 수용액(115)은 중성 수용액 또는 약알칼리성 수용액, 해수, 수돗물 및 증류수 등이 사용될 수 있고, 예를 들어, 바람직하게는, pH 10 정도의 약알칼리성 수용액일 수 있다.The first aqueous solution 115 may be a neutral aqueous solution, a slightly alkaline aqueous solution, seawater, tap water, distilled water, etc., and may preferably be a slightly alkaline aqueous solution with a pH of about 10.
일 실시예에 따라, 상기 제1 수용액(115)는 1M NaOH의 강염기성 용액일 수 있고, 추후 방전 시 CO2가 더 용해되어 1M KHCO3 약알칼리성 용액일 수 있다.According to one embodiment, the first aqueous solution 115 may be a strongly basic solution of 1M NaOH, and during subsequent discharge, CO 2 may be further dissolved and may be a weakly alkaline solution of 1M KHCO 3 .
상기 캐소드(118)는 일측이 상기 제1 전해질에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제1 전해질에 적어도 일부가 잠기도록 위치할 수 있다.The cathode 118 may have one side in contact with the first electrolyte, but preferably may be positioned so that at least a portion of the cathode 118 is submerged in the first electrolyte.
상기 캐소드(118)는 전기 회로를 형성하기 위한 환원전극일 수 있고, 캐소드에서 전자를 환원할 수 있는 물질을 포함하는 것이라면 특별하게 제한되지 않으며, 예를 들여, 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막로 이루어진 군으로부터 선택된 1종 이상일수 있다.The cathode 118 may be a cathode for forming an electric circuit, and is not particularly limited as long as it contains a material that can reduce electrons at the cathode, for example, carbon paper, carbon fiber, carbon felt, It may be one or more selected from the group consisting of carbon cloth, metal foam, and metal thin film.
상기 캐소드(118)는 환원반응 촉진을 위해 촉매를 캐소드 내에 더 포함할 수 있다. 구체적으로, 수소 발생 반응(hydrogen evolution reaction) 촉매일 수 있고, 예를 들어, 백금 촉매, 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 및 페로브스카이트 산화물 촉매로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 다양한 pH에서 수소 발생 활성도가 뛰어난 백금 촉매를 더 포함할 수 있다.The cathode 118 may further include a catalyst within the cathode to promote the reduction reaction. Specifically, it may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably may further include, a platinum catalyst having excellent hydrogen generation activity at various pH.
캐소드부(110)는 제1 수용 공간(111)과 연통되는 제1 유입구(112), 제1 배출구(113), 및 제1 연결구(114)를 더 포함할 수 있다.The cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
상기 제1 유입구(112)는 제1 수용액(115)의 수면보다 아래에 위치하도록 제1 수용 공간(111)의 하부에 위치할 수 있다. 제1 배출구(113)는 제1 수용액(115)의 수면보다 위에 위치하도록 제1 수용 공간(111)의 상부에 위치할 수 있다. 제1 유입구(112)를 통해 방전 과정에서 원료로 사용되는 이산화탄소가 제1 수용 공간(111)으로 유입되는데, 필요 시 제1 수용액(115)도 유입될 수 있다. 제1 배출구(113)를 통해서는 충·방전 과정에서 생성된 가스가 외부로 배출될 수 있다. 도시되지는 않았으나, 유입구(112)와 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 상기 제1 연결구(114)는 제1 수용액(115)의 수면보다 아래에 위치하며, 제1 연결구(114)에 연결부(190)가 연결된다. 캐소드부(110)는 방전 과정에서 이산화탄소 용리 반응이 일어날 수 있다.The first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115. The first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115. Carbon dioxide, which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113. Although not shown, the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging. The first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114. A carbon dioxide elution reaction may occur in the cathode portion 110 during the discharge process.
상기 애노드부(150)는 제2 수용 공간(151)에 담긴 제2 수용액(155), 및 제2 수용액(155)에 적어도 일부가 잠기는 애노드(anode)(158)를 구비할 수 있다.The anode unit 150 may include a second aqueous solution 155 contained in the second receiving space 151 and an anode 158 that is at least partially submerged in the second aqueous solution 155.
상기 제2 수용액(155)은 해수, 수돗물 및 증류수 등이 사용될 수 있고, 바람직하게는, 음이온으로 염소이온(Cl-), 및 탄산칼슘을 제조할 수 있는 칼슘이온(Ca2+)을 포함하는 염화탄소(CaCl2)가 용해된 용액일 수 있다.The second aqueous solution 155 may be seawater, tap water, distilled water, etc., and preferably contains chlorine ions (Cl - ) as anions and calcium ions (Ca 2+ ) that can produce calcium carbonate. It may be a solution in which carbon chloride (CaCl 2 ) is dissolved.
일 실시예에 따라, 상기 제2 수용액(155)는 0.1M 내지 2.0M 농도로 용해된 염화탄소(CaCl2) 용액일 수 있다.According to one embodiment, the second aqueous solution 155 may be a carbon chloride (CaCl 2 ) solution dissolved in a concentration of 0.1M to 2.0M.
상기 애노드(158)는 일측이 상기 제2 전해질에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제2 전해질에 적어도 일부가 잠기도록 위치할 수 있다.The anode 158 may have one side in contact with the second electrolyte, but preferably may be positioned so that at least a portion of the anode 158 is submerged in the second electrolyte.
상기 애노드(158)은 전기 회로를 이루는 산화전극으로써, 염소이온(Cl-)을 산화시켜 염소기체(Cl2)와 전자(e-)를 발생시킬 수 있으면 특별히 제한되지 않으며, 염소 발생 반응 촉매, 예를 들어, 금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매, 금속 탄화물 촉매, 및 탄소 촉매로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 수 있고, 바람직하게는, 상기 염소 발생 반응 촉매로써 Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, 및 Au 로 이루어진 군에서 선택되는 적어도 1종 이상일 수 있다.The anode 158 is an oxidizing electrode forming an electric circuit, and is not particularly limited as long as it can oxidize chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and is a chlorine generation reaction catalyst, For example, it may include one or more selected from the group consisting of a metal oxide catalyst, a perovskite oxide catalyst, a metal sulfide catalyst, a metal carbide catalyst, and a carbon catalyst, and preferably, the chlorine generation The reaction catalyst may be at least one selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au.
상기 애노드부(150)에는 제2 수용공간(151)과 연통되는 제2 연결구(154)가 형성된다. 제2 연결구(154)는 제2 수용액(155)의 수면보다 아래에 위치하며, 제2 연결구(154)에 연결부(190)가 연결될 수 있다.A second connector 154 communicating with the second receiving space 151 is formed in the anode portion 150. The second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191), 및 연결 통로(191)의 내부에 설치되는 양이온 교환막(membrane)(192)를 구비할 수 있다.The connection portion 190 may include a connection passage 191 connecting the cathode portion 110 and the anode portion 150, and a cation exchange membrane 192 installed inside the connection passage 191.
상기 연결 통로(191)는 캐소드부(110)에 형성된 제1 연결구(114)와 애노드부(150)에 형성된 제2 연결구(154)의 사이에 연장되어서 캐소드부(110)의 제1 수용 공간(111)과 애노드부(150)의 제2 수용 공간(151)을 연통시킬 수 있다. 상기 연결통로(191)의 내부에 양이온 교환막(membrane)(192)을 설치할 수 있다.The connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to form the first receiving space of the cathode portion 110 ( 111 and the second accommodation space 151 of the anode unit 150 may be connected. A cation exchange membrane 192 may be installed inside the connection passage 191.
상기 양이온 교환막(membrane)(192)은 연결 통로(191)의 내부를 막는 형태로 설치될 수 있다. 상기 양이온 교환막(membrane)(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용하여 방전과정에서 생기는 이온 불균형을 해소할 수 있고, 바람직하게는, 제2 수용액(155)에 포함된 칼슘이온(Ca2+)이 제1 수용액(115)으로 이동할 수 있다. The cation exchange membrane 192 may be installed to block the interior of the connection passage 191. The cation exchange membrane (membrane) 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150 to resolve ion imbalance occurring during the discharge process. Preferably, the second aqueous solution ( Calcium ions (Ca 2+ ) contained in 155) may move to the first aqueous solution 115.
일 실시예에 따르면, 상기 양이온 교환막(membrane)(192)으로 양이온을 이동시킬 수 있는 막으로써, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion 212, 117 등)을 사용할 수 있다.According to one embodiment, as a membrane capable of moving cations to the cation exchange membrane 192, Nafion (Nafion 212, 117, etc.), a fluororesin-based cation exchange membrane developed by DuPont in the United States, is used. You can.
도 4는 다른 일 구현예에 따른 이산화탄소를 이용하는 이차전지의 방전 과정을 도시한 모식도이다. 도 4를 참조하면, 이차전지(100a)는 캐소드부(110), 애노드부(150), 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190), 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130), 및 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함할 수 있다.Figure 4 is a schematic diagram showing the discharging process of a secondary battery using carbon dioxide according to another embodiment. Referring to FIG. 4, the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, a carbon dioxide treatment portion 120, and a carbon dioxide It may include a circulation supply unit 130 and a connection pipe 140 that communicates the cathode unit 110 and the carbon dioxide treatment unit 120.
상기 캐소드부(110)와 애노드부(150) 및 연결부(190)와 관련된 내용 중 도 3에 도시된 일 실시예에서 설명된 내용과 중복되는 내용은 생략할 수 있다.Among the content related to the cathode portion 110, the anode portion 150, and the connection portion 190, content that overlaps with the content described in the embodiment shown in FIG. 3 may be omitted.
상기 이산화탄소 처리부(120)는 제3 수용 공간(121)에 수용되고 캐소드부(110)의 제1 수용액(115)과 동일한 수용액인 제1 수용액(115)을 구비할 수 있다.The carbon dioxide treatment unit 120 may be accommodated in the third accommodation space 121 and may be provided with a first aqueous solution 115 that is the same as the first aqueous solution 115 of the cathode unit 110.
상기 이산화탄소 처리부(120)는 제3 수용 공간(121)으로 이산화탄소가 유입되는 제2 유입구(122), 연결관(140)이 연결되는 연통구(123), 및 제3 수용 공간(121)의 상부에 위치하는 제2 배출구(124)를 포함할 수 있다.The carbon dioxide treatment unit 120 includes a second inlet 122 through which carbon dioxide flows into the third accommodation space 121, a communication port 123 to which the connection pipe 140 is connected, and an upper portion of the third accommodation space 121. It may include a second outlet 124 located at.
상기 제2 유입구(122)는 제3 수용 공간(121)에서 연통구(123)보다 위에 위치하고, 제2 배출구(124) 및 제1 수용액(115)의 수면보다 아래에 위치할 수 있다. 제2 유입구(122)를 통해 방전 과정에서 연료로 사용되는 이산화탄소 기체가제3 수용 공간(121)으로 유입될 수 있고, 제2 유입구(122)를 통해 필요에 따라 제1 수용액(115)도 공급될 수 있다. The second inlet 122 may be located above the communication port 123 in the third receiving space 121, and may be located below the second outlet 124 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the third receiving space 121 through the second inlet 122, and the first aqueous solution 115 is also supplied through the second inlet 122 as needed. It can be.
상기 제2 배출구(124)는 제3 수용 공간(121)에서 제2 유입구(122) 및 제1 수용액(115)의 수면보다 위에 위치한다. 제2 배출구(124)를 통해 제3 수용 공간(121)에서 제1 수용액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 비중차이로 인해 상부로 뜨게되어 최종적으로 외부로 배출된다. 제2 배출구(124)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급될 수 있다.The second outlet 124 is located above the water level of the second inlet 122 and the first aqueous solution 115 in the third accommodation space 121. Carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus not ionized in the third accommodation space 121 through the second outlet 124 floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the second outlet 124 may be supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이를 통해 제1 배출구에서 배출되는 수소(H2)가스의 순도가 높아지는 장점이 있다. 즉, 기존에는 이산화탄소 처리부를 따로 포함하지 않아 이온화되지 않은 이산화탄소 기체와 이차전지에서 발생한 수소가스가 혼합되어 배출되어 순도가 낮아지는 단점이 있었다. 그러나, 다른 일 실시예에 따른 이차전지는 이산화탄소 처리부를 둠으로써 제3 수용 공간으로 유입된 이산화탄소 중 제1 수용액에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부의 제1 수용 공간으로 이동하지 못하므로, 제2 배출구(124)를 통해 이온화되지 않은 이산화탄소 가스를 따로 배출시킴으로써 이차전지에서 발생한 수소가스가 배출하는 제1 배출구와 차이를 두어 순도 높은 수소가스를 얻을 수 있는 장점이 있다.This has the advantage of increasing the purity of hydrogen (H 2 ) gas discharged from the first outlet. In other words, the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity. However, the secondary battery according to another embodiment has a carbon dioxide treatment unit, so that the carbon dioxide gas flowing into the third accommodation space is not dissolved in the first aqueous solution and thus the unionized carbon dioxide gas cannot move to the first accommodation space of the cathode unit. There is an advantage in that high purity hydrogen gas can be obtained by separately discharging the non-ionized carbon dioxide gas through the second outlet 124, which is different from the first outlet through which hydrogen gas generated from the secondary battery is discharged.
한편, 상기 제2 유입구(122)와 제1 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.Meanwhile, the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
상기 연통구(123)는 제3 수용 공간(121)에서 제2 유입구(122)보다 아래에 위치하며, 연통구(123)에는 연결관(140)이 연결될 수 있다. 상기 연통구(123)를 통해 제3 수용 공간(121)은 제1 수용 공간(111)과 연통될 수 있다.The communication port 123 is located below the second inlet 122 in the third accommodation space 121, and a connection pipe 140 may be connected to the communication port 123. The third accommodating space 121 may be in communication with the first accommodating space 111 through the communication port 123.
상기 연결관(140)은 제1 수용 공간(111)의 제1 유입구(112)와 제3 수용 공간(121)의 연통구(123)을 연결할 수 있다. 상기 연결관(140)의 내부에 형성되는 연결 통로를 통해 제1 수용 공간(111)과 제3 수용 공간(121)이 연통될 수 있다.The connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 123 of the third accommodation space 121. The first accommodating space 111 and the third accommodating space 121 may be communicated through a connection passage formed inside the connecting pipe 140.
이산화탄소 순환 공급부(130)는 제2 배출구(124)를 통해 배출되는 이산화탄소 가스를 제2 유입구(122)로 순환시켜서 재공급할 수 있다.The carbon dioxide circulation supply unit 130 may circulate the carbon dioxide gas discharged through the second outlet 124 to the second inlet 122 and re-supply it.
즉, 제2 유입구(122)를 통해 이산화탄소 처리부(120)의 제3 수용 공간(121)으로 유입된 이산화탄소 중 제1 수용액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 수용 공간(111)으로 이동하지 못하고 상승하여 제3 수용 공간(121) 내 제1 수용액(115)의 수면 위 공간에 모인 후 제2 배출구(124)를 통해 배출되고 제2 배출구(124)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(130)에 의해 제2 유입구(122)를 통해 제3 수용 공간(121)으로 공급되어서 재활용된다.That is, among the carbon dioxide gas that flows into the third accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122, the carbon dioxide gas that is not dissolved in the first aqueous solution 115 and thus is not ionized is in the cathode unit 110. It fails to move to the first accommodating space 111 and rises, collects in the space above the water surface of the first aqueous solution 115 in the third accommodating space 121, and is then discharged through the second outlet 124 and the second outlet 124. The carbon dioxide gas discharged through is supplied to the third receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 and recycled.
따라서, 다른 일 실시예에 따른 이차전지는 이온화되지 않은 이산화탄소 가스를 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급시킬 수 있으므로 전지의 에너지 효율을 높일 수 있는 장점이 있다.Therefore, the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이제, 위에서 구성 중심으로 설명된 이차전지(100)의 방전 과정을 설명한다. 도 3 또는 도 4는 이차전지(100)의 방전 과정이 함께 도시되어 있다. 이를 참조하면, 제1 유입구(112)를 통해 제1 수용액(115)으로 수소 생산의 원료로서 이산화탄소가 주입되며, 캐소드부(110)에서는 다음 [반응식 5]와 같은 이산화탄소의 화학적 용리 반응이 이루어진다.Now, the discharging process of the secondary battery 100 described above in terms of configuration will be described. Figure 3 or Figure 4 shows the discharging process of the secondary battery 100. Referring to this, carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode unit 110 as shown in the following [Reaction Formula 5].
[반응식 5][Scheme 5]
H2O(l) + CO2(g) → H+(aq) + HCO3 -(aq)H 2 O(l) + CO 2 (g) → H + (aq) + HCO 3 - (aq)
즉, 캐소드부(110)에서는 캐소드부(110)에 공급된 이산화탄소(CO2)가 제1 수용액(115)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성될 수 있다.That is, in the cathode unit 110, carbon dioxide (CO 2 ) supplied to the cathode unit 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first aqueous solution 115 to form hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
한편, 캐소드부(110)에서는 다음 [반응식 6]과 같은 전기적 반응이 이루어진다.Meanwhile, an electrical reaction occurs in the cathode unit 110 as shown in [Reaction Formula 6].
[반응식 6] [Scheme 6]
2H2O + 2e- →2OH- + H2(g)2H 2 O + 2e - →2OH - + H 2 (g)
그 다음, [반응식 7]과 같은 화학반응을 통해 탄산칼슘을 고농도로 생산할 수 있다.Next, calcium carbonate can be produced at high concentration through a chemical reaction as shown in [Reaction Formula 7].
[반응식 7][Scheme 7]
Ca2+ + OH- + HCO3 - → CaCO3(S) + H2OCa 2+ + OH - + HCO 3 - → CaCO 3(S) + H 2 O
즉, 캐소드부(110)에서 물(H2O)은 전자(e-)를 받아서 수소(H2) 기체와 수산화이온(OH-)을 발생시킨다. 한편, 물(H2O)로부터 발생된 수산화이온(OH-)과 이산화탄소로부터 발생된 중탄산염(HCO3 -)은 양이온교환막을 통해 이동한 칼슘이온(Ca2+)과의 반응을 통해 탄산칼슘(CaCO3)을 생산할 수 있다.That is, in the cathode unit 110, water (H 2 O) receives electrons (e - ) and generates hydrogen (H 2 ) gas and hydroxide ions (OH - ). Meanwhile, hydroxide ions (OH - ) generated from water (H 2 O) and bicarbonate (HCO 3 - ) generated from carbon dioxide react with calcium ions (Ca 2+ ) that have moved through the cation exchange membrane to form calcium carbonate ( CaCO 3 ) can be produced.
이때, 수산화이온(OH-)은 제1 수용 공간에 그대로 남아있을 수 있고, 순환과정을 통해 재투입될 수도 있다.At this time, hydroxide ions (OH - ) may remain in the first accommodation space and may be reintroduced through a circulation process.
한편, 수소 양이온(H+)은 전자(e-)를 받아서 수소(H2) 기체가 발생하게 된다. 발생된 수소(H2) 기체는 제1 배출구(113)를 통해서 외부로 배출된다.Meanwhile, the hydrogen cation (H+) receives electrons (e - ) and generates hydrogen (H 2 ) gas. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
그리고, 애노드부(150)에서는 애노드(158)가 다음 [반응식 8]과 같은 염소 발생 반응 등의 산화 반응이 이루어진다.And, in the anode unit 150, an oxidation reaction such as chlorine generation reaction occurs in the anode 158 as shown in [Reaction Formula 8].
[반응식 8][Scheme 8]
2Cl-(aq) → Cl2(g) + 2e- 2Cl - (aq) → Cl 2 (g) + 2e -
결과적으로, 상기 반응식들을 통해 알 수 있는 바와 같이, 방전 시, 금속 애노드(158)는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 애노드부(150)의 제2 수용액(155)에 포함된 양이온이 양이온 교환막(192)을 통과하여 캐소드부(110)의 제1 수용액(115)으로 이동함으로써, 이산화탄소 공급에 따른 제1 수용액의 변화를 막을 수 있다. As a result, as can be seen through the above reaction equations, during discharge, chlorine ions (Cl - ) are oxidized in the metal anode 158 to generate chlorine gas (Cl 2 ) and electrons (e - ), and the anode part ( Cations contained in the second aqueous solution 155 of 150 pass through the cation exchange membrane 192 and move to the first aqueous solution 115 of the cathode unit 110, thereby preventing changes in the first aqueous solution due to carbon dioxide supply. there is.
한편, 제1 수용액(115)에서 용리된 이산화탄소에 의해 생성된 수소 이온이 캐소드(118)로부터 전자를 받아서 수소 기체로 환원되어서, 제1 배출구(113)를 통해 배출될 수도 있다.Meanwhile, hydrogen ions generated by carbon dioxide eluted from the first aqueous solution 115 may receive electrons from the cathode 118, be reduced to hydrogen gas, and be discharged through the first outlet 113.
도 5는 또 다른 일 구현예에 따라 이차전지를 사용하는 탄산칼슘 제조 설비를 개략적으로 도시한 모식도이다.Figure 5 is a schematic diagram schematically showing a calcium carbonate manufacturing facility using a secondary battery according to another embodiment.
이를 참고하면, 탄산칼슘 제조 설비는 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액을 생성하는 용출 반응기; 및 이산화탄소 함유 가스, 및 상기 제2 수용액이 공급되며, 반응에 의해 탄산칼슘(CaCO3)을 생성하는 이차전지를 포함한다..With reference to this, the calcium carbonate production facility includes an elution reactor that elutes calcium ions from a calcium-containing material using an eluent to produce a second aqueous solution containing calcium ions (Ca 2+ ) and chloride ions (Cl - ); and a secondary battery to which carbon dioxide-containing gas and the second aqueous solution are supplied, and which generates calcium carbonate (CaCO 3 ) through a reaction.
상기 용출반응기는 용출제 및 칼슘 함유 물질이 공급되며, 용출제에 의해 칼슘 함유 물질로부터 칼슘 이온이 용출되어 칼슘염 수용액, 바람직하게는, 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액이 생성될 수 있다. 상기 용출제는 상기 칼슘 함유 물질과 반응하여 상기 칼슘 함유 물질 내에 포함된 칼슘을 칼슘 이온(Ca2+)의 형태로 용출하는 데 기여하는 것으로, 그 종류는 특별히 한정하지 않으나, 암모늄염일 수 있다. 상기 암모늄은, 예를 들어, 염화암모늄, 질산암모늄 및 아세트산 암모늄으로 이루어진 군에서 선택된 하나 이상인 것이 바람직하다.The elution reactor is supplied with an eluent and a calcium-containing material, and calcium ions are eluted from the calcium-containing material by the eluent to produce an aqueous calcium salt solution, preferably calcium ions (Ca 2+ ) and chloride ions (Cl - ). A second aqueous solution containing The eluting agent reacts with the calcium-containing material and contributes to eluting the calcium contained in the calcium-containing material in the form of calcium ions (Ca 2+ ). The type is not particularly limited, but may be an ammonium salt. The ammonium is preferably, for example, at least one selected from the group consisting of ammonium chloride, ammonium nitrate, and ammonium acetate.
상기 칼슘 함유 물질은 용출제에 의해 칼슘 이온을 용출할 수 있는 물질이라면 특별히 한정하지 않으나, 예를 들어, 폐시멘트, 폐콘크리트, 석탄재, 비산재, 제철 슬래그, 저급 생석회(CaO), 염화칼슘(CaCl2), 규회석, 석회석, 감람석, 사문석, 석면 및 탈묵회로 이루어진 군에서 선택된 하나 이상일 수 있다.The calcium-containing material is not particularly limited as long as it is a material capable of eluting calcium ions using an eluent, but for example, waste cement, waste concrete, coal ash, fly ash, iron slag, low-grade quicklime (CaO), calcium chloride (CaCl 2 ), it may be one or more selected from the group consisting of wollastonite, limestone, olivine, serpentine, asbestos, and deinked ash.
일 실시예에 따라, 용출제로 염화암모늄을 사용하여 제철 슬래그에 포함된 칼슘 이온을 용출하는 경우 하기 반응식 9에 의해 칼슘염 수용액인 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액을 생성할 수 있다.According to one embodiment, when ammonium chloride is used as an eluent to elute calcium ions contained in iron slag, calcium salt aqueous solution containing calcium ions (Ca 2+ ) and chloride ions (Cl - ) is obtained according to the following reaction equation 9: A second aqueous solution can be produced.
[반응식 9][Scheme 9]
제철 슬래그 + NH4Cl → CaCl2 + NH4OHSteel slag + NH 4 Cl → CaCl 2 + NH 4 OH
상기 생성된 제2 수용액은 상기 연료전지에 공급될 수 있으며, 상기 연료전지는 이외에도 이산화탄소 함유 가스가 연료전지에 공급될 수 있다.The generated second aqueous solution can be supplied to the fuel cell, and in addition to the fuel cell, carbon dioxide-containing gas can be supplied to the fuel cell.
특히, 또 다른 일 구현예에 따른 상기 중조 및 탄산칼슘 제조 설비는 추가적으로 수산화나트륨을 공급할 필요 없이, 연료전지 반응에 의해 생성된 수산화이온을 직접 공급하여 최종적으로 탄산칼슘을 고농도로 제조할 수 있는 장점이 있다.In particular, the sodium bicarbonate and calcium carbonate production facility according to another embodiment has the advantage of being able to ultimately produce calcium carbonate at a high concentration by directly supplying hydroxide ions generated by the fuel cell reaction without the need to additionally supply sodium hydroxide. There is.
즉, 추가적인 수산화나트륨을 공급할 필요가 없어 원가절감 및 탄산칼슘 생산 효율이 높을 뿐만 아니라, 상기 용출제는 상기 연료전지에 제1 수용공간에 남아있고, 상기 탄산칼슘(CaCO-3)은 제2 수용 공간에서 생성되므로, 용츌제 등의 불순물을 포함하지 않고, 높은 수율의 탄산칼슘(CaCO-3)을 얻을 수 있는 장점이 있다.In other words, there is no need to supply additional sodium hydroxide, which not only reduces costs and increases calcium carbonate production efficiency, but also the eluent remains in the first accommodation space of the fuel cell, and the calcium carbonate (CaCO- 3 ) is stored in the second accommodation space. Since it is produced in space, it has the advantage of being able to obtain high yields of calcium carbonate (CaCO- 3 ) without containing impurities such as solvents.
한편, 이산화탄소 함유 가스는 순수한 이산화탄소를 사용할 수 있음은 물론, 이산화탄소를 함유하는 가스라면 산업 부생 가스 또는 발전소 배가스 등도 적합하게 사용할 수 있다. 예로 들면, 제철 배가스, 고순도 이산화탄소, 파이넥스 오프 가스(FOG, FINEX off gas), 파이넥스 테일 가스(FTG, FINEX tail gas), 고로 가스(BFG, Blast furnace gas), 전로 가스, 석탄 발전소 배가스, 가스 발전소 배가스, 소각로 배가스, 유리용해 배가스, 열설비 배가스, 석유화학공정 배가스, 석유화학공정 공정가스, 연소전/후 배가스 및 가스화기 배가스로 이루어진 군에서 선택된 하나 이상일 수 있다.Meanwhile, pure carbon dioxide can be used as the carbon dioxide-containing gas, and any gas containing carbon dioxide can also be suitably used, such as industrial by-product gas or power plant exhaust gas. For example, steel exhaust gas, high purity carbon dioxide, FOG (FINEX off gas), FINEX tail gas (FTG), blast furnace gas (BFG), converter gas, coal power plant exhaust gas, gas power plant. It may be one or more selected from the group consisting of flue gas, incinerator flue gas, glass melting flue gas, thermal facility flue gas, petrochemical process flue gas, petrochemical process process gas, pre-/post-combustion flue gas, and gasifier flue gas.
일 실시예에 따라, 이산화탄소 함유 가스는 제철 배가스 및 고순도 이산화탄소를 사용하여, 이차전지의 이산화탄소 처리부 내 제3 수용공간에 투입될 수 있다.According to one embodiment, carbon dioxide-containing gas may be introduced into the third receiving space in the carbon dioxide treatment unit of the secondary battery using steel exhaust gas and high purity carbon dioxide.
상기 이차전지는 고부가가치 물질인 탄산칼슘을 고농도로 생성할 수 있고, 고상의 물질인 탄산칼슘은 고액 분리장치(미도시)를 이용하여 회수할 수 있다. The secondary battery can produce calcium carbonate, a high value-added material, at high concentration, and calcium carbonate, a solid material, can be recovered using a solid-liquid separation device (not shown).
또한, 또 다른 일 구현예에 따라 이차전지를 사용하는 탄산칼슘 제조 설비를 사용하여 탄산칼슘 제조방법을 제공할 수 있다.Additionally, according to another embodiment, a method for producing calcium carbonate can be provided using a calcium carbonate production facility using a secondary battery.
구체적으로, 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 제2 수용액을 생성하는 용출 단계; 및 이산화탄소 함유 가스 및 상기 제2 수용액을, 이차전지 방전 시 발생하는 수산화나트륨(NaOH)와 반응시켜 탄산칼슘(CaCO3)을 생성하는 탄산칼슘 생성 단계를 포함한다.Specifically, an elution step of eluting calcium ions from a calcium-containing material using an eluting agent to generate a second aqueous solution; and a calcium carbonate generation step of reacting the carbon dioxide-containing gas and the second aqueous solution with sodium hydroxide (NaOH) generated during discharge of the secondary battery to produce calcium carbonate (CaCO 3 ).
이때, 상기 제조방법을 설명하는 내용 중 상기 이차전지, 또는 탄산칼슘 제조 설비에서 설명한 내용과 중복되는 내용이 있으면 이를 생략할 수 있다.At this time, if any content explaining the manufacturing method overlaps with the content described in the secondary battery or calcium carbonate manufacturing facility, it can be omitted.
즉. 또 다른 일 구현예에 따른 탄산칼슘 제조 설비를 사용하여 탄산칼슘을 제조하는 경우, 탄산염인 탄산칼슘을 고순도로 생산할 수 있는 장점이 있다.in other words. When producing calcium carbonate using the calcium carbonate production facility according to another embodiment, there is an advantage in that calcium carbonate, a carbonate, can be produced with high purity.
이하 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.The present invention will be described in more detail through examples below. The following examples are merely examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
실시예 1 : 탄산칼슘 제조 설비를 이용하여 생성된 탄산칼슘 순도 및 고체상 확인Example 1: Confirmation of purity and solid phase of calcium carbonate produced using calcium carbonate production equipment
칼슘함유물질로 염화칼슘(CaCl2)을 사용하고 용출제로 염화 암모늄을 사용하여 1M 염화칼슘(CaCl2)인 제2 수용액을 제조하여 연료전지의 애노드부의 제2 수용공간에 공급하였다. 한편, 연료전지의 캐소드부의 제1 수용공간에 포함된 제1 수용액인 1M KOH에 이산화탄소를 공급하여, 이산화탄소가 제1 수용액에 용해되어 약알칼리성 환경으로 포화된 용액인 1M 탄산수소칼륨 (KHCO3) 용액을 활용하여 탄산칼슘 제조 설비를 제작하였다.A second aqueous solution of 1M calcium chloride (CaCl 2 ) was prepared using calcium chloride (CaCl 2 ) as a calcium-containing material and ammonium chloride as an eluent, and supplied to the second receiving space of the anode part of the fuel cell. Meanwhile, carbon dioxide is supplied to 1M KOH, the first aqueous solution contained in the first accommodation space of the cathode part of the fuel cell, so that carbon dioxide is dissolved in the first aqueous solution and 1M potassium hydrogen carbonate (KHCO 3 ), which is a saturated solution in a slightly alkaline environment, is added. A calcium carbonate manufacturing facility was manufactured using the solution.
그 다음, 제작한 탄산칼슘 제조 설비를 100mA로 약 250 min 구동한 후, 캐소드부에서 생성되는 탄산칼슘(CaCO3)를 XRD (X-ray diffraction) 분석을 이용하여 순도 및 상을 분석하고 그 결과를 도 6에 나타내었다.Next, after operating the manufactured calcium carbonate manufacturing facility at 100 mA for about 250 min, the purity and phase of the calcium carbonate (CaCO 3 ) generated in the cathode part was analyzed using XRD (X-ray diffraction) analysis, and the results were obtained. is shown in Figure 6.
구체적으로, 도 6은 실시예 1에 따라 제작한 탄산칼슘 제조 설비를 구동한 결과 생성된 탄산칼슘(CaCO3)의 XRD 분석 결과 값을 나타낸 그래프이다.Specifically, Figure 6 is a graph showing the XRD analysis results of calcium carbonate (CaCO 3 ) produced as a result of operating the calcium carbonate production facility manufactured according to Example 1.
도 6을 참고하면, 상기 제작한 탄산칼슘 제조 설비를 통해 생산된 탄산칼슘 (CaCO3)의 결정상을 확인하였으며, 또한, 탄산칼슘의 고체상 중 Calcite 형태로 99 % 이상 형성된 것을 확인할 수 있었다.Referring to FIG. 6, the crystalline phase of calcium carbonate (CaCO 3 ) produced through the calcium carbonate production facility manufactured above was confirmed, and it was also confirmed that more than 99% of the solid phase of calcium carbonate was formed in the form of calcite.
도 7은 일 구현예에 따른 수전해시스템의 수전해과정을 도시한 모식도이다. 도 7을 참고하면, 제1 수용공간(111)에 수용되는 제1 수용액(115), 및 상기 제1 수용액(115)에 적어도 일부가 잠긴 캐소드(118)을 포함하는 캐소드부(110); 제2 수용공간(151)에 수용되는 제2 수용액(155), 및 상기 제2 수용액에 적어도 일부가 잠긴 애노드(158)을 포함하는 애노드부(150); 상기 캐소드(118)와 애노드(158)를 연결하는 전원공급장치(160); 상기 제1 수용공간(111)과 상기 제2 수용공간(151)을 연통시키는 연결 통로(191), 및 상기 연결 통로에 구비된 이온교환막(192)을 포함하는 연결부(190); 및 상기 제1 수용공간(111), 및 제2 수용공간(151)으로 연결되어 탄산칼슘(CaCO3(S))을 생성시키는 탄산칼슘 생성부(120)을 포함한다.Figure 7 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to an embodiment. Referring to FIG. 7, a cathode portion 110 including a first aqueous solution 115 accommodated in the first accommodating space 111, and a cathode 118 at least partially submerged in the first aqueous solution 115; An anode portion 150 including a second aqueous solution 155 accommodated in the second accommodating space 151, and an anode 158 at least partially submerged in the second aqueous solution; A power supply device 160 connecting the cathode 118 and anode 158; a connecting portion 190 including a connecting passage 191 that communicates the first accommodating space 111 and the second accommodating space 151, and an ion exchange membrane 192 provided in the connecting passage; And a calcium carbonate generating unit 120 connected to the first accommodating space 111 and the second accommodating space 151 to generate calcium carbonate (CaCO 3 (S) ).
상기 캐소드부(110)는 제1 수용공간(111)에 수용되는 제1 수용액(115), 및 상기 제1 수용액(115)에 적어도 일부가 잠긴 캐소드(118)을 포함할 수 있다.The cathode portion 110 may include a first aqueous solution 115 accommodated in the first accommodation space 111, and a cathode 118 that is at least partially submerged in the first aqueous solution 115.
상기 제1 수용액(115)는 수계 전해질로써, 구체적으로, 알칼리 금속 수산화물(예를 들어, LiOH, NaOH, 또는 KOH)이 물에 용해된 알칼리성 수용액일 수 있으며, 바람직하게는 이산화탄소 용해가 수월한 알칼리성의 KOH 수용액일 수 있다.The first aqueous solution 115 is an aqueous electrolyte. Specifically, it may be an alkaline aqueous solution in which an alkali metal hydroxide (e.g., LiOH, NaOH, or KOH) is dissolved in water, and is preferably an alkaline aqueous solution in which carbon dioxide is easily dissolved. It may be an aqueous KOH solution.
일 실시예에 따라, 상기 제1 수용액(115)은 1M KOH의 강염기성 용액에서 CO2를 용리시킨 것이 사용될 수 있다.According to one embodiment, the first aqueous solution 115 may be obtained by eluting CO 2 from a strong basic solution of 1M KOH.
상기 캐소드(118)은 수전해시스템을 형성하기 위한 전극으로써, 전자(e-)를 공급받아 수소기체(H2)를 발생시키는 환원전극일 수 있다. The cathode 118 is an electrode for forming a water electrolysis system and may be a reduction electrode that receives electrons (e - ) and generates hydrogen gas (H 2 ).
구체적으로, 상기 캐소드(118)은 전원공급장치에 전원공급 시 발생한 전자(e-)를 통해 환원반응을 일으킬 수 있는 물질일 수 있다.Specifically, the cathode 118 may be a material that can cause a reduction reaction through electrons (e - ) generated when power is supplied to the power supply device.
일 실시예에 따라, 상기 캐소드(118)은 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막로 이루어진 군으로부터 선택된 1종 이상일수 있다.According to one embodiment, the cathode 118 may be one or more selected from the group consisting of carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film.
상기 캐소드(118)는 환원반응 촉진을 위해 촉매를 캐소드 내에 더 포함할 수 있다. 구체적으로, 수소 발생 반응(hydrogen evolution reaction) 촉매를 포함할 수 있다.The cathode 118 may further include a catalyst within the cathode to promote the reduction reaction. Specifically, it may include a hydrogen evolution reaction catalyst.
일 실시예에 딸, 상기 캐소드(118)은 백금 촉매, 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 및 페로브스카이트 산화물 촉매로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는, 수계 전해질에서 수소 발생 반응에 대한 촉매적 활성도가 가장 뛰어나다고 알려져 있는 백금 촉매를 더 포함할 수 있다.In one embodiment, the cathode 118 may include one or more selected from the group consisting of a platinum catalyst, a carbon-based catalyst, a carbon-metal composite catalyst, and a perovskite oxide catalyst, preferably , it may further include a platinum catalyst known to have the highest catalytic activity for the hydrogen generation reaction in an aqueous electrolyte.
상기 캐소드부(110)는 제1 수용 공간(111)과 연통되는 제1 유입구(112), 제1 배출구(113), 및 제1 연결구(114)를 더 포함할 수 있다.The cathode portion 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first receiving space 111.
상기 제1 유입구(112)는 제1 수용액(115)의 수면보다 아래에 위치하도록 제1 수용 공간(111)의 하부에 위치할 수 있다. 제1 배출구(113)는 제1 수용액(115)의 수면보다 위에 위치하도록 제1 수용 공간(111)의 상부에 위치할 수 있다. 제1 유입구(112)를 통해 방전 과정에서 원료로 사용되는 이산화탄소가 제1 수용 공간(111)으로 유입되는데, 필요 시 제1 수용액(115)도 유입될 수 있다. 제1 배출구(113)를 통해서는 수전해과정에서 생성된 가스가 외부로 배출될 수 있다. 도시되지는 않았으나, 유입구(112)와 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 상기 제1 연결구(114)는 제1 수용액(115)의 수면보다 아래에 위치하며, 제1 연결구(114)에 연결부(190)가 연결된다. 캐소드(110)는 수전해과정에서 이산화탄소 용리 반응이 일어날 수 있다.The first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115. The first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115. Carbon dioxide, which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during the water electrolysis process can be discharged to the outside through the first outlet 113. Although not shown, the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging. The first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114. A carbon dioxide elution reaction may occur in the cathode 110 during the water electrolysis process.
상기 애노드(150)는 제2 수용공간(151)에 수용되는 제2 수용액(155), 및 상기 제2 수용액(155)에 적어도 일부가 잠긴 애노드(158)을 포함할 수 있고 바람직하게는, 전자(e-)를 생성시키는 산화반응이 진행되는 산화전극부일 수 있다.The anode 150 may include a second aqueous solution 155 accommodated in the second accommodating space 151, and an anode 158 at least partially submerged in the second aqueous solution 155, and preferably, the electronic It may be an oxidation electrode part where an oxidation reaction that generates (e - ) occurs.
상기 제2 수용액(155)은 수계 전해질로써, 구체적으로, 알칼리 금속 수산화물(예를 들어, LiOH, NaOH, 또는 KOH)이 물에 용해된 알칼리성 수용액일 수 있으며, 바람직하게는 산소발생 반응 등의 산화 환원 반응이 수월한 고농도의 KOH 수용액일 수 있다.The second aqueous solution 155 is an aqueous electrolyte. Specifically, it may be an alkaline aqueous solution in which an alkali metal hydroxide (e.g., LiOH, NaOH, or KOH) is dissolved in water, and is preferably oxidized through an oxygen generation reaction. It may be a high-concentration KOH aqueous solution that facilitates the reduction reaction.
일 실시예에 따라, 상기 제2 수용액(155)은 1M KOH 또는 6M KOH 강염기성 용액일 수 있다.According to one embodiment, the second aqueous solution 155 may be a 1M KOH or 6M KOH strongly basic solution.
상기 애노드(158)는 일측이 상기 제2 전해질(155)에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제2 전해질(155)에 적어도 일부가 잠기도록 위치할 수 있다.The anode 158 may have one side in contact with the second electrolyte 155, but is preferably positioned so that at least part of the anode 158 is submerged in the second electrolyte 155.
상기 애노드(158)은 수전해시스템을 이루는 산화전극으로써, 산소발생반응(OER) 및 염소발생반응(CER)의 산화반응을 통해 전자(e-)를 발생시킬 수 있고, 바람직하게는, 산소 발생 반응(Oxygen Evolution Reaction, OER) 촉매를 포함할 수 있다.The anode 158 is an oxidizing electrode that forms a water electrolysis system, and can generate electrons (e - ) through the oxidation reactions of oxygen evolution reaction (OER) and chlorine evolution reaction (CER), and preferably, generate oxygen. Reaction (Oxygen Evolution Reaction, OER) catalyst may be included.
일 실시예에 따라, 상기 애노드에 포함되는 산소 발생 반응 촉매는 금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매, 금속 탄화물 촉매, 및 탄소 촉매로 이루어진 군에서 선택된 1종 이상일 수 있고, 이때, 상기 산소 발생 반응 촉매에 포함된 금속은 Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, 및 Au 로 이루어진 군에서 선택되는 적어도 1종 이상일 수 있다.According to one embodiment, the oxygen generation reaction catalyst included in the anode may be one or more selected from the group consisting of a metal oxide catalyst, a perovskite oxide catalyst, a metal sulfide catalyst, a metal carbide catalyst, and a carbon catalyst, wherein , the metal contained in the oxygen evolution reaction catalyst is selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au. There may be at least one type.
상기 애노드부(150)는 제2 수용 공간(151)과 연통되는 제3 투입구(127), 제2 배출구(153), 및 제2 연결구(154)를 더 포함할 수 있다.The anode unit 150 may further include a third inlet 127, a second outlet 153, and a second connector 154 that communicate with the second accommodation space 151.
상기 제3 투입구(127)는 제2 수용액(155)의 수면보다 아래에 위치하도록 제2 수용 공간(151)의 하부에 위치할 수 있다. 제2 배출구(153)는 제2 수용액(155)의 수면보다 위에 위치하도록 제2 수용 공간(151)의 상부에 위치할 수 있다.The third inlet 127 may be located at the lower part of the second receiving space 151 so as to be located below the water surface of the second aqueous solution 155. The second outlet 153 may be located at the upper part of the second receiving space 151 so as to be above the water surface of the second aqueous solution 155.
제3 투입구(127)를 통해 탄산칼슘(CaCO3(S)) 생성부(120)에서 탄산칼슘을 생성 후 남은 잔여액을 제2 수용 공간(151)으로 투입될 수 있다. 제2 배출구(153)를 통해서는 전원공급장치의 전원공급 시 생성된 가스인 산소(O2) 및 염소(Cl2)가 외부로 배출될 수 있다. 도시되지는 않았으나, 제3 투입구(127)와 제2 배출구(153)는 전원공급장치의 전원공급 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다.The remaining liquid remaining after generating calcium carbonate in the calcium carbonate (CaCO 3 (S) ) generating unit 120 may be injected into the second receiving space 151 through the third inlet 127. Oxygen (O 2 ) and chlorine (Cl 2 ), which are gases generated when power is supplied to the power supply device, may be discharged to the outside through the second outlet 153. Although not shown, the third inlet 127 and the second outlet 153 may be selectively opened and closed at appropriate times by a valve or the like when the power supply device is supplied with power.
상기 애노드부(150)는 제2 수용공간(151)과 연통되는 제2 연결구(154)가 형성될 수 있다. 제2 연결구(154)는 제2 수용액(155)의 수면보다 아래에 위치하며, 제2 연결구(154)에 연결부(190)가 연결될 수 있다.The anode part 150 may be formed with a second connector 154 communicating with the second receiving space 151. The second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
상기 연결부(190)는 캐소드부(110)의 제1 수용공간(111)와 애노드부(150)의 제2 수용공간(151)를 연결하는 연결통로(191), 및 연결통로(191)의 내부에 설치되는 이온교환막(membrane)(192)를 구비할 수 있다.The connection part 190 is a connection passage 191 connecting the first accommodation space 111 of the cathode unit 110 and the second accommodation space 151 of the anode unit 150, and the interior of the connection passage 191. It may be provided with an ion exchange membrane (membrane) 192 installed in the.
구체적으로, 상기 연결통로(191)는 캐소드부(110)에 형성된 제1 연결구(114)와 애노드부(150)에 형성된 제2 연결구(154)의 사이에 연장되어서 캐소드부(110)의 제1 수용 공간(111)과 애노드부(150)의 제2 수용 공간(151)을 연통시킬 수 있다. 상기 제1 연결통로(191)의 내부에 이온교환막(membrane)(192)이 구비될 수 있다.Specifically, the connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 to connect the first connector 114 of the cathode portion 110. The receiving space 111 and the second receiving space 151 of the anode unit 150 may be connected. An ion exchange membrane 192 may be provided inside the first connection passage 191.
상기 이온교환막(192)은 연결 통로(191)의 내부를 막는 형태로 설치될 수 있다. 이온교환막(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용하여, 수전해과정에서 생기는 이온 불균형을 해소할 수 있다.The ion exchange membrane 192 may be installed to block the interior of the connection passage 191. The ion exchange membrane 192 only allows the movement of ions between the cathode portion 110 and the anode portion 150, thereby resolving ion imbalance occurring during the water electrolysis process.
구체적으로, 이온교환막(192)에 의해 제2 전해액(155)에 포함된 알칼리 금속 이온, 구체적으로 칼륨 이온(K+)이 제1 전해액(115)으로 이동할 수 있다.Specifically, alkali metal ions, specifically potassium ions (K + ), contained in the second electrolyte solution 155 can move to the first electrolyte solution 115 by the ion exchange membrane 192.
일 실시예에 따라, 상기 이온교환막(192)으로 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion)을 사용할 수 있다.According to one embodiment, Nafion, a fluororesin-based cation exchange membrane developed by DuPont in the United States, may be used as the ion exchange membrane 192.
상기 탄산칼슘 생성부(120)는 탄산칼슘(CaCO3(S))을 생성시키는 반응기(121); 상기 제1 수용공간(111)과 반응기(121)를 연결하고, 제1 수용공간(111)의 중탄산이온(HCO3 -)을 반응기(121)로 투입시키는 제1 투입구(123); 상기 반응기(121)와 연결되고, 칼슘이온(Ca2+)을 반응기(121)로 투입시키는 제2 투입구(125); 및 상기 제2 수용공간(151)과 반응기(121)를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제2 수용공간(151)으로 투입시키는 제3 투입구(127);를 포함할 수 있다.The calcium carbonate generating unit 120 includes a reactor 121 that generates calcium carbonate (CaCO 3(S) ); A first inlet 123 that connects the first accommodation space 111 and the reactor 121 and injects bicarbonate ions (HCO 3 - ) in the first accommodation space 111 into the reactor 121; A second inlet 125 connected to the reactor 121 and introducing calcium ions (Ca 2+ ) into the reactor 121; and a third inlet 127 that connects the second accommodation space 151 and the reactor 121 and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the second accommodation space 151; may include.
상기 제1 투입구(123)는 상기 제1 수용공간(111)과 반응기(121)를 연결되고, 제1 수용공간(111) 내에서 반응 후 생성물인 중탄산이온(HCO3 -)을 탄산칼슘(CaCO3(S)) 생성부(120)의 반응기(121)에 투입시킬 수 있다.The first inlet 123 connects the first accommodating space 111 and the reactor 121, and bicarbonate ions (HCO 3 - ), which are the product after reaction in the first accommodating space 111, are converted into calcium carbonate (CaCO 3(S) ) can be introduced into the reactor 121 of the production unit 120.
일 실시예에 따라, 제1 수용공간(111) 내에서 반응 후 생성물인 KHCO3(aq)이 반응기(121)로 투입될 수 있다.According to one embodiment, KHCO 3(aq), which is a product after reaction in the first receiving space 111, may be introduced into the reactor 121.
상기 제2 투입구(125)는 상기 반응기(121)와 연결되어, 제1 투입구(123)를 통해 반응기(121)에 투입되는 중탄산이온(HCO3 -)과 반응하여 탄산칼슘(CaCO3(S))을 생성시킬 수 있는 칼슘이온(Ca2+)을 투입시킬 수 있다.The second inlet 125 is connected to the reactor 121, and reacts with bicarbonate ions (HCO 3 - ) introduced into the reactor 121 through the first inlet 123 to produce calcium carbonate (CaCO 3 (S). ) Calcium ions (Ca 2+ ) that can generate can be introduced.
일 실시예에 따라, 반응기(121)에 CaCl2(aq)를 투입시킬 수 있다.According to one embodiment, CaCl 2(aq) may be added to the reactor 121.
상기 반응기(121)은 제1 투입구(123)에서 투입되는 중탄산이온(HCO3 -)과 제2 투입구(125)에서 투입되는 칼슘이온(Ca2+)과 반응하여 탄산칼슘(CaCO3(S))을 생성시키고, 생성반응 후 잔여물이 남을 수 있다.The reactor 121 reacts with bicarbonate ions (HCO 3 - ) introduced from the first inlet 123 and calcium ions (Ca 2+ ) introduced from the second inlet 125 to produce calcium carbonate (CaCO 3 (S) ) is produced, and residues may remain after the production reaction.
일 실시예에 따라, 상기 잔여물은 KCl(aq)일 수 있다.According to one embodiment, the residue may be KCl (aq) .
상기 제3 투입구(127)은 제2 수용공간(151)과 반응기(121)이 연결되어, 반응기(121)에서 생성반응 후 잔여액을 제2 수용공간(151)으로 투입시켜 애노드(158)을 통해 산소생성반응(OER) 및 염소생성반응(CER)을 진행시키는 용액을 제공할 수 있다.The third inlet 127 is connected to the second receiving space 151 and the reactor 121, and the remaining liquid after the production reaction in the reactor 121 is injected into the second receiving space 151 to form the anode 158. It is possible to provide a solution that progresses the oxygen evolution reaction (OER) and the chlorine evolution reaction (CER).
도 8은 다른 일 구현예에 따른 수전해시스템의 수전해과정을 도시한 모식도이다. 도 8을 참고하면, 이차전지(100a)는 캐소드부(110), 애노드부(150), 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190), 캐소드부(110)의 제1 수용공간(111)과 애노드부(150)의 제2 수용공간(151)을 연결하는 탄산칼슘 생성부(120), 이산화탄소 처리부(130), 이산화탄소 순환 공급부(135), 및 캐소드부(110)와 이산화탄소 처리부(130)를 연통시키는 제1 연결관(140)을 포함할 수 있다.Figure 8 is a schematic diagram showing the water electrolysis process of a water electrolysis system according to another embodiment. Referring to FIG. 8, the secondary battery 100a includes a cathode portion 110, an anode portion 150, a connection portion 190 connecting the cathode portion 110 and the anode portion 150, and a cathode portion 110. 1 Calcium carbonate generating unit 120, carbon dioxide processing unit 130, carbon dioxide circulation supply unit 135, and cathode unit 110 connecting the accommodation space 111 and the second accommodation space 151 of the anode unit 150. It may include a first connection pipe 140 that communicates with the carbon dioxide treatment unit 130.
상기 캐소드부(110), 애노드부(150), 연결부(190), 및 탄산칼슘 생성부(120)와 관련된 내용 중 도 7에 도시된 수전해시스템의 설명된 내용과 중복된 내용은 생략할 수 있다.Among the contents related to the cathode unit 110, anode unit 150, connection unit 190, and calcium carbonate generating unit 120, contents that overlap with the description of the water electrolysis system shown in FIG. 7 can be omitted. there is.
상기 이산화탄소 처리부(130)는 상기 제1 수용공간(111)과 연통될 수 있다.The carbon dioxide processing unit 130 may be in communication with the first accommodation space 111.
상기 이산화탄소 처리부(130) 내 제3 수용 공간(131)에 수용되는 제3 수용액(135)은 캐소드부(110)의 제1 수용액(115)과 동일한 수용액일 수 있다.The third aqueous solution 135 accommodated in the third accommodating space 131 in the carbon dioxide treatment unit 130 may be the same aqueous solution as the first aqueous solution 115 of the cathode unit 110.
상기 이산화탄소 처리부(130)는 제3 수용 공간(131)으로 이산화탄소가 유입되는 제2 유입구(132), 연결관(140)이 연결되는 연통구(미도시), 및 제3 수용공간(131)의 상부에 위치하는 제3 배출구(133)를 포함할 수 있다.The carbon dioxide treatment unit 130 includes a second inlet 132 through which carbon dioxide flows into the third accommodation space 131, a communication port (not shown) to which the connection pipe 140 is connected, and a third accommodation space 131. It may include a third outlet 133 located at the top.
상기 제2 유입구(132)는 제4 수용공간(131)에서 연통구(미도시)보다 위에 위치하고, 제3 배출구(133) 및 제3 수용액(135)의 수면보다 아래에 위치할 수 있다. 제2 유입구(132)를 통해 수전해과정에서 연료로 사용되는 이산화탄소 기체가 제3 수용 공간(131)으로 유입될 수 있고, 제2 유입구(132)를 통해 필요에 따라 제3 수용액(135)도 공급될 수 있다. The second inlet 132 may be located above the communication port (not shown) in the fourth receiving space 131 and below the water level of the third outlet 133 and the third aqueous solution 135. Carbon dioxide gas, which is used as a fuel in the water electrolysis process, can flow into the third receiving space 131 through the second inlet 132, and a third aqueous solution 135 can also be supplied through the second inlet 132 as needed. can be supplied.
상기 제3 배출구(133)는 제3 수용공간(131)에서 제2 유입구(132) 및 제3 수용액(135)의 수면보다 위에 위치한다. 제3 배출구(133)를 통해 제4 수용공간(131)에서 제4 수용액(135)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 비중차이로 인해 상부로 뜨게되어 최종적으로 외부로 배출된다. 제3 배출구(133)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(135)를 통해 제2 유입구(132)로 공급될 수 있다.The third outlet 133 is located above the water level of the second inlet 132 and the third aqueous solution 135 in the third accommodation space 131. Carbon dioxide gas that is not dissolved in the fourth aqueous solution 135 in the fourth accommodating space 131 through the third outlet 133 and thus is not ionized floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the third outlet 133 may be supplied to the second inlet 132 through the carbon dioxide circulation supply unit 135.
이를 통해 제1 배출구(113)에서 배출되는 수소(H2)가스의 순도가 높아지는 장점이 있다. 즉, 기존에는 이산화탄소 처리부를 따로 포함하지 않아 이온화되지 않은 이산화탄소 기체와 이차전지에서 발생한 수소가스가 혼합되어 배출되어 순도가 낮아지는 단점이 있었다. 그러나, 다른 일 실시예에 따른 수전해시스템은 이산화탄소 처리부(130)를 둠으로써 제3 수용 공간(131)으로 유입된 이산화탄소 중 제3 수용액에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 수용공간(111)으로 이동하지 못하고, 이온화되지 않은 이산화탄소 가스는 제3 배출구(133)를 통해 따로 배출됨으로써 수전해시스템에서 발생한 수소가스가 배출하는 제1 배출구(113)와 차이를 두어 순도 높은 수소가스를 얻을 수 있는 장점이 있다.This has the advantage of increasing the purity of hydrogen (H 2 ) gas discharged from the first outlet 113. In other words, the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity. However, the water electrolysis system according to another embodiment has a carbon dioxide treatment unit 130, so that among the carbon dioxide introduced into the third accommodation space 131, the carbon dioxide gas that is not dissolved in the third aqueous solution and thus not ionized is disposed of in the cathode unit 110. Unable to move to the first receiving space 111, the non-ionized carbon dioxide gas is discharged separately through the third outlet 133, making a difference from the first outlet 113 through which hydrogen gas generated in the water electrolysis system is discharged. There is an advantage in obtaining high purity hydrogen gas.
한편, 상기 제2 유입구(132)와 제1 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.Meanwhile, the second inlet 132 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
상기 연통구(미도시)는 제3 수용공간(131)에서 제2 유입구(132)보다 아래에 위치하며, 연통구(미도시)에는 연결관(140)이 연결될 수 있다. 상기 연통구(미도시)로 연결된 연결관(140)을 통해 제3 수용공간(131)은 제1 수용공간(111)과 연통될 수 있다.The communication port (not shown) is located below the second inlet 132 in the third receiving space 131, and a connection pipe 140 may be connected to the communication port (not shown). The third accommodation space 131 may be in communication with the first accommodation space 111 through the connection pipe 140 connected to the communication port (not shown).
상기 연결관(140)은 제1 수용 공간(111)의 제1 유입구(112)와 제3 수용 공간(131)의 연통구(미도시)을 연결할 수 있다. 상기 연결관(140)의 내부에 형성되는 연결 통로(미도시)를 통해 제1 수용공간(111)과 제3 수용공간(121)이 연통될 수 있다.The connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port (not shown) of the third accommodation space 131. The first accommodating space 111 and the third accommodating space 121 may be communicated through a connection passage (not shown) formed inside the connecting pipe 140.
이산화탄소 순환 공급부(135)는 제3 배출구(133)를 통해 배출되는 이산화탄소 가스를 제2 유입구(132)로 순환시켜서 재공급할 수 있다.The carbon dioxide circulation supply unit 135 may circulate the carbon dioxide gas discharged through the third outlet 133 to the second inlet 132 and re-supply it.
즉, 제2 유입구(132)를 통해 이산화탄소 처리부(130)의 제4 수용공간(131)으로 유입된 이산화탄소 중 제4 수용액(135)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 제1 전극부(110)의 제1 수용공간(111)으로 이동하지 못하고 상승하여 제4 수용공간(131) 내 제4 수용액(135)의 수면 위 공간에 모인 후 제3 배출구(133)를 통해 배출되고 제3 배출구(133)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(135)에 의해 제2 유입구(132)를 통해 제4 수용공간(131)으로 공급되어서 재활용된다.That is, among the carbon dioxide that flows into the fourth accommodation space 131 of the carbon dioxide processing unit 130 through the second inlet 132, the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution 135 is connected to the first electrode unit 110. ) fails to move to the first accommodation space 111 and rises, collects in the space above the water surface of the fourth aqueous solution 135 in the fourth accommodation space 131, and is then discharged through the third outlet 133 and the third outlet ( The carbon dioxide gas discharged through 133) is supplied to the fourth accommodation space 131 through the second inlet 132 by the carbon dioxide circulation supply unit 135 and is recycled.
따라서, 다른 일 실시예에 따른 이차전지는 이온화되지 않은 이산화탄소 가스를 이산화탄소 순환 공급부(135)를 통해 제2 유입구(132)로 공급시킬 수 있으므로 전지의 에너지 효율을 높일 수 있는 장점이 있다.Therefore, the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 132 through the carbon dioxide circulation supply unit 135.
상기 수전해시스템(100, 100a)의 수전해 과정은 하기와 같다. 도 7 또는 도 8은 수전해시스템(100, 100a)의 수전해해 과정이 함께 도시되어 있다. 이를 참조하면, 제1 유입구(112)를 통해 제1 수용액(115)으로 수소 생산의 원료로서 이산화탄소가 주입되며, 캐소드드부(110)에서는 다음 [반응식 10]과 같은 이산화탄소의 화학적 용리 반응이 이루어진다.The water electrolysis process of the water electrolysis system (100, 100a) is as follows. Figure 7 or Figure 8 shows the water electrolysis process of the water electrolysis system (100, 100a). Referring to this, carbon dioxide as a raw material for hydrogen production is injected into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide occurs in the cathode portion 110 as shown in the following [Reaction Formula 10].
[반응식 10][Scheme 10]
H2O(l) + CO2(g) → H+(aq) + HCO3 -(aq)H 2 O(l) + CO 2 (g) → H + (aq) + HCO 3 - (aq)
즉, 캐소드부(110)는 캐소드드부(110)에 공급된 이산화탄소(CO2)가 제1 수용액(115)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성될 수 있다. That is, the cathode unit 110 produces hydrogen cations (H + ) and bicarbonate ( HCO 3 - ) can be produced.
또한, 캐소드드부(110)에서는 다음 [반응식 11]과 같은 전기적 반응이 이루어진다.Additionally, an electrical reaction occurs in the cathode portion 110 as shown in [Reaction Formula 11].
[반응식 11] [Scheme 11]
2H+(aq) + 2e- → H2(g)2H + (aq) + 2e - → H 2 (g)
즉, 캐소드드부(110)에서 수소 양이온(H+)은 전자(e-)를 받아서 수소(H2) 기체가 발생하게 된다. 발생된 수소(H2) 기체는 제1 배출구(113)를 통해서 외부로 배출된다.That is, in the cathode portion 110, hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
종합하면면, 캐소드드부(110)에서는 다음 [반응식 12]와 같은 복합 수소발생 반응이 이루어진다.In summary, a complex hydrogen generation reaction occurs in the cathode portion 110 as shown in [Reaction Formula 12].
[반응식 12] [Scheme 12]
2H2O(l) + 2CO2(g) + 2e- → H2(g) + 2HCO3 - (aq)2H 2 O(l) + 2CO 2 (g) + 2e - → H 2 (g) + 2HCO 3 - (aq)
상기 복합 수소발생반응으로 발생한 중탄산염(HCO3 -)을 포함하는 수용액은 양이온과 함께 제1 투입구(123)를 통해 탄산칼슘(CaCO3(S)) 생성부의 반응기(121)로 투입될 수 있다.The aqueous solution containing bicarbonate (HCO 3 - ) generated from the complex hydrogen generation reaction may be introduced into the reactor 121 of the calcium carbonate (CaCO 3 (S) ) production unit through the first inlet 123 along with positive ions.
이때, 상기 중탄산염을 포함하는 수용액에 포함되는 양이온은 칼륨 양이온(K+), 소듐 양이온(Na+), 리튬 (Li+), 및 마그네슘 (Mg+)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.At this time, the cation contained in the aqueous solution containing bicarbonate may be one or more types selected from the group consisting of potassium cation (K + ), sodium cation (Na + ), lithium (Li + ), and magnesium (Mg + ).
일 실시예에 따라, KHCO3(aq) 수용액으로 반응기(121)에 투입될 수 있다.According to one embodiment, an aqueous solution of KHCO 3 (aq) may be introduced into the reactor 121.
상기 반응기(121)로 투입된 중탄산염(HCO3 -)은 제2 투입구(125)를 통해반응기로 투입되는 칼슘이온(Ca2+)을 포함하는 수용액과 다음 [반응식 13]과 같은 탄산칼슘 생성반응이 이루어진다.Bicarbonate (HCO 3 - ) introduced into the reactor 121 is an aqueous solution containing calcium ions (Ca 2+ ) introduced into the reactor through the second inlet 125 and a calcium carbonate production reaction as shown in [Reaction Formula 13]. It comes true.
[반응식 13][Scheme 13]
2 KHCO3(aq) + CaCl2(aq) → 2 KCl(aq) + CO2(g) + CaCO3(s) + H2O(l) 2 KHCO 3(aq) + CaCl 2(aq) → 2 KCl (aq) + CO 2(g) + CaCO 3(s) + H 2 O (l)
혹은or
K2CO3(aq) + CaCl2(aq) → 2 KCl(aq) + CaCO3(s) K 2 CO 3(aq) + CaCl 2(aq) → 2 KCl (aq) + CaCO 3(s)
이때, 칼슘이온(Ca2+)을 포함하는 수용액에 포함되는 음이온은 염소 음이온(Cl-), 수산화이온 (OH-), 불소 (F -), 및 브로민 (Br-)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.At this time, the anion contained in the aqueous solution containing calcium ion (Ca 2+ ) is selected from the group consisting of chlorine anion (Cl - ), hydroxide ion (OH - ), fluorine (F - ), and bromine (Br - ). There may be more than one type.
일 실시예에 따라, CaCl2(aq) 수용액으로 반응기(121)에 투입될 수 있다.According to one embodiment, an aqueous CaCl 2 (aq) solution may be introduced into the reactor 121.
상기 탄산칼슘 생성반응 후 잔여액은 제3 투입구(127)를 통해 애노드부(150)로 투입될 수 있다.After the calcium carbonate production reaction, the remaining liquid may be injected into the anode unit 150 through the third inlet 127.
이때, 중탄산염을 포함하는 수용액에 포함되는 양이온과 칼슘이온(Ca2+)을 포함하는 수용액에 포함되는 음이온을 포함할 수 있다.At this time, it may include cations contained in an aqueous solution containing bicarbonate and anions contained in an aqueous solution containing calcium ions (Ca 2+ ).
일 실시예에 따라, KCl(aq) 수용액일 수 있다.According to one embodiment, it may be an aqueous KCl (aq) solution.
그리고, 애노드부(150)에서는 제3 투입구(127)에서 투입된 상기 탄산칼슘 생성반응 후 잔여액은 다음 [반응식 14]와 같은 산소발생반응(OER)의 산화반응이 이루어진다.And, in the anode unit 150, the remaining liquid after the calcium carbonate generation reaction injected from the third inlet 127 undergoes an oxidation reaction of oxygen evolution reaction (OER) as shown in [Reaction Formula 14].
[반응식 14][Scheme 14]
4 OH- (aq) → O2(g) + 2H2O(l) + 4 e- 4 OH - (aq) → O 2(g) + 2H 2 O (l) + 4 e -
한편, 제3 투입구(127)에서 투입된 상기 탄산칼슘 생성반응 후 잔여액에 염소이온(Cl-)이 포함되어 있을 경우, 다음 [반응식 15]와 같은 염소발생반응의 산화반응도 함께 이뤄진다.Meanwhile, if the remaining liquid after the calcium carbonate generation reaction injected from the third inlet 127 contains chlorine ions (Cl-), the oxidation reaction of the chlorine generation reaction as shown in the following [Reaction Formula 15] also occurs.
[반응식 15][Scheme 15]
2 Cl- (aq) → Cl2(g) + 2 e- 2 Cl - (aq) → Cl 2(g) + 2 e -
즉, 일 측면에 따른른 수전해시스템은 산소 및 염소 등을 생산할 뿐만 아니라 수소 및 탄산칼슘을 고순도로 생산할 수 있는 장점이 있다.In other words, the water electrolysis system according to one aspect has the advantage of being able to produce not only oxygen and chlorine, but also hydrogen and calcium carbonate with high purity.
도 9는 일 구현예에 따른 따른 이산화탄소를 이용한 복합이차전지의 방전과정을 도시한 모식도이다. 도 9를 참고하면, 제1 수용공간(111)에 수용되는 제1 수용액(115), 및 상기 제1 수용액(115)에 적어도 일부가 잠긴 제1 전극(118)을 포함하는 제1 전극부(110); 제2 수용공간(151)에 수용되는 제2 수용액(155), 및 상기 제2 수용액에 적어도 일부가 잠긴 제2 전극(158)을 포함하는 제2 전극부(150); 상기 제1 수용공간(111)과 상기 제2 수용공간(151)을 연통시키는 연결 통로(191), 및 상기 연결 통로에 구비된 양이온 교환막(192)을 포함하는 제1 연결부(190); 제3 수용공간(171)에 수용되는 제3 수용액(175), 및 상기 제3 수용액(175)에 적어도 일부가 잠기는 제3 전극(178)을 포함하는 제3 전극부(170); 상기 제2 수용공간(151)과 상기 제3 수용공간(171)을 연통시키는 연결 통로(191'), 및 상기 연결 통로(191')에 구비된 교환막(192')을 포함하는 제2 연결부(190'); 및 상기 제2 전극(158)과 제3 전극(178)에 연결되는 전원공급장치(160);를 포함한다.Figure 9 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to an embodiment. Referring to FIG. 9, a first electrode portion including a first aqueous solution 115 accommodated in the first accommodation space 111 and a first electrode 118 at least partially submerged in the first aqueous solution 115 ( 110); a second electrode unit 150 including a second aqueous solution 155 accommodated in the second accommodating space 151, and a second electrode 158 at least partially submerged in the second aqueous solution; A first connection portion 190 including a connection passage 191 that communicates the first accommodation space 111 and the second accommodation space 151, and a cation exchange membrane 192 provided in the connection passage; A third electrode unit 170 including a third aqueous solution 175 accommodated in the third accommodating space 171, and a third electrode 178 at least partially submerged in the third aqueous solution 175; A second connection portion including a connection passage 191' that communicates the second accommodation space 151 and the third accommodation space 171, and an exchange membrane 192' provided in the connection passage 191' ( 190'); and a power supply device 160 connected to the second electrode 158 and the third electrode 178.
상기 제1 전극부(110)는 제1 수용공간(111)에 수용되는 제1 수용액(115), 및 상기 제1 수용액(115)에 적어도 일부가 잠긴 제1 전극(118)을 포함할 수 있고 바람직하게는, 수소기체를 생성할 수 있는 환원전극부일 수 있다.The first electrode unit 110 may include a first aqueous solution 115 accommodated in the first accommodation space 111, and a first electrode 118 at least partially submerged in the first aqueous solution 115. Preferably, it may be a reduction electrode unit capable of generating hydrogen gas.
상기 제1 수용액(115)은 중성 수용액 또는 알칼리성 수용액, 해수, 수돗물 및 증류수 등이 사용될 수 있고, 예를 들어, 바람직하게는, 이산화탄소의 용해가 용이한 알칼리성 수용액일 수 있다.The first aqueous solution 115 may be a neutral aqueous solution, an alkaline aqueous solution, seawater, tap water, or distilled water, and may preferably be an alkaline aqueous solution in which carbon dioxide is easily dissolved.
일 실시예에 따라, 상기 제1 수용액(115)는 1M NaOH의 강염기성 용액일 수 있고, 추후 방전 시 CO2를 더 용리시켜 사용될 수 있다.According to one embodiment, the first aqueous solution 115 may be a strongly basic solution of 1M NaOH, and may be used by further eluting CO 2 during subsequent discharge.
상기 제1 전극(118)은 일측이 상기 제1 전해질에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제1 전해질에 적어도 일부가 잠기도록 위치할 수 있다.One side of the first electrode 118 may be in contact with the first electrolyte, but preferably, it may be positioned so that at least a portion is submerged in the first electrolyte.
상기 제1 전극(118)은 전기 회로를 형성하여 방전 시 수소기체를 생성시킬 수 있는 환원전극일 수 있다.The first electrode 118 may be a reduction electrode capable of forming an electric circuit and generating hydrogen gas during discharge.
상기 제1 전극(118)은 제2 전극에서 발생한 전자(e-)를 통해 환원반응을 일으킬 수 있는 물질, 예를 들어, 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막로 이루어진 군으로부터 선택된 1종 이상일수 있다.The first electrode 118 is made of materials that can cause a reduction reaction through electrons (e - ) generated from the second electrode, such as carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film. It may be one or more types selected from the group consisting of.
상기 제1 전극(118)는 환원반응 촉진을 위해 촉매를 제1 전극 내에 더 포함할 수 있다. 구체적으로, 수소 발생 반응(hydrogen evolution reaction) 촉매일 수 있고, 예를 들어, 백금 촉매, 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 및 페로브스카이트 산화물 촉매로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는, 수소 발생 반응에 대한 전기화학적 활성도가 우수한 백금 촉매를 더 포함할 수 있다.The first electrode 118 may further include a catalyst in the first electrode to promote a reduction reaction. Specifically, it may be a hydrogen evolution reaction catalyst, for example, one or more types selected from the group consisting of platinum catalysts, carbon-based catalysts, carbon-metal composite catalysts, and perovskite oxide catalysts. It may include, and preferably, may further include a platinum catalyst having excellent electrochemical activity for the hydrogen generation reaction.
제1 전극부(110)는 제1 수용 공간(111)과 연통되는 제1 유입구(112), 제1 배출구(113), 및 제1 연결구(114)를 더 포함할 수 있다.The first electrode unit 110 may further include a first inlet 112, a first outlet 113, and a first connector 114 that communicate with the first accommodation space 111.
상기 제1 유입구(112)는 제1 수용액(115)의 수면보다 아래에 위치하도록 제1 수용 공간(111)의 하부에 위치할 수 있다. 제1 배출구(113)는 제1 수용액(115)의 수면보다 위에 위치하도록 제1 수용 공간(111)의 상부에 위치할 수 있다. 제1 유입구(112)를 통해 방전 과정에서 원료로 사용되는 이산화탄소가 제1 수용 공간(111)으로 유입되는데, 필요 시 제1 수용액(115)도 유입될 수 있다. 제1 배출구(113)를 통해서는 충·방전 과정에서 생성된 가스가 외부로 배출될 수 있다. 도시되지는 않았으나, 유입구(112)와 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 상기 제1 연결구(114)는 제1 수용액(115)의 수면보다 아래에 위치하며, 제1 연결구(114)에 연결부(190)가 연결된다. 제1 전극부(110)는 방전 과정에서 이산화탄소 용리 반응이 일어날 수 있다.The first inlet 112 may be located at the lower part of the first receiving space 111 so as to be located below the water surface of the first aqueous solution 115. The first outlet 113 may be located at the upper part of the first receiving space 111 so as to be above the water surface of the first aqueous solution 115. Carbon dioxide, which is used as a raw material during the discharge process, flows into the first receiving space 111 through the first inlet 112, and when necessary, the first aqueous solution 115 can also flow in. Gas generated during charging and discharging can be discharged to the outside through the first outlet 113. Although not shown, the inlet 112 and outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging. The first connector 114 is located below the water surface of the first aqueous solution 115, and a connector 190 is connected to the first connector 114. A carbon dioxide elution reaction may occur in the first electrode unit 110 during the discharge process.
상기 제2 전극부(150)는 제2 수용공간(151)에 수용되는 제2 수용액(155), 및 상기 제2 수용액(155)에 적어도 일부가 잠긴 제2 전극(158)을 포함할 수 있고 바람직하게는, 전자(e-)를 생성시키는 산화반응이 진행되는 산화전극부일 수 있다.The second electrode unit 150 may include a second aqueous solution 155 accommodated in the second receiving space 151, and a second electrode 158 at least partially submerged in the second aqueous solution 155. Preferably, it may be an oxidation electrode part where an oxidation reaction that generates electrons (e - ) occurs.
상기 제2 수용액(155)은 금속 전극부(158)의 전기화학 반응이 촉진될 수 있고, 바람직하게는, 양이온 Na+ 혹은 K+ 의 전도성이 우세한 고농도의 알칼리성 수용액이 사용될 수 있다.The second aqueous solution 155 can promote the electrochemical reaction of the metal electrode unit 158, and preferably, a high concentration alkaline aqueous solution with dominant conductivity of cation Na + or K + can be used.
일 실시예에 따라, 상기 제2 수용액(155)는 1M NaOH 또는 6M NaOH 강염기성 용액일 수 있다.According to one embodiment, the second aqueous solution 155 may be a 1M NaOH or 6M NaOH strongly basic solution.
상기 제2 전극(158)는 일측이 상기 제2 전해질(155)에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제2 전해질(155)에 적어도 일부가 잠기도록 위치할 수 있다.The second electrode 158 may have one side in contact with the second electrolyte 155, but is preferably positioned so that at least part of the second electrode 158 is submerged in the second electrolyte 155.
상기 제2 전극(158)은 전기 회로를 이루는 금속 재질의 산화전극으로써, 산화반응을 통해 전자(e-)를 발생시킬 수 있으면 특별히 제한되지 않으며, 예를 들어, 아연(Zn), 알루미늄(Al), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 리튬(Li), 나트륨(Na), 마그네슘(Mg) 니켈(Ni), 및 구리(Cu)로 이루어진 군으로부터 선택된 1종의 금속 또는 2종 이상을 포함하는 합금일 수 있고, 바람직하게는, 알칼리성 환경에서 전기화학 반응 및 전압이 높은 아연(Zn) 또는 알루미늄(Al)을 포함할 수 있다.The second electrode 158 is an oxide electrode made of a metal material that forms an electric circuit, and is not particularly limited as long as it can generate electrons (e - ) through an oxidation reaction. For example, zinc (Zn), aluminum (Al) ), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), lithium (Li), sodium (Na), magnesium (Mg), nickel (Ni), and copper (Cu). ) may be an alloy containing one type of metal or two or more types selected from the group consisting of ), and preferably includes zinc (Zn) or aluminum (Al), which has high electrochemical reaction and high voltage in an alkaline environment. .
상기 제2 전극부(150)에는 제2 수용공간(151)과 연통되는 제2 연결구(154)가 형성된다. 제2 연결구(154)는 제2 수용액(155)의 수면보다 아래에 위치하며, 제2 연결구(154)에 연결부(190)가 연결될 수 있다.A second connector 154 communicating with the second receiving space 151 is formed in the second electrode portion 150. The second connector 154 is located below the water surface of the second aqueous solution 155, and the connector 190 may be connected to the second connector 154.
제1 연결부(190)는 제1 전극부(110)의 제1 수용공간(111)와 제2 전극부(150)의 제2 수용공간(151)를 연결하는 제1 연결통로(191), 및 제1 연결통로(191)의 내부에 설치되는 양이온 교환막(membrane)(192)를 구비할 수 있다.The first connection portion 190 includes a first connection passage 191 connecting the first accommodating space 111 of the first electrode portion 110 and the second accommodating space 151 of the second electrode portion 150, and A cation exchange membrane 192 installed inside the first connection passage 191 may be provided.
바람직하게는, 상기 제1 연결통로(191)는 제1 전극부(110)에 형성된 제1 연결구(114)와 제2 전극부(150)에 형성된 제2 연결구(154)의 사이에 연장되어서 제1 전극부(110)의 제1 수용 공간(111)과 제2 전극부(150)의 제2 수용 공간(151)을 연통시킬 수 있다. 상기 제1 연결통로(191)의 내부에 양이온 교환막(membrane)(192)을 구비시킬 수 있다.Preferably, the first connection passage 191 extends between the first connector 114 formed on the first electrode portion 110 and the second connector 154 formed on the second electrode portion 150. The first accommodating space 111 of the first electrode unit 110 and the second accommodating space 151 of the second electrode unit 150 may be connected. A cation exchange membrane 192 may be provided inside the first connection passage 191.
상기 양이온 교환막(membrane)(192)은 제1 연결통로(191)의 내부를 막는 형태로 설치될 수 있다. 상기 양이온 교환막(membrane)(192)은 제1 전극부(110)와 제1 전극부(150)의 사이에 이온의 이동만을 허용하여 방전과정에서 생기는 이온 불균형을 해소할 수 있고, 바람직하게는, 제2 수용액(155)에 포함된 양이온이 제1 수용액(115)으로 이동할 수 있다.The cation exchange membrane 192 may be installed to block the interior of the first connection passage 191. The cation exchange membrane 192 allows only the movement of ions between the first electrode portion 110 and the first electrode portion 150 to resolve ion imbalance occurring during the discharge process, preferably, Cations contained in the second aqueous solution 155 may move to the first aqueous solution 115.
일 실시예에 따르면, 상기 양이온 교환막(membrane)(192)으로 양이온을 이동시킬 수 있는 막으로써, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion-212, 217)등을 사용할 수 있다.According to one embodiment, as a membrane capable of moving cations to the cation exchange membrane 192, Nafion-212, 217, a fluororesin-based cation exchange membrane developed by DuPont in the United States, etc. You can use it.
상기 제3 전극부(170)는 제3 수용공간(171)에 수용되는 제3 수용액(175), 및 상기 제3 수용액(175)에 적어도 일부가 잠긴 제3 전극(178)을 포함할 수 있다.바람직하게는, 제1 전극(118)과 제2 전극(158)에서 자발적인 방전 반응이 일어남과 동시에, 제3 전극(178)과 제2 전극(158)이 전원공급장치 연결되어 전원공급장치에 전원 공급 시, 제3 전극(178)에서 산소발생반응(Oxygen Evolution Reaction; OER) 및 염소발생반응(Chlorine evolution reaction; CER)의 산화반응이 일어날 수 있다.The third electrode unit 170 may include a third aqueous solution 175 accommodated in the third accommodation space 171, and a third electrode 178 that is at least partially submerged in the third aqueous solution 175. . Preferably, at the same time that a spontaneous discharge reaction occurs in the first electrode 118 and the second electrode 158, the third electrode 178 and the second electrode 158 are connected to the power supply and are connected to the power supply. When power is supplied, oxidation reactions of oxygen evolution reaction (OER) and chlorine evolution reaction (CER) may occur in the third electrode 178.
상기 제3 수용액(175)은 중성 및 약 알칼리성 수용액, 또는 Cl- 이온이 포함된 수계 전해질이 사용될 수 있다.The third aqueous solution 175 may be a neutral or slightly alkaline aqueous solution or an aqueous electrolyte containing Cl - ions.
일 실시예에 따라, 상기 제3 수용액(175)는 염화칼륨(KCl) 용액일 수 있다.According to one embodiment, the third aqueous solution 175 may be a potassium chloride (KCl) solution.
상기 제3 전극(178)는 일측이 상기 제3 전해질(175)에 접촉하는 배치를 가질 수 있으나 바람직하게는, 상기 제3 전해질(175)에 적어도 일부가 잠기도록 위치할 수 있다.The third electrode 178 may have one side in contact with the third electrolyte 175, but is preferably positioned so that at least part of the third electrode 178 is submerged in the third electrolyte 175.
상기 제3 전극(178)은 제2 전극(158)과 전기 회로를 이루는 금속 재질의 산화전극으로써, 산소발생반응(OER) 및 염소발생반응(CER)의 산화반응을 통해 전자(e-)를 발생시킬 수 있으면 특별히 제한되지 않으며, 예를 들어, 금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매, 금속 탄화물 촉매, 및 탄소 촉매 군으로부터 선택된 1종의 금속 또는 2종 이상을 포함하는 합금일 수 있고, 바람직하게는, 귀금속 계열 촉매인 Pt 및 Ir, IrOx을 포함할 수 있다.The third electrode 178 is an oxidizing electrode made of metal that forms an electric circuit with the second electrode 158, and generates electrons (e - ) through the oxidation reactions of the oxygen evolution reaction (OER) and the chlorine evolution reaction (CER). There is no particular limitation as long as it can be generated, and for example, one metal selected from the group of metal oxide catalysts, perovskite oxide catalysts, metal sulfide catalysts, metal carbide catalysts, and carbon catalysts, or an alloy containing two or more kinds It may include Pt, Ir, and IrOx, which are noble metal-based catalysts.
제3 전극부(170)는 제3 수용 공간(171)과 연통되는 제3 투입구(127), 제2 배출구(173), 및 제3 연결구(174)를 더 포함할 수 있다.The third electrode unit 170 may further include a third inlet 127, a second outlet 173, and a third connector 174 that communicate with the third accommodation space 171.
상기 제3 투입구(127)는 제3 수용액(175)의 수면보다 아래에 위치하도록 제3 수용 공간(171)의 하부에 위치할 수 있다. 제2 배출구(173)는 제3 수용액(175)의 수면보다 위에 위치하도록 제3 수용 공간(171)의 상부에 위치할 수 있다. 제3 투입구(127)를 통해 탄산칼슘(CaCO3(S)) 생성부(120)에서 탄산칼슘을 생성 후 남은 잔여액을 제3 수용 공간(171)으로 투입될 수 있다. 제3 배출구(173)를 통해서는 전원공급장치의 전원공급 시 생성된 가스인 산소(O2) 및 염소(Cl2)가 외부로 배출될 수 있다. 도시되지는 않았으나, 제3 투입구(127)와 제2 배출구(173)는 전원공급장치의 전원공급 시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 상기 제3 전극부(170)에는 제2 수용공간(151)과 연통되는 제3 연결구(174)가 형성된다. 제3 연결구(174)는 제3 수용액(175)의 수면보다 아래에 위치하며, 제3 연결구(174)에 제2 연결부(190')가 연결될 수 있다.The third inlet 127 may be located below the third accommodating space 171 so as to be below the water surface of the third aqueous solution 175. The second outlet 173 may be located at the upper part of the third accommodation space 171 so as to be above the water surface of the third aqueous solution 175. The remaining liquid remaining after generating calcium carbonate in the calcium carbonate (CaCO 3 (S) ) generating unit 120 may be injected into the third receiving space 171 through the third inlet 127. Oxygen (O 2 ) and chlorine (Cl 2 ), which are gases generated when power is supplied to the power supply device, may be discharged to the outside through the third outlet 173. Although not shown, the third inlet 127 and the second outlet 173 may be selectively opened and closed at appropriate times by a valve or the like when the power supply device is supplied with power. A third connector 174 communicating with the second receiving space 151 is formed in the third electrode portion 170. The third connector 174 is located below the water surface of the third aqueous solution 175, and the second connector 190' may be connected to the third connector 174.
제2 연결부(190')는 제2 전극부(150)의 제2 수용공간(151)와 제3 전극부(170)의 제3 수용공간(171)를 연결하는 제2 연결통로(191'), 및 제2 연결통로(191')의 내부에 설치되는 교환막(membrane)(192')를 구비할 수 있다.The second connection part 190' is a second connection passage 191' connecting the second accommodation space 151 of the second electrode unit 150 and the third accommodation space 171 of the third electrode unit 170. , and an exchange membrane 192' installed inside the second connection passage 191'.
바람직하게는, 상기 제2 연결통로(191')는 제2 전극부(150)에 형성된 제2 연결구(154)와 제3 전극부(170)에 형성된 제3 연결구(174)의 사이에 연장되어서 제2 전극부(150)의 제2 수용 공간(151)과 제3 전극부(170)의 제3 수용 공간(171)을 연통시킬 수 있다. 상기 제2 연결통로(191')의 내부에 양이온 교환막(membrane)(192')을 구비시킬 수 있다.Preferably, the second connection passage 191' extends between the second connector 154 formed in the second electrode portion 150 and the third connector 174 formed in the third electrode portion 170. The second accommodating space 151 of the second electrode unit 150 and the third accommodating space 171 of the third electrode unit 170 may be connected. A cation exchange membrane 192' may be provided inside the second connection passage 191'.
상기 교환막(membrane)(192')은 제2 연결통로(191')의 내부를 막는 형태로 설치될 수 있다. 상기 교환막(membrane)(192')은 제1 전극부(110)와 제1 전극부(150)의 사이에 이온의 이동만을 허용하여 방전과정에서 생기는 이온 불균형을 해소할 수 있고, 바람직하게는, 제3 수용액(175)에 포함된 양이온이 제2 수용액(155)으로 이동할 수 있다.The exchange membrane 192' may be installed to block the interior of the second connection passage 191'. The exchange membrane 192' allows only the movement of ions between the first electrode portion 110 and the first electrode portion 150, thereby resolving ion imbalance occurring during the discharge process. Preferably, Cations contained in the third aqueous solution 175 may move to the second aqueous solution 155.
일 실시예에 따르면, 상기 교환막(membrane)(192)으로 양이온 (K+, Na+ 등) 이동시킬 수 있는 막으로써, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion 212, 217 등)을 사용할 수 있다.According to one embodiment, the membrane capable of moving positive ions (K+, Na+, etc.) to the exchange membrane 192 is Nafion (Nafion 212, 217), a fluororesin-based cation exchange membrane developed by DuPont in the United States. etc.) can be used.
상기 복합이차전지(100)는 탄산칼슘(CaCO3(S))을 생성시키는 반응기(121); 상기 제1 수용공간(111)과 반응기(121)를 연결하고, 제1 수용공간(111)의 중탄산이온(HCO3 -)을 반응기(121)로 투입시키는 제1 투입구(123); 상기 반응기(121)와 연결되고, 칼슘이온(Ca2+)을 반응기(121)로 투입시키는 제2 투입구(125); 및 상기 제3 수용공간(171)과 반응기(121)를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제3 수용공간(171)으로 투입시키는 제3 투입구(127);를 포함하는 탄산칼슘(CaCO3(S)) 생성부(120)를 포함할 수 있다.The composite secondary battery 100 includes a reactor 121 that generates calcium carbonate (CaCO 3 (S) ); A first inlet 123 that connects the first accommodation space 111 and the reactor 121 and injects bicarbonate ions (HCO 3 - ) in the first accommodation space 111 into the reactor 121; A second inlet 125 connected to the reactor 121 and introducing calcium ions (Ca 2+ ) into the reactor 121; and a third inlet 127 that connects the third accommodation space 171 and the reactor 121 and injects the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the third accommodation space 171; It may include a calcium carbonate (CaCO 3 (S) ) generating unit 120 containing.
상기 제1 투입구(123)는 상기 제1 수용공간(111)과 반응기(121)를 연결되고, 제1 수용공간(111) 내에서 반응 후 생성물인 중탄산이온(HCO3 -)을 탄산칼슘(CaCO3(S)) 생성부(120)의 반응기(121)에 투입시킬 수 있고, 바람직하게는, 제1 수용공간(111) 내에서 반응 후 생성물인 KHCO3(aq)이 반응기(121)로 투입될 수 있다.The first inlet 123 connects the first accommodating space 111 and the reactor 121, and bicarbonate ions (HCO 3 - ), which are the product after reaction in the first accommodating space 111, are converted into calcium carbonate (CaCO 3(S) ) can be introduced into the reactor 121 of the production unit 120, and preferably, after reaction in the first receiving space 111, the product KHCO 3(aq) is introduced into the reactor 121. It can be.
상기 제2 투입구(125)는 상기 반응기(121)와 연결되어, 제1 투입구(123)를 통해 반응기(121)에 투입되는 중탄산이온(HCO3 -)과 반응하여 탄산칼슘(CaCO3(S))을 생성시킬 수 있는 칼슘이온(Ca2+)을 투입시킬 수 있고, 바람직하게는 CaCl2(aq)를 투입시킬 수 있다.The second inlet 125 is connected to the reactor 121, and reacts with bicarbonate ions (HCO 3 - ) introduced into the reactor 121 through the first inlet 123 to produce calcium carbonate (CaCO 3 (S). ) Calcium ions (Ca 2+ ) capable of producing ) can be added, preferably CaCl 2 (aq) .
상기 반응기(121)은 제1 투입구(123)에서 투입되는 중탄산이온(HCO3 -)과 제2 투입구(125)에서 투입되는 칼슘이온(Ca2+)과 반응하여 탄산칼슘(CaCO3(S))을 생성시키고, 생성반응 후 잔여물이 남을 수 있고, 바람직하게는 상기 잔여물은 KCl(aq)일 수 있다.The reactor 121 reacts with bicarbonate ions (HCO 3 - ) introduced from the first inlet 123 and calcium ions (Ca 2+ ) introduced from the second inlet 125 to produce calcium carbonate (CaCO 3 (S) ) is produced, and a residue may remain after the production reaction. Preferably, the residue may be KCl (aq) .
상기 제3 투입구(127)은 제3 수용공간(171)과 반응기(121)이 연결되어, 반응기(121)에서 생성반응 후 잔여액을 제3 수용공간(171)으로 투입시켜 제3 전극(178)을 통해 산소생성반응(OER) 및 염소생성반응(CER)을 진행시키는 용액을 제공할 수 있다.The third inlet 127 is connected to the third receiving space 171 and the reactor 121, and injects the remaining liquid after the production reaction in the reactor 121 into the third receiving space 171 to form a third electrode 178. ), it is possible to provide a solution that progresses the oxygen generation reaction (OER) and the chlorine generation reaction (CER).
도 10은 다른 일 구현예에 따른 이산화탄소를 이용하는 복합이차전지의 방전과정을 도시한 모식도이다. 도 10을 참고하면, 이차전지(100a)는 제1 전극부(110), 제2 전극부(150), 제1 전극부(110)와 제2 전극부(150)를 연결하는 제1 연결부(190), 제3 전극부(170), 제2 전극부(150)와 제3 전극부(170)를 연결하는 제2 연결부(190'), 제1 전극부(110)와 제3 전극부를 연결하는 탄산칼슘 생성부(120), 이산화탄소 처리부(130), 이산화탄소 순환 공급부(135), 제1 전극부(110)와 이산화탄소 처리부(130)를 연통시키는 제1 연결관(140), 및 잔여액 순환공급부(160)을 포함할 수 있다.Figure 10 is a schematic diagram showing the discharge process of a composite secondary battery using carbon dioxide according to another embodiment. Referring to FIG. 10, the secondary battery 100a includes a first electrode portion 110, a second electrode portion 150, and a first connection portion connecting the first electrode portion 110 and the second electrode portion 150. 190), a third electrode unit 170, a second connection unit 190' connecting the second electrode unit 150 and the third electrode unit 170, and a second connection unit 190' connecting the first electrode unit 110 and the third electrode unit. a calcium carbonate generating unit 120, a carbon dioxide processing unit 130, a carbon dioxide circulation supply unit 135, a first connection pipe 140 communicating between the first electrode unit 110 and the carbon dioxide processing unit 130, and a residual liquid circulation. It may include a supply unit 160.
상기 제1 전극부(110), 제2 전극부(150), 제1 연결부(190), 제3 전극부(170), 제2 연결부(190'), 및 탄산칼슘 생성부(120)와 관련된 내용 중 도 1에 도시된 일 실시예에서 설명된 내용과 중복된 내용은 생략할 수 있다.Related to the first electrode unit 110, the second electrode unit 150, the first connection unit 190, the third electrode unit 170, the second connection unit 190', and the calcium carbonate generating unit 120. Content that overlaps with the content described in the embodiment shown in FIG. 1 may be omitted.
상기 이산화탄소 처리부(130)는 상기 제1 수용공간(111)과 연통되고, 제4 수용 공간(131)에 수용되는 제4 수용액(135)은 제1 전극부(110)의 제1 수용액(115)과 동일한 수용액일 수 있다.The carbon dioxide treatment unit 130 is in communication with the first accommodation space 111, and the fourth aqueous solution 135 accommodated in the fourth accommodation space 131 is the first aqueous solution 115 of the first electrode unit 110. It may be the same aqueous solution as.
상기 이산화탄소 처리부(130)는 제4 수용 공간(131)으로 이산화탄소가 유입되는 제2 유입구(132), 연결관(140)이 연결되는 연통구(133), 및 제4 수용공간(131)의 상부에 위치하는 제3 배출구(134)를 포함할 수 있다.The carbon dioxide processing unit 130 includes a second inlet 132 through which carbon dioxide flows into the fourth accommodation space 131, a communication port 133 to which the connection pipe 140 is connected, and an upper portion of the fourth accommodation space 131. It may include a third outlet 134 located at.
상기 제2 유입구(132)는 제4 수용공간(131)에서 연통구(133)보다 위에 위치하고, 제3 배출구(134) 및 제1 수용액(115)의 수면보다 아래에 위치할 수 있다. 제2 유입구(132)를 통해 방전 과정에서 연료로 사용되는 이산화탄소 기체가 제4 수용 공간(131)으로 유입될 수 있고, 제2 유입구(132)를 통해 필요에 따라 제4 수용액(135)도 공급될 수 있다. The second inlet 132 may be located above the communication port 133 in the fourth receiving space 131, and may be located below the third outlet 134 and the water surface of the first aqueous solution 115. Carbon dioxide gas used as fuel during the discharge process can flow into the fourth receiving space 131 through the second inlet 132, and a fourth aqueous solution 135 is also supplied through the second inlet 132 as needed. It can be.
상기 제3 배출구(134)는 제4 수용공간(131)에서 제2 유입구(132) 및 제1 수용액(115)의 수면보다 위에 위치한다. 제3 배출구(134)를 통해 제4 수용공간(131)에서 제4 수용액(135)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 비중차이로 인해 상부로 뜨게되어 최종적으로 외부로 배출된다. 제3 배출구(134)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(135)를 통해 제2 유입구(132)로 공급될 수 있다.The third outlet 134 is located above the water level of the second inlet 132 and the first aqueous solution 115 in the fourth accommodation space 131. Carbon dioxide gas that is not dissolved in the fourth aqueous solution 135 in the fourth accommodating space 131 through the third outlet 134 and thus is not ionized floats to the top due to the difference in specific gravity and is finally discharged to the outside. Carbon dioxide gas discharged through the third outlet 134 may be supplied to the second inlet 132 through the carbon dioxide circulation supply unit 135.
이를 통해 제1 배출구(113)에서 배출되는 수소(H2)가스의 순도가 높아지는 장점이 있다. 즉, 기존에는 이산화탄소 처리부를 따로 포함하지 않아 이온화되지 않은 이산화탄소 기체와 이차전지에서 발생한 수소가스가 혼합되어 배출되어 순도가 낮아지는 단점이 있었다. 그러나, 다른 일 실시예에 따른 이차전지는 이산화탄소 처리부(130)를 둠으로써 제3 수용 공간(131)으로 유입된 이산화탄소 중 제4 수용액에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 제1 전극부(110)의 제1 수용공간(111)으로 이동하지 못하므로, 제2 배출구(134)를 통해 이온화되지 않은 이산화탄소 가스를 따로 배출시킴으로써 이차전지에서 발생한 수소가스가 배출하는 제1 배출구(113)와 차이를 두어 순도 높은 수소가스를 얻을 수 있는 장점이 있다.This has the advantage of increasing the purity of hydrogen (H 2 ) gas discharged from the first outlet 113. In other words, the existing method did not include a separate carbon dioxide treatment unit, so there was a disadvantage in that unionized carbon dioxide gas and hydrogen gas generated from the secondary battery were mixed and discharged, lowering the purity. However, the secondary battery according to another embodiment has a carbon dioxide treatment unit 130, so that among the carbon dioxide flowing into the third accommodation space 131, the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution is stored in the first electrode unit 110. ), the non-ionized carbon dioxide gas is separately discharged through the second outlet 134, thereby making the difference from the first outlet 113 through which hydrogen gas generated from the secondary battery is discharged. There is an advantage in being able to obtain high purity hydrogen gas.
한편, 상기 제2 유입구(132)와 제1 배출구(113)는 충전 및 방전 시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.Meanwhile, the second inlet 132 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
상기 연통구(133)는 제4 수용공간(131)에서 제2 유입구(132)보다 아래에 위치하며, 연통구(133)에는 연결관(140)이 연결될 수 있다. 상기 연통구(133)를 통해 제4 수용공간(131)은 제1 수용공간(111)과 연통될 수 있다.The communication port 133 is located below the second inlet 132 in the fourth accommodation space 131, and a connection pipe 140 may be connected to the communication port 133. The fourth accommodating space 131 may be communicated with the first accommodating space 111 through the communication port 133.
상기 연결관(140)은 제1 수용 공간(111)의 제1 유입구(112)와 제4 수용 공간(131)의 연통구(133)을 연결할 수 있다. 상기 연결관(140)의 내부에 형성되는 연결 통로(141)를 통해 제1 수용공간(111)과 제4 수용공간(121)이 연통될 수 있다.The connection pipe 140 may connect the first inlet 112 of the first accommodation space 111 and the communication port 133 of the fourth accommodation space 131. The first accommodating space 111 and the fourth accommodating space 121 may be communicated through the connecting passage 141 formed inside the connecting pipe 140.
이산화탄소 순환 공급부(135)는 제3 배출구(134)를 통해 배출되는 이산화탄소 가스를 제2 유입구(132)로 순환시켜서 재공급할 수 있다.The carbon dioxide circulation supply unit 135 may circulate the carbon dioxide gas discharged through the third outlet 134 to the second inlet 132 and re-supply it.
즉, 제2 유입구(132)를 통해 이산화탄소 처리부(130)의 제4 수용공간(131)으로 유입된 이산화탄소 중 제4 수용액(135)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 제1 전극부(110)의 제1 수용공간(111)으로 이동하지 못하고 상승하여 제4 수용공간(131) 내 제4 수용액(135)의 수면 위 공간에 모인 후 제3 배출구(134)를 통해 배출되고 제3 배출구(134)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(135)에 의해 제2 유입구(132)를 통해 제4 수용공간(131)으로 공급되어서 재활용된다.That is, among the carbon dioxide that flows into the fourth accommodation space 131 of the carbon dioxide processing unit 130 through the second inlet 132, the carbon dioxide gas that is not ionized because it is not dissolved in the fourth aqueous solution 135 is connected to the first electrode unit 110. ) fails to move to the first accommodation space 111 and rises, collects in the space above the water surface of the fourth aqueous solution 135 in the fourth accommodation space 131, and is then discharged through the third outlet 134 and the third outlet ( The carbon dioxide gas discharged through 134) is supplied to the fourth accommodation space 131 through the second inlet 132 by the carbon dioxide circulation supply unit 135 and is recycled.
따라서, 다른 일 실시예에 따른 이차전지는 이온화되지 않은 이산화탄소 가스를 이산화탄소 순환 공급부(135)를 통해 제2 유입구(132)로 공급시킬 수 있으므로 전지의 에너지 효율을 높일 수 있는 장점이 있다.Therefore, the secondary battery according to another embodiment has the advantage of increasing the energy efficiency of the battery because it can supply non-ionized carbon dioxide gas to the second inlet 132 through the carbon dioxide circulation supply unit 135.
또한, 다른 일 실시예에 따른 이차전지는 이산화탄소 순환 공급부(135)를 더 포함함에 따라, 제3 전극부(170)는 전원공급장치(160)의 전원공급 시, 반응 후 잔여액을 제4 수용공간(131)의 제4 수용액(135)으로 재공급하는 잔여액 순환공급부(180)를 더 포함한다.In addition, as the secondary battery according to another embodiment further includes a carbon dioxide circulation supply unit 135, the third electrode unit 170 receives the remaining liquid after the reaction as a fourth compartment when power is supplied from the power supply device 160. It further includes a residual liquid circulation supply unit 180 that re-supplies the fourth aqueous solution 135 in the space 131.
따라서, 다른 일 실시예에 따른 이차전지는 잔여액 순환공급부(180)를 더 포함함에 따라 이산화탄소 포집을 위한 지속적인 양이온 공급, 예로 K+ 혹은 Na+를 추가 공급이 필요 없는 장점이 있다.Therefore, the secondary battery according to another embodiment has the advantage of eliminating the need for continuous supply of positive ions, for example, additional supply of K+ or Na+ for carbon dioxide capture, as it further includes a residual liquid circulation supply unit 180.
상기 이차전지(100, 100a)의 방전 과정은 하기와 같다. 도 9 또는 도 10은 이차전지(100, 100a)의 방전 과정이 함께 도시되어 있다. 이를 참조하면, 제1 유입구(112)를 통해 제1 수용액(115)으로 수소 생산의 원료로서 이산화탄소가 주입되며, 제1 전극부(110)에서는 다음 [반응식 16]과 같은 이산화탄소의 화학적 용리 반응이 이루어진다.The discharging process of the secondary batteries 100 and 100a is as follows. Figure 9 or Figure 10 shows the discharging process of the secondary batteries 100 and 100a. Referring to this, carbon dioxide is injected as a raw material for hydrogen production into the first aqueous solution 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide is performed in the first electrode unit 110 as shown in [Reaction Formula 16]. It comes true.
[반응식 16][Scheme 16]
H2O(l) + CO2(g) → H+(aq) + HCO3 -(aq)H 2 O(l) + CO 2 (g) → H + (aq) + HCO 3 - (aq)
즉, 제1 전극부(110)는 제1 전극부(110)에 공급된 이산화탄소(CO2)가 제1 수용액(115)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성될 수 있다.That is, the first electrode unit 110 converts carbon dioxide (CO 2 ) supplied to the first electrode unit 110 into hydrogen cations (H + ) and bicarbonate (HCO 3 - ) can be produced.
또한, 제1 전극부(110)에서는 다음 [반응식 17]과 같은 전기적 반응이 이루어진다.Additionally, an electrical reaction occurs in the first electrode unit 110 as shown in [Reaction Formula 17].
[반응식 17] [Scheme 17]
2H+(aq) + 2e- →H2(g)2H + (aq) + 2e - →H 2 (g)
즉, 제1 전극부(110)에서 수소 양이온(H+)은 전자(e-)를 받아서 수소(H2) 기체가 발생하게 된다. 발생된 수소(H2) 기체는 제1 배출구(113)를 통해서 외부로 배출된다.That is, in the first electrode unit 110, hydrogen positive ions (H+) receive electrons (e - ) and hydrogen (H 2 ) gas is generated. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 113.
아울러, 제1 전극부(110)에서는 다음 [반응식 18]과 같은 복합 수소발생 반응이 이루어진다.In addition, a complex hydrogen generation reaction occurs in the first electrode unit 110 as shown in [Reaction Formula 18].
[반응식 18] [Scheme 18]
2H2O(l) + 2CO2(g) + 2e-→ H2(g) + 2HCO3 - (aq)2H 2 O(l) + 2CO 2 (g) + 2e - → H 2 (g) + 2HCO 3 - (aq)
상기 복합 수소발생반응으로 발생한 중탄산염(HCO3 -)을 포함하는 수용액은 양이온과 함께 제1 투입구(123)를 통해 탄산칼슘(CaCO3(S)) 생성부의 반응기(121)로 투입될 수 있다.The aqueous solution containing bicarbonate (HCO 3 - ) generated from the complex hydrogen generation reaction may be introduced into the reactor 121 of the calcium carbonate (CaCO 3 (S) ) production unit through the first inlet 123 along with positive ions.
이때, 상기 중탄산염을 포함하는 수용액에 포함되는 양이온은 칼륨 양이온(K+), 소듐 양이온(Na+), 리튬 (Li+), 및 마그네슘 (Mg+)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.At this time, the cation contained in the aqueous solution containing bicarbonate may be one or more types selected from the group consisting of potassium cation (K + ), sodium cation (Na + ), lithium (Li + ), and magnesium (Mg + ).
일 실시예에 따라, KHCO3(aq) 수용액으로 반응기(121)에 투입될 수 있다.According to one embodiment, an aqueous solution of KHCO 3 (aq) may be introduced into the reactor 121.
상기 반응기(121)로 투입된 중탄산염(HCO3 -)은 제2 투입구(125)를 통해반응기로 투입되는 칼슘이온(Ca2+)을 포함하는 수용액과 다음 [반응식 19]와 같은탄산칼슘 생성반응이 이루어진다.Bicarbonate (HCO 3 - ) introduced into the reactor 121 is combined with an aqueous solution containing calcium ions (Ca 2+ ) introduced into the reactor through the second inlet 125 and a calcium carbonate production reaction as shown in [Reaction Formula 19]. It comes true.
[반응식 19][Scheme 19]
2 KHCO3(aq) + CaCl2(aq) → 2 KCl(aq) + CO2(g) + CaCO3(s) + H2O(l) 2 KHCO 3(aq) + CaCl 2(aq) → 2 KCl (aq) + CO 2(g) + CaCO 3(s) + H 2 O (l)
혹은or
K2CO3(aq) + CaCl2(aq) → 2 KCl(aq) + CaCO3(s) K 2 CO 3(aq) + CaCl 2(aq) → 2 KCl (aq) + CaCO 3(s)
이때, 칼슘이온(Ca2+)을 포함하는 수용액에 포함되는 음이온은 염소 음이온(Cl-), 수산화이온 (OH-), 불소 (F -), 및 브로민 (Br-)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.At this time, the anion contained in the aqueous solution containing calcium ion (Ca 2+ ) is selected from the group consisting of chlorine anion (Cl - ), hydroxide ion (OH - ), fluorine (F - ), and bromine (Br - ). There may be more than one type.
일 실시예에 따라, CaCl2(aq) 수용액으로 반응기(121)에 투입될 수 있다.According to one embodiment, an aqueous CaCl 2 (aq) solution may be introduced into the reactor 121.
상기 탄산칼슘 생성반응 후 잔여액은 제3 투입구(127)를 통해 제3 전극부(170)로 투입될 수 있다.After the calcium carbonate production reaction, the remaining liquid may be injected into the third electrode unit 170 through the third inlet 127.
이때, 중탄산염을 포함하는 수용액에 포함되는 양이온과 칼슘이온(Ca2+)을 포함하는 수용액에 포함되는 음이온을 포함할 수 있다.At this time, it may include cations contained in an aqueous solution containing bicarbonate and anions contained in an aqueous solution containing calcium ions (Ca 2+ ).
일 실시예에 따라, KCl(aq) 수용액일 수 있다.According to one embodiment, it may be an aqueous KCl (aq) solution.
그리고, 제2 전극부(150)는 제2 전극(158)이 아연(Zn)인 경우에 다음 [반응식 20]과 같은 산화 반응이 이루어진다.And, when the second electrode 158 is zinc (Zn), an oxidation reaction occurs in the second electrode unit 150 as shown in [Reaction Formula 20].
[반응식 20][Scheme 20]
Zn + 4OH- → Zn(OH)4 2- + 2e- (E0 = -1.25 V)Zn + 4OH - → Zn(OH) 4 2- + 2e - (E 0 = -1.25 V)
Zn(OH)4 2- → ZnO + H2O + 2OH- Zn(OH) 4 2- → ZnO + H 2 O + 2OH -
결국, 제2 전극(158)이 아연(Zn)인 경우에 방전 과정에서 이루어지는 전체 반응식은 다음 [반응식 21]과 같다.Ultimately, when the second electrode 158 is zinc (Zn), the overall reaction equation that occurs during the discharge process is as follows [Reaction Formula 21].
[반응식 21][Scheme 21]
Zn + 2CO2 + 2H2O + 2OH- → ZnO + 2HCO3 -(aq) + H2(g) (E0= 1.25 V)Zn + 2CO 2 + 2H 2 O + 2OH - → ZnO + 2HCO 3 - (aq) + H 2 (g) (E 0 = 1.25 V)
만일, 제2 전극부(150)에서 제2 전극(158)이 알루미늄(Al)인 경우에 다음 [반응식 22]와 같은 산화 반응이 이루어진다.If the second electrode 158 in the second electrode unit 150 is aluminum (Al), an oxidation reaction occurs as shown in [Reaction Formula 22].
[반응식 22][Scheme 22]
Al + 3OH-→ Al(OH)3 + 3e- (E0= -2.31 V)Al + 3OH - → Al(OH) 3 + 3e - (E 0 = -2.31 V)
결국, 제2 전극(158)이 알루미늄(Al)인 경우에 방전 과정에서 이루어지는 전체 반응식은 다음 [반응식 23]과 같다.Ultimately, when the second electrode 158 is made of aluminum (Al), the overall reaction equation that occurs during the discharge process is as follows [Equation 23].
[반응식 23][Scheme 23]
2Al + 6CO2 + 6H2O + 6OH- → 2Al(OH)3 + 6HCO3 - (aq) + 3H2(g) (E0 = 2.31 V)2Al + 6CO 2 + 6H 2 O + 6OH - → 2Al(OH) 3 + 6HCO 3 - (aq) + 3H 2 (g) (E 0 = 2.31 V)
결과적으로, [반응식 21]과 [반응식 23]을 통해 알 수 있는 바와 같이, 방전 시 제1 수용액(115)에서 용리된 이산화탄소에 의해 생성된 수소 이온이 제1 전극(118)로부터 전자를 받아서 수소 기체로 환원되어서, 제1 배출구(113)를 통해 배출되고, 제2 전극(158)는 산화물의 형태로 변하게 된다. 방전 시 제2 전극부(150)의 제2 수용액(155)에 포함된 칼륨 이온(K+)이 양이온 교환막(192)을 통과하여 제1 전극부(110)의 제1 수용액(115)으로 이동함으로써, 이산화탄소 공급에 따른 KOH 농도 변화를 막을 수 있게 된다.As a result, as can be seen through [Reaction Formula 21] and [Reaction Formula 23], hydrogen ions generated by carbon dioxide eluted from the first aqueous solution 115 during discharge receive electrons from the first electrode 118 and form hydrogen. It is reduced to gas and discharged through the first outlet 113, and the second electrode 158 changes to the form of an oxide. During discharge, potassium ions (K + ) contained in the second aqueous solution 155 of the second electrode unit 150 pass through the cation exchange membrane 192 and move to the first aqueous solution 115 of the first electrode unit 110. By doing so, it is possible to prevent changes in KOH concentration due to carbon dioxide supply.
한편, 이차전지의 방전반응이 일어남과 동시에, 전원공급장치(160)에 전원을 인가하면 하기와 같은 반응이 진행될 수 있다.Meanwhile, when power is applied to the power supply device 160 at the same time as the discharge reaction of the secondary battery occurs, the following reaction may proceed.
구체적으로, 제3 전극부(170)에서는 제3 투입구(127)에서 투입된 상기 탄산칼슘 생성반응 후 잔여액은 전원공급장치(160)의 전원인가에 따라 다음 [반응식 24]와 같은 산소발생반응(OER)의 산화반응이 이루어진다.Specifically, in the third electrode unit 170, the remaining liquid after the calcium carbonate generation reaction injected from the third inlet 127 undergoes an oxygen generation reaction ( OER) oxidation reaction takes place.
[반응식 24][Scheme 24]
4 OH- (aq) → O2(g) + 2H2O(l) + 4 e- 4 OH - (aq) → O 2(g) + 2H 2 O (l) + 4 e -
한편, 제3 투입구(127)에서 투입된 상기 탄산칼슘 생성반응 후 잔여액에 염소이온(Cl-)이 포함되어 있을 경우, 다음 [반응식 25]와 같은 염소발생반응의 산화반응도 함께 이뤄진다.Meanwhile, if the remaining liquid after the calcium carbonate generation reaction injected from the third inlet 127 contains chlorine ions (Cl-), the oxidation reaction of the chlorine generation reaction as shown in the following [Reaction Formula 25] also occurs.
[반응식 25][Scheme 25]
2 Cl- (aq) → Cl2(g) + 2 e- 2 Cl - (aq) → Cl 2(g) + 2 e -
이때, 제2 전극부(150)에서는 방전을 통한 종전 언급한 반응이 이뤄지면서도, 전원공급장치(160)의 전원인가에 따라 금속생성반응의 환원반응이 동시에 일어날 수 있다. 특히, 제2 전극부(150)의 제2 전극(158)이 아연일 경우, 다음 [반응식 26]과 같은 반응이 진행되고, 제2 전극부(150)의 제2 전극(158)이 알루미늄일 경우, 다음 [반응식 27]과 같은 반응이 진행된다.At this time, while the previously mentioned reaction is carried out through discharge in the second electrode unit 150, the reduction reaction of the metal production reaction can occur simultaneously depending on the application of power to the power supply device 160. In particular, when the second electrode 158 of the second electrode unit 150 is zinc, a reaction occurs as shown in [Reaction Formula 26], and the second electrode 158 of the second electrode unit 150 is aluminum. In this case, the reaction proceeds as shown in [Reaction Formula 27].
[반응식 26][Scheme 26]
Zn(OH)4 2- + 2e- → Zn + 4OH- Zn(OH) 4 2- + 2e - → Zn + 4OH -
[반응식 27][Scheme 27]
Al(OH)3 + 3e- → Al + 3OH- Al(OH) 3 + 3e - → Al + 3OH -
즉, 일 실시예에 따른 복합이차전지는 이차전지의 자발적인 방전반응을 통해 고순도의 수소기체와 탄산칼슘을 생산할 수 있으면서도, 제3 전극과 제2 전극의 전원공급장치의 전원인가에 따라 방전으로 소모되는 제2 전극의 금속을 다시 재생할 수 있으므로, 제2 전극의 금속 교체없이 전원공급장치의 전원인가를 통해 탄산칼슘을 경제적이고 효율적으로 생산할 수 있는 장점이 있다.That is, the composite secondary battery according to one embodiment is capable of producing high-purity hydrogen gas and calcium carbonate through a spontaneous discharge reaction of the secondary battery, but is consumed by discharge according to the application of power to the power supply device of the third electrode and the second electrode. Since the metal of the second electrode can be regenerated, there is an advantage in that calcium carbonate can be produced economically and efficiently by applying power to the power supply device without replacing the metal of the second electrode.

Claims (56)

  1. 제1 수용 공간에 수용되는 수산화칼륨을 포함하는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부;A cathode portion including a first aqueous solution containing potassium hydroxide accommodated in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution;
    제2 수용 공간에 수용되는 염소이온(Cl-)을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부;an anode portion including a second aqueous solution containing chlorine ions (Cl - ) accommodated in the second accommodating space, and a metal anode at least partially immersed in the second aqueous solution;
    상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and
    상기 제1 수용 공간과 연통되어, 제3 수용 공간에 수용되는 제1 수용액을 구비하는 이산화탄소 처리부;를 포함하며,It includes a carbon dioxide treatment unit that communicates with the first accommodating space and has a first aqueous solution accommodated in the third accommodating space,
    방전 시, 상기 애노드부는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 상기 제3 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어서 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 캐소드부는 상기 수소이온(H+)과 상기 캐소드의 전자가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 하는 이차전지.During discharging, the anode unit oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and carbon dioxide gas flows into the first aqueous solution in the third receiving space, thereby generating the first aqueous solution. Hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the aqueous solution and the carbon dioxide gas, and the cathode unit combines the hydrogen ions (H + ) with the electrons of the cathode to produce hydrogen gas (H 2 ) A secondary battery characterized in that it generates.
  2. 제1항에 있어서,According to paragraph 1,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 것인 이차전지.A secondary battery wherein un-ionized carbon dioxide gas among carbon dioxide gas flowing into the first aqueous solution of the third accommodation space is separated from the first aqueous solution to prevent it from being supplied to the cathode portion.
  3. 제2항에 있어서,According to paragraph 2,
    상기 이산화탄소 처리부는,The carbon dioxide processing unit,
    상기 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액과의 비중 차이를 이용하여 분리하는 이차전지.A secondary battery that separates the un-ionized carbon dioxide gas using a difference in specific gravity from the first aqueous solution.
  4. 제2항에 있어서,According to paragraph 2,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액의 수면 상부에서 수집하는 이차전지.A secondary battery that collects the un-ionized carbon dioxide gas from an upper portion of the water surface of the first aqueous solution in the third accommodation space.
  5. 제2항에 있어서,According to paragraph 2,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및an inlet located below the water surface of the first aqueous solution in the third accommodation space and through which carbon dioxide gas flows; and
    상기 유입구보다 아래에 위치하여, 상기 제3 수용 공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함하는 것인 이차전지.A secondary battery further comprising a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  6. 제1항에 있어서,According to paragraph 1,
    상기 캐소드부는The cathode part
    상기 제1 수용 공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함하는 것인 이차전지.The secondary battery further includes a first outlet located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharging hydrogen gas generated during discharge.
  7. 제2항에 있어서,According to paragraph 2,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함하는 것인 이차전지.The secondary battery further includes a second outlet located above the water surface of the first aqueous solution in the third accommodation space, through which the non-ionized carbon dioxide gas is discharged during discharge.
  8. 제2항에 있어서,According to paragraph 2,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액으로 공급하는 이산화탄소 순환 공급부를 더 포함하는 것인 이차전지.A secondary battery further comprising a carbon dioxide circulation supply unit that supplies the non-ionized carbon dioxide gas to the first aqueous solution in the third accommodation space.
  9. 제1항에 있어서,According to paragraph 1,
    상기 제2 수용액은The second aqueous solution is
    칼륨(K), 나트륨(Na), 칼슘(Ca), 마그네슘(Mg), 알루미늄(Al), 및, 리튬 (Li)로 이루어진 군으로부터 선택된 1종 이상의 양이온을 포함하는 것인 이차전지.A secondary battery comprising one or more cations selected from the group consisting of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), aluminum (Al), and lithium (Li).
  10. 제1항에 있어서,According to paragraph 1,
    상기 제2 수용액은The second aqueous solution is
    해수를 포함하는 것인 이차전지.A secondary battery containing seawater.
  11. 제1항에 있어서,According to paragraph 1,
    방전 시, 캐소드부는When discharging, the cathode part
    탄산수소나트륨(NaHCO3), 탄산수소칼륨(KHCO3), 탄산칼슘(CaCO3), 및 탄산마그네슘(MgCO3)로 이루어진 군으로부터 선택된 1종 이상의 탄산염을 포함하는 것인 이차전지.A secondary battery comprising at least one carbonate selected from the group consisting of sodium bicarbonate (NaHCO 3 ), potassium bicarbonate (KHCO 3 ), calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ).
  12. 방전 과정에서 이산화탄소를 원료로 사용하여 수소를 발생시키는, 청구항 1항에 따른 이차전지; 및A secondary battery according to claim 1, which generates hydrogen using carbon dioxide as a raw material during the discharge process; and
    상기 이차전지에서 발생한 수소를 연료로 공급받는 연료전지;를 포함하는 것을 특징으로 하는 복합 발전 시스템.A combined power generation system comprising a fuel cell supplied with hydrogen generated from the secondary battery as fuel.
  13. 제1 수용 공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부;a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode at least partially submerged in the first aqueous solution;
    제2 수용 공간에 수용되어 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 칼슘염을 포함하는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드를 구비하는 애노드부;An anode comprising a second aqueous solution accommodated in a second accommodating space and containing a calcium salt containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ), and a metal anode at least partially immersed in the second aqueous solution. wealth;
    상기 제1 수용 공간과 상기 제2 수용 공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 양이온 교환막을 구비하는 연결부; 및a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and a cation exchange membrane located in the connecting passage; and
    상기 제1 수용 공간과 연통되는 제3 수용 공간에 수용되는 제1 수용액을 구비하고, 이산화탄소 함유가스가 제3 수용공간으로 투입되는 이산화탄소 처리부;를 포함하며,It includes a carbon dioxide treatment unit having a first aqueous solution accommodated in a third accommodating space in communication with the first accommodating space, and injecting a carbon dioxide-containing gas into the third accommodating space,
    방전 시, 상기 애노드부는 염소이온(Cl-)이 산화되어 염소기체(Cl2)와 전자(e-)를 발생시키고, 상기 제3 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어서 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 캐소드부는 상기 물(H20)과 상기 애노드에서 발생된 전자가 결합되어 수산화이온(OH-)과 수소기체(H2)가 발생하는 것을 특징으로 하는 이차전지.During discharging, the anode unit oxidizes chlorine ions (Cl - ) to generate chlorine gas (Cl 2 ) and electrons (e - ), and carbon dioxide gas flows into the first aqueous solution in the third accommodation space, thereby generating the first aqueous solution. Hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the aqueous solution and the carbon dioxide gas, and the cathode unit combines the water (H 2 O) with the electrons generated at the anode to produce hydroxide ions ( A secondary battery characterized in that OH - ) and hydrogen gas (H 2 ) are generated.
  14. 제13항에 있어서,According to clause 13,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 것인 이차전지.A secondary battery wherein un-ionized carbon dioxide gas among carbon dioxide gas flowing into the first aqueous solution of the third accommodation space is separated from the first aqueous solution to prevent it from being supplied to the cathode portion.
  15. 제14항에 있어서,According to clause 14,
    상기 이산화탄소 처리부는,The carbon dioxide processing unit,
    상기 이온화되지 않은 이산화탄소 기체를 상기 제1 수용액과의 비중 차이를 이용하여 분리하는 이차전지.A secondary battery that separates the un-ionized carbon dioxide gas using a difference in specific gravity from the first aqueous solution.
  16. 제14항에 있어서,According to clause 14,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액의 수면 상부에서 수집하는 이차전지.A secondary battery that collects the un-ionized carbon dioxide gas from an upper portion of the water surface of the first aqueous solution in the third accommodation space.
  17. 제14항에 있어서,According to clause 14,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및an inlet located below the water surface of the first aqueous solution in the third accommodation space and through which carbon dioxide gas flows; and
    상기 유입구보다 아래에 위치하여, 상기 제3 수용 공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함하는 것인 이차전지.A secondary battery further comprising a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  18. 제13항에 있어서,According to clause 13,
    상기 캐소드부는The cathode part
    상기 제1 수용 공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함하는 것인 이차전지.The secondary battery further includes a first outlet located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharging hydrogen gas generated during discharge.
  19. 제14항에 있어서,According to clause 14,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제3 수용 공간의 상기 제1 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함하는 것인 이차전지.The secondary battery further includes a second outlet located above the water surface of the first aqueous solution in the third accommodation space, through which the non-ionized carbon dioxide gas is discharged during discharge.
  20. 제14항에 있어서,According to clause 14,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제1 수용액으로 공급하는 이산화탄소 순환 공급부를 더 포함하는 것인 이차전지.A secondary battery further comprising a carbon dioxide circulation supply unit that supplies the non-ionized carbon dioxide gas to the first aqueous solution in the third accommodation space.
  21. 제13항에 있어서,According to clause 13,
    상기 제1 수용액은The first aqueous solution is
    KOH, 및 KHCO3로 이루어지는 군으로부터 선택된 1종 이상의 화합물을 포함하는 것인 이차전지.A secondary battery comprising at least one compound selected from the group consisting of KOH and KHCO 3 .
  22. 제13항에 있어서,According to clause 13,
    방전 시, 캐소드부는When discharging, the cathode part
    양이온교환막을 통해 이동한 칼슘이온(Ca2+)이 수산화이온(OH-)과 중탄산염(HCO3 -)과 반응을 통해 탄산칼슘(CaCO3)을 생산하는 것인 이차전지.A secondary battery in which calcium ions (Ca 2+ ) moved through a cation exchange membrane react with hydroxide ions (OH - ) and bicarbonate (HCO 3 - ) to produce calcium carbonate (CaCO 3 ).
  23. 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 칼슘이온(Ca2+)과 염소이온(Cl-)을 포함하는 제2 수용액을 생성하는 용출 반응기; 및An elution reactor for eluting calcium ions from a calcium-containing material using an eluting agent to produce a second aqueous solution containing calcium ions (Ca 2+ ) and chlorine ions (Cl - ); and
    이산화탄소 함유 가스, 및 상기 제2 수용액이 공급되며, 반응에 의해 탄산칼슘(CaCO3)을 생성하는 이차전지를 포함하는 탄산칼슘 제조 설비.A calcium carbonate manufacturing facility comprising a secondary battery to which a carbon dioxide-containing gas and the second aqueous solution are supplied and which produces calcium carbonate (CaCO 3 ) through a reaction.
  24. 제23항에 있어서,According to clause 23,
    상기 이차전지 방전 시,When discharging the secondary battery,
    상기 용출제는 제1 수용공간에 남아있고,The eluting agent remains in the first receiving space,
    상기 탄산칼슘(CaCO3)은 제2 수용 공간에서 생성되는 것인 탄산칼슘 제조 설비.The calcium carbonate (CaCO 3 ) is a calcium carbonate manufacturing facility in which the calcium carbonate (CaCO 3 ) is produced in the second receiving space.
  25. 제23항에 있어서,According to clause 23,
    상기 용출제는 The eluent is
    암모늄염인 것인 탄산칼슘 제조 설비.Equipment for manufacturing calcium carbonate, which is an ammonium salt.
  26. 제23항에 있어서,According to clause 23,
    상기 이산화탄소 함유 가스는 The carbon dioxide-containing gas is
    제철 배가스, 고순도 이산화탄소, 파이넥스 오프 가스(FOG, FINEX off gas), 파이넥스 테일 가스(FTG, FINEX tail gas), 고로 가스(BFG, Blast furnace gas), 전로 가스, 석탄 발전소 배가스, 가스 발전소 배가스, 소각로 배가스, 유리용해 배가스, 열설비 배가스, 석유화학공정 배가스, 석유화학공정 공정가스, 연소전/후 배가스 및 가스화기 배가스로 이루어진 군에서 선택된 하나 이상인 탄산칼슘 제조 설비.Steel exhaust gas, high purity carbon dioxide, FOG (FINEX off gas), FINEX tail gas (FTG), blast furnace gas (BFG), converter gas, coal power plant exhaust gas, gas power plant exhaust gas, incinerator A calcium carbonate manufacturing facility that is at least one selected from the group consisting of flue gas, glass melting flue gas, heat facility flue gas, petrochemical process flue gas, petrochemical process process gas, pre-/post-combustion flue gas, and gasifier flue gas.
  27. 제23항에 있어서,According to clause 23,
    상기 칼슘 함유 물질은 폐시멘트, 폐콘크리트, 석탄재, 비산재, 제철 슬래그, 생석회(CaO), 염화칼슘(CaCl2), 규회석, 석회석, 감람석, 사문석, 석면 및 탈묵회로 이루어진 군에서 선택된 하나 이상인 탄산칼슘 제조 설비.The calcium-containing material is one or more calcium carbonates selected from the group consisting of waste cement, waste concrete, coal ash, fly ash, iron slag, quicklime (CaO), calcium chloride (CaCl 2 ), wollastonite, limestone, olivine, serpentine, asbestos, and deinked ash. Manufacturing facilities.
  28. 용출제에 의해 칼슘 함유 물질로부터 칼슘이온을 용출하여 제2 수용액을 생성하는 용출 단계; 및An elution step of eluting calcium ions from a calcium-containing material using an eluting agent to produce a second aqueous solution; and
    이산화탄소 함유 가스 및 상기 제2 수용액을, 제1항에 따른 이차전지 방전 시 발생하는 수산화나트륨(NaOH)와 반응시켜 탄산칼슘(CaCO3)을 생성하는 탄산칼슘 생성 단계를 포함하는 탄산칼슘 제조방법.A method for producing calcium carbonate comprising a step of producing calcium carbonate (CaCO 3 ) by reacting carbon dioxide-containing gas and the second aqueous solution with sodium hydroxide (NaOH) generated during discharging of the secondary battery according to claim 1.
  29. 제1 수용공간에 포함된 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 캐소드(anode)를 구비하는 캐소드부;a cathode portion including a first aqueous solution contained in a first accommodating space, and a cathode (anode) at least partially submerged in the first aqueous solution;
    제2 수용공간에 포함된 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 금속의 애노드(Cathode)를 구비하는 애노드부;an anode portion including a second aqueous solution contained in a second accommodating space and a metal anode at least partially submerged in the second aqueous solution;
    상기 캐소드(anode)와 애노드(Cathode)를 연결하는 전원공급장치;A power supply device connecting the cathode and anode;
    상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 위치한 이온교환막을 구비하는 연결부; 및a connecting portion including a connecting passage that communicates the first accommodating space and the second accommodating space, and an ion exchange membrane located in the connecting passage; and
    상기 제1 수용공간, 및 제3 수용공간으로 연결되어 탄산칼슘(CaCO3(S))을 생성시키는 탄산칼슘 생성부;를 포함하고,It includes a calcium carbonate generating unit connected to the first accommodating space and the third accommodating space to generate calcium carbonate (CaCO 3 (S) ),
    전원공급장치에 전원공급 시, 상기 캐소드부에서 제1 전해액으로 이산화탄소 기체가 유입되어 상기 제1 전해액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 수소이온(H+)과 전원공급으로 공급된 전자(e-)가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 하는 수전해시스템.When power is supplied to the power supply device, carbon dioxide gas flows into the first electrolyte from the cathode, and hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the first electrolyte and the carbon dioxide gas. , A water electrolysis system characterized in that hydrogen gas (H 2 ) is generated by combining the hydrogen ions (H + ) and electrons (e - ) supplied by power supply.
  30. 제29항에 있어서,According to clause 29,
    상기 탄산칼슘 생성부는The calcium carbonate producing unit
    탄산칼슘(CaCO3(S))을 생성시키는 반응기;A reactor for producing calcium carbonate (CaCO 3(S) );
    상기 제1 수용공간과 반응기를 연결하고, 제1 수용공간의 중탄산이온(HCO3 -)을 반응기로 투입시키는 제1 투입구;A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor;
    상기 반응기와 연결되고, 칼슘이온(Ca2+)을 반응기로 투입시키는 제2 투입구; 및A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; and
    상기 제3 수용공간과 반응기를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제3 수용공간으로 투입시키는 제3 투입구;를 포함하는 것인, A third inlet connects the third accommodating space and the reactor and injects the remaining liquid after the calcium carbonate (CaCO 3 (S) ) production reaction into the third accommodating space,
    수전해시스템.Water electrolysis system.
  31. 제29항에 있어서,According to clause 29,
    상기 애노드는 산소 발생 반응(oxygen evolution reaction) 촉매를 포함하는 것인 수전해시스템.A water electrolysis system wherein the anode includes an oxygen evolution reaction catalyst.
  32. 제31항에 있어서,According to clause 31,
    상기 산소 발생 반응 촉매는 The oxygen generation reaction catalyst is
    금속 산화물 촉매, 페로브스카이트 산화물 촉매, 금속 황화물 촉매, 금속 탄화물 촉매, 및 탄소 촉매로 이루어진 군에서 선택된 1종 이상인 것인 수전해시스템.A water electrolysis system comprising at least one selected from the group consisting of metal oxide catalysts, perovskite oxide catalysts, metal sulfide catalysts, metal carbide catalysts, and carbon catalysts.
  33. 제32항에 있어서,According to clause 32,
    상기 산소 발생 반응 촉매에 포함된 금속은The metal contained in the oxygen generation reaction catalyst is
    Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, 및 Au 로 이루어진 군에서 선택되는 적어도 1종 이상인 것인 수전해시스템.A water electrolysis system comprising at least one selected from the group consisting of Li, Co, Ni, Zn, Fe, Ti, Na, Mn, Cu, Ga, Sn, Cr, W, Ru, Ir, Pt, and Au.
  34. 제29항에 있어서,According to clause 29,
    상기 캐소드는 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 및 금속박막을 포함하는 것인 수전해시스템.The water electrolysis system wherein the cathode includes carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, and metal thin film.
  35. 제34항에 있어서,According to clause 34,
    상기 캐소드는 발생 반응(hydrogen evolution reaction) 촉매를 더 포함하는 것인 수전해시스템.The water electrolysis system wherein the cathode further includes a hydrogen evolution reaction catalyst.
  36. 제29항에 있어서,According to clause 29,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제1 수용공간과 연통되어, 제3 수용공간에 수용되는 제3 수용액을 포함하는 이산화탄소 처리부;를 더 포함하는 것인 수전해시스템.A water electrolysis system further comprising a carbon dioxide treatment unit that communicates with the first accommodation space and includes a third aqueous solution accommodated in the third accommodation space.
  37. 제36항에 있어서,According to clause 36,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제3 수용공간으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제3 수용액으로부터 분리하여 상기 애노드부로 공급되지 않도록 하는 것인 수전해시스템.A water electrolysis system that separates un-ionized carbon dioxide gas from the carbon dioxide gas flowing into the third receiving space from the third aqueous solution and prevents it from being supplied to the anode part.
  38. 제36항에 있어서,According to clause 36,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용액과의 비중 차이를 이용하여 분리하는 수전해시스템.A water electrolysis system that separates the non-ionized carbon dioxide gas using the difference in specific gravity from the third aqueous solution.
  39. 제36항에 있어서,According to clause 36,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제3 수용공간의 상기 제3 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및an inlet located below the water surface of the third aqueous solution in the third accommodation space and through which carbon dioxide gas flows; and
    상기 유입구보다 아래에 위치하여, 상기 제3 수용공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함하는 것인 수전해시스템.The water electrolysis system further includes; a communication port located below the inlet and formed to communicate with the first accommodating space in the third accommodating space.
  40. 제29항에 있어서,According to clause 29,
    상기 캐소드부는The cathode part
    상기 제1 수용공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소기체를 배출시키는 제1 배출구를 더 포함하는 것인 수전해시스템.The water electrolysis system further includes a first outlet located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharging hydrogen gas generated during discharge.
  41. 제36항에 있어서,According to clause 36,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제3 수용공간의 상기 제3 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함하는 것인 수전해시스템.The water electrolysis system is located above the water surface of the third aqueous solution in the third accommodation space and further includes a second outlet through which the non-ionized carbon dioxide gas is discharged during discharge.
  42. 제36항에 있어서,According to clause 36,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제3 수용 공간의 상기 제3 수용액으로 재공급하는 이산화탄소 순환 공급부를 더 포함하는 것인 수전해시스템.A water electrolysis system further comprising a carbon dioxide circulation supply unit that resupplies the non-ionized carbon dioxide gas to the third aqueous solution in the third accommodation space.
  43. 제29항에 있어서,According to clause 29,
    상기 제1 수용액 또는 제2 수용액은 알칼리성 금속이온을 포함하는 알칼리성 수용액인 것인 수전해시스템.A water electrolysis system wherein the first aqueous solution or the second aqueous solution is an alkaline aqueous solution containing alkaline metal ions.
  44. 제43항에 있어서,According to clause 43,
    상기 제2 수용공간 내 알칼리성 금속이온은 이온교환막을 통해 제1 수용공간으로 이동하는 것인 수전해시스템.A water electrolysis system in which alkaline metal ions in the second accommodation space move to the first accommodation space through an ion exchange membrane.
  45. 제1 수용공간에 수용되는 제1 수용액, 및 상기 제1 수용액에 적어도 일부가 잠긴 제1 전극을 포함하는 제1 전극부;a first electrode unit including a first aqueous solution accommodated in the first accommodating space, and a first electrode at least partially submerged in the first aqueous solution;
    제2 수용공간에 수용되는 제2 수용액, 및 상기 제2 수용액에 적어도 일부가 잠긴 제2 전극를 포함하는 제2 전극부;a second electrode unit including a second aqueous solution accommodated in a second receiving space, and a second electrode at least partially submerged in the second aqueous solution;
    상기 제1 수용공간과 상기 제2 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 양이온 교환막을 포함하는 제1 연결부;a first connection portion including a connecting passage connecting the first accommodating space and the second accommodating space, and a cation exchange membrane provided in the connecting passage;
    제3 수용공간에 수용되는 제3 수용액, 및 상기 제3 수용액에 적어도 일부가 잠기는 제3 전극을 포함하는 제3 전극부;a third electrode unit including a third aqueous solution accommodated in a third accommodating space, and a third electrode at least partially submerged in the third aqueous solution;
    상기 제2 수용공간과 상기 제3 수용공간을 연통시키는 연결 통로, 및 상기 연결 통로에 구비된 교환막을 포함하는 제2 연결부; 및a second connection portion including a connecting passage connecting the second accommodating space and the third accommodating space, and an exchange membrane provided in the connecting passage; and
    상기 제2 전극과 제3 전극에 연결되는 전원공급장치;를 포함하고,It includes a power supply connected to the second electrode and the third electrode,
    방전 시, 상기 제1 전극부는 제1 수용 공간의 상기 제1 수용액으로 이산화탄소 기체가 유입되어 상기 제1 수용액과 상기 이산화탄소 기체의 반응에 의해 수소이온(H+)과 중탄산이온(HCO3 -)이 생성되고, 상기 제2 전극부는 산화반응을 통해 전자(e-)를 발생시키며, 상기 제1 전극부는 상기 수소이온(H+)과 상기 제2 전극부에서 발생한 전자(e-)가 결합되어 수소기체(H2)가 발생하는 것을 특징으로 하는 복합이차전지.When discharging, carbon dioxide gas flows into the first aqueous solution in the first electrode unit, and hydrogen ions (H + ) and bicarbonate ions (HCO 3 - ) are generated by the reaction of the first aqueous solution and the carbon dioxide gas. generated, the second electrode unit generates electrons (e - ) through an oxidation reaction, and the first electrode unit combines the hydrogen ions (H + ) with the electrons (e - ) generated in the second electrode unit to form hydrogen. A composite secondary battery characterized in that gas (H 2 ) is generated.
  46. 제45항에 있어서,According to clause 45,
    탄산칼슘(CaCO3(S))을 생성시키는 반응기;A reactor for producing calcium carbonate (CaCO 3(S) );
    상기 제1 수용공간과 반응기를 연결하고, 제1 수용공간의 중탄산이온(HCO3 -)을 반응기로 투입시키는 제1 투입구;A first inlet connecting the first accommodation space and the reactor and introducing bicarbonate ions (HCO 3 - ) from the first accommodation space into the reactor;
    상기 반응기와 연결되고, 칼슘이온(Ca2+)을 반응기로 투입시키는 제2 투입구; 및A second inlet connected to the reactor and introducing calcium ions (Ca 2+ ) into the reactor; and
    상기 제3 수용공간과 반응기를 연결하고, 탄산칼슘(CaCO3(S)) 생성반응 후 잔여액을 제3 수용공간으로 투입시키는 제3 투입구;를 포함하는 탄산칼슘(CaCO3(S)) 생성부를 포함하는 것인 복합이차전지.A third inlet connecting the third accommodating space and the reactor and injecting the remaining liquid after the calcium carbonate (CaCO 3(S) ) production reaction into the third accommodating space; producing calcium carbonate (CaCO 3(S) ) including a A composite secondary battery containing parts.
  47. 제45항에 있어서,According to clause 45,
    상기 제1 수용 공간과 연통되어, 제4 수용공간에 수용되는 제4 수용액을 포함하는 이산화탄소 처리부;를 더 포함하는 것인 복합이차전지.A composite secondary battery further comprising a carbon dioxide treatment unit that communicates with the first accommodating space and includes a fourth aqueous solution accommodated in the fourth accommodating space.
  48. 제47항에 있어서,According to clause 47,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제4 수용공간으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제4 수용액으로부터 분리하여 상기 제1 전극부로 공급되지 않도록 하는 것인 복합이차전지.A composite secondary battery in which un-ionized carbon dioxide gas among the carbon dioxide gas flowing into the fourth accommodation space is separated from the fourth aqueous solution to prevent it from being supplied to the first electrode unit.
  49. 제47항에 있어서,According to clause 47,
    상기 이산화탄소 처리부는,The carbon dioxide processing unit,
    상기 이온화되지 않은 이산화탄소 기체를 상기 제4 수용액과의 비중 차이를 이용하여 분리하는 복합이차전지.A composite secondary battery that separates the un-ionized carbon dioxide gas using the difference in specific gravity from the fourth aqueous solution.
  50. 제47항에 있어서,According to clause 47,
    상기 이산화탄소 처리부는 The carbon dioxide processing unit
    상기 제4 수용공간의 상기 제4 수용액의 수면보다 아래에 위치하고, 이산화탄소 기체가 유입되는 유입구; 및an inlet located below the water surface of the fourth aqueous solution in the fourth accommodation space and through which carbon dioxide gas flows; and
    상기 유입구보다 아래에 위치하여, 상기 제4 수용공간에서 상기 제1 수용 공간과 연통되도록 형성된 연통구;를 더 포함하는 것인 복합이차전지.A composite secondary battery further comprising; a communication port located below the inlet and formed to communicate with the first accommodating space in the fourth accommodating space.
  51. 제45항에 있어서,According to clause 45,
    상기 제1 전극부는The first electrode part
    상기 제1 수용공간에 수용되는 제1 수용액의 수면보다 위에 위치하여, 방전 시 발생한 수소 기체를 배출시키는 제1 배출구를 더 포함하는 것인 복합이차전지.The composite secondary battery further includes a first outlet located above the water surface of the first aqueous solution accommodated in the first accommodation space and discharging hydrogen gas generated during discharge.
  52. 제47항에 있어서,According to clause 47,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 제4 수용공간의 상기 제4 수용액의 수면보다 위에 위치하여, 방전 시 상기 이온화되지 않은 이산화탄소 기체가 배출하는 제2 배출구를 더 포함하는 것인 복합이차전지.The composite secondary battery further includes a second outlet located above the water surface of the fourth aqueous solution in the fourth accommodation space, through which the un-ionized carbon dioxide gas is discharged during discharge.
  53. 제47항에 있어서,According to clause 47,
    상기 이산화탄소 처리부는The carbon dioxide processing unit
    상기 이온화되지 않은 이산화탄소 기체를 상기 제4 수용 공간의 상기 제4 수용액으로 재공급하는 이산화탄소 순환 공급부를 더 포함하는 것인 복합이차전지.A composite secondary battery further comprising a carbon dioxide circulation supply unit that re-supplies the non-ionized carbon dioxide gas to the fourth aqueous solution in the fourth accommodating space.
  54. 제45항에 있어서,According to clause 45,
    상기 제3 전극부는The third electrode part
    전원공급장치의 전원공급 시, 산소발생반응(Oxygen Evolution Reaction; OER) 및 염소발생반응(Chlorine evolution reaction; CER)이 일어나는 것인 복합이차전지.A composite secondary battery in which an oxygen evolution reaction (OER) and a chlorine evolution reaction (CER) occur when power is supplied from a power supply device.
  55. 제45항에 있어서,According to clause 45,
    상기 제3 전극부는The third electrode part
    상기 제3 수용공간에 수용되는 제3 수용액의 수면보다 위에 위치하여, 전원공급장치의 전원공급 시 발생한 산소기체 및 염소기체를 배출시키는 제2 배출구를 더 포함하는 것인 복합이차전지.The composite secondary battery further includes a second outlet located above the water surface of the third aqueous solution accommodated in the third accommodation space and discharging oxygen gas and chlorine gas generated when power is supplied to the power supply device.
  56. 제45항에 있어서,According to clause 45,
    상기 제3 전극부는The third electrode part
    전원공급장치의 전원공급 시, 반응 후 잔여액을 제4 수용공간의 제4 수용액으로 재공급하는 잔여액 순환공급부를 더 포함하는 것인 복합이차전지.A composite secondary battery further comprising a residual liquid circulation supply unit that re-supplies the residual liquid after reaction to the fourth aqueous solution in the fourth accommodating space when power is supplied to the power supply device.
PCT/KR2023/004451 2022-04-04 2023-04-03 Carbon dioxide utilization system WO2023195712A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2022-0041756 2022-04-04
KR1020220041756A KR20230143007A (en) 2022-04-04 2022-04-04 Secondary battery that produces hydrogen
KR1020220042541A KR20230143516A (en) 2022-04-05 2022-04-05 Water electrolysis system to produce calcium carbonate
KR10-2022-0042541 2022-04-05
KR10-2022-0060476 2022-05-17
KR1020220060476A KR20230160656A (en) 2022-05-17 2022-05-17 A System connected with redox process for carbon reduction
KR1020220061049A KR20230161255A (en) 2022-05-18 2022-05-18 Chemical and electrochemical circulation system for carbon reduction
KR10-2022-0061049 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023195712A1 true WO2023195712A1 (en) 2023-10-12

Family

ID=88243127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004451 WO2023195712A1 (en) 2022-04-04 2023-04-03 Carbon dioxide utilization system

Country Status (1)

Country Link
WO (1) WO2023195712A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083607A1 (en) * 2008-07-16 2015-03-26 Calera Corporation Co2 utilization in electrochemical systems
KR20150091984A (en) * 2014-02-04 2015-08-12 국립대학법인 울산과학기술대학교 산학협력단 Sea water secondary battery for manufacturing desalinated water
KR101997780B1 (en) * 2018-11-19 2019-07-08 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same
KR102001213B1 (en) * 2018-12-24 2019-10-01 울산과학기술원 Fuel cell system having hydrogen generating and carbon dioxide removing apparatus using carbon dioxide
KR20200090504A (en) * 2019-01-21 2020-07-29 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083607A1 (en) * 2008-07-16 2015-03-26 Calera Corporation Co2 utilization in electrochemical systems
KR20150091984A (en) * 2014-02-04 2015-08-12 국립대학법인 울산과학기술대학교 산학협력단 Sea water secondary battery for manufacturing desalinated water
KR101997780B1 (en) * 2018-11-19 2019-07-08 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same
KR102001213B1 (en) * 2018-12-24 2019-10-01 울산과학기술원 Fuel cell system having hydrogen generating and carbon dioxide removing apparatus using carbon dioxide
KR20200090504A (en) * 2019-01-21 2020-07-29 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same

Similar Documents

Publication Publication Date Title
WO2018070726A1 (en) Method for producing lithium compound
WO2019022555A1 (en) Method for selective recovery of valuable metal from waste denitrification catalyst through alkali fusion
WO2016043427A1 (en) Multistage membrane separation and purification process and apparatus for separating high purity methane gas
WO2009125929A2 (en) System for reducing environmental pollutants
WO2014073934A1 (en) Ion-conducting polymer comprising partially branched block copolymer, and use for same
WO2017111503A1 (en) Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas
WO2023195712A1 (en) Carbon dioxide utilization system
WO2014042369A1 (en) Air-cooled combustion furnace system
WO2014081235A1 (en) Ion-conducting polymer comprising phenyl pendant substituted with two or more sulfonated aromatic groups, and usage of same
WO2024076100A1 (en) Method for recovering nickel hydroxide and nickel sulfate from nickel-containing materials
WO2012091437A2 (en) Integrated steel manufacturing system and method for integrated steel manufacturing
WO2017171290A1 (en) Block polymer and polymer electrolyte membrane comprising same
WO2021075872A1 (en) Intermediate product of electrode, electrode powder, electrode using same, electrode pellet using same and method for producing each thereof
WO2020091317A1 (en) Energy-saving air dryer, and method for producing dry air using same
WO2014104756A1 (en) Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same
WO2023054964A1 (en) Ammonia electrolysis system and control method therefor
WO2013100520A1 (en) Integrated steelmaking system and integrated steelmaking method
WO2021194043A1 (en) Catalyst for fenton reaction system comprising metal oxide containing functional group on surface thereof, and fenton reaction system using same
WO2020036444A1 (en) Method for preparing negative electrode for lithium secondary battery, and negative electrode for lithium secondary battery, prepared using same
WO2023182561A1 (en) Method using solvent extraction for selective recovery of valuable metal from lithium secondary battery waste material
WO2023043071A1 (en) Method for recycling cathode active material and cathode active material recycled thereby
WO2024147715A1 (en) Positive electrode active material for lithium secondary battery and method for manufacturing same
WO2022260230A1 (en) Exhaust gas purification method and purification apparatus for vessel, and vessel having same
WO2024147680A1 (en) Method for recovering lithium from waste primary lithium battery leachate and producing lithium chloride therefrom
WO2022270676A1 (en) Automated liquid sampling device and automated liquid sampling system comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784937

Country of ref document: EP

Kind code of ref document: A1