WO2014104756A1 - Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same - Google Patents

Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same Download PDF

Info

Publication number
WO2014104756A1
WO2014104756A1 PCT/KR2013/012203 KR2013012203W WO2014104756A1 WO 2014104756 A1 WO2014104756 A1 WO 2014104756A1 KR 2013012203 W KR2013012203 W KR 2013012203W WO 2014104756 A1 WO2014104756 A1 WO 2014104756A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
catalyst
gas
reforming
reactant
Prior art date
Application number
PCT/KR2013/012203
Other languages
French (fr)
Korean (ko)
Inventor
박주형
박흥수
전희동
박시현
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120155545A external-priority patent/KR101724287B1/en
Priority claimed from KR1020120155544A external-priority patent/KR101684484B1/en
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2014104756A1 publication Critical patent/WO2014104756A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • C01B11/062Hypochlorites of alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention aims to provide a catalyst suitable for producing a reducing gas containing hydrogen and carbon monoxide as a main component by reforming a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) of 3 or less, in particular, a blast furnace and a flow.
  • the present invention is to provide a method for producing the catalyst and a method for producing a reducing gas for iron ore reduction by the reforming reaction from a gas containing methane using the reforming catalyst.
  • the present invention relates to a reforming catalytic reaction process for obtaining a high temperature reducing gas containing a large amount of H 2 and CO by using sensible heat recovered from molten slag at about 1400 ° C. generated in a steel mill.
  • it is to provide a reforming catalytic reaction process that can maximize the utilization efficiency of the sensible heat recovered from the molten slag by optimizing the heat exchange network.
  • the reducing gas used in the iron ore reduction process should contain a minimum of CO and H 2 , in particular H 2 O, CO 2 , CH 4, etc., and a high temperature of about 900 ° C. for blowing into the blast furnace and the flow furnace. It is required to be gas in the state.
  • Syngas and hydrogen produced here are used in various ways in the petrochemical industry.
  • steam is reformed by using natural gas, naphtha, or the like as a raw material, and then synthesized by performing a reverse hydrolysis reaction in which H 2 is converted to CO, or autothermal reforming using water and oxygen.
  • Synthesized through reaction water and CO 2 are removed from the synthesized gas, and methanol and a hydrocarbon having 2 or more carbon atoms are synthesized by adjusting the H 2 / CO ratio.
  • the reforming catalyst used in the above process is optimized for the conversion of gas such as natural gas or naphtha containing little hydrogen, and the production gas mainly targets hydrogen.
  • the syngas obtained thereby is used as a reducing agent in an iron ore reduction process in a blast furnace or a flow furnace in a steelmaking process, a separate process for removing an unreacted reforming agent used in excess is required at a later stage.
  • hydrogen-containing gas is used as reducing gas or fuel, and in particular, COG (coke oven gas), a gas containing hydrogen, is purified and used in blast furnaces or flow furnaces, or by steam reforming COG or expensive natural gas.
  • Hydrogen is the main component to obtain a reducing gas to be heated to more than 900 °C can be blown into the blast furnace or flow furnace, etc.
  • Reducing gas production through the utilization of the COG can supply a reducing gas of low cost, and also in terms of the efficient use of resources in an integrated steel mill, but to produce a reducing gas using a gas such as COG containing methane as a raw material Optimized reforming catalyst has not been developed yet, the development of such a catalyst is urgently urgent.
  • a method of obtaining hydrogen from COG is to decompose tar contained in high-temperature crude COG, which has been recently studied in Japan, with a catalyst, or to partially oxidize at a high temperature of about 1200 ° C. by adding oxygen to increase flammable gas components.
  • the present invention in order to efficiently obtain the reducing gas for the blast furnace and flow furnace which is an iron ore reduction process, the present invention relates to a catalyst required when reforming a raw material containing methane, for example, natural gas or COG.
  • the reducing gas should contain a minimum of CO and H 2 , in particular H 2 O, CO 2 , CH 4 and the like, and at a high temperature of about 900 °C to blow into the blast furnace and flow furnace. Due to the characteristics of the iron ore reducing gas, the reforming agent of hydrocarbons such as methane is required to be significantly lower than the existing reforming catalyst conditions in the reaction conditions, and especially when the COG is reformed, the reactant COG contains a large amount of hydrogen. There is a characteristic. This feature should solve the coking problem caused by Ni metal growth, which is the most vulnerable in Ni-based reforming catalyst.
  • the carrier is a methane reforming catalyst for producing a reducing gas having a spinel structure of MgAl 2 O 4 by the reaction of alumina and magnesia To provide.
  • the nickel has an average particle size of 5 to 15 nm.
  • the catalyst contains 5-25% by weight of magnesia, 5-20% by weight of nickel, 10% by weight or less of cocatalyst, and the residual alumina, and the magnesia is present in the spinel structure of MgAl 2 O 4 by reaction with alumina. do.
  • the alumina (Al 2 O 3 ) is preferably a specific surface area of 20 m 2 / g or more.
  • the promoter may be at least one selected from Ca, Zr, Ce, La, Pt, Pd, and Rh or a compound including the same.
  • the mixed gas may be coke oven gas (COG).
  • COG coke oven gas
  • alumina Al 2 O 3
  • magnesia precursor nickel precursor
  • optionally a promoter at least 30 minutes at room temperature without the addition of water
  • a mixing step of obtaining a mixture A drying step of drying the mixture at a temperature of 100 to 300 ° C; And calcining and reducing the dried mixture at a temperature of 600 to 1000 ° C. to form a MgAl 2 O 4 carrier having a spinel structure by reaction of alumina and magnesia, and carrying a nickel and a promoter on the support.
  • the mixture comprises 5 to 25% by weight of magnesia, 5 to 20% by weight of nickel, up to 10% by weight of promoter and the balance Al 2 O 3 relative to the total weight of alumina, magnesia, nickel and promoter.
  • the nickel precursor may be nickel hydrate
  • the magnesia precursor may be magnesium hydrate
  • the promoter may be at least one selected from Ca, Zr, Ce, La, Pt, Pd and Rh or a compound including the same.
  • the alumina (Al 2 O 3 ) is preferably a specific surface area of 20 m 2 / g or more.
  • the catalyst for producing reducing gas under hydrogen, nitrogen or a mixed gas atmosphere containing them, 600 to 1000 Reducing the temperature in a temperature range, and supplying a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) 3 or less in a reactor having a reaction temperature of 500 to 1000 ° C. at a space velocity of 500 to 500,000 hr ⁇ 1 Reacting.
  • a reforming catalytic reaction facility that generates a high temperature reducing gas
  • it is intended to provide a heat exchange network configuration that can maximize the use of sensible heat of molten slag, as a reaction raw material methane and reforming agent
  • a methane stream comprising CO 2 , steam, or CO 2 and steam as a reactant, to which a methane containing gas is fed;
  • a reactant stream comprising at least one modifier stream selected from a CO 2 stream fed with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized;
  • a fuel stream containing a combustible fuel gas generating thermal energy for the fuel, a sensible heat recovery stream supplied with an oxygen-containing gas recovering sensible heat of molten slag, and a flue gas exhausted by the combustion of the combustible fuel gas with oxygen Contains a stream,
  • a reforming catalytic reaction facility further comprising a vaporization heat exchanger for heat-exchanging the H 2 O stream from the sensible heat recovery stream for vaporization in which the sensible heat recovery stream is branched.
  • the reactant preheating heat exchanger may be a plurality of independent heat exchangers that preheat each reactant stream, or may be a heat exchanger that preheats the mixed stream in which the reactant streams are mixed.
  • the reactant preheating heat exchanger may be a heat exchanger for preheating one reactant stream and a preheating mixed stream in which the two remaining reactant streams are mixed when the modifier is CO 2 and steam.
  • the fuel stream may further include a fuel preheating heat exchanger for preheating the combustible fuel gas by heat-exchanging the sensible heat recovery stream for branching the sensible heat recovery stream.
  • the said catalyst contains a Ni type catalyst.
  • the reaction raw material A methane stream comprising phosphorus methane and a modifier of CO 2 , steam or CO 2 and steam, to which a methane containing gas is fed; And a reactant stream comprising at least one modifier stream selected from a CO 2 stream fed with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized;
  • the sensible heat recovery stream is preheated by heat exchange from the exhaust gas stream, and the preheated sensible heat recovery stream and the fuel stream are fed to a burner system having a structure that is not mixed with the reactant stream in the reforming reactor to obtain the combustible fuel gas and oxygen.
  • the vapor stream may be vaporized by heat exchange by the sensible heat recovery stream for vaporization wherein the H 2 O stream is branched from the sensible heat recovery stream.
  • the reactant preheating step may preheat the reactant streams independently of each other, and may also preheat the reactant streams by mixing the reactant streams into one mixed stream. Furthermore, when the modifiers are CO 2 and steam, the mixed streams in which one reactant stream and the other two reactant streams are mixed may each be preheated independently.
  • the volume ratio of CH 4 : (CO 2 + H 2 O) may be 1: 1-4.0, and the modifier is CO 2 , or CO 2 and steam.
  • the volume ratio of CO 2 : H 2 O is preferably 1: 0 to 5.0.
  • the fuel stream supplied to the burner system may be preheated by exchanging the sensible heat recovery stream by the branched fuel preheating sensible heat recovery stream.
  • the reforming reactor preferably has a pressure of 1-40 bar and a temperature of 800 to 1000 ° C.
  • the reactant in contact with the catalyst layer preferably has a reaction space velocity of 500 to 500,000 h ⁇ 1 .
  • the catalyst may include a Ni-based catalyst.
  • the methane containing gas supplied through the methane stream may be COG
  • the combustible fuel gas supplied through the fuel stream may be COG
  • the sensible heat recovery stream may be air having a temperature of at least 400 ° C.
  • Ni-based reforming catalyst according to an embodiment of the present invention has a high catalytic activity and shows a high methane conversion rate even for a mixed gas containing a small amount of reforming agent, and has a long-term stability because nickel having a small particle size is supported. .
  • the catalyst according to an embodiment of the present invention exhibits excellent coking resistance by forming a spinel structure of the catalyst carrier of MgAl 2 O 4 . Therefore, in the reforming of a mixed gas containing a large amount of hydrogen, particularly COG with a reducing gas, it is possible to solve the coking problem caused by the growth of nickel metal.
  • the catalyst when preparing a catalyst for reducing gas production by the method according to an embodiment of the present invention, can be prepared by a simple process, the alumina MgAl 2 O 4 carrier having a spinel structure by acting to increase the nickel dispersion degree Nickel having a small particle size can be uniformly supported on the phase, and a catalyst excellent in catalyst activity and long-term stability can be obtained.
  • a catalyst according to an embodiment of the present invention by producing a reducing gas from the mixed gas it can be used as a reducing agent of the blast furnace or flow furnace for producing iron, reducing the amount of coke used in iron production This not only reduces various environmental problems that occur during coke production, but also ultimately reduces global warming due to CO 2 , which has become a hot issue in recent years.
  • a reducing gas suitable for iron ore reduction can be obtained at low cost, thereby lowering the iron production cost, thereby minimizing cost increase at least.
  • the synthesis gas can be produced in a state of minimizing the input of the fuel required to supply the thermal energy for the reforming catalytic reaction, and the reducing gas obtained by the blast furnace or flow furnace, etc. It can be used as a reducing agent and a heat source required in the process. Therefore, the reducing gas can be obtained at low cost, thereby reducing the iron production cost, reducing the amount of coke used, and increasing the iron production without increasing the facilities for producing coke. In addition, this can contribute to CO 2 reduction.
  • FIG. 1 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactant methane streams and CO 2 streams to separate heat exchangers.
  • FIG. 2 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream and CO 2 stream to separate heat exchangers and preheating the fuel to the sensible heat recovery stream.
  • FIG. 3 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream and CO 2 stream with one heat exchanger.
  • FIG. 4 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactants methane stream, CO 2 stream and vapor stream to separate heat exchangers.
  • FIG. 5 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream, CO- 2 stream and vapor stream with two heat exchangers.
  • FIG. 6 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactants methane stream, CO 2 stream and vapor stream with one heat exchanger.
  • FIG. 7 shows XRD data showing that the average size of Ni particles of Inventive Catalyst 2 (Catalyst 2) and Comparative Catalyst 1 (Catalyst 5) of the Examples is about 8 nm and X-ray showing that the carrier has a spinel structure of MgAl 2 O 4 It is a photograph.
  • FIG. 8 is TEM data showing that the Ni particle size is mainly in the range of 5-15 nm for the inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) of the examples.
  • FIG. 10 is a graph showing CH 4 conversion rates of COG according to gas conditions depending on the amount of Ni supported in the Ni-based reforming catalyst.
  • FIG. 11 is a graph showing CH 4 conversion rates of COG according to gas conditions according to Mg content of a Ni-based reforming catalyst.
  • One embodiment of the present invention relates to a methane reforming catalyst used to prepare a reducing gas from a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) of 3 or less and a method of preparing the catalyst.
  • nickel is supported on an MgAl 2 O 4 catalyst carrier having alumina (Al 2 O 3 ) and magnesia having a spinel structure, and optionally a promoter is supported.
  • the catalyst comprises nickel.
  • the nickel is supported on the catalyst carrier to serve as a catalytically active site, the nickel-based catalyst has an excellent catalytic activity, there is an economically advantageous advantage.
  • Nickel supported on the catalyst carrier carries particles having an average size of 5 to 15 nm due to the high specific surface area of the alumina used as a precursor of the catalyst carrier. As a result, the dispersion of Ni particles can be increased even on the supported amount of nickel, so that high catalytic activity can be obtained.
  • the nickel is preferably supported in the range of 5-20% by weight of the total weight of the catalyst. If the amount is less than 5% by weight, the amount of nickel supported on the catalyst carrier is small, and thus the reaction conversion rate of methane decreases due to the decrease of the catalytically active site. If the amount is more than 20% by weight, coking due to the rapid growth of the Ni particles is caused. This occurs, and it is difficult for methane conversion by the catalyst to remain stable for a long time.
  • the reforming catalyst of one embodiment may further support a promoter on the catalyst carrier.
  • a promoter on the catalyst carrier examples include, but are not particularly limited to, alkaline earth metal oxides such as Ca, transition metal oxides such as Zr, Ce, and La, or precious metals such as Pt, Pd, and Rh. These promoters can be used alone or in combination of two or more thereof. These promoters may be included in an amount of 10% by weight or less based on the total composition of the catalyst. On the other hand, when the cocatalyst is an expensive precious metal, it is preferable to include 2 wt% or less of the total weight of the catalyst.
  • the catalyst of the present invention comprises alumina and magnesia as catalyst carrier components.
  • the magnesia has little activity alone, but serves to help maintain and promote the catalytic activity of nickel by being added with nickel.
  • the magnesia included in the catalyst carrier of the present invention forms an MgAl 2 O 4 spinel structure with alumina and serves as a catalyst carrier. By forming such a spinel structure, it plays a role of improving coking resistance, and it is possible to solve the problem of nickel particle growth and coking caused by a large amount of hydrogen contained in the reactants or products in the reforming process, thereby improving long-term catalytic activity. I can keep it.
  • the magnesia used as a catalyst carrier raw material forms a spinel structure with most of the alumina, and substantially does not exist in the state of MgO, but for convenience, MgO which contributes to forming the spinel structure is represented as magnesia.
  • the balance except for nickel and cocatalyst is the catalyst carrier component.
  • the catalyst carrier is MgAl 2 O 4 in which alumina and magnesia react to form a spinel structure, wherein the spinel structure is formed by reacting alumina and magnesia on at least the surface of alumina in the form of a spinel structure. Present and may be present in some alumina form.
  • the catalyst carrier of one embodiment reacts with alumina to form a spinel structure of MgAl 2 O 4, the catalyst carrier may contribute to the improvement of coking resistance, but the specific surface area is reduced compared to that of the Al 2 O 3 carrier. . Therefore, when the content of magnesia is too high, it is possible to reduce the dispersity of nickel, which acts as a catalyst active site due to the reduction of specific surface area, which may lead to a decrease in activity of the catalyst. In addition, when the content of magnesia is too high, magnesia that does not form a spinel structure with alumina may exist on the carrier, and such magnesia may reduce the dispersibility of nickel.
  • magnesia is included in the range of 5 to 25% by weight of the total weight of the catalyst, the balance is alumina.
  • magnesia content is less than 5% by weight, the formation of the spinel structure is small and sufficient coking resistance cannot be obtained, and when the methane conversion reaction is performed on a mixed gas having a high hydrogen content, It can not ensure the stability, if the magnesium content exceeds 25% by weight of a free- form a magnesium oxide, or a specific surface area of the alumina and MgAl low specific surface area fails to form the spinel structure of the 2 O 4 MgAl 2 O 4 a relatively low By forming the spinel structure, the specific surface area of the nickel carrier is reduced, and thus the dispersion degree of nickel can be deteriorated, and methane conversion can be reduced.
  • the alumina used as the main raw material of the catalyst carrier is preferably one having a large specific surface area of 20 m 2 / g or more because it can increase the dispersibility of nickel supported on the MgAl 2 O 4 carrier.
  • the reforming catalyst of one embodiment as described above uses alumina as a precursor of the catalyst carrier, and prepares a mixture by mixing the alumina with the magnesia precursor and the nickel precursor.
  • the mixture may include a promoter component.
  • the mixture can then be prepared without the addition of water.
  • water containing crystallized water as the magnesia precursor and the nickel precursor is not required, and the components of the catalyst can be simultaneously supported by firing after mixing the components. You can get it.
  • nickel hydrate can be used as a source of nickel which is a catalytically active component.
  • the nickel precursor as Ni (NO 3) 2 xH may use 2 O, for example, may be mentioned Ni (NO 3) 2 ⁇ 6H 2 O.
  • Such a nickel precursor may be added so that the final resulting catalyst composition is in the range of 5-20% by weight relative to the total catalyst weight.
  • the cocatalysts include alkaline earth metal oxides such as Ca, transition metal oxides such as Zr, Ce, La, and noble metals such as Pt, Pd, and Rh, and can be used alone or in combination. It may be.
  • the promoter may be included in an amount of 10% by weight or less with respect to the final catalyst composition, and in the case where an expensive noble metal is included as the promoter, it is economical to include 2% by weight or less of the total catalyst composition.
  • magnesium hydrate may be used as the magnesia precursor.
  • Magnesium hydrate which is the magnesia precursor, reacts with alumina and magnesia precursor by the following drying and firing treatment to form a spinel structure of MgAl 2 O 4 .
  • Such a magnesia precursor may be added in the final catalyst composition such that the amount of magnesia required to form MgAl 2 O 4 useful for inhibiting coking and preventing growth of nickel particles is in the range of 5 to 25% by weight.
  • alumina is used as a precursor of the catalyst carrier.
  • the dispersion degree of the magnesia precursor may be increased to uniformly form MgAl 2 O 4 having a spinel structure.
  • the dispersion degree of nickel can be further increased.
  • the caulking problem of the catalyst can be suppressed, thereby ensuring long-term stability of the catalyst.
  • due to the high dispersibility of nickel can be suppressed caulking, it is possible to increase the methane conversion.
  • the alumina used as the main raw material of the catalyst carrier one having a specific surface area of 20 m 2 / g or more can be used.
  • the specific surface area is less than 20 m 2 / g, there is a problem that the dispersion of nickel is lowered, and the methane conversion rate may be lowered due to a problem in that the amount of nickel which serves as a catalytic active site cannot be increased.
  • the larger the specific surface area the more the supported amount of nickel, which is the catalytically active site, and the smaller the particle size of nickel can be supported, so that the reforming reaction conversion can be improved, and the upper limit of the specific surface area is preferable. It does not specifically limit about.
  • alumina having a specific surface area of 500 m 2 / g or less, for example, 300 m 2 / g or less can be used. have.
  • Patent Publication No. 2010-0076138 unlike the present invention, in providing an alumina carrier, by drying and firing using aluminum hydroxide (Al (OH) 3 ) Al (OH) 3 is converted to Al 2 O 3 reforming catalyst A method of obtaining is disclosed.
  • Al hydroxide Al (OH) 3
  • Al (OH) 3 Al (OH) 3 is converted to Al 2 O 3 reforming catalyst
  • a method of obtaining is disclosed.
  • aluminum hydroxide has a lower specific surface area than aluminum oxide, which limits the dispersibility of nickel and magnesia, and also has a large particle size of nickel supported on the carrier, which results in high methane conversion. There is a limit to the provision.
  • aluminum hydroxide is converted into alumina as described above, and alumina and magnesia form a spinel structure, but are present in some MgO state, and the formed catalyst carrier has a low specific surface area,
  • the dispersity of Ni is relatively low, the dispersion of nickel is inhibited and a high methane conversion cannot be obtained, and the effect of increasing the coking resistance is not so great that it does not provide long-term stability of the catalyst.
  • the addition of water is not required by using hydroxide as the precursor of the nickel and magnesia components used for preparing the catalyst.
  • the dispersion degree can be increased by sufficiently mixing while grinding using a method such as a ball mill for a predetermined time. In this case, the mixing may be performed at room temperature for 5 hours or more, for example, 5 to 72 hours, 5 to 24 hours, 5 to 15 hours, and 5 to 12 hours.
  • the step of drying the mixture Water is generated during the mixing of the catalyst components, and such water is preferably removed because it can inhibit the dispersion of the catalyst components.
  • the resulting water can be removed by evaporation by drying the mixture in a predetermined temperature range.
  • the drying step is preferably carried out in the range of 100 to 300 °C. If the temperature is less than 100 ° C., the drying speed is slow and long drying is required to inhibit economic synthesis. On the other hand, when it exceeds 300 degreeC, the particle
  • the drying time may be performed while the water can be sufficiently removed, but is not particularly limited, but the drying step may be performed for at least 3 hours for sufficient evaporation, for example, 3 to 72 hours, 3 to Drying for 24 hours, 3 to 12 hours, 3 to 10 hours or 3 to 7 hours.
  • a firing step is performed.
  • the calcining step is to remove the crystal water contained in the nickel precursor and the magnesia precursor, and also to decompose them to form crystals of the catalyst, which is not particularly limited, but is economically performed in air.
  • This firing step converts the catalyst precursor into a catalyst component, which forms on the surface of the carrier in the form of NiOx (where x is a number from 0 to 1.5). Therefore, alumina and magnesia react to form a MgAl 2 O 4 carrier having a spinel structure, and nickel is supported on the surface of the catalyst carrier.
  • the magnesia and the nickel precursor may be separately supported and calcined, as well as the cost and the process may be simplified by supporting and calcining at once.
  • alumina and magnesia as the raw material for the catalyst carrier, it can be calcined to form a spinel structure of MgAl 2 O 4 , whereby a mixed gas containing a large amount of hydrogen and having a relatively low volume ratio of the modifier to methane is produced. Even if the synthesis gas is used, high methane conversion can be obtained, and the catalyst activity can be maintained for a long time.
  • the firing step is preferably carried out at a temperature of 600 to 1000 °C.
  • the calcination step is performed at less than 600 °C, there is a problem that the catalyst is not activated to remain unnecessary components contained in the precursor, and also can not form a sufficient spinel structure can be low caulking resistance, more than 1000 °C
  • the dispersion degree of Ni may deteriorate.
  • such a firing step is preferably performed for 3 hours or more.
  • the firing step may be performed for, for example, 3 to 72 hours, 3 to 24 hours, 3 to 12 hours, 3 to 10 hours, 3 to 7 hours, or 3 to 5 hours.
  • the obtained catalyst can be pulverized by a ball mill or the like to finally obtain a reforming catalyst for producing a reducing gas from the mixed gas.
  • nickel and a promoter (M) are supported on an MgAl 2 O 4 carrier having a spinel structure formed by the alumina and magnesia, whereby an M / Ni / MgAl 2 O 4 catalyst Can be obtained.
  • the catalyst formed by the embodiment of the present invention is uniformly distributed and supported on the catalyst carrier with a fine average particle size of 5 to 15 nm, thereby increasing the catalytic active site, thereby improving the methane conversion rate You can.
  • the reforming reaction of methane may be performed using the reforming catalyst of one embodiment as described above.
  • the reforming catalyst according to an embodiment even if the reforming reaction is performed on a mixed gas containing a large amount of hydrogen such as COG, stable reforming reaction can be performed for a long time while suppressing coking problems caused by nickel growth of the catalyst.
  • the reforming reaction can be carried out with high methane conversion.
  • the reforming reaction using the reforming catalyst of the M / Ni / MgAl 2 O 4 type is carried out under a mixed gas atmosphere containing the catalyst supported in the reactor as nitrogen, hydrogen or a main component thereof
  • the reforming reaction can be carried out by supplying a mixed gas at a space velocity of 500 ⁇ 500,000hr -1 while maintaining the reactor at a reaction temperature of 500 ⁇ 1000 °C.
  • a catalyst having M / Ni / MgAl 2 O 4 based on a MgAl 2 O 4 catalyst carrier having a spinel structure should be activated by a reducing gas such as hydrogen, nitrogen, or a mixture thereof. If it is less than 600 degreeC, since Ni in a catalyst does not fully convert into a metal, it is preferable to reduce at the temperature of 600 degreeC or more. On the other hand, the upper limit of the reduction temperature is not particularly limited, for example, if more than 1000 °C further activation does not proceed, it is preferable to perform the reduction reaction at a temperature in the range of 600 to 1000 °C.
  • the reformed reaction can be carried out using the reduced catalyst.
  • the space velocity of the mixed gas is preferably in the range of 500 to 500,000 hr ⁇ 1 . If less than 500hr -1, because the reactor is extremely increased in a non-economical, above a 500,000hr -1 lowered the production rate of synthesis gas.
  • the reaction temperature of the reactor is preferably maintained at 500 to 1000 °C. If the reaction temperature is less than 500 ° C, coke is formed on the surface of the catalyst to reduce the catalytic activity, and if it exceeds 1000 ° C, it is disadvantageous in terms of energy. This is because the activity of is lowered.
  • the reforming catalyst according to one embodiment may not only be utilized for most reforming reactions, but also contains a large amount of hydrogen, such as COG, and the severe reforming reaction conditions in which the volume ratio of steam and CO 2 , which is a reforming agent, to methane is 3 or less. It can also be used suitably.
  • the mixed gas having a low CH 4 content in the reforming gas is not limited thereto, but a representative example may include COG.
  • Synthetic gas obtained by using the catalyst according to an embodiment of the present invention can be suitably used as a reducing gas in the blast furnace or flow furnace during the steelmaking process, it is also possible to produce high value-added chemicals.
  • the synthesis gas that can be suitably used as the reducing gas of the steelmaking process as described above can be efficiently used by using the process and equipment as described below.
  • a well-known catalyst used for producing various reducing gases may be used, but by applying the following process using the nickel catalyst provided by the embodiment of the present invention, the reducing gas production efficiency may be improved. It can increase.
  • the reforming catalytic reaction facility and process for producing a reducing gas to provide an efficient heat exchange network configuration that can maximize the use of sensible heat of molten slag, methane and a reforming agent as a reaction material
  • a methane stream comprising CO 2 , steam or CO 2 and steam as a reactant, to which a methane containing gas is fed;
  • a reactant stream comprising combustible fuel gas, the reactant stream comprising a CO 2 stream fed with a CO 2 containing gas and at least one modifier stream selected from the vaporized vapor stream of H 2 O fed through the H 2 O containing stream;
  • a reformed catalytic reaction system comprising a fuel stream, a flue gas stream from which the fuel stream is combusted and discharged from the reforming reactor, and a sensible heat recovery stream that recovers sensible heat of the molten slag, wherein the sensible heat of the molten slag is efficiently formed by efficiently constructing a heat exchange network.
  • the methane stream and the reformer stream are preheated using an exhaust gas stream exiting the reforming reactor by combustion of the fuel, and the H 2 O stream as a fuel stream and a reformer is supplied as a source of steam. Preheating or vaporizing with the sensible heat recovery stream can save fuel for the energy supply required for the reforming reaction.
  • FIG. 1 to 6 schematically show one embodiment of a reforming catalytic reaction system having various heat exchange networks in accordance with the present invention.
  • a reactant mixed stream comprising CH 4 as a reactant and a modifier CO 2 , H 2 O or CO 2 and H 2 O as a reactant is supplied to a reforming reactor, and the reactants of the reactant mixed stream are By contacting the catalyst in the reforming reactor and supplying the thermal energy generated by the combustion of the fuel to the following reforming reaction and the like to produce a reducing gas which is a reaction product of CO and H 2 .
  • the reaction occurring in the reforming reactor may be expressed as in the following formulas (1) to (3).
  • the methane reforming reaction is generated by the reaction raw material CH 4 and the reforming agents CO 2 and H 2 O included in the reactant mixture stream to produce CO and H 2 ,
  • the reaction or by H 2 and CO 2 reacts to produce CO or H 2 through the reverse reaction, it is possible to produce a reducing gas mainly containing H 2 and CO, from which hydrogen can be separated have.
  • a significant amount of thermal energy supply is required in the reforming reactor and a significant amount of fuel is required to meet this energy supply. This energy supply thus determines the economics of the overall process of the reforming reaction.
  • One embodiment of the present invention is to supply the energy of the preheating and reforming reaction of the reactants using the sensible heat of the molten slag to reduce the fuel consumption for the energy supply in the reforming reactor, and from the reforming reactor through the reforming catalytic reaction
  • the sensible heat of the exhaust gas is used as preheating energy.
  • sensible heat energy may be recovered from the molten slag and used as a reforming reaction and preheating energy.
  • the molten slag is generally discarded at a high temperature of about 1400 ° C., but the energy consumption of the reforming reaction can be reduced by recovering the sensible heat and using it in the reforming catalytic reaction process.
  • the molten slag sensible heat may be recovered by a method of contacting air with the molten slag in the molten slag sensible heat recovery system 62.
  • a hot sensible heat recovery stream of at least 400 ° C., preferably at least 500 ° C. can be obtained.
  • the molten slag sensible heat recovery system 62 is not particularly limited as long as it can recover sensible heat of slag.
  • air may be used as a heat recovery medium for recovering sensible heat from the molten slag.
  • sensible heat energy recovered at 400 ° C. or higher can be used as an oxygen source for combustion of fuel, which is preferable.
  • an indirect heating burner system in which a fuel stream 31 comprising combustible fuel gas is not mixed with the reactants for the supply of thermal energy required for the reaction of the reactants in the reforming reactor 51. 52 is supplied to heat energy to the reforming reactor 51 by indirect heating by combustion of the fuel.
  • the fuel used in one embodiment of the present invention is not particularly limited as long as it is a flammable fuel gas, and for example, COG can be used.
  • the sensible heat recovery stream 33 recovering the sensible heat of the molten slag is supplied to the burner system 52 and mixed with the combustible fuel gas to form an oxygen-containing fuel stream 37, wherein the combustible fuel gas and oxygen
  • the combustion reaction in the burner system 52 supplies the thermal energy required for the reaction of the reactants.
  • the sensible heat recovery stream 33 supplied to the oxygen source is supplied to the burner system 52 at a high temperature of 400 ° C. or higher to reduce energy required for combustion of fuel, thereby reducing energy consumption.
  • the reforming reaction is usually carried out under a temperature of 800 to 1000 °C. Accordingly, after the combustion reaction of the combustible fuel gas of the fuel stream 31 and the oxygen of the sensible heat recovery stream 33, the exhaust gas is discharged to the outside of the reforming catalytic reaction system.
  • the discharged flue gas stream 38 is a hot gas of 800 ° C. or higher, and may use the heat of the flue gas stream 38 to preheat the sensible heat recovery stream 33.
  • the preheated sensible heat recovery stream 36 can be obtained by heat-exchanging the sensible heat recovery stream 33 used as the oxygen source by heat exchange from the exhaust gas stream 38, and burner the preheated sensible heat recovery stream 36.
  • the resulting oxygen-containing fuel stream 37 can achieve an additional temperature rise, further improving the combustion efficiency of the fuel in the burner system 52.
  • a heat exchanger (oxygen preheating heat exchanger) 46 for heat exchange from the exhaust gas stream 38 is provided on the movement path of the sensible heat recovery stream 33 as shown in FIGS. 1 to 6. Can be.
  • the sensible heat recovery stream 33 having recovered the sensible heat of the molten slag can be used for preheating the fuel. Since the fuel is generally supplied at room temperature, preheating and supplying the fuel before it is supplied to the reforming reactor 51 can achieve efficient combustion.
  • the preheating of the fuel stream 31 separates the sensible heat recovery stream 33 from which the sensible heat of the molten slag has been recovered and separate sensible heat recovery stream (sensible heat recovery stream for fuel preheating) 35 for preheating the fuel stream 31. ) By heat exchange.
  • the steam in which CH 4 as a reaction raw material and CO 2 , H 2 O as a reforming agent is vaporized, or CO 2 and steam as a reactant is supplied to the reforming reactor 51.
  • a reforming reaction is performed in which each reactant is in contact with a catalyst to generate a reducing gas including CO and H 2 using thermal energy generated by combustion of a fuel.
  • the reaction product 26 obtained by the reforming reaction as described above is discharged and recovered from the reforming reactor 51 to obtain a reducing gas 26 containing CO and H 2 .
  • the reaction temperature of the reforming reactor 51 is maintained by the combustion of the fuel supplied to the burner system separately without mixing with the reactants, and is discharged from the reforming reactor 51 after combustion, the exhaust gas discharged is about 800 It is hot gas above °C. Therefore, the amount of reactive energy consumed can be reduced by utilizing the sensible heat of the exhaust gas stream 38 discharged as preheating energy.
  • the sensible heat of the exhaust gas stream 38 is preferably utilized to preheat CO 2 or steam as CH 4 as a reaction raw material and as a modifier. Since the reactants CH 4 and CO 2 are supplied at room temperature, the exhaust gas stream 38 may be used to preheat the methane stream and the reformer stream, thereby reducing the energy consumption required for heating to the reaction temperature in the reforming reactor 51. have.
  • Preheating of the methane stream 11 and the reformer streams 13, 16 may be carried out by heat exchange with the flue gas stream 38.
  • a heat exchanger (methane preheating heat exchanger 41) for heat exchange with the exhaust gas stream may be provided to preheat the methane stream 11, and also for heat exchange with the exhaust gas stream 38.
  • Heat exchangers 42 and 44 may be provided to preheat the reformer streams 13 and 16. This allows the preheated methane stream 12 and the preheated modifier streams 14, 17 to be fed to the reforming reactor 51.
  • the modifier stream may be a CO 2 stream 13 or a vapor stream 16 and may include both a CO 2 stream and a vapor stream. The methane reforming reaction when CO 2 is used as the reforming agent will be described.
  • Preheating of the methane stream 11 and the CO 2 stream 13 can be carried out by various methods as shown in FIGS. 1 to 3 show a heat exchange network when the reactant stream consists of a methane stream 11 and a CO 2 stream 13, each reactant stream 11, 13 as shown in FIGS. 1 and 2.
  • the preheated reactants 12, 14 can be obtained by preheating each reactant by heat exchange from the exhaust gas stream 38 by respective heat exchangers 41,42.
  • the methane stream 11 and the CO 2 stream 13 are mixed to form a mixed reactant stream 18 and then an exhaust gas stream through a heat exchanger (mixed reactant preheating heat exchanger) 45. It is also possible to obtain a preheated mixture stream 19 of methane and CO 2 by heat exchange from (38).
  • steam stream 16 alone as a modifier stream is not specifically described, but is the same as using CO 2 stream 13, except that the H 2 O stream is heat exchanged using slag sensible heat. Vaporization and the resulting vapor stream can be used as a modifier. This will be described below in detail in the case of using CO 2 and steam as a modifier, and at this time, since the matters related to steam can be employed as it is, it is omitted here. However, one of ordinary skill in the art will appreciate that the methane reforming reaction can be carried out when using a vapor stream in the following description.
  • steam can be used together with the CO 2 as a modifier, and the steam can be further supplied to the reactants via a stream 16. It said vapor stream (16) to the H 2 O vapor stream (15) H 2 O is fed to the liquefaction is supplied to the reforming reactor (51). At this time, the vaporization of the H 2 O stream 15 in the liquid phase may be performed by the sensible heat recovery stream 33 to recover the sensible heat of the molten slag.
  • the sensible heat recovery stream 33 supplied as the oxygen source can be separated and used for vaporization of the H 2 O stream 15 as shown in FIGS. 4 to 6.
  • the steam stream 16 may be obtained by vaporizing the H 2 O stream 15 by heat exchange from the sensible heat recovery stream (steam sensible heat recovery stream) 34 separated from the sensible heat recovery stream 33.
  • a heat exchanger (steam heat exchanger) 43 may be provided for heat-exchanging the H 2 O stream 15.
  • the vapor stream 16 is obtained by using the vaporization sensible heat recovery stream 34 which recovers sensible heat from the molten slag in this way, so that the energy consumption required for the vaporization of H 2 O can be reduced.
  • the steam stream 16 is fed to the reforming reactor 51 together with methane and CO 2 for use in the reforming reaction, wherein the preheated steam stream 17 is preheated to reduce the reforming energy consumption. It is preferable to supply to (51).
  • the preheating of the steam stream 16 can be carried out using the sensible heat of the flue gas stream 38, the vapor being preheated by performing the steam stream 16 by heat exchange with the flue gas stream 38.
  • Stream 17 can be obtained. To this end it may be provided with a heat exchanger (steam preheating heat exchanger 44) for heat exchange of the steam stream 16 by the exhaust gas stream 38.
  • the reactant stream when the reactant stream includes the vapor stream 16 together with the methane stream 11 and the CO 2 stream 13, it may be performed by various methods as shown in FIGS. 4 to 6.
  • respective preheating heat exchangers 41, 42, 44 are installed to heat exchange each reactant stream 11, 13, 16 from the flue-gas stream 38. Preheating may feed preheated reactant streams 12, 14, 17 to reforming reactor 51.
  • two or more reactant streams of each of the reactant streams 11, 13, and 16 may be mixed to form a mixed stream, and then preheated through a mixed reactant preheating heat exchanger 45. It may be. Specifically, Fig, methane stream 11 and a CO 2 stream 13 is mixed with the methane and CO 2 of after forming the mixture stream 18 mixing streams of the methane and CO 2 (18 a, as shown in Fig. 5 ) Is preheated from the exhaust gas stream 38 to preheat the mixed reactants (mixed stream 19 of preheated methane and CO 2 ), and the steam stream 16 is independently provided by a steam preheating heat exchanger 44. Preheating vapor stream 17 can be obtained.
  • FIG. 5 Preheating vapor stream 17 can be obtained.
  • the mixed reactant may be heat exchanged from the flue-gas stream 38 by a preheating heat exchanger 45 to obtain a preheated mixed reactant and is not particularly limited.
  • all of the reactant streams, methane stream 11, CO 2 stream 13 and vapor stream 16 are mixed to form one mixed stream 20.
  • the mixed stream 20 may be heat exchanged from the flue-gas stream 38 via one mixed reactant preheating heat exchanger 45 to obtain a preheated mixed reactant stream 21.
  • the methane stream 11 and the CO 2 stream 13 are preferably pressurized by the compressor 61 and fed into the system.
  • the reforming reactor 51 which will be described below, may be maintained at a pressure of 1 to 40 bar, and may be maintained at a high pressure to carry out a reforming reaction, such as a compressor 61 for supply to the reforming reactor 51. It is desirable to compress the reactants through to deliver them to the high pressure stream.
  • the sensible heat recovery stream 33 is supplied from the burner system 52 to an oxygen source for combustion reaction with the fuel, and may be used for vaporizing the fuel preheating and H 2 O as necessary.
  • the sensible heat recovery stream 33 may perform heat exchange for preheating fuel and vaporizing H 2 O by one stream, but separates sensible heat recovery stream 33 for efficient use of sensible heat recovered from molten slag. It is desirable to utilize. To this end, it may be provided with a branching means such as a split (not shown) for separating the sensible heat recovery stream 33.
  • methane (CH 4 ) used as a reaction raw material is not particularly limited, but natural methane gas can be used, as well as a gas containing methane.
  • by-product gas of industry such as coke oven gas (COG) which arises in a steel mill, can be used as a source of methane.
  • COG coke oven gas
  • the COG generally comprises about 55% hydrogen, about 27% methane, about 9% carbon monoxide, about 2% C 2 H 4 , about 4% nitrogen, about 3% carbon dioxide, and the like, and is preferably used as a methane source.
  • COG coke oven gas
  • the COG generally comprises about 55% hydrogen, about 27% methane, about 9% carbon monoxide, about 2% C 2 H 4 , about 4% nitrogen, about 3% carbon dioxide, and the like, and is preferably used as a methane source.
  • the industrial by-product gas such as COG, it is preferable from an economical point of view.
  • Reactants that are fed into the reforming reactor 51 is the CH 4 gae nitriding gas (CO 2 and H 2 O), based on the volume of CH 4 in the raw material gas containing a 1: 1 to 4.0 it is preferred to supply doubled .
  • CO 2 and H 2 O is contained in less than 1-fold by volume of CH 4, the CH 4 conversion and CO and the second conversion rate can be lowered, the catalyst coking, if to be used in iron ore reduction reducing gas (coking) Problems may occur and may not be suitable for the intended use.
  • it exceeds 4.0 times the CH 4 conversion rate and CO 2 conversion rate increase, but the amount of unreacted and remaining reforming gas increases, so that the fraction of H 2 and CO in the reduction gas 26 finally obtained decreases. There is.
  • the reactants COG and CO 2 are blowers to match the above-mentioned supply ratio of COG, CO 2, and H 2 O and to supply a predetermined amount quantitatively.
  • H 2 O may include a system for controlling the steam supply amount and pressure after the water is made of steam.
  • the reforming reaction can be carried out under a pressure of 1 to 40 bar, preferably 2 to 20 bar, more preferably 4 to 10 bar. If the pressure is less than 1 bar in the reaction, an additional boost is required to blow the high temperature reducing gas 26 generated after the reforming reaction into the blast furnace or the flow furnace, but the temperature of the produced product is elevated so that the temperature is increased and then increased again. Therefore, it is very disadvantageous in terms of energy efficiency, and when the pressure exceeds 40bar, there is a problem that the conversion rate of methane is lowered and the pressure is higher than the blowing pressure of the blast furnace or the flow furnace, resulting in energy loss due to the reduced pressure.
  • the reforming reaction is preferably carried out at a temperature of 800 to 1000 °C, more preferably may be carried out under a temperature of 850 to 950 °C.
  • the reaction is carried out at a temperature of less than 800 °C the conversion rate of CH 4 or CO 2 is low, when the reaction is carried out at a temperature of more than 1000 °C reforming reactor of a material that can be used stably for a long time at high temperature and high pressure ( 51) There is a problem that is difficult to obtain.
  • the reforming reaction is preferably carried out at a reaction space velocity of 500 to 500,000 h ⁇ 1 , more preferably at a reaction space velocity of 1,000 to 100,000 h ⁇ 1 .
  • the reaction space velocity is a value obtained by dividing the standard gas volume of the reactant flowing per hour by the catalyst volume.
  • the reaction space velocity is less than 500 h ⁇ 1, the throughput of the reactants decreases, and thus the reactor size needs to be increased, and thus economical efficiency. There is a problem of this lowering.
  • the reaction space velocity exceeds 500,000 h ⁇ 1 , there is a problem that the conversion rate of methane and carbon dioxide is lowered due to the reaction rate problem.
  • the reaction pressure is controlled using a back-pressure regulator or the like to adjust the reaction conditions mentioned above, but not necessarily limited thereto.
  • the reaction temperature may be controlled by an indirect heat supply method.
  • the reforming reactor 51 of the present invention includes a catalyst bed.
  • the catalyst disposed in the catalyst layer for the reforming reaction of the present invention is preferably a nickel (Ni) -based catalyst. More specifically, using a nickel-based reforming catalyst based on a support such as Al 2 O 3 , ZrO 2 , Ce-ZrO 2 , MgAl 2 O 4 , or in addition to Ca, K, Mg, Ce, La, Nickel-based reforming catalysts containing promoters such as noble metals can be used.
  • the nickel-based catalyst is described as an embodiment of the present invention, and nickel and optionally a promoter are supported on a carrier, and the carrier is MgAl 2 O 4 by reaction of alumina and magnesia.
  • the reducing gas can be prepared by using a methane reforming catalyst for producing a reducing gas having a spinel structure of. Details of the catalyst and its preparation are as described above, and are not repeated.
  • the conversion rate of CH 4 in the reactants can be obtained at 60% or more, and is generated during waste heat and reforming catalytic reaction processes generated in industrial processes such as molten slag.
  • inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) were analyzed by XRD, and the results are shown in FIG. 7.
  • the catalyst 2 of the present invention reacts with alumina and magnesia to form an MgAl 2 O 4 spinel structure, and the Ni. ) was confirmed using the Scherrer equation.
  • nickel supported on the catalyst for the inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) was analyzed by TEM, and the results are shown in FIG. 8. It was confirmed that it is 15nm.
  • the mixture was milled for 6 hours using a ball mill to form a mixture, and the obtained mixture was dried in an oven at 150 ° C. for 5 hours to remove evaporated water. Thereafter, the mixture was calcined in a kiln maintained at 700 ° C. for 10 hours and then pulverized, and reduced to 5 hours or more in hydrogen (N 2 balance) at 950 ° C. or more to prepare a catalyst.
  • the catalyst thus obtained was analyzed by XRD, and the results are shown in FIG. 9. As can be seen from FIG. 9, the obtained catalyst has a structure of Ni / MgO / Al 2 O 3 , and it is understood that some magnesia forms a spinel structure of alumina and MgAl 2 O 4 , but MgO remains. It was also confirmed that the Ni particles were approximately 20 nm or more.
  • FIG. 10 is a graph showing the results of testing the reforming activity under the two reaction conditions according to the nickel content using the inventive catalysts 1 to 4, Comparative Catalyst 1.
  • a commercially available commercial catalyst was reduced under the same conditions, and reformed activity experiments were performed under the same conditions.
  • the methane conversion of Comparative Catalyst 4 was also shown.
  • the example showed methane conversion of about 15% higher than that of the commercial catalyst.
  • 11 is a graph showing the results of testing the reforming activity under the two reaction conditions according to the magnesium content using the catalyst of the invention catalysts 2, 5 to 7, Comparative Catalysts 2 and 3.
  • Comparative catalyst 2 had a high Ni content and a high methane conversion rate. However, the nickel dispersity was low, causing coking problems due to Ni growth, resulting in poor catalyst stability.
  • inventive catalyst 2 and comparative catalyst 1 were superior in initial reforming activity to commercial catalysts.
  • Comparative Catalyst 1 after 5 hours from the start of the reaction, the methane conversion rate was sharply lowered and thus the function was lost, indicating that the catalyst stability was poor.
  • inventive catalyst 2 it can be seen that the activity of the catalyst is stable even after 30 hours after the start of the reforming reaction.
  • a reforming catalytic reaction system that generates a mixed gas from a reforming catalytic reaction process from COG, a steel by-product gas containing a large amount of CH 4 composed of 57% hydrogen, 27% methane, 9% carbon monoxide, 4% nitrogen, and 3% carbon dioxide. 3 was connected to a sensible heat recovery system for recovering sensible heat from the molten slag from the molten slag transfer device at 1100 to 1500 ° C.
  • the sensible heat recovery system is operated under atmospheric pressure, and air is inputted using a packed bed heat exchanger for sensible heat recovery, which is a granulated slag sensible heat recovery device, which is granulated at a temperature of 1-5 mm assembled in the molten slag granulator. It was assumed that the high temperature air at 500 ° C. was recovered to supply a high temperature air of 500 ° C. to the reforming catalytic reaction system, and the high temperature air was used as the COG reforming reaction and the temperature rising energy of H 2 O.
  • the reforming reaction apparatus is a catalyst reforming reaction apparatus of COG-CO 2 -H 2 O, and the reaction gas and fuel gas is quantitatively input using a metering unit, COG reforming as a reaction and fuel heat exchanger Considering the blast furnace gas input, the operating conditions were set to 5 bar.
  • the total heat input amount per hour is 170,800 kcal
  • the calorific value of the generated gas including sensible heat is 147,600 kcal. That is, about 98% of the total input heat was recovered by the generated gas calorific value and sensible heat.
  • the slag sensible heat was estimated to occupy more than 20% (40% of the reaction energy) of the temperature and reaction energy required in the reaction process.
  • the COG-CO 2 -H 2 O reaction system is evaluated as a heat recovery / reuse reaction process in the process through the heat exchange network proposed in the present invention, and is relatively advantageously reformed catalyst using sensible heat recovered from molten slag. It can be seen that the reaction process can be operated.
  • compressor 62 molten slag sensible heat recovery system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

The present invention according to one embodiment relates to a catalyst suitable for producing a reduction gas, containing hydrogen and carbon monoxide as main constituents, by reforming a mixed gas for which the volumetric ratio (H2O+CO2/CH4) is 3 or lower, providing a methane reforming catalyst for producing a reduction gas in which nickel and a promoter are selectively supported on the supporting body, wherein the supporting body has a spinel structure of MgAl2O4 from a reaction of alumina(Al2O3) and magnesia (MgO), and according to another embodiment, the present invention provides a method for producing the catalyst, a method for producing a reduction gas by means of the catalyst, and a catalytic reforming reaction and equipment comprising a reduction gas reforming reactor in which the catalyst is supported.

Description

철광석 환원을 위한 환원 가스 제조용 니켈계 개질 촉매 및 그 제조방법, 에너지 효율을 극대화한 개질촉매 반응 공정 및 설비, 그리고, 이를 이용한 환원가스 제조방법Nickel-based reforming catalyst for reducing gas production for iron ore reduction, its production method, reforming catalyst reaction process and equipment for maximizing energy efficiency, and reducing gas production method using the same
본 발명은 부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스를 개질하여 수소와 일산화탄소를 주성분으로 포함하는 환원가스를 제조하는데 적합한 촉매를 제공하고자 하는 것으로서, 특히, 고로 및 유동로에서의 철광석 환원공정에 사용되는 환원가스를 효율적으로 얻기 위한 COG 혼합 개질 반응 공정에 사용하기에 적합한 개질 촉매에 관한 것이다.The present invention aims to provide a catalyst suitable for producing a reducing gas containing hydrogen and carbon monoxide as a main component by reforming a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) of 3 or less, in particular, a blast furnace and a flow. A reforming catalyst suitable for use in a COG mixing reforming reaction process for efficiently obtaining a reducing gas used in an iron ore reduction process in a furnace.
또한, 본 발명은 상기 촉매를 제조하는 방법 및 상기 개질 촉매를 이용하여 메탄을 함유한 가스로부터 개질 반응에 의한 철광석 환원용 환원가스를 제조하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method for producing the catalyst and a method for producing a reducing gas for iron ore reduction by the reforming reaction from a gas containing methane using the reforming catalyst.
나아가, 본 발명은 제철소에서 발생하는 약 1400℃의 용융 슬래그로부터 회수한 현열을 이용하여 H2와 CO가 다량 함유된 고온의 환원가스를 얻기 위한 개질 촉매 반응공정에 관한 것으로서, 보다 구체적으로는 개질 촉매 반응공정을 수행함에 있어서, 열 교환망을 최적화함으로써 용융 슬래그로부터 회수한 현열의 이용 효율을 극대화할 수 있는 개질 촉매 반응공정을 제공하고자 한다. Furthermore, the present invention relates to a reforming catalytic reaction process for obtaining a high temperature reducing gas containing a large amount of H 2 and CO by using sensible heat recovered from molten slag at about 1400 ° C. generated in a steel mill. In carrying out the catalytic reaction process, it is to provide a reforming catalytic reaction process that can maximize the utilization efficiency of the sensible heat recovered from the molten slag by optimizing the heat exchange network.
일반적으로 철광석 환원 공정에 사용되는 환원가스는 CO 및 H2를 제외한 성분, 특히 H2O, CO2, CH4 등이 최소로 포함되어야 하고, 고로 및 유동로에 취입을 위해 900℃ 정도의 고온 상태의 가스일 것이 요구된다.In general, the reducing gas used in the iron ore reduction process should contain a minimum of CO and H 2 , in particular H 2 O, CO 2 , CH 4, etc., and a high temperature of about 900 ° C. for blowing into the blast furnace and the flow furnace. It is required to be gas in the state.
통상 석유 화학업계에서 천연 가스(Natural gas), 납사 등을 원료로 물 또는 물과 산소를 이용하여 다음 식 (1) 내지 (3)과 같은 촉매 개질 반응을 통해 수소 및 CO를 다량 포함하는 환원가스를 제조한다. In the petrochemical industry, reducing gas containing a large amount of hydrogen and CO through a catalytic reforming reaction using natural gas, naphtha, etc. using water or water and oxygen as raw materials, as shown in the following formulas (1) to (3): To prepare.
CH4 + CO2 ↔ 2H2 + 2CO (1)CH 4 + CO 2 ↔ 2H 2 + 2CO (1)
CH4 + H2O ↔ 3H2 + CO (2)CH 4 + H 2 O ↔ 3H 2 + CO (2)
H2 + CO2 ↔ CO + H2O (3)H 2 + CO 2 ↔ CO + H 2 O (3)
즉, 개질화제로서 CO2 또는 H2O를 사용하여 CH4를 개질함으로써 H2와 CO가 주로 포함된 환원가스를 생산할 수 있다. 상기와 같은 식 (1) 내지 (3)의 화학반응식에 따르면, CH4를 개질화제인 CO2 또는 H2O와 개질 반응시킴으로써 CO와 H2가 생성되고, 또, H2와 CO2가 반응하여 CO를 생성함으로써 H2와 CO가 주로 포함된 환원성의 합성 가스를 생산할 수 있다. That is, by reforming CH 4 using CO 2 or H 2 O as the modifying agent, it is possible to produce a reducing gas mainly containing H 2 and CO. According to the above chemical reaction formulas (1) to (3), CO and H 2 are generated by reforming CH 4 with CO 2 or H 2 O as a modifier, and H 2 and CO 2 are reacted. By generating CO, it is possible to produce a reducing synthesis gas mainly containing H 2 and CO.
여기에서 만들어진 합성가스(syngas) 및 수소는 석유화학업계에서 다양하게 이용되고 있다. 합성가스의 경우는 통상 천연가스(natural gas), 나프타 등을 원료로 물을 이용하여 스팀 개질을 한 후, H2를 CO로 변환시키는 역수성 반응을 하여 합성하거나, 물과 산소를 이용한 자열 개질 반응을 통해 합성한다. 여기서 합성된 가스에서 물과 CO2를 제거한 후 H2/CO 비를 맞추어 메탄올 및 탄소수 2 이상의 탄화수소를 합성하고 있다.Syngas and hydrogen produced here are used in various ways in the petrochemical industry. In the case of syngas, steam is reformed by using natural gas, naphtha, or the like as a raw material, and then synthesized by performing a reverse hydrolysis reaction in which H 2 is converted to CO, or autothermal reforming using water and oxygen. Synthesized through reaction. Here, water and CO 2 are removed from the synthesized gas, and methanol and a hydrocarbon having 2 or more carbon atoms are synthesized by adjusting the H 2 / CO ratio.
그러나 상기와 같은 공정에 사용되는 개질 촉매는 수소를 거의 포함하지 않는 천연가스 또는 납사 등의 가스의 전환에 최적화되어 있으며, 생산 가스도 주로 수소를 그 대상으로 하고 있다. However, the reforming catalyst used in the above process is optimized for the conversion of gas such as natural gas or naphtha containing little hydrogen, and the production gas mainly targets hydrogen.
석유 화학업계에서 사용되고 있는 개질 촉매를 이용하는 경우에는 아래 표 1에 나타낸 바와 같이 메탄에 포함된 탄소에 대비하여 스팀이 주성분인 개질화제를 H2O/CH4=~3의 함량으로 과량 사용하고 있다. 그러나, 이에 의해 얻어진 합성가스를 제철 공정 중의 고로 또는 유동로에서 철광석 환원 공정의 환원제로 사용하는 경우, 과량으로 사용된 미반응 개질화제를 제거하는 별도의 공정이 후단에서 요구된다.In the case of using the reforming catalyst used in the petrochemical industry, as shown in Table 1 below, the reforming agent, which is mainly composed of steam, is used in an amount of H 2 O / CH 4 = ~ 3 as compared to the carbon contained in the methane. . However, when the syngas obtained thereby is used as a reducing agent in an iron ore reduction process in a blast furnace or a flow furnace in a steelmaking process, a separate process for removing an unreacted reforming agent used in excess is required at a later stage.
표 1
수소 제조 촉매 공정 환원가스 제조 촉매 공정
생성물 주 생성물 H2 H2+CO(고로용 환원가스)
H2 농도 ~70% 이하(wet base)미반응 스팀 제외시 90% 이상 가능(H2/CO>5) (H2+CO) 농도: >70%(wet base)(H2/CO<~5)
반응조건 원료 천연가스(CH4>90%), 납사 등 천연가스, COG, (55% H2, 27% CH4, 8% CO)의 혼합 가스 등
개질화제 스팀(스팀 개질) 스팀 및 CO2(스팀 & CO2 개질)
주 반응 CH4+H2O→4H2+CO2 CH4+xH2O+yCO2→cH2+dCO
개질화제/CH4(부피비) H2O/CH4=~3 (H2O+CO2)/CH4=3
Table 1
Hydrogen Production Catalytic Process Reduction Gas Production Catalytic Process
product Main product H 2 H 2 + CO (Reduction Gas for Blast Furnace)
H 2 concentration ~ 70% or less (wet base) More than 90% possible without excluding unreacted steam (H 2 / CO> 5) (H 2 + CO) concentration:> 70% (wet base) (H 2 / CO <~ 5)
Reaction condition Raw material Natural gas (CH 4 > 90%), naphtha Natural gas, COG, mixed gas of (55% H 2 , 27% CH 4 , 8% CO), etc.
Modifier Steam (steam reforming) Steam & CO 2 (steam & CO 2 reforming)
Main reaction CH 4 + H 2 O → 4H 2 + CO 2 CH 4 + xH 2 O + yCO 2 → cH 2 + dCO
Modifier / CH 4 (Volume Ratio) H 2 O / CH 4 = ~ 3 (H 2 O + CO 2 ) / CH 4 = 3
제철소에서는 환원가스 또는 연료로서 수소가 포함된 가스를 사용하고 있으며, 특히 수소를 함유한 가스인 COG(coke oven gas)를 정제한 후 고로 또는 유동로등에 사용하거나 COG 또는 비싼 천연가스를 스팀 개질하여 수소가 주성분인 환원가스를 얻어 900℃ 이상으로 승온시켜 고로 또는 유동로 등에 취입할 수 있으며, 이를 통해 저 CO2 제선을 달성하려는 연구가 진행 중에 있다. In steel mills, hydrogen-containing gas is used as reducing gas or fuel, and in particular, COG (coke oven gas), a gas containing hydrogen, is purified and used in blast furnaces or flow furnaces, or by steam reforming COG or expensive natural gas. Hydrogen is the main component to obtain a reducing gas to be heated to more than 900 ℃ can be blown into the blast furnace or flow furnace, etc. Through this research to achieve low CO 2 steelmaking is underway.
상기 COG의 활용을 통한 환원가스 제조는 저가의 환원가스를 공급할 수 있으며, 또한 일관 제철소 내의 자원의 효율적인 이용 측면에서 바람직하나, 메탄을 포함하는 COG 등의 가스를 원료로 사용하여 환원가스를 제조하는데 최적화된 개질 촉매는 아직 개발되어 있지 않은바, 이러한 촉매의 개발이 시급한 실정이다.Reducing gas production through the utilization of the COG can supply a reducing gas of low cost, and also in terms of the efficient use of resources in an integrated steel mill, but to produce a reducing gas using a gas such as COG containing methane as a raw material Optimized reforming catalyst has not been developed yet, the development of such a catalyst is urgently urgent.
한편, 수소와 CO로 이루어진 합성가스를 제조함에 있어서 개질 촉매 반응은 대부분 자체에서 쓰고 남은 에너지를 이용하여 개질 공정 및 스팀 생산을 위한 에너지로 활용되고 있다. 그러나, 여전히 개질 공정의 냉가스 효율이 60~70% 수준에 그치고 있다. 따라서, 개질 촉매 반응을 위해, 상당한 수준의 에너지가 공급될 것이 요구되고 있다. 이러한 열에너지의 공급량은 합성 가스 제조 공정의 경제성을 결정짓는 중요한 요소로서, 합성 가스 제조 공정 중에 발생되는 폐열을 효율적으로 활용할 수 있는 방안이 요구된다. On the other hand, in the synthesis of hydrogen and CO synthesis reforming reaction is mostly used as energy for the reforming process and steam production using the energy left in itself. However, the cold gas efficiency of the reforming process is only 60-70%. Therefore, for reforming catalysis, a considerable amount of energy is required to be supplied. The amount of thermal energy supplied is an important factor that determines the economic feasibility of the syngas production process, and a method for efficiently utilizing waste heat generated during the syngas production process is required.
그 외, COG로부터 수소를 얻는 방법으로는 최근 일본에서 연구되고 있는 고온 조질 COG에 포함된 타르(tar)를 촉매로 분해하거나 산소를 투입하여 약 1200℃ 이상의 고온에서 부분 산화시켜 가연성 가스성분을 증량하는 연구가 이루어지고 있으나, 촉매 재생과 높은 산소 소모에 따른 기술적 및 경제적 문제를 안고 있다.In addition, a method of obtaining hydrogen from COG is to decompose tar contained in high-temperature crude COG, which has been recently studied in Japan, with a catalyst, or to partially oxidize at a high temperature of about 1200 ° C. by adding oxygen to increase flammable gas components. Although research is being conducted, there are technical and economic problems due to catalyst regeneration and high oxygen consumption.
본 발명의 일 구현예에 있어서, 철광석 환원공정인 고로 및 유동로용 환원가스를 효율적으로 얻기 위하여, 메탄이 포함된 원료, 예를 들어, 천연가스 또는 COG를 개질할 때 필요한 촉매에 관한 것이다. In one embodiment of the present invention, in order to efficiently obtain the reducing gas for the blast furnace and flow furnace which is an iron ore reduction process, the present invention relates to a catalyst required when reforming a raw material containing methane, for example, natural gas or COG.
상기 환원가스는 CO 및 H2를 제외한 성분, 특히 H2O, CO2, CH4 등이 최소로 포함되어야 하고, 고로 및 유동로에 취입을 위해 900℃ 정도의 고온상태이어야 한다. 이와 같은 철광석 환원가스의 특성상 반응조건에서 메탄 등 탄화수소의 탄소 대비 개질화제가 기존 개질촉매 조건에 비해 상당히 낮은 상태를 요구하고 있으며, 특히 COG를 대상으로 개질할 경우, 반응물인 COG에는 수소가 다량 포함되어 있는 특징이 있다. 이러한 특징은 Ni계 개질 촉매에서 가장 취약점인 Ni 금속 성장 등에 따른 코킹 문제를 해결해야 한다. The reducing gas should contain a minimum of CO and H 2 , in particular H 2 O, CO 2 , CH 4 and the like, and at a high temperature of about 900 ℃ to blow into the blast furnace and flow furnace. Due to the characteristics of the iron ore reducing gas, the reforming agent of hydrocarbons such as methane is required to be significantly lower than the existing reforming catalyst conditions in the reaction conditions, and especially when the COG is reformed, the reactant COG contains a large amount of hydrogen. There is a characteristic. This feature should solve the coking problem caused by Ni metal growth, which is the most vulnerable in Ni-based reforming catalyst.
강력한 내코킹 특성을 얻기 위해, Ni 담지 방법 및 담지량 조절, 그리고 MgAl2O4 지지체의 적용 가능성에 주목하였다.In order to obtain strong caulking resistance, attention was paid to the Ni loading method and the loading control, and the applicability of the MgAl 2 O 4 support.
또한, 본 발명의 다른 구현예로서, 메탄 개질 반응으로부터 H2와 CO가 다량 함유된 환원가스 및 수소를 얻기 위해서는 반응에 상당한 양의 열에너지를 필요로 하는데, 이러한 열에너지의 공급원으로서 제철소에서 활용되지 않는 용융 슬래그의 현열을 효과적으로 이용하는 방안을 제공하고자 한다.In addition, as another embodiment of the present invention, in order to obtain a reducing gas and hydrogen containing a large amount of H 2 and CO from the methane reforming reaction, a considerable amount of heat energy is required in the reaction, which is not utilized in steel mills as a source of such heat energy. It is intended to provide a method of effectively utilizing the sensible heat of the molten slag.
나아가, 이와 같은 용융 슬래그의 현열을 이용함에 있어서, 열 교환망을 최적화함으로써 현열의 이용을 극대화할 수 있는 개질 촉매 반응 공정을 제공하고자 한다. Further, in using the sensible heat of the molten slag, it is to provide a reforming catalytic reaction process that can maximize the use of sensible heat by optimizing the heat exchange network.
본 발명의 일 견지에 따르면, 부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스를 개질하여 수소와 일산화탄소를 주성분으로 포함하는 환원가스를 제조하는데 사용되는 촉매를 제공하고자 하는 것으로서, 혼합가스로부터 환원가스를 제조하는데 사용되며, 담체 상에 니켈 및 선택적으로 조촉매가 담지되며, 상기 담체는 알루미나와 마그네시아의 반응에 의한 MgAl2O4의 스피넬 구조를 갖는 환원가스 제조용 메탄 개질 촉매를 제공한다. According to one aspect of the invention, to provide a catalyst used to produce a reducing gas containing hydrogen and carbon monoxide as a main component by reforming a mixed gas (H 2 O + CO 2 / CH 4 ) 3 or less in volume ratio as , Used to prepare a reducing gas from the mixed gas, and nickel and optionally a promoter supported on the carrier, the carrier is a methane reforming catalyst for producing a reducing gas having a spinel structure of MgAl 2 O 4 by the reaction of alumina and magnesia To provide.
상기 촉매에 있어서, 상기 니켈은 5 내지 15nm의 평균 입자 사이즈를 갖는다.In the catalyst, the nickel has an average particle size of 5 to 15 nm.
또, 상기 촉매는 마그네시아 5-25중량%, 니켈 5-20중량%, 조촉매 10중량% 이하 및 잔부 알루미나를 포함하며, 상기 마그네시아는 알루미나와의 반응에 의해 MgAl2O4의 스피넬 구조로 존재한다.In addition, the catalyst contains 5-25% by weight of magnesia, 5-20% by weight of nickel, 10% by weight or less of cocatalyst, and the residual alumina, and the magnesia is present in the spinel structure of MgAl 2 O 4 by reaction with alumina. do.
또한, 상기 알루미나(Al2O3)는 비표면적이 20㎡/g 이상인 것이 바람직하다.In addition, the alumina (Al 2 O 3 ) is preferably a specific surface area of 20 m 2 / g or more.
나아가, 상기 조촉매는 Ca, Zr, Ce, La, Pt, Pd 및 Rh로부터 선택되는 적어도 하나 또는 이를 포함하는 화합물일 수 있다.Furthermore, the promoter may be at least one selected from Ca, Zr, Ce, La, Pt, Pd, and Rh or a compound including the same.
이때, 상기 혼합가스는 코크스 오븐 가스(COG)일 수 있다.In this case, the mixed gas may be coke oven gas (COG).
또한, 본 발명의 다른 견지에 따르면 상기 촉매를 제조하는 방법을 제공하고자 하는 것으로서, 알루미나(Al2O3), 마그네시아 전구체, 니켈 전구체 및 선택적으로 조촉매를 물의 첨가없이 실온에서 30분 이상 혼합하여 혼합물을 얻는 혼합 단계; 상기 혼합물을 100 내지 300℃의 온도에서 건조시키는 건조 단계; 및 상기 건조된 혼합물을 600 내지 1000℃의 온도에서 소성 환원하여 알루미나와 마그네시아의 반응에 의한 스피넬 구조의 MgAl2O4 담체를 형성하고, 상기 담체 상에 니켈 및 조촉매를 담지시키는 소성 단계를 포함한다. In addition, according to another aspect of the present invention to provide a method for producing the catalyst, by mixing alumina (Al 2 O 3 ), magnesia precursor, nickel precursor and optionally a promoter at least 30 minutes at room temperature without the addition of water A mixing step of obtaining a mixture; A drying step of drying the mixture at a temperature of 100 to 300 ° C; And calcining and reducing the dried mixture at a temperature of 600 to 1000 ° C. to form a MgAl 2 O 4 carrier having a spinel structure by reaction of alumina and magnesia, and carrying a nickel and a promoter on the support. do.
상기 혼합물은 알루미나, 마그네시아, 니켈 및 조촉매의 합계 중량에 대하여 마그네시아 5 내지 25중량%, 니켈 5 내지 20중량%, 조촉매 10중량% 이하 및 잔부 Al2O3를 포함한다. The mixture comprises 5 to 25% by weight of magnesia, 5 to 20% by weight of nickel, up to 10% by weight of promoter and the balance Al 2 O 3 relative to the total weight of alumina, magnesia, nickel and promoter.
한편, 상기 니켈 전구체는 니켈 수화물일 수 있으며, 상기 마그네시아 전구체는 마그네슘 수화물일 수 있다. 또한, 상기 조촉매는 Ca, Zr, Ce, La, Pt, Pd 및 Rh로부터 선택되는 적어도 하나 또는 이를 포함하는 화합물일 수 있다.Meanwhile, the nickel precursor may be nickel hydrate, and the magnesia precursor may be magnesium hydrate. In addition, the promoter may be at least one selected from Ca, Zr, Ce, La, Pt, Pd and Rh or a compound including the same.
이때, 상기 알루미나(Al2O3)는 비표면적이 20㎡/g 이상인 것이 바람직하다.In this case, the alumina (Al 2 O 3 ) is preferably a specific surface area of 20 m 2 / g or more.
본 발명의 또 다른 견지에 따르면, 상기 환원가스 제조용 촉매를 사용하여 환원가스를 제조하는 방법을 제공하고자 하는 것으로서, 상기 환원가스 제조용 촉매를 수소, 질소 또는 이들을 포함하는 혼합가스 분위기 하, 600 내지 1000℃ 온도 범위에서 환원시키는 단계와, 반응온도가 500 내지 1000℃의 반응기에서 부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스를 공간속도가 500 내지 500,000hr-1로 공급하여 반응시키는 단계를 포함한다.According to another aspect of the present invention, to provide a method for producing a reducing gas using the catalyst for reducing gas production, the catalyst for producing reducing gas under hydrogen, nitrogen or a mixed gas atmosphere containing them, 600 to 1000 Reducing the temperature in a temperature range, and supplying a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) 3 or less in a reactor having a reaction temperature of 500 to 1000 ° C. at a space velocity of 500 to 500,000 hr −1 Reacting.
본 발명의 또 다른 견지에 따르면, 고온의 환원가스를 생성하는 개질 촉매 반응 설비에 있어서, 용융 슬래그의 현열 이용을 극대화할 수 있는 열교환 망 구성을 제공하고자 하는 것으로서, 반응원료인 메탄과 개질화제로서 CO2, 증기, 또는 CO2 및 증기를 반응물로 포함하며, 메탄 함유 가스가 공급되는 메탄 스트림; 및 CO2 함유 가스가 공급되는 CO2 스트림 및 H2O 스트림을 통해 공급되는 H2O가 증기화된 증기 스트림으로부터 선택되는 적어도 하나의 개질화제 스트림을 포함하는 반응물 스트림, 상기 반응물의 승온 및 반응을 위한 열에너지를 생성하는 가연성 연료 가스를 함유하는 연료 스트림, 용융 슬래그의 현열을 회수한 산소 함유 가스가 공급되는 현열 회수 스트림 및 상기 가연성 연료 가스와 산소의 연소반응에 의해 생성된 배가스가 배출되는 배가스 스트림을 포함하며, According to still another aspect of the present invention, in a reforming catalytic reaction facility that generates a high temperature reducing gas, it is intended to provide a heat exchange network configuration that can maximize the use of sensible heat of molten slag, as a reaction raw material methane and reforming agent A methane stream comprising CO 2 , steam, or CO 2 and steam as a reactant, to which a methane containing gas is fed; And a reactant stream comprising at least one modifier stream selected from a CO 2 stream fed with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized; A fuel stream containing a combustible fuel gas generating thermal energy for the fuel, a sensible heat recovery stream supplied with an oxygen-containing gas recovering sensible heat of molten slag, and a flue gas exhausted by the combustion of the combustible fuel gas with oxygen Contains a stream,
상기 반응물 스트림이 공급되고, 상기 반응물이 촉매가 장착된 반응기를 통과하며, 이 과정에서 상기 반응물이 반응하여 CO와 H2를 포함하는 고온의 환원가스를 생성하는 개질 반응기; 상기 연료 스트림 및 상기 현열 회수 스트림이 공급되어 상기 연료와 산소의 연소반응에 의한 연소열에 의해 상기 개질 반응기를 간접 가열하여 개질 반응 에너지를 공급하는 버너 시스템; 상기 반응물 스트림을 상기 배가스 스트림으로부터 열교환하여 상기 반응물 스트림을 예열하고, 상기 개질 반응기로 공급하는 반응물 예열용 열교환기; 및 상기 현열 회수 스트림을 상기 배가스 스트림으로부터 열교환하여 상기 버너 시스템으로 공급하는 산소 예열용 열교환기를 포함하는 개질 촉매 반응 설비를 제공한다.A reforming reactor fed with the reactant stream, the reactant passing through a reactor equipped with a catalyst, in which the reactants react to produce a hot reducing gas comprising CO and H 2 ; A burner system supplied with the fuel stream and the sensible heat recovery stream to indirectly heat the reforming reactor by the heat of combustion by the combustion reaction of the fuel and oxygen to supply reforming reaction energy; A heat exchanger for preheating the reactant to heat the reactant stream from the exhaust gas stream to preheat the reactant stream and feed it to the reforming reactor; And a heat exchanger for preheating oxygen to heat-exchange the sensible heat recovery stream from the exhaust gas stream to the burner system.
본 발명의 다른 구현예로서, 상기 H2O 스트림을 상기 현열 회수 스트림이 분기된 증기화용 현열 회수 스트림으로부터 열교환하여 상기 증기 스트림을 생성하는 증기화용 열교환기를 더 포함하는 개질 촉매 반응 설비를 제공한다.In another embodiment of the present invention, there is provided a reforming catalytic reaction facility further comprising a vaporization heat exchanger for heat-exchanging the H 2 O stream from the sensible heat recovery stream for vaporization in which the sensible heat recovery stream is branched.
상기 반응물 예열용 열교환기는 각각의 반응물 스트림을 예열하는 독립된 복수의 열교환기일 수 있으며, 또, 상기 반응물 스트림이 혼합된 혼합 스트림을 예열하는 열교환기일 수 있다. 또한, 상기 반응물 예열용 열교환기는 상기 개질화제가 CO2 및 증기인 경우, 하나의 반응물 스트림을 예열하는 열교환기와 나머지 2개의 반응물 스트림이 혼합된 혼합 스트림을 예열하는 열교환기일 수도 있다.The reactant preheating heat exchanger may be a plurality of independent heat exchangers that preheat each reactant stream, or may be a heat exchanger that preheats the mixed stream in which the reactant streams are mixed. In addition, the reactant preheating heat exchanger may be a heat exchanger for preheating one reactant stream and a preheating mixed stream in which the two remaining reactant streams are mixed when the modifier is CO 2 and steam.
나아가, 상기 연료 스트림을 상기 현열 회수 스트림이 분기된 연료 예열용 현열 회수 스트림으로부터 열교환하여 상기 가연성 연료 가스를 예열하는 연료 예열용 열교환기를 더 구비할 수 있다.Furthermore, the fuel stream may further include a fuel preheating heat exchanger for preheating the combustible fuel gas by heat-exchanging the sensible heat recovery stream for branching the sensible heat recovery stream.
상기 촉매는 Ni계 촉매를 포함하는 것이 바람직하다.It is preferable that the said catalyst contains a Ni type catalyst.
한편, 본 발명의 다른 견지에 따르면, CO와 H2를 포함하는 고온의 환원가스를 생성하는 개질 촉매 반응 공정에 있어서, 용융 슬래그의 현열 이용을 극대화할 수 있는 공정을 제공하고자 하는 것으로서, 반응원료인 메탄과 개질화제인 CO2, 증기 또는 CO2 및 증기를 반응물로 포함하며, 메탄 함유 가스가 공급되는 메탄 스트림; 및 CO2 함유 가스가 공급되는 CO2 스트림 및 H2O 스트림을 통해 공급되는 H2O가 증기화된 증기 스트림으로부터 선택되는 적어도 하나의 개질화제 스트림을 포함하는 반응물 스트림, 상기 반응물의 승온 및 반응을 위한 열에너지를 생성하는 가연성 연료 가스가 공급되는 연료 스트림, 용융 슬래그의 현열을 회수한 산소를 함유하는 현열 회수 스트림 및 상기 가연성 연료 가스와 산소의 연소반응에 의해 생성된 배가스가 배출되는 배가스 스트림을 포함하며, On the other hand, according to another aspect of the present invention, in the reforming catalytic reaction process for producing a high-temperature reducing gas containing CO and H 2 , to provide a process that can maximize the use of sensible heat of the molten slag, the reaction raw material A methane stream comprising phosphorus methane and a modifier of CO 2 , steam or CO 2 and steam, to which a methane containing gas is fed; And a reactant stream comprising at least one modifier stream selected from a CO 2 stream fed with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized; A fuel stream supplied with combustible fuel gas for generating thermal energy for the fuel, a sensible heat recovery stream containing oxygen recovered from the sensible heat of the molten slag, and an exhaust gas stream from which the exhaust gas generated by the combustion reaction of the combustible fuel gas and oxygen is discharged; Include,
상기 반응물 스트림을 상기 배가스 스트림으로부터 열교환하여 예열된 반응물을 개질 반응기로 공급하는 반응물 예열 단계; 상기 현열 회수 스트림을 상기 배가스 스트림으로부터 열교환하여 예열하고, 상기 예열된 현열 회수 스트림 및 상기 연료 스트림을 상기 개질 반응기 내의 상기 반응물 스트림과 혼합되지 않는 구조의 버너 시스템으로 공급하여 상기 가연성 연료 가스와 산소의 반응에 의해 연료를 연소시키는 연료 연소단계; 및 상기 개질 반응기로 공급된 반응물이 상기 개질 반응기 내에 장착된 촉매를 통과하며, 상기 연소단계에 의해 생성된 연소 열에 의해 상기 개질 반응기 내의 반응물이 반응하여 CO와 H2를 포함하는 환원가스를 생성하는 환원가스 생성단계를 포함하는 개질 촉매 반응 공정을 제공한다.A reactant preheating step of exchanging the reactant stream from the exhaust gas stream to supply a preheated reactant to a reforming reactor; The sensible heat recovery stream is preheated by heat exchange from the exhaust gas stream, and the preheated sensible heat recovery stream and the fuel stream are fed to a burner system having a structure that is not mixed with the reactant stream in the reforming reactor to obtain the combustible fuel gas and oxygen. A fuel combustion step of burning fuel by the reaction; And a reactant supplied to the reforming reactor passes through a catalyst mounted in the reforming reactor, and reactants in the reforming reactor react with the combustion heat generated by the combustion step to generate a reducing gas including CO and H 2 . It provides a reforming catalytic reaction process comprising a reducing gas generation step.
상기 증기 스트림은 상기 H2O 스트림이 상기 현열 회수 스트림으로부터 분기된 증기화용 현열 회수 스트림에 의해 열교환되어 증기화될 수 있다.The vapor stream may be vaporized by heat exchange by the sensible heat recovery stream for vaporization wherein the H 2 O stream is branched from the sensible heat recovery stream.
한편, 상기 반응물 예열단계는 상기 반응물 스트림을 각각 독립적으로 예열할 수 있으며, 또한, 상기 반응물 스트림을 혼합하여 하나의 혼합 스트림으로 예열할 수 있다. 나아가, 상기 개질화제가 CO2 및 증기인 경우, 하나의 반응물 스트림 및 나머지 두 개의 반응물 스트림이 혼합된 혼합 스트림이 각각 독립적으로 예열될 수 있다. Meanwhile, the reactant preheating step may preheat the reactant streams independently of each other, and may also preheat the reactant streams by mixing the reactant streams into one mixed stream. Furthermore, when the modifiers are CO 2 and steam, the mixed streams in which one reactant stream and the other two reactant streams are mixed may each be preheated independently.
이때, 상기 반응물 스트림이 메탄 스트림 및 CO2 스트림인 경우, CH4:(CO2+H2O)의 부피비가 1:1-4.0일 수 있으며, 상기 개질화제가 CO2, 또는 CO2와 증기인 경우, 상기 반응물은 CO2:H2O의 부피비가 1:0 내지 5.0인 것이 바람직하다.In this case, when the reactant stream is a methane stream and a CO 2 stream, the volume ratio of CH 4 : (CO 2 + H 2 O) may be 1: 1-4.0, and the modifier is CO 2 , or CO 2 and steam. In the case of the reactant, the volume ratio of CO 2 : H 2 O is preferably 1: 0 to 5.0.
상기 버너 시스템으로 공급되는 연료 스트림은 상기 현열 회수 스트림이 분기된 연료 예열용 현열 회수 스트림에 의해 열교환되어 예열된 것일 수 있다.The fuel stream supplied to the burner system may be preheated by exchanging the sensible heat recovery stream by the branched fuel preheating sensible heat recovery stream.
나아가, 상기 개질 반응기는 1-40bar의 압력 및 800 내지 1000℃의 온도를 갖는 것이 바람직하며, 상기 촉매층과 접촉하는 반응물은 500 내지 500,000h-1의 반응 공간속도를 갖는 것이 바람직하다.Furthermore, the reforming reactor preferably has a pressure of 1-40 bar and a temperature of 800 to 1000 ° C., and the reactant in contact with the catalyst layer preferably has a reaction space velocity of 500 to 500,000 h −1 .
이때, 상기 촉매는 Ni계 촉매를 포함하는 것일 수 있다.In this case, the catalyst may include a Ni-based catalyst.
또한, 상기 메탄 스트림을 통해 공급되는 메탄 함유 가스는 COG일 수 있으며, 상기 연료 스트림을 통해 공급되는 가연성 연료 가스는 COG일 수 있다.In addition, the methane containing gas supplied through the methane stream may be COG, and the combustible fuel gas supplied through the fuel stream may be COG.
상기 현열 회수 스트림은 400℃ 이상의 온도를 갖는 공기일 수 있다.The sensible heat recovery stream may be air having a temperature of at least 400 ° C.
본 발명의 일 구현예에 따른 Ni계 개질 촉매는 촉매 활성이 우수하여 적은 양의 개질화제를 포함하는 혼합가스에 대하여도 높은 메탄 전환율을 나타내며, 입자 사이즈가 작은 니켈이 담지되어 장기 안정성이 우수하다. Ni-based reforming catalyst according to an embodiment of the present invention has a high catalytic activity and shows a high methane conversion rate even for a mixed gas containing a small amount of reforming agent, and has a long-term stability because nickel having a small particle size is supported. .
또한, 본 발명의 일 구현예에 따른 촉매는 촉매 담체가 MgAl2O4의 스피넬 구조를 형성하여 우수한 내코킹성을 나타낸다. 이로 인해, 수소를 다량 포함하는 혼합가스, 특히 COG를 환원가스로 개질함에 있어서 니켈 금속의 성장에 따른 코킹 문제를 해결할 수 있다.In addition, the catalyst according to an embodiment of the present invention exhibits excellent coking resistance by forming a spinel structure of the catalyst carrier of MgAl 2 O 4 . Therefore, in the reforming of a mixed gas containing a large amount of hydrogen, particularly COG with a reducing gas, it is possible to solve the coking problem caused by the growth of nickel metal.
나아가, 본 발명의 일 구현예에 따른 방법으로 환원가스 제조용 촉매를 제조하는 경우, 간단한 공정에 의해 촉매를 제조할 수 있으며, 알루미나가 니켈 분산도를 높이는 역할을 함으로써 스피넬 구조의 MgAl2O4 담체 상에 입자사이즈가 작은 니켈을 균일하게 담지할 수 있어, 촉매 활성 및 장기 안정성이 우수한 촉매를 얻을 수 있다.Furthermore, when preparing a catalyst for reducing gas production by the method according to an embodiment of the present invention, the catalyst can be prepared by a simple process, the alumina MgAl 2 O 4 carrier having a spinel structure by acting to increase the nickel dispersion degree Nickel having a small particle size can be uniformly supported on the phase, and a catalyst excellent in catalyst activity and long-term stability can be obtained.
또한, 본 발명의 일 구현예에 따른 촉매를 사용하여 혼합가스로부터 환원가스를 제조함으로써 이에 의해 얻어진 환원가스를 철을 생산하는 고로 또는 유동로의 환원제로 사용할 수 있으므로, 철 생산시 코크스 사용량을 줄일 수 있으며, 이로 인해 코크스 제조시 발생하는 다양한 환경문제를 감소시킬 뿐만 아니라, 최근 가장 이슈가 되고 있는 CO2로 인한 지구온난화를 궁극적으로 줄일 수 있다.In addition, by using a catalyst according to an embodiment of the present invention by producing a reducing gas from the mixed gas it can be used as a reducing agent of the blast furnace or flow furnace for producing iron, reducing the amount of coke used in iron production This not only reduces various environmental problems that occur during coke production, but also ultimately reduces global warming due to CO 2 , which has become a hot issue in recent years.
나아가, 철광석 환원에 적합한 환원가스를 저비용으로 얻을 수 있어 철 생산 단가를 낮출 수 있어, 적어도 비용 증가를 최소화시킬 수 있다.Furthermore, a reducing gas suitable for iron ore reduction can be obtained at low cost, thereby lowering the iron production cost, thereby minimizing cost increase at least.
또한, 본 발명의 일 구현예에 따르면, 용융 슬래그로부터 현열을 회수하여 메탄 공급원으로서 COG를 개질하는 촉매 반응 공정에 활용할 수 있으며, 이를 통해 개질 촉매 반응 공정에서 요구되는 에너지의 부담을 줄여 합성가스의 제조 비용을 낮출 수 있다.In addition, according to one embodiment of the present invention, by recovering the sensible heat from the molten slag can be utilized in the catalytic reaction process for reforming COG as a methane source, thereby reducing the burden of energy required in the reforming catalytic reaction process of the synthesis gas The manufacturing cost can be lowered.
본 발명의 다른 구현예에 따르면, 개질 촉매 반응을 위한 열에너지를 공급하기 위해 요구되는 연료의 투입을 최소화한 상태에서 합성가스를 제조할 수 있으며, 이에 의해 얻어진 환원가스를 고로 또는 유동로 등의 제선 공정에서 필요한 환원제 및 열원으로 사용할 수 있다. 따라서, 환원가스를 저비용으로 얻을 수 있어 철 생산비용의 절감을 도모할 수 있으며, 코크스 사용량을 줄일 수 있음은 물론, 코크스를 제조하는 설비의 증대 없이 철 생산량을 증산할 수 있다. 또한, 이로 인해, CO2 저감에도 기여할 수 있다. According to another embodiment of the present invention, the synthesis gas can be produced in a state of minimizing the input of the fuel required to supply the thermal energy for the reforming catalytic reaction, and the reducing gas obtained by the blast furnace or flow furnace, etc. It can be used as a reducing agent and a heat source required in the process. Therefore, the reducing gas can be obtained at low cost, thereby reducing the iron production cost, reducing the amount of coke used, and increasing the iron production without increasing the facilities for producing coke. In addition, this can contribute to CO 2 reduction.
나아가, 상기 얻어진 환원가스로부터 수소로 전환할 수 있음은 물론, 상기 얻어진 환원가스를 이용하여 고부가가치의 화학제품의 원료로 활용할 수 있어, 경제적 이점이 있다. Furthermore, it is possible to convert from the obtained reducing gas to hydrogen, as well as can be used as a raw material of high value-added chemical products using the obtained reducing gas, there is an economic advantage.
본 발명에 의해 얻어지는 효과는 이하에 기재된 본 발명의 다양한 구현예에 의해 더욱 얻어질 수 있는 것으로서, 이하의 상세한 설명의 기재로부터 알 수 있으며, 상기한 사항에 한정되지 않는다. Effects obtained by the present invention can be further obtained by various embodiments of the present invention described below, which can be seen from the description of the following detailed description, and are not limited to the above.
도 1은 반응물인 메탄 스트림 및 CO2 스트림을 개별 열교환기로 예열하는 본 발명의 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.1 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactant methane streams and CO 2 streams to separate heat exchangers.
도 2는 반응물인 메탄 스트림 및 CO2 스트림을 개별 열교환기로 예열하고, 연료를 현열 회수 스트림으로 예열하는 본 발명의 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.2 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream and CO 2 stream to separate heat exchangers and preheating the fuel to the sensible heat recovery stream.
도 3은 반응물인 메탄 스트림 및 CO2 스트림을 하나의 열교환기로 예열하는 본 발명 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.FIG. 3 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream and CO 2 stream with one heat exchanger.
도 4는 반응물인 메탄 스트림, CO2 스트림 및 증기 스트림을 개별 열교환기로 예열하는 본 발명의 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.4 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactants methane stream, CO 2 stream and vapor stream to separate heat exchangers.
도 5는 반응물인 메탄 스트림, CO-2 스트림 및 증기 스트림을 2개의 열교환기로 예열하는 본 발명의 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.FIG. 5 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating the reactant methane stream, CO- 2 stream and vapor stream with two heat exchangers.
도 6은 반응물인 메탄 스트림, CO2 스트림 및 증기 스트림을 하나의 열교환기로 예열하는 본 발명의 개질 촉매 반응 시스템의 일 예를 개략적으로 나타낸 도면이다.FIG. 6 is a schematic illustration of an example reforming catalytic reaction system of the present invention for preheating reactants methane stream, CO 2 stream and vapor stream with one heat exchanger.
도 7은 실시예의 발명촉매 2(촉매 2) 및 비교촉매 1(촉매 5)의 Ni 입자의 평균 크기가 약 8nm임을 보여주는 XRD 데이터 및 담체가 MgAl2O4의 스피넬 구조를 가짐을 보여주는 X-ray 사진이다.FIG. 7 shows XRD data showing that the average size of Ni particles of Inventive Catalyst 2 (Catalyst 2) and Comparative Catalyst 1 (Catalyst 5) of the Examples is about 8 nm and X-ray showing that the carrier has a spinel structure of MgAl 2 O 4 It is a photograph.
도 8은 실시예의 발명촉매 2(촉매 2) 및 비교촉매 1(촉매 5)에 있어서, Ni 입자 크기가 주로 5-15nm 범위임을 보여주는 TEM 데이터이다.FIG. 8 is TEM data showing that the Ni particle size is mainly in the range of 5-15 nm for the inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) of the examples.
도 9는 수산화알루미늄을 사용하여 제조된 비교 촉매 4에 대한 X-ray 사진이다.9 is an X-ray photograph of Comparative Catalyst 4 prepared using aluminum hydroxide.
도 10은 Ni계 개질 촉매의 Ni 담지량에 따른 COG의 가스 조건별 CH4 전환율을 나타내는 그래프이다.FIG. 10 is a graph showing CH 4 conversion rates of COG according to gas conditions depending on the amount of Ni supported in the Ni-based reforming catalyst. FIG.
도 11은 Ni계 개질 촉매의 Mg 함량에 따른 COG의 가스 조건별 CH4 전환율을 나타내는 그래프이다.FIG. 11 is a graph showing CH 4 conversion rates of COG according to gas conditions according to Mg content of a Ni-based reforming catalyst. FIG.
도 12는 개질 촉매에 대한 장기 안정성 평가를 나타내는 그래프이다. 12 is a graph showing long term stability evaluation for reforming catalysts.
본 발명의 일 구현예는 부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스로부터 환원가스를 제조하는데 사용되는 메탄 개질 촉매 및 상기 촉매를 제조하는 방법에 관한 발명이다. One embodiment of the present invention relates to a methane reforming catalyst used to prepare a reducing gas from a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) of 3 or less and a method of preparing the catalyst.
일 구현예에 따른 메탄 개질 촉매는 알루미나(Al203)와 마그네시아가 스피넬 구조를 형성한 MgAl2O4 촉매 담체 상에 니켈이 담지되며, 또한, 선택적으로 조촉매가 담지된다.In the methane reforming catalyst according to one embodiment, nickel is supported on an MgAl 2 O 4 catalyst carrier having alumina (Al 2 O 3 ) and magnesia having a spinel structure, and optionally a promoter is supported.
일 구현예의 촉매는 니켈을 포함한다. 상기 니켈은 상기 촉매 담체에 담지되어 촉매 활성 사이트로서 역할을 수행하는 것으로서, 니켈계 촉매는 우수한 촉매 활성을 가지고 있으며, 경제적으로 유리한 장점이 있다. 상기 촉매 담체에 담지된 니켈은 촉매 담체의 전구체로서 사용되는 알루미나의 높은 비표면적으로 인해 5 내지 15nm의 평균 사이즈를 갖는 입자가 담지된다. 이로 인해 동일한 니켈의 담지량에도 Ni 입자의 분산을 증대시킬 수 있으며, 따라서 높은 촉매 활성을 얻을 수 있다.In one embodiment the catalyst comprises nickel. The nickel is supported on the catalyst carrier to serve as a catalytically active site, the nickel-based catalyst has an excellent catalytic activity, there is an economically advantageous advantage. Nickel supported on the catalyst carrier carries particles having an average size of 5 to 15 nm due to the high specific surface area of the alumina used as a precursor of the catalyst carrier. As a result, the dispersion of Ni particles can be increased even on the supported amount of nickel, so that high catalytic activity can be obtained.
상기 니켈은 촉매 전체 중량의 5-20중량%의 범위로 담지되는 것이 바람직하다. 5중량% 미만인 경우에는 촉매 담체에 담지된 니켈의 담지량이 적어 촉매 활성 자리의 감소로 인한 메탄의 반응 전환율이 저하되는 경향을 나타내며, 20중량%를 초과하는 경우에는 Ni 입자의 급격한 성장에 따른 코킹이 발생하여 촉매에 의한 메탄 전환율이 장시간 안정적으로 유지되는 것이 힘들다.The nickel is preferably supported in the range of 5-20% by weight of the total weight of the catalyst. If the amount is less than 5% by weight, the amount of nickel supported on the catalyst carrier is small, and thus the reaction conversion rate of methane decreases due to the decrease of the catalytically active site. If the amount is more than 20% by weight, coking due to the rapid growth of the Ni particles is caused. This occurs, and it is difficult for methane conversion by the catalyst to remain stable for a long time.
나아가, 일 구현예의 개질 촉매는 촉매 담체 상에 조촉매가 더 담지될 수 있다. 상기 조촉매로는, 특별히 한정하는 것은 아니지만, Ca 등의 알칼리 토금속 산화물, Zr, Ce, La 등의 전이금속 산화물 또는 Pt, Pd, Rh 등의 귀금속을 들 수 있다. 이들 조촉매는 어느 하나를 단독으로 사용할 수 있음은 물론, 2 이상을 조합하여 사용될 수 있다. 이들 조촉매는 촉매 전체 조성에 대하여 10중량% 이하의 함량으로 포함할 수 있다. 한편, 상기 조촉매가 고가의 귀금속인 경우에는 촉매 전체 중량의 2중량% 이하로 포함하는 것이 바람직하다.Furthermore, the reforming catalyst of one embodiment may further support a promoter on the catalyst carrier. Examples of the cocatalyst include, but are not particularly limited to, alkaline earth metal oxides such as Ca, transition metal oxides such as Zr, Ce, and La, or precious metals such as Pt, Pd, and Rh. These promoters can be used alone or in combination of two or more thereof. These promoters may be included in an amount of 10% by weight or less based on the total composition of the catalyst. On the other hand, when the cocatalyst is an expensive precious metal, it is preferable to include 2 wt% or less of the total weight of the catalyst.
본 발명의 촉매는 촉매 담체 성분으로서 알루미나와 마그네시아를 포함한다. 상기 마그네시아는 단독으로는 거의 활성을 갖지 않으나, 니켈과 함께 첨가됨으로써 니켈의 촉매 활성을 유지 및 증진시키는 것을 돕는 역할을 수행한다. 또한, 본 발명의 촉매 담체에 포함되는 마그네시아는 알루미나와 MgAl2O4 스피넬 구조를 형성하여 촉매 담체로서 제공된다. 이와 같은 스피넬 구조의 형성에 의해 내코킹성을 향상시키는 역할을 수행하며, 개질 공정에서 반응물 또는 생성물에 포함된 다량의 수소에 의해 발생하는 니켈 입자 성장 및 코킹 문제를 해결할 수 있어, 장기간 촉매 활성을 유지할 수 있다. 본 발명의 촉매에 있어서, 촉매 담체 원료로 사용된 마그네시아는 대부분이 알루미나와 스피넬 구조를 형성하여 MgO의 상태로는 실질적으로 거의 존재하지 않으나, 편의상 상기 스피넬 구조를 형성하는데 기여한 MgO를 마그네시아로 나타낸다. The catalyst of the present invention comprises alumina and magnesia as catalyst carrier components. The magnesia has little activity alone, but serves to help maintain and promote the catalytic activity of nickel by being added with nickel. In addition, the magnesia included in the catalyst carrier of the present invention forms an MgAl 2 O 4 spinel structure with alumina and serves as a catalyst carrier. By forming such a spinel structure, it plays a role of improving coking resistance, and it is possible to solve the problem of nickel particle growth and coking caused by a large amount of hydrogen contained in the reactants or products in the reforming process, thereby improving long-term catalytic activity. I can keep it. In the catalyst of the present invention, the magnesia used as a catalyst carrier raw material forms a spinel structure with most of the alumina, and substantially does not exist in the state of MgO, but for convenience, MgO which contributes to forming the spinel structure is represented as magnesia.
일 구현예의 개질 촉매의 전체 중량에 대하여 상기 니켈 및 조촉매를 제외한 잔부는 촉매 담체 성분이다. 상기 촉매 담체는 상기한 바와 같이, 알루미나와 마그네시아가 반응하여 스피넬 구조를 형성한 MgAl2O4로서, 이때, 상기 스피넬 구조는 적어도 알루미나의 표면에 알루미나와 마그네시아가 반응하여 형성되어 스피넬 구조의 형태로 존재하며, 일부 알루미나 형태로 존재할 수 있다. With respect to the total weight of the reforming catalyst of one embodiment, the balance except for nickel and cocatalyst is the catalyst carrier component. As described above, the catalyst carrier is MgAl 2 O 4 in which alumina and magnesia react to form a spinel structure, wherein the spinel structure is formed by reacting alumina and magnesia on at least the surface of alumina in the form of a spinel structure. Present and may be present in some alumina form.
일 구현예의 촉매 담체는 알루미나와 마그네시아가 반응하여 MgAl2O4의 스피넬 구조를 형성하는 경우, 내코킹성 향상에 기여할 수 있는 반면, 상대적으로 Al2O3 담체에 비해 비표면적 감소를 가져오게 된다. 따라서, 마그네시아의 함량이 지나치게 많은 경우에는 비표면적 감소로 인해 촉매 활성자리의 역할을 하는 니켈의 분산도를 감소시킬 수 있으며, 이로 인해 촉매의 활성 저하를 초래할 수 있다. 또한, 마그네시아의 함량이 지나치게 많으면 알루미나와 스피넬 구조를 형성하지 못한 마그네시아가 담체 상에 존재할 수 있으며, 이러한 마그네시아는 니켈의 분산도를 저하시킬 수 있다.When the catalyst carrier of one embodiment reacts with alumina to form a spinel structure of MgAl 2 O 4, the catalyst carrier may contribute to the improvement of coking resistance, but the specific surface area is reduced compared to that of the Al 2 O 3 carrier. . Therefore, when the content of magnesia is too high, it is possible to reduce the dispersity of nickel, which acts as a catalyst active site due to the reduction of specific surface area, which may lead to a decrease in activity of the catalyst. In addition, when the content of magnesia is too high, magnesia that does not form a spinel structure with alumina may exist on the carrier, and such magnesia may reduce the dispersibility of nickel.
따라서, 마그네시아와 알루미나의 MgAl2O4의 스피넬 구조의 형성을 통한 내코킹성 향상과 함께, 높은 비표면적을 유지하여 우수한 촉매 활성을 얻기 위해서는 적절한 함량의 마그네시아를 첨가할 필요가 있다. 이를 위해, 상기 마그네시아는 촉매 전체 중량의 5 내지 25중량% 범위로 포함되고, 잔부는 알루미나이다. 마그네시아의 함량이 5중량% 미만으로 첨가되면, 스피넬 구조의 형성이 적어 충분한 내코킹성을 얻을 수 없어, 수소 함량이 높은 혼합가스를 대상으로 메탄 전환반응을 수행하는 경우 니켈 성장으로 인해 촉매의 장기 안정성을 확보할 수 없으며, 마그네시아 함량이 25중량%를 초과하면 알루미나와 MgAl2O4의 스피넬 구조를 형성하지 못한 낮은 비표면적의 free-마그네슘 산화물을 형성하거나 비표면적이 상대적으로 낮은 MgAl2O4 스피넬 구조를 형성함으로써 니켈 담체의 비표면적이 작아지고, 이에 니켈의 분산도를 나쁘게 할 수 있어, 메탄 전환율을 저하시킬 수 있다.Therefore, to improve the coking resistance through the formation of the spinel structure of MgAl 2 O 4 of magnesia and alumina, it is necessary to add an appropriate amount of magnesia to maintain a high specific surface area and obtain excellent catalytic activity. To this end, the magnesia is included in the range of 5 to 25% by weight of the total weight of the catalyst, the balance is alumina. If the magnesia content is less than 5% by weight, the formation of the spinel structure is small and sufficient coking resistance cannot be obtained, and when the methane conversion reaction is performed on a mixed gas having a high hydrogen content, It can not ensure the stability, if the magnesium content exceeds 25% by weight of a free- form a magnesium oxide, or a specific surface area of the alumina and MgAl low specific surface area fails to form the spinel structure of the 2 O 4 MgAl 2 O 4 a relatively low By forming the spinel structure, the specific surface area of the nickel carrier is reduced, and thus the dispersion degree of nickel can be deteriorated, and methane conversion can be reduced.
상기 촉매 담체의 주원료로서 사용되는 알루미나는 20m2/g 이상의 큰 비표면적을 갖는 것을 사용하는 것이 MgAl2O4 담체 상에 담지되는 니켈의 분산성을 높일 수 있어 바람직하다. 또한, 이로 인해 촉매 담체 상에 5 내지 15nm 범위의 미세한 평균 입자 사이즈를 갖는 니켈을 균일하게 담지할 수 있어, 니켈의 담지량을 증대시킬 수 있으며, 우수한 촉매 활성을 얻을 수 있어 메탄의 전환율을 향상시킬 수 있고, 또 장기 안정성을 향상시킬 수 있다.The alumina used as the main raw material of the catalyst carrier is preferably one having a large specific surface area of 20 m 2 / g or more because it can increase the dispersibility of nickel supported on the MgAl 2 O 4 carrier. In addition, it is possible to uniformly support nickel having a fine average particle size in the range of 5 to 15 nm on the catalyst carrier, thereby increasing the amount of nickel supported, and obtaining excellent catalytic activity, thereby improving the conversion of methane. Can also improve long-term stability.
상기와 같은 일 구현예의 개질 촉매는 알루미나를 촉매 담체의 전구체로 사용하며, 상기 알루미나와 마그네시아 전구체 및 니켈 전구체를 혼합하여 혼합물을 제조한다. 또한, 필요에 따라서, 상기 혼합물에는 조촉매 성분을 포함할 수 있다. 이때, 상기 혼합물은 물의 추가없이 제조될 수 있다. 상기 마그네시아 전구체 및 니켈 전구체로서 결정수를 포함하는 것을 사용함으로써 물의 첨가가 필요하지 않으며, 상기 성분들을 혼합한 후 소성에 의해 동시에 담지할 수 있어 촉매의 활성이 우수하고, 경제적으로 본 발명의 촉매를 얻을 수 있다.The reforming catalyst of one embodiment as described above uses alumina as a precursor of the catalyst carrier, and prepares a mixture by mixing the alumina with the magnesia precursor and the nickel precursor. In addition, if necessary, the mixture may include a promoter component. The mixture can then be prepared without the addition of water. The use of water containing crystallized water as the magnesia precursor and the nickel precursor is not required, and the components of the catalyst can be simultaneously supported by firing after mixing the components. You can get it.
상기 니켈 전구체로는 촉매 활성 성분인 니켈의 공급원으로서, 니켈 수화물을 사용할 수 있다. 이와 같이 니켈 수화물을 전구체로 사용함으로써 별도의 물의 공급을 필요하지 않는다. 상기 니켈 전구체로서는 Ni(NO3)2xH2O를 이용할 수 있으며, 예를 들면, Ni(NO3)2·6H2O를 들 수 있다. 이와 같은 니켈 전구체는 최종 얻어지는 촉매 조성이 전체 촉매 중량에 대하여 5-20중량%의 범위로 되도록 첨가할 수 있다.As the nickel precursor, nickel hydrate can be used as a source of nickel which is a catalytically active component. As such, the use of nickel hydrate as a precursor does not require a separate water supply. The nickel precursor as Ni (NO 3) 2 xH may use 2 O, for example, may be mentioned Ni (NO 3) 2 · 6H 2 O. Such a nickel precursor may be added so that the final resulting catalyst composition is in the range of 5-20% by weight relative to the total catalyst weight.
한편, 상기 조촉매로는 Ca 등의 알칼리 토금속 산화물, Zr, Ce, La 등의 전이금속 산화물 또는 Pt, Pd, Rh 등의 귀금속을 들 수 있으며, 이들을 단독으로 사용할 수 있음은 물론, 조합하여 사용할 수도 있다. 상기 조촉매는 최종 촉매 조성에 대하여 10중량% 이하가 되도록 포함될 수 있으며, 조촉매로서 고가의 귀금속을 포함하는 경우에는 전체 촉매 조성의 2중량% 이하로 포함하는 것이 경제적이다.On the other hand, the cocatalysts include alkaline earth metal oxides such as Ca, transition metal oxides such as Zr, Ce, La, and noble metals such as Pt, Pd, and Rh, and can be used alone or in combination. It may be. The promoter may be included in an amount of 10% by weight or less with respect to the final catalyst composition, and in the case where an expensive noble metal is included as the promoter, it is economical to include 2% by weight or less of the total catalyst composition.
또한, 상기 마그네시아 전구체로는 마그네슘 수화물을 사용할 수 있다. 이와 같이 수화물을 전구체로 사용함으로써 상기한 바와 같이 물의 첨가를 필요로 하지 않는다. 상기 마그네시아 전구체인 마그네슘 수화물은 이하의 건조 및 소성 처리에 의해 알루미나와 마그네시아 전구체가 반응하여 MgAl2O4의 스피넬 구조를 형성하게 된다. 이와 같은 마그네시아 전구체는 최종 촉매 조성에서 코킹 억제 및 니켈입자의 성장 방해에 유용한 MgAl2O4를 형성하는데 필요한 마그네시아의 함량이 5 내지 25중량%의 범위가 되도록 첨가할 수 있다.In addition, magnesium hydrate may be used as the magnesia precursor. By using the hydrate as a precursor in this way, it is not necessary to add water as described above. Magnesium hydrate, which is the magnesia precursor, reacts with alumina and magnesia precursor by the following drying and firing treatment to form a spinel structure of MgAl 2 O 4 . Such a magnesia precursor may be added in the final catalyst composition such that the amount of magnesia required to form MgAl 2 O 4 useful for inhibiting coking and preventing growth of nickel particles is in the range of 5 to 25% by weight.
나아가, 본 발명에서는 촉매 담체의 전구체로서 알루미나를 사용한다. 상기 알루미나는 높은 비표면적을 갖는 것으로서, 마그네시아 전구체의 분산도를 높여 스피넬 구조를 갖는 MgAl2O4를 고르게 형성시킬 수 있다. 이로 인해 니켈의 분산도를 더욱 높일 수 있으며, 이로 인해, 촉매의 코킹 문제를 억제할 수 있어 촉매의 장기 안정성을 확보할 수 있다. 또한, 니켈의 분산도가 높아짐으로 인해 코킹을 억제할 수 있으며, 메탄 전환율을 높일 수 있다. Furthermore, in the present invention, alumina is used as a precursor of the catalyst carrier. As the alumina has a high specific surface area, the dispersion degree of the magnesia precursor may be increased to uniformly form MgAl 2 O 4 having a spinel structure. As a result, the dispersion degree of nickel can be further increased. As a result, the caulking problem of the catalyst can be suppressed, thereby ensuring long-term stability of the catalyst. In addition, due to the high dispersibility of nickel can be suppressed caulking, it is possible to increase the methane conversion.
상기 촉매 담체의 주 원료로서 사용되는 알루미나는 비표면적이 20m2/g 이상인 것을 사용할 수 있다. 비표면적이 20m2/g 미만인 경우에는 니켈의 분산도가 낮아지는 문제가 있어, 촉매 활성자리 역할을 하는 니켈의 담지량을 높일 수 없는 문제로 인해 메탄 전환율이 낮아질 수 있다. 이와 같은 비표면적이 클수록 촉매 활성자리인 니켈의 담지량을 보다 증대시킬 수 있고, 또, 보다 입자 사이즈가 작은 니켈을 담지할 수 있어, 개질 반응 전환율을 향상시킬 수 있어 바람직한 것으로서, 비표면적의 상한에 대하여는 특별히 한정하지 않는다. 다만, 비표면적이 클수록 촉매 담체의 원료로 사용되는 알루미나의 제조 등에 따른 비용 증대를 초래하게 되는바, 500m2/g 이하, 예를 들어, 300m2/g 이하의 비표면적을 갖는 알루미나를 사용할 수 있다.As the alumina used as the main raw material of the catalyst carrier, one having a specific surface area of 20 m 2 / g or more can be used. When the specific surface area is less than 20 m 2 / g, there is a problem that the dispersion of nickel is lowered, and the methane conversion rate may be lowered due to a problem in that the amount of nickel which serves as a catalytic active site cannot be increased. The larger the specific surface area, the more the supported amount of nickel, which is the catalytically active site, and the smaller the particle size of nickel can be supported, so that the reforming reaction conversion can be improved, and the upper limit of the specific surface area is preferable. It does not specifically limit about. However, the larger the specific surface area, the greater the cost caused by the production of alumina, which is used as a raw material for the catalyst carrier. Thus, alumina having a specific surface area of 500 m 2 / g or less, for example, 300 m 2 / g or less can be used. have.
특허공개 제2010-0076138호에는 본 발명과 달리, 알루미나 담체를 제공함에 있어서는 수산화알루미늄(Al(OH)3)를 사용하여 건조 및 소성함으로써 Al(OH)3가 Al2O3로 변환되어 개질 촉매를 얻는 방법이 개시되어 있다. 수산화알루미늄을 사용하는 경우에는 수산화알루미늄은 산화알루미늄에 비하여 비표면적이 적어 니켈 및 마그네시아의 분산도를 높이는데 한계가 있으며, 또한 담체상에 담지되는 니켈의 입자 사이즈가 크며, 이로 인해 높은 메탄 전환율을 제공하는데 한계가 있다. 또한, 소성 및 환원 단계에서 상기한 바와 같이 수산화알루미늄이 알루미나로 변환되고, 알루미나와 마그네시아가 스피넬 구조를 형성하지만, 일부 MgO 상태로 존재하게 되고, 또, 형성된 촉매 담체는 낮은 비표면적을 가지므로, Ni의 분산도가 상대적으로 낮고, 니켈의 분산을 저해하여 높은 메탄 전환율을 얻을 수 없으며, 또한, 내코킹성 증대의 효과가 크지 않아 촉매의 장기 안정성을 제공하지 못한다.Patent Publication No. 2010-0076138, unlike the present invention, in providing an alumina carrier, by drying and firing using aluminum hydroxide (Al (OH) 3 ) Al (OH) 3 is converted to Al 2 O 3 reforming catalyst A method of obtaining is disclosed. In the case of using aluminum hydroxide, aluminum hydroxide has a lower specific surface area than aluminum oxide, which limits the dispersibility of nickel and magnesia, and also has a large particle size of nickel supported on the carrier, which results in high methane conversion. There is a limit to the provision. Further, in the calcining and reducing step, aluminum hydroxide is converted into alumina as described above, and alumina and magnesia form a spinel structure, but are present in some MgO state, and the formed catalyst carrier has a low specific surface area, The dispersity of Ni is relatively low, the dispersion of nickel is inhibited and a high methane conversion cannot be obtained, and the effect of increasing the coking resistance is not so great that it does not provide long-term stability of the catalyst.
상기한 바와 같이 본 구현예에서는 촉매 제조에 사용되는 니켈 및 마그네시아 성분의 전구체로서 수산화물을 사용함으로써 물의 첨가가 요구되지 않는다. 또한, 일정 시간 동안 볼밀 등의 방법을 사용하여 분쇄하면서 충분히 혼합함으로써 분산도를 증가시킬 수 있다. 이때, 혼합은 실온에서 5시간 이상, 예를 들어, 5 내지 72시간, 5 내지 24시간, 5 내지 15시간, 5 내지 12시간 동안 수행할 수 있다.As described above, in the present embodiment, the addition of water is not required by using hydroxide as the precursor of the nickel and magnesia components used for preparing the catalyst. In addition, the dispersion degree can be increased by sufficiently mixing while grinding using a method such as a ball mill for a predetermined time. In this case, the mixing may be performed at room temperature for 5 hours or more, for example, 5 to 72 hours, 5 to 24 hours, 5 to 15 hours, and 5 to 12 hours.
다음으로 상기 혼합물을 건조하는 단계를 포함한다. 상기 촉매 성분의 혼합 중에 물이 생성되는데, 이와 같은 물은 촉매 성분의 분산도를 저해할 수 있는바 제거되는 것이 바람직하다. 따라서, 소정의 온도 범위에서 상기 혼합물을 건조함으로써 상기 생성된 물을 증발시켜 제거할 수 있다. 상기 건조 단계는 100 내지 300℃의 범위에서 수행하는 것이 바람직하다. 100℃ 미만에서는 건조속도가 느려 장시간의 건조가 요구되어 경제적인 합성을 저해한다. 반면, 300℃를 초과하는 경우에는 니켈의 입자가 성장되어 분산도가 오히려 나빠진다. 건조 시간은 상기 물이 충분히 제거될 수 있는 동안 수행할 수 있는 것으로서, 특별히 한정하지 않으나, 충분한 증발을 위해서는 3시간 이상 상기 건조단계를 수행할 수 있으며, 예를 들어, 3 내지 72시간, 3 내지 24시간, 3 내지 12시간, 3 내지 10시간 또는 3 내지 7시간 동안 건조할 수 있다.Next, the step of drying the mixture. Water is generated during the mixing of the catalyst components, and such water is preferably removed because it can inhibit the dispersion of the catalyst components. Thus, the resulting water can be removed by evaporation by drying the mixture in a predetermined temperature range. The drying step is preferably carried out in the range of 100 to 300 ℃. If the temperature is less than 100 ° C., the drying speed is slow and long drying is required to inhibit economic synthesis. On the other hand, when it exceeds 300 degreeC, the particle | grains of nickel grow and a dispersion degree worsens. The drying time may be performed while the water can be sufficiently removed, but is not particularly limited, but the drying step may be performed for at least 3 hours for sufficient evaporation, for example, 3 to 72 hours, 3 to Drying for 24 hours, 3 to 12 hours, 3 to 10 hours or 3 to 7 hours.
상기 건조 단계를 수행한 후에는 소성 단계를 수행한다. 상기 소성 단계는 상기 니켈 전구체 및 마그네시아 전구체에 포함된 결정수를 제거하고, 또한, 이들을 분해시켜 촉매의 결정을 형성시키기 위한 것으로서, 특별히 한정하지 않으나, 공기 중에서 수행하는 것이 경제적이다. 이와 같은 소성 단계에 의해 촉매 전구체가 촉매 성분으로 변화되어 담체 표면에 NiOx(x는 0 내지 1.5의 수이다.)의 형태로 형성된다. 따라서 알루미나와 마그네시아가 반응하여 스피넬 구조의 MgAl2O4 담체를 형성하고, 상기 촉매 담체 표면에 니켈이 담지된다.After performing the drying step, a firing step is performed. The calcining step is to remove the crystal water contained in the nickel precursor and the magnesia precursor, and also to decompose them to form crystals of the catalyst, which is not particularly limited, but is economically performed in air. This firing step converts the catalyst precursor into a catalyst component, which forms on the surface of the carrier in the form of NiOx (where x is a number from 0 to 1.5). Therefore, alumina and magnesia react to form a MgAl 2 O 4 carrier having a spinel structure, and nickel is supported on the surface of the catalyst carrier.
본 구현예에 따르면 마그네시아와 니켈 전구체를 각각 별도로 담지하여 소성시킬 수 있음은 물론 한번에 담지하고 소성시킴으로써 비용을 절감하고 공정을 단순화시킬 수 있다. 한편, 알루미나와 마그네시아를 촉매 담체의 원료로서 사용하여 소성함으로써 MgAl2O4의 스피넬 구조를 형성할 수 있으며, 이에 의해 수소를 다량 포함하며, 메탄에 대한 개질화제의 부피비가 상대적으로 낮은 혼합가스를 사용하여 합성가스를 제조하더라도 높은 메탄 전환율을 얻을 수 있음은 물론, 촉매 활성을 장기간 동안 유지할 수 있다. According to the present embodiment, the magnesia and the nickel precursor may be separately supported and calcined, as well as the cost and the process may be simplified by supporting and calcining at once. On the other hand, by using alumina and magnesia as the raw material for the catalyst carrier, it can be calcined to form a spinel structure of MgAl 2 O 4 , whereby a mixed gas containing a large amount of hydrogen and having a relatively low volume ratio of the modifier to methane is produced. Even if the synthesis gas is used, high methane conversion can be obtained, and the catalyst activity can be maintained for a long time.
상기 소성단계는 600 내지 1000℃의 온도에서 수행하는 것이 바람직하다. 상기 소성 단계를 600℃ 미만에서 수행하는 경우에는 전구체에 포함된 불필요한 성분이 남아 촉매가 활성화되지 못하는 문제가 있으며, 또한, 충분한 스피넬 구조를 형성할 수 없어 내코킹성이 낮을 수 있으며, 1000℃ 초과의 온도에서 소성하는 경우에는 Ni의 분산도가 악화될 수 있다. 한편, 이와 같은 소성단계는 3시간 이상 수행하는 것이 바람직하다. 특별히 한정하는 것은 아니지만, 예를 들면, 3 내지 72시간, 3 내지 24시간, 3 내지 12시간, 3 내지 10시간, 3 내지 7시간 또는 3 내지 5시간 동안 상기 소성 단계를 수행할 수 있다.The firing step is preferably carried out at a temperature of 600 to 1000 ℃. When the calcination step is performed at less than 600 ℃, there is a problem that the catalyst is not activated to remain unnecessary components contained in the precursor, and also can not form a sufficient spinel structure can be low caulking resistance, more than 1000 ℃ When fired at a temperature of, the dispersion degree of Ni may deteriorate. On the other hand, such a firing step is preferably performed for 3 hours or more. Although not particularly limited, the firing step may be performed for, for example, 3 to 72 hours, 3 to 24 hours, 3 to 12 hours, 3 to 10 hours, 3 to 7 hours, or 3 to 5 hours.
이후, 상기 얻어진 촉매를 볼밀 등의 방법에 의해 분쇄하여 최종적으로 혼합가스로부터 환원가스를 제조하기 위한 개질촉매를 얻을 수 있다. 이와 같은 본 발명의 일 구현예에 의해 니켈 및 조촉매(M)가 상기 알루미나와 마그네시아에 의해 형성된 스피넬 구조를 갖는 MgAl2O4 담체 상에 담지되며, 이에 의해 M/Ni/MgAl2O4 촉매를 얻을 수 있다. 또한, 본 발명의 일 구현예에 의해 형성된 촉매는 상기 촉매 담체 상에 5 내지 15nm의 미세한 평균 입자 사이즈를 갖는 니켈이 균일하게 분포되어 담지되며, 이로 인해 촉매 활성자리가 증대되어, 메탄 전환율을 향상시킬 수 있다.Thereafter, the obtained catalyst can be pulverized by a ball mill or the like to finally obtain a reforming catalyst for producing a reducing gas from the mixed gas. In one embodiment of the present invention, nickel and a promoter (M) are supported on an MgAl 2 O 4 carrier having a spinel structure formed by the alumina and magnesia, whereby an M / Ni / MgAl 2 O 4 catalyst Can be obtained. In addition, the catalyst formed by the embodiment of the present invention is uniformly distributed and supported on the catalyst carrier with a fine average particle size of 5 to 15 nm, thereby increasing the catalytic active site, thereby improving the methane conversion rate You can.
상기와 같은 일 구현예의 개질 촉매를 사용하여 메탄의 개질 반응을 수행할 수 있다. 일 구현예에 따른 개질 촉매를 사용하는 경우에는 COG와 같은 수소를 다량 함유하는 혼합가스에 대하여 개질 반응을 수행하더라도 촉매의 니켈 성장으로 인한 코킹 문제를 억제하면서 장기간 안정적인 개질 반응을 수행할 수 있으며, 또한, 종래의 상용 촉매 사용시의 혼합가스 조건에 비하여 열악한 조건, 즉, 메탄 함량에 대한 개질화제(CO2 및 H2O)의 함량이 상대적으로 낮은 조건의 혼합가스에 대하여도 긴 시간 동안 안정적으로 높은 메탄 전환율로 개질 반응을 수행할 수 있다. The reforming reaction of methane may be performed using the reforming catalyst of one embodiment as described above. In the case of using the reforming catalyst according to an embodiment, even if the reforming reaction is performed on a mixed gas containing a large amount of hydrogen such as COG, stable reforming reaction can be performed for a long time while suppressing coking problems caused by nickel growth of the catalyst. In addition, it is possible to stably maintain a long time even for a mixed gas in a condition where the content of the reforming agent (CO 2 and H 2 O) with respect to methane content is poor compared to the mixed gas condition using a conventional commercial catalyst. The reforming reaction can be carried out with high methane conversion.
본 발명의 일 구현예에 따르면, 상기와 같은 M/Ni/MgAl2O4 타입의 개질 촉매를 사용하는 개질 반응은 반응기 내에 담지된 상기 촉매를 질소, 수소 또는 이들을 주성분으로 포함하는 혼합가스 분위기 하에 600 내지 1000℃의 온도에서 환원시킨 후, 상기 반응기를 500~1000℃의 반응온도로 유지하면서 500~500,000hr-1의 공간속도로 혼합가스를 공급함으로써 개질 반응을 수행할 수 있다.According to one embodiment of the present invention, the reforming reaction using the reforming catalyst of the M / Ni / MgAl 2 O 4 type is carried out under a mixed gas atmosphere containing the catalyst supported in the reactor as nitrogen, hydrogen or a main component thereof After the reduction at a temperature of 600 to 1000 ℃, the reforming reaction can be carried out by supplying a mixed gas at a space velocity of 500 ~ 500,000hr -1 while maintaining the reactor at a reaction temperature of 500 ~ 1000 ℃.
먼저 일 구현예에 따른 스피넬 구조의 MgAl2O4 촉매 담체를 기반으로 하는 M/Ni/MgAl2O4를 갖는 촉매는 수소 등의 환원가스, 질소, 이들의 혼합물에 의해 활성화해야 한다. 600℃ 미만에서는 촉매 중 Ni이 금속으로 충분히 전환되지 않는바, 600℃ 이상의 온도에서 환원시키는 것이 바람직하다. 한편, 환원 온도의 상한은 특별히 한정하지 않으나, 예를 들어, 1000℃를 넘는 경우에는 추가적인 활성화가 진행되지 않는바, 600 내지 1000℃ 범위의 온도에서 환원반응을 수행하는 것이 바람직하다.First, a catalyst having M / Ni / MgAl 2 O 4 based on a MgAl 2 O 4 catalyst carrier having a spinel structure according to one embodiment should be activated by a reducing gas such as hydrogen, nitrogen, or a mixture thereof. If it is less than 600 degreeC, since Ni in a catalyst does not fully convert into a metal, it is preferable to reduce at the temperature of 600 degreeC or more. On the other hand, the upper limit of the reduction temperature is not particularly limited, for example, if more than 1000 ℃ further activation does not proceed, it is preferable to perform the reduction reaction at a temperature in the range of 600 to 1000 ℃.
상기 환원된 촉매를 사용하여 개질 반응을 수행할 수 있다. 상기 개질 반응을 수행함에 있어서 혼합가스의 공간속도는 500 내지 500,000hr-1의 범위인 것이 바람직하다. 500hr-1 미만이면 반응기가 극단적으로 커지고 비경제적이며, 500,000hr-1을 초과하면 합성가스의 생성률이 낮아지기 때문이다.The reformed reaction can be carried out using the reduced catalyst. In performing the reforming reaction, the space velocity of the mixed gas is preferably in the range of 500 to 500,000 hr −1 . If less than 500hr -1, because the reactor is extremely increased in a non-economical, above a 500,000hr -1 lowered the production rate of synthesis gas.
이때, 반응기의 반응온도 500 내지 1000℃로 유지되는 것이 바람직하다. 반응온도가 500℃ 미만인 경우에는 촉매 표면에 코크가 형성되어 촉매 활성이 감소되며, 1000℃를 초과하면 에너지면에서 불리하고, 촉매 중 금속성분이 휘발되고 소결에 의해 촉매의 비표면적이 감소되어 촉매의 활성이 저하되기 때문이다.At this time, the reaction temperature of the reactor is preferably maintained at 500 to 1000 ℃. If the reaction temperature is less than 500 ° C, coke is formed on the surface of the catalyst to reduce the catalytic activity, and if it exceeds 1000 ° C, it is disadvantageous in terms of energy. This is because the activity of is lowered.
이때, 일 구현예에 따른 개질 촉매는 대부분의 개질 반응에 활용할 수 있을 뿐만 아니라, 나아가 COG와 같이 수소를 다량 함유하며, 메탄에 대하여 개질화제인 스팀과 CO2의 부피비가 3 이하인 가혹한 개질 반응조건에서도 적합하게 사용될 수 있다. 이와 같은 개질 대상 가스 중 CH4 함량이 적은 혼합 가스로는 이에 한정하는 것은 아니지만, 대표적인 예로 COG를 들 수 있다.At this time, the reforming catalyst according to one embodiment may not only be utilized for most reforming reactions, but also contains a large amount of hydrogen, such as COG, and the severe reforming reaction conditions in which the volume ratio of steam and CO 2 , which is a reforming agent, to methane is 3 or less. It can also be used suitably. The mixed gas having a low CH 4 content in the reforming gas is not limited thereto, but a representative example may include COG.
본 발명의 일 구현예에 따른 촉매를 사용하여 얻어진 합성가스는 제철 공정 중의 고로 또는 유동로 등에서 환원가스로서 적합하게 사용될 수 있으며, 또한, 고부가가치의 화학제품을 제조할 수도 있다.Synthetic gas obtained by using the catalyst according to an embodiment of the present invention can be suitably used as a reducing gas in the blast furnace or flow furnace during the steelmaking process, it is also possible to produce high value-added chemicals.
한편, 상기와 같은 제철 공정의 환원가스로 적합하게 사용될 수 있는 합성가스는 다음에 기재하는 바와 같은 공정 및 설비를 이용함으로써 효율적으로 사용될 수 있다. 이하의 공정을 적용함에 있어서는 다양한 환원가스 제조에 사용되는 공지의 촉매를 이용할 수도 있으나, 상기 본 발명의 일 구현예에 의해 제공되는 니켈 촉매를 이용하여 다음의 공정을 적용함으로써 환원가스 제조 효율을 보다 높일 수 있다.On the other hand, the synthesis gas that can be suitably used as the reducing gas of the steelmaking process as described above can be efficiently used by using the process and equipment as described below. In applying the following process, a well-known catalyst used for producing various reducing gases may be used, but by applying the following process using the nickel catalyst provided by the embodiment of the present invention, the reducing gas production efficiency may be improved. It can increase.
본 발명의 일 구현예에 따르면, 환원가스를 생성하는 개질 촉매 반응 설비 및 공정에 있어서, 용융 슬래그의 현열 이용을 극대화할 수 있는 효율적인 열교환 망 구성을 제공하고자 하는 것으로서, 반응원료인 메탄과 개질화제로서 CO2, 증기 또는 CO2 및 증기를 반응물로 포함하며, 메탄 함유 가스가 공급되는 메탄 스트림; 및 CO2 함유 가스가 공급되는 CO2 스트림 및 H2O 함유 스트림을 통해 공급되는 H2O가 증기화된 증기 스트림으로부터 선택되는 적어도 하나의 개질화제 스트림을 포함하는 반응물 스트림, 가연성 연료 가스를 포함하는 연료 스트림, 상기 연료 스트림이 연소되어 개질 반응기로부터 배출되는 배가스 스트림 및 용융 슬래그의 현열을 회수한 현열 회수 스트림을 포함하는 개질 촉매 반응 시스템에 있어서, 열 교환망을 효율적으로 구성함으로써 용융 슬래그의 현열을 효과적으로 활용할 수 있어, 개질 반응기에서 요구되는 열에너지를 공급하기 위한 연료의 사용량을 절감할 수 있다. According to one embodiment of the present invention, in the reforming catalytic reaction facility and process for producing a reducing gas, to provide an efficient heat exchange network configuration that can maximize the use of sensible heat of molten slag, methane and a reforming agent as a reaction material A methane stream comprising CO 2 , steam or CO 2 and steam as a reactant, to which a methane containing gas is fed; And a reactant stream comprising combustible fuel gas, the reactant stream comprising a CO 2 stream fed with a CO 2 containing gas and at least one modifier stream selected from the vaporized vapor stream of H 2 O fed through the H 2 O containing stream; A reformed catalytic reaction system comprising a fuel stream, a flue gas stream from which the fuel stream is combusted and discharged from the reforming reactor, and a sensible heat recovery stream that recovers sensible heat of the molten slag, wherein the sensible heat of the molten slag is efficiently formed by efficiently constructing a heat exchange network. Effectively utilized, it is possible to reduce the amount of fuel used to supply the heat energy required in the reforming reactor.
본 발명의 일 구현예에 따르면, 상기 메탄 스트림 및 개질화제 스트림을 연료의 연소에 의해 개질 반응기로부터 배출되는 배가스 스트림을 이용하여 예열하고, 연료 스트림 및 개질화제로서 증기의 공급원인 H2O 스트림을 상기 현열 회수 스트림을 이용하여 예열 또는 증기화함으로써 개질 반응을 위해 요구되는 에너지 공급을 위한 연료를 절감할 수 있다.According to one embodiment of the invention, the methane stream and the reformer stream are preheated using an exhaust gas stream exiting the reforming reactor by combustion of the fuel, and the H 2 O stream as a fuel stream and a reformer is supplied as a source of steam. Preheating or vaporizing with the sensible heat recovery stream can save fuel for the energy supply required for the reforming reaction.
이하, 본 발명의 다양한 구현예를 첨부 도면을 참조하여 구체적으로 설명한다. 첨부된 도 1 내지 도 6은 본 발명에 따른 다양한 열교환 망을 구비하는 개질 촉매 반응 시스템의 일 구현예를 개략적으로 나타낸 것이다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 6 schematically show one embodiment of a reforming catalytic reaction system having various heat exchange networks in accordance with the present invention.
일 구현예에 있어서, 반응원료인 CH4 및 개질화제인 CO2, H2O 또는 CO2 및 H2O 를 반응물로 포함하는 반응물 혼합 스트림을 개질 반응기에 공급하며, 상기 반응물 혼합 스트림의 반응물이 개질 반응기 내의 촉매와 접촉하면서 연료의 연소에 의해 생성된 열에너지를 하기 개질반응 등에 공급함으로써 CO와 H2의 반응 생성물인 환원가스를 생성하게 된다. 이때 개질 반응기에서 일어나는 반응은 다음 식 (1) 내지 (3)과 같이 표현될 수 있다.In one embodiment, a reactant mixed stream comprising CH 4 as a reactant and a modifier CO 2 , H 2 O or CO 2 and H 2 O as a reactant is supplied to a reforming reactor, and the reactants of the reactant mixed stream are By contacting the catalyst in the reforming reactor and supplying the thermal energy generated by the combustion of the fuel to the following reforming reaction and the like to produce a reducing gas which is a reaction product of CO and H 2 . In this case, the reaction occurring in the reforming reactor may be expressed as in the following formulas (1) to (3).
CH4 + CO2 ↔ 2H2 + 2CO (1)CH 4 + CO 2 ↔ 2H 2 + 2CO (1)
CH4 + H2O ↔ 3H2 + CO (2)CH 4 + H 2 O ↔ 3H 2 + CO (2)
H2 + CO2 ↔ CO + H2O (3)H 2 + CO 2 ↔ CO + H 2 O (3)
상기 식 (1) 내지 (3)을 참고하면, 반응물 혼합 스트림에 포함된 반응 원료인 CH4와 개질화제인 CO2 및 H2O에 의해 메탄 개질 반응이 일어나 CO와 H2를 생성하게 되고, 상기 반응에 의해 생성되거나 H2와 CO2가 반응하여 CO를 생성하거나 그 역반응을 통해 H2를 생성함으로써, H2와 CO가 주로 포함된 환원가스를 생산할 수 있으며, 이로부터 수소를 분리할 수 있다. 이러한 반응을 위해, 개질 반응기에서는 상당한 양의 열 에너지 공급이 요구되며, 이러한 에너지 공급량을 충족시키기 위해 상당한 양의 연료 사용이 요구된다. 따라서, 이러한 에너지 공급량은 개질 반응 전체 공정의 경제성을 결정짓는다. Referring to the formulas (1) to (3), the methane reforming reaction is generated by the reaction raw material CH 4 and the reforming agents CO 2 and H 2 O included in the reactant mixture stream to produce CO and H 2 , By producing the reaction or by H 2 and CO 2 reacts to produce CO or H 2 through the reverse reaction, it is possible to produce a reducing gas mainly containing H 2 and CO, from which hydrogen can be separated have. For this reaction, a significant amount of thermal energy supply is required in the reforming reactor and a significant amount of fuel is required to meet this energy supply. This energy supply thus determines the economics of the overall process of the reforming reaction.
본 발명의 일 구현예는 개질 반응기에서의 에너지 공급을 위한 연료 소모량 절감을 위해, 용융 슬래그의 현열을 이용하여 반응물의 예열 및 개질 반응의 에너지로 공급하고, 또, 개질 촉매 반응을 통해 개질 반응기로부터 배출되는 배가스의 현열을 예열 에너지로 이용하고자 한다.One embodiment of the present invention is to supply the energy of the preheating and reforming reaction of the reactants using the sensible heat of the molten slag to reduce the fuel consumption for the energy supply in the reforming reactor, and from the reforming reactor through the reforming catalytic reaction The sensible heat of the exhaust gas is used as preheating energy.
일 구현예에 따르면, 용융 슬래그로부터 현열 에너지를 회수하여 개질 반응 및 예열 에너지로 사용할 수 있다. 상기 용융 슬래그는 1400℃ 정도의 고온으로서 일반적으로 폐기되고 있으나, 그 현열을 회수하여 개질 촉매 반응 공정에 활용함으로써 개질 반응의 에너지 소모량을 경감시킬 수 있다. According to one embodiment, sensible heat energy may be recovered from the molten slag and used as a reforming reaction and preheating energy. The molten slag is generally discarded at a high temperature of about 1400 ° C., but the energy consumption of the reforming reaction can be reduced by recovering the sensible heat and using it in the reforming catalytic reaction process.
본 발명의 일 구현예에 있어서, 특별히 한정하지 않으나, 예를 들어, 상기 용융 슬래그 현열은 용융 슬래그 현열 회수 시스템(62)에서 공기를 용융 슬래그와 접촉시키는 방법 등에 의해 회수할 수 있다. 용융 슬래그로부터 현열을 회수함으로써 400℃ 이상, 바람직하게는 500℃ 이상의 고온의 현열 회수 스트림을 얻을 수 있다. 상기 용융 슬래그 현열 회수 시스템(62)은 슬래그의 현열을 회수할 수 있는 것이라면 특별히 한정되지 않는다.In one embodiment of the present invention, although not particularly limited, for example, the molten slag sensible heat may be recovered by a method of contacting air with the molten slag in the molten slag sensible heat recovery system 62. By recovering sensible heat from the molten slag, a hot sensible heat recovery stream of at least 400 ° C., preferably at least 500 ° C., can be obtained. The molten slag sensible heat recovery system 62 is not particularly limited as long as it can recover sensible heat of slag.
이때, 상기 용융 슬래그로부터 현열을 회수하기 위한 열 회수 매체로는 공기(air)를 사용할 수 있다. 공기를 현열 회수를 위해 사용하는 경우, 400℃ 이상으로 회수된 현열 에너지를 연료의 연소에 필요한 산소원으로도 사용할 수 있어 바람직하다. In this case, air may be used as a heat recovery medium for recovering sensible heat from the molten slag. When air is used for sensible heat recovery, sensible heat energy recovered at 400 ° C. or higher can be used as an oxygen source for combustion of fuel, which is preferable.
즉, 도 1 내지 도 6에 나타낸 바와 같이, 개질 반응기(51)에서 반응물의 반응을 위해 요구되는 열에너지 공급을 위해 가연성 연료 가스를 포함하는 연료 스트림(31)이 반응물과 혼합되지 않는 간접가열 버너 시스템(52)에 공급되며, 상기 연료의 연소에 의한 간접 가열에 의해 개질 반응기(51)에 열에너지를 공급하게 된다. 본 발명의 일 구현예에서 사용되는 연료로서는 가연성 연료 가스라면 특별히 한정하지 않으며, 예를 들면 COG를 사용할 수 있다.That is, as shown in FIGS. 1-6, an indirect heating burner system in which a fuel stream 31 comprising combustible fuel gas is not mixed with the reactants for the supply of thermal energy required for the reaction of the reactants in the reforming reactor 51. 52 is supplied to heat energy to the reforming reactor 51 by indirect heating by combustion of the fuel. The fuel used in one embodiment of the present invention is not particularly limited as long as it is a flammable fuel gas, and for example, COG can be used.
이때, 상기 용융 슬래그의 현열을 회수한 현열 회수 스트림(33)을 버너 시스템(52)에 공급하여 상기 가연성 연료 가스와 혼합함으로써 산소 함유 연료 스트림(37)을 형성하게 되며, 상기 가연성 연료 가스와 산소가 버너 시스템(52)에서 연소반응함으로써 반응물의 반응에 필요한 열 에너지를 공급하게 된다. 상기 산소원으로 공급되는 현열 회수 스트림(33)은 400℃ 이상의 고온 상태로 버너 시스템(52)에 공급됨으로써 연료의 연소에 필요한 에너지를 경감시킬 수 있어 에너지 소모량을 줄일 수 있다.At this time, the sensible heat recovery stream 33 recovering the sensible heat of the molten slag is supplied to the burner system 52 and mixed with the combustible fuel gas to form an oxygen-containing fuel stream 37, wherein the combustible fuel gas and oxygen The combustion reaction in the burner system 52 supplies the thermal energy required for the reaction of the reactants. The sensible heat recovery stream 33 supplied to the oxygen source is supplied to the burner system 52 at a high temperature of 400 ° C. or higher to reduce energy required for combustion of fuel, thereby reducing energy consumption.
한편, 통상 개질 반응은 800 내지 1000℃의 온도 하에서 수행된다. 따라서, 상기 연료 스트림(31)의 가연성 연료 가스와 현열 회수 스트림(33)의 산소의 연소 반응 후에 배가스가 개질 촉매 반응 시스템의 외부로 배출된다. 상기 배출되는 배가스 스트림(38)은 800℃ 이상의 고온 가스로서, 상기 배가스 스트림(38)의 열을 이용하여 상기 현열 회수 스트림(33)을 예열할 수 있다.On the other hand, the reforming reaction is usually carried out under a temperature of 800 to 1000 ℃. Accordingly, after the combustion reaction of the combustible fuel gas of the fuel stream 31 and the oxygen of the sensible heat recovery stream 33, the exhaust gas is discharged to the outside of the reforming catalytic reaction system. The discharged flue gas stream 38 is a hot gas of 800 ° C. or higher, and may use the heat of the flue gas stream 38 to preheat the sensible heat recovery stream 33.
즉, 상기 산소 공급원으로서 사용되는 현열 회수 스트림(33)을 상기 배가스 스트림(38)으로부터 열교환하여 승온함으로써 예열된 현열 회수 스트림(36)을 얻을 수 있으며, 상기 예열된 현열 회수 스트림(36)을 버너 시스템(52)으로 공급할 수 있다. 이에 의해 얻어진 산소 함유 연료 스트림(37)은 추가적인 온도 상승을 도모할 수 있어, 버너 시스템(52)에서 연료의 연소 효율을 보다 향상시킬 수 있다. 이를 위해, 도 1 내지 도 6에 나타난 바와 같이 상기 현열 회수 스트림(33)의 이동 경로 상에 상기 배가스 스트림(38)으로부터의 열교환을 위한 열교환기(산소 예열용 열교환기)(46)를 구비할 수 있다.That is, the preheated sensible heat recovery stream 36 can be obtained by heat-exchanging the sensible heat recovery stream 33 used as the oxygen source by heat exchange from the exhaust gas stream 38, and burner the preheated sensible heat recovery stream 36. To the system 52. The resulting oxygen-containing fuel stream 37 can achieve an additional temperature rise, further improving the combustion efficiency of the fuel in the burner system 52. To this end, a heat exchanger (oxygen preheating heat exchanger) 46 for heat exchange from the exhaust gas stream 38 is provided on the movement path of the sensible heat recovery stream 33 as shown in FIGS. 1 to 6. Can be.
한편, 도 2 내지 도 6에 나타낸 바와 같이 상기 용융 슬래그의 현열을 회수한 현열 회수 스트림(33)을 연료의 예열에 사용할 수 있다. 상기 연료는 일반적으로 상온 상태로 공급되는바, 개질 반응기(51)로 공급되기 전에 미리 예열하여 공급하는 것이 효율적인 연소를 도모할 수 있다. 상기 연료 스트림(31)의 예열은 상기 용융 슬래그의 현열을 회수한 현열 회수 스트림(33)을 분리하여 연료 스트림(31)의 예열을 위한 별도의 현열 회수 스트림(연료 예열용 현열 회수 스트림)(35)으로부터 열교환에 의해 수행할 수 있다. 상기 연료 스트림(31)을 상기 연료 예열용 현열 회수 스트림(35)으로 예열하기 위해 상기 연료 스트림(31)의 이동 경로 상에 열교환을 위한 열교환기(연료 예열용 열교환기)(47)를 구비할 수 있다. 이와 같은 열교환에 의해 상기 연료 스트림(31)은 예열된 연료 스트림(32)으로 얻어진다.On the other hand, as shown in Figs. 2 to 6, the sensible heat recovery stream 33 having recovered the sensible heat of the molten slag can be used for preheating the fuel. Since the fuel is generally supplied at room temperature, preheating and supplying the fuel before it is supplied to the reforming reactor 51 can achieve efficient combustion. The preheating of the fuel stream 31 separates the sensible heat recovery stream 33 from which the sensible heat of the molten slag has been recovered and separate sensible heat recovery stream (sensible heat recovery stream for fuel preheating) 35 for preheating the fuel stream 31. ) By heat exchange. A heat exchanger (fuel preheating heat exchanger) 47 for heat exchange on the movement path of the fuel stream 31 to preheat the fuel stream 31 to the sensible heat recovery stream 35 for fuel preheating. Can be. By such heat exchange, the fuel stream 31 is obtained as a preheated fuel stream 32.
상기 식 (1) 내지 (3)에서 나타낸 바와 같이, 반응 원료로서 CH4 및 개질화제로서 CO2, H2O가 증기화된 증기, 또는 CO2 및 증기가 반응물로서 개질 반응기(51)에 공급되고, 상기 개질 반응기(51) 내에서 각 반응물이 촉매와 접촉하면서 연료의 연소에 의해 생성된 열에너지를 이용하여 CO와 H2를 포함하는 환원가스를 생성하는 개질반응이 수행된다. As shown in the above formulas (1) to (3), the steam in which CH 4 as a reaction raw material and CO 2 , H 2 O as a reforming agent is vaporized, or CO 2 and steam as a reactant is supplied to the reforming reactor 51. In the reforming reactor 51, a reforming reaction is performed in which each reactant is in contact with a catalyst to generate a reducing gas including CO and H 2 using thermal energy generated by combustion of a fuel.
상기와 같은 개질 반응에 의해 얻어진 반응 생성물(26)은 개질 반응기(51)로부터 배출되어 회수함으로써 CO와 H2를 포함하는 환원 가스(26)를 얻을 수 있다. 한편, 상기 개질 반응기(51)의 반응 온도는 상기 반응물과는 혼합되지 않고 별도로 버너 시스템으로 공급되는 연료의 연소에 의해 유지되며, 연소 후에 개질 반응기(51)로부터 배출되는데, 배출되는 배가스는 약 800℃ 이상의 고온 가스이다. 따라서, 배출되는 배가스 스트림(38)의 현열을 예열 에너지로 활용함으로써 반응 에너지 소모량을 줄일 수 있다. The reaction product 26 obtained by the reforming reaction as described above is discharged and recovered from the reforming reactor 51 to obtain a reducing gas 26 containing CO and H 2 . On the other hand, the reaction temperature of the reforming reactor 51 is maintained by the combustion of the fuel supplied to the burner system separately without mixing with the reactants, and is discharged from the reforming reactor 51 after combustion, the exhaust gas discharged is about 800 It is hot gas above ℃. Therefore, the amount of reactive energy consumed can be reduced by utilizing the sensible heat of the exhaust gas stream 38 discharged as preheating energy.
즉, 도 1 내지 도 6에 나타낸 바와 같이 상기 배가스 스트림(38)의 현열은 반응 원료로서 CH4와 개질화제로서 CO2 또는 증기를 예열하는데 활용하는 것이 바람직하다. 반응물인 CH4와 CO2는 상온으로 공급되므로, 상기 배가스 스트림(38)을 활용하여 메탄 스트림과 개질화제 스트림을 예열함으로써 개질 반응기(51)에서의 반응온도로 가열하는데 요구되는 에너지 소모량을 줄일 수 있다. That is, as shown in FIGS. 1 to 6, the sensible heat of the exhaust gas stream 38 is preferably utilized to preheat CO 2 or steam as CH 4 as a reaction raw material and as a modifier. Since the reactants CH 4 and CO 2 are supplied at room temperature, the exhaust gas stream 38 may be used to preheat the methane stream and the reformer stream, thereby reducing the energy consumption required for heating to the reaction temperature in the reforming reactor 51. have.
상기 메탄 스트림(11) 및 개질화제 스트림(13, 16)의 예열은 상기 배가스 스트림(38)과의 열 교환에 의해 수행할 수 있다. 이를 위해 상기 배가스 스트림과의 열교환을 위한 열교환기(메탄 예열용 열교환기(41))를 구비하여 상기 메탄 스트림(11)을 예열할 수 있으며, 또한, 상기 배가스 스트림(38)과의 열교환을 위한 열교환기(42, 44)를 구비하여 개질화제 스트림(13, 16)를 예열할 수 있다. 이에 의해 예열된 메탄 스트림(12) 및 예열된 개질화제 스트림(14, 17)을 개질 반응기(51)로 공급할 수 있다. 이때, 상기 개질화제 스트림은 CO2 스트림(13) 또는 증기 스트림(16)일 수 있으며, CO2 스트림과 증기 스트림을 모두 포함할 수 있다. 개질화제로서 CO2를 사용하는 경우의 메탄 개질반응에 대하여 설명한다.Preheating of the methane stream 11 and the reformer streams 13, 16 may be carried out by heat exchange with the flue gas stream 38. To this end, a heat exchanger (methane preheating heat exchanger 41) for heat exchange with the exhaust gas stream may be provided to preheat the methane stream 11, and also for heat exchange with the exhaust gas stream 38. Heat exchangers 42 and 44 may be provided to preheat the reformer streams 13 and 16. This allows the preheated methane stream 12 and the preheated modifier streams 14, 17 to be fed to the reforming reactor 51. In this case, the modifier stream may be a CO 2 stream 13 or a vapor stream 16 and may include both a CO 2 stream and a vapor stream. The methane reforming reaction when CO 2 is used as the reforming agent will be described.
상기 메탄 스트림(11) 및 CO2 스트림(13)의 예열은 도 1 내지 도 3에 나타낸 바와 같이 다양한 방법에 의해 수행할 수 있다. 도 1 내지 도 3은 반응물 스트림이 메탄 스트림(11) 및 CO2 스트림(13)으로 구성되는 경우의 열교환 망을 나타내는 것으로서, 도 1 및 도 2에 나타낸 바와 같이 각각의 반응물 스트림(11, 13)은 각각의 열교환기(41, 42)에 의해 배가스 스트림(38)으로부터 열교환함으로써 각 반응물을 예열하여 예열된 반응물(12, 14)를 얻을 수 있다. Preheating of the methane stream 11 and the CO 2 stream 13 can be carried out by various methods as shown in FIGS. 1 to 3 show a heat exchange network when the reactant stream consists of a methane stream 11 and a CO 2 stream 13, each reactant stream 11, 13 as shown in FIGS. 1 and 2. The preheated reactants 12, 14 can be obtained by preheating each reactant by heat exchange from the exhaust gas stream 38 by respective heat exchangers 41,42.
또한, 도 3에 나타낸 바와 같이 메탄 스트림(11) 및 CO2 스트림(13)을 혼합하여 혼합 반응물 스트림(18)을 형성한 후에 열교환기(혼합 반응물 예열용 열교환기)(45)를 통해 배가스 스트림(38)으로부터 열교환함으로써 예열된 메탄 및 CO2의 혼합 스트림(19)을 얻을 수도 있다. Also, as shown in FIG. 3, the methane stream 11 and the CO 2 stream 13 are mixed to form a mixed reactant stream 18 and then an exhaust gas stream through a heat exchanger (mixed reactant preheating heat exchanger) 45. It is also possible to obtain a preheated mixture stream 19 of methane and CO 2 by heat exchange from (38).
증기 스트림(16)을 단독으로 개질화제 스트림으로 사용하는 경우에 대하여는 특별히 설명하지 않으나, 상기 CO2 스트림(13)을 사용하는 경우와 동일하며, 단지 H2O 스트림을 슬래그 현열을 이용하여 열교환함으로써 증기화하고, 이에 의해 생성된 증기 스트림을 개질화제로서 사용할 수 있다. 이에 대하여는 이하에서 CO2와 증기를 개질화제로서 사용하는 경우에서 구체적으로 설명되며, 이때, 증기에 관한 사항을 그대로 채용할 수 있으므로, 여기서는 생략한다. 그러나, 본 발명이 속하는 기술분야의 기술자라면 이하의 설명으로 증기 스트림을 사용하는 경우에 메탄 개질 반응이 수행될 수 있음을 이해할 수 있을 것이다.The use of steam stream 16 alone as a modifier stream is not specifically described, but is the same as using CO 2 stream 13, except that the H 2 O stream is heat exchanged using slag sensible heat. Vaporization and the resulting vapor stream can be used as a modifier. This will be described below in detail in the case of using CO 2 and steam as a modifier, and at this time, since the matters related to steam can be employed as it is, it is omitted here. However, one of ordinary skill in the art will appreciate that the methane reforming reaction can be carried out when using a vapor stream in the following description.
본 발명의 일 구현예에 따르면, 개질화제로서 상기 CO2와 함께 증기를 사용할 수 있으며, 증기 스트림(16)을 통해 상기 증기를 반응물로 추가로 공급할 수 있다. 상기 증기 스트림(16)은 H2O가 액상으로 공급되는 H2O 스트림(15)을 증기화하여 개질 반응기(51)에 공급된다. 이때, 상기 액상의 H2O 스트림(15)의 증기화는 용융 슬래그의 현열을 회수한 현열 회수 스트림(33)에 의해 수행할 수 있다. According to one embodiment of the invention, steam can be used together with the CO 2 as a modifier, and the steam can be further supplied to the reactants via a stream 16. It said vapor stream (16) to the H 2 O vapor stream (15) H 2 O is fed to the liquefaction is supplied to the reforming reactor (51). At this time, the vaporization of the H 2 O stream 15 in the liquid phase may be performed by the sensible heat recovery stream 33 to recover the sensible heat of the molten slag.
바람직하게는 도 4 내지 도 6에 나타낸 바와 같이 상기 산소 공급원으로서 공급되는 상기 현열 회수 스트림(33)을 분리하여 상기 H2O 스트림(15)의 증기화에 이용할 수 있다. 구체적으로는 상기 현열 회수 스트림(33)에서 분리된 현열 회수 스트림(증기화용 현열 회수 스트림)(34)으로부터 열교환에 의해 H2O 스트림(15)을 증기화하여 증기 스트림(16)을 얻을 수 있다. 이를 위해 상기 H2O 스트림(15)을 열교환하기 위한 열교환기(증기화용 열교환기)(43)를 구비할 수 있다. 이와 같이 용융 슬래그로부터 현열을 회수한 증기화용 현열 회수 스트림(34)을 이용하여 증기 스트림(16)을 얻음으로써 H2O의 증기화에 요구되는 에너지 소모량을 줄일 수 있어 바람직하다.Preferably, the sensible heat recovery stream 33 supplied as the oxygen source can be separated and used for vaporization of the H 2 O stream 15 as shown in FIGS. 4 to 6. Specifically, the steam stream 16 may be obtained by vaporizing the H 2 O stream 15 by heat exchange from the sensible heat recovery stream (steam sensible heat recovery stream) 34 separated from the sensible heat recovery stream 33. . To this end, a heat exchanger (steam heat exchanger) 43 may be provided for heat-exchanging the H 2 O stream 15. The vapor stream 16 is obtained by using the vaporization sensible heat recovery stream 34 which recovers sensible heat from the molten slag in this way, so that the energy consumption required for the vaporization of H 2 O can be reduced.
상기 증기 스트림(16)은 메탄 및 CO2와 함께 개질 반응기(51)로 공급되어 개질 반응에 이용되는데, 이때, 개질 반응 에너지 소모량의 경감을 위해 미리 예열하여 예열된 증기 스트림(17)을 개질 반응기(51)에 공급하는 것이 바람직하다. 상기 증기 스트림(16)의 예열은 상기 배가스 스트림(38)의 현열을 이용하여 수행할 수 있는 것으로서, 상기 증기 스트림(16)을 상기 배가스 스트림(38)과의 열 교환에 의해 수행하여 예열된 증기 스트림(17)을 얻을 수 있다. 이를 위해 상기 증기 스트림(16)을 배가스 스트림(38)에 의해 열교환하기 위한 열교환기(증기 예열용 열교환기(44))를 구비할 수 있다.The steam stream 16 is fed to the reforming reactor 51 together with methane and CO 2 for use in the reforming reaction, wherein the preheated steam stream 17 is preheated to reduce the reforming energy consumption. It is preferable to supply to (51). The preheating of the steam stream 16 can be carried out using the sensible heat of the flue gas stream 38, the vapor being preheated by performing the steam stream 16 by heat exchange with the flue gas stream 38. Stream 17 can be obtained. To this end it may be provided with a heat exchanger (steam preheating heat exchanger 44) for heat exchange of the steam stream 16 by the exhaust gas stream 38.
상기와 같이 반응물 스트림이 메탄 스트림(11) 및 CO2 스트림(13)과 함께 상기 증기 스트림(16)을 포함하는 경우에는, 도 4 내지 도 6에 나타낸 바와 같이 다양한 방법에 의해 수행할 수 있다. 예를 들어, 도 4에 나타낸 바와 같이 각각의 반응물 스트림(11, 13, 16)을 배가스 스트림(38)으로부터 열교환하기 위한 각각의 예열용 열교환기(41, 42, 44)를 설치하여 각 반응물을 예열함으로써 예열된 반응물 스트림(12, 14, 17)을 개질 반응기(51)로 공급할 수 있다. As described above, when the reactant stream includes the vapor stream 16 together with the methane stream 11 and the CO 2 stream 13, it may be performed by various methods as shown in FIGS. 4 to 6. For example, as shown in FIG. 4, respective preheating heat exchangers 41, 42, 44 are installed to heat exchange each reactant stream 11, 13, 16 from the flue-gas stream 38. Preheating may feed preheated reactant streams 12, 14, 17 to reforming reactor 51.
또한, 도 5 및 도 6에 나타낸 바와 같이 상기 각각의 반응물 스트림(11, 13, 16) 중 2 이상의 반응물 스트림을 혼합하여 혼합 스트림을 형성한 후 혼합 반응물 예열용 열교환기(45)를 통해 예열할 수도 있다. 구체적으로는, 도 5에 나타낸 바와 같이, 메탄 스트림(11)과 CO2 스트림(13)을 혼합하여 메탄 및 CO2의 혼합 스트림(18)을 형성한 후에 상기 메탄 및 CO2의 혼합 스트림(18)을 배가스 스트림(38)으로부터 열교환하여 혼합 반응물을 예열하고(예열된 메탄 및 CO2의 혼합 스트림(19)), 증기 스트림(16)은 독립적으로 구비된 증기 예열용 열교환기(44)에 의해 열교환함으로써 예열된 증기 스트림(17)을 얻을 수 있다. 도 5에는 메탄 및 CO2의 혼합 스트림(18)을 예시하고 있으나, 메탄 스트림(11)과 증기 스트림(16) 또는 CO2 스트림(13)과 증기 스트림(16)이 혼합된 혼합 스트림을 하나의 혼합 반응물 예열용 열교환기(45)에 의해 배가스 스트림(38)으로부터 열교환하여 예열된 혼합 반응물을 얻을 수도 있는 것으로서 특별히 한정하는 것이 아니다.5 and 6, two or more reactant streams of each of the reactant streams 11, 13, and 16 may be mixed to form a mixed stream, and then preheated through a mixed reactant preheating heat exchanger 45. It may be. Specifically, Fig, methane stream 11 and a CO 2 stream 13 is mixed with the methane and CO 2 of after forming the mixture stream 18 mixing streams of the methane and CO 2 (18 a, as shown in Fig. 5 ) Is preheated from the exhaust gas stream 38 to preheat the mixed reactants (mixed stream 19 of preheated methane and CO 2 ), and the steam stream 16 is independently provided by a steam preheating heat exchanger 44. Preheating vapor stream 17 can be obtained. Although FIG. 5 illustrates a mixed stream 18 of methane and CO 2 , a mixed stream of methane stream 11 and vapor stream 16 or a mixture of CO 2 stream 13 and vapor stream 16 is shown as one. The mixed reactant may be heat exchanged from the flue-gas stream 38 by a preheating heat exchanger 45 to obtain a preheated mixed reactant and is not particularly limited.
한편, 본 발명의 다른 예로서, 도 6에 나타낸 바와 같이, 반응물 스트림인 메탄 스트림(11), CO2 스트림(13) 및 증기 스트림(16)을 모두 혼합하여 하나의 혼합 스트림(20)을 형성하고, 상기 혼합 스트림(20)을 하나의 혼합 반응물 예열용 열교환기(45)를 통해 배가스 스트림(38)으로부터 열교환하여 예열된 혼합 반응물 스트림(21)을 얻을 수도 있다. Meanwhile, as another example of the present invention, as shown in FIG. 6, all of the reactant streams, methane stream 11, CO 2 stream 13 and vapor stream 16, are mixed to form one mixed stream 20. The mixed stream 20 may be heat exchanged from the flue-gas stream 38 via one mixed reactant preheating heat exchanger 45 to obtain a preheated mixed reactant stream 21.
이때, 상기 메탄 스트림(11) 및 CO2 스트림(13)은 압축기(61)에 의해 가압하여 시스템 내로 공급되는 것이 바람직하다. 개질 반응기(51)는, 아래에서 설명할 것이나, 1 내지 40bar의 압력으로 유지되어, 고압 상태에서 유지되어 개질 반응을 수행될 수 있는바, 개질 반응기(51)로의 공급을 위해 압축기(61) 등을 통해 반응물을 압축하여 고압 스트림으로 이송되도록 하는 것이 바람직하다. At this time, the methane stream 11 and the CO 2 stream 13 are preferably pressurized by the compressor 61 and fed into the system. The reforming reactor 51, which will be described below, may be maintained at a pressure of 1 to 40 bar, and may be maintained at a high pressure to carry out a reforming reaction, such as a compressor 61 for supply to the reforming reactor 51. It is desirable to compress the reactants through to deliver them to the high pressure stream.
상기한 바와 같이 현열 회수 스트림(33)은 버너 시스템(52)에서 연료와의 연소 반응을 위한 산소 공급원으로 공급됨과 함께, 필요에 따라 상기 연료 예열 및 H2O의 증기화에 사용될 수 있다. 상기 현열 회수 스트림(33)은 하나의 스트림에 의해 연료 예열 및 H2O의 증기화를 위한 열교환을 수행할 수 있으나, 용융 슬래그로부터 회수된 현열의 효율적인 이용을 위해 현열 회수 스트림(33)을 분리하여 활용하는 것이 바람직하다. 이를 위해, 상기 현열 회수 스트림(33)을 분리하기 위한 스플릿(미도시)과 같은 분기수단을 구비할 수 있다. As described above, the sensible heat recovery stream 33 is supplied from the burner system 52 to an oxygen source for combustion reaction with the fuel, and may be used for vaporizing the fuel preheating and H 2 O as necessary. The sensible heat recovery stream 33 may perform heat exchange for preheating fuel and vaporizing H 2 O by one stream, but separates sensible heat recovery stream 33 for efficient use of sensible heat recovered from molten slag. It is desirable to utilize. To this end, it may be provided with a branching means such as a split (not shown) for separating the sensible heat recovery stream 33.
본 발명의 일 구현예에 있어서, 반응 원료로 사용되는 메탄(CH4)은, 특별히 한정하는 것은 아니지만, 천연 메탄 가스를 사용할 수 있음은 물론, 메탄을 함유하는 가스를 사용할 수 있는 것으로서, 예를 들어, 메탄의 공급원으로 제철소에서 발생하는 코크스 오븐 가스(COG) 등의 산업의 부생가스를 이용할 수 있다. 상기 COG는 일반적으로 수소 약 55%, 메탄 약 27%, 일산화탄소 약 9%, C2H4 약 2%, 질소 약 4%, 및 이산화탄소 약 3% 등을 포함하는 것으로서, 메탄 공급원으로서 적합하게 사용될 수 있으며, 상기 COG 등의 산업 부생가스를 이용하는 경우, 경제적인 측면에서 바람직하다. In one embodiment of the present invention, methane (CH 4 ) used as a reaction raw material is not particularly limited, but natural methane gas can be used, as well as a gas containing methane. For example, by-product gas of industry, such as coke oven gas (COG) which arises in a steel mill, can be used as a source of methane. The COG generally comprises about 55% hydrogen, about 27% methane, about 9% carbon monoxide, about 2% C 2 H 4 , about 4% nitrogen, about 3% carbon dioxide, and the like, and is preferably used as a methane source. In the case of using the industrial by-product gas such as COG, it is preferable from an economical point of view.
상기 개질 반응기(51) 내로 공급되는 반응물은 CH4를 함유하는 가스 중의 원료인 CH4의 부피를 기준으로 개질화 가스(CO2 및 H2O)를 1:1-4.0배로 공급하는 것이 바람직하다. CO2 및 H2O가 CH4의 부피를 기준으로 1배 미만으로 포함되는 경우에는 CH4 전환율 및 CO2 전환율이 낮아질 수 있으며, 철광석 환원용 환원가스로 사용하고자 하는 경우에는 촉매 코킹(coking)의 문제가 발생할 수 있어 사용하고자 하는 용도에 적합하지 않을 수 있다. 한편, 4.0배를 초과하는 경우에는 CH4 전환율 및 CO2 전환율은 높아지지만 미반응되어 잔존하는 개질화 가스가 많아져서 최종적으로 획득되는 환원 가스(26) 내의 H2 및 CO의 분율이 낮아지는 문제가 있다. Reactants that are fed into the reforming reactor 51 is the CH 4 gae nitriding gas (CO 2 and H 2 O), based on the volume of CH 4 in the raw material gas containing a 1: 1 to 4.0 it is preferred to supply doubled . When CO 2 and H 2 O is contained in less than 1-fold by volume of CH 4, the CH 4 conversion and CO and the second conversion rate can be lowered, the catalyst coking, if to be used in iron ore reduction reducing gas (coking) Problems may occur and may not be suitable for the intended use. On the other hand, if it exceeds 4.0 times, the CH 4 conversion rate and CO 2 conversion rate increase, but the amount of unreacted and remaining reforming gas increases, so that the fraction of H 2 and CO in the reduction gas 26 finally obtained decreases. There is.
한편, 환원 가스(26)를 제조함에 있어서는 상기 식 (1) 내지 (3)으로부터 알 수 있는 바와 같이 수분 또는 CO2의 어느 하나만을 개질화제로서 사용할 수 있다. 다만, 개질화제로서 CO2를 사용하는 경우에는 CO2 처리공정이라는 장점을 얻을 수 있다. 따라서, CO2 처리공정의 개발이라는 측면에서 개질화제로서 CO2를 단독으로 사용할 수 있으며, CO2와 함께 H2O를 사용할 수 있다. 이때, CO2와 H2O를 개질화제로서 함께 사용하는 경우, CO2와 H2O의 부피비를 1:0 내지 5.0의 범위로 사용하는 것이 바람직하다. H2O가 CO2에 비해 5배 이상의 부피를 갖는 경우, CO2 사용량이 상대적으로 적어지게 된다. 이로 인해 CO2 처리량이 적어지게 되고, 따라서 CO2 처리 효과가 충분하지 않은바, 상기 범위로 공급되는 것이 바람직하다. On the other hand, in manufacturing the reducing gas 26, as can be seen from the above formulas (1) to (3), only one of moisture or CO 2 can be used as the modifying agent. However, when CO 2 is used as the modifier, it is possible to obtain an advantage of a CO 2 treatment process. Thus, as a modification agent in the context of the development of CO 2 treatment step it can be used for CO 2 alone or may be used with H 2 O and CO 2. At this time, when using CO 2 and H 2 O together as a modifier, it is preferable to use the volume ratio of CO 2 and H 2 O in the range of 1: 0 to 5.0. When H 2 O has a greater than 5-fold volume compared to the CO 2, CO 2 the amount becomes relatively small. This causes the CO 2 amount becomes small, therefore it is desirable to be fed into the bar, the range is not sufficient CO 2 treatment effect.
상기 CH4, CO2 및 H2O의 반응물을 공급함에 있어서는 상기에서 언급한 COG, CO2 및 H2O의 공급 비율을 맞추고 일정량을 정량적으로 공급하기 위해 반응물인 COG와 CO2는 블로워(blower) 등의 정량 가스 공급 장치를 포함하고, H2O의 경우는 물을 스팀으로 만든 후 스팀 공급량 및 압력을 제어하는 시스템을 포함할 수 있다. In supplying the reactants of CH 4 , CO 2, and H 2 O, the reactants COG and CO 2 are blowers to match the above-mentioned supply ratio of COG, CO 2, and H 2 O and to supply a predetermined amount quantitatively. In the case of H 2 O may include a system for controlling the steam supply amount and pressure after the water is made of steam.
상기 개질 반응은 1 내지 40bar의 압력, 바람직하게는 2 내지 20bar의 압력, 보다 바람직하게는 4 내지 10bar의 압력 하에서 수행될 수 있다. 반응 시 압력이 1bar 미만인 경우에는 개질 반응 후 발생한 고온의 환원 가스(26)를 고로 또는 유동로에 취입하기 위해 추가적인 승압을 해야 하지만 생성된 산물의 온도가 고온이라 온도를 낮춘 후 승압시키고 다시 승온시켜야 하므로, 에너지 효율 측면에서 매우 불리하며, 압력이 40bar를 초과하는 경우에는 메탄의 전환율이 낮아지고 고로 또는 유동로의 취입 압력에 비해 압력이 높아서 감압에 따른 에너지 손실이 발생하는 문제가 있다.The reforming reaction can be carried out under a pressure of 1 to 40 bar, preferably 2 to 20 bar, more preferably 4 to 10 bar. If the pressure is less than 1 bar in the reaction, an additional boost is required to blow the high temperature reducing gas 26 generated after the reforming reaction into the blast furnace or the flow furnace, but the temperature of the produced product is elevated so that the temperature is increased and then increased again. Therefore, it is very disadvantageous in terms of energy efficiency, and when the pressure exceeds 40bar, there is a problem that the conversion rate of methane is lowered and the pressure is higher than the blowing pressure of the blast furnace or the flow furnace, resulting in energy loss due to the reduced pressure.
상기 개질 반응은 800 내지 1000℃의 온도 하에서 수행되는 것이 바람직하며, 보다 바람직하게는 850 내지 950℃의 온도 하에서 수행될 수 있다. 상기 반응이 800℃ 미만의 온도에서 수행되는 경우에는 CH4 또는 CO2의 전환율이 낮으며, 1000℃를 초과하는 온도에서 수행되는 경우에는 고온 및 고압에서 장기간 안정적으로 사용할 수 있는 재질의 개질 반응기(51)를 얻기 어려운 문제가 있다.The reforming reaction is preferably carried out at a temperature of 800 to 1000 ℃, more preferably may be carried out under a temperature of 850 to 950 ℃. When the reaction is carried out at a temperature of less than 800 ℃ the conversion rate of CH 4 or CO 2 is low, when the reaction is carried out at a temperature of more than 1000 ℃ reforming reactor of a material that can be used stably for a long time at high temperature and high pressure ( 51) There is a problem that is difficult to obtain.
나아가, 상기 개질 반응은 500 내지 500,000h-1의 반응 공간속도로 수행되는 것이 바람직하며, 1,000 내지 100,000h-1의 반응 공간속도로 수행되는 것이 보다 바람직하다. 반응 공간속도란 시간 당 흘려 주는 반응물의 표준 가스 부피를 촉매 부피로 나눈 값으로서, 반응 공간속도가 500h-1 미만인 경우에는 반응물의 처리량이 적어지므로 반응기 사이즈를 증대시켜야 할 필요가 있고, 이에 따라 경제성이 낮아지는 문제가 있다. 한편, 반응 공간속도가 500,000h-1을 초과하는 경우에는 반응 속도 문제로 메탄 및 이산화탄소의 전환율이 낮아지는 문제가 있다. Further, the reforming reaction is preferably carried out at a reaction space velocity of 500 to 500,000 h −1 , more preferably at a reaction space velocity of 1,000 to 100,000 h −1 . The reaction space velocity is a value obtained by dividing the standard gas volume of the reactant flowing per hour by the catalyst volume. When the reaction space velocity is less than 500 h −1, the throughput of the reactants decreases, and thus the reactor size needs to be increased, and thus economical efficiency. There is a problem of this lowering. On the other hand, when the reaction space velocity exceeds 500,000 h −1 , there is a problem that the conversion rate of methane and carbon dioxide is lowered due to the reaction rate problem.
CH4 개질 촉매반응을 통해 환원 가스(26)를 생성함에 있어서는, 반드시 이에 한정하는 것은 아니지만, 상기에서 언급한 반응 조건을 맞추기 위해 백프레셔 레귤레이터(back-pressure regulator) 등을 이용하여 반응압력을 조절할 수 있으며, 간접 열 공급 방식 등으로 반응온도를 제어할 수 있다.In producing the reducing gas 26 through the CH 4 reforming catalytic reaction, the reaction pressure is controlled using a back-pressure regulator or the like to adjust the reaction conditions mentioned above, but not necessarily limited thereto. The reaction temperature may be controlled by an indirect heat supply method.
한편, 본 발명의 개질 반응기(51)는 촉매층을 포함한다. 상기 촉매층과 상기 반응물이 접촉함으로써 상기 식 (1) 내지 (3)과 같은 개질 반응이 일어나게 된다. 본 발명의 개질 반응을 위해 상기 촉매층에 배치되는 촉매로는 니켈(Ni)계 촉매인 것이 바람직하다. 보다 구체적으로는 Al2O3, ZrO2, Ce-ZrO2, MgAl2O4 등의 지지체를 기반으로 하는 니켈계 개질 촉매를 사용하거나, 또는 이에 추가로 Ca, K, Mg, Ce, La, 귀금속 등의 조촉매가 포함된 니켈계 개질 촉매를 사용할 수 있다.On the other hand, the reforming reactor 51 of the present invention includes a catalyst bed. When the catalyst layer is in contact with the reactant, a reforming reaction as in Formulas (1) to (3) occurs. The catalyst disposed in the catalyst layer for the reforming reaction of the present invention is preferably a nickel (Ni) -based catalyst. More specifically, using a nickel-based reforming catalyst based on a support such as Al 2 O 3 , ZrO 2 , Ce-ZrO 2 , MgAl 2 O 4 , or in addition to Ca, K, Mg, Ce, La, Nickel-based reforming catalysts containing promoters such as noble metals can be used.
이때, 보다 바람직하게는 상기 니켈계 촉매로는 상기 본 발명의 일 구현예로 기재된 것으로서, 담체 상에 니켈 및 선택적으로 조촉매가 담지되며, 상기 담체는 알루미나와 마그네시아의 반응에 의한 MgAl2O4의 스피넬 구조를 갖는 환원가스 제조용 메탄 개질 촉매를 사용함으로써 환원가스를 제조할 수 있다. 상기 촉매 및 그 제조방법에 대한 구체적인 사항은 위에 기재된 바와 같은 것으로서, 중복하여 기재하지 않는다.At this time, more preferably, the nickel-based catalyst is described as an embodiment of the present invention, and nickel and optionally a promoter are supported on a carrier, and the carrier is MgAl 2 O 4 by reaction of alumina and magnesia. The reducing gas can be prepared by using a methane reforming catalyst for producing a reducing gas having a spinel structure of. Details of the catalyst and its preparation are as described above, and are not repeated.
이와 같은 본 발명의 일 구현예에 따른 개질 촉매 반응 공정 및 설비에 의해, 반응물 중의 CH4 전환율을 60% 이상으로 얻을 수 있으며, 용융 슬래그와 같은 산업 공정에서 발생하는 폐열 및 개질 촉매 반응 공정 중에 발생되는 폐열을 활용하되, 열교환 망을 효율적으로 구성함으로써 에너지 절감 효과를 얻을 수 있다.By the reforming catalytic reaction process and equipment according to one embodiment of the present invention, the conversion rate of CH 4 in the reactants can be obtained at 60% or more, and is generated during waste heat and reforming catalytic reaction processes generated in industrial processes such as molten slag. By utilizing the waste heat, but by efficiently configuring the heat exchange network can achieve energy savings.
실시예Example
이하, 본 발명을 실시예를 들어 더욱 구체적으로 설명한다. 이하의 실시예는 본 발명을 설명하기 위한 일 예로서, 이들에 의해 본 발명이 한정되는 것이 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are examples for explaining the present invention, and the present invention is not limited thereto.
실시예 1Example 1
1. 발명 촉매 1 내지 7 및 비교 촉매 1 내지 3의 제조1. Preparation of Inventive Catalysts 1 to 7 and Comparative Catalysts 1 to 3
Al2O3(BET 비표면적 100㎥/g), 마그네시아 전구체로서 Mg(CH3COO)2·4H2O 및 니켈 전구체로서 Ni(NO3)2·6H2O를 물의 첨가 없이 상온에서 표 2에 나타낸 바와 같은 함량으로 각각 혼합하고, 볼밀로 6시간 밀링하여 혼합물을 형성한 후, 상기 얻어진 혼합물을 150℃ 오븐에서 5시간 건조하여 수분을 증발시켜 제거하였다. 이후, 700℃로 유지되는 소성로에서 10시간 소성한 후 분쇄하고, 950℃에서 5% 이상의 수소(N2 발란스)에서 5시간 이상 환원하여 촉매를 제조하였다. Al 2 O 3 (BET specific surface area 100m 3 / g), Mg (CH 3 COO) 2 · 4H 2 O as magnesia precursor and Ni (NO 3 ) 2 · 6H 2 O as nickel precursor at room temperature without addition of water Each was mixed to the content as shown in the figure, milled with a ball mill for 6 hours to form a mixture, and the obtained mixture was dried in an oven at 150 ° C. for 5 hours to remove evaporated water. Thereafter, the mixture was calcined in a kiln maintained at 700 ° C. for 10 hours and then pulverized, and reduced to 5 hours or more in hydrogen (N 2 balance) at 950 ° C. or more to prepare a catalyst.
표 2
혼합물 조성(중량%) 촉매 조성(중량%)
니켈전구체 마그네시아전구체 알루미나 니켈 마그네시아 알루미나
발명촉매 1(촉매 1) 15 33 52 5 10 잔부
발명촉매 2(촉매 2) 27 29 44 10 10 잔부
발명촉매 3(촉매 3) 37 26 37 15 10 잔부
발명촉매 4(촉매 4) 45 24 31 20 10 잔부
비교촉매 1(촉매 5) 51 22 27 25 10 잔부
비교촉매 2(촉매 6) 36 64 10 0 잔부
발명촉매 5(촉매 7) 31 16 53 10 5 잔부
발명촉매 6(촉매 8) 24 39 37 10 15 잔부
발명촉매 7(촉매 9) 22 47 31 10 20 잔부
비교촉매 3(촉매 10) 18 59 22 10 30 잔부
TABLE 2
Composition composition (% by weight) Catalyst composition (% by weight)
Nickel precursor Magnesia Precursor Alumina nickel magnesia Alumina
Inventive Catalyst 1 (Catalyst 1) 15 33 52 5 10 Balance
Inventive Catalyst 2 (Catalyst 2) 27 29 44 10 10 Balance
Inventive Catalyst 3 (Catalyst 3) 37 26 37 15 10 Balance
Inventive Catalyst 4 (Catalyst 4) 45 24 31 20 10 Balance
Comparative Catalyst 1 (Catalyst 5) 51 22 27 25 10 Balance
Comparative Catalyst 2 (Catalyst 6) 36 64 10 0 Balance
Inventive Catalyst 5 (Catalyst 7) 31 16 53 10 5 Balance
Inventive Catalyst 6 (Catalyst 8) 24 39 37 10 15 Balance
Inventive Catalyst 7 (Catalyst 9) 22 47 31 10 20 Balance
Comparative Catalyst 3 (Catalyst 10) 18 59 22 10 30 Balance
이에 의해 얻어진 각 촉매 중, 발명 촉매 2(촉매 2) 및 비교 촉매 1(촉매 5)을 XRD에 의해 분석하여 그 결과를 도 7에 나타내었다. Among the catalysts thus obtained, inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) were analyzed by XRD, and the results are shown in FIG. 7.
도 7로부터 알 수 있는 바와 같이 발명 촉매 2는 알루미나와 마그네시아가 반응하여 MgAl2O4 스피넬 구조를 형성하고, Ni의 입자 크기가 5-15nm임을 Ni 금속의 특성 피크인 51.76과 41.38(2 theta 값)에서 Scherrer 식을 이용하여 확인하였다. As can be seen from FIG. 7, the catalyst 2 of the present invention reacts with alumina and magnesia to form an MgAl 2 O 4 spinel structure, and the Ni. ) Was confirmed using the Scherrer equation.
또한, 발명 촉매 2(촉매 2) 및 비교 촉매 1(촉매 5)에 대하여 촉매에 담지된 니켈을 TEM으로 분석하고, 그 결과를 도 8에 나타내었는바, 발명 촉매 2의 입자 사이즈가 주로 5-15nm임을 확인하였다.In addition, nickel supported on the catalyst for the inventive catalyst 2 (catalyst 2) and comparative catalyst 1 (catalyst 5) was analyzed by TEM, and the results are shown in FIG. 8. It was confirmed that it is 15nm.
2. 비교 촉매 4의 제조2. Preparation of Comparative Catalyst 4
수산화알루미늄(Al(OH)3), 니켈 전구체로서 Ni(NO3)2·6H2O 및 마그네시아 전구체로서 Mg(CH3COO)2·4H2O를 물의 첨가 없이 38:35:30의 중량비로 혼합한 후 볼밀을 사용하여 6시간 밀링하여 혼합물을 형성하고, 상기 얻어진 혼합물을 150℃ 오븐에서 5시간 건조하여 수분을 증발시켜 제거하였다. 이후, 700℃로 유지되는 소성로에서 10시간 소성한 후 분쇄하고, 950℃에서 5% 이상의 수소(N2 발란스)에서 5시간 이상 환원하여 촉매를 제조하였다. Aluminum hydroxide (Al (OH) 3 ), Ni (NO 3 ) 2 .6H 2 O as a nickel precursor and Mg (CH 3 COO) 2 .4H 2 O as a magnesia precursor at a weight ratio of 38:35:30 without the addition of water After mixing, the mixture was milled for 6 hours using a ball mill to form a mixture, and the obtained mixture was dried in an oven at 150 ° C. for 5 hours to remove evaporated water. Thereafter, the mixture was calcined in a kiln maintained at 700 ° C. for 10 hours and then pulverized, and reduced to 5 hours or more in hydrogen (N 2 balance) at 950 ° C. or more to prepare a catalyst.
이에 의해 얻어진 촉매를 XRD에 의해 분석하였으며, 그 결과를 도 9에 나타내었다. 도 9로부터 알 수 있는 바와 같이 얻어진 촉매는 Ni/MgO/Al2O3의 구조를 갖는 것으로서, 일부 마그네시아가 알루미나와 MgAl2O4의 스피넬 구조를 형성하지만 MgO가 상당량 남아 있음을 알 수 있으며, 또 Ni 입자가 대략 20nm 이상임을 확인하였다. The catalyst thus obtained was analyzed by XRD, and the results are shown in FIG. 9. As can be seen from FIG. 9, the obtained catalyst has a structure of Ni / MgO / Al 2 O 3 , and it is understood that some magnesia forms a spinel structure of alumina and MgAl 2 O 4 , but MgO remains. It was also confirmed that the Ni particles were approximately 20 nm or more.
3. 메탄 개질 반응3. Methane Reforming Reaction
상기 제조된 발명 촉매 1 내지 7 및 비교 촉매 1 내지 4를 20~60메쉬(mesh)로 펠렛팅하여 직경이 2cm인 반응기에 넣고 수소와 질소가 1:1로 혼합한 가스로 950℃에서 환원한 후, 상기 촉매가 충진된 반응기에 원료가스로서 COG 및 개질화제로서 CO2와 H2O를 CH4:CO2:H2O = 1.0:0.4:1.2(반응조건 1) 및 CH4:CO2:H2O = 1.0:0.8:0.8(반응조건 2)로 혼합된 혼합가스를 반응기로 공급하여 개질 반응을 수행하였다. 이때, 혼합가스의 공간속도를 90,000hr-1로 하고, 반응기는 5bar의 압력 및 900℃의 반응온도로 유지하였다.The inventive catalysts 1 to 7 and comparative catalysts 1 to 4 were pelleted with 20 to 60 mesh, put into a reactor having a diameter of 2 cm, and reduced at 950 ° C. with a gas mixed with hydrogen and nitrogen in a 1: 1 ratio. and then, CO 2 and H 2 O as the COG, and the reforming agent as a raw material gas to the catalyst is filled reactor CH 4: CO 2: H 2 O = 1.0: 0.4: 1.2 ( reaction condition 1) and CH 4: CO 2 The reformed reaction was performed by supplying a mixed gas mixed with: H 2 O = 1.0: 0.8: 0.8 (reaction condition 2) to the reactor. At this time, the space velocity of the mixed gas was 90,000hr -1 , and the reactor was maintained at a pressure of 5bar and a reaction temperature of 900 ℃.
각각의 개질 반응에 따른 메탄 전환율을 측정하고, 그 결과를 도 10 및 도 11에 나타내었다. Methane conversion according to each reforming reaction was measured and the results are shown in FIGS. 10 and 11.
도 10은 발명 촉매 1 내지 4, 비교 촉매 1을 사용하여 니켈의 함량에 따른 두 반응조건에서의 개질 활성을 테스트한 결과를 나타낸 그래프이다. 또한, 상용 촉매와의 비교를 위해 시판 중인 상용 촉매를 동일한 조건하에서 환원 처리한 후 상기와 같은 조건에서 개질 활성 실험을 수행하여 도 10에 함께 나타내었다. 나아가, 알루미나 담체가 수산화알루미늄으로부터 얻어진 경우와의 촉매 활성을 비교하기 위해, 비교 촉매 4의 메탄 전환율을 함께 나타내었다.10 is a graph showing the results of testing the reforming activity under the two reaction conditions according to the nickel content using the inventive catalysts 1 to 4, Comparative Catalyst 1. In addition, for comparison with a commercial catalyst, a commercially available commercial catalyst was reduced under the same conditions, and reformed activity experiments were performed under the same conditions. Furthermore, in order to compare the catalytic activity with the case where the alumina carrier was obtained from aluminum hydroxide, the methane conversion of Comparative Catalyst 4 was also shown.
도 10으로부터 알 수 있는 바와 같이, 실시예의 경우는 상용 촉매에 비해 15% 정도 높은 메탄 전환율을 나타내었다.As can be seen from FIG. 10, the example showed methane conversion of about 15% higher than that of the commercial catalyst.
도 11은 발명 촉매 2, 5 내지 7, 비교 촉매 2 및 3의 촉매를 사용하여 마그네슘 함량에 따른 두 반응조건에서의 개질 활성을 테스트한 결과를 나타낸 그래프이다.11 is a graph showing the results of testing the reforming activity under the two reaction conditions according to the magnesium content using the catalyst of the invention catalysts 2, 5 to 7, Comparative Catalysts 2 and 3.
비교 촉매 2는 Ni 함량이 높아 메탄 전환율이 높게 나타났다. 그러나, 니켈 분산도가 낮아, Ni 성장으로 인한 코킹 문제를 야기하여 촉매 안정성이 열악한 결과를 나타내었다. Comparative catalyst 2 had a high Ni content and a high methane conversion rate. However, the nickel dispersity was low, causing coking problems due to Ni growth, resulting in poor catalyst stability.
3. 촉매 안정성 테스트3. Catalyst Stability Test
개질 촉매에 대한 장기 안정성을 평가하기 위해 발명 촉매 2, 비교 촉매 1 및 상용 촉매에 대하여 실시예 1의 반응 조건 1과 동일한 방법으로 촉매의 개질 반응을 수행하고, 그 결과를 도 12에 나타내었다. In order to evaluate the long-term stability of the reforming catalyst, the reforming reaction of the catalyst was performed on the inventive catalyst 2, the comparative catalyst 1, and the commercial catalyst in the same manner as in the reaction condition 1 of Example 1, and the results are shown in FIG. 12.
도 12로부터 알 수 있는 바와 같이, 발명 촉매 2 및 비교 촉매 1의 경우에는 상용 촉매에 비해 초기 개질 활성이 우수하였다. 그러나, 비교 촉매 1의 경우에는 반응 개시 5시간이 지난 후에는 메탄 전환율이 급격히 저하되어 기능을 상실하는 경향을 보여 촉매 안정성이 열악함을 알 수 있다. 반면, 발명 촉매 2의 경우에는 개질 반응을 개시한 후 30시간 이후에도 촉매의 활성이 안정적으로 나타남을 알 수 있다. As can be seen from FIG. 12, inventive catalyst 2 and comparative catalyst 1 were superior in initial reforming activity to commercial catalysts. However, in the case of Comparative Catalyst 1, after 5 hours from the start of the reaction, the methane conversion rate was sharply lowered and thus the function was lost, indicating that the catalyst stability was poor. On the other hand, in the case of the inventive catalyst 2, it can be seen that the activity of the catalyst is stable even after 30 hours after the start of the reforming reaction.
실시예 2Example 2
수소 57%, 메탄 27%, 일산화탄소 9%, 질소 4%, 및 이산화탄소 3%로 구성되는 CH4가 다량 함유된 제철 부생가스인 COG로부터 개질 촉매 반응 공정에 의해 혼합가스를 생성하는 개질 촉매 반응 시스템을 1100 내지 1500℃의 용융 슬래그 이송 장치로부터 용융 슬래그로부터 현열을 회수하는 현열 회수 시스템과 연결하여 도 3과 같이 구성하였다. A reforming catalytic reaction system that generates a mixed gas from a reforming catalytic reaction process from COG, a steel by-product gas containing a large amount of CH 4 composed of 57% hydrogen, 27% methane, 9% carbon monoxide, 4% nitrogen, and 3% carbon dioxide. 3 was connected to a sensible heat recovery system for recovering sensible heat from the molten slag from the molten slag transfer device at 1100 to 1500 ° C.
현열 회수 시스템은 대기압 하에서 운전하는 조건으로, 용융 슬래그 조립화 장치에서 1-5mm 크기로 조립화된 고온의 슬래그 입자를 조립화 슬래그 현열 회수 장치인 현열 회수용 충진층 열교환 장치를 사용하여 공기를 투입하여 500℃ 고온 공기를 회수하는 것으로 가정하여 개질 촉매 반응 시스템에 500℃의 고온의 공기를 공급하고, 상기 고온의 공기를 COG 개질 반응 및 H2O의 승온 에너지로 사용하였다.The sensible heat recovery system is operated under atmospheric pressure, and air is inputted using a packed bed heat exchanger for sensible heat recovery, which is a granulated slag sensible heat recovery device, which is granulated at a temperature of 1-5 mm assembled in the molten slag granulator. It was assumed that the high temperature air at 500 ° C. was recovered to supply a high temperature air of 500 ° C. to the reforming catalytic reaction system, and the high temperature air was used as the COG reforming reaction and the temperature rising energy of H 2 O.
한편, 상기 개질 반응 장치는 COG-CO2-H2O의 촉매 개질 반응 장치를 사용하고, 정량 투입 장치를 사용하여 반응가스 및 연료용 가스를 정량 투입하였으며, 반응 및 연료용 열교환기로는 COG 개질 가스의 고로 투입을 고려하여 운전 조건을 5bar로 설정하였다.On the other hand, the reforming reaction apparatus is a catalyst reforming reaction apparatus of COG-CO 2 -H 2 O, and the reaction gas and fuel gas is quantitatively input using a metering unit, COG reforming as a reaction and fuel heat exchanger Considering the blast furnace gas input, the operating conditions were set to 5 bar.
선정한 시스템의 현열 이용 정도를 확인하기 위해 CO2 3Nm3/h 투입 조건을 가정하여 에너지/물질 밸런스(balance)를 계산하였다. CO2 및 COG는 압축기를 이용하여 승압 후 개질 반응기로 투입하였으며, 이 과정에서 압축 단열 승온을 가정하였다. 이때, COG 혼합 개질 반응은 CH4:CO2:H2O=1:0.4:1.2인 가스 조성에서 900℃, 5bar에서 평형을 이룬다고 가정하였다. In order to check the sensible heat utilization of the selected system, energy / material balance was calculated assuming CO 2 3Nm 3 / h input conditions. CO 2 and COG were boosted using a compressor and then introduced into a reforming reactor, and compression adiabatic elevated temperature was assumed in this process. In this case, it was assumed that the COG mixing reforming reaction was equilibrated at 900 ° C. and 5 bar in a gas composition having CH 4 : CO 2 : H 2 O = 1: 0.4: 1.2.
이 혼합 개질 반응 에너지는 COG와 공기를 연소시켜 간접 가열 방식으로 공급하였다. 상기에 언급된 가정을 기초로 물질/열 밸런스를 Aspen plus를 통해 계산하였다. 여기에서 얻어진 슬래그 현열 이용 COG 혼합 개질 통합 시스템의 물질/열 밸런스를 표 3에 요약하였다.This mixed reforming reaction energy was supplied by indirect heating by burning COG and air. Based on the assumptions mentioned above, the material / heat balance was calculated via Aspen plus. The material / heat balance of the slag sensible heat utilizing COG mixing reforming integrated system obtained here is summarized in Table 3.
표 3
입열량 출열량
항목 kcal/hr Fraction 항목 kcal/hr Fraction
반응가스 발열량 127,200 0.75 생성가스 발열량 147,600 0.86
연료 발열량 25,600 0.15 생성가스 현열 20,200 0.12
회수 슬래그 현열 14,000 0.08 손실열 (기타 현열 포함) 3,000 0.02
기타 현열(가스 등) 4,000 0.02
합계 170,800 1.00 합계 170,800 1.00
TABLE 3
Heat input Calorific value
Item kcal / hr Fraction Item kcal / hr Fraction
Reaction gas calorific value 127,200 0.75 Generated gas calorific value 147,600 0.86
Fuel calorific value 25,600 0.15 Generated gas sensible heat 20,200 0.12
Recovered slag sensible heat 14,000 0.08 Loss heat (including other sensible heat) 3,000 0.02
Other sensible heat (gas, etc.) 4,000 0.02
Sum 170,800 1.00 Sum 170,800 1.00
공정의 열 정산 결과로서, 상기 표 3으로부터 알 수 있는 바와 같이, 시간 당 총 입열량은 170,800kcal이고, 현열을 포함한 생성가스의 발열량은 147,600kcal이다. 즉 전체 투입 열량 중 98% 정도가 생성가스 발열량 및 현열로 회수 가능하였다. 슬래그 현열은 반응과정에서 필요한 승온 및 반응에너지의 20% 이상(반응에너지의 40% 수준)을 차지하는 것으로 평가되었다. As a result of the thermal settlement of the process, as can be seen from Table 3, the total heat input amount per hour is 170,800 kcal, and the calorific value of the generated gas including sensible heat is 147,600 kcal. That is, about 98% of the total input heat was recovered by the generated gas calorific value and sensible heat. The slag sensible heat was estimated to occupy more than 20% (40% of the reaction energy) of the temperature and reaction energy required in the reaction process.
COG-CO2-H2O 반응시스템은 본 발명에서 제시하는 열 교환망을 통해 공정 중 열회수/재이용이 용이한 반응공정으로 평가되는 것으로서, 용융 슬래그로부터 회수된 현열을 이용하여 상대적으로 유리하게 개질 촉매 반응공정을 운영할 수 있음을 알 수 있다.The COG-CO 2 -H 2 O reaction system is evaluated as a heat recovery / reuse reaction process in the process through the heat exchange network proposed in the present invention, and is relatively advantageously reformed catalyst using sensible heat recovered from molten slag. It can be seen that the reaction process can be operated.
11: 메탄 스트림 12: 예열된 메탄 스트림11: methane stream 12: preheated methane stream
13: CO2 스트림 14: 예열된 CO2 스트림13: CO 2 stream 14: preheated CO 2 stream
15: H2O 스트림 16: 증기 스트림15: H 2 O stream 16: steam stream
17: 예열된 증기 스트림 18: 메탄 및 CO2의 혼합 스트림17: preheated vapor stream 18: mixed stream of methane and CO 2
19: 예열된 메탄 및 CO2의 혼합 스트림19: Mixed stream of preheated methane and CO 2
20: 메탄, CO2 및 증기의 혼합 스트림20: mixed stream of methane, CO 2 and steam
21: 예열된 메탄, CO2 및 증기의 혼합 스트림21: Mixed stream of preheated methane, CO 2 and steam
26: 반응 생성물(환원 가스)26: reaction product (reduction gas)
31: 연료 스트림 32: 예열된 연료 스트림31: fuel stream 32: preheated fuel stream
33: 현열 회수 스트림 34: 증기화용 현열 회수 스트림33: sensible heat recovery stream 34: sensible heat recovery stream for vaporization
35: 연료 예열용 현열 회수 스트림35: sensible heat recovery stream for fuel preheating
36: 예열된 현열 회수 스트림36: preheated sensible heat recovery stream
37: 산소 함유 연료 스트림 38: 배가스 스트림37: oxygen containing fuel stream 38: flue gas stream
41: 메탄 예열용 열교환기 42: CO2 예열용 열교환기41: methane preheating heat exchanger 42: CO 2 preheating heat exchanger
43: 증기화용 열교환기 44: 증기 예열용 열교환기43: heat exchanger for steaming 44: heat exchanger for steam preheating
45: 혼합 반응물 예열용 열교환기45: Heat exchanger for preheating the mixed reactants
46: 산소 예열용 열교환기 47: 연료 예열용 열교환기46: heat exchanger for oxygen preheating 47: heat exchanger for fuel preheating
51: 개질 반응기 52: 버너 시스템51: reforming reactor 52: burner system
61: 압축기 62: 용융 슬래그 현열 회수 시스템61: compressor 62: molten slag sensible heat recovery system

Claims (36)

  1. 부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스로부터 환원가스를 제조하는데 사용되며, 담체 상에 니켈 및 선택적으로 조촉매가 담지되며, 상기 담체는 알루미나(Al2O3)와 마그네시아(MgO)의 반응에 의한 MgAl2O4의 스피넬 구조를 갖는 것인 환원가스 제조용 메탄 개질 촉매.It is used to prepare a reducing gas from a mixed gas having a volume ratio of (H 2 O + CO 2 / CH 4 ) of 3 or less, and nickel and optionally a promoter are supported on a carrier, and the carrier is alumina (Al 2 O 3 ). Methane reforming catalyst for producing a reducing gas having a spinel structure of MgAl 2 O 4 by the reaction of and magnesia (MgO).
  2. 제1항에 있어서, 상기 니켈은 평균 입자 사이즈가 5 내지 15nm인 환원가스 제조용 메탄 개질 촉매.The methane reforming catalyst of claim 1, wherein the nickel has an average particle size of 5 to 15 nm.
  3. 제1항에 있어서, 상기 촉매는 마그네시아 5-25중량%, Ni 5-20중량%, 조촉매 10중량% 이하 및 잔부 알루미나를 포함하며, 상기 마그네시아는 상기 알루미나와 반응에 의해 MgAl2O4의 스피넬 구조로 존재하는 환원가스 제조용 메탄 개질 촉매. The catalyst of claim 1, wherein the catalyst comprises 5-25 wt% of magnesia, 5-20 wt% of Ni, up to 10 wt% of cocatalyst, and residual alumina, wherein the magnesia is reacted with MgAl 2 O 4 to react with the alumina. Methane reforming catalyst for reducing gas production in a spinel structure.
  4. 제1항에 있어서, 상기 알루미나는 비표면적이 20㎡/g 이상인 환원가스 제조용 메탄 개질 촉매.The methane reforming catalyst of claim 1, wherein the alumina has a specific surface area of 20 m 2 / g or more.
  5. 제1항에 있어서, 상기 조촉매는 Ca, Zr, Ce, La, Pt, Pd 및 Rh로부터 선택되는 적어도 하나 또는 이를 포함하는 화합물인 환원가스 제조용 메탄 개질 촉매.The methane reforming catalyst of claim 1, wherein the promoter is at least one selected from Ca, Zr, Ce, La, Pt, Pd, and Rh or a compound including the same.
  6. 제1항에 있어서, 상기 혼합가스는 코크스 오븐 가스(COG)인 환원가스 제조용 메탄 개질 촉매.The methane reforming catalyst of claim 1, wherein the mixed gas is coke oven gas (COG).
  7. 알루미나, 마그네시아 전구체, 니켈 전구체 및 선택적으로 조촉매를 물의 첨가없이 실온에서 30분 이상 혼합하여 혼합물을 얻는 혼합 단계; A mixing step of mixing alumina, magnesia precursor, nickel precursor and optionally a promoter at least 30 minutes at room temperature without addition of water to obtain a mixture;
    상기 혼합물을 100 내지 300℃의 온도에서 건조시키는 건조 단계와;A drying step of drying the mixture at a temperature of 100 to 300 ° C;
    상기 건조된 혼합물을 600 내지 1000℃의 온도에서 소성 및 환원하여 알루미나와 마그네시아의 반응에 의한 스피넬 구조의 MgAl2O4 담체를 형성하고, 상기 담체 상에 니켈 및 조촉매를 담지시키는 소성 단계The dried mixture is calcined and reduced at a temperature of 600 to 1000 ° C. to form a spinel structure MgAl 2 O 4 carrier by reaction of alumina and magnesia, and a baking step of supporting nickel and a promoter on the carrier.
    를 포함하는 환원 가스 제조용 메탄 개질 촉매 제조방법.Methane reforming catalyst production method for reducing gas production comprising a.
  8. 제7항에 있어서, 상기 혼합물은 알루미나, 마그네시아, 니켈 및 조촉매의 합계 중량에 대하여 마그네시아 5 내지 25중량%, 니켈 5 내지 20중량%, 조촉매 10중량% 이하 및 잔부 Al2O3를 포함하는 것인 환원 가스 제조용 메탄 개질 촉매 제조방법.The method according to claim 7, wherein the mixture comprises 5 to 25% by weight of magnesia, 5 to 20% by weight of nickel, 10% by weight or less of promoter and the balance Al 2 O 3 based on the total weight of alumina, magnesia, nickel and promoter. Method for producing methane reforming catalyst for reducing gas production.
  9. 제7항에 있어서, 상기 니켈 전구체는 니켈 수화물인 것을 특징으로 하는 환원 가스 제조용 메탄 개질 촉매 제조방법.The method of claim 7, wherein the nickel precursor is nickel hydrate.
  10. 제7항에 있어서, 상기 마그네시아 전구체는 마그네슘 수화물인 환원가스 제조용 메탄 개질 촉매 제조방법.The method of claim 7, wherein the magnesia precursor is magnesium hydrate.
  11. 제7항에 있어서, 상기 조촉매는 Ca, Zr, Ce, La, Pt, Pd 및 Rh로부터 선택되는 적어도 하나 또는 이를 포함하는 화합물인 환원가스 제조용 메탄 개질 촉매 제조방법.The method of claim 7, wherein the cocatalyst is at least one selected from Ca, Zr, Ce, La, Pt, Pd, and Rh, or a compound including the same.
  12. 제7항에 있어서, 상기 알루미나는 비표면적이 20㎡/g 이상인 환원가스 제조용 메탄 개질 촉매 제조방법.The method of claim 7, wherein the alumina has a specific surface area of 20 m 2 / g or more.
  13. 제1항 내지 제6항 중 어느 한 항의 환원가스 제조용 개질 촉매를 수소, 질소 또는 수소 및 질소를 포함하는 가스 분위기 하에서, 600 내지 1000℃ 범위의 온도에서 환원시키는 단계; 및Reducing the reforming catalyst for producing a reducing gas of any one of claims 1 to 6 at a temperature in the range of 600 to 1000 ℃ in a gas atmosphere containing hydrogen, nitrogen or hydrogen and nitrogen; And
    부피비로서 (H2O+CO2/CH4)가 3 이하인 혼합가스를 공간속도가 500 내지 500,000hr-1 이고, 반응온도가 500 내지 1000℃의 조건으로 반응기에서 반응시키는 단계로 구성되는 것을 특징으로 하는 환원가스 제조방법.(H 2 O + CO 2 / CH 4 ) as a volume ratio of the gas mixture is characterized in that it comprises a step of reacting in the reactor at a space velocity of 500 to 500,000hr -1 , the reaction temperature of 500 to 1000 ℃ Reducing gas production method.
  14. 제 13항에 있어서, 상기 혼합가스는 COG인 환원가스 제조방법.The method of claim 13, wherein the mixed gas is COG.
  15. 반응원료인 메탄과 개질화제로서 CO2, 증기 또는 CO2 및 증기를 반응물로 포함하며, 메탄 함유 가스가 공급되는 메탄 스트림; 및 CO2 함유 가스가 공급되는 CO2 스트림 및 H2O 스트림을 통해 공급되는 H2O가 증기화된 증기 스트림으로부터 선택되는 적어도 하나의 개질화제 스트림을 포함하는 반응물 스트림, Methane stream comprising reactant methane and CO 2 , steam or CO 2 and steam as the reforming agent, to which a methane containing gas is supplied; And a reactant stream comprising at least one modifier stream selected from a CO 2 stream supplied with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized;
    상기 반응물의 승온 및 반응을 위한 열에너지를 생성하는 가연성 연료 가스가 공급되는 연료 스트림, A fuel stream supplied with a combustible fuel gas that generates thermal energy for heating and reacting the reactants,
    용융 슬래그의 현열을 회수한 산소 함유 가스가 공급되는 현열 회수 스트림, 및 A sensible heat recovery stream supplied with an oxygen-containing gas recovering sensible heat of the molten slag, and
    상기 가연성 연료 가스와 산소의 연소 반응에 의해 생성된 배가스가 배출되는 배가스 스트림을 포함하며, A flue gas stream from which flue gas produced by the combustion reaction of the combustible fuel gas and oxygen is discharged;
    상기 반응물 스트림이 공급되고, 상기 반응물이 촉매가 장착된 반응기를 통과하며, 이 과정에서 상기 반응물이 반응하여 CO와 H2를 포함하는 고온의 환원 가스를 생성하는 개질 반응기; A reforming reactor fed with the reactant stream, the reactant passing through a reactor equipped with a catalyst, in which the reactants react to produce a hot reducing gas comprising CO and H 2 ;
    상기 연료 스트림 및 상기 현열 회수 스트림이 공급되어 상기 연료와 산소의 연소반응에 의한 연소열에 의해 상기 개질 반응기를 간접 가열하여 개질 반응 에너지를 공급하는 버너 시스템;A burner system supplied with the fuel stream and the sensible heat recovery stream to indirectly heat the reforming reactor by the heat of combustion by the combustion reaction of the fuel and oxygen to supply reforming reaction energy;
    상기 반응물 스트림을 상기 배가스 스트림으로부터 열교환하여 상기 반응물 스트림을 예열하고, 상기 개질 반응기로 공급하는 반응물 예열용 열교환기; 및A heat exchanger for preheating the reactant to heat the reactant stream from the exhaust gas stream to preheat the reactant stream and feed it to the reforming reactor; And
    상기 현열 회수 스트림을 상기 배가스 스트림으로부터 열교환하여 상기 버너 시스템으로 공급하는 산소 함유 가스 예열용 열교환기를 포함하는 개질 촉매 반응 설비.And an oxygen-containing gas preheating heat exchanger for heat-exchanging the sensible heat recovery stream from the exhaust gas stream to the burner system.
  16. 제15 항에 있어서, 상기 H2O 스트림을 상기 현열 회수 스트림이 분기된 증기화용 현열 회수 스트림으로부터 열교환하여 상기 증기 스트림을 생성하는 증기화용 열교환기를 더 포함하는 개질 촉매 반응 설비.16. The reforming catalytic reaction plant of claim 15 further comprising a vaporization heat exchanger for heat-exchanging the H 2 O stream from the vaporization sensible heat recovery stream branched from the sensible heat recovery stream to produce the vapor stream.
  17. 제15 항에 있어서, 상기 반응물 예열용 열교환기는 각각의 반응물 스트림을 예열하는 독립된 열교환기인 개질 촉매 반응 설비.16. The reforming catalytic reaction plant of claim 15 wherein the reactant preheater heat exchanger is a separate heat exchanger that preheats each reactant stream.
  18. 제15 항에 있어서, 상기 반응물 예열용 열교환기는 반응물 스트림이 혼합된 혼합 스트림을 예열하는 열교환기인 개질 촉매 반응 설비.16. The reforming catalytic reaction plant of claim 15 wherein the reactant preheater heat exchanger is a heat exchanger that preheats a mixed stream of reactant streams.
  19. 제15 항에 있어서, 상기 개질화제는 CO2 및 증기이며, 상기 반응물 예열용 열교환기는 하나의 반응물 스트림을 예열하는 열교환기와 나머지 2개의 반응물 스트림이 혼합된 혼합 스트림을 예열하는 열교환기인 개질 촉매 반응 설비.16. The reforming catalytic reaction plant of claim 15 wherein the reforming agent is CO 2 and steam, and the reactant preheating heat exchanger is a heat exchanger for preheating one reactant stream and a heat exchanger for preheating a mixed stream of the remaining two reactant streams. .
  20. 제15 항에 있어서, 상기 연료 스트림을 상기 현열 회수 스트림이 분기된 연료 예열용 현열 회수 스트림으로부터 열교환하여 연료를 예열하는 연료 예열용 열교환기를 더 구비하는 개질 촉매 반응 설비.16. The reforming catalytic reaction plant of claim 15, further comprising a fuel preheating heat exchanger for preheating fuel by heat exchanging the fuel stream from a sensible heat recovery stream for fuel preheat branched from the sensible heat recovery stream.
  21. 제15 항에 있어서, 상기 촉매층은 Ni계 촉매를 포함하는 촉매층인 개질 촉매 반응 설비.The reforming catalytic reaction plant of claim 15 wherein the catalyst layer is a catalyst layer comprising a Ni-based catalyst.
  22. 반응원료인 메탄과 개질화제인 CO2, 증기 또는 CO2 및 증기를 반응물로 포함하며, 메탄 함유 가스가 공급되는 메탄 스트림; 및 CO2 함유 가스가 공급되는 CO2 스트림 및 H2O 스트림을 통해 공급되는 H2O가 증기화된 증기 스트림으로부터 선택되는 적어도 하나의 개질화제 스트림을 포함하는 반응물 스트림, A methane stream comprising methane as a reactant and CO 2 , steam or CO 2 as a reactant, and a steam, to which a methane containing gas is supplied; And a reactant stream comprising at least one modifier stream selected from a CO 2 stream supplied with a CO 2 containing gas and a H 2 O stream vaporized via a H 2 O stream vaporized;
    상기 반응물의 승온 및 반응을 위한 열에너지를 생성하는 가연성 연료 가스가 공급되는 연료 스트림, A fuel stream supplied with a combustible fuel gas that generates thermal energy for heating and reacting the reactants,
    용융 슬래그의 현열을 회수한 산소를 함유하는 현열 회수 스트림 및 Sensible heat recovery stream containing oxygen recovered sensible heat of molten slag and
    상기 가연성 연료 가스와 산소의 연소반응에 의해 생성된 배가스가 배출되는 배가스 스트림을 포함하며, A flue gas stream from which flue gas generated by combustion of the combustible fuel gas and oxygen is discharged;
    상기 반응물 스트림을 상기 배가스 스트림으로부터 열교환하여 예열하고, 예열된 반응물을 개질 반응기로 공급하는 반응물 예열 단계; A reactant preheating step of preheating the reactant stream by heat exchange from the exhaust gas stream and feeding the preheated reactant to a reforming reactor;
    상기 현열 회수 스트림을 상기 배가스 스트림으로부터 열교환하여 예열하고, 상기 예열된 현열 회수 스트림 및 상기 연료 스트림을 상기 개질 반응기 내 상기 반응물 스트림과 혼합되지 않는 구조의 버너 시스템으로 공급하여 가연성 가스와 산소의 반응에 의해 연료를 연소시키는 연소 단계; 및 The sensible heat recovery stream is preheated by heat exchange from the exhaust gas stream, and the preheated sensible heat recovery stream and the fuel stream are fed to a burner system that is not mixed with the reactant stream in the reforming reactor to react with combustible gas and oxygen. A combustion step of combusting the fuel; And
    상기 개질 반응기로 공급된 반응물이 상기 개질 반응기 내에 장착된 촉매를 통과하며, 상기 연소 단계에 의해 생성된 연소 열에 의해 상기 개질 반응기 내의 반응물이 반응하여 CO와 H2를 포함하는 고온의 환원 가스를 생성하는 단계를 포함하는 개질 촉매 반응 공정.The reactant supplied to the reforming reactor passes through a catalyst mounted in the reforming reactor, and reactants in the reforming reactor react with the combustion heat generated by the combustion step to produce a high temperature reducing gas containing CO and H 2 . A reforming catalytic reaction process comprising the steps of:
  23. 제22 항에 있어서, 상기 증기 스트림은 상기 H2O 스트림이 상기 현열 회수 스트림으로부터 분기된 증기화용 현열 회수 스트림에 의해 열교환되어 증기화된 것인 개질 촉매 반응 공정.The process of claim 22, wherein the vapor stream is vaporized by heat exchange of the H 2 O stream by a sensible heat recovery stream for vaporization branched from the sensible heat recovery stream.
  24. 제22 항에 있어서, 상기 반응물 예열 단계는 상기 반응물 스트림을 각각 독립적으로 예열하는 개질 촉매 반응 공정.The process of claim 22 wherein the reactant preheating step preheats the reactant streams independently of each other.
  25. 제22 항에 있어서, 상기 반응물 예열 단계는 상기 반응물 스트림이 혼합된 하나의 혼합 스트림이 예열되는 개질 촉매 반응 공정.The process of claim 22, wherein the reactant preheating step preheats one mixed stream of the reactant streams mixed.
  26. 제22 항에 있어서, 상기 개질화제는 CO2 및 증기이며, 상기 반응물 예열 단계는 하나의 반응물 스트림 및 나머지 두 개의 반응물 스트림이 혼합된 혼합 스트림이 각각 독립적으로 예열되는 개질 촉매 반응 공정.The process of claim 22, wherein the modifier is CO 2 and steam, and wherein the reactant preheating step is each independently preheated with a mixed stream of one reactant stream and the other two reactant streams.
  27. 제22 항에 있어서, 상기 버너 시스템으로 공급되는 연료 스트림은 상기 현열 회수 스트림이 분기된 연료 예열용 현열 회수 스트림에 의해 열교환되어 예열된 것인 개질 촉매 반응 공정.23. The process of claim 22, wherein the fuel stream supplied to the burner system is preheated by exchanging the sensible heat recovery stream by a branched fuel preheating sensible heat recovery stream.
  28. 제22 항에 있어서, 상기 반응물은 CH4:(CO2+H2O)의 부피비가 1:1-4.0인 개질 촉매 반응 공정.The process of claim 22, wherein the reactants have a volume ratio of CH 4 : (CO 2 + H 2 O) of 1: 1-4.0.
  29. 제28 항에 있어서, 상기 개질화제는 CO2, 또는 CO2와 증기이며, 상기 반응물은 CO2:H2O의 부피비가 1:0 내지 5.0인 개질 촉매 반응 공정. The process of claim 28, wherein the modifier is CO 2 , or CO 2 and steam, and the reactant has a volume ratio of CO 2 : H 2 O of 1: 0 to 5.0.
  30. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 개질 반응기는 1-40bar의 압력 및 800 내지 1000℃의 온도를 갖는 것인 개질 촉매 반응 공정.30. The process of any of claims 22 to 29 wherein the reforming reactor has a pressure of 1-40 bar and a temperature of 800 to 1000 ° C.
  31. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 촉매층과 접촉하는 반응물은 500 내지 500,000h-1의 반응 공간속도를 갖는 개질 촉매 반응 공정.The process of claim 22, wherein the reactant in contact with the catalyst layer has a reaction space velocity of 500 to 500,000 h −1 .
  32. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 촉매는 Ni계 촉매를 포함하는 것인 개질 촉매 반응 공정.30. The process of any of claims 22 to 29, wherein the catalyst comprises a Ni-based catalyst.
  33. 제32 항에 있어서, 상기 Ni계 촉매는 제1 항 내지 제6 항 중 어느 한 항에 기재된 환원가스 제조용 매탄 개질 촉매인 개질 촉매 반응 공정.The reforming catalytic reaction process according to claim 32, wherein the Ni-based catalyst is a methane reforming catalyst for producing a reducing gas according to any one of claims 1 to 6.
  34. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 메탄 스트림을 통해 공급되는 메탄 함유 가스는 COG(Cokes Oven Gas)인 개질 촉매 반응 공정.30. The process of any of claims 22 to 29, wherein the methane containing gas fed through the methane stream is Cokes Oven Gas (COG).
  35. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 연료 스트림을 통해 공급되는 가연성 연료 가스는 COG인 개질 촉매 반응 공정.30. The process of any of claims 22 to 29 wherein the combustible fuel gas supplied through the fuel stream is COG.
  36. 제22 항 내지 제29 항 중 어느 한 항에 있어서, 상기 현열 회수 스트림은 400℃ 이상의 온도를 갖는 공기인 개질 촉매 반응 공정.The process of claim 22, wherein the sensible heat recovery stream is air having a temperature of at least 400 ° C. 30.
PCT/KR2013/012203 2012-12-27 2013-12-26 Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same WO2014104756A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120155545A KR101724287B1 (en) 2012-12-27 2012-12-27 Ni-based Reforming Catalysts to Produce the Reduction Gas for Iron Ore
KR10-2012-0155545 2012-12-27
KR1020120155544A KR101684484B1 (en) 2012-12-27 2012-12-27 Catalytic Reforming Process and Equipment to Maximize the Utilization of the Sensible Heat Recovered from High-Temperature Molten Slag
KR10-2012-0155544 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104756A1 true WO2014104756A1 (en) 2014-07-03

Family

ID=51021711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012203 WO2014104756A1 (en) 2012-12-27 2013-12-26 Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same

Country Status (1)

Country Link
WO (1) WO2014104756A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107252689A (en) * 2017-07-19 2017-10-17 太原理工大学 A kind of composite catalyst and its preparation method and application
CN107840676A (en) * 2017-12-02 2018-03-27 芜湖乾凯材料科技有限公司 A kind of cement kiln clinkering zone alkali resistant Mg-Al spinel brick and preparation method thereof
CN112121801A (en) * 2020-08-06 2020-12-25 南京红太阳生物化学有限责任公司 High-load nickel-based catalyst and preparation method and application thereof
CN113845089A (en) * 2021-08-13 2021-12-28 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas
CN115926853A (en) * 2022-12-27 2023-04-07 华中科技大学 Self-heating catalytic reforming reaction system for cracked gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011299A (en) * 2007-07-25 2009-02-02 한국에너지기술연구원 Syngas generation reactor and syngas generation method
KR20100014012A (en) * 2008-08-01 2010-02-10 한국화학연구원 Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of
CN102721029A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Sensible heat recycling method and device for liquid blast furnace slag
CN102744072A (en) * 2012-08-03 2012-10-24 太原理工大学 Catalyst used for reforming synthesis gas of methane carbon dioxide and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011299A (en) * 2007-07-25 2009-02-02 한국에너지기술연구원 Syngas generation reactor and syngas generation method
KR20100014012A (en) * 2008-08-01 2010-02-10 한국화학연구원 Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of
CN102721029A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Sensible heat recycling method and device for liquid blast furnace slag
CN102744072A (en) * 2012-08-03 2012-10-24 太原理工大学 Catalyst used for reforming synthesis gas of methane carbon dioxide and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107252689A (en) * 2017-07-19 2017-10-17 太原理工大学 A kind of composite catalyst and its preparation method and application
CN107252689B (en) * 2017-07-19 2020-06-09 太原理工大学 Composite catalyst and preparation method and application thereof
CN107840676A (en) * 2017-12-02 2018-03-27 芜湖乾凯材料科技有限公司 A kind of cement kiln clinkering zone alkali resistant Mg-Al spinel brick and preparation method thereof
CN112121801A (en) * 2020-08-06 2020-12-25 南京红太阳生物化学有限责任公司 High-load nickel-based catalyst and preparation method and application thereof
CN112121801B (en) * 2020-08-06 2023-04-11 南京红太阳生物化学有限责任公司 High-load nickel-based catalyst and preparation method and application thereof
CN113845089A (en) * 2021-08-13 2021-12-28 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas
CN113845089B (en) * 2021-08-13 2024-03-12 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas
CN115926853A (en) * 2022-12-27 2023-04-07 华中科技大学 Self-heating catalytic reforming reaction system for cracked gas

Similar Documents

Publication Publication Date Title
WO2014104756A1 (en) Nickel-based reforming catalyst for producing reduction gas for iron ore reduction and method for manufacturing same, reforming catalyst reaction and equipmemt for maximizing energy efficiency, and method for manufacturing reduction gas using same
WO2012138017A1 (en) Apparatus and method for continuously producing carbon nanotubes
US20150329930A1 (en) Reformer-gas-based reduction process with decarbonization of the fuel gas for the reformer
WO2016064084A1 (en) Shell-and-tube type reactor for reforming natural gas and method for manufacturing syngas or hydrogen gas by using same
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
KR20120056260A (en) Reformer gas-based reducing method with reduced nox emission
CN105579593A (en) DNA-adapter-molecules for the preparation of DNA-libraries and method for producing them and use
KR101628409B1 (en) Method and equipment for producing synthesis gas
WO2012091437A2 (en) Integrated steel manufacturing system and method for integrated steel manufacturing
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
WO2018056766A1 (en) Raw material composition for preparing oxygen carrier particles, oxygen carrier particles prepared by using same, and method for preparing oxygen carrier particles
WO2023068497A1 (en) Methane-reforming catalyst and method for producing same
WO2019216701A1 (en) Catalyst regenerator
WO2013100520A1 (en) Integrated steelmaking system and integrated steelmaking method
WO2022124867A1 (en) Carbon nanotube manufacturing apparatus and manufacturing method
WO2020080808A1 (en) Carbon dioxide emission reduction type molten iron manufacturing apparatus and manufacturing method thereof
WO2023033595A1 (en) Reforming system and method therefor
WO2023090583A1 (en) Methane-reforming catalyst and method for producing same
WO2023163573A1 (en) Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same
WO2023075011A1 (en) Simultaneous process for treating nitrogen oxides in flue gas and producing high-purity hydrogen
WO2014092426A1 (en) Tri-reformer reactor for synthesis gas production, and tri-reformer reaction system using same
WO2023054753A1 (en) Hydrogen and carbon generation system using methane pyrolysis by means of fluidized bed indirect heat exchange
WO2023090585A1 (en) Catalyst for methane reforming, and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869131

Country of ref document: EP

Kind code of ref document: A1