WO2023163573A1 - Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same - Google Patents

Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same Download PDF

Info

Publication number
WO2023163573A1
WO2023163573A1 PCT/KR2023/002822 KR2023002822W WO2023163573A1 WO 2023163573 A1 WO2023163573 A1 WO 2023163573A1 KR 2023002822 W KR2023002822 W KR 2023002822W WO 2023163573 A1 WO2023163573 A1 WO 2023163573A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cmo
phase
carbon dioxide
reaction
Prior art date
Application number
PCT/KR2023/002822
Other languages
French (fr)
Korean (ko)
Inventor
김재훈
조흔태
칸무하마드
무라마드이라샤
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2023163573A1 publication Critical patent/WO2023163573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen

Definitions

  • the present invention relates to a catalyst that can be applied to synthesize a hydrocarbon compound through a direct reaction of carbon dioxide and hydrogen, a method for preparing the same, and a method for synthesizing a hydrocarbon compound using the same.
  • Iron (Fe)-based catalysts and cobalt (Co)-based catalysts were mainly used as FTS reaction catalysts that produce alkanes, alkenes, and oxygenates using syngas, which is a mixture of hydrogen (H 2 ) and carbon monoxide (CO). , A number of studies have been conducted on using these catalysts as catalysts for hydrogenation of carbon dioxide.
  • Fe-based catalysts showed similar catalytic performance regardless of whether CO or CO 2 was used as the feed.
  • the RWGS reaction of CO 2 on the Fe 3 O 4 site is promoted through a redox cycle, followed by a continuous FTS reaction on the Fe 5 C 2 site to generate C 5+ hydrocarbons at high yields.
  • GHSV gas hourly space velocity
  • Co-based catalysts are characterized by high chain growth probability (>0.94), high cycle rate, high selectivity to linear paraffins, low WGS reaction activity, high inactivation resistance to water molecules formed during FTS, and high long-term stability. It is very effective for FTS reactions at relatively low temperatures ( ⁇ 240 °C).
  • metallic Co centers When producing long-chain hydrocarbons under typical FTS reaction conditions, metallic Co centers have been considered as the major active sites for the hydrogenation of carbon monoxide, and recently it has been suggested that hydrogenation activity of carbon monoxide on Co 2 C is possible when producing lower olefins. It became.
  • One object of the present invention is a core formed of metal cobalt when exposed to a hydrogen / carbon dioxide mixed gas containing Mn; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core, and when the carbon dioxide hydrogenation reaction proceeds, a high CO 2 of about 60% or more. It is to provide a catalyst for hydrogenation of carbon dioxide capable of achieving a conversion rate and a remarkably high C 5+ hydrocarbon selectivity of about 30% or more.
  • Another object of the present invention is to provide a method for preparing the catalyst.
  • Another object of the present invention is to provide a method for synthesizing a hydrocarbon compound having 5 or more carbon atoms using the catalyst.
  • a catalyst for a hydrogenation reaction of carbon dioxide may be used as a catalyst for promoting a hydrogenation reaction of carbon dioxide, and may include a core including a metal cobalt phase; and a shell located on the surface of the core and including a Co 3 O 4 phase and a Co 2 C phase.
  • the ratio of the number of moles of manganese to the total number of moles of cobalt and manganese in the catalyst [Mn/(Co+Mn)] may be about 3 or more and about 20% or less.
  • the fraction of the metal cobalt phase in the cobalt-containing phase of the entire catalyst may be about 90% or more and less than 100%.
  • the core may include a metal cobalt phase having a crystal phase of a hexagonal close-packed lattice structure, and pores exposing the core to the outside may be formed in the shell.
  • the shell may further include CoO in addition to the Co 3 O 4 as a cobalt oxide phase, and in this case, the [CoO+Co 3 O 4 ]/Co O ratio may be about 1.5 to 1.9. .
  • the area ratio of the Co 2 C phase in the shell may be about 10 to 30%.
  • the shell may further include a manganese-containing phase, and in this case, the manganese-containing phase may include a MnCO 3 phase, Mn 2 O 3 and Mn 3 O 4 .
  • the fraction of the MnCO 3 phase in the manganese-containing phase may be about 90 to 99%.
  • the catalyst may further include a carbon layer located on the surface of the shell.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide is a method of forming a suspension solution by mixing a reaction solution in which a cobalt precursor compound and a manganese precursor compound are dissolved and a precipitant solution in which a basic precipitant is dissolved. Level 1; A second step of aging the suspension solution; A third step of separating powder from the aged suspension solution; and a fourth step of drying and heat-treating the separated powder to form first catalyst powder.
  • the method may further include a fifth step of forming second catalyst powder by reducing the first catalyst powder in a hydrogen atmosphere.
  • the method may further include a sixth step of forming a third catalyst powder by exposing the second catalyst powder to a flow of a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ). there is.
  • the cobalt precursor and the manganese precursor have a ratio of moles of manganese ions to total moles of cobalt ions and manganese ions in the reaction solution of about 3 to 20%. It may be added to the reaction solution as much as possible.
  • the total concentration of the cobalt precursor and the manganese precursor in the reaction solution may be about 1.5 to 3 mol/L.
  • the basic precipitant may include sodium carbonate (Na 2 CO 3 ).
  • the separated powders in the fourth step may be dried at a temperature of about 90 to 110 ° C and then heat-treated for about 2 to 5 hours under air flow conditions of about 300 to 360 ° C.
  • the first catalyst powder may include a cobalt oxide phase, a manganese oxide phase, and a phase each of which is doped with sodium.
  • the fifth step is performed by supplying hydrogen gas into the tubular reactor at a temperature of 320 to 400 ° C. for 4 to 8 hours after fixing the first catalyst powder in the tubular reactor, and the fifth During the step, the first catalyst powder may be converted into the second catalyst powder comprising a metallic cobalt phase, a cobalt oxide phase and a manganese oxide phase.
  • the sixth step is performed by supplying a mixed gas of hydrogen and carbon dioxide after adjusting the temperature inside the tubular reactor in which the second catalyst powder is fixed to 250 to 300 ° C.
  • the second catalyst powder includes a core formed of metallic cobalt; and the third catalyst powder including a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core.
  • the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa during the sixth step.
  • a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5:1 to 3.5:1 may be supplied into the tubular reactor during the sixth step.
  • a hydrocarbon compound having 5 or more carbon atoms can be produced by inducing a hydrogenation reaction of carbon dioxide by supplying a mixed gas of hydrogen and carbon dioxide into a tubular reactor in which a catalyst is fixed,
  • the catalyst comprises a core comprising a metallic cobalt phase; and a shell located on the surface of the core and including a Co 3 O 4 phase and a Co 2 C phase.
  • the temperature inside the tubular reactor may be adjusted to about 250 to 300 ° C. during the hydrogenation of carbon dioxide.
  • the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa during the hydrogenation of carbon dioxide.
  • a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5:1 to 3.5:1 may be supplied into the tubular reactor.
  • the proportion of linear paraffin in the hydrocarbon compound having 5 or more carbon atoms may be about 90% or more and less than 100%.
  • the catalyst according to the present invention includes a core formed of metal cobalt when exposed to a hydrogen/carbon dioxide mixture gas containing Mn together with Co; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core.
  • FIG. 1 is a flow chart for explaining a method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a catalyst synthesized according to the method shown in FIG. 1 .
  • Figure 4a is a CO 2 conversion rate and products according to the reaction time on the CMO-0 catalyst and the CMO-10 catalyst under pressure conditions of 1.0 MPa (A, B), 2.0 MPa (C, D), and 3.0 MPa (E, F) Graphs showing the results of measuring selectivity
  • FIG. 4b is CO 2 as a function of reaction time on CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, and CMO-100 catalysts at 4.0 MPa. These are graphs showing the results of measuring conversion rate and product selectivity.
  • Figure 5a is a graph showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction pressure of the CMO-0 catalyst (A) and the CMO-10 catalyst (B), and Figure 5b is a graph showing the reaction time of the CMO-10 catalyst It is a graph showing the results of measuring the CO 2 conversion rate and product selectivity.
  • FIG. 6 is graphs showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction temperature (A) of the CMO-10 catalyst, the H 2 /CO 2 ratio of syngas (B), and GHSV (C).
  • FIG. 7a shows XRD patterns measured in fresh, reduced, and spent states of CMO-0 and CMO-10 catalysts, respectively
  • FIGS. 7b and 7c show CMO-0, CMO- 10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts in fresh state (A, B, C) and reduced state (D, E, F) respectively
  • the measured XRD patterns are shown, and FIG.
  • FIG. 7d shows the XRD patterns measured in the spent state of each of the CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts
  • Figure 7e shows XRD patterns measured for CMO-10 catalysts converted at 230 °C, 250 °C, 270 °C, 290 °C, and 310 °C, respectively.
  • Figure 8a shows Co K-edge XANES spectra for CMO-y catalysts after reduction (A) and converted CMO-y catalysts (B), and Figure 8b shows Co K-edge XANES profiles evaluated from linear combination fitting.
  • 8c is a graph showing the relationship between metallic Co content and C 5+ hydrocarbon yield
  • FIG. 8c is a relationship between surface carbide content and C 5+ hydrocarbon yield evaluated from C 1s XPS spectrum (D) and [CoO +CO3O4]/CoO and the graph showing the relationship (E) between the C 5+ hydrocarbon yield
  • FIG. 9a shows normalized Co K-edge XANES spectra measured for a converted CMO-0 catalyst (A) and a converted CMO-10 catalyst (B) at various reaction pressures (1 MPa, 2 MPa, 3 MPa, 4 MPa), respectively.
  • D Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively, and FIG.
  • 9c shows various GHSV (4000 mL g -1 h -1 , 8000 mL g -1 h -1 , 12000 mL g -1 h - 1 ) and after various reaction times (120 hr, 1440 hr) Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively.
  • k 3 -weighted Fourier transforms, FTs k 3 -weighted Fourier transforms, FTs
  • A k 3 -weighted Fourier transform
  • B CMO-10 catalyst converted at 290°C fitted only with metallic Co
  • C metallic Co
  • D Filtered K 3 -weighted ⁇ (k) spectra of CMO-10 catalyst (D) converted at 310 °C fitted with CoO are shown .
  • Figure 11 shows the normalized Mn K-edge XANES spectra of the CMO-y catalyst (A) and the converted CMO-y catalyst (B) after reduction.
  • FIG. 14a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst before reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
  • FIG. 15a is a view showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-10 catalyst before reduction, and FIG. HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M).
  • 16a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst after reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
  • Figure 17a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of CMO-10 catalyst after reduction
  • Figure 17b is a diagram showing CMO-10 catalyst after reduction HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M).
  • FIG. 18a shows HR-TEM images (A-C, E) and FFT images (D) of the converted CMO-0 catalyst
  • FIG. 18B shows HAADF-STEM images (F) of the converted CMO-0 catalyst and the corresponding Co ( G); O (H); C (I); Co and O (J); Co, O and C (K); and EDX images of Na (L)
  • FIG. 18C shows Co (M); Co and O (N); Shows the enlarged outermost shell layer of Co, O and C(O).
  • FIG. 19a shows HR-TEM images (A-C, E) and FFT images (D) of the converted CMO-10 catalyst
  • FIG. 19B shows HAADF-STEM images (F) of the converted CMO-10 catalyst and the corresponding Co ( G); O (H); C (I); Mn (J); Co, Mn and O (K); and EDX images of Co, Mn, C, and O (L)
  • FIG. 19C shows Co (M); Co and O (N); Shows the enlarged outermost shell layer of Co, O and C(O).
  • Figure 23a shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 290 °C (C) and 310 °C (D)
  • Figure 23b is HR-TEM of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 270 °C (C), 290 °C (D) and 310 °C (E, F) represent images.
  • FIG. 26a shows the H 2 -TPR profile for the CMO-y catalyst before reduction heat treatment at 330 ° C
  • FIGS. 26b to 26d show the CO 2 -TPD profile, CO-TPD profile and H 2 of the CMO-y catalyst after reduction. -Indicates each TPD profile.
  • 29A-29C show in situ DFIFT CO adsorption profiles on CMO-0 catalysts.
  • 31A and 31B show QMS profiles of products released from the DRIFT cell during H 2 flow over CMO-O catalyst (A), CMO-10 catalyst (B) after CO pressurization to 3.0 MPa and temperature rise to 270 °C. indicate
  • 32A to 32C show reaction profiles of in situ DFIFT CO 2 and H 2 over CMO-0 catalyst after reduction.
  • 33A to 33C show reaction profiles of in situ DFIFT CO 2 and H 2 over CMO-10 catalyst after reduction.
  • 34A and 34B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes on CMO-10 catalyst after reduction under varying reaction pressure conditions and CO 2 -adsorbed species, adsorbed Evolution of CO, gaseous CO and CH 4 is shown (B).
  • 35A and 35B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes on CMO-0 catalyst after reduction under varying reaction temperature conditions and CO 2 -adsorbed species, adsorbed Evolution of CO, gaseous CO and CH 4 is shown (B).
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • FIG. 1 is a flowchart for explaining a method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining a catalyst synthesized according to the method shown in FIG. 1.
  • the method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention is a suspension by mixing a reaction solution in which a cobalt precursor compound and a manganese precursor compound are dissolved and a precipitant solution in which a basic precipitant is dissolved.
  • S110 a first step of forming a suspension solution
  • a second step S120
  • a third step S130
  • separating powder from the aged suspension solution
  • the manufacturing method of the cobalt-manganese composite catalyst may further include a fifth step ( S150 ) of forming a second catalyst powder by reducing the first catalyst powder in a hydrogen atmosphere.
  • the manufacturing method of the cobalt-manganese composite catalyst includes exposing the second catalyst powder to a flow of a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) to form a sixth catalyst powder.
  • a step S160 may be further included.
  • the cobalt-manganese composite catalyst prepared according to the present invention directly reacts carbon dioxide (CO 2 ) and hydrogen (H 2 ) to produce a hydrocarbon compound, for example, a liquid hydrocarbon compound having 5 or more carbon atoms (C 5+ ). can be used as a catalyst for
  • the cobalt precursor is not particularly limited as long as it is a material capable of providing cobalt (Co) ions to the reaction solution, and may include, for example, cobalt nitride.
  • the manganese precursor compound is not particularly limited as long as it is a material capable of providing manganese ions to the reaction solution, and may include, for example, manganese (Mn) nitride.
  • the cobalt precursor and the manganese precursor are added to the reaction solution so that the ratio of the number of moles of manganese ion to the total number of moles of cobalt ion and manganese ion in the reaction solution is about 3 or more and less than or equal to 20%.
  • the solvent of the reaction solution is not particularly limited as long as it can dissolve the cobalt precursor and the manganese precursor, and for example, water such as deionized water may be used as the solvent.
  • the ratio of the number of moles of manganese ion to the total number of moles of cobalt ion and manganese ion in the reaction solution is about 4 or more and 18% or less, about 5 or more and 15% or less, about 6 or more and about 14% or less, about 7 or more and 13% or less, about 8 or more and 12% or less, or about 9 or more and 11% or less.
  • the total concentration of the cobalt precursor and the manganese precursor in the reaction solution may be about 1 to 5 mol/L.
  • concentrations of the cobalt precursor and the manganese precursor in the reaction solution may be about 1.5 to 3 mol/L.
  • the basic precipitant may precipitate a reaction product of cobalt ions dissociated from the cobalt precursor and manganese ions dissociated from the manganese precursor by adjusting the suspension solution to be basic.
  • a basic compound may be used without limitation.
  • the basic precipitant may include sodium carbonate, for example, sodium carbonate (Na 2 CO 3 ).
  • the solvent of the basic precipitant solution may be the same as the solvent of the reaction solution, and the concentration of the sodium carbonate in the basic precipitant solution may be about 1 to 5 mol/L.
  • the concentration of the sodium carbonate may be about 1.5 to 3 mol/L.
  • the reaction solution and the precipitant solution are mixed in the same solvent as the solvent of the reaction solution and the precipitant solution, respectively, at a temperature of about 20 to 40 ° C. and stirring conditions.
  • the cobalt ions dissociated from the cobalt precursor and the manganese ions dissociated from the manganese precursor may react.
  • the pH of the suspension solution may be maintained at about 7.5 to 8.5.
  • a bright purple precipitate may be formed by dropwise addition of the reaction solution and the precipitant solution.
  • the suspension solution may be aged for about 4 to 10 hours without stirring at about 20 to 40 ° C. after stirring for about 4 to 10 hours in a sealed container.
  • the third step (S130) it is possible to separate the powders produced by the reaction of the cobalt ions and the manganese ions from the aged suspension through centrifugation, and the separated powders are washed using deionized water.
  • Centrifugation conditions for separating the powders are not particularly limited.
  • the separated powders may be dried at a temperature of about 90 to 110 ° C. and then heat-treated for about 2 to 5 hours under air flow conditions of about 300 to 360 ° C.
  • a first catalyst powder containing cobalt oxide and manganese oxide may be formed by heat treatment.
  • the first catalyst powder may include a cobalt oxide phase, a manganese oxide phase, and a phase each of which is doped with sodium.
  • the second catalyst powder may be produced by exposing the first catalyst powder to a flow of hydrogen gas to reduce a part of the cobalt oxide phase of the first catalyst powder to a metallic cobalt phase.
  • the second catalyst powder is a metallic cobalt phase; cobalt oxide phases such as CoO, Co 3 O 4 ; Manganese oxide phases such as MnO, MnO 2 , Mn 2 O 3 , and Mn 3 O 4 may be included. Meanwhile, manganese contained in the first catalyst powder may reduce the reduction reaction of the cobalt oxide phase and inhibit crystal growth of the metallic cobalt phase, and as a result, reduce the entire cobalt oxide phase to the metallic cobalt phase.
  • the metallic cobalt phase may include a hexagonal close-packed lattice structure crystal phase, and may further include a relatively small amount of a face centered cubic lattice structure crystal phase. .
  • the first catalyst powder is exposed to the hydrogen gas flow for about 4 to 8 hours while being heated to about 320 to 400 ° C. at a heating rate of about 1 to 5 ° C after being fixed in a tubular reactor. It may be converted into a second catalyst powder, and at this time, the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa. Meanwhile, the first catalyst powder may be mixed with silica powder as a thermal diluent and then fixed inside the tubular reactor by a porous support such as quartz wool.
  • a part of the cobalt oxide phase of the second catalyst powder may be additionally reduced to a metal cobalt phase by hydrogen, and a part of manganese oxide by carbon species generated by decomposition of carbon dioxide.
  • Silver may be converted into manganese carbonate, a cobalt carbide (Co 2 C) phase may be formed on the surface of the metallic cobalt phase, and agglomeration may occur between the second catalyst powders in the process of forming the third catalyst powder.
  • the second catalyst powder includes a core on metal cobalt; and a shell having a porous structure formed on the surface of the core, including a cobalt oxide phase, a cobalt carbide phase, and the like, and having pores exposing a portion of the surface of the core to the outside. It can be.
  • the structure and composition of the third catalyst powder will be described later.
  • the sixth step (S160) is to adjust the temperature inside the tubular reactor to about 250 to 300 ° C. in a state in which the second catalyst powder is fixed in the tubular reactor, and then hydrogen (H 2 ) and carbon dioxide ( It can be performed by flowing a mixed gas (H 2 /CO 2 ) of CO 2 for a certain period of time.
  • the temperature inside the tubular reactor When the temperature inside the tubular reactor is less than 250 ° C, the decomposition reaction of carbon dioxide is weak, and the problem of insufficient production of cobalt metal phase or cobalt carbide phase may occur, and when it exceeds 300 ° C, structural collapse of the third catalyst powder may occur as well as a problem that the methanation reaction of carbon dioxide occurs more predominantly than the RWGS reaction due to the re-oxidation of the metal Co phase caused by the aggregation of the nanoparticles.
  • the temperature inside the tubular reactor may be adjusted to about 270 to 290 °C.
  • the sixth step (S160) hydrogen (H 2 ) and carbon dioxide (CO 2 ) by flowing a mixed gas (H 2 /CO 2 ) for a certain period of time.
  • a mixed gas H 2 /CO 2
  • the pressure inside the tubular reactor in the sixth step (S160) may be adjusted to about 3.5 to 5.0 MPa, the same as or similar to the pressure inside the tubular reactor in the fifth step (S150).
  • a flow of a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5: 1 to 3.5: 1 is formed inside the tubular reactor. It can be.
  • the H 2 /CO 2 ratio is less than 2.5, the amount of metal cobalt formed by reduction of cobalt oxide is small, which may cause a problem of lowering the FTS reaction, and when it exceeds 3.5, the metal Co phase due to aggregation of particles Re-oxidation may cause a problem of lowering the FTS reaction.
  • the mixed gas may be supplied to the tubular reactor at a gas hourly space velocity (GHSV) of about 4000 to 10000 mL g ⁇ 1 h ⁇ 1 .
  • GHSV gas hourly space velocity
  • the catalyst prepared by the above method the core formed on the metal cobalt; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core.
  • the ratio of the number of moles of manganese elements to the total number of moles of cobalt and manganese elements [Mn/(Co+Mn)] may be about 3 or more and about 20% or less.
  • the ratio of the number of moles of manganese to the total number of moles of cobalt and manganese is less than 3%, it is difficult to expect improvement in the chain-growth reaction by the manganese-containing phase. Problems such as a decrease in the degree of carbon dioxide conversion and a decrease in the conversion rate of carbon dioxide may occur due to a decrease in the proportion of the cobalt oxide phase that promotes the direct decomposition reaction of carbon dioxide.
  • the ratio of the number of moles of the manganese element to the total number of moles of the cobalt and manganese elements exceeds 20%, the production of the metallic cobalt phase may be insufficient, and the conversion rate of carbon dioxide may decrease.
  • the ratio of the number of moles of the manganese element to the total number of moles of the cobalt and manganese elements is about 4 or more and 18% or less, about 5 or more and 15% or less, about 6 or more about 14% or less, about 7 or more and 13% or less, about 8 or more and 12% or less, or about 9 or more and 11% or less.
  • the core may include a metallic cobalt phase having a crystal phase of a hexagonal close-packed lattice structure
  • the shell may include a Co 3 O 4 phase containing oxygen vacancies and cobalt carbide. (Co 2 C) phase. Pores exposing the core to the outside may be formed in the shell.
  • the fraction of the metallic cobalt phase in the cobalt-containing phase in the catalyst may be about 90% or more and less than 100%, about 91% or more and 99% or less, or about 92% or more and 98% or less.
  • the shell of the catalyst may further include CoO in addition to Co 3 O 4 as a cobalt oxide phase, and in this case, the [CoO+Co 3 O 4 ]/Co O ratio may be about 1.5 to 1.9. .
  • the area ratio of the Co 2 C phase in the shell of the catalyst may be about 10 to 30%, about 11 to 20%, or about 12 to 17%.
  • the shell may further include a manganese-containing phase.
  • the manganese-containing phase may include a manganese carbonate phase and a manganese oxide phase.
  • the manganese carbonate phase may include a MnCO 3 phase
  • the manganese oxide phase may include Mn 2 O 3 and Mn 3 O 4 .
  • the fraction of the MnCO 3 phase in the manganese-containing phase may be about 90 to 99%, about 91 to 97, or about 92 to 95%.
  • the cobalt oxide containing oxygen vacancies in the shell can improve the activity of a decomposition reaction of carbon dioxide, for example, a reverse water gas shift (RWGS) reaction, and the cobalt carbide phase and the metal cobalt phase are Hydrogenation of intermediate products such as CHO radicals (CHO*) and CO radicals (CO*) generated by the decomposition reaction of carbon dioxide, for example, Fischer-Tropsch Synthesis (FTS), and
  • RWGS reverse water gas shift
  • CO* CO radicals
  • FTS Fischer-Tropsch Synthesis
  • the activity of the chain growth reaction can be enhanced.
  • a decomposition reaction of carbon dioxide may occur at an oxygen vacancy site on cobalt oxide in the shell to produce intermediates of CHO* and CO*, and these intermediates may form adjacent cobalt carbide phases (Co 2 C) and the core. may migrate onto the metal cobalt (Co) phase of hydrogenation and chain growth reactions.
  • a graphitic carbon layer may be additionally formed on the outermost surface of the third catalyst powder, and this carbon layer may contribute to further increasing the activity of the hydrocarbon chain growth reaction.
  • the catalyst may be used as a catalyst for a reaction in which hydrocarbons having 5 or more carbon atoms are formed through hydrogenation of carbon dioxide.
  • a hydrocarbon having 5 or more carbon atoms may be produced by inducing a hydrogenation reaction of carbon dioxide by supplying a mixed gas of hydrogen and carbon dioxide into a tubular reactor in which the catalyst is fixed.
  • a mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) (H 2 /CO 2 ) is introduced into the tubular reactor. It can be supplied at a constant rate into the reactor.
  • the temperature inside the tubular reactor When the temperature inside the tubular reactor is less than 250 ° C, the methanation reaction of carbon dioxide predominantly occurs, which may cause a decrease in the yield of hydrocarbons having 5 or more carbon atoms, and when the temperature inside the tubular reactor exceeds 300 ° C In this case, not only structural collapse of the catalyst may occur, but also a problem in that the methanation reaction of carbon dioxide occurs more predominantly due to reoxidation of the metal Co phase caused by the aggregation of nanoparticles.
  • the temperature inside the tubular reactor in which the catalyst is fixed may be adjusted to about 270 to 290°C.
  • the pressure inside the tubular reactor is adjusted to about 3.5 MPs or more, and then the mixed gas (H 2 /CO 2 ) can be supplied into the tubular reactor at a constant rate.
  • the pressure inside the reactor is less than 3.5 MPa, re-adsorption of C 2 to C 4 hydrocarbons may be reduced, resulting in a decrease in the yield of C 5+ hydrocarbons.
  • the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa.
  • a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) is mixed at a ratio of about 2.5: 1 to 3.5: 1 may be supplied into the tubular reactor.
  • H 2 /CO 2 ratio is less than 2.5, there may be a problem that the FTS reaction is deteriorated due to insufficient hydrogen, and when it exceeds 3.5, the FTS reaction is caused by re-oxidation of the metal Co phase of the catalyst due to aggregation of particles Deterioration problems may occur.
  • the mixed gas may be supplied to the tubular reactor at a gas hourly space velocity (GHSV) of about 4000 to 10000 mL g ⁇ 1 h ⁇ 1 .
  • GHSV gas hourly space velocity
  • the proportion of linear paraffin among the C5+ hydrocarbons produced using the catalyst may be about 90% or more.
  • the ratio of olefins/paraffins may be less than about 0.5%, and the ratio of oxygenated species may also be extremely low, such as less than about 1%.
  • a Mn-promoted core-shell Co@CoO x /Co 2 C catalyst (CMO-y, where y represents mol% of Mn) was synthesized using a co-precipitation method, and hydrogenation of carbon dioxide was performed using the same.
  • cobalt nitride [Co(NO 3 ) 2 6H 2 O] and manganese nitride [Mn(NO 3 ) 2 4H 2 O] were dissolved in distilled and deionized water at the ratios shown in Table 1 to obtain 2
  • a reaction solution having a concentration of mol/L was prepared, and a precipitant solution was prepared by dissolving sodium carbonate [Na 2 CO 3 ] in deionized water at a concentration of 2 mol/L.
  • 40 mL of the reaction solution and 40 mL of the precipitant solution were added dropwise to 50 mL of deionized water under vigorous stirring conditions at 25 ° C. At this time, the pH of the mixed solution was maintained at 8.0 ⁇ 0.1.
  • a light purple precipitate was formed by dropwise addition of the reaction solution and the precipitant solution.
  • the mixed solution was aged at 25° C. for 6 hours without stirring.
  • the aged mixed solution suspension was centrifuged 4 times with deionized water at 4000 rpm to collect powder, washed with deionized water, and dried at 100° C. for 12 hours.
  • the dried powder was heat-treated at 330° C. under an air flow condition of 100 mL/h for 3 hours to prepare ‘catalyst powder before reduction (hereinafter referred to as ‘CMO-y before reduction’)’.
  • a hydrogen (H 2 ) flow condition of 50 mL/min, a temperature condition of 350 °C with a temperature increase rate of 2.5 °C/min, and a pressure condition of 4.0 MPa were formed in the tubular reactor to form the catalyst powder before reduction. was reduced in advance for 6 hours to prepare 'catalyst powder after reduction (hereinafter referred to as 'reduced CMO-y')'.
  • 'Converted catalyst powder (hereinafter referred to as 'converted CMO-y')' was prepared by exposing the catalyst powder after reduction to a mixed gas for 125 hours, and hydrogenation of carbon dioxide was continuously performed under the same conditions for 1425 hours. .
  • the CMO-10 catalyst with a Na content of 0.12 wt% resulted in a high CO 2 conversion of 64.3%, a significantly high C 5+ selectivity of 32.9% and a significantly low CO of 0.2%. was found to have a selectivity of And the C 5+ hydrocarbon yield of the CMO-10 catalyst was found to be 21.1%, which is significantly higher than that of the conventional Co-based catalyst (0 to 1.4%), as previously reported at GHSV ⁇ 4000 mL g -1 h -1 It was comparable to the reported Fe-based catalyst (11.7 ⁇ 26.4%).
  • the chain growth probability of C 5+ hydrocarbons on the CMO-10 catalyst was 0.74, which was significantly higher than other Co-based catalysts ( ⁇ 0.25).
  • the distribution of hydrocarbons formed on the CMO-10 catalyst was measured as 32.9% of C 5+ hydrocarbons, 44.2% of methane (CH 4 ) and 22.9% of C 2 ⁇ C 4 hydrocarbons, from which the CMO-10 catalyst It was confirmed that gas and liquid fuels can be produced at a high yield through the applied one-pass carbon dioxide stream (CO 2 stream).
  • the one-pass CO 2 conversion rate on the Fe-based catalyst was 40% or less at GHSV ⁇ 4000 mL g -1 h -1 , and showed a high residual CO selectivity of 15% or more. Therefore, in order to construct a carbon dioxide conversion device using an Fe-based catalyst on a practical commercial scale, a wastewater recycling device or an FTS reaction system equipped with a two-stage RWGS and water removal device is required. In contrast, the CMO-10 catalyst exhibits high CO 2 conversion (64.3%), high C 5+ hydrocarbon yield (21.1%), negligible CO selectivity (0.7%), and relatively low temperature (270%). °C), it is evaluated to have a clear advantage over Fe-based catalysts.
  • the chain growth probability on CMO-10 was slightly higher than that on CMO-0 catalyst, and the chain growth probability increased with increasing Mn content in CMO-y catalyst. From this, it can be seen that in the CMO-y catalyst, Mn can perform a function of suppressing the chain termination reaction, so that longer chain hydrocarbons can be formed as the Mn content increases. Specifically, it was confirmed that C 10+ carbon hydrogen was the main species in the hydrocarbons produced on the CMO-75 catalyst.
  • Figure 4a is a CO 2 conversion rate and products according to the reaction time on the CMO-0 catalyst and the CMO-10 catalyst under pressure conditions of 1.0 MPa (A, B), 2.0 MPa (C, D), and 3.0 MPa (E, F) Graphs showing the results of measuring selectivity
  • FIG. 4b is CO 2 as a function of reaction time on CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, and CMO-100 catalysts at 4.0 MPa. These are graphs showing the results of measuring conversion rate and product selectivity.
  • FIG. 6 is a graph showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction temperature (A) of the CMO-10 catalyst, the H 2 /CO 2 ratio of syngas (B), and GHSV (C). admit.
  • A 4.0 MPa reaction pressure
  • H 2 /CO 2 3: 1 syngas
  • B is a reaction temperature of 270 °C
  • a reaction pressure of 4.0 MPa and GHSV 4000 mL g -1 h -1
  • CO 2 1000 mL g -1 h - 1 ;
  • H2 3000 mL g -1 h -1
  • reaction pressure on CO 2 conversion was found to be greater on the CMO-10 catalyst than on the CMO-0 catalyst, which is believed to be due to the higher reaction pressure and the Mn promoter facilitating the chain propagation reaction more.
  • the methanation activity on the CMO-10 catalyst was increased under high temperature (310 °C), high H 2 /CO 2 ratio (4:1) and high GHSV (12000 mL g -1 h -1 ) conditions. .
  • a similar behavior was observed in the FTS reaction of typical H 2 /CO syngas, and also an increase in methanation activity at high temperature (310 °C) and high H 2 /CO 2 ratio (4:1) was previously reported. similar to the CO 2 conversion on a Co-based catalyst.
  • the CMO-10 catalyst has stability capable of stably converting CO 2 and generating long-chain hydrocarbons for 1425 hours in the hydrogenation of CO 2 .
  • this excellent stability for more than 1425 hours it is judged that the performance of the CMO-10 catalyst is maintained despite sintering of the active site and deposition of polymeric carbon or coke.
  • FIG. 7a shows XRD patterns measured in fresh, reduced, and spent states of CMO-0 and CMO-10 catalysts, respectively
  • FIGS. 7b and 7c show CMO-0, CMO- 10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts in fresh state (A, B, C) and reduced state (D, E, F) respectively
  • the measured XRD patterns are shown, and FIG.
  • 7d shows the XRD patterns measured in the spent state of each of the CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts
  • Figure 7e shows XRD patterns measured for CMO-10 catalysts converted at 230 °C, 250 °C, 270 °C, 290 °C, and 310 °C, respectively.
  • 7a to 7d the catalyst after each reduction was reduced for 6 hours at a pressure of 4.0 MPa, a H 2 flow of 50 mL/min, and a temperature condition of 350° C. (heating rate of 2.5° C./min) before reduction.
  • XAS was used to investigate the oxidation state and local chemical structure of the CMO-y catalysts after reduction and after use.
  • Figure 8a shows Co K-edge XANES spectra for CMO-y catalysts after reduction (A) and converted CMO-y catalysts (B), and Figure 8b shows Co K-edge XANES profiles evaluated from linear combination fitting.
  • 8c is a graph showing the relationship between metallic Co content and C 5+ hydrocarbon yield
  • FIG. 8c is a relationship between surface carbide content and C 5+ hydrocarbon yield evaluated from C 1s XPS spectrum (D) and [CoO +CO3O4]/CoO and the graph showing the relationship (E) between the C 5+ hydrocarbon yield
  • the Co 3 O 4 crystal size (5.9 nm) in the CMO-10 catalyst before reduction is smaller than the Co 3 O 4 crystal size (9.7 nm) in the CMO-0 catalyst before reduction. significantly smaller, from which it can be seen that the Mn promoter inhibits the growth of Co 3 O 4 crystals during heat treatment to reduce their size.
  • the reduced CMO-0 catalyst and the reduced CMO-10 catalyst it was found to contain hcp Co and fcc Co phases with similar crystal sizes (20-23 nm).
  • the crystallite sizes of hcp Co and fcc Co were significantly increased to 27.0 nm and 34.5 nm, respectively, in the converted CMO-0 catalyst.
  • the crystallite size of hcp Co and fcc Co slightly increased to 23.4 nm and 21.4 nm, respectively, compared to the CMO-10 catalyst after reduction. From this, it can be seen that the Mn promoter included in the CMO-10 catalyst inhibits the crystal growth of metal Co during the hydrogenation of CO 2 .
  • the Co K-edge XANES spectrum of the reduced CMO-0 catalyst was similar to the standard metallic Co, indicating almost complete reduction from Co 3 O 4 to the metallic Co phase, from which the Mn promoter contained in the catalyst was reduced to Co 3 O It can be further confirmed that the complete reduction of 4 to metal Co is inhibited.
  • the Mn-promoters in CMO-y catalysts can suppress the reduction of Co.
  • the low reducibility of the Mn-rich CMO-y catalyst is due to the increased formation of spinel structure Co x Mn 3-x O 4 as the Mn-content increases.
  • the C 5+ hydrocarbon yield was maximized at a carbide area ratio of 14.7% and a [CoO+Co 3 O 4 ]/Co O ratio of 1.7.
  • some fractions of Co 2 C and CoO x are required to be present on the catalyst surface in order for the FTS reaction to be established in CO 2 hydrogenation.
  • FIG. 9a shows normalized Co K-edge XANES spectra measured for a converted CMO-0 catalyst (A) and a converted CMO-10 catalyst (B) at various reaction pressures (1 MPa, 2 MPa, 3 MPa, 4 MPa), respectively.
  • D Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively, and FIG.
  • FIG. 10 shows the k 3 - weighted Fourier transform (k 3 - weighted Fourier transforms, FTs) (A) and CMO-10 catalyst converted at 270 °C fitted only with metallic Co (B), CMO-10 converted at 290 °C catalyst fitted only with metallic Co (C) and metallic Co Filtered K 3 -weighted ⁇ (k) spectra of the CMO-10 catalyst (D) converted at 310 °C fitted with CoO and Normalized Mn K-edge XANES spectra of CMO-y catalyst (A) and converted CMO-y catalyst (B) are shown.
  • k 3 - weighted Fourier transforms, FTs k 3 - weighted Fourier transforms, FTs
  • Table 4 shows the results of linear combination fitting of Mn K-edge XANES profiles for the CMO-y catalyst after reduction and the converted CMO-y catalyst
  • Table 5 shows the results of the linear combination fitting of the CMO-y catalyst after reduction and the converted CMO-y catalyst.
  • the peak at 2.50 ⁇ corresponds to the Co—Co bond of hcp Co.
  • Two additional peaks at 2.14 and 3.30 ⁇ were observed for the CMO-10 catalyst after reduction, and these peaks correspond to Co-O and Co-Co bonds in CoO, respectively.
  • the Co K-edge EXAFS spectrum of the converted CMO-10 catalyst showed one prominent peak centered at 2.50 ⁇ , which is related to the Co-Co bond of hcp Co.
  • FIG. 12 shows CMO-10 catalyst before reduction, CMO-10 catalyst after reduction, and conversion (125 hr, 1425 hr) CMO in C 1s (A), Co 2p (B), O 1s (C) and Mn 2p (D) regions.
  • 13 shows high-resolution XPS profiles of -10 catalysts, and FIG. 13 shows CMO-0 catalyst before reduction, CMO-0 catalyst after reduction and conversion (125 hr) in the C 1s (A), Co 2p (B) and O 1s (C) regions. ) high-resolution XPS profiles of the CMO-10 catalyst.
  • the converted CMO-10 catalyst after the reaction proceeded for 125 hours showed a new peak at 283.2 eV corresponding to Co 2 C. From this, it can be seen that in the initial state of the reaction, Co 2 C was formed on the Co surface by surface carbon species decomposed from adsorbed CO 2 species. As the reaction time increased from 125 hours to 1425 hours, the area ratio of Co 2 C in the converted CMO-10 catalyst increased from 14.7% to 29.1%.
  • two main peaks at 529.6 and 531.2 eV may correspond to lattice oxygen and oxygen vacancies of the metal oxide, respectively.
  • the area ratio of peaks related to oxygen vacancies in the converted CMO-10 catalyst increased from 26.8% (CMO-10 catalyst after reduction) to 53.4% (converted CMO-10 catalyst after 1425 hours reaction).
  • the main Mn species was Mn 2+ .
  • 14a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst before reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
  • 15a is a view showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-10 catalyst before reduction, and FIG.
  • 16a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst after reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
  • Figure 17a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of CMO-10 catalyst after reduction
  • Figure 17b is a diagram showing CMO-10 catalyst after reduction HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M).
  • 18a shows HR-TEM images (AC, E) and FFT images (D) of the converted CMO-0 catalyst, and FIG.
  • FIG. 18B shows HAADF-STEM images (F) of the converted CMO-0 catalyst and the corresponding Co ( G); O (H); C (I); Co and O (J); Co, O and C (K); and EDX images of Na (L),
  • FIG. 18C shows Co (M); Co and O (N); An enlarged outermost shell layer of Co, O and C(O) is shown.
  • 19a shows HR-TEM images (AC, E) and FFT images (D) of the converted CMO-10 catalyst, and FIG.
  • FIG. 19B shows HAADF-STEM images (F) of the converted CMO-10 catalyst and the corresponding Co ( G); O (H); C (I); Mn (J); Co, Mn and O (K); and EDX images of Co, Mn, C, and O (L)
  • FIG. 19C shows Co (M); Co and O (N); An enlarged outermost shell layer of Co, O and C(O) is shown.
  • 20 shows N 2 adsorption-desorption contours of the pre-reduction CMO-y catalyst (A), the post-reduction CMO-y catalyst (B), and the converted CMO-y catalyst (C).
  • the CMO-0 catalyst before reduction showed spherical Co 3 O 4 nanoparticles with an average diameter of 9.0 nm.
  • HAADF-STEM high-angle annular dark-field STEM
  • EDX images showed that Na was uniformly distributed over the entire catalyst.
  • the average diameter of the Co 3 O 4 nanoparticles was 5.1 nm, which was reduced compared to that of the CMO-0 catalyst before reduction.
  • the BET surface area of the CMO-10 catalyst before reduction (185.3 m 2 /g) was found to be significantly larger than that of the CMO-0 catalyst before reduction (103.5 m 2 /g). And the BET surface areas of the CMO-25 catalyst before reduction and the CMO-50 catalyst before reduction increased to 214.1 and 210.5 m 2 /g, respectively. Therefore, it can be seen that Mn included in the CMO-y catalyst inhibited the aggregation of internal particles during heat treatment.
  • the average particle diameter of the reduced CMO-0 catalyst increased significantly to 224 nm.
  • the particle growth was inhibited by the Mn promoter during reduction, and as a result, the average particle diameter (18.4 nm) of the CMO-10 catalyst after reduction was about 10 times larger than that of the CMO-0 catalyst after reduction. It was small. Mn and Na species were uniformly distributed on the CMO-10 catalyst after reduction.
  • the Na content was measured to be 0.11 and 0.12 wt%, respectively.
  • the interlayer spacing was in the range of 2.44–2.56 ⁇ , which is due to the presence of oxygen vacancies in the lattice-extended (311) plane of Co 3 O 4 (2.44 ⁇ ) and CoO (2.46 ⁇ ). is consistent with the (111) plane of HAADF-STEM images and corresponding EDX images showed that oxygen and carbon species covered the surface of the metallic Co particles. Closer examination of the EDX images of Co revealed that a dense metallic Co phase in the core and a highly porous Co phase in the shell layer coexist in the catalyst.
  • the porous Co phase was found to overlap O and C elements, indicating that an oxygen- and carbon-rich shell with a thickness of 10 to 15 nm was formed on the surface of the metallic Co core.
  • a carbon layer with a thickness of about 5 nm was observed, which was formed by the FTS reaction. That is, the carbon layer was deposited on the outermost surface of the converted CMO-0 catalyst, and the CoO x and Co 2 C phases were present almost on the surface area.
  • the converted CMO-0 catalyst was Co@Co 2 C/CoO x It was confirmed to have a core-shell structure. However, in some parts of the converted CMO-0 catalyst, the Co 2 C/CoO x shell layer was not uniform, and carbon-rich phases desorbed from the catalyst surface were observed.
  • the particle size of the converted CMO-10 catalyst was found to be increased to almost 100 nm, indicating that interparticle agglomeration occurred during CO 2 hydrogenation.
  • the particle size of the converted CMO-10 catalyst was much smaller compared to the converted CMO-0 catalyst, indicating that the Mn promoter inhibited particle aggregation during CO 2 hydrogenation.
  • the converted CMO-10 catalyst was found to have an hcp Co core and a CoO x /Co 2 C shell structure.
  • the amount of Co oxide detected through the bulk analysis technique (XRD and XAS) was extremely small, while the amount of Co oxide detected through the surface detection technique (XPS) was quite large, It can be seen that the Co oxide species observed in the EDX images are mostly present on the outermost surface of the metal Co core.
  • the Mn promoter inhibited the formation of a carbon-rich layer on the outermost surface of the CMO-10 catalyst, and isolated carbon-rich sheets separated from the catalyst surface. This is due to the formation of a uniform CoO x /Co 2 C shell layer on the surface of the metal Co core nanoparticles.
  • FIG. 21 shows HR-TEM images of the converted CMO-0 catalyst converted under the reaction pressure condition of 1.0 MPa
  • FIG. 22 shows HR-TEM images of the converted CMO-10 catalyst converted under the reaction pressure condition of 1.0 MPa.
  • the thickness of the shell layer present in the converted CMO-0 catalyst converted at a reaction pressure of 1.0 MPa was about 5 nm, which is the thickness of the CMO-0 converted at a reaction pressure of 4.0 MPa. It was considerably thinner than the thickness of the shell layer of the catalyst (10-15 nm).
  • the surface layer of the converted CMO-0 catalyst converted at 1.0 MPa has a higher [CoO+Co 3 O 4 ]/Co 0 ratio (3.1%) and smaller carbide area than that of the converted CMO-0 catalyst converted at 4.0 MPa. The ratio (3.0%) is shown.
  • the metal Co content of the converted CMO-0 catalyst converted at 1.0 MPa (89.1%) was significantly lower than that of the converted CMO-0 catalyst converted at 4.0 MPa (98.6%).
  • the cuboid-shaped Co 2 C particles with a size of about 5 nm are the size of the metal Co particles. formed on the surface. This indicates that the Mn promoter promotes the formation of Co 2 C. However, the formation of cuboid-shaped Co 2 C particles did not increase the C 5+ hydrocarbon yield. Similar to the case of the CMO-0 catalyst, the converted CMO-10 catalyst converted at 1.0 MPa has a higher [CoO+Co 3 O 4 ]/Co 0 ratio ( 2.1), higher carbide area ratio (20.6%) and lower metal Co content (83.5%). From this, it can be seen that the abundant Co oxide and Co 2 C phases in the catalyst formed at low pressure negatively affect the C5+ hydrocarbon yield.
  • the cuboid-shaped Co 2 C particles were formed at a low reaction temperature of 230 °C. As the reaction temperature increased to 250 °C, the Co 2 C cuboid morphology disappeared, and instead a shell layer of about 4 nm thickness formed of a mixture of Co 2 C and CoO x was formed to cover the metallic Co core. At a reaction temperature of 270 °C, the thickness of the shell layer (10-15 nm) increased. In the case of the CMO-10 catalyst converted at a reaction temperature of 310 °C, a rapid morphology change was observed. At a reaction temperature of 310 °C, severe intergranular aggregation between adjacent Co nanoparticles could lead to separation of the carbon-rich layer.
  • Figure 23a shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 290 °C (C) and 310 °C (D)
  • Figure 23b is HR-TEM of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 270 °C (C), 290 °C (D) and 310 °C (E, F) 24 shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under conditions of H 2 /CO 2 ratios of 1:1, 2:1 and 4:1, and FIG. SEM and HR-TEM images of the CMO-10 catalyst after 1425 hours of reaction are shown.
  • Figure 26a shows the H 2 -TPR profile for the CMO-y catalyst before reduction heat treatment at 330 ° C
  • FIGS. 26b to 26d show the CO 2 -TPD profile, CO-TPD profile and H 2 of the CMO-y catalyst after reduction.
  • Table 6 shows the phase and composition of the peak of the H 2 -TPR profile for the CMO-y catalyst before reduction
  • Tables 7 to 9 show the CO 2 -TPD data, CO-TPD data, and H 2 -TPD data.
  • the amounts of CO 2 , CO and H 2 desorbed from the CMO-y catalyst calculated using each are shown respectively.
  • Amount of desorbed CO (mmol g -1 ) Catalyst Weak ⁇ 250 °C Medium 250-600°C Strong >600 °C Total CMO-0 0.009 0.006 0.004 0.019 CMO-10 0.074 0.053 0.028 0.155 CMO-25 0.106 0.123 0.017 0.246 CMO-50 0.191 0.208 0.069 0.468 CMO-75 0.018 0.042 0.144 0.204
  • the high-temperature peaks at 427-470° C. for the CMO-y catalysts (10 ⁇ y ⁇ 75) show that the spinel structure of Co x Mn 3-x O 4 is Indicates that the reducing properties of the catalyst are hindered.
  • the reduction temperature of Co 3 O 4 to CoO increased from 258 °C (CMO-0) to 345 °C (CMO-75), indicating that the presence of Mn inhibits the reduction of cobalt oxide.
  • the presence of Mn increased the adsorption of CO 2 and CO, but decreased the adsorption of H 2 .
  • strong adsorption for CO and CO 2 and weak adsorption for H 2 on CMO-y catalysts containing Mn can increase the C/H surface coverage ratio and thus increase the FTS rate across methanation. can help to improve CO 2 conversion and C 5+ hydrocarbon selectivity.
  • DRIFT spectra were collected during pressurization of the DRIFT cell from 0.1 MPa to 3.0 MPa with CO 2 to identify species of intermediate products derived from CO 2 adsorbed on the surface of the catalyst, at which time the DRIFT cell was operated at 350 °C. contained a previously H 2 -reduced CMO-0 catalyst.
  • FIGS. 27A to 27D show in situ DFIFT CO 2 adsorption profiles on CMO-10 catalyst
  • FIGS. 28A to 28C show in situ DFIFT CO 2 adsorption profiles on CMO-0 catalyst
  • FIGS. 29A to 29C show In situ DFIFT CO adsorption profiles on CMO-0 catalyst are shown
  • FIGS. 30A-30C show in situ DFIFT CO adsorption profiles on CMO-10 catalyst
  • FIGS. 31A and 31B show CO pressurization to 3.0 MPa and 270° C.
  • FIGS. 32A to 32C show reaction profiles of in situ DFIFT CO 2 and H 2 on CMO-0 catalyst after reduction
  • FIGS. 33A to 33C show reaction profiles of in situ DFIFT CO 2 and H on CMO-10 catalyst after reduction.
  • FIGS. 34A and 34B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes over CMO-10 catalyst after reduction under varying reaction pressure conditions and CO 2 during hydrogenation of CO 2 - Evolution of adsorbed species, adsorbed CO, gaseous CO and CH 4 (B)
  • FIGS. 35A and 35B show in situ DFIFT CO over 60 min over CMO-0 catalyst after reduction under varying reaction temperature conditions.
  • A is the result measured while increasing the temperature to 270° C. after pressurizing the cell to 3.0 MPa with CO 2
  • B is caused by switching the gas flow from CO 2 to H 2 is the result measured during hydrogenation of the CO 2 -adsorbed species
  • C represents the evolution of the selected CO 2 -adsorbed species
  • CO and CH 4 during hydrogenation
  • D is the QMS profile of the product released from the DRIFT cell under H 2 flow conditions.
  • B is the result obtained by converting the gas flow from CO to H 2 Results measured during hydrogenation of the resulting CO-adsorbing species
  • C represents the evolution of selected CO 2 -adsorbing species, CO and CH 4 during hydrogenation.
  • 32A to 32C and 33A to 33C A is the measured result during CO 2 and H 2 injection at a pressure of 3.0 MPa and a temperature of 270° C.
  • B is the gas flow from CO 2 /H 2 to H 2 Results measured during the H 2 flow induced by conversion
  • C represents the evolution of selected CO 2 -adsorbing species, CO and CH 4 during hydrogenation.
  • CH 4 formation on the reduced CMO-0 catalyst indicates that the CO 2 methanation reaction has occurred due to pre-adsorbed H 2 remaining after reduction.
  • the IR bands associated with CH 4 and ⁇ CH decreased because the H 2 previously adsorbed on the catalyst surface was gradually consumed.
  • the pressure in the DRIFT cell was increased to 3.0 MPa. Then, while maintaining the pressure of the cell at 3.0 MPa, the temperature of the cell was increased to 270°C.
  • the intensity of the IR spectrum under the conditions of 270°C and 3.0 MPa was very similar to that under the conditions of 50°C and 3.0 MPa.
  • peaks at 1577, 1374 and 1362 cm -1 can be assigned to ⁇ as (OCO), ⁇ (CH), and ⁇ s (OCO) of formate (HCOO - ) .
  • the intensity of the IR bands of 2- , HCOO - , [Co ⁇ + -(CO)], CO gas and CH 4 decreased.
  • m-CO 3 2- and HCOO- peaks had minimum intensity in the initial 30 min H 2 flow, and peaks of CO gas and CH 4 were observed in the 40 min H 2 flow.
  • the changes in IR band intensities of m-CO 3 2- , HCOO - , CO and CH 4 were different from each other; [Co ⁇ + -(CO)] and CO gas reached maximum intensity at 90 min of H 2 flow and decreased to near zero as the H 2 flow time was further increased.
  • Quadrupole mass spectrometry (QMS) profiles of products released from the DRIFT cell during H 2 flow show the formation of CO and H 2 O by RWGS reaction and CH 4 , C 2 H 6 and C 3 by FTS on CMO-10 catalyst. Indicates the formation of H 5 .
  • DRIFTS spectra as the pressure in the DRIFT cell was increased from 0.1 MPa to 3.0 MPa were collected by flowing CO to characterize the intermediate species derived from the adsorption of CO on the surface of the catalyst, wherein the DRIFT cell was preheated at 350 °C. It contained H 2 -reduced CMO-0 catalyst. Unlike CO 2 adsorption, no formation of CH 4 was observed during CO adsorption, indicating that direct hydrogenation of CO to CH 4 does not occur under H 2 deficient conditions.
  • CH 4 formation during pressurization of CO 2 over the previously H 2 -reduced CMO-0 catalyst indicates that direct hydrogenation of CO 2 to CH 4 occurred without passing CO, and under H 2 -starved conditions It indicates that surface adsorbed CO species are not precipitated in the methanation reaction.
  • the CO 2 peaks at 2333 and 2364 cm ⁇ 1 were prominent during the initial 15 min of CO adsorption, indicating the high WGS activity of the CMO-0 catalyst.
  • the temperature increased from 50 °C to 270 °C
  • the peaks associated with CO 2 increased due to the increase in WGS reaction activity with increasing temperature.
  • the gas flow through the DRIFT cell was switched from CO to H 2 under conditions of 270° C.
  • the CO adsorption and hydrogenation behavior of the adsorbed CO on the CMO-10 catalyst was similar to that on the CMO-0 catalyst.
  • the main difference is the WGS activity in the initial 5 minutes of CO flow, the intensity of gaseous CO 2 reaches a maximum on the CMO-10 catalyst, which is significantly faster than on the CMO-0 catalyst.
  • Both gaseous CO 2 and CO were present at the end of the temperature ramp from 3.0 MPa to 270 °C.
  • the formation of H 2 O by RWGS over the CMO-10 catalyst was more pronounced than over the CMO-0 catalyst.
  • the H 2 partial pressure was increased compared to that over the CMO-0 catalyst, the more abundant CO produced by RWGS over the CMO-10 catalyst promoted the formation of C 2 H 6 followed by the formation of CH 4 .
  • CMO-y catalysts are mixtures of metallic Co, Co-carbide and Co-oxide phases, which can modify reaction intermediates, so that it is necessary to characterize their respective role in the CO 2 conversion by decoupling of each phase. do.
  • the atomic level mechanism of CO 2 hydrogenation on Co (001), Co 2 C (101) and Co 3 O 4 (110) surfaces was investigated using DFT calculations.
  • Co 3 O 4 was selected as a representative structure of Co-oxide, and the mechanism was comparatively analyzed. Also, the effect of surface oxygen vacancies (vac-Co 3 O 4 (110)) on Co 3 O 4 on the catalytic energetics was investigated.
  • 36 shows the CO 2 hydrogenation pathway (A), the surface structure of Co-containing phases (B), and the free energies of CO 2 hydrogenation (C, D) for CH and CO under conditions of a temperature of 270 °C and a pressure of 4.0 MPa.
  • 37 shows the free energy profiles (A, B) calculated by DFT of the RWGS reaction through HCOO intermediates and HOCO intermediates and the free energy profile of CO hydrogenation to CH formation (C). (* indicates surface-bound species)
  • initial CO 2 activation proceeded by the formation of three different intermediates, HCOO*, COOH*, and CO*.
  • HCOO* pathway continuous oxygen removal resulted in the formation of CH*, which served as a precursor for FTS and methanation.
  • HCOO* on Co 3 O 4 and oxygen-deficient Co 3 O 4 (vac-Co 3 O 4 ) surfaces is advantageous because it has small mechanical barriers of 0.73 and 0.97 eV.
  • the subsequent oxygen removal of HCOO* to produce HCO* and CH* occurs on vac-Co 3 O 4 , where the kinetic barrier is significantly smaller than that of Co 3 O 4 .
  • the HCOO*-species shown in the DRIFT spectrum are present on the outermost CO oxide surface, and they can be readily converted to CHO* and CH* at adjacent oxygen vacancies. As shown in Fig.
  • Co oxide phases are active sites for the RWGS reaction to proceed through direct cleavage of OC-O bonds.
  • the RWGS route through the HOCO* intermediate was not favorable because of the high activation barrier that occurred regardless of the Co phase.
  • the high yield of C5+ hydrocarbons on the CMO-0 and CMO-10 catalysts is due to the activated FTS reaction on the hcp Co site.
  • the thermodynamic limitations of RWGS e.g., CO 2 conversion of about 18% at 270 °C and H 2 /CO 2 ratio of 3
  • promote continuous CO consumption by the C-C coupling reaction on the metallic Co center can be overcome by Little CO was observed in the product stream during CO 2 hydrogenation, except under low pressure conditions where methanation reactions were predominantly observed.
  • the evolution of CO and CO 2 during CO 2 adsorption and CO 2 hydrogenation and in the DRIFT profiles during CO hydrogenation indicate that the CMO-0 and CMO-10 catalysts are highly active for both RWGS and WGS reactions.
  • the negligible amount of CO in the product is due to the rapid conversion of CO on the hcp Co metal center.
  • the produced CO then migrated to the metallic Co centers in the Co 2 C phase and nearby cores, where the active chain propagation reaction takes place.
  • Mn sufficiently enhanced CO 2 conversion and C 5+ hydrocarbon selectivity.
  • the Mn promoter effectively inhibited particle aggregation during CO 2 hydrogenation, which further enhanced CO 2 adsorption and RWGS response.
  • the IR band of the linearly adsorbed CO was not red-shifted on the CMO-10 catalyst (which was previously observed for Mn-promoted Co/TiO 2 and Co-Mn) and was not empty.
  • the significantly larger metal Co size in the delayed CMO-10 catalyst can minimize the electron donor effect from MnCO 3 to metal Co in the CO adsorption state.
  • Mn facilitated the formation of the CoO x /Co 2 C shell layer, which further activated the RWGS reaction.
  • the high yield of C5+ hydrocarbons on the CMO-10 catalyst means that the moderate reaction temperature (270 °C) and high reaction pressure (4.0 MPa) of the metal Co core of the Co@CoO x /Co 2 C catalyst Indicates that it helps to maintain metallic properties.
  • the catalyst's long-term stability, high selectivity towards gas/liquid fuels and lube base oil, and low temperature synthesis conditions make Mn-promoted core-shell Co@CoO x /Co 2 C catalysts suitable for use in CO 2 under industrially relevant conditions. can make it promising.
  • Catalysts according to embodiments of the present invention may be used for hydrogenation of carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

A catalyst for accelerating hydrogenation of carbon dioxide is disclosed. The catalyst may comprise a core including a metal cobalt phase, and a shell positioned on the surface of the core and including a Co3O4 phase and a Co2C phase.

Description

이산화탄소와 수소의 직접 반응을 통한 탄화수소 화합물 합성 반응용 촉매, 이의 제조방법 및 이를 이용한 탄화수소 화합물 합성 방법Catalyst for hydrocarbon compound synthesis reaction through direct reaction of carbon dioxide and hydrogen, method for preparing the same, and method for synthesizing hydrocarbon compound using the same
본 발명은 이산화탄소와 수소의 직접 반응을 통해 탄화수소 화합물을 합성하는데 적용될 수 있는 촉매, 이의 제조방법 및 이를 이용한 탄화수소 화합물의 합성 방법에 관한 것이다.The present invention relates to a catalyst that can be applied to synthesize a hydrocarbon compound through a direct reaction of carbon dioxide and hydrogen, a method for preparing the same, and a method for synthesizing a hydrocarbon compound using the same.
연료 및 화학물질을 형성하기 위한 효과적인 이산화탄소(CO2) 사용 기술의 개발은 CO2-중립 및 지속 가능한 사회를 설립하기 위해 매우 유망한 전략이다. 주로 RWGS(Reverse Water-Gas Shift) 반응 및 뒤이은 FTS(피셔-트롭쉬 합성) 반응에 기초한 이산화탄소의 열촉매 전환은 탄소수 1 내지 4(C1~C4)의 가스 연료, 탄소수 5 이상(C5+)의 액체 연료, 올레핀, 산, 알코올, 아로마틱 등과 같은 가치가 더해진 플렛폼 화합물을 생성하기 위한 유망한 접근방법으로 여겨진다.The development of technologies that effectively use carbon dioxide (CO 2 ) to form fuels and chemicals is a very promising strategy for establishing CO 2 -neutral and sustainable societies. The thermal catalytic conversion of carbon dioxide, mainly based on the Reverse Water-Gas Shift (RWGS) reaction and the subsequent Fischer-Tropsch synthesis (FTS) reaction, is a gas fuel containing 1 to 4 carbon atoms (C 1 -C 4 ), carbon atoms 5 or more (C 5+ ) is considered a promising approach to create value-added platform compounds such as liquid fuels, olefins, acids, alcohols, aromatics, etc.
[반응식 1][Scheme 1]
CO2(g) + H2(g) → CO(g) + H2O(g)CO 2 (g) + H 2 (g) → CO (g) + H 2 O (g)
수소(H2)와 일산화탄소(CO)의 혼합물인 합성가스를 이용하여 알칸, 알켄, oxygenates를 생성하는 FTS 반응 촉매로는 주로 철(Fe)-기반 촉매, 코발트(Co)-기반 촉매가 사용되었고, 이러한 촉매들을 이산화탄소의 수소화 반응의 촉매로 사용하는 연구가 다수 진행되었다. Iron (Fe)-based catalysts and cobalt (Co)-based catalysts were mainly used as FTS reaction catalysts that produce alkanes, alkenes, and oxygenates using syngas, which is a mixture of hydrogen (H 2 ) and carbon monoxide (CO). , A number of studies have been conducted on using these catalysts as catalysts for hydrogenation of carbon dioxide.
Fe-기반 촉매는 피드로서 CO 또는 CO2가 사용되는지 여부에 관계없이 유사한 촉매 성능을 보여주었다. Fe-기반 촉매의 경우, Fe3O4 사이트 상에서의 CO2의 RWGS 반응은 산화환원 사이클을 통해 촉진되고, 이어서 Fe5C2 사이트 상에서의 연속적인 FTS 반응이 높은 산출율로 C5+ 탄화수소를 생성할 수 있다. (GHSV(gas hourly space velocity)≥4000 mL g-1 h-1에서 약 20% 이상) Fe-based catalysts showed similar catalytic performance regardless of whether CO or CO 2 was used as the feed. In the case of Fe-based catalysts, the RWGS reaction of CO 2 on the Fe 3 O 4 site is promoted through a redox cycle, followed by a continuous FTS reaction on the Fe 5 C 2 site to generate C 5+ hydrocarbons at high yields. can create (About 20% or more at gas hourly space velocity (GHSV)≥4000 mL g -1 h -1 )
Co-기반 촉매는 높은 사슬 성장 확률(0.94 이상), 높은 순환 속도, 선형 파라핀에 대한 높은 선택도, 낮은 WGS 반응 활성화도, FTS 동안 형성되는 물 분자에 대한 높은 불활성화 저항, 높은 장기 안정성 때문에, 상대적으로 낮은 온도(<240℃)에서의 FTS 반응에 매우 효과적이다. 전형적인 FTS 반응 조건 하에서 장쇄 탄화수소를 생성할 때, 금속성 Co 센터는 일산화탄소의 수소화에 대한 주요 활성 사이트로 간주되었고, 최근, 더 낮은 올레핀을 생성할 때에는 Co2C 상에서의 일산화탄소의 수소화 활성이 가능함이 제안되었다. Co-based catalysts are characterized by high chain growth probability (>0.94), high cycle rate, high selectivity to linear paraffins, low WGS reaction activity, high inactivation resistance to water molecules formed during FTS, and high long-term stability. It is very effective for FTS reactions at relatively low temperatures (<240 °C). When producing long-chain hydrocarbons under typical FTS reaction conditions, metallic Co centers have been considered as the major active sites for the hydrogenation of carbon monoxide, and recently it has been suggested that hydrogenation activity of carbon monoxide on Co 2 C is possible when producing lower olefins. It became.
하지만, Co-기반 촉매 상에서의 직접 이산화탄소 수소화의 경우, 주요 생성물이 메탄(CH4)이고, C5+ 탄화수소의 산출율(<5% at GHSV≥4000 mL g-1 h-1)이 매우 낮은 문제점이 있다. Co-기반 촉매의 높은 이산화탄소의 메탄화 활성은 RWGS를 촉진할 수 있는 활성 사이트의 부재 및 사슬 연장 반응보다 CO2 흡착 종의 수소화를 유도하는 활성 표면 상에서의 낮은 C/H 비율 때문이다. However, in the case of direct carbon dioxide hydrogenation on a Co-based catalyst, the main product is methane (CH 4 ), and the yield of C 5+ hydrocarbons (<5% at GHSV≥4000 mL g -1 h -1 ) is very low. There is a problem. The high carbon dioxide methanation activity of the Co-based catalyst is due to the absence of active sites that can promote RWGS and the low C/H ratio on the active surface leading to hydrogenation of CO 2 adsorbed species rather than chain extension reactions.
이러한 Co-기반 촉매의 문제점을 해결하기 위해, 2성분계 금속인 CoFe 및 CoNi 촉매들을 이용하여 이산화탄소를 가벼운 올레핀 및 에탄올로 각각 직접 전환하는 방법이 제안되었으나, 이산화탄소로부터 직접 장쇄 탄화수소를 합성하기 위한 기초 및 종합적인 이해의 부족 때문에, Co-기반 촉매를 디자인하는 여전히 어려운 기술적 문제로 존재하고 있다.In order to solve the problem of these Co-based catalysts, a method for directly converting carbon dioxide into light olefins and ethanol using two-component metal CoFe and CoNi catalysts, respectively, has been proposed. Because of the lack of comprehensive understanding, designing Co-based catalysts still remains a difficult technical problem.
본 발명의 일 목적은 Mn을 함유하여 수소/이산화탄소 혼합 가스에 노출되면 금속 코발트 상으로 형성된 코어; 및 상기 코어 표면에서 Co3O4 상 및 Co2C 상을 포함하는 혼합물로 형성된 쉘을 구비하는 코어쉘 구조로 전환될 수 있고, 이산화탄소의 수소화 반응을 진행하는 경우, 약 60% 이상의 높은 CO2 전환율 및 약 30% 이상의 현저하게 높은 C5+ 탄화수소 선택도를 달성할 수 있는 이산화탄소의 수소화 반응용 촉매를 제공하는 것이다.One object of the present invention is a core formed of metal cobalt when exposed to a hydrogen / carbon dioxide mixed gas containing Mn; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core, and when the carbon dioxide hydrogenation reaction proceeds, a high CO 2 of about 60% or more. It is to provide a catalyst for hydrogenation of carbon dioxide capable of achieving a conversion rate and a remarkably high C 5+ hydrocarbon selectivity of about 30% or more.
본 발명의 다른 목적은 상기 촉매의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing the catalyst.
본 발명의 또 다른 목적은 상기 촉매를 이용하여 탄소수 5 이상의 탄화수소 화합물을 합성하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for synthesizing a hydrocarbon compound having 5 or more carbon atoms using the catalyst.
본 발명의 실시예에 따른 이산화탄소의 수소화 반응용 촉매는, 이산화탄소의 수소화 반응을 촉진하는 촉매로 사용될 수 있고, 금속 코발트 상을 포함하는 코어; 및 상기 코어 표면에 위치하고, Co3O4 상 및 Co2C 상을 포함하는 쉘을 포함할 수 있다. A catalyst for a hydrogenation reaction of carbon dioxide according to an embodiment of the present invention may be used as a catalyst for promoting a hydrogenation reaction of carbon dioxide, and may include a core including a metal cobalt phase; and a shell located on the surface of the core and including a Co 3 O 4 phase and a Co 2 C phase.
일 실시예에 있어서, 상기 촉매에서 코발트 및 망간 원소의 전체 몰 수에 대한 상기 망간 원소의 몰 수의 비[Mn/(Co+Mn)]가 약 3 이상 20% 이하일 수 있다. In one embodiment, the ratio of the number of moles of manganese to the total number of moles of cobalt and manganese in the catalyst [Mn/(Co+Mn)] may be about 3 or more and about 20% or less.
일 실시예에 있어서, 상기 촉매 전체의 코발트 함유 상(phase) 중 금속 코발트 상의 분율은 약 90% 이상 100% 미만일 수 있다. In one embodiment, the fraction of the metal cobalt phase in the cobalt-containing phase of the entire catalyst may be about 90% or more and less than 100%.
일 실시예에 있어서, 상기 코어는 밀한 조밀육방격자(hexagonal close-packed lattice) 구조의 결정상을 가지는 금속 코발트 상을 포함하고, 상기 쉘에는 상기 코어를 외부에 노출시키는 기공이 형성될 수 있다. In one embodiment, the core may include a metal cobalt phase having a crystal phase of a hexagonal close-packed lattice structure, and pores exposing the core to the outside may be formed in the shell.
일 실시예에 있어서, 상기 쉘은 코발트 산화물 상으로 상기 Co3O4 이외에 CoO를 더 포함할 수 있고, 이 경우, [CoO+Co3O4]/CoO 비율은 약 1.5 내지 1.9일 수 있다. In one embodiment, the shell may further include CoO in addition to the Co 3 O 4 as a cobalt oxide phase, and in this case, the [CoO+Co 3 O 4 ]/Co O ratio may be about 1.5 to 1.9. .
일 실시예에 있어서, 상기 쉘에서 Co2C 상의 면적비율은 약 10 내지 30%일 수 있다. In one embodiment, the area ratio of the Co 2 C phase in the shell may be about 10 to 30%.
일 실시예에 있어서, 상기 쉘은 망간 함유 상을 더 포함할 수 있고, 이 경우, 상기 망간 함유 상은 MnCO3 상, Mn2O3 및 Mn3O4을 포함할 수 있다. 예를 들면, 상기 망간 함유 상에서 상기 MnCO3 상의 분율은 약 90 내지 99%일 수 있다. In one embodiment, the shell may further include a manganese-containing phase, and in this case, the manganese-containing phase may include a MnCO 3 phase, Mn 2 O 3 and Mn 3 O 4 . For example, the fraction of the MnCO 3 phase in the manganese-containing phase may be about 90 to 99%.
일 실시예에 있어서, 상기 촉매는 상기 쉘의 표면에 위치하는 탄소층을 더 포함할 수 있다. In one embodiment, the catalyst may further include a carbon layer located on the surface of the shell.
본 발명의 실시예에 따른 이산화탄소의 수소화 반응용 촉매의 제조방법은, 코발트 전구체 화합물과 망간 전구체 화합물이 용해된 반응 용액 및 염기성 침전제가 용해된 침전제 용액을 혼합하여 서스펜션(suspension) 용액을 형성하는 제1 단계; 상기 서스펜션 용액을 숙성(aging)시키는 제2 단계; 상기 숙성된 서스펜션 용액으로부터 파우더를 분리하는 제3 단계; 및 분리된 파우더를 건조 후 열처리하여 제1 촉매 파우더를 형성하는 제4 단계;를 포함할 수 있다. A method for preparing a catalyst for hydrogenation of carbon dioxide according to an embodiment of the present invention is a method of forming a suspension solution by mixing a reaction solution in which a cobalt precursor compound and a manganese precursor compound are dissolved and a precipitant solution in which a basic precipitant is dissolved. Level 1; A second step of aging the suspension solution; A third step of separating powder from the aged suspension solution; and a fourth step of drying and heat-treating the separated powder to form first catalyst powder.
일 실시예에 있어서, 상기 방법은 상기 제1 촉매 파우더를 수소 분위기에서 환원시켜 제2 촉매 파우더를 형성하는 제5 단계를 더 포함할 수 있다. In one embodiment, the method may further include a fifth step of forming second catalyst powder by reducing the first catalyst powder in a hydrogen atmosphere.
일 실시예에 있어서, 상기 방법은 상기 제2 촉매 파우더를 이산화탄소(CO2) 및 수소(H2)의 혼합가스의 흐름에 노출시켜 제3 촉매 파우더를 형성하는 제6 단계 단계를 더 포함할 수 있다. In one embodiment, the method may further include a sixth step of forming a third catalyst powder by exposing the second catalyst powder to a flow of a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ). there is.
일 실시예에 있어서, 상기 제1 단계에서 상기 코발트 전구체와 상기 망간 전구체는 상기 반응 용액 내에서 코발트 이온과 망간 이온의 전체 몰 수에 대한 상기 망간 이온의 몰 수의 비가 약 3 이상 20% 이하가 되도록 상기 반응 용액에 첨가될 수 있다. In one embodiment, in the first step, the cobalt precursor and the manganese precursor have a ratio of moles of manganese ions to total moles of cobalt ions and manganese ions in the reaction solution of about 3 to 20%. It may be added to the reaction solution as much as possible.
일 실시예에 있어서, 상기 반응 용액에서 상기 코발트 전구체와 상기 망간 전구체의 전체 농도는 약 1.5 내지 3 mol/L일 수 있다. In one embodiment, the total concentration of the cobalt precursor and the manganese precursor in the reaction solution may be about 1.5 to 3 mol/L.
일 실시예에 있어서, 상기 염기성 침전제는 탄산나트륨(Na2CO3)를 포함할 수있다. In one embodiment, the basic precipitant may include sodium carbonate (Na 2 CO 3 ).
일 실시예에 있어서, 상기 제4 단계에서 상기 분리된 파우더들은 약 90 내지 110℃의 온도에서 건조된 후 약 300 내지 360℃의 온도 및 공기 흐름 조건 하에서 약 2 내지 5시간 동안 열처리될 수 있다. In one embodiment, the separated powders in the fourth step may be dried at a temperature of about 90 to 110 ° C and then heat-treated for about 2 to 5 hours under air flow conditions of about 300 to 360 ° C.
일 실시예에 있어서, 상기 제1 촉매 파우더는 코발트 산화물 상, 망간 산화물 상 및 이들 각각에 나트륨이 도핑된 상을 포함할 수 있다. In one embodiment, the first catalyst powder may include a cobalt oxide phase, a manganese oxide phase, and a phase each of which is doped with sodium.
일 실시예에 있어서, 상기 제5 단계는 상기 제1 촉매 파우더를 관형 반응기 내에 고정한 후 320 내지 400℃의 온도에서 4 내지 8시간 동안 상기 관형 반응기 내부로 수소 가스를 공급하여 수행되고, 상기 제5 단계 동안 상기 제1 촉매 파우더는 금속 코발트 상, 코발트 산화물 상 및 망간 산화물 상을 포함하는 상기 제2 촉매 파우더로 변환될 수 있다. In one embodiment, the fifth step is performed by supplying hydrogen gas into the tubular reactor at a temperature of 320 to 400 ° C. for 4 to 8 hours after fixing the first catalyst powder in the tubular reactor, and the fifth During the step, the first catalyst powder may be converted into the second catalyst powder comprising a metallic cobalt phase, a cobalt oxide phase and a manganese oxide phase.
일 실시예에 있어서, 상기 제6 단계는 상기 제2 촉매 파우더가 내부에 고정된 상기 관형 반응기 내부의 온도를 250 내지 300℃로 조절한 후 수소 및 이산화탄소의 혼합가스를 공급하여 수행되고, 상기 제6 단계 동안 상기 제2 촉매 파우더는 금속 코발트 상으로 형성된 코어; 및 상기 코어 표면에서 Co3O4 상 및 Co2C 상을 포함하는 혼합물로 형성되 쉘을 포함하는 상기 제3 촉매 파우더로 변환될 수 있다. In one embodiment, the sixth step is performed by supplying a mixed gas of hydrogen and carbon dioxide after adjusting the temperature inside the tubular reactor in which the second catalyst powder is fixed to 250 to 300 ° C. During step 6, the second catalyst powder includes a core formed of metallic cobalt; and the third catalyst powder including a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core.
일 실시예에 있어서, 상기 제6 단계 동안 상기 관형 반응기 내부의 압력은 약 3.5 내지 5.0 MPa로 조절될 수 있다. In one embodiment, the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa during the sixth step.
일 실시예에 있어서, 상기 제6 단계 동안 상기 관형 반응기 내부에 수소(H2) 및 이산화탄소(CO2)가 약 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스가 공급될 수 있다. In one embodiment, a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5:1 to 3.5:1 may be supplied into the tubular reactor during the sixth step.
본 발명의 실시예에 따른 탄화수소 화합물의 합성 방법은, 촉매가 고정된 관형 반응기 내부로 수소 및 이산화탄소의 혼합가스를 공급하여 이산화탄소의 수소화 반응을 유도함으로써 탄소수 5 이상의 탄화수소 화합물을 생성할 수 있고, 상기 촉매는 금속 코발트 상을 포함하는 코어; 및 상기 코어 표면에 위치하고, Co3O4 상 및 Co2C 상을 포함하는 쉘을 포함할 수 있다. In the method for synthesizing a hydrocarbon compound according to an embodiment of the present invention, a hydrocarbon compound having 5 or more carbon atoms can be produced by inducing a hydrogenation reaction of carbon dioxide by supplying a mixed gas of hydrogen and carbon dioxide into a tubular reactor in which a catalyst is fixed, The catalyst comprises a core comprising a metallic cobalt phase; and a shell located on the surface of the core and including a Co 3 O 4 phase and a Co 2 C phase.
*일 실시예에 있어서, 상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부의 온도는 약 250 내지 300℃로 조절될 수 있다. * In one embodiment, the temperature inside the tubular reactor may be adjusted to about 250 to 300 ° C. during the hydrogenation of carbon dioxide.
일 실시예에 있어서, 상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부의 압력은 약 3.5 내지 5.0 MPa로 조절될 수 있다. In one embodiment, the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa during the hydrogenation of carbon dioxide.
일 실시예에 있어서, 상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부에 수소(H2) 및 이산화탄소(CO2)가 약 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스가 공급될 수 있다. In one embodiment, during the hydrogenation reaction of carbon dioxide, a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5:1 to 3.5:1 may be supplied into the tubular reactor.
일 실시예에 있어서, 상기 생성된 탄소수 5 이상의 탄화수소 화합물에서 선형 파라핀의 비율은 약 90%이상 100% 미만일 수 있다. In one embodiment, the proportion of linear paraffin in the hydrocarbon compound having 5 or more carbon atoms may be about 90% or more and less than 100%.
본 발명에 따른 촉매는 Co와 함께 Mn을 함유하여 수소/이산화탄소 혼합 가스에 노출되면 금속 코발트 상으로 형성된 코어; 및 상기 코어 표면에서 Co3O4 상 및 Co2C 상을 포함하는 혼합물로 형성된 쉘을 구비하는 코어쉘 구조로 전환될 수 있고, 그 결과 이를 이용하여 이산화탄소의 수소화 반응을 진행하는 경우, 약 60% 이상의 높은 CO2 전환율 및 약 30% 이상의 현저하게 높은 C5+ 탄화수소 선택도를 달성할 수 있을 뿐만 아니라 약 0.5% 미만의 선택도로 일산화탄소의 생성을 고도로 억제할 수 있다. 그리고 상기 촉매를 이용하여 생성된 C5+ 탄화수소 중 선형 파라핀의 비율은 약 90%이상일 수 있다.The catalyst according to the present invention includes a core formed of metal cobalt when exposed to a hydrogen/carbon dioxide mixture gas containing Mn together with Co; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core. As a result, when hydrogenation of carbon dioxide is performed using the shell, about 60 % or more and remarkably high C 5+ hydrocarbon selectivity of about 30% or more can be achieved, as well as carbon monoxide production can be highly suppressed with a selectivity of less than about 0.5%. In addition, the ratio of linear paraffin among the C 5+ hydrocarbons produced using the catalyst may be about 90% or more.
도 1은 본 발명의 실시예에 따른 코발트-망간 복합체 촉매를 제조하는 방법을 설명하기 위한 순서도이다.1 is a flow chart for explaining a method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention.
도 2는 도 1에 도시된 방법에 따라 합성된 촉매를 설명하기 위한 도면이다. FIG. 2 is a view for explaining a catalyst synthesized according to the method shown in FIG. 1 .
도 3은 Mn 함량의 변화에 따른 CMO-y 촉매의 촉매 성능 평가 결과를 나타내는 그래프들이다.3 are graphs showing the results of catalytic performance evaluation of CMO-y catalysts according to changes in Mn content.
도 4a는 1.0 MPa(A, B), 2.0 MPa(C, D) 및 3.0 MPa(E, F)의 압력조건에서 CMO-0 촉매 및 CMO-10 촉매 상에서의 반응시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이고, 도 4b는 4.0 MPa에서 CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, CMO-100 촉매들 상에서의 반응시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이다. Figure 4a is a CO 2 conversion rate and products according to the reaction time on the CMO-0 catalyst and the CMO-10 catalyst under pressure conditions of 1.0 MPa (A, B), 2.0 MPa (C, D), and 3.0 MPa (E, F) Graphs showing the results of measuring selectivity, and FIG. 4b is CO 2 as a function of reaction time on CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, and CMO-100 catalysts at 4.0 MPa. These are graphs showing the results of measuring conversion rate and product selectivity.
도 5a는 CMO-0 촉매(A) 및 CMO-10 촉매(B)의 반응 압력에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이고, 도 5b는 CMO-10 촉매의 반응 시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프이다.Figure 5a is a graph showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction pressure of the CMO-0 catalyst (A) and the CMO-10 catalyst (B), and Figure 5b is a graph showing the reaction time of the CMO-10 catalyst It is a graph showing the results of measuring the CO 2 conversion rate and product selectivity.
도 6은 CMO-10 촉매의 반응 온도(A), 합성 가스의 H2/CO2 비율(B) 및 GHSV(C)에 따른 CO2 전환율 및 생성물의 선택도를 측정한 결과를 나타내는 그래프들이다.6 is graphs showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction temperature (A) of the CMO-10 catalyst, the H 2 /CO 2 ratio of syngas (B), and GHSV (C).
도 7a는 CMO-0 및 CMO-10 촉매들의 환원 전(fresh), 환원 후(reduced) 및 전환(spent) 상태에서 각각 측정된 XRD 패턴들을 나타내고, 도 7b 및 도 7c는 CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 및 CMO-100 촉매들 각각의 환원 전(fresh) 상태(A, B, C), 환원 후(reduced) 상태(D, E, F)에서 각각 측정된 XRD 패턴들을 나타내고, 도 7d는 CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 및 CMO-100 촉매들 각각의 전환(spent) 상태에서 측정된 XRD 패턴들을 나타내며, 도 7e는 230℃, 250℃, 270℃, 290℃, 310℃에서 각각 전환된 CMO-10 촉매들에 대해 측정된 XRD 패턴을 나타낸다.7a shows XRD patterns measured in fresh, reduced, and spent states of CMO-0 and CMO-10 catalysts, respectively, and FIGS. 7b and 7c show CMO-0, CMO- 10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts in fresh state (A, B, C) and reduced state (D, E, F) respectively The measured XRD patterns are shown, and FIG. 7d shows the XRD patterns measured in the spent state of each of the CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts, Figure 7e shows XRD patterns measured for CMO-10 catalysts converted at 230 °C, 250 °C, 270 °C, 290 °C, and 310 °C, respectively.
도 8a는 환원 후 CMO-y촉매들(A) 및 전환 CMO-y 촉매들(B)에 대한 Co K-edge XANES 스펙트럼을 나타내고, 도 8b는 Co K-edge XANES 프로파일들의 선형 조합 피팅으로부터 평가된 금속성 Co 함량과 C5+ 탄화수소 산출률 사이의 관계를 나타내는 그래프이고, 도 8c는 C 1s XPS 스펙트럼으로부터 평가된 표면 탄화물(carbide) 함량과 C5+ 탄화수소 산출률 사이의 관계(D) 및 [CoO+CO3O4]/Co0의 비율과 C5+ 탄화수소 산출률 사이의 관계(E)를 나타내는 그래들이고, 도 8d는 XRD에 의해 측정된 결정 크기와 C5+ 탄화수소 산출률 사이의 관계(F) 및 Co K-edge XANES 프로파일들의 선형 조합 피팅으로부터 평가된 금속성 Co 함량과 XRD에 의해 측정된 결정 크기 사이의 관계(G)를 나타내는 그래프이다.Figure 8a shows Co K-edge XANES spectra for CMO-y catalysts after reduction (A) and converted CMO-y catalysts (B), and Figure 8b shows Co K-edge XANES profiles evaluated from linear combination fitting. 8c is a graph showing the relationship between metallic Co content and C 5+ hydrocarbon yield, and FIG. 8c is a relationship between surface carbide content and C 5+ hydrocarbon yield evaluated from C 1s XPS spectrum (D) and [CoO +CO3O4]/CoO and the graph showing the relationship (E) between the C 5+ hydrocarbon yield, and FIG. 8d shows the relationship between the crystal size measured by XRD and the C 5+ hydrocarbon yield (F) and Co It is a graph showing the relationship (G) between the metallic Co content evaluated from the linear combination fitting of the K-edge XANES profiles and the crystallite size measured by XRD.
도 9a는 다양한 반응압력(1MPa, 2MPa, 3MPa, 4MPa)에서 전환 CMO-0 촉매(A) 및 전환 CMO-10 촉매(B)에 대해 각각 측정된 정규화된 Co K-edge XANES 스펙트럼들이고, 도 9b는 다양한 반응 온도(230℃, 250℃, 270℃, 290℃, 310℃)(C) 및 다양한 H2/CO2 혼합비율(H2/CO2=1, 2, 3, 4)(D)에서 전환 CMO-10 촉매에 대해 각각 측정된 Co K-edge XANES 스펙트럼들이며, 도 9c는 다양한 GHSV(4000 mL g-1 h-1, 8000 mL g-1 h-1, 12000 mL g-1 h-1)에서 그리고 다양한 반응시간(120hr, 1440hr) 후에 전환 CMO-10 촉매에 대해 각각 측정된 Co K-edge XANES 스펙트럼들이다. FIG. 9a shows normalized Co K-edge XANES spectra measured for a converted CMO-0 catalyst (A) and a converted CMO-10 catalyst (B) at various reaction pressures (1 MPa, 2 MPa, 3 MPa, 4 MPa), respectively. FIG. 9 b is at various reaction temperatures (230 ℃, 250 ℃, 270 ℃, 290 ℃, 310 ℃) (C) and various H 2 /CO 2 mixing ratio (H 2 /CO 2 =1, 2, 3, 4) (D) Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively, and FIG. 9c shows various GHSV (4000 mL g -1 h -1 , 8000 mL g -1 h -1 , 12000 mL g -1 h - 1 ) and after various reaction times (120 hr, 1440 hr) Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively.
도 10은 다양한 반응 온도(230℃, 250℃, 270℃, 290℃, 310℃)에서 전환 CMO-10 촉매에 대한 정규화된 Co K-edge EXAFS 스펙트럼의 k3-가중치 퓨리에 변환(k3-weighted Fourier transforms, FTs)(A) 그리고 단지 금속성 Co로 피팅된 270℃에서 전환된 CMO-10 촉매(B), 단지 금속성 Co로 피팅된 290℃에서 전환된 CMO-10 촉매(C) 및 금속성 Co와 CoO로 피팅된 310℃에서 전환된 CMO-10 촉매(D)의 필터링된 K3-가중치 χ(k) 스펙트럼들(Filtered k3-weighted χ(k) spectra)을 나타낸다. 10 is a k 3 -weighted Fourier transform (k 3 -weighted Fourier transforms, FTs) (A) and CMO-10 catalyst converted at 270°C fitted with only metallic Co (B), CMO-10 catalyst converted at 290°C fitted only with metallic Co (C) and metallic Co and Filtered K 3 -weighted χ(k) spectra of CMO-10 catalyst (D) converted at 310 °C fitted with CoO are shown .
도 11은 환원 후 CMO-y 촉매(A) 및 전환 CMO-y 촉매(B)의 정규화된 Mn K-edge XANES 스펙트럼을 나타낸다.Figure 11 shows the normalized Mn K-edge XANES spectra of the CMO-y catalyst (A) and the converted CMO-y catalyst (B) after reduction.
도 12는 C 1s(A), Co 2p(B), O 1s(C) 및 Mn 2p(D) 영역에 있는 환원 전 CMO-10 촉매, 환원 후 CMO-10 촉매 및 전환(125hr, 1425hr) CMO-10 촉매들의 고해상 XPS 프로파일들을 나타낸다. 12 shows CMO-10 catalyst before reduction, CMO-10 catalyst after reduction and conversion (125 hr, 1425 hr) CMO in C 1s (A), Co 2p (B), O 1s (C) and Mn 2p (D) regions. High-resolution XPS profiles of -10 catalysts are shown.
도 13은 C 1s(A), Co 2p(B) 및 O 1s(C) 영역에 있는 환원 전 CMO-0 촉매, 환원 후 CMO-0 촉매 및 전환(125hr) CMO-10 촉매의 고해상 XPS 프로파일들을 나타낸다.13 shows high-resolution XPS profiles of CMO-0 catalysts before reduction, CMO-0 catalysts after reduction, and converted (125 hr) CMO-10 catalysts in C 1s (A), Co 2p (B), and O 1s (C) regions. indicate
도 14a는 환원 전 CMO-0 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 14b는 환원 전 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Na (J); Co와 O (K); Co, C 및 O (L)의 EDX 이미지들을 나타내는 도면이다. 14a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst before reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
도 15a는 환원 전 CMO-10 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 15b는 환원 전 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Na (K); Co와 O (L); Co, C 및 O (M)의 EDX 이미지들을 나타내는 도면이다. 15a is a view showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-10 catalyst before reduction, and FIG. HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M).
도 16a는 환원 후 CMO-0 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 16b는 환원 후 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Na (J); Co와 O (K); Co, C 및 O (L)의 EDX 이미지들을 나타내는 도면이다.16a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst after reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L).
도 17a는 환원 후 CMO-10 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 17b는 환원 후 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Na (K); Co와 O (L); Co, C 및 O (M)의 EDX 이미지들을 나타내는 도면이다. Figure 17a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of CMO-10 catalyst after reduction, and Figure 17b is a diagram showing CMO-10 catalyst after reduction HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M).
도 18a는 전환 CMO-0 촉매의 HR-TEM 이미지들(A-C, E) 및 FFT 이미지(D)를 나타내고, 도 18b는 전환 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Co 및 O (J); Co, O 및 C (K); 및 Na (L)의 EDX 이미지들을 나타내며, 도 18c는 Co(M); Co 및 O (N); Co, O 및 C (O)의 확대된 최외곽 쉘층을 나타낸다. 18a shows HR-TEM images (A-C, E) and FFT images (D) of the converted CMO-0 catalyst, and FIG. 18B shows HAADF-STEM images (F) of the converted CMO-0 catalyst and the corresponding Co ( G); O (H); C (I); Co and O (J); Co, O and C (K); and EDX images of Na (L), FIG. 18C shows Co (M); Co and O (N); Shows the enlarged outermost shell layer of Co, O and C(O).
도 19a는 전환 CMO-10 촉매의 HR-TEM 이미지들(A-C, E) 및 FFT 이미지(D)를 나타내고, 도 19b는 전환 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Co, Mn 및 O (K); 및 Co, Mn, C 및 O (L)의 EDX 이미지들을 나타내며, 도 19c는 Co(M); Co 및 O (N); Co, O 및 C (O)의 확대된 최외곽 쉘층을 나타낸다. 19a shows HR-TEM images (A-C, E) and FFT images (D) of the converted CMO-10 catalyst, and FIG. 19B shows HAADF-STEM images (F) of the converted CMO-10 catalyst and the corresponding Co ( G); O (H); C (I); Mn (J); Co, Mn and O (K); and EDX images of Co, Mn, C, and O (L), FIG. 19C shows Co (M); Co and O (N); Shows the enlarged outermost shell layer of Co, O and C(O).
도 20은 환원전 CMO-y 촉매(A), 환원 후 CMO-y 촉매(B) 및 전환 CMO-y 촉매(C)의 N2 흡착-탈착 등고선을 나타낸다.20 shows N 2 adsorption-desorption contours of the pre-reduction CMO-y catalyst (A), the post-reduction CMO-y catalyst (B), and the converted CMO-y catalyst (C).
도 21은 1.0 MPa의 반응 압력 조건 하에서 전환된 전환 CMO-0 촉매의 HR-TEM 이미지들을 나타낸다. 21 shows HR-TEM images of the converted CMO-0 catalyst converted under the reaction pressure condition of 1.0 MPa.
도 22는 1.0 MPa의 반응 압력 조건 하에서 전환된 전환 CMO-10 촉매의 HR-TEM 이미지들을 나타낸다.22 shows HR-TEM images of the converted CMO-10 catalyst converted under the reaction pressure condition of 1.0 MPa.
도 23a은 230℃(A), 250℃(B), 290℃(C) 및 310℃(D)의 반응 온도 조건 하에서 전환된 전환 CMO-10 촉매의 SEM, HR-TEM 및 FFT 이미지들을 나타내고, 도 23b는 230℃(A), 250℃(B), 270℃(C), 290℃(D) 및 310℃(E, F)의 반응 온도 조건 하에서 전환된 전환 CMO-10 촉매의 HR-TEM 이미지들을 나타낸다. Figure 23a shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 290 °C (C) and 310 °C (D), Figure 23b is HR-TEM of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 270 °C (C), 290 °C (D) and 310 °C (E, F) represent images.
도 24는 1:1, 2:1 및 4:1의 H2/CO2 비율의 조건 하에서 전환된 전환 CMO-10 촉매의 SEM, HR-TEM 및 FFT 이미지들을 나타낸다. 24 shows SEM, HR-TEM and FFT images of converted CMO-10 catalysts converted under conditions of H 2 /CO 2 ratios of 1:1, 2:1 and 4:1.
도 25는 1425시간 반응 이후의 CMO-10 촉매의 SEM 및 HR-TEM 이미지들을 나타낸다.25 shows SEM and HR-TEM images of the CMO-10 catalyst after 1425 hours of reaction.
도 26a는 330℃에서 열처리된 환원 전 CMO-y 촉매에 대한 H2-TPR 프로파일을 나타내고, 도 26b 내지 도 26d는 환원 후 CMO-y 촉매의 CO2-TPD 프로파일, CO-TPD 프로파일 및 H2-TPD 프로파일을 각각 나타낸다.Figure 26a shows the H 2 -TPR profile for the CMO-y catalyst before reduction heat treatment at 330 ° C, and FIGS. 26b to 26d show the CO 2 -TPD profile, CO-TPD profile and H 2 of the CMO-y catalyst after reduction. -Indicates each TPD profile.
도 27a 내지 도 27d는 CMO-10 촉매 상에서의 인시튜 DFIFT CO2 흡착 프로파일을 나타낸다.27A-D show in situ DFIFT CO 2 adsorption profiles on CMO-10 catalyst.
도 28a 내지 도 28c는 CMO-0 촉매 상에서의 인시튜 DFIFT CO2 흡착 프로파일을 나타낸다.28A-28C show in situ DFIFT CO 2 adsorption profiles on CMO-0 catalysts.
도 29a 내지 도 29c는 CMO-0 촉매 상에서의 인시튜 DFIFT CO 흡착 프로파일을 나타낸다.29A-29C show in situ DFIFT CO adsorption profiles on CMO-0 catalysts.
도 30a 내지 도 30c는 CMO-10 촉매 상에서의 인시튜 DFIFT CO 흡착 프로파일을 나타낸다.30A-30C show in situ DFIFT CO adsorption profiles on CMO-10 catalyst.
도 31a 및 도 31b는 3.0MPa로의 CO 가압 및 270℃까지의 온도 상승 이후 CMO-O 촉매(A), CMO-10 촉매(B) 상에서의 H2 흐름 동안 DRIFT 셀로부터 방출된 생성물의 QMS 프로파일을 나타낸다. 31A and 31B show QMS profiles of products released from the DRIFT cell during H 2 flow over CMO-O catalyst (A), CMO-10 catalyst (B) after CO pressurization to 3.0 MPa and temperature rise to 270 °C. indicate
도 32a 내지 도 32c는 환원 후 CMO-0 촉매 상에서의 인시튜 DFIFT CO2와 H2의 반응 프로파일을 나타낸다. 32A to 32C show reaction profiles of in situ DFIFT CO 2 and H 2 over CMO-0 catalyst after reduction.
도 33a 내지 도 33c는 환원 후 CMO-10 촉매 상에서의 인시튜 DFIFT CO2와 H2의 반응 프로파일을 나타낸다. 33A to 33C show reaction profiles of in situ DFIFT CO 2 and H 2 over CMO-10 catalyst after reduction.
도 34a 및 도 34b는 변화하는 반응 압력 조건 하에서의 환원 후 CMO-10 촉매 상에서의 60분 동안의 인시튜 DFIFT CO2 및 H2 반응 프로파일(A) 및 CO2 수소화 동안 CO2-흡착 종, 흡착된 CO, 가스상 CO 및 CH4의 진화(B)를 나타낸다. 34A and 34B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes on CMO-10 catalyst after reduction under varying reaction pressure conditions and CO 2 -adsorbed species, adsorbed Evolution of CO, gaseous CO and CH 4 is shown (B).
도 35a 및 도 35b는 변화하는 반응 온도 조건 하에서의 환원 후 CMO-0 촉매 상에서의 60분 동안의 인시튜 DFIFT CO2 및 H2 반응 프로파일(A) 및 CO2 수소화 동안 CO2-흡착 종, 흡착된 CO, 가스상 CO 및 CH4의 진화(B)를 나타낸다.35A and 35B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes on CMO-0 catalyst after reduction under varying reaction temperature conditions and CO 2 -adsorbed species, adsorbed Evolution of CO, gaseous CO and CH 4 is shown (B).
도 36은 CO2의 수소화 경로(A), Co-함유 상들의 표면 구조(B), 270℃의 온도 및 4.0 MPa의 압력 조건 하에서 CH 및 CO에 대한 CO2 수소화의 자유에너지(C, D)를 나타낸다. 36 shows the hydrogenation pathway of CO2 (A), the surface structure of Co-containing phases (B), and the free energies of CO 2 hydrogenation (C, D) for CH and CO under the conditions of a temperature of 270 °C and a pressure of 4.0 MPa. indicate
도 37은 HCOO 중간생성물 및 HOCO 중간생성물을 통한 RWGS 반응의 DFT에 의해 계산된 자유 에너지 프로파일(A, B)과 CH 형성으로의 CO 수소화의 자유 에너지 프로파일(C)을 나타낸다.37 shows the free energy profiles (A, B) calculated by DFT of the RWGS reaction with HCOO and HOCO intermediates and the free energy profile of CO hydrogenation to CH formation (C).
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 이산화탄소와 수소의 직접 반응을 통한 탄화수소 화합물 합성 반응용 촉매, 이의 제조방법 및 이를 이용한 탄화수소 화합물 합성 방법에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a catalyst for synthesizing a hydrocarbon compound through a direct reaction of carbon dioxide and hydrogen according to an embodiment of the present invention, a method for preparing the same, and a method for synthesizing a hydrocarbon compound using the same will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure. In the accompanying drawings, the dimensions of the structures are shown enlarged than actual for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "comprise" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
도 1은 본 발명의 실시예에 따른 코발트-망간 복합체 촉매를 제조하는 방법을 설명하기 위한 순서도이고, 도 2는 도 1에 도시된 방법에 따라 합성된 촉매를 설명하기 위한 도면이다. 1 is a flowchart for explaining a method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining a catalyst synthesized according to the method shown in FIG. 1.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 코발트-망간 복합체 촉매의 제조방법은, 코발트 전구체 화합물과 망간 전구체 화합물이 용해된 반응 용액 및 염기성 침전제가 용해된 침전제 용액을 혼합하여 서스펜션(suspension) 용액을 형성하는 제1 단계(S110); 상기 서스펜션 용액을 숙성(aging)시키는 제2 단계(S120); 상기 숙성된 서스펜션 용액으로부터 파우더를 분리하는 제3 단계(S130); 및 분리된 파우더를 건조 후 열처리하여 제1 촉매 파우더를 형성하는 제4 단계(S140);를 포함할 수 있다.1 and 2, the method for preparing a cobalt-manganese composite catalyst according to an embodiment of the present invention is a suspension by mixing a reaction solution in which a cobalt precursor compound and a manganese precursor compound are dissolved and a precipitant solution in which a basic precipitant is dissolved. (S110) a first step of forming a suspension solution; A second step (S120) of aging the suspension solution; A third step (S130) of separating powder from the aged suspension solution; and a fourth step (S140) of drying and heat-treating the separated powder to form first catalyst powder.
일 실시예에 있어서, 상기 코발트-망간 복합체 촉매의 제조방법은, 상기 제1 촉매 파우더를 수소 분위기에서 환원시켜 제2 촉매 파우더를 형성하는 제5 단계(S150)를 더 포함할 수 있다. In one embodiment, the manufacturing method of the cobalt-manganese composite catalyst may further include a fifth step ( S150 ) of forming a second catalyst powder by reducing the first catalyst powder in a hydrogen atmosphere.
일 실시예에 있어서, 상기 코발트-망간 복합체 촉매의 제조방법은 상기 제2 촉매 파우더를 이산화탄소(CO2) 및 수소(H2)의 혼합가스의 흐름에 노출시켜 제3 촉매 파우더를 형성하는 제6 단계(S160)를 더 포함할 수 있다. In one embodiment, the manufacturing method of the cobalt-manganese composite catalyst includes exposing the second catalyst powder to a flow of a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) to form a sixth catalyst powder. A step S160 may be further included.
본 발명에 따라 제조된 코발트-망간 복합체 촉매는 이산화탄소(CO2)와 수소(H2)를 직접 반응시켜 탄화수소 화합물, 예를 들면, 탄소수 5 이상(C5+)의 액체 탄화수소 화합물을 생성하는 반응의 촉매로 사용될 수 있다.The cobalt-manganese composite catalyst prepared according to the present invention directly reacts carbon dioxide (CO 2 ) and hydrogen (H 2 ) to produce a hydrocarbon compound, for example, a liquid hydrocarbon compound having 5 or more carbon atoms (C 5+ ). can be used as a catalyst for
상기 제1 단계(S110)에 있어서, 상기 코발트 전구체는 상기 반응 용액에 코발트(Co) 이온을 제공할 수 있는 물질이라면 특별히 제한되지 않고, 예를 들면, 코발트 질화물을 포함할 수 있다. 상기 망간 전구체 화합물은 상기 반응 용액에 망간 이온을 제공할 수 있는 물질이라면 특별히 제한되지 않고, 예를 들면, 망간(Mn) 질화물을 포함할 수 있다. In the first step S110, the cobalt precursor is not particularly limited as long as it is a material capable of providing cobalt (Co) ions to the reaction solution, and may include, for example, cobalt nitride. The manganese precursor compound is not particularly limited as long as it is a material capable of providing manganese ions to the reaction solution, and may include, for example, manganese (Mn) nitride.
일 실시예에 있어서, 상기 코발트 전구체와 상기 망간 전구체는 상기 반응 용액 내에서 코발트 이온과 망간 이온의 전체 몰 수에 대한 상기 망간 이온의 몰 수의 비가 약 3 이상 20% 이하가 되도록 상기 반응 용액에 첨가될 수 있다. 상기 반응 용액의 용매는 상기 코발트 전구체와 상기 망간 전구체를 용해시킬 수 있다면 특별히 제한되지 않고, 예를 들면, 탈이온수 등과 같은 물이 상기 용매로 사용될 수 있다. 일 예로, 상기 코발트 전구체와 상기 망간 전구체는 상기 반응 용액 내에서 코발트 이온과 망간 이온의 전체 몰 수에 대한 상기 망간 이온의 몰 수의 비가 약 4 이상 18% 이하, 약 5 이상 15% 이하, 약 6 이상 약 14% 이하, 약 7 이상 13% 이하, 약 8 이상 12% 이하, 또는 약 9 이상 11% 이하가 되도록 상기 반응 용액에 첨가될 수 있다. In one embodiment, the cobalt precursor and the manganese precursor are added to the reaction solution so that the ratio of the number of moles of manganese ion to the total number of moles of cobalt ion and manganese ion in the reaction solution is about 3 or more and less than or equal to 20%. may be added. The solvent of the reaction solution is not particularly limited as long as it can dissolve the cobalt precursor and the manganese precursor, and for example, water such as deionized water may be used as the solvent. For example, in the cobalt precursor and the manganese precursor, the ratio of the number of moles of manganese ion to the total number of moles of cobalt ion and manganese ion in the reaction solution is about 4 or more and 18% or less, about 5 or more and 15% or less, about 6 or more and about 14% or less, about 7 or more and 13% or less, about 8 or more and 12% or less, or about 9 or more and 11% or less.
그리고, 상기 반응 용액에서 상기 코발트 전구체와 상기 망간 전구체의 전체농도는 약 1 내지 5 mol/L일 수 있다. 예를 들면, 상기 반응 용액에서 상기 코발트 전구체와 상기 망간 전구체의 농도는 약 1.5 내지 3 mol/L일 수 있다. In addition, the total concentration of the cobalt precursor and the manganese precursor in the reaction solution may be about 1 to 5 mol/L. For example, concentrations of the cobalt precursor and the manganese precursor in the reaction solution may be about 1.5 to 3 mol/L.
한편, 상기 염기성 침전제는 상기 서스펜션 용액을 염기성으로 조절하여 상기 코발트 전구체로부터 해리된 코발트 이온과 상기 망간 전구체로부터 해리된 망간 이온의 반응물을 석출시킬 수 있다. 상기 염기성 침전제로는 염기성 화합물이 제한 없이 사용될 수 있다. 일 실시예로, 상기 염기성 침전제는 나트륨 탄산염, 예를 들면, 탄산나트륨(Na2CO3)를 포함할 수 있다. 상기 염기성 침전제 용액의 용매는 상기 반응 용액의 용매와 동일할 수 있고, 상기 염기성 침전제 용액에서, 상기 나트륨 탄산염의 농도는 약 1 내지 5 mol/L일 수 있다. 예를 들면, 염기성 침전제 용액에서, 상기 나트륨 탄산염의 농도는 약 1.5 내지 3 mol/L일 수 있다. Meanwhile, the basic precipitant may precipitate a reaction product of cobalt ions dissociated from the cobalt precursor and manganese ions dissociated from the manganese precursor by adjusting the suspension solution to be basic. As the basic precipitating agent, a basic compound may be used without limitation. In one embodiment, the basic precipitant may include sodium carbonate, for example, sodium carbonate (Na 2 CO 3 ). The solvent of the basic precipitant solution may be the same as the solvent of the reaction solution, and the concentration of the sodium carbonate in the basic precipitant solution may be about 1 to 5 mol/L. For example, in the basic precipitant solution, the concentration of the sodium carbonate may be about 1.5 to 3 mol/L.
일 실시예로, 상기 서스펜션(suspension) 용액을 형성하기 위해, 약 20 내지 40℃의 온도 및 교반 조건하에서, 상기 반응 용액과 상기 침전제 용액 각각을 상기 반응용액 및 상기 침전제 용액의 용매와 동일한 용매에 한 방울씩 적가하여 상기 코발트 전구체로부터 해리된 코발트 이온과 상기 망간 전구체로부터 해리된 망간 이온을 반응시킬 수 있다. 이 때, 상기 서스펜션(suspension) 용액의 pH는 약 7.5 내지 8.5로 유지될 수 있다. 일 실시예로, 상기 반응 용액과 상기 침전제 용액의 적가(dropwise addition)에 의해 밝은 보라색 석출물이 형성될 수 있다. In one embodiment, in order to form the suspension solution, the reaction solution and the precipitant solution are mixed in the same solvent as the solvent of the reaction solution and the precipitant solution, respectively, at a temperature of about 20 to 40 ° C. and stirring conditions. By adding dropwise, the cobalt ions dissociated from the cobalt precursor and the manganese ions dissociated from the manganese precursor may react. At this time, the pH of the suspension solution may be maintained at about 7.5 to 8.5. In one embodiment, a bright purple precipitate may be formed by dropwise addition of the reaction solution and the precipitant solution.
상기 제2 단계(S120)에 있어서, 상기 서스펜션 용액은 밀폐된 용기 내에서 약 4 내지 10시간 동안 교반한 이후, 약 20 내지 40℃에서 교반 없이 약 4 내지 10시간 동안 숙성될 수 있다. In the second step (S120), the suspension solution may be aged for about 4 to 10 hours without stirring at about 20 to 40 ° C. after stirring for about 4 to 10 hours in a sealed container.
상기 제3 단계(S130)에 있어서, 원심분리를 통해 상기 숙성된 서스펜션으로부터 상기 코발트 이온과 상기 망간 이온의 반응에 의해 생성된 파우더들을 분리할 수 있고, 분리된 파우더들은 탈이온수를 이용하여 세척될 수 있다. 상기 파우더들은 분리하기 위한 원심분리 조건은 특별히 제한되지 않는다. In the third step (S130), it is possible to separate the powders produced by the reaction of the cobalt ions and the manganese ions from the aged suspension through centrifugation, and the separated powders are washed using deionized water. can Centrifugation conditions for separating the powders are not particularly limited.
상기 제4 단계(S140)에 있어서, 상기 분리된 파우더들은 약 90 내지 110℃의 온도에서 건조된 후 약 300 내지 360℃의 온도 및 공기 흐름 조건 하에서 약 2 내지 5시간 동안 열처리될 수 있고, 이러한 열처리에 의해 코발트 산화물 및 망간 산화물을 함유하는 제1 촉매 파우더가 형성될 수 있다. In the fourth step (S140), the separated powders may be dried at a temperature of about 90 to 110 ° C. and then heat-treated for about 2 to 5 hours under air flow conditions of about 300 to 360 ° C. A first catalyst powder containing cobalt oxide and manganese oxide may be formed by heat treatment.
일 실시예에 있어서, 상기 제1 촉매 파우더는 코발트 산화물 상, 망간 산화물 상 및 이들 각각에 나트륨이 도핑된 상을 포함할 수 있다. In one embodiment, the first catalyst powder may include a cobalt oxide phase, a manganese oxide phase, and a phase each of which is doped with sodium.
상기 제5 단계(S150)에 있어서, 상기 제1 촉매 파우더를 수소 가스의 흐름에 노출시켜 상기 제1 촉매 파우더의 코발트 산화물 상 중 일부를 금속 코발트 상으로 환원시킴으로써 상기 제2 촉매 파우더를 생성할 수 있다. 일 실시예로, 상기 제2 촉매 파우더는 금속 코발트 상; CoO, Co3O4 등의 코발트 산화물 상; MnO, MnO2, Mn2O3, Mn3O4 등의 망간 산화물 상을 포함할 수 있다. 한편, 상기 제1 촉매 파우더에 함유된 망간은 상기 상기 코발트 산화물 상의 환원 반응을 저하시킬 수 있고, 금속 코발트 상의 결정 성장을 억제할 수 있고, 그 결과 전체 코발트 산화물 상이 금속 코발트 상으로 환원되는 것을 방지할 수 있을 뿐만 아니라 상대적으로 작은 결정크기의 금속 코발트 상이 형성될 수 있다. 일 예로, 상기 금속 코발트 상은 조밀육방격자(hexagonal close-packed lattice) 구조의 결정상을 포함할 수 있고, 상대적으로 적은 양의 면심입방격자(face centered cubic lattice) 구조의 결정상을 추가로 포함할 수 있다.In the fifth step (S150), the second catalyst powder may be produced by exposing the first catalyst powder to a flow of hydrogen gas to reduce a part of the cobalt oxide phase of the first catalyst powder to a metallic cobalt phase. there is. In one embodiment, the second catalyst powder is a metallic cobalt phase; cobalt oxide phases such as CoO, Co 3 O 4 ; Manganese oxide phases such as MnO, MnO 2 , Mn 2 O 3 , and Mn 3 O 4 may be included. Meanwhile, manganese contained in the first catalyst powder may reduce the reduction reaction of the cobalt oxide phase and inhibit crystal growth of the metallic cobalt phase, and as a result, reduce the entire cobalt oxide phase to the metallic cobalt phase. In addition, a metal cobalt phase with a relatively small crystal size can be formed. For example, the metallic cobalt phase may include a hexagonal close-packed lattice structure crystal phase, and may further include a relatively small amount of a face centered cubic lattice structure crystal phase. .
일 실시예로, 상기 제1 촉매 파우더는 관형 반응기 내에 고정된 후 약 1 내지 5℃의 승온 속도로 약 320 내지 400℃의 온도까지 승온시키면서 약 4 내지 8시간 동안 상기 수소 가스 흐름에 노출되어 상기 제2 촉매 파우더로 변환될 수 있고, 이 때, 상기 관형 반응기 내부의 압력은 약 3.5 내지 5.0 MPa로 조절될 수 있다. 한편, 상기 제1 촉매 파우더는 열적 희석제인 실리카 파우더와 혼합된 후 석영솜 등과 같은 다공성 지지체에 의해 상기 관형 반응기 내부에 고정될 수 있다. In one embodiment, the first catalyst powder is exposed to the hydrogen gas flow for about 4 to 8 hours while being heated to about 320 to 400 ° C. at a heating rate of about 1 to 5 ° C after being fixed in a tubular reactor. It may be converted into a second catalyst powder, and at this time, the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa. Meanwhile, the first catalyst powder may be mixed with silica powder as a thermal diluent and then fixed inside the tubular reactor by a porous support such as quartz wool.
상기 제6 단계(S160)에 있어서, 상기 제2 촉매 파우더의 코발트 산화물 상 중 일부는 수소에 의해 추가적으로 금속 코발트 상으로 환원될 수 있고, 이산화탄소의 분해로 인해 생성된 탄소 종에 의해 망간 산화물 중 일부분은 망간 탄산염으로 전환될 수 있고, 금속 코발트 상의 표면에 코발트 탄화물(Co2C) 상이 형성될 수 있으며, 상기 제3 촉매 파우더가 형성되는 과정에 상기 제2 촉매 파우더들 사이의 응집이 발생할 수 있다. In the sixth step (S160), a part of the cobalt oxide phase of the second catalyst powder may be additionally reduced to a metal cobalt phase by hydrogen, and a part of manganese oxide by carbon species generated by decomposition of carbon dioxide. Silver may be converted into manganese carbonate, a cobalt carbide (Co 2 C) phase may be formed on the surface of the metallic cobalt phase, and agglomeration may occur between the second catalyst powders in the process of forming the third catalyst powder. .
이에 의해, 도 2에 도시된 바와 같이, 상기 제6 단계(S160) 동안 상기 제2 촉매 파우더는 금속 코발트 상의 코어; 및 상기 코어의 표면에 형성되고 코발트 산화물 상, 코발트 탄화물 상 등을 포함하며 상기 코어의 표면 일부를 외부에 노출시키는 기공들이 형성된 다공성 구조의 쉘을 구비하는 코어쉘 구조의 상기 제3 촉매 파우더로 전환될 수 있다. 상기 제3 촉매 파우더의 구조 및 조성에 대해서는 후술한다. As a result, as shown in FIG. 2, during the sixth step (S160), the second catalyst powder includes a core on metal cobalt; and a shell having a porous structure formed on the surface of the core, including a cobalt oxide phase, a cobalt carbide phase, and the like, and having pores exposing a portion of the surface of the core to the outside. It can be. The structure and composition of the third catalyst powder will be described later.
일 실시예에 있어서, 상기 제6 단계(S160)는 관형 반응기 내에 상기 제2 촉매 파우더를 고정한 상태에서 상기 관형 반응기 내부의 온도를 약 250 내지 300℃로 조절한 후 수소(H2) 및 이산화탄소(CO2)의 혼합가스(H2/CO2)를 일정시간 흘려줌으로써 수행될 수 있다. 상기 관형 반응기 내부의 온도가 250℃ 미만인 경우에는 이산화탄소 분해 반응이 미약하여 코발트 금속상 또는 코발트 탄화물 상의 생성이 부족해지는 문제점이 발생할 수 있고, 300℃를 초과하는 경우에는 상기 제3 촉매 파우더의 구조적 붕괴가 일어날 수 있을 뿐만 아니라 나노입자들의 응집에 의해 야기되는 금속 Co 상의 재산화에 의해 RWGS 반응보다는 이산화탄소의 메탄화 반응이 더 우세적으로 발생하는 문제점이 발생할 수 있다. 예를 들면, 상기 제6 단계(S160)에서, 상기 관형 반응기 내부의 온도는 약 270 내지 290℃로 조절될 수 있다. In one embodiment, the sixth step (S160) is to adjust the temperature inside the tubular reactor to about 250 to 300 ° C. in a state in which the second catalyst powder is fixed in the tubular reactor, and then hydrogen (H 2 ) and carbon dioxide ( It can be performed by flowing a mixed gas (H 2 /CO 2 ) of CO 2 for a certain period of time. When the temperature inside the tubular reactor is less than 250 ° C, the decomposition reaction of carbon dioxide is weak, and the problem of insufficient production of cobalt metal phase or cobalt carbide phase may occur, and when it exceeds 300 ° C, structural collapse of the third catalyst powder may occur as well as a problem that the methanation reaction of carbon dioxide occurs more predominantly than the RWGS reaction due to the re-oxidation of the metal Co phase caused by the aggregation of the nanoparticles. For example, in the sixth step (S160), the temperature inside the tubular reactor may be adjusted to about 270 to 290 °C.
일 실시예에 있어서, 상기 제6 단계(S160)는 관형 반응기 내에 상기 제2 촉매 파우더를 고정한 상태에서 상기 관형 반응기 내부의 압력을 약 3.5 MPs 이상으로 조절한 후 수소(H2) 및 이산화탄소(CO2)의 혼합가스(H2/CO2)를 일정시간 흘려줌으로써 수행될 수 있다. 상기 반응기 내부의 압력이 3.5 MPa 미만인 경우, Co2C 및 Co3O4의 생성이 저하되어 C5+ 탄화수소 산출율에 부정적인 영향을 미칠 수 잇다. 예를 들면, 상기 제6 단계(S160)에서 상기 관형 반응기 내부의 압력은 상기 제5 단계(S150)에서의 관형 반응기 내부의 압력과 동일 또는 유사하게 약 3.5 내지 5.0 MPa로 조절될 수 있다.In one embodiment, in the sixth step (S160), hydrogen (H 2 ) and carbon dioxide (CO 2 ) by flowing a mixed gas (H 2 /CO 2 ) for a certain period of time. When the pressure inside the reactor is less than 3.5 MPa, the production of Co 2 C and Co 3 O 4 is reduced, which may negatively affect the yield of C5+ hydrocarbons. For example, the pressure inside the tubular reactor in the sixth step (S160) may be adjusted to about 3.5 to 5.0 MPa, the same as or similar to the pressure inside the tubular reactor in the fifth step (S150).
일 실시예에 있어서, 상기 제6 단계(S160)에서 상기 관형 반응기 내부에는 수소(H2) 및 이산화탄소(CO2)가 약 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스의 흐름이 형성될 수 있다. 상기 H2/CO2 비율이 2.5 미만인 경우에는 코발트 산화물의 환원에 의해 형성되는 금속 코발트 양이 적어서 FTS 반응을 저하시키는 문제점이 발생할 수 있고, 3.5를 초과하는 경우에는 입자의 응집에 의한 금속 Co 상의 재산화에 의해 FTS 반응을 저하시키는 문제점이 발생할 수 있다. 한편, 상기 혼합가스는 약 4000 내지 10000 mL g-1 h-1의 GHSV(gas hourly space velocity)로 상기 관형 반응기에 공급될 수 있다.In one embodiment, in the sixth step (S160), a flow of a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of about 2.5: 1 to 3.5: 1 is formed inside the tubular reactor. It can be. When the H 2 /CO 2 ratio is less than 2.5, the amount of metal cobalt formed by reduction of cobalt oxide is small, which may cause a problem of lowering the FTS reaction, and when it exceeds 3.5, the metal Co phase due to aggregation of particles Re-oxidation may cause a problem of lowering the FTS reaction. Meanwhile, the mixed gas may be supplied to the tubular reactor at a gas hourly space velocity (GHSV) of about 4000 to 10000 mL g −1 h −1 .
도 2에 도시된 바와 같이, 상기의 방법으로 제조된 촉매는, 금속 코발트 상으로 형성된 코어; 및 상기 코어 표면에서 Co3O4 상 및 Co2C 상을 포함하는 혼합물로 형성된 쉘을 포함할 수 있다.As shown in Figure 2, the catalyst prepared by the above method, the core formed on the metal cobalt; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core.
일 실시예에 있어서, 상기 촉매에 있어서, 코발트 및 망간 원소의 전체 몰 수에 대한 망간 원소의 몰 수의 비[Mn/(Co+Mn)]는 약 3 이상 20% 이하일 수 있다. 코발트 및 망간 원소의 전체 몰 수에 대한 망간 원소의 몰 수의 비가 3% 미만인 경우에는 망간 함유 상에 의한 연쇄 사슬성장반응(Chain-growth reaction)의 향상을 기대하기 어려워 탄소수 5 이상의 장쇄 탄화수소 형성 선택도가 저하되고, 이산화탄소의 직접 분해 반응을 촉진하는 코발트 산화물 상의 비율이 감소되어 이산화탄소의 전환율이 저하되는 등의 문제점이 발생할 수 있다. 그리고 코발트 및 망간 원소의 전체 몰 수에 대한 망간 원소의 몰 수의 비가 20%를 초과하는 경우에는 금속 코발트 상의 생성이 부족할 수 있고, 이산화탄소의 전환율이 저하될 수 있다. 예를 들면, 상기 코발트-망간 복합체 촉매에 있어서, 상기 코발트 및 망간 원소의 전체 몰 수에 대한 망간 원소의 몰 수의 비는 약 4 이상 18% 이하, 약 5 이상 15% 이하, 약 6 이상 약 14% 이하, 약 7 이상 13% 이하, 약 8 이상 12% 이하, 또는 약 9 이상 11% 이하일 수 있다.In one embodiment, in the catalyst, the ratio of the number of moles of manganese elements to the total number of moles of cobalt and manganese elements [Mn/(Co+Mn)] may be about 3 or more and about 20% or less. When the ratio of the number of moles of manganese to the total number of moles of cobalt and manganese is less than 3%, it is difficult to expect improvement in the chain-growth reaction by the manganese-containing phase. Problems such as a decrease in the degree of carbon dioxide conversion and a decrease in the conversion rate of carbon dioxide may occur due to a decrease in the proportion of the cobalt oxide phase that promotes the direct decomposition reaction of carbon dioxide. And, when the ratio of the number of moles of the manganese element to the total number of moles of the cobalt and manganese elements exceeds 20%, the production of the metallic cobalt phase may be insufficient, and the conversion rate of carbon dioxide may decrease. For example, in the cobalt-manganese composite catalyst, the ratio of the number of moles of the manganese element to the total number of moles of the cobalt and manganese elements is about 4 or more and 18% or less, about 5 or more and 15% or less, about 6 or more about 14% or less, about 7 or more and 13% or less, about 8 or more and 12% or less, or about 9 or more and 11% or less.
일 실시예에 있어서, 상기 코어는 밀한 조밀육방격자(hexagonal close-packed lattice) 구조의 결정상을 가지는 금속 코발트 상을 포함할 수 있고, 상기 쉘은 산소 공공을 포함하는 Co3O4 상 및 코발트 탄화물(Co2C) 상을 포함할 수 있다. 상기 쉘에는 상기 코어를 외부에 노출시키는 기공이 형성될 수 있다.In one embodiment, the core may include a metallic cobalt phase having a crystal phase of a hexagonal close-packed lattice structure, and the shell may include a Co 3 O 4 phase containing oxygen vacancies and cobalt carbide. (Co 2 C) phase. Pores exposing the core to the outside may be formed in the shell.
일 실시예로, 상기 촉매에 있어서 코발트 함유 상 중 금속 코발트 상의 분율은 약 90% 이상 100% 미만, 약 91% 이상 99% 이하 또는 약 92% 이상 98% 이하일 수 있다. In one embodiment, the fraction of the metallic cobalt phase in the cobalt-containing phase in the catalyst may be about 90% or more and less than 100%, about 91% or more and 99% or less, or about 92% or more and 98% or less.
일 실시예로, 상기 촉매의 쉘은 코발트 산화물 상으로 Co3O4 이외에 CoO를 더 포함할 수 있고, 이 경우, [CoO+Co3O4]/CoO 비율은 약 1.5 내지 1.9일 수 있다. In one embodiment, the shell of the catalyst may further include CoO in addition to Co 3 O 4 as a cobalt oxide phase, and in this case, the [CoO+Co 3 O 4 ]/Co O ratio may be about 1.5 to 1.9. .
일 실시예로, 상기 촉매의 쉘에서 Co2C 상의 면적비율은 약 10 내지 30%, 약 11 내지 20% 또는 약 12 내지 17%일 수 있다.In one embodiment, the area ratio of the Co 2 C phase in the shell of the catalyst may be about 10 to 30%, about 11 to 20%, or about 12 to 17%.
한편, 상기 쉘은 망간 함유 상을 더 포함할 수 있다. 상기 망간 함유 상은 망간 탄산화물 상 및 망간 산화물 상을 포함할 수 있다. 일 실시예로, 상기 망간 탄산화물 상은 MnCO3 상을 포함할 수 있고, 상기 망간 산화물 상은 Mn2O3, Mn3O4을 포함할 수 있다. 일 실시예로, 상기 망간 함유 상에서 상기 MnCO3 상의 분율은 약 90 내지 99%, 약 91 내지 97 또는 약 92 내지 95%일 수 있다.Meanwhile, the shell may further include a manganese-containing phase. The manganese-containing phase may include a manganese carbonate phase and a manganese oxide phase. In one embodiment, the manganese carbonate phase may include a MnCO 3 phase, and the manganese oxide phase may include Mn 2 O 3 and Mn 3 O 4 . In one embodiment, the fraction of the MnCO 3 phase in the manganese-containing phase may be about 90 to 99%, about 91 to 97, or about 92 to 95%.
일 실시예에 있어서, 상기 쉘에 있는 산소 공공 함유 코발트 산화물은 이산화탄소의 분해 반응, 예를 들면, RWGS(Reverse Water Gas Shift) 반응의 활성을 향상시킬 수 있고, 상기 코발트 탄화물 상 및 상기 금속 코발트 상은 상기 이산화탄소의 분해 반응에 의해 생성된 CHO 라디컬(CHO*), CO 라디컬(CO*) 등의 중간 생성물의 수소화 반응, 예를 들면, 피셔 트롭쉬 합성반응(Fischer-Tropsch Synthesis, FTS) 및 사슬 성장 반응의 활성을 향상시킬 수 있다. 예를 들면, 상기 쉘에 있는 코발트 산화물 상의 산소 공공 사이트에서 이산화탄소의 분해 반응이 일어나서 CHO* 및 CO*의 중간생성물이 생성될 수 있고, 이러한 중간생성물이 인접한 코발트 탄화물 상(Co2C) 및 코어의 금속 코발트(Co) 상으로 이동하여 수소화 및 사슬 성장 반응이 일어날 수 있다. In one embodiment, the cobalt oxide containing oxygen vacancies in the shell can improve the activity of a decomposition reaction of carbon dioxide, for example, a reverse water gas shift (RWGS) reaction, and the cobalt carbide phase and the metal cobalt phase are Hydrogenation of intermediate products such as CHO radicals (CHO*) and CO radicals (CO*) generated by the decomposition reaction of carbon dioxide, for example, Fischer-Tropsch Synthesis (FTS), and The activity of the chain growth reaction can be enhanced. For example, a decomposition reaction of carbon dioxide may occur at an oxygen vacancy site on cobalt oxide in the shell to produce intermediates of CHO* and CO*, and these intermediates may form adjacent cobalt carbide phases (Co 2 C) and the core. may migrate onto the metal cobalt (Co) phase of hydrogenation and chain growth reactions.
한편, 상기 제3 촉매 파우더의 최외곽에는 그라파이트성 탄소층이 추가로 형성될 수 있고, 이러한 탄소층은 탄화수소 사슬 성장 반응의 활성을 더욱 증가시키는데 기여할 수 있다.Meanwhile, a graphitic carbon layer may be additionally formed on the outermost surface of the third catalyst powder, and this carbon layer may contribute to further increasing the activity of the hydrocarbon chain growth reaction.
상기 촉매는 이산화탄소의 수소화 반응을 통해 탄소수 5 이상의 탄화수소를 형성하는 반응의 촉매로 사용될 수 있다. The catalyst may be used as a catalyst for a reaction in which hydrocarbons having 5 or more carbon atoms are formed through hydrogenation of carbon dioxide.
일 실시예로, 상기 촉매가 고정된 관형 반응기 내부로 수소 및 이산화탄소의 혼합가스를 공급하여 이산화탄소의 수소화 반응을 유도함으로써 상기 탄소수 5 이상의 탄화수소를 생성할 수 있다. In one embodiment, a hydrocarbon having 5 or more carbon atoms may be produced by inducing a hydrogenation reaction of carbon dioxide by supplying a mixed gas of hydrogen and carbon dioxide into a tubular reactor in which the catalyst is fixed.
일 실시예에 있어서, 상기 촉매가 고정된 관형 반응기 내부의 온도를 약 250 내지 300℃로 조절한 후 수소(H2) 및 이산화탄소(CO2)의 혼합가스(H2/CO2)를 상기 관형 반응기 내부로 일정 속도로 공급할 수 있다. 상기 관형 반응기 내부의 온도가 250℃ 미만인 경우에는 이산화탄소의 메탄화 반응이 지배적으로 발생하여 탄소수 5 이상의 탄화수소 산출율이 저하되는 문제점이 발생할 수 있고, 상기 관형 반응기 내부의 온도가 300℃를 초과하는 경우에는 상기 촉매의 구조적 붕괴가 발생할 수 있을 뿐만 아니라 나노입자들의 응집에 의해 야기되는 금속 Co 상의 재산화에 의해 이산화탄소의 메탄화 반응이 더 우세적으로 발생하는 문제점이 발생할 수 있다. 예를 들면, 상기 촉매가 고정된 관형 반응기 내부의 온도는 약 270 내지 290℃로 조절될 수 있다. In one embodiment, after adjusting the temperature inside the tubular reactor in which the catalyst is fixed to about 250 to 300 ° C., a mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) (H 2 /CO 2 ) is introduced into the tubular reactor. It can be supplied at a constant rate into the reactor. When the temperature inside the tubular reactor is less than 250 ° C, the methanation reaction of carbon dioxide predominantly occurs, which may cause a decrease in the yield of hydrocarbons having 5 or more carbon atoms, and when the temperature inside the tubular reactor exceeds 300 ° C In this case, not only structural collapse of the catalyst may occur, but also a problem in that the methanation reaction of carbon dioxide occurs more predominantly due to reoxidation of the metal Co phase caused by the aggregation of nanoparticles. For example, the temperature inside the tubular reactor in which the catalyst is fixed may be adjusted to about 270 to 290°C.
일 실시예에 있어서, 이산화탄소의 수소화 반응을 위해, 상기 관형 반응기 내부의 압력은 약 3.5 MPs 이상으로 조절한 후 상기 혼합가스(H2/CO2)를 상기 관형 반응기 내부로 일정 속도로 공급할 수 있다. 상기 반응기 내부의 압력이 3.5 MPa 미만인 경우, C2~C4 탄화수소의 재흡착이 감소되어 C5+ 탄화수소 산출율이 저하되는 문제점이 발생할 수 있다. 예를 들면, 상기 관형 반응기 내부의 압력은 약 3.5 내지 5.0 MPa로 조절될 수 있다.In one embodiment, for the hydrogenation reaction of carbon dioxide, the pressure inside the tubular reactor is adjusted to about 3.5 MPs or more, and then the mixed gas (H 2 /CO 2 ) can be supplied into the tubular reactor at a constant rate. . When the pressure inside the reactor is less than 3.5 MPa, re-adsorption of C 2 to C 4 hydrocarbons may be reduced, resulting in a decrease in the yield of C 5+ hydrocarbons. For example, the pressure inside the tubular reactor may be adjusted to about 3.5 to 5.0 MPa.
일 실시예에 있어서, 이산화탄소의 수소화 반응을 위해, 상기 관형 반응기 내부에는 수소(H2) 및 이산화탄소(CO2)가 약 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스가 공급될 수 있다. 상기 H2/CO2 비율이 2.5 미만인 경우에는 수소가 부족하여 FTS 반응이 저하되는 문제점이 발생할 수 있고, 3.5를 초과하는 경우에는 입자의 응집에 의한 촉매의 금속 Co 상의 재산화에 의해 FTS 반응을 저하되는 문제점이 발생될 수 있다. 한편, 상기 혼합가스는 약 4000 내지 10000 mL g-1 h-1의 GHSV(gas hourly space velocity)로 상기 관형 반응기에 공급될 수 있다.In one embodiment, for the hydrogenation reaction of carbon dioxide, a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) is mixed at a ratio of about 2.5: 1 to 3.5: 1 may be supplied into the tubular reactor. . When the H 2 /CO 2 ratio is less than 2.5, there may be a problem that the FTS reaction is deteriorated due to insufficient hydrogen, and when it exceeds 3.5, the FTS reaction is caused by re-oxidation of the metal Co phase of the catalyst due to aggregation of particles Deterioration problems may occur. Meanwhile, the mixed gas may be supplied to the tubular reactor at a gas hourly space velocity (GHSV) of about 4000 to 10000 mL g −1 h −1 .
상기 촉매를 이용하여, 이산화탄소의 수소화 반응을 수행하는 경우, 약 60% 이상의 높은 CO2 전환율 및 약 30% 이상의 현저하게 높은 C5+ 탄화수소 선택도를 달성할 수 있고, 약 0.5% 미만의 선택도로 일산화탄소의 생성을 고도로 억제할 수 있다. When hydrogenation of carbon dioxide is performed using the catalyst, a high CO 2 conversion rate of about 60% or more and a remarkably high C 5+ hydrocarbon selectivity of about 30% or more can be achieved, with a selectivity of less than about 0.5%. The production of carbon monoxide can be highly suppressed.
그리고 상기 촉매를 이용하여 생성된 C5+ 탄화수소 중 선형 파라핀의 비율은 약 90%이상일 수 있다. 예를 들면, 상기 촉매를 이용하여 생성된 C5+ 탄화수소에 있어서, 올레핀/파라핀의 비율은 약 0.5% 미만일 수 있고, 산소화된 종의 비율 역시 약 1% 미만으로 극히 낮을 수 있다. In addition, the proportion of linear paraffin among the C5+ hydrocarbons produced using the catalyst may be about 90% or more. For example, in C5+ hydrocarbons produced using the catalyst, the ratio of olefins/paraffins may be less than about 0.5%, and the ratio of oxygenated species may also be extremely low, such as less than about 1%.
이하 본 발명의 구체적인 실시예에 대해 상술한다. 다만, 하기 실시예는 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, specific embodiments of the present invention will be described in detail. However, the following examples are merely some embodiments of the present invention, and the scope of the present invention is not limited to the following examples.
[실시예][Example]
공동 석출 방법을 사용하여 Mn-촉진 코어쉘 Co@CoOx/Co2C 촉매(CMO-y, 여기서 y는 Mn의 mol%를 나타냄)를 합성하였고, 이를 이용하여 이산화탄소의 수소화 반응을 수행하였다.A Mn-promoted core-shell Co@CoO x /Co 2 C catalyst (CMO-y, where y represents mol% of Mn) was synthesized using a co-precipitation method, and hydrogenation of carbon dioxide was performed using the same.
CatalystsCatalysts Concentration (mol L-1)Concentration (mol L -1 )
Co(NO3)2·6H2OCo(NO 3 ) 2 6H 2 O Mn(NO3)2·4H2OMn(NO 3 ) 2 4H 2 O Na2CO3 Na 2 CO 3
CMO-0CMO-0 2.02.0 -- 2.02.0
CMO-10CMO-10 1.81.8 0.20.2 2.02.0
CMO-25CMO-25 1.51.5 0.50.5 2.02.0
CMO-50CMO-50 1.01.0 1.01.0 2.02.0
CMO-75CMO-75 0.50.5 1.51.5 2.02.0
CMO-100CMO-100 -- 2.02.0 2.02.0
먼저, 코발트 질화물[Co(NO3)2·6H2O] 및 망간 질화물[Mn(NO3)2·4H2O]을 표1에 기재된 비율로 탈이온수(Distilled and Deionized water)에 용해시켜 2 mol/L 농도의 반응용액을 준비하였고, 탄산나트륨[Na2CO3]을 2 mol/L 농도로 탈이온수에 용해시켜 침전제 용액을 준비하였다. 이어서, 25℃에서 격렬한 교반 조건 하에서 40 mL의 반응용액과 40 mL의 침전제 용액을 50mL의 탈이온수에 한방울씩 첨가하였고, 이 때 혼합 용액의 pH는 8.0±0.1로 유지하였다. 반응 용액과 침전제 용액의 적가(dropwise addition)에 의해 밝은 보라색 석출물이 형성되었다. First, cobalt nitride [Co(NO 3 ) 2 6H 2 O] and manganese nitride [Mn(NO 3 ) 2 4H 2 O] were dissolved in distilled and deionized water at the ratios shown in Table 1 to obtain 2 A reaction solution having a concentration of mol/L was prepared, and a precipitant solution was prepared by dissolving sodium carbonate [Na 2 CO 3 ] in deionized water at a concentration of 2 mol/L. Subsequently, 40 mL of the reaction solution and 40 mL of the precipitant solution were added dropwise to 50 mL of deionized water under vigorous stirring conditions at 25 ° C. At this time, the pH of the mixed solution was maintained at 8.0 ± 0.1. A light purple precipitate was formed by dropwise addition of the reaction solution and the precipitant solution.
이어서, 밀폐된 용기 내에서 6시간 동안 교반한 이후, 혼합 용액을 25℃에서 교반 없이 6시간 동안 숙성시켰다. Subsequently, after stirring for 6 hours in a sealed container, the mixed solution was aged at 25° C. for 6 hours without stirring.
이어서, 숙성된 혼합 용액 서스펜션을 탈이온수와 함께 4000 rpm으로 4번 원심분리하여 파우더를 수집한 후 탈이온수로 세척하였으며, 수집된 파우더를 100℃에서 12시간 동안 건조하였다. Subsequently, the aged mixed solution suspension was centrifuged 4 times with deionized water at 4000 rpm to collect powder, washed with deionized water, and dried at 100° C. for 12 hours.
이어서, 건조된 파우더를 330 ℃에서 100 mL/h의 속도의 공기 흐름 조건 하에서 3시간 동안 열처리하여 '환원 전 촉매 파우더(이하 '환원 전 CMO-y'라 함)'를 제조하였다. Subsequently, the dried powder was heat-treated at 330° C. under an air flow condition of 100 mL/h for 3 hours to prepare ‘catalyst powder before reduction (hereinafter referred to as ‘CMO-y before reduction’)’.
이어서, 10 mm의 내경을 가진 스테인레스스틸 관형 반응기 내에 상기 환원 전 촉매 파우더 1g을 열적 희석제로 사용된 실리카 파우더 3g과 혼합한 후 이를 석영솜(Quartz Wool)을 사용하여 상기 관형 반응기 내의 가운데 부분에 고정시켰다. Subsequently, 1 g of the pre-reduction catalyst powder was mixed with 3 g of silica powder used as a thermal diluent in a stainless steel tubular reactor having an inner diameter of 10 mm, and then it was fixed to the center of the tubular reactor using quartz wool. made it
이어서, 상기 관형 반응기 내에 50 mL/min의 속도의 수소(H2) 흐름 조건, 2.5 ℃/min의 승온 속도를 갖는 350 ℃의 온도 조건, 4.0 MPa의 압력 조건을 형성하여, 상기 환원 전 촉매 파우더를 6시간 동안 미리 환원시켜 '환원 후 촉매 파우더(이하 '환원 후 CMO-y'라 함)'를 제조하였다. Subsequently, a hydrogen (H 2 ) flow condition of 50 mL/min, a temperature condition of 350 °C with a temperature increase rate of 2.5 °C/min, and a pressure condition of 4.0 MPa were formed in the tubular reactor to form the catalyst powder before reduction. was reduced in advance for 6 hours to prepare 'catalyst powder after reduction (hereinafter referred to as 'reduced CMO-y')'.
이어서, 압력을 4.0 MPa로 유지한 상태에서 상기 관형 반응기의 내부 온도를 기설정된 230~310 ℃로 낮추고, 수소(H2) 흐름을 기설정된 혼합비율의 CO2/H2 혼합가스의 흐름으로 전환시켜 125시간 동안 상기 환원 후 촉매 파우더를 혼합 가스에 노출시킴으로써 '전환 촉매 파우더(이하 '전환 CMO-y'라 함)'를 제조하였고, 동일한 조건 하에서 연속적으로 1425시간 동안 이산화탄소의 수소화 반응을 진행하였다.Subsequently, while maintaining the pressure at 4.0 MPa, the internal temperature of the tubular reactor is lowered to a predetermined range of 230 to 310 °C, and the flow of hydrogen (H 2 ) is converted into a flow of a mixed gas of CO 2 /H 2 at a predetermined mixing ratio. 'Converted catalyst powder (hereinafter referred to as 'converted CMO-y')' was prepared by exposing the catalyst powder after reduction to a mixed gas for 125 hours, and hydrogenation of carbon dioxide was continuously performed under the same conditions for 1425 hours. .
[실험예 1]: 수소화 성능[Experimental Example 1]: Hydrogenation performance
도 3은 Mn 함량의 변화에 따른 CMO-y 촉매의 촉매 성능 평가 결과를 나타내는 그래프들이고, 하기 표 2는 본 발명의 촉매의 이산화탄소 수소화를 통한 C5+ 탄화수소 생성 실험 데이터를 나타낸다. 3 is graphs showing the catalytic performance evaluation results of CMO-y catalysts according to changes in Mn content, and Table 2 below shows experimental data of C 5+ hydrocarbon production through carbon dioxide hydrogenation of the catalyst of the present invention.
catalystcatalyst T(℃)T(℃) P(Mpa)P(Mpa) H2/CO2 ratioH 2 /CO 2 ratio Flow rate
(mL/gh)
Flow rate
(mL/gh)
CO2 conversion(%)CO 2 conversion (%) CO selectivity(%)CO selectivity (%) Oxygenate selectivity(%)Oxygenate selectivity (%) hydrocarbon distribution(%)
hydrocarbon distribution (%)
C5+ yield(%)C 5+ yield (%)
CH4 CH4 C2-C4 C 2 -C 4 C5+ C 5+ Aromatics in C5+ Aromatics in C 5+
CMO-0CMO-0 270270 4.04.0 33 40004000 34.334.3 1.11.1 0.50.5 50.350.3 24.524.5 25.325.3 00 8.78.7
CMO-10CMO-10 270270 4.04.0 33 40004000 64.364.3 0.20.2 0.70.7 44.244.2 22.922.9 32.932.9 00 21.121.1
도 3, 표 2를 참조하면, 0.12 wt%의 Na 함량을 갖는 CMO-10 촉매는 64.3%의 높은 CO2 전환율, 32.9%의 현저하게 높은 C5+ 선택도 및 0.2%의 현저하게 낮은 CO 쪽으로의 선택도를 가지는 것으로 나타났다. 그리고 CMO-10 촉매의 C5+ 탄화수소 산출율은 21.1%로 나타났는데, 종래 Co-기반 촉매(0~1.4%)보다 현저하게 더 높은 것으로서, GHSV≥4000 mL g-1 h-1에서 이전에 보고된 Fe-기반 촉매(11.7~26.4%)에 비견될 수 있을 정도이었다. Referring to FIG. 3 and Table 2, the CMO-10 catalyst with a Na content of 0.12 wt% resulted in a high CO 2 conversion of 64.3%, a significantly high C 5+ selectivity of 32.9% and a significantly low CO of 0.2%. was found to have a selectivity of And the C 5+ hydrocarbon yield of the CMO-10 catalyst was found to be 21.1%, which is significantly higher than that of the conventional Co-based catalyst (0 to 1.4%), as previously reported at GHSV≥4000 mL g -1 h -1 It was comparable to the reported Fe-based catalyst (11.7~26.4%).
이로부터 CMO-10 촉매의 이산화탄소 전환 거동은 이전에 보고된 Co-기반 촉매들과는 다를 것으로 판단된다. 이전에 보고된 Co-기반 촉매들은 70~100%의 부피 비율의 메탄(C1)과 함께 작은 비율의 C2~C4 탄화수소 및 무시할 수 있는 비율의 C5+ 탄화수소를 생성하였다. From this, it is judged that the carbon dioxide conversion behavior of the CMO-10 catalyst is different from previously reported Co-based catalysts. Previously reported Co-based catalysts produced a small proportion of C2 - C4 hydrocarbons and a negligible proportion of C5+ hydrocarbons, with a 70-100% volume fraction of methane (C1).
CMO-10 촉매 상에서의 C5+ 탄화수소의 사슬 성장 확률은 0.74이었고, 이는 다른 Co-기반 촉매들(<0.25)보다 현저하게 더 높았다. 그리고, CMO-10 촉매 상에 형성된 탄화수소의 분포는 32.9%의 C5+ 탄화수소, 44.2%의 메탄(CH4) 및 22.9%의 C2~C4 탄화수소로 측정되었고, 이로부터 CMO-10 촉매가 적용된 단일 경로(one-pass) 이산화탄소 스트림(CO2 stream)을 통해 높은 산출율로 가스 및 액체 연료를 생성할 수 있음을 확인할 수 있었다. The chain growth probability of C 5+ hydrocarbons on the CMO-10 catalyst was 0.74, which was significantly higher than other Co-based catalysts (<0.25). And, the distribution of hydrocarbons formed on the CMO-10 catalyst was measured as 32.9% of C 5+ hydrocarbons, 44.2% of methane (CH 4 ) and 22.9% of C 2 ~C 4 hydrocarbons, from which the CMO-10 catalyst It was confirmed that gas and liquid fuels can be produced at a high yield through the applied one-pass carbon dioxide stream (CO 2 stream).
한편, 운송 연료에서 방향족 화합물 함량에 대한 엄격한 규제를 고려하였을 때, 방향족 화합물의 비율이 낮은 C5+ 탄화수소를 생성하는 것이 요구된다. 표 2에 기재된 바와 같이 기존에 C5+ 탄화수소의 산출율을 높이기 위해 제안된 "금속산화물/제올라이트" 복합체 촉매를 사용하여 생성된 C5+ 탄화수소 생성물의 경우, 방향족 화합물이 차지하는 비율이 60~90%이었다. 이에 반해, 도 3의 B에 도시된 바와 같이, CMO-10 촉매 상에서 생성된 C5+ 탄화수소는 대부분 선형 파라핀(n-parafin)이었고, 작은 분율의 브랜치 탄화수소(isoparaffion)(2.5%) 및 올레핀(4.5%)을 포함하였다. 즉, CMO-10 촉매 상에서 생성된 C5+ 탄화수소의 경우, 올레핀/파라핀의 비율이 전반적으로 매우 낮았고(0.07%), 산소화된 종(oxygenate)의 형성은 무시할 수 있을 정도(<0.6%)이었다.On the other hand, considering strict regulations on the content of aromatic compounds in transportation fuels, it is required to produce C 5+ hydrocarbons with a low proportion of aromatic compounds. As shown in Table 2, in the case of C 5+ hydrocarbon products produced using the “metal oxide/zeolite” composite catalyst proposed to increase the yield of C 5+ hydrocarbons, the proportion of aromatic compounds is 60 to 90 was %. On the other hand, as shown in B of FIG. 3, most of the C 5+ hydrocarbons produced on the CMO-10 catalyst were linear paraffins (n-parafin), and a small fraction of branched hydrocarbons (isoparaffion) (2.5%) and olefins ( 4.5%) were included. That is, in the case of C 5+ hydrocarbons produced on the CMO-10 catalyst, the ratio of olefins/paraffins was generally very low (0.07%), and the formation of oxygenates was negligible (<0.6%). .
한편, Fe-기반 촉매 상에서의 단일 경로(one-pass) CO2 전환율은 GHSV≥4000 mL g-1 h-1에서 40% 이하였고, 15% 이상의 높은 잔류 CO 선택도를 나타내었다. 따라서 Fe-기반 촉매 적용 이산화탄소 전환 장치를 실제 상업적 스케일로 구성하기 위해서는, 폐수 리사이클링 장치 또는 2-스테이지 RWGS 및 물 제거 장치를 구비하는 FTS 반응 시스템이 요구된다. 이에 반해, CMO-10 촉매는 높은 CO2 전환율(64.3%), 높은 C5+ 탄화수소 산출율(21.1%), 무시할 수 있을 정도의 CO 선택도(0.7%)를 나타내고, 상대적으로 낮은 온도(270℃)에 반응을 촉진할 수 있으므로, Fe-기반 촉매에 비해 분명한 장점을 가지고 있는 것으로 평가된다. On the other hand, the one-pass CO 2 conversion rate on the Fe-based catalyst was 40% or less at GHSV≥4000 mL g -1 h -1 , and showed a high residual CO selectivity of 15% or more. Therefore, in order to construct a carbon dioxide conversion device using an Fe-based catalyst on a practical commercial scale, a wastewater recycling device or an FTS reaction system equipped with a two-stage RWGS and water removal device is required. In contrast, the CMO-10 catalyst exhibits high CO 2 conversion (64.3%), high C 5+ hydrocarbon yield (21.1%), negligible CO selectivity (0.7%), and relatively low temperature (270%). ℃), it is evaluated to have a clear advantage over Fe-based catalysts.
도 3의 A에 도시된 바와 같이, Co를 함유하지 않는 CMO-100 촉매 상에서는 무시할 수 있을 정도로 작은 CO2 전환(<0.3%)이 관찰되었고, Mn을 함유하지 않는 CMO-0 촉매는 34.3%의 높은 CO2 전환 및 25.3%의 높은 C5+ 탄화수소 선택도 특성, 그리고 CO 쪽으로의 선택도(1.1%)를 고도로 억제하는 특성을 나타내었다. 이로부터 망간산화물은 CO2 전환의 활성 사이트가 아님을 알 수 있다.As shown in Fig. 3A, negligible CO 2 conversion (<0.3%) was observed on the CMO-100 catalyst without Co, and 34.3% of CMO-0 catalyst without Mn. It exhibited high CO 2 conversion and high C 5+ hydrocarbon selectivity of 25.3%, and highly suppressed selectivity towards CO (1.1%). From this, it can be seen that manganese oxide is not an active site for CO 2 conversion.
도 3의 B 내지 D에 도시된 바와 같이, CMO-10 상에서의 사슬 성장 확률은 CMO-0 촉매 상에서보다 조금 더 높았고, 사슬 성장 확률은 CMO-y 촉매에서 Mn 함량이 증가함에 따라 증가되었다. 이로부터 CMO-y 촉매에서 Mn은 사슬 종결 반응을 억제하는 기능을 수행할 수 있어서, Mn 함량이 증가함에 따라 더 긴 장쇄의 탄화수소를 형성할 수 있음을 알 수 있다. 구체적으로, CMO-75 촉매 상에서 생성된 탄화수소에서 C10+ 탄소수소가 주요 종인 것으로 확인되었다. As shown in B to D of FIG. 3, the chain growth probability on CMO-10 was slightly higher than that on CMO-0 catalyst, and the chain growth probability increased with increasing Mn content in CMO-y catalyst. From this, it can be seen that in the CMO-y catalyst, Mn can perform a function of suppressing the chain termination reaction, so that longer chain hydrocarbons can be formed as the Mn content increases. Specifically, it was confirmed that C 10+ carbon hydrogen was the main species in the hydrocarbons produced on the CMO-75 catalyst.
도 4a는 1.0 MPa(A, B), 2.0 MPa(C, D) 및 3.0 MPa(E, F)의 압력조건에서 CMO-0 촉매 및 CMO-10 촉매 상에서의 반응시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이고, 도 4b는 4.0 MPa에서 CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, CMO-100 촉매들 상에서의 반응시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이다. 그리고 도 5a는 CMO-0 촉매(A) 및 CMO-10 촉매(B)의 반응 압력에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프들이고, 도 5b는 CMO-10 촉매의 반응 시간에 따른 CO2 전환율 및 생성물 선택도를 측정한 결과를 나타내는 그래프이다. 도 4a, 도 4b, 도 5a 및 도 5b의 결과는 270℃의 온도 및 3:1의 비율로 혼합된 H2/CO2 합성가스(GHSV = 4000 mL g-1 h-1; CO2 = 1000 mL g-1 h-1; H2 = 3000 mL g-1 h-1)의 반응 조건에서 수행된 결과이고, 각각의 촉매는 반응 전에 4.0 MPa의 압력, 50 mL/min의 H2 흐름, 350℃의 온도 조건(2.5℃/min의 승온 속도)에서 6시간 동안 환원되었다. 또한, 도 6은 CMO-10 촉매의 반응 온도(A), 합성 가스의 H2/CO2 비율(B) 및 GHSV(C)에 따른 CO2 전환율 및 생성물의 선택도를 측정한 결과를 나타내는 그래프들이다. 도 6에서, A는 4.0 MPa 반응 압력, H2/CO2 = 3:1의 합성가스 및 GHSV = 4000 mL g-1 h-1 (CO2 = 1000 mL g-1 h-1; H2 = 3000 mL g-1 h-1)의 조건 하에서 측정되었고, B는 270 °C의 반응 온도, 4.0 MPa의 반응 압력 및 GHSV = 4000 mL g-1 h-1 (CO2 = 1000 mL g-1 h-1; H2 = 3000 mL g-1 h-1)의 조건 하에서 측정되었으며, C는 270 ℃의 반응 온도, 4.0 MPa의 반응 압력 및 H2/CO2 = 3:1의 합성가스 조건 하에서 측정되었다.Figure 4a is a CO 2 conversion rate and products according to the reaction time on the CMO-0 catalyst and the CMO-10 catalyst under pressure conditions of 1.0 MPa (A, B), 2.0 MPa (C, D), and 3.0 MPa (E, F) Graphs showing the results of measuring selectivity, and FIG. 4b is CO 2 as a function of reaction time on CMO-0, CMO-10, CMO-25, CMO-50, CMO-75, and CMO-100 catalysts at 4.0 MPa. These are graphs showing the results of measuring conversion rate and product selectivity. And Figure 5a is graphs showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction pressure of the CMO-0 catalyst (A) and the CMO-10 catalyst (B), and Figure 5b is the reaction time of the CMO-10 catalyst It is a graph showing the results of measuring the CO 2 conversion rate and product selectivity according to The results of FIGS. 4a, 4b, 5a, and 5b show that H 2 /CO 2 syngas (GHSV = 4000 mL g -1 h -1 ; CO 2 = 1000 ; _ _ _ _ _ It was reduced for 6 hours under temperature conditions of °C (heating rate of 2.5 °C/min). In addition, FIG. 6 is a graph showing the results of measuring the CO 2 conversion rate and product selectivity according to the reaction temperature (A) of the CMO-10 catalyst, the H 2 /CO 2 ratio of syngas (B), and GHSV (C). admit. In FIG. 6, A is 4.0 MPa reaction pressure, H 2 /CO 2 = 3: 1 syngas and GHSV = 4000 mL g -1 h -1 (CO 2 = 1000 mL g -1 h -1 ; H2 = 3000 mL g -1 h -1 ), B is a reaction temperature of 270 °C, a reaction pressure of 4.0 MPa and GHSV = 4000 mL g -1 h -1 (CO 2 = 1000 mL g -1 h - 1 ; H2 = 3000 mL g -1 h -1 ), and C was measured under the reaction temperature of 270 °C, the reaction pressure of 4.0 MPa, and the syngas condition of H 2 /CO 2 = 3:1.
도 4a, 도 4b, 도 5a, 도 5b 및 도 6을 참조하면, CMO-0 촉매 상에서는 반응 압력이 증가함에 따라 C5+ 탄화수소 선택도가 높아지는 것으로 확인되었고, 이는 압력 증가에 의해 H/C 범위(coverage)에서의 감소가 일어나고, C2~C4 탄화수소의 재흡착이 증가하기 때문인 것으로 판단된다. Referring to Figures 4a, 4b, 5a, 5b and 6, it was confirmed that the C 5+ hydrocarbon selectivity increased as the reaction pressure increased on the CMO-0 catalyst, which was confirmed by the increase in pressure in the H / C range It is believed that this is due to a decrease in coverage and an increase in re-adsorption of C 2 to C 4 hydrocarbons.
CO2 전환에 대한 반응 압력의 영향은 CMO-0 촉매 상에서보다 CMO-10 촉매 상에서 더 큰 것으로 확인되었고, 이는 높은 반응 압력 및 Mn 촉진제가 사슬 전파 반응을 더욱 용이하게 하기 때문인 것으로 판단된다. The effect of reaction pressure on CO 2 conversion was found to be greater on the CMO-10 catalyst than on the CMO-0 catalyst, which is believed to be due to the higher reaction pressure and the Mn promoter facilitating the chain propagation reaction more.
CMO-10 촉매 상에서의 메탄화 반응(methanation) 활성은 높은 온도(310℃), 높은 H2/CO2 비율(4:1) 및 높은 GHSV(12000 mL g-1 h-1) 조건 하에서 증가하였다. 유사한 거동이 전형적인 H2/CO 합성가스의 FTS 반응에서 관찰되었고, 또한, 높은 온도(310℃) 및 높은 H2/CO2 비율(4:1)에서의 메탄화 반응 활성의 증가는 이전에 보고된 Co-기반 촉매 상에서의 CO2 전환과 유사하다. The methanation activity on the CMO-10 catalyst was increased under high temperature (310 °C), high H 2 /CO 2 ratio (4:1) and high GHSV (12000 mL g -1 h -1 ) conditions. . A similar behavior was observed in the FTS reaction of typical H 2 /CO syngas, and also an increase in methanation activity at high temperature (310 °C) and high H 2 /CO 2 ratio (4:1) was previously reported. similar to the CO 2 conversion on a Co-based catalyst.
도 6에 도시된 바와 같이, CMO-10 촉매 상에서는, 약 290℃의 반응 온도, 약 2.5 내지 3.5의 H2/CO2 비율 및 약 3000 내지 5000 mL g-1 h-1의 GHSV 조건 하에서, 예상보다 현저하게 높은 C5+ 탄화수소 선택도를 나타내었고, 이는 상기의 반응 조건 하에서는 CMO-10 촉매 상에서 메탄화 반응에 비해 FTS 반응이 지배적으로 발생됨을 나타낸다. As shown in FIG. 6, on the CMO-10 catalyst, under the conditions of a reaction temperature of about 290 ° C., an H 2 /CO 2 ratio of about 2.5 to 3.5, and a GHSV of about 3000 to 5000 mL g -1 h -1 , It showed a significantly higher C 5+ hydrocarbon selectivity, indicating that the FTS reaction was predominantly generated compared to the methanation reaction on the CMO-10 catalyst under the above reaction conditions.
도 5b에 도시된 바와 같이, CMO-10 촉매는 CO2의 수소화에서 1425시간 동안 안정적으로 CO2 전환 및 장쇄 탄화수소 생성을 수행할 수 있는 안정성을 가짐이 확인되었다. 이러한 1425 시간 이상 동안의 우수한 안정성에 비추어, 활성 사이트의 열처리(sintering) 및 고분자성 카본 또는 코크의 증착에도 불구하고 CMO-10 촉매의 성능이 유지되는 것으로 판단된다. As shown in FIG. 5B, it was confirmed that the CMO-10 catalyst has stability capable of stably converting CO 2 and generating long-chain hydrocarbons for 1425 hours in the hydrogenation of CO 2 . In view of this excellent stability for more than 1425 hours, it is judged that the performance of the CMO-10 catalyst is maintained despite sintering of the active site and deposition of polymeric carbon or coke.
CMO-10 촉매 상에서 생성된 C5+ 탄화수소 생성물에 있어서, 반응 시간이 125시간으로부터 1425시간까지 증가함에 따라, C5~C20 탄화수소 선택도는 24.5%로부터 12.6%까지 감소되었으나, C21+ 탄화수소 선택도는 6.5%로부터 14.9%까지 증가되었다. 따라서, 반응 시간이 증가함에 따라, 높은 저항의 그라파이트성 탄소의 연속적인 축적에 의한 촉매의 FTS 활성 사이트의 부분적인 피독은 사슬 성장 반응을 촉진하는데 기여할 수 있는 것으로 판단된다.For the C 5+ hydrocarbon products produced over the CMO-10 catalyst, as the reaction time increased from 125 to 1425 hours, the C 5 to C 20 hydrocarbon selectivity decreased from 24.5% to 12.6%, but the C 21+ hydrocarbons The selectivity increased from 6.5% to 14.9%. Therefore, as the reaction time increases, it is believed that partial poisoning of the FTS active site of the catalyst by continuous accumulation of high resistivity graphitic carbon can contribute to promoting the chain growth reaction.
[실험예 2]: CMO-y 촉매들의 특성화[Experimental Example 2]: Characterization of CMO-y catalysts
도 7a는 CMO-0 및 CMO-10 촉매들의 환원 전(fresh), 환원 후(reduced) 및 전환(spent) 상태에서 각각 측정된 XRD 패턴들을 나타내고, 도 7b 및 도 7c는 CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 및 CMO-100 촉매들 각각의 환원 전(fresh) 상태(A, B, C), 환원 후(reduced) 상태(D, E, F)에서 각각 측정된 XRD 패턴들을 나타내고, 도 7d는 CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 및 CMO-100 촉매들 각각의 전환(spent) 상태에서 측정된 XRD 패턴들을 나타내며, 도 7e는 230℃, 250℃, 270℃, 290℃, 310℃에서 각각 전환된 CMO-10 촉매들에 대해 측정된 XRD 패턴을 나타낸다. 도 7a 내지 도 7d에서, 각각의 환원 후 촉매는 환원 전 촉매를 4.0 MPa의 압력, 50 mL/min의 H2 흐름, 350℃의 온도 조건(2.5℃/min의 승온 속도)에서 6시간 동안 환원하여 제조하였고, 각각의 전환(spent) 촉매는 환원 후(reduced) 촉매를 270℃의 온도, 4.0 MPa의 압력 및 3:1의 비율로 혼합된 H2/CO2 합성가스(GHSV = 4000 mL g-1 h-1; CO2 = 1000 mL g-1 h-1; H2 = 3000 mL g-1 h-1)의 반응 조건에 125시간 동안 노출시킴으로써 제조하였다.7a shows XRD patterns measured in fresh, reduced, and spent states of CMO-0 and CMO-10 catalysts, respectively, and FIGS. 7b and 7c show CMO-0, CMO- 10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts in fresh state (A, B, C) and reduced state (D, E, F) respectively The measured XRD patterns are shown, and FIG. 7d shows the XRD patterns measured in the spent state of each of the CMO-0, CMO-10, CMO-25, CMO-50, CMO-70 and CMO-100 catalysts, Figure 7e shows XRD patterns measured for CMO-10 catalysts converted at 230 °C, 250 °C, 270 °C, 290 °C, and 310 °C, respectively. 7a to 7d, the catalyst after each reduction was reduced for 6 hours at a pressure of 4.0 MPa, a H 2 flow of 50 mL/min, and a temperature condition of 350° C. (heating rate of 2.5° C./min) before reduction. was prepared, and each spent catalyst was mixed with H 2 /CO 2 syngas (GHSV = 4000 mL g) at a temperature of 270 ° C., a pressure of 4.0 MPa and a ratio of 3: 1 for each spent catalyst. -1 h -1 ; CO 2 = 1000 mL g -1 h -1 ; H 2 = 3000 mL g -1 h -1 ) for 125 hours.
도 7a 내지 도 7e를 참조하면, 환원 후 CMO-10 촉매에서는 CoO, hcp 구조의 Co 상 및 작은 분율의 fcc Co 상이 혼합된 결정구조가 야기되었고, 전환 CMO-10 촉매에서는 CoO 상이 hcp Co 상으로 환원되었고, fcc Co 및 MnCO3는 작은 분율로 존재하였다. 이로부터 Mn 촉진제는 H2 환원 공정 동안 Co3O4의 금속 Co로의 원전한 환원을 억제하였음을 알 수 있다.7a to 7e, in the CMO-10 catalyst after reduction, a crystal structure in which CoO, hcp-structured Co phase, and a small fraction of the fcc Co phase were mixed was induced, and in the converted CMO-10 catalyst, the CoO phase converted to the hcp Co phase. reduced, and fcc Co and MnCO 3 were present in small fractions. From this, it can be seen that the Mn promoter inhibited the complete reduction of Co 3 O 4 to metallic Co during the H 2 reduction process.
환원된 CMO-y 촉매에 있어서, 도 7b 및 도 7c에 도시된 바와 같이, Mn 함량이 25%로부터 75%로 증가함에 따라, 36.6° 및 42.6°에서의 CoO와 관련된 피크들이 35.0° 및 40.7°의 MnO 쪽으로 각각 급격하게 다운쉬프트 되었고, 이는 스피넬 구조의 CoxMn3-xO4 (0<x<3)의 형성을 나타낸다. 그리고 도 7d에 도시된 바와 같이, 상기 스피넬 CoxMn3-xO4 및 벌크 Co2C 상들은 전환 CMO-y 촉매들에서는 관찰되지 않았다.For the reduced CMO-y catalyst, as the Mn content increased from 25% to 75%, as shown in Figs. were each rapidly downshifted towards MnO, indicating the formation of spinel structure Co x Mn 3-x O 4 (0<x<3). And as shown in Fig. 7d, the spinel Co x Mn 3-x O 4 and bulk Co 2 C phases were not observed in the converted CMO-y catalysts.
한편, 도 7e에 도시된 바와 같이, 270 내지 290℃에서의 전환 CMO-10 촉매의 경우, 금속 Co 및 MnCO3 상들이 주요 종들인 것으로 확인되었으나, 310℃에서의 전환 CMO-10 촉매의 경우, 금속 Co 및 MnCO3 상들과 관련된 피크의 강도가 현저하게 감소된 것으로 나타났다. 이는 310℃ 이상의 높은 온도에서 CMO-10 촉매를 H2/CO2 합성가스에 노출시키는 경우, CMO-10 촉매의 구조적 붕괴가 발생함을 의미한다. On the other hand, as shown in Figure 7e, in the case of the converted CMO-10 catalyst at 270 to 290 ° C, it was confirmed that the metal Co and MnCO 3 phases were the main species, but in the case of the converted CMO-10 catalyst at 310 ° C, It was found that the intensity of the peaks associated with the metallic Co and MnCO 3 phases were significantly reduced. This means that when the CMO-10 catalyst is exposed to H 2 /CO 2 syngas at a high temperature of 310° C. or higher, structural collapse of the CMO-10 catalyst occurs.
XAS를 사용하여 환원 후 및 사용 후 CMO-y 촉매들의 산화 상태 및 지엽적 화학 구조를 조사하였다. XAS was used to investigate the oxidation state and local chemical structure of the CMO-y catalysts after reduction and after use.
도 8a는 환원 후 CMO-y촉매들(A) 및 전환 CMO-y 촉매들(B)에 대한 Co K-edge XANES 스펙트럼을 나타내고, 도 8b는 Co K-edge XANES 프로파일들의 선형 조합 피팅으로부터 평가된 금속성 Co 함량과 C5+ 탄화수소 산출률 사이의 관계를 나타내는 그래프이고, 도 8c는 C 1s XPS 스펙트럼으로부터 평가된 표면 탄화물(carbide) 함량과 C5+ 탄화수소 산출률 사이의 관계(D) 및 [CoO+CO3O4]/Co0의 비율과 C5+ 탄화수소 산출률 사이의 관계(E)를 나타내는 그래들이고, 도 8d는 XRD에 의해 측정된 결정 크기와 C5+ 탄화수소 산출률 사이의 관계(F) 및 Co K-edge XANES 프로파일들의 선형 조합 피팅으로부터 평가된 금속성 Co 함량과 XRD에 의해 측정된 결정 크기 사이의 관계(G)를 나타내는 그래프이다. 그리고 하기 표 3은 환원 후(reduced) 및 전환(spent) CMO-y 촉매들에 대한 Co K-edge XANES 프로파일들의 선형 조합 피팅의 결과를 나타낸다. Figure 8a shows Co K-edge XANES spectra for CMO-y catalysts after reduction (A) and converted CMO-y catalysts (B), and Figure 8b shows Co K-edge XANES profiles evaluated from linear combination fitting. 8c is a graph showing the relationship between metallic Co content and C 5+ hydrocarbon yield, and FIG. 8c is a relationship between surface carbide content and C 5+ hydrocarbon yield evaluated from C 1s XPS spectrum (D) and [CoO +CO3O4]/CoO and the graph showing the relationship (E) between the C 5+ hydrocarbon yield, and FIG. 8d shows the relationship between the crystal size measured by XRD and the C 5+ hydrocarbon yield (F) and Co K- It is a graph showing the relationship (G) between the metallic Co content evaluated from the linear combination fitting of the edge XANES profiles and the crystallite size measured by XRD. And Table 3 below shows the results of linear combination fitting of Co K-edge XANES profiles for reduced and spent CMO-y catalysts.
Crystallite size (nm)Crystallite size (nm)
Co3O4 Co 3 O 4 CoOCoO hcp Cohcp Co fcc Cofcc Co
Fresh CMO-0 Fresh CMO-0 9.79.7
Reduced CMO-0Reduced CMO-0 -- 21.221.2 22.522.5
Spent CMO-0Spent CMO-0 27.027.0 34.534.5
Fresh CMO-10 Fresh CMO-10 5.95.9
Reduced CMO-10Reduced CMO-10 9.99.9 20.920.9 19.919.9
Spent CMO-10c Spent CMO- 10c 23.423.4 21.421.4
Mn/[Co+Mn]Mn/[Co+Mn]
Spent CMO-0Spent CMO-0 27.027.0 34.534.5
Spent CMO-10Spent CMO-10 23.423.4 21.421.4
Spent CMO-25Spent CMO-25 21.421.4 18.218.2
Spent CMO-50Spent CMO-50 24.724.7 16.616.6
Spent CMO-75Spent CMO-75 29.929.9 20.120.1
Pressure (MPa)Pressure (MPa)
Spent CMO-0 at 1 MPaSpent CMO-0 at 1 MPa 29.829.8 23.023.0
Spent CMO-0 at 2 MPaSpent CMO-0 at 2 MPa 24.724.7 26.726.7
Spent CMO-0 at 3 MPaSpent CMO-0 at 3 MPa 25.125.1 27.227.2
Spent CMO-0 at 4 MPaSpent CMO-0 at 4 MPa 27.027.0 34.534.5
Spent CMO-10 at 1 MPaSpent CMO-10 at 1 MPa 20.520.5 21.421.4
Spent CMO-10 at 2 MPaSpent CMO-10 at 2 MPa 20.920.9 18.018.0
Spent CMO-10 at 3 MPaSpent CMO-10 at 3 MPa 22.222.2 18.518.5
Spent CMO-10 at 4 MPaSpent CMO-10 at 4 MPa 23.423.4 21.421.4
Temperature (℃)Temperature (℃)
Spent CMO-10 at 230 °CSpent CMO-10 at 230 °C 11.511.5 13.613.6
Spent CMO-10 at 250 °CSpent CMO-10 at 250 °C 19.419.4 15.015.0
Spent CMO-10 at 270 °CSpent CMO-10 at 270 °C 23.423.4 21.421.4
Spent CMO-10 at 290 °CSpent CMO-10 at 290 °C 13.613.6 16.416.4
Spent CMO-10 at 310 °CSpent CMO-10 at 310 °C 13.813.8 10.910.9
H2/CO2 ratioH 2 /CO 2 ratio
Spent CMO-10 at H2/CO2 of 1Spent CMO-10 at H 2 /CO 2 of 1 22.422.4 22.122.1
Spent CMO-10 at H2/CO2 of 2Spent CMO-10 at H 2 /CO 2 of 2 20.320.3 16.516.5
Spent CMO-10 at H2/CO2 of 3Spent CMO-10 at H 2 /CO 2 of 3 23.423.4 21.421.4
Spent CMO-10 at H2/CO2 of 4Spent CMO-10 at H 2 /CO 2 of 4 21.321.3 23.623.6
GHSV (mL g-1 h-1)GHSV (mL g -1 h -1 )
Spent CMO-10 at GSHV of 4000Spent CMO-10 at GSHV of 4000 23.423.4 21.421.4
Spent CMO-10 at GSHV of 8000Spent CMO-10 at GSHV of 8000 22.722.7 22.022.0
Spent CMO-10 at GSHV of 12000Spent CMO-10 at GSHV of 12000 30.530.5 28.928.9
Stability (h)Stability (h)
Spent CMO-10 collected after 1425 h reaction Spent CMO-10 collected after 1425 h reaction 24.024.0 20.420.4
도 8a 내지 도 8d 및 표 3을 참조하면, 환원 전 CMO-10 촉매에서의 Co3O4 결정 사이즈(5.9 nm)는 환원 전 CMO-0 촉매에서의 Co3O4 결정 사이즈(9.7 nm)보다 현저하게 더 작았고, 이로부터 Mn 촉진제는 열처리 동안 Co3O4 결정의 성장을 억제하여 그 사이즈를 감소시킴을 알 수 있다. 환원 후 CMO-0 촉매 및 환원 후 CMO-10 촉매의 경우, 유사한 결정 크기(20~23 nm)의 hcp Co 상 및 fcc Co 상을 포함하는 것으로 나타났다. 8a to 8d and Table 3, the Co 3 O 4 crystal size (5.9 nm) in the CMO-10 catalyst before reduction is smaller than the Co 3 O 4 crystal size (9.7 nm) in the CMO-0 catalyst before reduction. significantly smaller, from which it can be seen that the Mn promoter inhibits the growth of Co 3 O 4 crystals during heat treatment to reduce their size. In the case of the reduced CMO-0 catalyst and the reduced CMO-10 catalyst, it was found to contain hcp Co and fcc Co phases with similar crystal sizes (20-23 nm).
환원 후 CMO-0 촉매와 비교하여, 전환 CMO-0 촉매에서는 hcp Co 및 fcc Co의 결정 크기가 27.0nm 및 34.5nm로 각각 현저하게 증가되었다. 이와 달리, 전환 CMO-10 촉매의 경우, 환원 후 CMO-10 촉매와 비교하여 hcp Co 및 fcc Co의 결정 크기가 각각 23.4 nm 및 21.4 nm로 조금 증가하였다. 이로부터 CMO-10 촉매에 포함된 Mn 촉진제는 CO2의 수소화 동안 금속 Co의 결정 성장을 억제함을 알 수 있다. Compared to the reduced CMO-0 catalyst, the crystallite sizes of hcp Co and fcc Co were significantly increased to 27.0 nm and 34.5 nm, respectively, in the converted CMO-0 catalyst. In contrast, in the case of the converted CMO-10 catalyst, the crystallite size of hcp Co and fcc Co slightly increased to 23.4 nm and 21.4 nm, respectively, compared to the CMO-10 catalyst after reduction. From this, it can be seen that the Mn promoter included in the CMO-10 catalyst inhibits the crystal growth of metal Co during the hydrogenation of CO 2 .
환원된 CMO-0 촉매의 Co K-edge XANES 스펙트럼은 표준 금속 Co와 유사하였고, 이는 Co3O4로부터 금속 Co 상으로의 거의 완전한 환원을 나타내며, 이로부터 촉매에 함유된 Mn 촉진제가 Co3O4의 금속 Co로의 완전한 환원을 억제함을 추가적으로 확인할 수 있다. The Co K-edge XANES spectrum of the reduced CMO-0 catalyst was similar to the standard metallic Co, indicating almost complete reduction from Co 3 O 4 to the metallic Co phase, from which the Mn promoter contained in the catalyst was reduced to Co 3 O It can be further confirmed that the complete reduction of 4 to metal Co is inhibited.
Mn 함량이 25% 이상인 환원 후 CMO-y 촉매(CMO-25, CMO-50, CMO-75)의 국부및 장거리 규칙도(local and long-range order) 특성은 표준 CoO의 국부 및 장거리 규칙도 특성에 접근하였다. 환원 후 CMO-10 촉매의 경우, 금속 Co 및 CoOx 특성들이 모두 공존하였다. Local and long-range order characteristics of CMO-y catalysts (CMO-25, CMO-50, and CMO-75) after reduction with Mn content of 25% or more are local and long-range order characteristics of standard CoO. approached. For the CMO-10 catalyst after reduction, both metallic Co and CoO x properties coexisted.
CMO-y 촉매에서의 Mn-촉진제는 Co의 환원성을 억제할 수 있다. Mn-rich CMO-y 촉매의 낮은 환원성은 Mn-함량이 증가함에 따라 스피넬 구조 CoxMn3-xO4의 형성이 증가하기 때문이다.The Mn-promoters in CMO-y catalysts can suppress the reduction of Co. The low reducibility of the Mn-rich CMO-y catalyst is due to the increased formation of spinel structure Co x Mn 3-x O 4 as the Mn-content increases.
도 8a의 B에 도시된 바와 같이, 전환 CMO-y 촉매의 XANES 스펙트럼에서 CoO의 금속 Co로의 전환이 관찰되었다. y≤25%인 전환 CMO-y 촉매에서 금속 Co의 비율은 93~99%로서 지배적인 종이었다. Conversion of CoO to metallic Co was observed in the XANES spectrum of the converted CMO-y catalyst, as shown in Fig. 8B. In the converted CMO-y catalyst with y≤25%, the proportion of metal Co was 93~99%, which was the dominant species.
*Mn의 함량이 25%로부터 75%로 증가함에 따라, XANES 스펙트럼에서 흡수 에지의 시작이 업쉬프트되었고, 흰색선 피크의 높이가 증가하였는데, 이는 전환 CMO-y 촉매에서 Mn 함량이 증가함에 따라 CoO 및 Co3O4 상이 증가함을 나타낸다. *As the content of Mn increased from 25% to 75%, the beginning of the absorption edge was upshifted in the XANES spectrum, and the height of the peak of the white line increased, indicating that as the Mn content increased in the converted CMO-y catalyst, CoO and Co 3 O 4 phase increases.
도 8b에 도시된 바와 같이, CMO-y 촉매에서의 금속 Co 함량과 C5+ 탄화수소 산출률 사이에는 양의 상관관계가 있고, 고수율 C5+ 탄화수소를 야기하는 조건들 하에서, 전환 CMO-y 촉매의 금속 Co 함량은 증가하는 것으로 발견되었다. 지배적인 FTS 반응 조건 하에서, 금속 Co 함량은 98% 이상이었고, 지배적인 메탄화 반응 조건 하에서, 금속 Co 함량은 60-90%이었다. 따라서, 촉매에 포함된 금속 Co 함량은 CO2 수소화에서 FTS 반응을 설립하기 위한 전제조건인 것으로 평가될 수 있고, 합성가스로부터 장쇄 탄화수소의 합성에 대한 활성 사이트는 금속 Co 상인 것으로 판단된다. As shown in FIG. 8B, there is a positive correlation between the metal Co content in the CMO-y catalyst and the yield of C 5+ hydrocarbons, and under conditions leading to high yields of C 5+ hydrocarbons, converted CMO-y The metal Co content of the catalyst was found to increase. Under the prevailing FTS reaction conditions, the metallic Co content was above 98%, and under the prevailing methanation reaction conditions, the metallic Co contents were 60-90%. Therefore, the metal Co content included in the catalyst can be evaluated as a precondition for establishing the FTS reaction in CO 2 hydrogenation, and the active site for the synthesis of long-chain hydrocarbons from syngas is judged to be the metal Co phase.
변화하는 반응 조건에서, 촉매의 표면 화학 종과 C5+ 탄화수소 산출율 사이의 상호연관성을 조사하기 위해, 전환 CMO-0 촉매 및 CMO-10 촉매의 XPS 프로파일이 측정되었고, 그 결과가 도 8c에 도시되어 있다.XPS profiles of the converted CMO-0 catalyst and CMO-10 catalyst were measured to investigate the correlation between the surface species of the catalyst and the C 5+ hydrocarbon yield under varying reaction conditions, and the results are shown in FIG. 8C. is shown
도 8c에 도시된 바와 같이, C5+ 탄화수소 산출율은 14.7%의 카바이드 면적비율 및 1.7의 [CoO+Co3O4]/CoO 비율에서 최대화되었다. 따라서, CO2 수소화에서 FTS 반응이 수립되기 위해서는 Co2C 및 CoOx의 일부 분율이 촉매 표면에 존재할 것이 요구됨을 알 수 있다. As shown in FIG. 8c, the C 5+ hydrocarbon yield was maximized at a carbide area ratio of 14.7% and a [CoO+Co 3 O 4 ]/Co O ratio of 1.7. Thus, it can be seen that some fractions of Co 2 C and CoO x are required to be present on the catalyst surface in order for the FTS reaction to be established in CO 2 hydrogenation.
금속 Co 상과 C5+ 탄화수소 산출율 사이의 상호관계를 결정하기 위해, XAS 사용하여 반응 조건들이 변화함에 따른 전환 CMO-y 촉매의 국부 화학적 구조의 변화를 조사하였다.To determine the correlation between metallic Co phase and C 5+ hydrocarbon yield, XAS was used to investigate changes in the local chemical structure of the converted CMO-y catalyst as the reaction conditions were varied.
도 9a는 다양한 반응압력(1MPa, 2MPa, 3MPa, 4MPa)에서 전환 CMO-0 촉매(A) 및 전환 CMO-10 촉매(B)에 대해 각각 측정된 정규화된 Co K-edge XANES 스펙트럼들이고, 도 9b는 다양한 반응 온도(230℃, 250℃, 270℃, 290℃, 310℃)(C) 및 다양한 H2/CO2 혼합비율(H2/CO2=1, 2, 3, 4)(D)에서 전환 CMO-10 촉매에 대해 각각 측정된 Co K-edge XANES 스펙트럼들이며, 도 9c는 다양한 GHSV(4000 mL g-1 h-1, 8000 mL g-1 h-1, 12000 mL g-1 h-1)에서 그리고 다양한 반응시간(120hr, 1440hr) 후에 전환 CMO-10 촉매에 대해 각각 측정된 Co K-edge XANES 스펙트럼들이다. 그리고 도 10은 다양한 반응 온도(230℃, 250℃, 270℃, 290℃, 310℃)에서 전환 CMO-10 촉매에 대한 정규화된 Co K-edge EXAFS 스펙트럼의 k3- 가중치 퓨리에 변환(k3-weighted Fourier transforms, FTs)(A) 그리고 단지 금속성 Co로 피팅된 270℃에서 전환된 CMO-10 촉매(B), 단지 금속성 Co로 피팅된 290℃에서 전환된 CMO-10 촉매(C) 및 금속성 Co와 CoO로 피팅된 310℃에서 전환된 CMO-10 촉매(D)의 필터링된 K3-가중치 χ(k) 스펙트럼들(Filtered k3-weighted χ(k) spectra)을 나타내고, 도 11은 환원 후 CMO-y 촉매(A) 및 전환 CMO-y 촉매(B)의 정규화된 Mn K-edge XANES 스펙트럼을 나타낸다. 또한, 하기 표 4는 환원 후 CMO-y 촉매 및 전환 CMO-y 촉매에 대한 Mn K-edge XANES 프로파일들의 선형 조합 피팅의 결과를 나타내고, 표 5는 환원 후 CMO-y 촉매 및 전환 CMO-y 촉매에 대한 EXAFS 프로파일들의 Co-Co 및 Co-O 좌표 쉘 부속 매개변수(coordination shell fitting parameter) 산출 값을 나타낸다.FIG. 9a shows normalized Co K-edge XANES spectra measured for a converted CMO-0 catalyst (A) and a converted CMO-10 catalyst (B) at various reaction pressures (1 MPa, 2 MPa, 3 MPa, 4 MPa), respectively. FIG. 9 b is at various reaction temperatures (230 ℃, 250 ℃, 270 ℃, 290 ℃, 310 ℃) (C) and various H 2 /CO 2 mixing ratio (H 2 /CO 2 =1, 2, 3, 4) (D) Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively, and FIG. 9c shows various GHSV (4000 mL g -1 h -1 , 8000 mL g -1 h -1 , 12000 mL g -1 h - 1 ) and after various reaction times (120 hr, 1440 hr) Co K-edge XANES spectra measured for the converted CMO-10 catalyst, respectively. And FIG. 10 shows the k 3 - weighted Fourier transform (k 3 - weighted Fourier transforms, FTs) (A) and CMO-10 catalyst converted at 270 °C fitted only with metallic Co (B), CMO-10 converted at 290 °C catalyst fitted only with metallic Co (C) and metallic Co Filtered K 3 -weighted χ(k) spectra of the CMO-10 catalyst (D) converted at 310 °C fitted with CoO and Normalized Mn K-edge XANES spectra of CMO-y catalyst (A) and converted CMO-y catalyst (B) are shown. In addition, Table 4 below shows the results of linear combination fitting of Mn K-edge XANES profiles for the CMO-y catalyst after reduction and the converted CMO-y catalyst, and Table 5 shows the results of the linear combination fitting of the CMO-y catalyst after reduction and the converted CMO-y catalyst. Co-Co and Co-O coordinate shell fitting parameters of EXAFS profiles for
Oxidation stateOxidation state
MnO2 MnO 2 Mn2O3 Mn2O3 Mn3O4 Mn 3 O 4 MnOMnO MnCO3 MnCO 3
Reduced CMO-0Reduced CMO-0 0.3090.309 0.3290.329 0.3620.362
Reduced CMO-10Reduced CMO-10 0.2550.255 0.0070.007 0.2770.277 0.4620.462
Reduced CMO-25Reduced CMO-25 0.1910.191 0.2870.287 0.5220.522
Reduced CMO-50Reduced CMO-50 0.5180.518 0.4820.482
Reduced CMO-75Reduced CMO-75 0.0090.009 0.2410.241 0.7500.750
Mn/[Co+Mn]Mn/[Co+Mn]
Spent CMO-10Spent CMO-10 0.0360.036 0.0270.027 0.9370.937
Spent CMO-25Spent CMO-25 0.0830.083 0.1300.130 0.7870.787
Spent CMO-50Spent CMO-50 0.0620.062 0.1630.163 0.7750.775
Spent CMO-75Spent CMO-75 0.1970.197 0.8030.803
Pressure (MPa)Pressure (MPa)
Spent CMO-10 at 1MPaSpent CMO-10 at 1MPa 0.0070.007 0.0310.031 0.9620.962
Spent CMO-10 at 2MPaSpent CMO-10 at 2MPa 0.0080.008 0.9920.992
Spent CMO-10 at 3MPaSpent CMO-10 at 3 MPa
Spent CMO-10 at 4MPaSpent CMO-10 at 4 MPa 0.0360.036 0.0270.027 0.9370.937
Temperature (℃)Temperature (℃)
Spent CMO-10 at 230℃Spent CMO-10 at 230℃ 0.0010.001 0.0010.001 0.9960.996
Spent CMO-10 at 250℃Spent CMO-10 at 250℃ 0.0390.039 0.9610.961
Spent CMO-10 at 270℃Spent CMO-10 at 270℃ 0.0360.036 0.0270.027 0.9370.937
Spent CMO-10 at 290℃Spent CMO-10 at 290℃ 0.0010.001 0.0090.009 0.9900.990
Spent CMO-10 at 310℃Spent CMO-10 at 310℃ 0.0910.091 0.9090.909
H2/CO2 ratioH 2 /CO 2 ratio
Spent CMO-10 at H2/CO2 of 1:1Spent CMO-10 at H 2 /CO 2 of 1:1 0.0900.090 0.1870.187 0.6550.655 0.0920.092
Spent CMO-10 at H2/CO2 of 2:1Spent CMO-10 at H 2 /CO 2 of 2:1 0.0030.003 0.0210.021 0.9760.976
Spent CMO-10 at H2/CO2 of 3:1Spent CMO-10 at H 2 /CO 2 of 3:1 0.0360.036 0.0270.027 0.9370.937
Spent CMO-10 at H2/CO2 of 4:1Spent CMO-10 at H 2 /CO 2 of 4:1 0.0030.003 0.9970.997
GHSV (mL g-1h-1)GHSV (mL g -1 h -1 )
Spent CMO-10 at GHSV of 4000Spent CMO-10 at GHSV of 4000 0.0360.036 0.0270.027 0.9370.937
Spent CMO-10 at GHSV of 8000Spent CMO-10 at GHSV of 8000 0.0010.001 0.0010.001 0.9980.998
Spent CMO-10 at GHSV of 12000Spent CMO-10 at GHSV of 12000 0.0010.001 0.9990.999
Stability (h)Stability (h)
Spent CMO-10 collectred after 1425 hSpent CMO-10 collected after 1425 h 0.0170.017 0.9830.983
SampleSample ShellShell NN R (Å)R (Å) △E0 (eV)ΔE 0 (eV) △σ2 *103
(Å2)
Δσ 2 *10 3
2 )
R-factorR-factor
Reduced catalystsReduced catalysts
CMO-0CMO-0 Co-Co (hcp Co)Co-Co (hcp Co) 5.695.69 2.502.50 3.753.75 5.955.95 0.060.06
CMO-10CMO-10 Co-O (CoO)Co-O (CoO) 1.871.87 2.142.14 3.473.47 9.439.43 0.40.4
Co-Co (hcp Co)Co-Co (hcp Co) 2.542.54 2.502.50 1.571.57 6.636.63
Co-Co (CoO)Co-Co (CoO) 4.074.07 3.033.03 3.473.47 8.068.06
CMO-25CMO-25 Co-O (CoO)Co-O (CoO) 4.644.64 2.092.09 0.610.61 11.8011.80 0.40.4
Co-Co (CoO)Co-Co (CoO) 10.5810.58 3.023.02 0.610.61 11.0211.02
CMO-50CMO-50 Co-O (CoO)Co-O (CoO) 5.385.38 2.112.11 0.610.61 13.9313.93 0.30.3
Co-Co (CoO)Co-Co (CoO) 10.7910.79 3.043.04 0.610.61 11.4311.43
CMO-75CMO-75 Co-O (CoO)Co-O (CoO) 5.645.64 2.142.14 0.530.53 11.7811.78 0.60.6
Co-Co (CoO)Co-Co (CoO) 11.9611.96 3.073.07 0.530.53 10.7710.77
Spent catalystsSpent catalysts
CMO-0CMO-0 Co-Co (hcp Co)Co-Co (hcp Co) 6.486.48 2.502.50 7.917.91 5.635.63 0.20.2
CMO-10CMO-10 Co-Co (hcp Co)Co-Co (hcp Co) 5.985.98 2.502.50 3.253.25 5.985.98 0.20.2
CMO-25CMO-25 Co-Co (hcp Co)Co-Co (hcp Co) 4.504.50 2.492.49 5.195.19 5.425.42 0.40.4
CMO-50CMO-50 Co-Co (hcp Co)Co-Co (hcp Co) 4.584.58 2.502.50 1.001.00 5.095.09 0.40.4
CMO-75CMO-75 Co-Co (hcp Co)Co-Co (hcp Co) 7.937.93 2.502.50 0.680.68 6.716.71 0.30.3
Spent CMO-10 catalyst at varying temperatures (℃)Spent CMO-10 catalyst at varying temperatures (℃)
230230 Co-Co (hcp Co)Co-Co (hcp Co) 7.967.96 2.502.50 0.030.03 5.765.76 0.20.2
250250 Co-O (CoO)Co-O (CoO) 0.550.55 2.052.05 2.452.45 8.838.83 0.020.02
Co-Co (hcp Co)Co-Co (hcp Co) 5.685.68 2.492.49 -0.84-0.84 5.465.46
Co-Co (CoO)Co-Co (CoO) 0.170.17 2.972.97 2.452.45 9.529.52
270270 Co-Co (hcp Co)Co-Co (hcp Co) 5.985.98 2.502.50 3.253.25 5.985.98 0.20.2
290290 Co-Co (hcp Co)Co-Co (hcp Co) 6.776.77 2.492.49 -0.21-0.21 5.745.74 0.050.05
310310 Co-O (CoO)Co-O (CoO) 0.970.97 2.092.09 4.154.15 6.366.36 0.090.09
Co-Co (hcp Co)Co-Co (hcp Co) 4.394.39 2.492.49 -0.75-0.75 5.365.36
Co-Co (CoO)Co-Co (CoO) 0.380.38 3.103.10 4.154.15 6.856.85
도 9a 내지 도 9c, 도 10, 도 11, 표 4 및 표 5를 참조하면, 310℃에서 전환된 CMO-10 촉매 내의 CoO 상에 있어서, CoO 내의 Co-O 결합의 배위수(coordination number)는 Co-Co 보다 2~3배 더 높았고, 이는 메탄화 반응에서 생성된 CoO가 산소-rich 나노클러스터 구조를 나타냄을 암시한다. Mn-촉진제의 화학 구조의 경우, MnO2, Mn2O3, Mn3O4, MnO 등과 같은 Mn의 다양한 산화 상태들이 환원 CMO-y 촉매들에서 공존하였다. 전환 CMO-y 촉매에서, 지배적인 Mn 종은 MnCO3 이었고, Mn2O3, Mn3O4의 작은 분율이 존재하였다. MnCO3 함량은 반응 시간이 125시간으로부터 1425시간까지 증가함에 따라 93.7%에서 98.3%까지 증가하였다.Referring to FIGS. 9a to 9c, FIGS. 10 and 11, and Tables 4 and 5, in the CoO phase in the CMO-10 catalyst converted at 310 ° C, the coordination number of Co-O bonds in CoO is It was 2-3 times higher than that of Co-Co, suggesting that CoO produced in the methanation reaction exhibited an oxygen-rich nanocluster structure. In the case of the chemical structure of the Mn-promoter, various oxidation states of Mn such as MnO 2 , Mn 2 O 3 , Mn 3 O 4 , and MnO coexisted in reduced CMO-y catalysts. In the converted CMO-y catalyst, the dominant Mn species was MnCO 3 , and small fractions of Mn 2 O 3 and Mn 3 O 4 were present. The MnCO 3 content increased from 93.7% to 98.3% as the reaction time increased from 125 hours to 1425 hours.
도 9a의 A에 도시된 바와 같이, 환원 후 CMO-0 촉매의 Co K-edge 확장 EXAFS 스펙트럼의 k3-가중 퓨리에 변환 크기에서, 2.50Å에서의 피크는 hcp Co의 Co-Co 결합에 해당된다. 2.14 및 3.30Å에서의 2가지 추가적인 피크들이 환원 후 CMO-10 촉매에 대해 관찰되었고, 이러한 피크들은 CoO에서의 Co-O 결합 및 Co-Co 결합에 각각 대응된다. As shown in A of FIG. 9A, in the k 3 -weighted Fourier transform magnitude of the Co K-edge extended EXAFS spectrum of the CMO-0 catalyst after reduction, the peak at 2.50 Å corresponds to the Co—Co bond of hcp Co. . Two additional peaks at 2.14 and 3.30 Å were observed for the CMO-10 catalyst after reduction, and these peaks correspond to Co-O and Co-Co bonds in CoO, respectively.
도 9a의 B에 도시된 바와 같이, 전환 CMO-10 촉매의 Co K-edge EXAFS 스펙트럼은 2.50Å에 중심을 둔 1개의 현저한 피크를 제시하였고, 이는 hcp Co의 Co-Co 결합과 관련된다.As shown in Fig. 9B, the Co K-edge EXAFS spectrum of the converted CMO-10 catalyst showed one prominent peak centered at 2.50 Å, which is related to the Co-Co bond of hcp Co.
도 12는 C 1s(A), Co 2p(B), O 1s(C) 및 Mn 2p(D) 영역에 있는 환원 전 CMO-10 촉매, 환원 후 CMO-10 촉매 및 전환(125hr, 1425hr) CMO-10 촉매들의 고해상 XPS 프로파일들을 나타내고, 도 13은 C 1s(A), Co 2p(B) 및 O 1s(C) 영역에 있는 환원 전 CMO-0 촉매, 환원 후 CMO-0 촉매 및 전환(125hr) CMO-10 촉매의 고해상 XPS 프로파일들을 나타낸다.12 shows CMO-10 catalyst before reduction, CMO-10 catalyst after reduction, and conversion (125 hr, 1425 hr) CMO in C 1s (A), Co 2p (B), O 1s (C) and Mn 2p (D) regions. 13 shows high-resolution XPS profiles of -10 catalysts, and FIG. 13 shows CMO-0 catalyst before reduction, CMO-0 catalyst after reduction and conversion (125 hr) in the C 1s (A), Co 2p (B) and O 1s (C) regions. ) high-resolution XPS profiles of the CMO-10 catalyst.
도 12 및 도 13을 참조하면, 125시간 동안 반응이 진행된 후의 전환 CMO-10 촉매에서는 Co2C에 대응되는 283.2eV에서의 새로운 피크를 나타났다. 이로부터 반응의 초기 상태에서, 흡착된 CO2 종으로부터 분해된 표면 탄소 종에 의해 Co 표면에 Co2C이 형성되었음을 알 수 있다. 반응시간이 125시간에서 1425시간으로 증가함에 따라, 전환 CMO-10 촉매에서 Co2C의 면적비율은 14.7%로부터 29.1%까지 증가하였다. 12 and 13, the converted CMO-10 catalyst after the reaction proceeded for 125 hours showed a new peak at 283.2 eV corresponding to Co 2 C. From this, it can be seen that in the initial state of the reaction, Co 2 C was formed on the Co surface by surface carbon species decomposed from adsorbed CO 2 species. As the reaction time increased from 125 hours to 1425 hours, the area ratio of Co 2 C in the converted CMO-10 catalyst increased from 14.7% to 29.1%.
환원 후 CMO-10 촉매의 Co 2p 스펙트럼에 있어서, 금속 Co에 대응되는 778.4 eV에서의 피크가 나타났고, Mn 촉진제에 의한 촉매의 불완전 환원 때문에 금속 Co의 면적 비율은 약 8.7%로서 작았다. 반응 시간이 125시간에서 1425시간으로 증가함에 따라, 전환 CMO-10 촉매들에 있어서, 금속 Co 및 Co2C에 각각 대응되는 피크들의 면적 비율은 28.7% 및 27.6%까지 각각 증가하였다.In the Co 2p spectrum of the CMO-10 catalyst after reduction, a peak at 778.4 eV corresponding to metal Co appeared, and the area ratio of metal Co was small at about 8.7% because of the incomplete reduction of the catalyst by the Mn promoter. As the reaction time increased from 125 hours to 1425 hours, in the converted CMO-10 catalysts, the area ratios of peaks corresponding to metal Co and Co 2 C respectively increased to 28.7% and 27.6%, respectively.
O 1s 스펙트럼에서, 529.6 및 531.2 eV에서의 2가지 주요 피크들은 금속 산화물의 격자 산소 및 산소 공공에 각각 대응될 수 있다. 전환 CMO-10 촉매에서 산소 공공과 관련된 피크의 면적 비율은 26.8%(환원 후 CMO-10 촉매)로부터 53.4%(1425시간 반응 이후의 전환 CMO-10 촉매)까지 증가하였다. 125시간 반응 이후의 전환 CMO-10 촉매에 있어서, 주요 Mn 종은 Mn2+이었다. In the O 1s spectrum, two main peaks at 529.6 and 531.2 eV may correspond to lattice oxygen and oxygen vacancies of the metal oxide, respectively. The area ratio of peaks related to oxygen vacancies in the converted CMO-10 catalyst increased from 26.8% (CMO-10 catalyst after reduction) to 53.4% (converted CMO-10 catalyst after 1425 hours reaction). In the converted CMO-10 catalyst after 125 hours of reaction, the main Mn species was Mn 2+ .
환원 및 CO2 수소화 동안 CMO-0 촉매의 표면에서의 화학적 환경 변화는 CMO-10 촉매와 유사한 것으로 나타났다. 심지어 Mn 촉진제가 없는 경우에도, 환원된 CMO-0 촉매의 표면에서 Co 산화물의 금속 Co로의 완전한 환원은 발생하지 않았고, 350℃의 환원 온도는 이러한 완전한 변환을 위해 충분히 높은 것은 아니었다.Changes in the chemical environment at the surface of the CMO-0 catalyst during reduction and CO 2 hydrogenation were shown to be similar to those of the CMO-10 catalyst. Even in the absence of the Mn promoter, complete reduction of Co oxide to metallic Co did not occur at the surface of the reduced CMO-0 catalyst, and the reduction temperature of 350 °C was not high enough for this complete conversion.
도 14a는 환원 전 CMO-0 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 14b는 환원 전 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Na (J); Co와 O (K); Co, C 및 O (L)의 EDX 이미지들을 나타내는 도면이다. 도 15a는 환원 전 CMO-10 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 15b는 환원 전 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Na (K); Co와 O (L); Co, C 및 O (M)의 EDX 이미지들을 나타내는 도면이다. 도 16a는 환원 후 CMO-0 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 16b는 환원 후 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Na (J); Co와 O (K); Co, C 및 O (L)의 EDX 이미지들을 나타내는 도면이다. 도 17a는 환원 후 CMO-10 촉매의 FE-SEM 이미지들(A, B), HR-TEM 이미지들(C, D), 입자 크기 분포(E)를 나타내는 도면이고, 도 17b는 환원 후 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Na (K); Co와 O (L); Co, C 및 O (M)의 EDX 이미지들을 나타내는 도면이다. 도 18a는 전환 CMO-0 촉매의 HR-TEM 이미지들(A-C, E) 및 FFT 이미지(D)를 나타내고, 도 18b는 전환 CMO-0 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Co 및 O (J); Co, O 및 C (K); 및 Na (L)의 EDX 이미지들을 나타내며, 도 18c는 Co(M); Co 및 O (N); Co, O 및 C (O)의 확대된 최외곽 쉘층은 나타낸다. 도 19a는 전환 CMO-10 촉매의 HR-TEM 이미지들(A-C, E) 및 FFT 이미지(D)를 나타내고, 도 19b는 전환 CMO-10 촉매의 HAADF-STEM 이미지(F) 및 그에 대응되는 Co (G); O (H); C (I); Mn (J); Co, Mn 및 O (K); 및 Co, Mn, C 및 O (L)의 EDX 이미지들을 나타내며, 도 19c는 Co(M); Co 및 O (N); Co, O 및 C (O)의 확대된 최외곽 쉘층은 나타낸다. 도 20은 환원전 CMO-y 촉매(A), 환원 후 CMO-y 촉매(B) 및 전환 CMO-y 촉매(C)의 N2 흡착-탈착 등고선을 나타낸다.14a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst before reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L). 15a is a view showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-10 catalyst before reduction, and FIG. HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M). 16a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of the CMO-0 catalyst after reduction, and FIG. HAADF-STEM image of 0 catalyst (F) and its corresponding Co (G); O (H); C (I); Na(J); Co and O (K); It is a diagram showing EDX images of Co, C and O (L). Figure 17a is a diagram showing FE-SEM images (A, B), HR-TEM images (C, D), and particle size distribution (E) of CMO-10 catalyst after reduction, and Figure 17b is a diagram showing CMO-10 catalyst after reduction HAADF-STEM image of 10 catalyst (F) and its corresponding Co (G); O (H); C (I); Mn (J); Na(K); Co and O (L); It is a diagram showing EDX images of Co, C and O (M). 18a shows HR-TEM images (AC, E) and FFT images (D) of the converted CMO-0 catalyst, and FIG. 18B shows HAADF-STEM images (F) of the converted CMO-0 catalyst and the corresponding Co ( G); O (H); C (I); Co and O (J); Co, O and C (K); and EDX images of Na (L), FIG. 18C shows Co (M); Co and O (N); An enlarged outermost shell layer of Co, O and C(O) is shown. 19a shows HR-TEM images (AC, E) and FFT images (D) of the converted CMO-10 catalyst, and FIG. 19B shows HAADF-STEM images (F) of the converted CMO-10 catalyst and the corresponding Co ( G); O (H); C (I); Mn (J); Co, Mn and O (K); and EDX images of Co, Mn, C, and O (L), FIG. 19C shows Co (M); Co and O (N); An enlarged outermost shell layer of Co, O and C(O) is shown. 20 shows N 2 adsorption-desorption contours of the pre-reduction CMO-y catalyst (A), the post-reduction CMO-y catalyst (B), and the converted CMO-y catalyst (C).
도 14a 내지 도 20를 참조하면, 환원 전 CMO-0 촉매는 9.0 nm의 평균 직경을 갖는 구형의 Co3O4 나노입자들을 나타내었다. HAADF-STEM(high-angle annular dark-field STEM) 및 EDX 이미지들은 Na은 전체 촉매 상에서 균일하게 분포되었음을 보여주었다. Referring to FIGS. 14A to 20 , the CMO-0 catalyst before reduction showed spherical Co 3 O 4 nanoparticles with an average diameter of 9.0 nm. HAADF-STEM (high-angle annular dark-field STEM) and EDX images showed that Na was uniformly distributed over the entire catalyst.
환원 전 CMO-10 촉매에서, Co3O4 나노입자의 평균 직경은 5.1 nm로 환원 전 CMO-0 촉매에 비해 감소되었다. HR-TEM을 사용하여 평가된 환원 전 CMO-10 촉매의 입자 크기는 그들의 결정 사이즈와 유사하였고, 이는 단결정 구조를 나타낸다. 이러한 결과들로부터, CMO-10 촉매에 포함된 Mn 촉진제는 열처리 동안 Co3O4의 결정 성장을 억제하였음을 알 수 있다. In the CMO-10 catalyst before reduction, the average diameter of the Co 3 O 4 nanoparticles was 5.1 nm, which was reduced compared to that of the CMO-0 catalyst before reduction. The particle size of the CMO-10 catalysts before reduction, evaluated using HR-TEM, was similar to their crystal size, indicating a single crystal structure. From these results, it can be seen that the Mn promoter included in the CMO-10 catalyst suppressed the crystal growth of Co 3 O 4 during heat treatment.
환원 전 CMO-10 촉매의 BET 표면적(185.3 m2/g)은 환원 전 CMO-0 촉매(103.5 m2/g)보다 현저하게 더 큰 것으로 나타났다. 그리고 환원 전 CMO-25 촉매 및 환원 전 CMO-50 촉매의 BET 표면적은 214.1 및 210.5 m2/g으로 각각 증가하였다. 따라서, CMO-y 촉매에 포함된 Mn은 열처리 동안 내부 입자 응집을 억제하였음을 알 수 있다. The BET surface area of the CMO-10 catalyst before reduction (185.3 m 2 /g) was found to be significantly larger than that of the CMO-0 catalyst before reduction (103.5 m 2 /g). And the BET surface areas of the CMO-25 catalyst before reduction and the CMO-50 catalyst before reduction increased to 214.1 and 210.5 m 2 /g, respectively. Therefore, it can be seen that Mn included in the CMO-y catalyst inhibited the aggregation of internal particles during heat treatment.
CMO-0 촉매의 경우, 환원 동안에 인접한 나노입자들 사이의 응집이 발생하여 환원 전보다 환원 후의 입자 크기가 증가한 것으로 나타났다. 환원된 CMO-0 촉매의 평균 입자 직경은 224 nm까지 현저하게 증가하였다. 이와 달리, CMO-10 촉매의 경우, 환원 동안 Mn 촉진제에 의해 입자 성장을 억제되었고, 그 결과 환원 후 CMO-10 촉매의 평균 입자 직경(18.4 nm)은 환원 후 CMO-0 촉매보다 10배 정도 더 작았다. Mn 및 Na 종은 환원 후 CMO-10 촉매 상에 균일하게 분포하였다. In the case of the CMO-0 catalyst, aggregation between adjacent nanoparticles occurred during reduction, resulting in an increase in particle size after reduction compared to before reduction. The average particle diameter of the reduced CMO-0 catalyst increased significantly to 224 nm. In contrast, in the case of the CMO-10 catalyst, the particle growth was inhibited by the Mn promoter during reduction, and as a result, the average particle diameter (18.4 nm) of the CMO-10 catalyst after reduction was about 10 times larger than that of the CMO-0 catalyst after reduction. It was small. Mn and Na species were uniformly distributed on the CMO-10 catalyst after reduction.
환원 후 CMO-0 촉매 및 환원 후 CMO-10 촉매에 있어서, Na 함량은 각각 0.11 및 0.12 wt%인 것으로 측정되었다. For the CMO-0 catalyst after reduction and the CMO-10 catalyst after reduction, the Na content was measured to be 0.11 and 0.12 wt%, respectively.
전환 CMO-0 촉매의 전체적인 몰폴로지 및 입자 크기는 환원 후 CMO-0 촉매와 비교하여 크게 변화하지 않은 것으로 나타났다. 10~15 nm 두께의 층이 촉매 입자의 최외곽 표면을 커버하였다. FFT 및 고배율 이미지는 전환 CMO-0 촉매 내에 CoO (111), Co3O4 (311), Co2C (020) 및 hcp Co (012) 및 (101) 평면들과 관련된 회절 패턴들이 존재함을 나타내었고, 이는 CO2 수소화 동안 CoOx 및 Co2C 상의 형성을 나타낸다. CoOx/Co2C 층에 있어서, 층간 간격은 2.44~2.56Å의 범위 내에 있었고, 이는 산소 공공의 존재 때문에 Co3O4 (2.44Å)의 격자 확장된 (311) 평면 및 CoO (2.46Å)의 (111) 평면과 부합된다. HAADF-STEM 이미지들 및 이에 대응되는 EDX 이미지들은 산소 및 탄소 종이 금속 Co 입자들의 표면을 커버하고 있음을 보여주었다. Co의 EDX 이미지의 근접 조사는 코어에 있는 밀한 금속 Co 상 및 쉘층에 있는 고도로 다공성인 Co 상이 촉매에 공존하고 있음을 나타내었다. 다공성 Co 상은 O 및 C 원소와 중첩하는 것으로 나타났고, 이로부터 10~15 nm의 두께를 갖는 산소- 및 탄소-rich 쉘이 금속 Co 코어 표면에 형성되어 있음을 알 수 있다. 최외곽 표면 영역에서, 약 5nm 두께의 탄소층이 관찰되었고, 이는 FTS 반응에 의해 형성되었다. 즉, 탄소층은 전환 CMO-0 촉매의 최외곽 표면에 증착되어 있었고, CoOx 및 Co2C 상은 거의 표면 영역에 가깝게 존재하였으며, 그 결과 전환 CMO-0 촉매는 Co@Co2C/CoOx 코어쉘 구조를 가지는 것으로 확인되었다. 다만, 전환 CMO-0 촉매의 일부 부분에서, Co2C/CoOx 쉘층은 균일하지 않았고, 촉매 표면으로부터 탈착된 카본-rich 상들이 관찰되었다.It was found that the overall morphology and particle size of the converted CMO-0 catalyst did not change significantly compared to that of the CMO-0 catalyst after reduction. A 10-15 nm thick layer covered the outermost surface of the catalyst particles. FFT and high-magnification images revealed the presence of diffraction patterns associated with CoO (111), Co 3 O 4 (311), Co 2 C (020) and hcp Co (012) and (101) planes in the converted CMO-0 catalyst. shown, which indicates the formation of CoO x and Co 2 C phases during CO 2 hydrogenation. For the CoO x /Co 2 C layer, the interlayer spacing was in the range of 2.44–2.56 Å, which is due to the presence of oxygen vacancies in the lattice-extended (311) plane of Co 3 O 4 (2.44 Å) and CoO (2.46 Å). is consistent with the (111) plane of HAADF-STEM images and corresponding EDX images showed that oxygen and carbon species covered the surface of the metallic Co particles. Closer examination of the EDX images of Co revealed that a dense metallic Co phase in the core and a highly porous Co phase in the shell layer coexist in the catalyst. The porous Co phase was found to overlap O and C elements, indicating that an oxygen- and carbon-rich shell with a thickness of 10 to 15 nm was formed on the surface of the metallic Co core. In the outermost surface region, a carbon layer with a thickness of about 5 nm was observed, which was formed by the FTS reaction. That is, the carbon layer was deposited on the outermost surface of the converted CMO-0 catalyst, and the CoO x and Co 2 C phases were present almost on the surface area. As a result, the converted CMO-0 catalyst was Co@Co 2 C/CoO x It was confirmed to have a core-shell structure. However, in some parts of the converted CMO-0 catalyst, the Co 2 C/CoO x shell layer was not uniform, and carbon-rich phases desorbed from the catalyst surface were observed.
환원 후 CMO-10 촉매의 입자 크기(18.4 nm)와 비교하여, 전환 CMO-10 촉매의 입자 크기는 거의 100 nm까지 증가된 것으로 나타났고, 이는 CO2 수소화 동안 입자간 응집이 발생하였음을 나타낸다. 그러나 전환 CMO-10 촉매의 입자 크기는 전환 CMO-0 촉매와 비교하여 훨씬 더 작았고, 이는 Mn 촉진제가 CO2 수소화 동안 입자 응집을 억제하였음을 나타낸다. Compared to the particle size of the CMO-10 catalyst after reduction (18.4 nm), the particle size of the converted CMO-10 catalyst was found to be increased to almost 100 nm, indicating that interparticle agglomeration occurred during CO 2 hydrogenation. However, the particle size of the converted CMO-10 catalyst was much smaller compared to the converted CMO-0 catalyst, indicating that the Mn promoter inhibited particle aggregation during CO 2 hydrogenation.
CMO-0 촉매의 경우에서와 유사하게, 전환 CMO-10 촉매는 hcp Co 코어 및 CoOx/Co2C 쉘 구조를 갖는 것으로 확인되었다. 전환 CMO-10 촉매에 있어서, 벌크 분석 기술(XRD 및 XAS)을 통해 감지된 Co 산화물의 양은 극도로 적은 반면, 표면 감지 기술(XPS)을 통해 감지된 Co 산화물의 양은 상당히 많았음을 고려하면, EDX 이미지들에서 관찰된 Co 산화물 종은 금속 Co 코어의 최외곽 표면 상에 대부분 존재하고 있음을 알 수 있다. Mn 촉진제는 CMO-10 촉매의 최외곽 표면 상에 탄소-rich 층이 형성되는 것을 억제하였고, 고립된 탄소-rich 시트들은 촉매 표면으로부터 분리되었다. 이는 금속 Co 코어 나노입자 표면에 균일한 CoOx/Co2C 쉘층의 형성 때문이다. Similar to the case of the CMO-0 catalyst, the converted CMO-10 catalyst was found to have an hcp Co core and a CoO x /Co 2 C shell structure. Considering that in the converted CMO-10 catalyst, the amount of Co oxide detected through the bulk analysis technique (XRD and XAS) was extremely small, while the amount of Co oxide detected through the surface detection technique (XPS) was quite large, It can be seen that the Co oxide species observed in the EDX images are mostly present on the outermost surface of the metal Co core. The Mn promoter inhibited the formation of a carbon-rich layer on the outermost surface of the CMO-10 catalyst, and isolated carbon-rich sheets separated from the catalyst surface. This is due to the formation of a uniform CoO x /Co 2 C shell layer on the surface of the metal Co core nanoparticles.
도 21은 1.0 MPa의 반응 압력 조건 하에서 전환된 전환 CMO-0 촉매의 HR-TEM 이미지들을 나타내고, 도 22는 1.0 MPa의 반응 압력 조건 하에서 전환된 전환 CMO-10 촉매의 HR-TEM 이미지들을 나타낸다. 21 shows HR-TEM images of the converted CMO-0 catalyst converted under the reaction pressure condition of 1.0 MPa, and FIG. 22 shows HR-TEM images of the converted CMO-10 catalyst converted under the reaction pressure condition of 1.0 MPa.
도 18a, 도 19a와 함께 도 21, 도 22을 참조하면, 1.0 MPa 반응 압력에서 전환된 전환 CMO-0 촉매에 존재하는 쉘층의 두께는 약 5nm이었고, 이는 4.0 MPa 반응 압력에서 전환된 CMO-0 촉매의 쉘층의 두께(10~15nm)보다 상당히 더 얇았다. 또한, 1.0 MPa에서 전환된 전환 CMO-0 촉매의 표면 층은 4.0 MPa에서 전환된 전환 CMO-0 촉매보다 더 높은 [CoO+Co3O4]/Co0 비율(3.1%) 및 더 작은 카바이드 면적비율(3.0%)을 나타내었다. 1.0 MPa에서 전환된 전환 CMO-0 촉매의 금속 Co 함량(89.1%)은 4.0 MPa에서 전환된 CMO-0 촉매(98.6%)보다 상당히 더 낮았다. Referring to FIGS. 21 and 22 together with FIGS. 18A and 19A, the thickness of the shell layer present in the converted CMO-0 catalyst converted at a reaction pressure of 1.0 MPa was about 5 nm, which is the thickness of the CMO-0 converted at a reaction pressure of 4.0 MPa. It was considerably thinner than the thickness of the shell layer of the catalyst (10-15 nm). In addition, the surface layer of the converted CMO-0 catalyst converted at 1.0 MPa has a higher [CoO+Co 3 O 4 ]/Co 0 ratio (3.1%) and smaller carbide area than that of the converted CMO-0 catalyst converted at 4.0 MPa. The ratio (3.0%) is shown. The metal Co content of the converted CMO-0 catalyst converted at 1.0 MPa (89.1%) was significantly lower than that of the converted CMO-0 catalyst converted at 4.0 MPa (98.6%).
1.0 MPa에서의 전환된 CMO-10 촉매(C1~C4 선택도=93.8%, C5+ 선택도=6.2%)의 경우, 약 5nm의 크기를 갖는 직육면체 형상의 Co2C 입자들이 금속 Co 입자들의 표면 상에 형성되었다. 이는 Mn 촉진제가 Co2C의 형성을 촉진함을 나타낸다. 그러나 직육면체 형상의 Co2C 입자의 형성은 C5+ 탄화수소 산출율을 증가시키지는 않았다. CMO-0 촉매의 경우와 유사하게, 1.0 MPa에서 전환된 전환 CMO-10 촉매는 4.0 MPa에서 전환된 전환 CMO-10 촉매와 비교하여, 더 높은 [CoO+Co3O4]/Co0 비율(2.1), 더 높은 카바이드 면적 비율(20.6%) 및 더 낮은 금속 Co 함량(83.5%)을 나타내었다. 이로부터, 낮은 압력에서 형성된 촉매 내의 풍부한 Co 산화물 및 Co2C 상들은 C5+ 탄화수소 산출율에 부정적인 영향을 미침을 알 수 있다.In the case of the converted CMO-10 catalyst at 1.0 MPa (C 1 ~C 4 selectivity = 93.8%, C 5+ selectivity = 6.2%), the cuboid-shaped Co 2 C particles with a size of about 5 nm are the size of the metal Co particles. formed on the surface. This indicates that the Mn promoter promotes the formation of Co 2 C. However, the formation of cuboid-shaped Co 2 C particles did not increase the C 5+ hydrocarbon yield. Similar to the case of the CMO-0 catalyst, the converted CMO-10 catalyst converted at 1.0 MPa has a higher [CoO+Co 3 O 4 ]/Co 0 ratio ( 2.1), higher carbide area ratio (20.6%) and lower metal Co content (83.5%). From this, it can be seen that the abundant Co oxide and Co 2 C phases in the catalyst formed at low pressure negatively affect the C5+ hydrocarbon yield.
직육면체 형상의 Co2C 입자는 230℃의 낮은 반응 온도에서 형성되었다. 반응온도가 250℃까지 증가함에 따라, Co2C 직육면체 몰폴로지는 사라졌고, 대신 Co2C 및 CoOx의 혼합물로 형성된 약 4nm 두께의 쉘층이 금속 Co 코어를 커버하도록 형성되었다. 270℃의 반응 온도에서는 쉘층의 두께(10~15nm)는 증가되었다. 310℃의 반응 온도에서 전환된 CMO-10 촉매의 경우, 급격한 몰폴로지 변화가 관찰되었다. 310℃의 반응 온도에서, 인접한 Co 나노입자들 사이의 심각한 입자간 응집은 탄소-rich 층의 분리를 야기할 수 있었다. 근접 조사를 통해, 작은 Co2C 상들을 포함하는 탄소-rich 시트들이 금속 Co 입자들의 표면으로부터 탈착됨을 확인할 수 있었다. 따라서, 물에 노출된 촉매 표면의 일부 부분들이 부산물로서 형성되었고, 이러한 표면은 촉매 표면을 재산화시켜 벌크 Co 코어 내에 Co3O4 상을 형성하였다. 310℃의 반응온도에서 전환된 CMO-10 촉매 내의 Co3O4 및 CoO 함량(37.8%)은 270℃에서 전환된 CMO-10 촉매보다 상당히 더 높았다. 따라서, 낮은 반응 온도에서의 높은 메탄(CH4) 선택도는 혼합된 CoOx 및 Co2C 쉘층의 불완전 개발로부터 야기되는 것임을 알 수 있다. 그리고, 높은 반응 온도에서, Co@CoOx/Co2C 나노입자들의 응집에 의해 야기되는 금속 Co 상의 재산화는 높은 메탄(CH4) 선택도에 대해 책임이 있는 것으로 판단된다. The cuboid-shaped Co 2 C particles were formed at a low reaction temperature of 230 °C. As the reaction temperature increased to 250 °C, the Co 2 C cuboid morphology disappeared, and instead a shell layer of about 4 nm thickness formed of a mixture of Co 2 C and CoO x was formed to cover the metallic Co core. At a reaction temperature of 270 °C, the thickness of the shell layer (10-15 nm) increased. In the case of the CMO-10 catalyst converted at a reaction temperature of 310 °C, a rapid morphology change was observed. At a reaction temperature of 310 °C, severe intergranular aggregation between adjacent Co nanoparticles could lead to separation of the carbon-rich layer. Through close-up examination, it was confirmed that carbon-rich sheets containing small Co 2 C phases were desorbed from the surface of the metallic Co particles. Thus, some portions of the catalyst surface exposed to water were formed as by-products, which re-oxidized the catalyst surface to form Co 3 O 4 phases within the bulk Co core. The Co 3 O 4 and CoO content (37.8%) in the CMO-10 catalyst converted at a reaction temperature of 310 °C was significantly higher than that of the CMO-10 catalyst converted at 270 °C. Thus, it can be seen that the high methane (CH 4 ) selectivity at low reaction temperature results from incomplete development of the mixed CoO x and Co 2 C shell layer. And, at high reaction temperatures, reoxidation of the metallic Co phase caused by aggregation of Co@CoO x /Co 2 C nanoparticles is believed to be responsible for the high methane (CH 4 ) selectivity.
도 23a은 230℃(A), 250℃(B), 290℃(C) 및 310℃(D)의 반응 온도 조건 하에서 전환된 전환 CMO-10 촉매의 SEM, HR-TEM 및 FFT 이미지들을 나타내고, 도 23b는 230℃(A), 250℃(B), 270℃(C), 290℃(D) 및 310℃(E, F)의 반응 온도 조건 하에서 전환된 전환 CMO-10 촉매의 HR-TEM 이미지들을 나타내고, 도 24는 1:1, 2:1 및 4:1의 H2/CO2 비율의 조건 하에서 전환된 전환 CMO-10 촉매의 SEM, HR-TEM 및 FFT 이미지들을 나타내며, 도 25는 1425시간 반응 이후의 CMO-10 촉매의 SEM 및 HR-TEM 이미지들을 나타낸다.Figure 23a shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 290 °C (C) and 310 °C (D), Figure 23b is HR-TEM of the converted CMO-10 catalyst converted under reaction temperature conditions of 230 °C (A), 250 °C (B), 270 °C (C), 290 °C (D) and 310 °C (E, F) 24 shows SEM, HR-TEM and FFT images of the converted CMO-10 catalyst converted under conditions of H 2 /CO 2 ratios of 1:1, 2:1 and 4:1, and FIG. SEM and HR-TEM images of the CMO-10 catalyst after 1425 hours of reaction are shown.
도 23a, 도 23b, 도 24 및 도 25를 참조하면, H2/CO2의 비율이 1:1에서 전환된 CMO-10 촉매의 경우에는 82.4%의 C1 탄화수소 선택도 및 1.6%의 C5+ 탄화수소 선택도를 나타내었고, H2/CO2의 비율이 2:1에서 전환된 CMO-10 촉매의 경우에는 84.3%의 C1 탄화수소 선택도 및 2.3%의 C5+ 탄화수소 선택도를 나타내었다. 그리고 1:1 및 2:1의 H2/CO2의 비율에서 전환된 CMO-10 촉매의 경우, Co2C 및 CoO의 혼합 상(phases)은 약 5nm의 두께로 형성되었고, Co3O4 및 CoO의 함량은 각각 12.9% 및 8.8%로서, 3:1의 H2/CO2의 비율에서 전환된 CMO-10 촉매의 0.9%보다 더 높았다. 4:1의 H2/CO2의 비율에서 전환된 CMO-10 촉매의 경우에는 87.8%의 C1 탄화수소 선택도 및 3.2%의 C5+ 탄화수소 선택도를 나타내었고, 입자들이 고도로 응집되었고, Co3O4 및 CoO의 함량은 10.1%까지 증가되었고, 표면 탄화물의 함량은 1.2%로 감소되었다. Referring to FIGS. 23a, 23b, 24, and 25, in the case of the CMO-10 catalyst in which the ratio of H 2 /CO 2 was converted from 1:1, the selectivity for C1 hydrocarbons was 82.4% and the selectivity for C5+ hydrocarbons was 1.6%. In the case of the CMO-10 catalyst in which the H 2 /CO 2 ratio was converted at 2:1, the C1 hydrocarbon selectivity of 84.3% and the C 5+ hydrocarbon selectivity of 2.3% were shown. And in the case of the CMO-10 catalyst converted at H 2 /CO 2 ratios of 1:1 and 2:1, mixed phases of Co 2 C and CoO were formed with a thickness of about 5 nm, and Co 3 O 4 and CoO were 12.9% and 8.8%, respectively, higher than 0.9% of the CMO-10 catalyst converted at a H 2 /CO 2 ratio of 3:1. In the case of the CMO-10 catalyst converted at a H 2 /CO 2 ratio of 4:1, the C1 hydrocarbon selectivity of 87.8% and the C 5+ hydrocarbon selectivity of 3.2% were exhibited, the particles were highly agglomerated, and the Co 3 The content of O 4 and CoO was increased to 10.1%, and the content of surface carbides was decreased to 1.2%.
수소 부족 조건 하에서의 코발트 산화물의 금속 Co로의 불완전 변환 및 수소 충분 조건 하에서의 입자의 응집에 의한 금속 Co 상의 재산화는 FTS 반응을 저하시킬 수 있다. 전환 CMO-10 촉매의 몰폴로지는 1425시간의 반응 이후에도 유지되었다.Incomplete conversion of cobalt oxide to metallic Co under hydrogen deficient conditions and reoxidation on metallic Co by agglomeration of particles under hydrogen sufficient conditions can degrade the FTS response. The morphology of the converted CMO-10 catalyst was maintained even after 1425 hours of reaction.
도 26a는 330℃에서 열처리된 환원 전 CMO-y 촉매에 대한 H2-TPR 프로파일을 나타내고, 도 26b 내지 도 26d는 환원 후 CMO-y 촉매의 CO2-TPD 프로파일, CO-TPD 프로파일 및 H2-TPD 프로파일을 각각 나타낸다. 그리고 하기 표 6은 환원 전 CMO-y 촉매에 대한 H2-TPR 프로파일의 피크에 대한 상 및 조성을 나타내고, 표 7 내지 표 9는 CO2-TPD 데이터, CO-TPD 데이터, H2-TPD 데이터를 각각 사용하여 계산된 CMO-y 촉매로부터 탈착된 CO2, CO 및 H2의 양을 각각 나타낸다. Figure 26a shows the H 2 -TPR profile for the CMO-y catalyst before reduction heat treatment at 330 ° C, and FIGS. 26b to 26d show the CO 2 -TPD profile, CO-TPD profile and H 2 of the CMO-y catalyst after reduction. -Indicates each TPD profile. And Table 6 shows the phase and composition of the peak of the H 2 -TPR profile for the CMO-y catalyst before reduction, and Tables 7 to 9 show the CO 2 -TPD data, CO-TPD data, and H 2 -TPD data. The amounts of CO 2 , CO and H 2 desorbed from the CMO-y catalyst calculated using each are shown respectively.
CatalystCatalyst Peak
(℃)
peak
(℃)
Area
(%)
Area
(%)
AssignmentAssignment Composition
(%)
composition
(%)
CMO-0CMO-0 254254 22.722.7 Co3O4 → CoO Co 3 O 4 → CoO Co3O4 (22.7)Co 3 O 4 (22.7)
308308 9.49.4 Co3O4 → CoO, CoO → CoCo 3 O 4 → CoO, CoO → Co Co3O4 (2.3), CoO (7.1)Co 3 O 4 (2.3), CoO (7.1)
367367 57.757.7 CoO → CoCoO → Co CoO (57.7)CoO (57.7)
416416 10.210.2 CoO → CoCoO → Co CoO (10.2)CoO (10.2)
CMO-10CMO-10 209209 9.59.5 MnO2 → Mn2O3, Co3O4 → CoOMnO 2 → Mn 2 O 3 , Co 3 O 4 → CoO MnO2 (3.9), Co3O4 (5.6) MnO 2 (3.9), Co 3 O 4 (5.6)
257257 15.615.6 Co3O4 → CoOCo 3 O 4 → CoO Co3O4 (15.6)Co 3 O 4 (15.6)
359359 23.823.8 Mn2O3 → Mn3O4, Co3O4 → CoO, CoO → CoMn 2 O 3 → Mn 3 O 4 , Co 3 O 4 → CoO, CoO → Co Mn2O3 (1.2), Co3O4 (1.9), CoO (20.7)Mn 2 O 3 (1.2), Co 3 O 4 (1.9), CoO (20.7)
444444 51.151.1 Mn3O4 → MnO, CoO → CoMn 3 O 4 → MnO, CoO → Co Mn3O4 (2.6), CoO (48.5)Mn 3 O 4 (2.6), CoO (48.5)
CMO-25CMO-25 214214 14.014.0 MnO2 → Mn2O3, Co3O4 → CoOMnO 2 → Mn 2 O 3 , Co 3 O 4 → CoO MnO2 (10), Co3O4 (4.0)MnO 2 (10), Co 3 O 4 (4.0)
275275 18.918.9 Mn2O3 → Mn3O4, Co3O4 → CoOMn 2 O 3 → Mn 3 O 4 , Co 3 O 4 → CoO Mn2O3 (3.3), Co3O4 (15.6)Mn 2 O 3 (3.3), Co 3 O 4 (15.6)
428428 67.167.1 Mn3O4 → MnO, CoO → CoMn 3 O 4 → MnO, CoO → Co Mn3O4 (6.7), CoO (60.4)Mn 3 O 4 (6.7), CoO (60.4)
CMO-50CMO-50 118118 3.53.5 MnO2 → Mn2O3 MnO 2 → Mn 2 O 3 MnO2 (3.5)MnO 2 (3.5)
213213 21.821.8 MnO2 → Mn2O3, Co3O4 → CoOMnO 2 → Mn 2 O 3 , Co 3 O 4 → CoO MnO2 (18), Co3O4 (3.8)MnO 2 (18), Co 3 O 4 (3.8)
300300 17.817.8 Mn2O3 → Mn3O4, Co3O4 → CoO, CoO → CoMn 2 O 3 → Mn 3 O 4 , Co 3 O 4 → CoO, CoO → Co Mn2O3 (7.1), Co3O4 (10.5), CoO (9.2)Mn 2 O 3 (7.1), Co 3 O 4 (10.5), CoO (9.2)
336336 9.09.0 Mn2O3 → Mn3O4, Co3O4 → CoO, CoO → CoMn 2 O 3 → Mn 3 O 4 , Co 3 O 4 → CoO, CoO → Co
453453 47.947.9 Mn3O4 → MnO, CoO → CoMn 3 O 4 → MnO, CoO → Co Mn3O4 (14.3), CoO (33.6)Mn 3 O 4 (14.3), CoO (33.6)
CMO-75CMO-75 154154 7.57.5 MnO2 → Mn2O3 MnO 2 → Mn 2 O 3 MnO2 (7.5)MnO 2 (7.5)
233233 32.932.9 MnO2 → Mn2O3, Co3O4 → CoOMnO 2 → Mn 2 O 3 , Co 3 O 4 → CoO MnO2 (27.1), Co3O4 (5.8)MnO 2 (27.1), Co 3 O 4 (5.8)
346346 21.321.3 Mn2O3 → Mn3O4, Co3O4 → CoO, CoO → CoMn 2 O 3 → Mn 3 O 4 , Co 3 O 4 → CoO, CoO → Co Mn2O3 (11.5), Co3O4 (1.9), CoO (7.9)Mn 2 O 3 (11.5), Co 3 O 4 (1.9), CoO (7.9)
376376 10.610.6 Mn3O4 → MnO, CoO → CoMn 3 O 4 → MnO, CoO → Co Mn3O4 (23.2), CoO (15.1)Mn 3 O 4 (23.2), CoO (15.1)
470470 27.727.7 Mn3O4 → MnO, CoO → CoMn 3 O 4 → MnO, CoO → Co
CMO-100CMO-100 190190 10.8710.87 MnO2 → Mn2O3 MnO 2 → Mn 2 O 3 MnO2 (10.87)MnO 2 (10.87)
251251 29.5829.58 MnO2 → Mn2O3 MnO 2 → Mn 2 O 3 MnO2 (29.58)MnO 2 (29.58)
268268 14.5814.58 MnO2 → Mn2O3, Mn2O3 → Mn3O4 MnO 2 → Mn 2 O 3 , Mn 2 O 3 → Mn 3 O 4 MnO2 (9.54)Mn2O3 (5.04)MnO 2 (9.54)Mn 2 O 3 (5.04)
367367 31.4131.41 Mn2O3 → Mn3O4, Mn3O4 → MnOMn 2 O 3 → Mn 3 O 4 , Mn 3 O 4 → MnO Mn2O3 (11.66)Mn3O4 (19.75)Mn 2 O 3 (11.66) Mn 3 O 4 (19.75)
399399 13.5613.56 Mn3O4 → MnOMn 3 O 4 → MnO Mn3O4 (13.56)Mn 3 O 4 (13.56)
Amount of desorbed CO2 (mmol g-1)Amount of desorbed CO 2 (mmol g -1 )
CatalystCatalyst Weak
< 250 ℃
Weak
< 250 ℃
Medium
250-600 ℃
Medium
250-600℃
Strong
>600 ℃
Strong
>600 ℃
TotalTotal
CMO-0CMO-0 -- -- 0.0030.003 0.0030.003
CMO-10CMO-10 0.0010.001 0.0150.015 0.0010.001 0.0170.017
CMO-25CMO-25 0.0270.027 0.0030.003 -- 0.0300.030
CMO-50CMO-50 0.0070.007 0.0010.001 -- 0.0080.008
CMO-75CMO-75 0.0060.006 0.0020.002 0.0010.001 0.0090.009
Amount of desorbed CO (mmol g-1)Amount of desorbed CO (mmol g -1 )
CatalystCatalyst Weak
< 250 ℃
Weak
< 250 ℃
Medium
250-600 ℃
Medium
250-600℃
Strong
>600 ℃
Strong
>600 ℃
TotalTotal
CMO-0CMO-0 0.0090.009 0.0060.006 0.0040.004 0.0190.019
CMO-10CMO-10 0.0740.074 0.0530.053 0.0280.028 0.1550.155
CMO-25CMO-25 0.1060.106 0.1230.123 0.0170.017 0.2460.246
CMO-50CMO-50 0.1910.191 0.2080.208 0.0690.069 0.4680.468
CMO-75CMO-75 0.0180.018 0.0420.042 0.1440.144 0.2040.204
Amount of desorbed H2 (mmol g-1)Amount of desorbed H 2 (mmol g -1 )
CatalystCatalyst Weak
< 250 ℃
Weak
< 250 ℃
Medium
250-600 ℃
Medium
250-600℃
Strong
>600 ℃
Strong
>600 ℃
TotalTotal
CMO-0CMO-0 0.0230.023 0.0310.031 0.0010.001 0.0550.055
CMO-10CMO-10 0.0130.013 0.0140.014 0.0010.001 0.0280.028
CMO-25CMO-25 0.0090.009 0.0070.007 -- 0.0160.016
CMO-50CMO-50 0.0040.004 0.0170.017 -- 0.0210.021
CMO-75CMO-75 0.0030.003 0.0130.013 -- 0.0160.016
도 26a 내지 도 26d 그리고 표 6 내지 표 9를 참조하면, CMO-y 촉매들(10≤y≤75)에 대한 427-470℃에서의 고온 피크들은 스피넬 구조의 CoxMn3-xO4는 촉매의 환원성을 방해함을 나타낸다. 또한, Mn 함량이 증가함에 따라, Co3O4에서 CoO로의 환원 온도는 258℃(CMO-0)로부터 345℃(CMO-75)까지 증가되었고, 이는 Mn의 존재로 코발트 산화물의 환원성이 억제됨을 나타낸다.Mn의 존재는 CO2 및 CO의 흡착을 증가시켰으나, H2의 흡착은 감소시켰다. 따라서, Mn을 함유하는 CMO-y 촉매 상에서의 CO 및 CO2에 대한 강한 흡착 및 H2에 대한 약한 흡착은 C/H 표면 커버리지 비율을 증가시킬 수 있고, 이에 따라 메탄화에 걸친 FTS 속도를 증가시킴에 의해 CO2 전환 및 C5+ 탄화수소 선택도를 향상시키는데 도움이 될 수 있다.Referring to FIGS. 26A to 26D and Tables 6 to 9, the high-temperature peaks at 427-470° C. for the CMO-y catalysts (10≤y≤75) show that the spinel structure of Co x Mn 3-x O 4 is Indicates that the reducing properties of the catalyst are hindered. In addition, as the Mn content increased, the reduction temperature of Co 3 O 4 to CoO increased from 258 °C (CMO-0) to 345 °C (CMO-75), indicating that the presence of Mn inhibits the reduction of cobalt oxide. The presence of Mn increased the adsorption of CO 2 and CO, but decreased the adsorption of H 2 . Thus, strong adsorption for CO and CO 2 and weak adsorption for H 2 on CMO-y catalysts containing Mn can increase the C/H surface coverage ratio and thus increase the FTS rate across methanation. can help to improve CO 2 conversion and C 5+ hydrocarbon selectivity.
[실험예3]: 인시튜 연산수(operando) DRIFT 분석 [Experimental Example 3]: In-situ operando DRIFT analysis
C5+ 탄화수소의 형성을 뒷받침하는 반응 메커니즘을 이해하기 위해, 일련의 인시튜 DRIFT 실험들을 수행하여 CMO-0 및 CMO-10 촉매 상에서의 반응 중간생성물의 진화를 조사하였다. To understand the reaction mechanism underlying the formation of C 5+ hydrocarbons, a series of in situ DRIFT experiments were performed to investigate the evolution of reaction intermediates on CMO-0 and CMO-10 catalysts.
CO2로 0.1 MPa로부터 3.0 MPa까지 DRIFT 셀의 가압화하는 동안 DRIFT 스펙트럼을 수집하여, 촉매의 표면 상에 흡착된 CO2로부터 유도된 중간 생성물의 종을 확인하였고, 이 때, DRIFT 셀은 350℃에서 미리 H2-환원된 CMO-0 촉매를 함유하였다.DRIFT spectra were collected during pressurization of the DRIFT cell from 0.1 MPa to 3.0 MPa with CO 2 to identify species of intermediate products derived from CO 2 adsorbed on the surface of the catalyst, at which time the DRIFT cell was operated at 350 °C. contained a previously H 2 -reduced CMO-0 catalyst.
도 27a 내지 도 27d는 CMO-10 촉매 상에서의 인시튜 DFIFT CO2 흡착 프로파일을 나타내고, 도 28a 내지 도 28c는 CMO-0 촉매 상에서의 인시튜 DFIFT CO2 흡착 프로파일을 나타내고, 도 29a 내지 도 29c는 CMO-0 촉매 상에서의 인시튜 DFIFT CO 흡착 프로파일을 나타내고, 도 30a 내지 도 30c는 CMO-10 촉매 상에서의 인시튜 DFIFT CO 흡착 프로파일을 나타내고, 도 31a 및 도 31b는 3.0MPa로의 CO 가압 및 270℃까지의 온도 상승 이후 CMO-O 촉매(A), CMO-10 촉매(B) 상에서의 H2 흐름 동안 DRIFT 셀로부터 방출된 생성물의 QMS 프로파일을 나타낸다. 그리고 도 32a 내지 도 32c는 환원 후 CMO-0 촉매 상에서의 인시튜 DFIFT CO2와 H2의 반응 프로파일을 나타내고, 도 33a 내지 도 33c는 환원 후 CMO-10 촉매 상에서의 인시튜 DFIFT CO2와 H2의 반응 프로파일을 나타내고, 도 34a 및 도 34b는 변화하는 반응 압력 조건 하에서의 환원 후 CMO-10 촉매 상에서의 60분 동안의 인시튜 DFIFT CO2 및 H2 반응 프로파일(A) 및 CO2 수소화 동안 CO2-흡착 종, 흡착된 CO, 가스상 CO 및 CH4의 진화(B)를 나타내며, 도 35a 및 도 35b는 변화하는 반응 온도 조건 하에서의 환원 후 CMO-0 촉매 상에서의 60분 동안의 인시튜 DFIFT CO2 및 H2 반응 프로파일(A) 및 CO2 수소화 동안 CO2-흡착 종, 흡착된 CO, 가스상 CO 및 CH4의 진화(B)를 나타낸다.27A to 27D show in situ DFIFT CO 2 adsorption profiles on CMO-10 catalyst, FIGS. 28A to 28C show in situ DFIFT CO 2 adsorption profiles on CMO-0 catalyst, and FIGS. 29A to 29C show In situ DFIFT CO adsorption profiles on CMO-0 catalyst are shown, FIGS. 30A-30C show in situ DFIFT CO adsorption profiles on CMO-10 catalyst, and FIGS. 31A and 31B show CO pressurization to 3.0 MPa and 270° C. QMS profiles of the products released from the DRIFT cell during H 2 flow over the CMO-O catalyst (A) and CMO-10 catalyst (B) after the temperature rise to . and FIGS. 32A to 32C show reaction profiles of in situ DFIFT CO 2 and H 2 on CMO-0 catalyst after reduction, and FIGS. 33A to 33C show reaction profiles of in situ DFIFT CO 2 and H on CMO-10 catalyst after reduction. 2 , FIGS. 34A and 34B show in situ DFIFT CO 2 and H 2 reaction profiles (A) for 60 minutes over CMO-10 catalyst after reduction under varying reaction pressure conditions and CO 2 during hydrogenation of CO 2 - Evolution of adsorbed species, adsorbed CO, gaseous CO and CH 4 (B), FIGS. 35A and 35B show in situ DFIFT CO over 60 min over CMO-0 catalyst after reduction under varying reaction temperature conditions. 2 and H 2 reaction profiles (A) and evolution of CO 2 -adsorbed species, adsorbed CO, gaseous CO and CH 4 during CO 2 hydrogenation ( B ).
도 27a 내지 도 27d에서, A는 CO2를 사용하여 셀을 3.0MPa로 가압한 후 270℃까지 온도를 증가시킨 동안 측정된 결과이고, B는 가스 흐름을 CO2로부터 H2로 전환함에 의해 야기되는 CO2-흡착 종의 수소화 동안에 측정된 결과이며, C는 수소화 동안 선택된 CO2-흡착 종, CO 및 CH4의 진화를 나타내고, D는 H2 흐름 조건 하에서 DRIFT 셀로부터 방출되는 생성물의 QMS 프로파일이다. 도 28a 내지 도 28c에서, A는 CO2를 사용하여 셀을 3.0MPa로 가압한 후 270℃까지 온도를 증가시킨 동안 측정된 결과이고, B는 가스 흐름을 CO2로부터 H2로 전환함에 의해 야기되는 CO2-흡착 종의 수소화 동안에 측정된 결과이며, C는 수소화 동안 선택된 CO2-흡착 종, CO 및 CH4의 진화를 나타낸다. 도 29a 내지 도 29c에서, A는 5%의 CO/He를 사용하여 3.0MPa까지 가압한 후 270℃까지 온도를 증가시킨 동안 측정된 결과이고, B는 가스 흐름을 CO로부터 H2로 전환함에 의해 야기되는 CO-흡착 종의 수소화 동안에 측정된 결과이며, C는 수소화 동안 선택된 CO-흡착 종, CO 및 CH4의 진화를 나타낸다. 도 30a 내지 도 30c에서, A는 5%의 CO/He를 사용하여 3.0MPa까지 가압한 후 270℃까지 온도를 증가시킨 동안 측정된 결과이고, B는 가스 흐름을 CO로부터 H2로 전환함에 의해 야기되는 CO-흡착 종의 수소화 동안에 측정된 결과이며, C는 수소화 동안 선택된 CO2-흡착 종, CO 및 CH4의 진화를 나타낸다. 도 32a 내지 도 32c 및 도 33a 내지 도 33c에서, A는 3.0MPa 압력 및 270℃의 온도에서 CO2 및 H2 주입 동안 측정된 결과이고, B는 가스 흐름을 CO2/H2로부터 H2로 전환함에 의해 유도되는 H2 흐름 동안 측정된 결과이며, C는 수소화 동안 선택된 CO2-흡착 종, CO 및 CH4의 진화를 나타낸다. 27A to 27D , A is the result measured while increasing the temperature to 270° C. after pressurizing the cell to 3.0 MPa with CO 2 , and B is caused by switching the gas flow from CO 2 to H 2 is the result measured during hydrogenation of the CO 2 -adsorbed species, C represents the evolution of the selected CO 2 -adsorbed species, CO and CH 4 during hydrogenation, and D is the QMS profile of the product released from the DRIFT cell under H 2 flow conditions. am. 28A to 28C, A is the result measured while the temperature is increased to 270° C. after pressurizing the cell to 3.0 MPa with CO 2 , and B is caused by switching the gas flow from CO 2 to H 2 is the result measured during hydrogenation of the CO 2 -adsorbed species, and C represents the evolution of the selected CO 2 -adsorbed species, CO and CH 4 during hydrogenation. In Figures 29a to 29c, A is the result measured while increasing the temperature to 270 ℃ after pressurization to 3.0MPa using 5% CO / He, B is the gas flow by switching from CO to H 2 Results measured during the hydrogenation of the resulting CO-adsorbing species, C represents the evolution of selected CO-adsorbing species, CO and CH 4 during hydrogenation. 30A to 30C, A is the result measured while increasing the temperature to 270° C. after pressurization to 3.0 MPa using 5% CO/He, and B is the result obtained by converting the gas flow from CO to H 2 Results measured during hydrogenation of the resulting CO-adsorbing species, and C represents the evolution of selected CO 2 -adsorbing species, CO and CH 4 during hydrogenation. 32A to 32C and 33A to 33C, A is the measured result during CO 2 and H 2 injection at a pressure of 3.0 MPa and a temperature of 270° C., and B is the gas flow from CO 2 /H 2 to H 2 Results measured during the H 2 flow induced by conversion, C represents the evolution of selected CO 2 -adsorbing species, CO and CH 4 during hydrogenation.
도 27 내지 도 35a 및 도 35b를 참조하면, 3015 및 1305 cm-1에서의 가스상 CH4 및 949 cm-1에서의 =C-H 그룹의 벤딩의 적외선 밴드의 강도들은 CO2 흐름 시간이 1분으로부터 90분까지 증가함에 따라 증가하였다. 환원된 CMO-0 촉매 상에서의 CH4 형성은 환원 후에 잔류하는 미리 흡착된 H2 때문에 CO2 메탄화 반응이 발생하였음을 나타낸다. CO2 흐름 시간이 170분까지 추가로 증가한 경우, 촉매 표면 상에 미리 흡착된 H2가 점진적으로 소비되었기 때문에, CH4 및 =C-H와 관련된 IR 밴드가 감소하였다. Referring to FIGS. 27 to 35a and 35b, the intensities of the infrared bands of gaseous CH 4 at 3015 and 1305 cm -1 and bending of the =CH group at 949 cm -1 are obtained when the CO 2 flow time is from 1 minute to 90 increased with increasing minutes. CH 4 formation on the reduced CMO-0 catalyst indicates that the CO 2 methanation reaction has occurred due to pre-adsorbed H 2 remaining after reduction. When the CO 2 flow time was further increased to 170 min, the IR bands associated with CH 4 and ═CH decreased because the H 2 previously adsorbed on the catalyst surface was gradually consumed.
3분의 CO2 흐름 동안 작은 피크들이 2200-2000 cm-1에서 나타났다. 2130, 2094, 2078 및 2059 cm-1에서의 피크들은 Co2+ 사이트([Co2+-(CO)]) 상에 선형적으로 흡착된 CO, 부분적으로 환원된 Coδ+ 사이트([Coδ+-(CO)]), 및 금속 Co 사이트([Co0-(CO)])를 각각 나타낸다. 1933 및 1914 cm-1에서의 피크들은 금속 Co 사이트 상에 브리지 결합된 CO([Cotwo-fold-(CO)])를 나타낸다. Small peaks appeared at 2200-2000 cm -1 during the 3 min CO 2 flow. The peaks at 2130, 2094, 2078 and 2059 cm-1 are linearly adsorbed CO on the Co 2+ site ([Co 2+ -(CO)]), partially reduced Co δ+ site ([Co δ+ + -(CO)]), and a metal Co site ([Co 0 -(CO)]), respectively. The peaks at 1933 and 1914 cm-1 represent CO bridged on the metal Co site ([Co two-fold -(CO)]).
따라서, 환원된 CMO-0 촉매에 있어서, 완전히 환원된 금속 Co0, 부분적으로 산화된 Coδ+(1<δ<2) 및 Co(2+)O 센터들이 공존하였다. [Coδ+-(CO)] 피크의 강도는 높고, 이는 산소 공공-Co 산화물 사이트 상에 흡착된 CO가 지배적임을 나타낸다. 1200-900 cm-1 영역에서, 1082 및 1051 cm-1에서의 밴드들은 메톡시 그룹을 나타낸다. 1637 cm-1에서의 작은 피크는 흡착된 물에 대응된다. 흡착된 CO, H2O 및 가스상 CH4의 진화는 CMO-0 촉매 상에서의 RWGS의 활성 및 메탄화 반응을 나타낸다.Thus, in the reduced CMO-0 catalyst, fully reduced metallic Co 0 , partially oxidized Co δ+ (1<δ<2) and Co (2+) O centers coexisted. The intensity of the [Co δ+ -(CO)] peak is high, indicating that CO adsorbed on the oxygen vacancy-Co oxide site is dominant. In the 1200-900 cm -1 region, the bands at 1082 and 1051 cm -1 represent methoxy groups. The small peak at 1637 cm −1 corresponds to adsorbed water. The evolution of adsorbed CO, H 2 O and gaseous CH 4 indicate the activity and methanation reaction of RWGS on the CMO-0 catalyst.
170분의 CO2 흐름 이후, DRIFT 셀의 압력은 3.0 MPa까지 증가되었다. 이어서, 셀의 압력을 3.0 MPa로 유지한 상태에서, 셀의 온도가 270℃까지 증가되었다. 270℃ 및 3.0 MPa의 조건 하에서의 IR 스펙트럼의 강도는 50℃ 및 3.0 MPa의 조건 하에서와 매우 유사하였다. After 170 minutes of CO 2 flow, the pressure in the DRIFT cell was increased to 3.0 MPa. Then, while maintaining the pressure of the cell at 3.0 MPa, the temperature of the cell was increased to 270°C. The intensity of the IR spectrum under the conditions of 270°C and 3.0 MPa was very similar to that under the conditions of 50°C and 3.0 MPa.
270℃ 및 3.0 MPa의 조건 하에서, DRIFT 셀의 가스 흐름이 CO2로부터 H2로 스위칭된 후 IR 스펙트럼이 수집되었다. 40분의 H2 흐름 이후, =C-H, 메톡시, 흡착된 CO 종과 관련된 IR 밴드의 강도는 감소한 반면, CH4와 관련된 것들은 증가하였다. H2 흐름 시간이 60분까지 증가하였을 때, 2110 및 2170 cm-1에서의 가스상 CO(COgas)의 진화가 관찰되었다. 또한, 반응 중간생성물과 관련된 독특한 피크들이 1800-1200 cm-1의 영역에서 관찰되었는데; (1) 1508 및 1340 cm-1에서의 피크들은 한자리(monodentate) 카보네이트(m-CO3 2-)의 비대칭 및 대칭 진동[νas(O-C-O) 및 νs(O-C-O)]을 각각 나타내고, (2) 1617, 1269 및 976 cm-1에서의 피크들은 2자리(bidentate) 카보네이트(b-CO32-)의 ν(C=O), νas(O-C-O) 및 νs(O-C-O)를 각각 나타낸다. 또한, (3) 1652, 1436, 1222 및 1038 cm-1에서의 피크들은 바이카보네이트(HCO3-)의 ν(C=O), νas(O-C-O), δ(O-H), 및 νs(O-C-O)에 할당될 수 있고, (4) 1577, 1374 및 1362 cm-1에서의 피크들은 포르메이트(HCOO-)의 νas(O-C-O), δ(C-H), 및 νs(O-C-O)에 할당될 수 있다. Under conditions of 270° C. and 3.0 MPa, IR spectra were collected after the gas flow in the DRIFT cell was switched from CO 2 to H 2 . After 40 min of H2 flow, the intensity of the IR bands associated with =CH, methoxy and adsorbed CO species decreased, while those associated with CH 4 increased. When the H 2 flow time was increased to 60 minutes, evolution of gaseous CO (CO gas ) was observed at 2110 and 2170 cm −1 . In addition, unique peaks related to reaction intermediates were observed in the region of 1800-1200 cm −1 ; (1) Peaks at 1508 and 1340 cm -1 represent asymmetric and symmetric vibrations [ν as (OCO) and ν s (OCO)] of monodentate carbonate (m-CO 3 2- ), respectively, (2 ) peaks at 1617, 1269 and 976 cm -1 represent ν(C=O), ν as (OCO) and ν s (OCO) of bidentate carbonate (b-CO32-), respectively. In addition, (3) peaks at 1652, 1436, 1222 and 1038 cm -1 are ν(C=O), ν as (OCO), δ(OH), and ν s (OCO) of bicarbonate (HCO3-) , and (4) the peaks at 1577, 1374 and 1362 cm -1 can be assigned to ν as (OCO), δ(CH), and ν s (OCO) of formate (HCOO - ) .
CO2-흡착 스펙트럼(m-CO3 2-, b-CO3 2-, HCO3 - 및 HCOO-)의 형성은 H2의 분압을 증가시킴에 의해 공격적으로 활성화되었다. 연속적인 H2 흐름 조건 하에서의 m-CO3 2-, HCOO-, [Coδ+-(CO)], COgas 및 CH4의 IR 밴드의 시간-진화 강도는 도 28a 내지 도 28c에 도시되어 있다. 약 30분의 초기 H2 흐름에서, 연속적인 가스 흐름이 표면 흡착 종의 탈착 및 가스상 생성물의 희석을 유지시키는 동안, 수소 분압이 수소화 반응을 유도할 수 있을 정도로 충분히 높지 않았기 때문에, m-CO3 2-, HCOO-, [Coδ+-(CO)], COgas 및 CH4의 IR 밴드의 강도는 감소되었다. 도입 기간의 근접 조사를 통해 m-CO3 2- 및 HCOO- 피크들은 초기 30분의 H2 흐름에서 최소 강도를 가지고, COgas 및 CH4의 피크들은 40분의 H2 흐름에서 관찰되었다. 또한, m-CO3 2-, HCOO-, CO 및 CH4의 IR 밴드 강도의 변화는 서로 달랐고; [Coδ+-(CO)] 및 COgas 는 90분의 H2 흐름에서 최대 강도에 도달하였고, H2 흐름 시간이 추가적으로 증가함에 따라 거의 제로로 감소되었다. 반면, m-CO3 2- 및 HCOO- 종들은 170분에서 최대 강도에 도달하였고, H2 흐름 시간의 추가적인 증가에도 강도를 일정하게 유지하였다. CO 및 m-CO3 2-/HCOO-의 다른 진화 경향은 m-CO3 2-/HCOO- 및 CO의 형성이 다른 반응 경로를 따름을 제안한다. CH4의 강도는 90-170분의 시간 간격 동안 증가하였고, CO의 IR 밴드 강도는 감소되었으며, 이는 CO가 CH4 형성의 중간 생성물임을 제안한다. The formation of CO 2 -adsorption spectra (m-CO 3 2- , b-CO 3 2- , HCO 3 - and HCOO - ) was aggressively activated by increasing the partial pressure of H 2 . The time-evolution intensities of the IR bands of m-CO 3 2- , HCOO - , [Co δ+ -(CO)], CO gas and CH 4 under continuous H 2 flow conditions are shown in FIGS. 28a to 28c. . At an initial H 2 flow of about 30 minutes, m-CO 3 because the hydrogen partial pressure was not high enough to drive the hydrogenation reaction while the continuous gas flow maintained desorption of surface adsorbed species and dilution of gaseous products. The intensity of the IR bands of 2- , HCOO - , [Co δ+ -(CO)], CO gas and CH 4 decreased. Through close examination of the induction period, m-CO 3 2- and HCOO- peaks had minimum intensity in the initial 30 min H 2 flow, and peaks of CO gas and CH 4 were observed in the 40 min H 2 flow. In addition, the changes in IR band intensities of m-CO 3 2- , HCOO - , CO and CH 4 were different from each other; [Co δ+ -(CO)] and CO gas reached maximum intensity at 90 min of H 2 flow and decreased to near zero as the H 2 flow time was further increased. On the other hand, the m-CO 3 2- and HCOO- species reached their maximum intensity at 170 min and maintained their intensity constant with further increase in H2 flow time. The different evolutionary trends of CO and m-CO 3 2- /HCOO - suggest that the formation of m-CO 3 2- /HCOO - and CO follow different reaction pathways. The intensity of CH 4 increased during the time interval of 90–170 min, and the intensity of the IR band of CO decreased, suggesting that CO is an intermediate product of CH 4 formation.
CMO-10 촉매 상에서의 CO2 흡착 거동은 CMO-0 촉매와 유사한 경향을 나타내었다. 이전의 Mn-촉진 Co 기반 FTS 촉매와 달리, Co 촉매에 있는 Mn은 [Co2+-(CO)], [Coδ+-(CO)] 및 [Co0-(CO)] 피크들을 적색 쉬프트시키지 않았고, [Cotwo-fold-(CO)] 피크의 강도를 변화시키지 않았다. 따라서, CMO-10 촉매에 있어서, Mn은 CO의 흡수 기하학을 변경시키는 전자기적 촉진제로서는 거의 역할을 하지 않았다. CO2 흡착 동안, 3015 및 1305 cm-1에서의 가스상 CH4 및 949 cm-1에서의 =C-H 그룹의 벤딩의 IR 밴드의 강도들은 170분에서 최대값에 도달하였고, 이는 CMO-0 촉매(90분) 상에서보다 더 느렸다. 이는 Mn 촉진제가 H2-부족 조건 하에서 메탄화 반응을 억제함을 나타낸다. 다시, 30-60분의 H2 흐름 시간에서 m-CO3 2-/HCOO- 및 COgas의 진화에 있어서의 디커플링은 포름산 및 CO의 형성에서 서로 다른 반응 경로를 나타낸다. H2 흐름 동안 DRIFT 셀로부터 방출된 생성물의 QMS(Quadrupole mass spectrometry) 프로파일은 RWGS 반응에 의한 CO 및 H2O의 형성 및 CMO-10 촉매 상에서의 FTS에 의한 CH4, C2H6 및 C3H5의 형성을 나타낸다.The CO 2 adsorption behavior on the CMO-10 catalyst showed a similar trend to that of the CMO-0 catalyst. Unlike previous Mn-promoted Co-based FTS catalysts, Mn in the Co catalyst redshifts [Co 2+ -(CO)], [Co δ+ -(CO)] and [Co 0 -(CO)] peaks. and did not change the intensity of the [Co two-fold -(CO)] peak. Therefore, in the CMO-10 catalyst, Mn played little role as an electromagnetic promoter to change the absorption geometry of CO. During CO 2 adsorption, the intensities of the IR bands of gaseous CH 4 at 3015 and 1305 cm −1 and bending of ═CH groups at 949 cm −1 reached a maximum at 170 min, which was observed for the CMO-0 catalyst (90 minutes) slower than above. This indicates that the Mn promoter inhibits the methanation reaction under H 2 -starvation conditions. Again, the decoupling in the evolution of m-CO 3 2- /HCOO - and CO gas at H 2 flow times of 30-60 min indicates different reaction pathways in the formation of formic acid and CO. Quadrupole mass spectrometry (QMS) profiles of products released from the DRIFT cell during H 2 flow show the formation of CO and H 2 O by RWGS reaction and CH 4 , C 2 H 6 and C 3 by FTS on CMO-10 catalyst. Indicates the formation of H 5 .
DRIFT 셀의 압력을 0.1 MPa로부터 3.0 MPa로 증가시킴에 따른 DRIFTS 스펙트럼이 CO를 흐르게 함에 의해 수집하여 촉매의 표면 상에서 CO의 흡착으로부터 유도된 중간생성물 종을 특정하였고, 이때 DRIFT 셀은 350℃에서 미리 H2-환원된 CMO-0 촉매를 함유하였다. CO2 흡착과 달리, CH4의 형성은 CO 흡착 동안 관찰되지 않았고, 이는 CO의 CH4로의 직접 수소화는 H2 부족 조건 하에서 일어나지 않음을 나타낸다. 따라서, 미리 H2-환원된 CMO-0 촉매 상에서의 CO2의 가압화 동안의 CH4 형성은 CO2의 CH4로의 직접 수소화가 CO를 통과함이 없이 발생하였음을 나타내고, H2-부족 조건 하에서 표면 흡착된 CO 종은 메탄화 반응에서 석출되지 않음을 나타낸다. 2333 및 2364 cm-1에서의 CO2 피크는 초기 15분의 CO 흡착 동안 현저하였고, 이는 CMO-0 촉매의 높은 WGS 활성을 나타낸다. 온도가 50℃로부터 270℃로 상승하였을 때, CO2와 관련된 피크들은 온도 증가에 따른 WGS 반응 활성의 증가 때문에 증가되었다. 3.0 MPa에서의 CO 흡착 이후, DRIFT 셀을 통한 가스 흐름은 270℃ 및 3.0 MPa의 조건 하에서 CO로부터 H2로 스위칭되었고, IR 스펙트럼이 수집되었다. WGS 반응에 의해 인시튜 생성된 CO2의 존재 때문에, 미리 흡착된 CO의 수소화 동안 수집된 스펙트럼은 미리 흡착된 CO2의 수소화 동안의 스펙트럼과 유사하였다. DRIFTS spectra as the pressure in the DRIFT cell was increased from 0.1 MPa to 3.0 MPa were collected by flowing CO to characterize the intermediate species derived from the adsorption of CO on the surface of the catalyst, wherein the DRIFT cell was preheated at 350 °C. It contained H 2 -reduced CMO-0 catalyst. Unlike CO 2 adsorption, no formation of CH 4 was observed during CO adsorption, indicating that direct hydrogenation of CO to CH 4 does not occur under H 2 deficient conditions. Thus, CH 4 formation during pressurization of CO 2 over the previously H 2 -reduced CMO-0 catalyst indicates that direct hydrogenation of CO 2 to CH 4 occurred without passing CO, and under H 2 -starved conditions It indicates that surface adsorbed CO species are not precipitated in the methanation reaction. The CO 2 peaks at 2333 and 2364 cm −1 were prominent during the initial 15 min of CO adsorption, indicating the high WGS activity of the CMO-0 catalyst. When the temperature increased from 50 °C to 270 °C, the peaks associated with CO 2 increased due to the increase in WGS reaction activity with increasing temperature. After CO adsorption at 3.0 MPa, the gas flow through the DRIFT cell was switched from CO to H 2 under conditions of 270° C. and 3.0 MPa, and IR spectra were collected. Due to the presence of CO 2 produced in situ by the WGS reaction, the spectrum collected during hydrogenation of pre-adsorbed CO was similar to that during hydrogenation of pre-adsorbed CO 2 .
CMO-10 촉매 상에서의 CO 흡착 및 흡착된 CO의 수소화 거동은 CMO-0 촉매 상에서의 거동과 유사하였다. 주요한 차이점은 초기 5분의 CO 흐름에서의 WGS 활성이고, 가스상 CO2의 강도는 CMO-10 촉매 상에서 최대값에 도달하였으며, 이는 CMO-0 촉매 상에서보다 상당히 더 빠르다. 가스상 CO2 및 CO 모두 3.0 MPa에서 270℃까지의 온도 승온의 끝에서 존재하였다. CO2 및 CO 가스를 모두 함유하는 DRIFT 셀로의 H2 흐름의 초기 상태에서, CMO-10 촉매 상에서의 RWGS에 의한 H2O의 형성은 CMO-0 촉매 상에서보다 더 현저하였다. 따라서, CMO-0 촉매 상에서와 비교하여 H2 분압이 증가됨에 따라, CMO-10 촉매 상에서 RWGS에 의해 생성된 더 풍부한 CO는 C2H6의 형성 및 뒤이은 CH4의 형성을 촉진하였다.The CO adsorption and hydrogenation behavior of the adsorbed CO on the CMO-10 catalyst was similar to that on the CMO-0 catalyst. The main difference is the WGS activity in the initial 5 minutes of CO flow, the intensity of gaseous CO 2 reaches a maximum on the CMO-10 catalyst, which is significantly faster than on the CMO-0 catalyst. Both gaseous CO 2 and CO were present at the end of the temperature ramp from 3.0 MPa to 270 °C. At the initial state of the H 2 flow to the DRIFT cell containing both CO 2 and CO gases, the formation of H 2 O by RWGS over the CMO-10 catalyst was more pronounced than over the CMO-0 catalyst. Thus, as the H 2 partial pressure was increased compared to that over the CMO-0 catalyst, the more abundant CO produced by RWGS over the CMO-10 catalyst promoted the formation of C 2 H 6 followed by the formation of CH 4 .
미리 H2-환원된 CMO-0 촉매 상에서의 CO2 수소화 동안의 반응 중간 생성물의 순간적인 응답을 조사하기 위해, 인시튜 연산수 DRIFT 프로파일이 270℃ 및 3.0 MPa의 조건 및 3:1의 H2/CO2 혼합가스의 흐름 하에서 수집되었다. 수집된 DRIFT 스펙트럼 및 선택된 표면 흡착 종(m-CO3 2-, HCOO-, HCO-, [Coδ+-(CO)]) 및 가스상(CH4, CO2, CO)의 IR 밴드의 강도들의 시간에 따른 변화가 도 32a 내지 도 32c에 도시되어 있다. 13분의 도입 기간 이후, 메탄화 반응이 고도로 활성화되었고, m-CO3 2-, HCOO-, HCO-, [Coδ+-(CO)] 및 COgas와 관련된 피크들이 점진적으로 증가되었다. 40분의 H2/CO2 흐름 이후, COgas, m-CO3 2-, HCOO-, HCO-와 관련된 피크들의 강도는 유지되었으나, CH4 피크의 강도는 감소되었다. 따라서, CH4를 생성하기 위해 미리 흡착된 H2를 소비한 이후, H2의 분열성 흡착 및 뒤이은 CO2의 CH4로의 수소화에 대한 CMO-0 촉매의 능력은 억제되었다. To investigate the instantaneous response of reaction intermediates during CO2 hydrogenation on a pre-H 2 -reduced CMO-0 catalyst, in situ operational number DRIFT profiles were analyzed under conditions of 270°C and 3.0 MPa and 3:1 H 2 / Collected under the flow of CO 2 gas mixture. The collected DRIFT spectra and the intensities of IR bands of selected surface adsorbed species (m-CO 3 2- , HCOO-, HCO - , [Co δ+ -(CO)]) and gas phase (CH 4 , CO 2 , CO) Changes over time are shown in FIGS. 32A to 32C. After the introduction period of 13 min, the methanation reaction was highly active, and peaks related to m-CO 3 2- , HCOO-, HCO - , [Co δ+ -(CO)] and CO gas gradually increased. After 40 min of H 2 /CO 2 flow, the intensity of the peaks related to CO gas , m-CO 3 2- , HCOO - , and HCO - were maintained, but the intensity of the CH 4 peak decreased. Thus, after consuming the previously adsorbed H 2 to produce CH 4 , the ability of the CMO-0 catalyst for the fissile adsorption of H 2 and subsequent hydrogenation of CO 2 to CH 4 was suppressed.
120분의 H2/CO2 흐름 이후, 흐름 가스는 H2/CO2로부터 H2로 전환되었고, DRIFT 스펙트럼이 수집되었다. COgas의 피크는 10분의 H2 흐름에서 최대 강도에 도달하였으나, CH4 및 CO2-흡착 피크들은 70분의 H2 흐름에서 최대 강도에 도달하였고, 이는 H2-충분 조건 하에서 메탄화 반응이 활성화되었음을 나타낸다. 메탄화는 CMO-10 촉매 상에서 초기 H2/CO2 흐름 동안 고도로 활성화되었고, 이는 CMO-0 촉매 상에서와 비교하여 금속 Co 나노입자의 더 작은 크기 때문일 수 있다. 또한, CO2/H2 및 뒤이은 H2 흐름 동안, CMO-10 촉매 상에서의 m-CO3 2- 및 HCOO-와 관련된 피크들의 강도는 CMO-0 촉매 상에서보다 더 높았고, 이는 CMO-10 촉매 상에서의 향상된 CO2 흡착을 나타낸다. 압력 및 온도가 증가함에 따라 CO2-흡착 종의 더 많은 형성이 도 34a 및 도 34b, 및 도 35a 및 도 35b에서 각각 관찰되었다.After 120 minutes of H 2 /CO 2 flow, the flow gas was converted from H 2 /CO 2 to H 2 and a DRIFT spectrum was collected. The peak of CO gas reached maximum intensity at 10 minutes of H 2 flow, but the CH 4 and CO 2 -adsorption peaks reached maximum intensity at 70 minutes of H 2 flow, indicating that the methanation reaction under H 2 -sufficient conditions. indicates that it is activated. Methanation was highly active during the initial H 2 /CO 2 flow on the CMO-10 catalyst, which may be due to the smaller size of the metallic Co nanoparticles compared to that on the CMO-0 catalyst. Also, during CO 2 /H 2 and subsequent H 2 flow, the intensity of the peaks associated with m-CO 3 2- and HCOO - on the CMO-10 catalyst was higher than that on the CMO-0 catalyst, indicating that the CMO-10 catalyst Indicates enhanced CO 2 adsorption on the phase. As the pressure and temperature increased, more formation of CO 2 -adsorbed species was observed in FIGS. 34A and 34B and FIGS. 35A and 35B , respectively.
[실험예 4]: 밀도 함수 이론 시뮬레이션[Experimental Example 4]: Simulation of Density Functional Theory
CMO-y 촉매는 금속 Co, Co-카바이드 및 Co-산화물 상들의 혼합물이고, 이들은 반응 중간생성물을 변경할 수 있고, 그 결과 각각의 상의 디커플링에 의한 CO2 전환에서 그들 각각의 역할을 규명하는 것이 필요하다. 이를 위해, Co (001), Co2C (101) 및 Co3O4 (110) 표면들 상에서의 CO2 수소화의 원자 레벨 매커니즘을 DFT 계산을 사용하여 조사하였다. CMO-y catalysts are mixtures of metallic Co, Co-carbide and Co-oxide phases, which can modify reaction intermediates, so that it is necessary to characterize their respective role in the CO 2 conversion by decoupling of each phase. do. To this end, the atomic level mechanism of CO 2 hydrogenation on Co (001), Co 2 C (101) and Co 3 O 4 (110) surfaces was investigated using DFT calculations.
CoO 구조가 전환 CMO-10 촉매의 HR-TEM 이미지에서 관찰되었음에도 불구하고, DFT 계산을 통해 CoO 조각은 흡수물에 의해 불안정하게 되었음이 발견되었다. 따라서, Co3O4가 Co-산화물의 대표 구조로서 선택되었고, 메커니즘이 비교적으로 분석되었다. 또한 촉매 에너지학에 대한 Co3O4 상의 표면 산소 공공(vac- Co3O4 (110))의 효과가 조사되었다. Although the CoO structure was observed in the HR-TEM images of the converted CMO-10 catalyst, DFT calculations found that the CoO flakes were destabilized by adsorbates. Therefore, Co 3 O 4 was selected as a representative structure of Co-oxide, and the mechanism was comparatively analyzed. Also, the effect of surface oxygen vacancies (vac-Co 3 O 4 (110)) on Co 3 O 4 on the catalytic energetics was investigated.
도 36은 CO2의 수소화 경로(A), Co-함유 상들의 표면 구조(B), 270℃의 온도 및 4.0 MPa의 압력 조건 하에서 CH 및 CO에 대한 CO2 수소화의 자유에너지(C, D)를 나타내고, 도 37은 HCOO 중간생성물 및 HOCO 중간생성물을 통한 RWGS 반응의 DFT에 의해 계산된 자유 에너지 프로파일(A, B)과 CH 형성으로의 CO 수소화의 자유 에너지 프로파일(C)을 나타낸다. (*는 표면 결합 종(surface-bound species)을 나타냄)36 shows the CO 2 hydrogenation pathway (A), the surface structure of Co-containing phases (B), and the free energies of CO 2 hydrogenation (C, D) for CH and CO under conditions of a temperature of 270 °C and a pressure of 4.0 MPa. 37 shows the free energy profiles (A, B) calculated by DFT of the RWGS reaction through HCOO intermediates and HOCO intermediates and the free energy profile of CO hydrogenation to CH formation (C). (* indicates surface-bound species)
도 36 및 도 37을 참조하면, 초기 CO2 활성화는 HCOO*, COOH* 및 CO*의 3가지 다른 중간생성물의 형성에 의해 진행되었다. HCOO* 경로의 경우, 연속적인 산소 제거가 CH*의 형성을 야기하였고, 이는 FTS 및 메탄화의 전구체로서 작용하였다. Referring to FIGS. 36 and 37 , initial CO 2 activation proceeded by the formation of three different intermediates, HCOO*, COOH*, and CO*. For the HCOO* pathway, continuous oxygen removal resulted in the formation of CH*, which served as a precursor for FTS and methanation.
도 36의 C에 도시된 바와 같이, Co3O4 및 산소가 결여된 Co3O4 (vac-Co3O4) 표면들 상에서의 HCOO*의 형성(CO2* -> H-COO -> HCOO*)은 0.73 및 0.97 eV의 작은 역학적 베리어를 가져 유리하다. HCO* 및 CH* 생성을 위한 HCOO*의 연속적인 산소 제거는 역학적 베리어가 Co3O4보다 상당히 더 작은 vac-Co3O4 상에서 발생한다. 따라서, DRIFT 스펙트럼에 도시된 HCOO*-종들은 최외곽 CO 산화물 표면 상에 존재하고, 그들은 인접한 산소 결함들에서 쉽게 CHO* 및 CH*로 전환될 수 있다. 도 36의 D에 도시된 바와 같이, HCOO* 경로를 통한 CH* 형성 이외에, Co 산화물 상들은 OC-O 결합의 직접 분리를 통한 RWGS 반응 진행을 위한 활성 사이트이다. vac-Co3O4 상에서 OC-O 결합 절단의 활성화는 단지 0.15 eV만이 필요하였다. 반면, HOCO* 중간생성물을 통한 RWGS 경로는 Co 상과 관계없이 일어나는 높은 활성화 베리어 때문에 유리하지 않았다.Formation of HCOO* on Co 3 O 4 and oxygen-deficient Co 3 O 4 (vac-Co 3 O 4 ) surfaces (CO 2 * -> H-COO -> HCOO*) is advantageous because it has small mechanical barriers of 0.73 and 0.97 eV. The subsequent oxygen removal of HCOO* to produce HCO* and CH* occurs on vac-Co 3 O 4 , where the kinetic barrier is significantly smaller than that of Co 3 O 4 . Thus, the HCOO*-species shown in the DRIFT spectrum are present on the outermost CO oxide surface, and they can be readily converted to CHO* and CH* at adjacent oxygen vacancies. As shown in Fig. 36D, in addition to CH* formation via the HCOO* pathway, Co oxide phases are active sites for the RWGS reaction to proceed through direct cleavage of OC-O bonds. Activation of OC-O bond cleavage on vac-Co 3 O 4 required only 0.15 eV. On the other hand, the RWGS route through the HOCO* intermediate was not favorable because of the high activation barrier that occurred regardless of the Co phase.
도 37에 도시된 바와 같이, CO2의 초기 활성화와 달리, CO 흡착 및 연속적인 수소화는 Co2C 및 금속 Co 표면 상에서 유리하다. Co2C 표면 상에서의 CHO*로부터 CH*로의 탈산소는 0.86eV의 활성화 에너지를 보여주고, 이는 vac-Co3O4 상에서보다 0.4 eV만큼 더 낮다. As shown in FIG. 37 , unlike the initial activation of CO 2 , CO adsorption and subsequent hydrogenation are favored on the Co 2 C and metallic Co surfaces. Deoxygenation from CHO* to CH* on the Co 2 C surface shows an activation energy of 0.86 eV, which is 0.4 eV lower than on vac-Co 3 O 4 .
DFT 시뮬레이션 및 DRIFT 스펙트럼을 사용하여 획득된 반응 에너지를 기초로, CMO-y 촉매 상에서의 CO2로부터 C5+ 탄화수소로의 2가지 가능한 반응 경로가 제시되었는데, 먼저 쉘에 있는 코발트 산화물의 산소 공공 사이트에서 CO2 활성화가 일어나고, 이는 CHO* 및 CO*의 중간생성물을 생성한다. 이러한 중간생성물은 인접한 코어의 Co2C 및 금속 Co로 이동하여, 추가적인 수소화 또는 사슬 성장 반응이 일어난다.Based on the reaction energies obtained using DFT simulations and DRIFT spectra, two possible reaction pathways from CO 2 to C 5+ hydrocarbons on CMO-y catalysts are presented, first the oxygen vacancies of cobalt oxide in the shell. CO 2 activation occurs at , which produces intermediates CHO* and CO*. These intermediates migrate to the Co 2 C and metallic Co of the adjacent core, where additional hydrogenation or chain growth reactions occur.
CMO-0 및 CMO-10 촉매 상에서의 C5+ 탄화수소의 고수율은 hcp Co 사이트 상에서의 활성화된 FTS 반응 때문이다. 또한, RWGS의 열역학적 제한(예를 들면, 270℃ 및 3의 H2/CO2 비율에서 약 18%의 CO2 전환율)은 금속 Co 중심 상에서의 C-C 커플링 반응에 의한 연속적인 CO 소비를 촉진함에 의해 극복될 수 있다. 메탄화 반응이 지배적으로 관찰되는 낮은 압력 조건 이외에는, CO2 수소화 동안 CO는 생성물의 스트림 내에서 거의 관찰되지 않았다. CO2 흡착 및 CO2 수소화 동안 그리고 CO 수소화 동안의 DRIFT 프로파일에서 CO 및 CO2의 진화는 CMO-0 및 CMO-10 촉매가 RWGS 및 WGS 반응 모두에 대해 고도로 활성을 가짐을 나타낸다. 따라서, 생성물 내에서의 무시할 수 있는 양의 CO는 hcp Co 금속 중심 상에서의 CO의 신속한 전환 때문이다. The high yield of C5+ hydrocarbons on the CMO-0 and CMO-10 catalysts is due to the activated FTS reaction on the hcp Co site. In addition, the thermodynamic limitations of RWGS (e.g., CO 2 conversion of about 18% at 270 °C and H 2 /CO 2 ratio of 3) promote continuous CO consumption by the C-C coupling reaction on the metallic Co center. can be overcome by Little CO was observed in the product stream during CO 2 hydrogenation, except under low pressure conditions where methanation reactions were predominantly observed. The evolution of CO and CO 2 during CO 2 adsorption and CO 2 hydrogenation and in the DRIFT profiles during CO hydrogenation indicate that the CMO-0 and CMO-10 catalysts are highly active for both RWGS and WGS reactions. Thus, the negligible amount of CO in the product is due to the rapid conversion of CO on the hcp Co metal center.
전환 CMO-0 및 CMO-10 촉매(Co@CoOx/Co2C 코어쉘)의 조성적 기하학(compositional geometry), 전자기적 상태 및 DRIFT 시뮬레이션을 고려하였을 때, RWGS를 통한 CO2의 CO로의 전환은 다공성 CoOx 쉘층 상에서 발생한다. 환원 동안 Co3O4의 금속 Co로의 불완전 전환 때문에 유지되거나 반응 동안의 물의 생성 때문에 재생성되는 Co3O4 상 내의 산소 공공 사이트는 CO2 흡착 및 RWGS 반응 향상에 도움을 준다. 또한, CO2의 RWGS에 의한 CO의 충분한 생성은 CO 탄화(2CoO + 4CO -> Co2C + 3CO2)를 통해 Co2C 쉘층을 유지시키는 것을 도울 수 있다. 생성된 CO는 그 후 Co2C 상 및 인근의 코어에 있는 금속 Co 중심으로 이동되었고, 여기서 활성 사슬 전파 반응이 발생한다. 코어의 금속 Co 및 쉘의 CoOx/Co2C 층의 존재는 CO2와 금속 Co 상의 직접 접촉에 영향을 미칠 수 있고, 이는 열역학적으로 RWGS 반응(CO2 + H2 → CO + H2O, ΔH0(298K) = 41 kJ mol-1)보다 더 유리한 반응인 CO2의 직접 메탄화 반응(CO2 + 4H2 → CH4 + 2H2O, ΔH0(298K) = -165 kJ mol-1)을 억제할 수 있다. 코발트 산화물(CoOx) 또는 코발트 탄화물(Co2C)에 흡착된 CO의 삽입에 의해 진행되는 알콜 또는 다른 산소화된 종의 생성은 액체 생성물에서 거의 관찰되지 않았고, 이는 CMO-0 및 CMO-10 촉매 상에서 CO 삽입이 거의 발생하지 않았음을 나타낸다.Conversion of CO 2 to CO through RWGS, considering the compositional geometry, electromagnetic state and DRIFT simulations of the converted CMO-0 and CMO-10 catalysts (Co@CoO x /Co 2 C core-shell) occurs on the porous CoO x shell layer. Oxygen vacancies in the Co 3 O 4 phase that are retained due to the incomplete conversion of Co 3 O 4 to metallic Co during reduction or regenerated due to the production of water during the reaction help to adsorb CO 2 and enhance the RWGS reaction. In addition, sufficient production of CO by RWGS of CO 2 can help maintain the Co 2 C shell layer through CO carbonization (2CoO + 4CO -> Co 2 C + 3CO 2 ). The produced CO then migrated to the metallic Co centers in the Co 2 C phase and nearby cores, where the active chain propagation reaction takes place. The presence of metallic Co in the core and the CoO x /Co 2 C layer in the shell can influence the direct contact of the CO 2 with the metallic Co phase, which thermodynamically leads to the RWGS reaction (CO 2 + H 2 → CO + H 2 O, Direct methanation of CO 2 ( CO 2 + 4H 2CH 4 + 2H 2 O, ΔH 0 (298K) = -165 kJ mol -1 ) can be suppressed. Production of alcohols or other oxygenated species proceeding by intercalation of CO adsorbed on cobalt oxide (CoO x ) or cobalt carbide (Co 2 C) was rarely observed in the liquid product, which is consistent with the CMO-0 and CMO-10 catalysts. indicates that little CO intercalation occurred in the phase.
CMO-10 촉매에서, Mn은 CO2 전환 및 C5+ 탄화수소 선택도를 충분히 향상시켰다. 또한, Mn 촉진제는 CO2 수소화 동안 입자 응집을 효과적으로 억제하였고, 이는 CO2 흡착 및 RWGS 반응을 추가적으로 향상시켰다. 그러나, CO 및 CO2 DRIFT 분석에서 증명된 바와 같이, 선형 흡착 CO의 IR 밴드는 CMO-10 촉매 상에서 적색 쉬프트(이는 이전 Mn-촉진 Co/TiO2 및 Co-Mn에서 관찰되었음)되지 않았고, 비지지체 CMO-10 촉매에서의 상당히 더 큰 금속 Co 사이즈는 CO 흡착 상태에서 MnCO3로부터 금속 Co로의 전자 주게 효과를 최소화할 수 있다. Mn은 CoOx/Co2C 쉘층의 형성을 용이하게 하였고, 이는 추가적으로 RWGS 반응을 활성화시켰다.In the CMO-10 catalyst, Mn sufficiently enhanced CO 2 conversion and C 5+ hydrocarbon selectivity. In addition, the Mn promoter effectively inhibited particle aggregation during CO 2 hydrogenation, which further enhanced CO 2 adsorption and RWGS response. However, as demonstrated in the CO and CO 2 DRIFT analysis, the IR band of the linearly adsorbed CO was not red-shifted on the CMO-10 catalyst (which was previously observed for Mn-promoted Co/TiO 2 and Co-Mn) and was not empty. The significantly larger metal Co size in the delayed CMO-10 catalyst can minimize the electron donor effect from MnCO 3 to metal Co in the CO adsorption state. Mn facilitated the formation of the CoO x /Co 2 C shell layer, which further activated the RWGS reaction.
310℃의 고온 반응에서, 금속 Co 중심으로부터 CoOx/Co2C 쉘의 분리는 hcp Co의 재산화 및 FTS 활성의 감소를 야기하였다. FTS 지배 반응에서 CMO-10 촉매의 또다른 특성은 높은 금속 Co 중심을 유지할 수 있는 능력이다. 금속 Co 중심이 사슬 전파 반응에 대한 활성 사이트이므로, CO2의 직접 접촉 또는 RWGS 반응에서 생성되는 H2O에 의해 야기되는 금속 Co의 재산화를 억제하는 것이 필요하다. FTS 반응에 있어서, 나노 사이즈의 Co 입자들(<4~6 nm)은 고도로 재산화되기 쉬운 것으로 알려져 있고, 이는 그들의 낮은 FTS 활성 때문이다. 따라서, CMO-10 촉매 상에서 높은 C5+ 탄화수소 산출율이 가능하다는 것은, 중간 정도의 반응온도(270℃) 및 고압의 반응 압력(4.0 MPa)이 Co@CoOx/Co2C 촉매의 금속 Co 코어의 금속 특성을 유지시키는데 도움이 됨을 나타낸다.At a high temperature reaction of 310 °C, the separation of the CoO x /Co 2 C shell from the metallic Co center caused re-oxidation of hcp Co and a decrease in FTS activity. Another property of the CMO-10 catalyst in FTS-dominated reactions is its ability to maintain high metallic Co centers. Since the metallic Co center is the active site for the chain propagation reaction, it is necessary to suppress the re-oxidation of metallic Co caused by direct contact of CO 2 or by H 2 O generated in the RWGS reaction. In the FTS reaction, nano-sized Co particles (<4-6 nm) are known to be highly re-oxidizable due to their low FTS activity. Therefore, the high yield of C5+ hydrocarbons on the CMO-10 catalyst means that the moderate reaction temperature (270 °C) and high reaction pressure (4.0 MPa) of the metal Co core of the Co@CoO x /Co 2 C catalyst Indicates that it helps to maintain metallic properties.
촉매의 장기 안정성, 높은 가스/액체 연료 및 윤활기유 방향으로의 선택도 및 낮은 온도의 합성 조건은 Mn-촉진 코어쉘 Co@CoOx/Co2C 촉매를 산업 관련 조건 하에서 CO2를 사용하기 위한 유망하게 만들 수 있다. The catalyst's long-term stability, high selectivity towards gas/liquid fuels and lube base oil, and low temperature synthesis conditions make Mn-promoted core-shell Co@CoO x /Co 2 C catalysts suitable for use in CO 2 under industrially relevant conditions. can make it promising.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. You will understand that you can.
본 발명의 실시 예에 따른 촉매는 이산화탄소의 수소화 반응용으로 활용될 수 있다. Catalysts according to embodiments of the present invention may be used for hydrogenation of carbon dioxide.

Claims (20)

  1. 이산화탄소의 수소화 반응을 촉진하는 촉매에 있어서,In the catalyst for promoting the hydrogenation reaction of carbon dioxide,
    금속 코발트 상을 포함하는 코어; 및 a core comprising a metallic cobalt phase; and
    상기 코어 표면에 위치하고, Co3O4 상 및 Co2C 상을 포함하는 쉘을 포함하는, 이산화탄소의 수소화 반응용 촉매.A catalyst for hydrogenation of carbon dioxide, comprising a shell located on the surface of the core and including a Co 3 O 4 phase and a Co 2 C phase.
  2. 제1항에 있어서,According to claim 1,
    상기 촉매에서 코발트 및 망간 원소의 전체 몰 수에 대한 상기 망간 원소의 몰 수의 비[Mn/(Co+Mn)]가 3 이상 20% 이하인 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.A catalyst for hydrogenation of carbon dioxide, characterized in that the ratio of the number of moles of the manganese element to the total number of moles of the cobalt and manganese elements in the catalyst [Mn / (Co + Mn)] is 3 or more and 20% or less.
  3. 제1항에 있어서,According to claim 1,
    상기 촉매 전체의 코발트 함유 상(phase) 중 금속 코발트 상의 분율은 90% 이상 100% 미만인 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.A catalyst for hydrogenation of carbon dioxide, characterized in that the fraction of the metallic cobalt phase in the cobalt-containing phase of the entire catalyst is 90% or more and less than 100%.
  4. 제1항에 있어서,According to claim 1,
    상기 코어는 밀한 조밀육방격자(hexagonal close-packed lattice) 구조의 결정상을 가지는 금속 코발트 상을 포함하고, The core includes a metallic cobalt phase having a crystal phase of a hexagonal close-packed lattice structure,
    상기 쉘에는 상기 코어를 외부에 노출시키는 기공이 형성된 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.Catalyst for the hydrogenation reaction of carbon dioxide, characterized in that pores are formed in the shell to expose the core to the outside.
  5. 제4항에 있어서,According to claim 4,
    상기 쉘은 코발트 산화물 상으로 상기 Co3O4 이외에 CoO를 더 포함하고,The shell further includes CoO in addition to the Co 3 O 4 as a cobalt oxide phase,
    [CoO+Co3O4]/CoO 비율은 1.5 내지 1.9인 것을 특징으로 하고,Characterized in that the [CoO+Co 3 O 4 ]/Co O ratio is 1.5 to 1.9,
    상기 쉘에서 Co2C 상의 면적비율은 10 내지 30%인 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.Catalyst for hydrogenation of carbon dioxide, characterized in that the area ratio of the Co 2 C phase in the shell is 10 to 30%.
  6. 제1항에 있어서,According to claim 1,
    상기 쉘은 망간 함유 상을 더 포함하고, the shell further comprises a manganese containing phase;
    상기 망간 함유 상은 MnCO3 상, Mn2O3 및 Mn3O4을 포함하는 것을 특징으로 하고, 상기 망간 함유 상에서 상기 MnCO3 상의 분율은 90 내지 99%인 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.Characterized in that the manganese-containing phase includes MnCO 3 phase, Mn 2 O 3 and Mn 3 O 4 , and the fraction of the MnCO 3 phase in the manganese-containing phase is 90 to 99%, for hydrogenation of carbon dioxide. catalyst.
  7. 제1항에 있어서,According to claim 1,
    상기 쉘의 표면에 위치하는 탄소층을 더 포함하는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매.Catalyst for the hydrogenation reaction of carbon dioxide, characterized in that it further comprises a carbon layer located on the surface of the shell.
  8. 코발트 전구체 화합물과 망간 전구체 화합물이 용해된 반응 용액 및 염기성 침전제가 용해된 침전제 용액을 혼합하여 서스펜션(suspension) 용액을 형성하는 제1 단계; A first step of mixing a reaction solution in which a cobalt precursor compound and a manganese precursor compound are dissolved and a precipitant solution in which a basic precipitant is dissolved to form a suspension solution;
    상기 서스펜션 용액을 숙성(aging)시키는 제2 단계; A second step of aging the suspension solution;
    상기 숙성된 서스펜션 용액으로부터 파우더를 분리하는 제3 단계; 및 A third step of separating powder from the aged suspension solution; and
    분리된 파우더를 건조 후 열처리하여 제1 촉매 파우더를 형성하는 제4 단계;를 포함하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.A method for producing a catalyst for hydrogenation of carbon dioxide, comprising: a fourth step of drying and heat-treating the separated powder to form a first catalyst powder.
  9. 제8항에 있어서,According to claim 8,
    상기 제1 촉매 파우더를 수소 분위기에서 환원시켜 제2 촉매 파우더를 형성하는 제5 단계를 더 포함하는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.Method for producing a catalyst for hydrogenation of carbon dioxide, characterized in that it further comprises a fifth step of reducing the first catalyst powder in a hydrogen atmosphere to form a second catalyst powder.
  10. 제9항에 있어서,According to claim 9,
    상기 제2 촉매 파우더를 이산화탄소(CO2) 및 수소(H2)의 혼합가스의 흐름에 노출시켜 제3 촉매 파우더를 형성하는 제6 단계 단계를 더 포함하는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.A sixth step of exposing the second catalyst powder to a flow of a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) to form a third catalyst powder, characterized in that it further comprises, for hydrogenation of carbon dioxide Method for preparing a catalyst.
  11. 제10항에 있어서,According to claim 10,
    상기 제1 단계에서 상기 코발트 전구체와 상기 망간 전구체는 상기 반응 용액 내에서 코발트 이온과 망간 이온의 전체 몰 수에 대한 상기 망간 이온의 몰 수의 비가 3 이상 20% 이하가 되도록 상기 반응 용액에 첨가된 것을 특징으로 하고, 상기 반응 용액에서 상기 코발트 전구체와 상기 망간 전구체의 전체 농도는 1.5 내지 3 mol/L인 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.In the first step, the cobalt precursor and the manganese precursor are added to the reaction solution so that the ratio of the number of moles of manganese ions to the total number of moles of cobalt ions and manganese ions in the reaction solution is 3 or more and 20% or less. Characterized in that, the total concentration of the cobalt precursor and the manganese precursor in the reaction solution is characterized in that 1.5 to 3 mol / L, a method for producing a catalyst for hydrogenation of carbon dioxide.
  12. 제8항에 있어서,According to claim 8,
    상기 염기성 침전제는 탄산나트륨(Na2CO3)를 포함하는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.The basic precipitant is a method for producing a catalyst for hydrogenation of carbon dioxide, characterized in that it comprises sodium carbonate (Na 2 CO 3 ).
  13. 제10항에 있어서,According to claim 10,
    상기 제4 단계에서 상기 분리된 파우더들은 90 내지 110℃의 온도에서 건조된 후 300 내지 360℃의 온도 및 공기 흐름 조건 하에서 2 내지 5시간 동안 열처리되는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.In the fourth step, the separated powders are dried at a temperature of 90 to 110 ° C. and then heat-treated for 2 to 5 hours at a temperature of 300 to 360 ° C. and under air flow conditions. manufacturing method.
  14. 제13항에 있어서,According to claim 13,
    상기 제1 촉매 파우더는 코발트 산화물 상, 망간 산화물 상 및 이들 각각에 나트륨이 도핑된 상을 포함하는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.The first catalyst powder is a method for producing a catalyst for a hydrogenation reaction of carbon dioxide, characterized in that it comprises a cobalt oxide phase, a manganese oxide phase and each of them doped with sodium.
  15. 제10항에 있어서,According to claim 10,
    상기 제5 단계는 상기 제1 촉매 파우더를 관형 반응기 내에 고정한 후 320 내지 400℃의 온도에서 4 내지 8시간 동안 상기 관형 반응기 내부로 수소 가스를 공급하여 수행되고, The fifth step is performed by supplying hydrogen gas into the tubular reactor at a temperature of 320 to 400 ° C. for 4 to 8 hours after fixing the first catalyst powder in the tubular reactor,
    상기 제5 단계 동안 상기 제1 촉매 파우더는 금속 코발트 상, 코발트 산화물 상 및 망간 산화물 상을 포함하는 상기 제2 촉매 파우더로 변환되는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.During the fifth step, the first catalyst powder is converted into the second catalyst powder including a metal cobalt phase, a cobalt oxide phase and a manganese oxide phase.
  16. 제15항에 있어서,According to claim 15,
    상기 제6 단계는 상기 제2 촉매 파우더가 내부에 고정된 상기 관형 반응기 내부의 온도를 250 내지 300℃로 조절한 후 수소 및 이산화탄소의 혼합가스를 공급하여 수행되고, The sixth step is performed by supplying a mixed gas of hydrogen and carbon dioxide after adjusting the temperature inside the tubular reactor in which the second catalyst powder is fixed to 250 to 300 ° C,
    상기 제6 단계 동안 상기 제2 촉매 파우더는 금속 코발트 상으로 형성된 코어; 및 상기 코어 표면에서 Co3O4 상 및 Co2C 상을 포함하는 혼합물로 형성되 쉘을 포함하는 상기 제3 촉매 파우더로 변환되는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.During the sixth step, the second catalyst powder may include a core formed of metal cobalt; and a shell formed of a mixture including a Co 3 O 4 phase and a Co 2 C phase on the surface of the core and converted into the third catalyst powder comprising a shell.
  17. 제16항에 있어서,According to claim 16,
    상기 제6 단계 동안 상기 관형 반응기 내부의 압력은 3.5 내지 5.0 MPa로 조절되고, During the sixth step, the pressure inside the tubular reactor is adjusted to 3.5 to 5.0 MPa,
    상기 제6 단계 동안 상기 관형 반응기 내부에 수소(H2) 및 이산화탄소(CO2)가 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스가 공급되는 것을 특징으로 하는, 이산화탄소의 수소화 반응용 촉매의 제조방법.During the sixth step, a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of 2.5: 1 to 3.5: 1 is supplied into the tubular reactor, a catalyst for hydrogenation of carbon dioxide. Manufacturing method of.
  18. 촉매가 고정된 관형 반응기 내부로 수소 및 이산화탄소의 혼합가스를 공급하여 이산화탄소의 수소화 반응을 유도함으로써 탄소수 5 이상의 탄화수소 화합물을 생성하는 방법에 있어서, A method for generating a hydrocarbon compound having 5 or more carbon atoms by inducing a hydrogenation reaction of carbon dioxide by supplying a mixed gas of hydrogen and carbon dioxide into a tubular reactor in which a catalyst is fixed,
    상기 촉매는 금속 코발트 상을 포함하는 코어; 및 상기 코어 표면에 위치하고, Co3O4 상 및 Co2C 상을 포함하는 쉘을 포함하는 것을 특징으로 하는, 탄화수소 화합물의 합성 방법.The catalyst comprises a core comprising a metallic cobalt phase; and a shell located on the surface of the core and comprising a Co 3 O 4 phase and a Co 2 C phase.
  19. 제18항에 있어서,According to claim 18,
    상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부의 온도는 250 내지 300℃로 조절되고, During the hydrogenation reaction of carbon dioxide, the temperature inside the tubular reactor is adjusted to 250 to 300 ° C,
    상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부의 압력은 3.5 내지 5.0 MPa로 조절되는 것을 특징으로 하는, 탄화수소 화합물의 합성 방법.The method for synthesizing hydrocarbon compounds, characterized in that the pressure inside the tubular reactor is adjusted to 3.5 to 5.0 MPa during the hydrogenation reaction of carbon dioxide.
  20. 제18항에 있어서,According to claim 18,
    상기 이산화탄소의 수소화 반응 동안 상기 관형 반응기 내부에 수소(H2) 및 이산화탄소(CO2)가 2.5:1 내지 3.5:1의 비율로 혼합된 혼합 가스가 공급되는 것을 특징으로 하고,Characterized in that a mixed gas in which hydrogen (H 2 ) and carbon dioxide (CO 2 ) are mixed at a ratio of 2.5: 1 to 3.5: 1 is supplied into the tubular reactor during the hydrogenation reaction of carbon dioxide,
    상기 생성된 탄소수 5 이상의 탄화수소 화합물에서 선형 파라핀의 비율은 90%이상 100% 미만인 것을 특징으로 하는, 탄화수소 화합물의 합성 방법.A method for synthesizing hydrocarbon compounds, characterized in that the ratio of linear paraffins in the produced hydrocarbon compounds having 5 or more carbon atoms is 90% or more and less than 100%.
PCT/KR2023/002822 2022-02-28 2023-02-28 Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same WO2023163573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220025787A KR20230129077A (en) 2022-02-28 2022-02-28 Catalyst, method of manufacturing the catalyst, and method of synthesizing hydrocarbon compound from carbondioxide
KR10-2022-0025787 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163573A1 true WO2023163573A1 (en) 2023-08-31

Family

ID=87766500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002822 WO2023163573A1 (en) 2022-02-28 2023-02-28 Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same

Country Status (2)

Country Link
KR (1) KR20230129077A (en)
WO (1) WO2023163573A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158107A (en) * 2018-08-17 2019-01-08 中国科学院化学研究所 A method of liquid hydrocarbon is prepared by carbon dioxide direct hydrogenation
KR20210079068A (en) * 2019-12-19 2021-06-29 재단법인 포항산업과학연구원 Catalyst for manufacturing hydrocarbon and method for preparing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158107A (en) * 2018-08-17 2019-01-08 中国科学院化学研究所 A method of liquid hydrocarbon is prepared by carbon dioxide direct hydrogenation
KR20210079068A (en) * 2019-12-19 2021-06-29 재단법인 포항산업과학연구원 Catalyst for manufacturing hydrocarbon and method for preparing thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JO, H ET AL.: "Unraveling the role of cobalt in the direct conversion of CO2 to high-yield liquid fuels and lube base oi l", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 305, no. 121041, 24 December 2021 (2021-12-24), pages 1 - 15, XP086939721, DOI: 10.1016/j.apcatb.2021.121041 *
MELAET GÉRÔME, RALSTON WALTER T., LI CHENG-SHIUAN, ALAYOGLU SELIM, AN KWANGJIN, MUSSELWHITE NATHAN, KALKAN BORA, SOMORJAI GABOR A.: "Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer–Tropsch Synthesis and CO 2 Hydrogenation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 136, no. 6, 12 February 2014 (2014-02-12), pages 2260 - 2263, XP093087478, ISSN: 0002-7863, DOI: 10.1021/ja412447q *
YIN, G ET AL.: "Efficient Reduction of C02 to CO Using Cobalt-Cobalt Oxide Core-Shell Catalysts", CHEM. EUR. J., vol. 24, 2018, pages 2157 - 2163, XP071848436, DOI: 10.1002/chem.201704596 *
ZHAO ZIANG, LU WEI, YANG RUOOU, ZHU HEJUN, DONG WENDA, SUN FANFEI, JIANG ZHENG, LYU YUAN, LIU TAO, DU HONG, DING YUNJIE: "Insight into the Formation of Co@Co 2 C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 1, 5 January 2018 (2018-01-05), US , pages 228 - 241, XP093087480, ISSN: 2155-5435, DOI: 10.1021/acscatal.7b02403 *

Also Published As

Publication number Publication date
KR20230129077A (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2011132957A2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
WO2016064084A1 (en) Shell-and-tube type reactor for reforming natural gas and method for manufacturing syngas or hydrogen gas by using same
Hervy et al. Evolution of dolomite composition and reactivity during biomass gasification
Castner et al. CO hydrogenation over clean and oxidized rhodium foil and single crystal catalysts. Correlations of catalyst activity, selectivity, and surface composition
US9266731B2 (en) Process for production of synthesis gas
WO2015060472A1 (en) Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
JP2000335903A (en) Partial oxidation of hydrocarbon
WO2016171516A1 (en) Method for producing liquid or solid hydrocarbons from synthesis gas via fischer-tropsch synthesis which does not carry out separate reduction pre-treatment for catalyst activation
WO2014003332A1 (en) Method for modifying carbon dioxide using carbon black catalyst
CN108779404B (en) Process for producing synthesis gas
MX2015003867A (en) Process for the preparation of hydrocarbons.
WO2020091418A1 (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing olefin corresponding to paraffin from paraffin by using same
WO2017217833A1 (en) Method for preparing hydrogen-enriched gas, acetylene-enriched gas, ethylene-enriched gas, or welding gas through methane plasma reaction and separation process, and apparatus for same
EA030771B1 (en) Process for the production of liquid hydrocarbons from a hydrocarbon feedstock
EP0290689A1 (en) Partial oxidation process
WO2023163573A1 (en) Catalyst for hydrocarbon compound synthesis through direct reaction between carbon dioxide and hydrogen, preparation method therefor, and hydrocarbon compound synthesis method using same
WO2014204200A1 (en) Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
WO2018088736A1 (en) Catalyst for preparing dimethyl ether from synthetic gas and method for producing same
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
CN1867652B (en) Method for producing liquefied petroleum gas containing propane and butane as main component
WO2006016587A1 (en) Method for producing liquefied petroleum gas
WO2005075386A2 (en) Co-production of hydrocarbons and dimethyl ether
US4996382A (en) Process for preparation of hydrocarbons
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2019107797A1 (en) Method for producing high-calorific synthetic natural gas and apparatus for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760447

Country of ref document: EP

Kind code of ref document: A1