WO2023195523A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2023195523A1
WO2023195523A1 PCT/JP2023/014265 JP2023014265W WO2023195523A1 WO 2023195523 A1 WO2023195523 A1 WO 2023195523A1 JP 2023014265 W JP2023014265 W JP 2023014265W WO 2023195523 A1 WO2023195523 A1 WO 2023195523A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wave device
finger
busbar
elastic wave
Prior art date
Application number
PCT/JP2023/014265
Other languages
French (fr)
Japanese (ja)
Inventor
和則 井上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023195523A1 publication Critical patent/WO2023195523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present disclosure relates to an acoustic wave device having a piezoelectric layer.
  • Patent Document 1 discloses an elastic wave device that uses plate waves.
  • the elastic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode.
  • the support body is provided with a cavity.
  • the piezoelectric substrate is provided on the support body so as to overlap with the cavity.
  • the IDT electrode is provided on the piezoelectric substrate so as to overlap with the cavity.
  • a plate wave is excited by an IDT electrode.
  • An object of the present disclosure is to provide an elastic wave device that can suppress deterioration of characteristics.
  • the IDT electrode is a first busbar electrode; a second busbar electrode facing the first busbar electrode; a first electrode finger connected to the first busbar electrode, extending from the first busbar electrode toward the second busbar electrode, and separated from the second busbar electrode; a second electrode finger connected to the second busbar electrode, extending from the second busbar electrode toward the first busbar electrode, and separated from the first busbar electrode; a reinforcing electrode provided on at least some of the first electrode fingers and the second electrode fingers; At least one of the first electrode fingers and at least one of the second electrode fingers are arranged alternately along an electrode finger facing direction that intersects with the electrode finger extending direction, When viewed from the stacking direction, at least a portion of the reinforcing electrode overlaps
  • an elastic wave device that can suppress deterioration of characteristics.
  • Plan view showing the electrode structure on the piezoelectric layer A cross-sectional view of the portion along line AA in Figure 1A
  • a schematic front sectional view for explaining waves of the elastic wave device of the present disclosure A schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode such that the second electrode has a higher potential than the first electrode.
  • a diagram showing resonance characteristics of an elastic wave device according to a first embodiment of the present disclosure A diagram showing the relationship between d/2p and the fractional band as a resonator of an elastic wave device
  • a plan view of another elastic wave device according to the first embodiment of the present disclosure A reference diagram showing an example of resonance characteristics of an elastic wave device.
  • a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band A diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO3 when d/p is brought as close to 0 as possible
  • a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure A schematic plan view of an elastic wave device according to a second embodiment of the present disclosure
  • Enlarged view of the part surrounded by a dashed-dotted line in Figure 13 A schematic plan view of an elastic wave device according to a third embodiment of the present disclosure
  • a schematic plan view of an elastic wave device according to a fourth embodiment of the present disclosure A schematic end view of the elastic wave device shown in FIG. 19 taken along line C-C.
  • Figure 21 is an enlarged view of the part surrounded by the dashed line in Figure 19.
  • a schematic plan view of an elastic wave device according to a fifth embodiment of the present disclosure A schematic end view of the elastic wave device shown in FIG. 22 taken along line DD
  • a schematic plan view of an example of a conventional elastic wave device 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • 27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27.
  • Acoustic wave devices include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. and an electrode.
  • the elastic wave device of the first aspect utilizes a bulk wave in a thickness shear mode.
  • the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p.
  • d/p is 0.5 or less.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
  • An acoustic wave device includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween.
  • FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment of the first and second aspects
  • FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in this embodiment, it may be a rotational Y cut or an X cut.
  • the propagation directions of Y propagation and X propagation are ⁇ 30°.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear mode.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b that face each other.
  • An electrode 3 and an electrode 4 are provided on the first main surface 2a.
  • electrode 3 is an example of a "first electrode”
  • electrode 4 is an example of a "second electrode”.
  • the plurality of electrodes 3 are a plurality of first electrode fingers connected to the first bus bar 5.
  • the plurality of electrodes 4 are a plurality of second electrode fingers connected to the second bus bar 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other.
  • the electrode 3 and the electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction.
  • These plurality of electrodes 3 and 4, the first bus bar 5, and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode.
  • the length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2.
  • the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first bus bar 5 and the second bus bar 6 extend. In that case, the first bus bar 5 and the second bus bar 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
  • Electrode 3 and electrode 4 are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • electrode 3 and electrode 4 are adjacent to each other are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them. refers to
  • the center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
  • the distance between the center of is 1 It refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 5 or more pairs of electrodes 3 and 4.
  • the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the distance between the centers of the electrodes 3 and 4 refers to the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. This is the distance between the center of the dimension (width dimension).
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90° ⁇ 10°) But that's fine.
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 in between.
  • the insulating layer 7 and the support substrate 8 constitute a support member.
  • the insulating layer 7 and the support substrate 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed.
  • the cavity 9 is provided so as not to impede the vibration of the intersection area C of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support substrate 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
  • the insulating layer 7 is made of silicon oxide. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used.
  • the support substrate 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 k ⁇ or more. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Examples of materials for the support substrate 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and starch.
  • Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
  • the plurality of electrodes 3 and 4 and the first and second bus bars 5 and 6 are made of a suitable metal or alloy such as Al or AlCu alloy.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. Thereby, it is possible to obtain resonance characteristics using the thickness shear mode bulk wave excited in the piezoelectric layer 2.
  • d/p 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrodes 3 and 4 are adjacent to each other.
  • the distance p between the centers of the electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used.
  • FIG. 3A is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device.
  • a conventional elastic wave device is described in, for example, Japanese Patent Publication No. 2012-257019.
  • waves propagate in the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are lined up. As shown in FIG.
  • the wave propagates in the X direction as shown. Since it is a plate wave, the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
  • the vibration displacement is in the thickness-slip direction, so the waves are generated between the first principal surface 2a and the second principal surface of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 4 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3.
  • the first region 451 is a region of the intersection region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a.
  • the second region 452 is a region of the intersection region C between the virtual plane VP1 and the second principal surface 2b.
  • the elastic wave device 1 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
  • FIG. 5 is a diagram showing the resonance characteristics of the elastic wave device according to the first embodiment of the present invention.
  • the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
  • the logarithm of the electrodes consisting of electrodes 3 and 4 21 pairs
  • center distance between electrodes 3 ⁇ m
  • width of electrodes 3 and 4 500 nm
  • d/p 0.133.
  • Insulating layer 7 silicon oxide film with a thickness of 1 ⁇ m.
  • Support substrate 8 Si.
  • the length of the crossing region C is the dimension along the length direction of the electrodes 3 and 4 of the crossing region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 were all made equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is preferably 0.5 or less, as described above. is 0.24 or less. This will be explained with reference to FIG.
  • FIG. 6 is a diagram showing the relationship between d/2p and the fractional band of the resonator of the elastic wave device.
  • the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
  • FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure.
  • a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
  • the above-mentioned adjacent it is desirable that the metallization ratio MR of the electrodes 3 and 4 satisfies MR ⁇ 1.75(d/p)+0.075. That is, when viewed in the direction in which adjacent first electrode fingers and second electrode fingers are facing each other, the regions where the plurality of first electrode fingers and the plurality of second electrode fingers overlap intersect. region (excitation region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers with respect to the intersection region is MR, MR ⁇ 1.75 (d/p) + 0.075. It is preferable to meet the requirements. In that case, spurious can be effectively reduced.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device 1.
  • a spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the area surrounded by the dashed line C becomes the intersection area.
  • This intersection area is a region where electrode 3 overlaps electrode 4 when electrode 3 and electrode 4 are viewed in a direction perpendicular to the length direction of electrodes 3 and 4, that is, in a direction in which electrode 4 overlaps, and electrode 3 overlaps electrode 4 in electrode 4. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap.
  • the metallization ratio MR is the ratio of the area of the metallized portion to the area of the intersection region.
  • MR may be the ratio of the metallized portion included in all the intersection regions to the total area of the intersection regions.
  • FIG. 9 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. be. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 9 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
  • FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured.
  • the hatched area on the right side of the broken line D in FIG. 10 is a region where the fractional band is 17% or less.
  • the fractional band can be reliably set to 17% or less.
  • FIG. 11 is a diagram showing a map of the fractional band with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • the hatched areas in FIG. 11 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
  • the fractional band can be made sufficiently wide, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with an open recess on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 . Thereby, a cavity 9 is formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 12, the outer periphery of the cavity 9 is indicated by a broken line.
  • the IDT electrode 84 includes first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers.
  • the plurality of electrodes 84c are connected to the first bus bar 84a.
  • the plurality of electrodes 84d are connected to the second bus bar 84b.
  • the plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
  • the elastic wave device 81 by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • FIG. 27 is a schematic plan view of an example of a conventional elastic wave device.
  • 28 to 33 are end views showing the manufacturing process of a conventional elastic wave device, and are schematic end views corresponding to a section of the elastic wave device shown in FIG. 27 taken along the line EE.
  • FIG. 34 is a schematic end view of the elastic wave device shown in FIG. 27 taken along line EE.
  • An acoustic wave device 600 is known in which a piezoelectric layer 620 covers a cavity 610B, so that a portion of the piezoelectric layer 620 facing the cavity 610B is configured as a membrane 621 (see FIGS. 27 and 34).
  • An example of a method for manufacturing the acoustic wave device 600 having the cavity 610B will be described below with reference to FIGS. 28 to 34.
  • a sacrificial layer 650 is formed on one main surface 620A of the piezoelectric layer 620.
  • the sacrificial layer 650 is formed, for example, by patterning a resist and removing the resist by etching.
  • a bonding layer 660 is laminated on one main surface 620A of the piezoelectric layer 620. At this time, the sacrificial layer 650 is covered with the bonding layer 660.
  • a support substrate 670 is bonded to the bonding layer 660.
  • the support member 610 is formed by the bonding layer 660 and the support substrate 670.
  • the piezoelectric layer 620 is thinned by grinding or the like.
  • an IDT electrode 630 and a laminated electrode 640 are formed on the other main surface 620C (the back surface of the one main surface 620A) of the piezoelectric layer 620 by lift-off or the like. Although not shown in FIG. 32, the IDT electrode 630 and the laminated electrode 640 are electrically connected.
  • FIG. 32 shows a first electrode finger 633 and a second electrode finger 634 of the IDT electrode 630.
  • a through hole 620B is formed in the piezoelectric layer 620.
  • the through hole 620B is formed by performing a known process such as resist patterning, dry etching, and resist removal.
  • the sacrificial layer 650 is removed, and after the sacrificial layer 650 is removed, the resist that protects the surface is removed.
  • an etching solution permeates into the sacrificial layer 650 through the through hole 620B, and the sacrificial layer 650 is dissolved by the etching solution.
  • the dissolved sacrificial layer 650 is discharged to the outside through the through hole 620B.
  • a cavity 610B is formed at the location where the sacrificial layer 650 was previously present, and a portion of the piezoelectric layer 620 facing the cavity 610B is configured as a membrane 621.
  • an elastic wave device 600 shown in FIGS. 27 and 34 is completed.
  • the IDT electrode 630 includes a first busbar electrode 631 and a second busbar electrode 632 facing each other, and a plurality of first electrode fingers 633 connected to the first busbar electrode 631. and a plurality of second electrode fingers 634 connected to the second bus bar electrode 632.
  • the plurality of first electrode fingers 633 and the plurality of second electrode fingers 634 are interposed with each other, and adjacent first electrode fingers 633 and second electrode fingers 634 constitute a pair of electrode sets.
  • the first electrode finger 633 and the second electrode finger 634 are on the membrane 621.
  • the membrane 621 is thin, cracks may occur. For example, if a crack that occurs at a position 680 extends along the width direction as indicated by the broken line arrow in FIG. 27, there is a risk that the first electrode finger 633 will break. Depending on the position where the crack occurs, the second electrode finger 634 may also break. If the first electrode finger 633 or the second electrode finger 634 is disconnected, the filter characteristics of the elastic wave device 600 may change, and the characteristics of the elastic wave device 600 may deteriorate. For example, if the base end of the first electrode finger 633A is disconnected, the filter characteristics change because no capacitance is added to the area between the first electrode finger 633A and the second electrode finger 634A.
  • the second electrode fingers 634 are not present on both sides of the base end of the first electrode fingers 633 in the width direction, and the first electrode fingers 633 are not present on both sides of the base end of the second electrode fingers 634 in the width direction. not exist. Therefore, the strength of the membrane 621 near the base end portions of the first electrode finger 633 and the second electrode finger 634 is weaker than other parts of the membrane 621, and cracks are likely to occur.
  • the characteristics of the elastic wave device 600 may deteriorate significantly compared to a case where a wire other than the base end is disconnected.
  • the possibility of disconnection of the first electrode finger and the second electrode finger can be reduced. Thereby, deterioration of the characteristics of the elastic wave device can be reduced.
  • FIG. 13 is a schematic plan view of an elastic wave device according to a second embodiment of the present disclosure.
  • FIG. 14 is a schematic end view of the elastic wave device shown in FIG. 13 taken along line AA.
  • the acoustic wave device 100 includes a support member 110, a piezoelectric layer 120, an IDT electrode 130, and a laminated electrode 140.
  • the support member 110 corresponds to the support member 8 of the first embodiment.
  • the piezoelectric layer 120 corresponds to the piezoelectric layer 2 of the first embodiment.
  • the support member 110 has a thickness in the stacking direction D11.
  • the stacking direction D11 is the thickness direction of the support member 110, and means the direction in which the support member 110 and the piezoelectric layer 120 are stacked. Note that, similarly to the first embodiment, an insulating layer may be interposed between the support member 110 and the piezoelectric layer 120.
  • the support member 110 is made of silicon, glass, crystal, or alumina, for example.
  • the support member 110 is made of silicon oxide (SiOx), for example.
  • the support member 110 includes a support substrate (e.g., corresponding to the support substrate 8 in the first embodiment) and an intermediate layer provided on the support substrate (e.g., in the first embodiment). (corresponding to the insulating layer 7 in).
  • the support member 110 has a recess 111.
  • the recessed portion 111 is recessed from one main surface 110A of the support member 110 in the stacking direction D11.
  • a space defined by the recess 111 and one main surface 120A of the piezoelectric layer 120 is a cavity 110B. That is, the support member 110 has a cavity 110B on one main surface 110A.
  • the cavity 110B corresponds to the cavity 9 of the first embodiment.
  • the piezoelectric layer 120 is laminated on the support member 110.
  • One main surface 120A of the piezoelectric layer 120 is in contact with one main surface 110A of the support member 110. That is, the piezoelectric layer 120 is provided on one main surface 110A of the support member 110.
  • the piezoelectric layer 120 closes the recess 111 of the support member 110.
  • the piezoelectric layer 120 has a membrane 121.
  • the membrane 121 is a portion of the piezoelectric layer 120 that overlaps the cavity 110B when viewed from the stacking direction D11 (in other words, when viewed from above in the stacking direction D11).
  • the membrane 121 is a portion of the piezoelectric layer 120 that is not in contact with the one main surface 110A of the support member 110 when viewed from above in the stacking direction D11.
  • the cavity 110B can also be said to be a space partitioned into the recess 111 and the membrane 121. 13, FIG. 14, and FIG. 27 described above (and FIG. 16, FIG. 17, FIG. 19, FIG. 20, FIG. 22, FIG. 23, FIG. 25, and FIG. Boundaries with other parts are indicated by broken lines.
  • the shape of the membrane 121 when viewed in plan in the stacking direction D11 depends on the shape of the cavity 110B.
  • the shapes of the membrane 121 and the cavity 110B are not limited to the shapes shown in FIGS. 13 and 14.
  • the piezoelectric layer 120 is made of, for example, lithium niobate (LiNbOx) or lithium tantalate (LiTaOx).
  • the piezoelectric layer 120 has two through holes 120B.
  • the through hole 120B penetrates the piezoelectric layer 120 in the stacking direction D11.
  • the through hole 120B is formed at a position overlapping the cavity 110B when viewed from above in the stacking direction D11.
  • the cavity 110B communicates with the outside of the acoustic wave device 100 via the through hole 120B.
  • the number of through holes 120B is not limited to two.
  • the IDT electrode 130 is laminated on the other main surface 120C of the piezoelectric layer 120.
  • the other main surface 120C is the back surface of the one main surface 120A.
  • the IDT electrode 130 has a first busbar electrode 131 and a second busbar electrode 132 facing each other, a first electrode finger 133 connected to the first busbar electrode 131, and a second busbar electrode 132. It has a second electrode finger 134 to be connected, and a reinforcing electrode 135 provided on the first electrode finger 133 and the second electrode finger 134. At least one first electrode finger 133 and at least one second electrode finger 134 are interposed with each other, and adjacent first electrode fingers 133 and second electrode fingers 134 constitute a pair of electrode sets. ing.
  • the first busbar electrode 131 corresponds to the electrode 5 of the first embodiment.
  • the second busbar electrode 132 corresponds to the electrode 6 of the first embodiment.
  • the first electrode finger 133 corresponds to the electrode 3 of the first embodiment.
  • the second electrode finger 134 corresponds to the electrode 4 of the first embodiment.
  • the IDT electrode 130 when viewed in plan in the stacking direction D11, at least a portion of the IDT electrode 130 is provided on the other main surface 120C of the piezoelectric layer 120 at a position overlapping with the cavity 110B.
  • the first electrode finger 133, the second electrode finger 134, and the reinforcing electrode 135 of the IDT electrode 130 are provided at a position overlapping with the cavity 110B. There is.
  • Each of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged to overlap when viewed from the electrode finger facing direction D12 (in other words, when viewed from the side in the electrode finger facing direction D12). Moreover, each of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 is arranged to extend in the electrode finger extension direction D13.
  • the electrode finger facing direction D12 is a direction that intersects with the stacking direction D11 and is a direction along the other main surface 120C of the piezoelectric layer 120.
  • the electrode finger extending direction D13 is a direction that intersects with the lamination direction D11 and a direction that intersects with the electrode finger facing direction D12.
  • the stacking direction D11, the electrode finger facing direction D12, and the electrode finger extending direction D13 are orthogonal to each other.
  • the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged adjacent to each other. Further, when viewed from the side in the electrode finger facing direction D12, the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged to overlap with each other. That is, at least one first electrode finger 133 and at least one second electrode finger 134 are arranged alternately along the electrode finger opposing direction D12. Adjacent first electrode fingers 133 and second electrode fingers 134 are arranged to face each other in the electrode finger facing direction D12, and constitute a pair of electrode sets.
  • Each of the plurality of first electrode fingers 133 extends from the first busbar electrode 131 toward the second busbar electrode 132 along the electrode finger extension direction D13.
  • the base end portions of the plurality of first electrode fingers 133 are connected to the first busbar electrode 131.
  • the tips of the plurality of first electrode fingers 133 are not connected to the second busbar electrode 132. That is, the tips of the plurality of first electrode fingers 133 are separated from the second busbar electrode 132.
  • Each of the plurality of second electrode fingers 134 extends from the second busbar electrode 132 toward the first busbar electrode 131 along the electrode finger extension direction D13.
  • the base end portions of the plurality of second electrode fingers 134 are connected to the second busbar electrode 132.
  • the tips of the plurality of second electrode fingers 134 are not connected to the first busbar electrode 131. That is, the tips of the plurality of second electrode fingers 134 are separated from the first busbar electrode 131.
  • the IDT electrode 130 has an intersection region (excitation region) C1 and a pair of gap regions C2.
  • the intersection area C1 is an area where the adjacent first electrode finger 133 and second electrode finger 134 overlap when viewed from the side in the electrode finger opposing direction D12.
  • the gap region C2 is a region where adjacent first electrode fingers 133 and second electrode fingers 134 do not overlap when viewed from the side in the electrode finger opposing direction D12. That is, in the plurality of first electrode fingers 133, the gap region C2 is a region on the first bus bar electrode 131 side with respect to the intersection region C1. Furthermore, in the plurality of second electrode fingers 134, the gap region C2 is a region on the second bus bar electrode 132 side with respect to the intersection region C1. In other words, the pair of gap regions C2 connects the gap between the tip of the first electrode finger 133 and the second busbar electrode 132 and the gap between the tip of the second electrode finger 134 and the first busbar electrode 131. It is an area.
  • the reinforcing electrodes 135 are provided on the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. That is, the reinforcing electrode 135 is in contact with the first electrode finger 133 and the second electrode finger 134. In the second embodiment, the reinforcing electrode 135 is laminated on each first electrode finger 133 and on each second electrode finger 134, as shown in FIG.
  • FIG. 15 is an enlarged view of the portion surrounded by a dashed line in FIG. 13.
  • the reinforcing electrode 135 is provided on the membrane 121. That is, when viewed from above in the stacking direction D11, the reinforcing electrode 135 overlaps the cavity 110B. That is, in the second embodiment, the entire portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11.
  • the reinforcing electrode 135 overlaps both the intersection region C1 and the gap region C2. That is, when viewed in plan in the stacking direction D11, a portion of the reinforcing electrode 135 is provided on the gap region C2.
  • the reinforcing electrode 135 is provided at a position overlapping with the cavity 110B when viewed in plan in the stacking direction D11. That is, in the second embodiment, the reinforcing electrode 135 on the gap region C2 overlaps with the cavity portion 110B when viewed in plan in the stacking direction D11.
  • the reinforcing electrode 135 overlaps both the intersection region C1 and the gap region C2 when viewed in plan in the stacking direction D11, but the invention is not limited to this.
  • the reinforcing electrode 135 may overlap only the gap region C2 and not the intersection region C1. That is, when viewed in plan in the stacking direction D11, the entire reinforcing electrode 135 may be provided on the gap region C2.
  • at least a portion of the reinforcing electrode 135 may be provided on the gap region C2 when viewed in plan in the stacking direction D11.
  • the reinforcing electrode 135 may be provided other than on the first electrode finger 133 or on the second electrode finger 134.
  • the reinforcing electrode 135 may be provided so as to contact the sides of the first electrode finger 133 and the second electrode finger 134.
  • the reinforcing electrode 135 may be provided adjacent to the first electrode finger 133 and the second electrode finger 134 in the electrode finger opposing direction D12. Further, for example, the reinforcing electrode 135 may be provided so as to cover the sides and top of the first electrode finger 133 and the second electrode finger 134.
  • the reinforcing electrodes 135 are provided on all of the plurality of first electrode fingers 133 and all of the plurality of second electrode fingers 134.
  • the reinforcing electrode 135 may be provided on some of the first electrode fingers 133 of the plurality of first electrode fingers 133, or may be provided on some of the second electrode fingers 134 of the plurality of second electrode fingers 134. It may also be provided on the finger 134. That is, the reinforcing electrode 135 is provided on at least some of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134.
  • the laminated electrode 140 is laminated on the other main surface 120C of the piezoelectric layer 120, the first busbar electrode 131 of the IDT electrode 130, and the second busbar electrode 132 of the IDT electrode 130. ing.
  • the laminated electrode 140 has two laminated electrodes 141 and 142.
  • the laminated electrode 141 is laminated on the other main surface 120C of the piezoelectric layer 120 and the first busbar electrode 131 of the IDT electrode 130.
  • the laminated electrode 142 is laminated on the other main surface 120C of the piezoelectric layer 120 and the second busbar electrode 132 of the IDT electrode 130.
  • the first electrode finger 133 and the second electrode finger 134 are reinforced by the reinforcing electrode 135, the possibility of disconnection of the first electrode finger 133 and the second electrode finger 134 is reduced. It can be lowered. Further, even if a portion of the first electrode finger 133 near the first bus bar electrode 131 is disconnected, electrical continuity between the first electrode finger 133 and the first bus bar electrode 131 can be ensured by the reinforcing electrode 135. Similarly, even if a portion of the second electrode finger 134 near the second bus bar electrode 132 is disconnected, electrical continuity between the second electrode finger 134 and the second bus bar electrode 132 can be ensured by the reinforcing electrode 135.
  • the reinforcing electrode 135 can reduce the possibility of disconnection of the first electrode finger 133 and the second electrode finger 134.
  • FIG. 16 is a schematic plan view of an elastic wave device according to a third embodiment of the present disclosure.
  • FIG. 17 is a schematic end view of the elastic wave device shown in FIG. 16 taken along line BB.
  • FIG. 18 is an enlarged view of a portion surrounded by a dashed line in FIG. 16.
  • the elastic wave device 100A according to the third embodiment differs from the elastic wave device 100 according to the second embodiment in that the reinforcing electrodes extend to the first busbar electrode 131 and the second busbar electrode 132.
  • the reinforcing electrodes extend to the first busbar electrode 131 and the second busbar electrode 132.
  • Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
  • the IDT electrode 130 of the acoustic wave device 100A has a reinforcing electrode 135A instead of the reinforcing electrode 135.
  • the reinforcing electrode 135A is provided on the first busbar electrode 131 and the second busbar electrode 132 in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. In this respect, the reinforcing electrode 135A is provided on the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134, while the reinforcing electrode 135A is not provided on the first busbar electrode 131 and the second busbar electrode 132. is different.
  • the reinforcing electrode 135A provided on the first electrode finger 133 extends above the first busbar electrode 131. Furthermore, the reinforcing electrode 135A provided on the second electrode finger 134 extends above the second busbar electrode 132. That is, the reinforcing electrode 135A is provided from above the first electrode finger 133 to above the first bus bar electrode 131. Further, the reinforcing electrode 135A is provided from above the second electrode finger 134 to above the second busbar electrode 132.
  • the entire portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11.
  • the first electrode fingers 133 and the second electrode fingers 134 are provided at positions overlapping with the cavity 110B when viewed in plan in the stacking direction D11.
  • the first busbar electrode 131 and the second busbar electrode 132 are provided at positions that do not overlap with the cavity 110B.
  • the portions of the reinforcing electrode 135A provided in the first busbar electrode 131 and the second busbar electrode 132 do not overlap with the cavity 110B. That is, in the third embodiment, a portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11.
  • the reinforcing electrode 135A can be made larger in the electrode finger extending direction D13. Further, the reinforcing electrode 135A is provided so as to straddle the first electrode finger 133 and the first bus bar electrode 131, and is provided so as to straddle the second electrode finger 134 and the second bus bar electrode 132. Thereby, the connection between the first electrode finger 133 and the first bus bar electrode 131 can be strengthened. Further, the connection between the second electrode finger 134 and the second bus bar electrode 132 can be strengthened.
  • FIG. 19 is a schematic plan view of an elastic wave device according to a fourth embodiment of the present disclosure.
  • FIG. 20 is a schematic end view of the elastic wave device shown in FIG. 19 taken along line CC.
  • FIG. 21 is an enlarged view of a portion surrounded by a dashed line in FIG. 19.
  • the elastic wave device 100B according to the fourth embodiment differs from the elastic wave device 100 according to the second embodiment in that the laminated electrode 140 includes a reinforcing electrode 135B.
  • the laminated electrode 140 includes a reinforcing electrode 135B.
  • Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
  • the laminated electrode 140 of the acoustic wave device 100A is configured integrally with the reinforcing electrode 135B of the IDT electrode 130.
  • the reinforcing electrode 135B extends from the laminated electrode 140 along the electrode finger extension direction D13.
  • the reinforcing electrode 135B extending from the laminated electrode 141 passes over the first bus bar electrode 131 and extends onto the first electrode finger 133.
  • the reinforcing electrode 135B extending from the laminated electrode 142 extends onto the second electrode finger 134 via the second bus bar electrode 132.
  • the reinforcing electrode 135B includes, in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134, the first busbar electrode 131 and the second busbar electrode 132. It is set in.
  • the reinforcing electrode 135B can be made larger in the electrode finger extending direction D13. Further, the reinforcing electrode 135A is provided so as to straddle the first electrode finger 133 and the first bus bar electrode 131, and is provided so as to straddle the second electrode finger 134 and the second bus bar electrode 132. Thereby, the connection between the first electrode finger 133 and the first bus bar electrode 131 can be strengthened. Further, the connection between the second electrode finger 134 and the second bus bar electrode 132 can be strengthened.
  • FIG. 22 is a schematic plan view of an elastic wave device according to a fifth embodiment of the present disclosure.
  • FIG. 23 is a schematic end view of the elastic wave device shown in FIG. 22 taken along line DD.
  • FIG. 24 is an enlarged view of a portion surrounded by a dashed line in FIG. 22.
  • the elastic wave device 100C according to the fifth embodiment differs from the elastic wave device 100A according to the second embodiment in that, first, the reinforcing electrode extends to the first busbar electrode 131 and the second busbar electrode 132. It is a point. Since this is similar to the third embodiment, the explanation will be omitted.
  • the elastic wave device 100C according to the fifth embodiment differs from the elastic wave device 100A according to the second embodiment in that, secondly, the width of the reinforcing electrode is shorter than the width of the first electrode finger 133; This point is shorter than the width of the electrode finger 134.
  • the second difference from the second embodiment will be explained below. Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
  • the IDT electrode 130 of the acoustic wave device 100C has a reinforcing electrode 135C instead of the reinforcing electrode 135.
  • the reinforcing electrode 135C is provided on the first bus bar electrode 131 and the second bus bar electrode 132 in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. It is being The reinforcing electrode 135C provided on the first electrode finger 133 extends above the first busbar electrode 131. Furthermore, the reinforcing electrode 135C provided on the second electrode finger 134 extends above the second busbar electrode 132.
  • the width of the reinforcing electrode 135C provided on the first electrode finger 133 is shorter than the width of the first electrode finger 133. That is, the length of the reinforcing electrode 135C provided on the first electrode finger 133 in the electrode finger facing direction D12 is shorter than the length of the first electrode finger 133 in the electrode finger facing direction D12.
  • the width of the reinforcing electrode 135C provided on the second electrode finger 134 is shorter than the width of the second electrode finger 134. That is, the length of the reinforcing electrode 135C provided on the second electrode finger 134 in the electrode finger facing direction D12 is shorter than the length of the second electrode finger 134 in the electrode finger facing direction D12.
  • the length L1 of the reinforcing electrode 135C provided on the first electrode finger 133 in the electrode finger facing direction D12 is shorter than the length L2 of the first electrode finger 133 in the electrode finger facing direction D12.
  • the reinforcing electrode 135C, the first electrode finger 133, and the second electrode finger 134 even if variations in the dimensional accuracy and positional accuracy of the reinforcing electrode 135C, the first electrode finger 133, and the second electrode finger 134 occur due to tolerances, the reinforcing electrode 135C, the first electrode finger 133, and the second electrode finger 134
  • the possibility of the reinforcing electrode 135C protruding from the second electrode finger 134 in the electrode finger facing direction D12 (in other words, the possibility that the reinforcing electrode 135C is located outside the first electrode finger 133 and the second electrode finger 134 in the electrode finger facing direction D12) It can be lowered.
  • FIG. 25 is a schematic end view of an elastic wave device 100D according to a modified example, taken along line AA in FIG. 14.
  • the first busbar electrode 131 and the second busbar electrode 132 do not overlap with the cavity 110B and the membrane 121 when viewed in plan in the stacking direction D11.
  • the first busbar electrode 131 and the second busbar electrode 132 may overlap the cavity 110B and the membrane 121 when viewed in plan in the stacking direction D11.
  • FIG. 26 is a schematic end view of an elastic wave device 100E according to a modification, taken along line AA in FIG. 14.
  • the entire first electrode finger 133 and the second electrode finger 134 overlap with the cavity 110B when viewed in plan in the stacking direction D11.
  • a part of the first electrode finger 133 and a part of the second electrode finger 134 overlap with the cavity 110B, and the remaining part of the first electrode finger 133 overlaps with the cavity 110B.
  • the remaining portion of the second electrode finger 134 does not need to overlap the cavity 110B. That is, when viewed in plan in the stacking direction D11, the first electrode fingers 133 and the second electrode fingers 134 may extend to the outside of the cavity 110B.
  • the elastic wave device of the present disclosure includes: a support member having a hollow portion on its main surface; a piezoelectric layer provided on one main surface of the support member; an IDT electrode provided on the piezoelectric layer and at least partially overlapping the cavity when viewed from the stacking direction of the support member and the piezoelectric layer,
  • the IDT electrode is a first busbar electrode; a second busbar electrode facing the first busbar electrode; a first electrode finger connected to the first busbar electrode, extending from the first busbar electrode toward the second busbar electrode, and separated from the second busbar electrode; a second electrode finger connected to the second busbar electrode, extending from the second busbar electrode toward the first busbar electrode, and separated from the first busbar electrode; a reinforcing electrode provided on at least some of the first electrode fingers and the second electrode fingers; At least one of the first electrode fingers and at least one of the second electrode fingers are arranged alternately along an electrode finger opposing direction that intersects the electrode finger extending direction, When viewed from
  • the IDT electrode includes an intersection area where the first electrode finger and the second electrode finger that are adjacent to each other overlap when viewed from the electrode finger opposing direction, and a tip of the first electrode finger and the second bus bar electrode. and a pair of gap regions, a region connecting the gap between the tips of the second electrode fingers and the first bus bar electrode, At least a portion of the reinforcing electrode may be provided on the gap region.
  • the reinforcing electrode provided on the first electrode finger may extend over the first busbar electrode
  • the reinforcing electrode provided on the second electrode finger may extend over the second busbar electrode.
  • any one of the elastic wave devices (1) to (4) is It may further include a laminated electrode laminated on each of the first busbar electrode and the second busbar electrode,
  • the laminated electrode may include the reinforcing electrode.
  • the length of the reinforcing electrode provided on the first electrode finger in the electrode finger opposing direction may be shorter than the length of the first electrode finger in the electrode finger opposing direction
  • the length of the reinforcing electrode provided on the second electrode finger in the direction in which the electrode finger faces may be shorter than the length of the second electrode finger in the direction in which the electrode finger faces.
  • the support member may include a support substrate and an intermediate layer provided on the support substrate.
  • d/p may be 0.5 or less.
  • the d/p may be 0.24 or less.
  • the piezoelectric layer may be lithium niobate or lithium tantalate
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the lithium niobate or lithium tantalate may be within the range of the following formula (1), formula (2), or formula (3).
  • any one of the elastic wave devices (1) to (11) It may be configured to be able to utilize bulk waves in thickness shear mode.
  • any one of the elastic wave devices (1) to (7) It may be configured such that plate waves can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic wave device according to the present disclosure comprises: a support member having a cavity in one main surface; a piezoelectric layer provided on the one main surface of the support member; and an IDT electrode provided to the piezoelectric layer, at least part of said IDT electrode overlapping the cavity as seen in the lamination direction of the support member and the piezoelectric layer. The IDT electrode comprises: a first bus bar electrode; a second bus bar electrode facing the first bus bar electrode; first electrode fingers connected to the first bus bar electrode, the first electrode fingers extending from the first bus bar electrode toward the second bus bar electrode and being separate from the second bus bar electrode; second electrode fingers connected to the second bus bar electrode, the second electrode fingers extending from the second bus bar electrode toward the first bus bar electrode and being separate from the first bus bar electrode; and a reinforcing electrode provided to at least part of the electrode fingers of the first electrode fingers and the second electrode fingers. At least one first electrode finger and at least one second electrode finger are alternately arranged. As seen in the lamination direction, at least part of the reinforcing electrode overlaps the cavity.

Description

弾性波装置elastic wave device
 本開示は、圧電体層を有する弾性波装置に関する。 The present disclosure relates to an acoustic wave device having a piezoelectric layer.
 例えば、特許文献1には、板波を利用する弾性波装置が開示されている。特許文献1に記載の弾性波装置は、支持体と、圧電基板と、IDT電極とを備えている。支持体には、空洞部が設けられている。圧電基板は、支持体の上に空洞部と重なるように設けられている。IDT電極は、圧電基板の上に空洞部と重なるように設けられている。弾性波装置では、IDT電極により板波が励振される。 For example, Patent Document 1 discloses an elastic wave device that uses plate waves. The elastic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode. The support body is provided with a cavity. The piezoelectric substrate is provided on the support body so as to overlap with the cavity. The IDT electrode is provided on the piezoelectric substrate so as to overlap with the cavity. In an elastic wave device, a plate wave is excited by an IDT electrode.
特開2012-257019号公報Japanese Patent Application Publication No. 2012-257019
 近年、特性の劣化を抑制できる弾性波装置が求められている。 In recent years, there has been a demand for elastic wave devices that can suppress deterioration of characteristics.
 本開示は、特性の劣化を抑制できる弾性波装置を提供することを目的とする。 An object of the present disclosure is to provide an elastic wave device that can suppress deterioration of characteristics.
 一方主面に空洞部を有する支持部材と、
 前記支持部材の一方主面上に設けられる圧電体層と、
 前記圧電体層に設けられ、前記支持部材及び前記圧電体層の積層方向から見て少なくとも一部が前記空洞部と重なるIDT電極と、を備え、
 前記IDT電極は、
 第1バスバー電極と、
 前記第1バスバー電極と対向する第2バスバー電極と、
 前記第1バスバー電極と接続され、前記第1バスバー電極から前記第2バスバー電極に向かって延伸し、前記第2バスバー電極から離れている第1電極指と、
 前記第2バスバー電極と接続され、前記第2バスバー電極から前記第1バスバー電極に向かって延伸し、前記第1バスバー電極から離れている第2電極指と、
 前記第1電極指及び前記第2電極指のうちの少なくとも一部の電極指に設けられる補強電極と、を備え、
 少なくとも1本の前記第1電極指と少なくとも1本の前記第2電極指とは、電極指延伸方向と交差する電極指対向方向に沿って交互に並んでおり、
 前記積層方向から見て、前記補強電極の少なくとも一部は、前記空洞部と重なる。
a support member having a hollow portion on its main surface;
a piezoelectric layer provided on one main surface of the support member;
an IDT electrode provided on the piezoelectric layer and at least partially overlapping the cavity when viewed from the stacking direction of the support member and the piezoelectric layer,
The IDT electrode is
a first busbar electrode;
a second busbar electrode facing the first busbar electrode;
a first electrode finger connected to the first busbar electrode, extending from the first busbar electrode toward the second busbar electrode, and separated from the second busbar electrode;
a second electrode finger connected to the second busbar electrode, extending from the second busbar electrode toward the first busbar electrode, and separated from the first busbar electrode;
a reinforcing electrode provided on at least some of the first electrode fingers and the second electrode fingers;
At least one of the first electrode fingers and at least one of the second electrode fingers are arranged alternately along an electrode finger facing direction that intersects with the electrode finger extending direction,
When viewed from the stacking direction, at least a portion of the reinforcing electrode overlaps with the cavity.
 本開示によれば、特性の劣化を抑制できる弾性波装置を提供することができる。 According to the present disclosure, it is possible to provide an elastic wave device that can suppress deterioration of characteristics.
第1,第2の態様の弾性波装置の外観を示す略図的斜視図A schematic perspective view showing the appearance of the elastic wave device of the first and second aspects 圧電層上の電極構造を示す平面図Plan view showing the electrode structure on the piezoelectric layer 図1A中のA-A線に沿う部分の断面図A cross-sectional view of the portion along line AA in Figure 1A 従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図A schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device. 本開示の弾性波装置の波を説明するための模式的正面断面図A schematic front sectional view for explaining waves of the elastic wave device of the present disclosure 第1の電極と第2の電極との間に、第2の電極が第1の電極よりも高電位となる電圧が印加された場合のバルク波を示す模式図A schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode such that the second electrode has a higher potential than the first electrode. 本開示の第1の実施形態に係る弾性波装置の共振特性を示す図A diagram showing resonance characteristics of an elastic wave device according to a first embodiment of the present disclosure d/2pと、弾性波装置の共振子としての比帯域との関係を示す図A diagram showing the relationship between d/2p and the fractional band as a resonator of an elastic wave device 本開示の第1の実施形態に係る別の弾性波装置の平面図A plan view of another elastic wave device according to the first embodiment of the present disclosure 弾性波装置の共振特性の一例を示す参考図。A reference diagram showing an example of resonance characteristics of an elastic wave device. 多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図A diagram showing the relationship between the fractional band when a large number of elastic wave resonators are configured and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious. d/2pと、メタライゼーション比MRと、比帯域との関係を示す図A diagram showing the relationship between d/2p, metallization ratio MR, and fractional band d/pを限りなく0に近づけた場合のLiNbO3のオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図A diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO3 when d/p is brought as close to 0 as possible 本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図A partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure 本開示の第2の実施形態に係る弾性波装置の概略平面図A schematic plan view of an elastic wave device according to a second embodiment of the present disclosure 図13に示す弾性波装置をA-A線で切断した概略端面図A schematic end view of the elastic wave device shown in FIG. 13 taken along line AA. 図13において一点鎖線で囲まれた部分の拡大図Enlarged view of the part surrounded by a dashed-dotted line in Figure 13 本開示の第3の実施形態に係る弾性波装置の概略平面図A schematic plan view of an elastic wave device according to a third embodiment of the present disclosure 図16に示す弾性波装置をB-B線で切断した概略端面図A schematic end view of the elastic wave device shown in FIG. 16 taken along line BB. 図16において一点鎖線で囲まれた部分の拡大図Enlarged view of the part surrounded by a dashed-dotted line in Figure 16 本開示の第4の実施形態に係る弾性波装置の概略平面図A schematic plan view of an elastic wave device according to a fourth embodiment of the present disclosure 図19に示す弾性波装置をC-C線で切断した概略端面図A schematic end view of the elastic wave device shown in FIG. 19 taken along line C-C. 図21は、図19において一点鎖線で囲まれた部分の拡大図Figure 21 is an enlarged view of the part surrounded by the dashed line in Figure 19. 本開示の第5の実施形態に係る弾性波装置の概略平面図A schematic plan view of an elastic wave device according to a fifth embodiment of the present disclosure 図22に示す弾性波装置をD-D線で切断した概略端面図A schematic end view of the elastic wave device shown in FIG. 22 taken along line DD 図22において一点鎖線で囲まれた部分の拡大図Enlarged view of the part surrounded by a dashed-dotted line in Figure 22 変形例に係る弾性波装置の図14のA-A線に対応する概略端面図A schematic end view corresponding to the AA line in FIG. 14 of the elastic wave device according to the modified example. 変形例に係る弾性波装置の図14のA-A線に対応する概略端面図A schematic end view corresponding to the AA line in FIG. 14 of the elastic wave device according to the modified example. 従来の弾性波装置の一例の概略平面図A schematic plan view of an example of a conventional elastic wave device 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図27 is an end view showing the manufacturing process of a conventional elastic wave device, and is a schematic end view corresponding to a section taken along the line EE of the elastic wave device shown in FIG. 27. 図27に示す弾性波装置をE-E線で切断した概略端面図A schematic end view of the elastic wave device shown in FIG. 27 taken along line E-E.
 本開示における第1,第2,第3の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。 Acoustic wave devices according to first, second, and third aspects of the present disclosure include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. and an electrode.
 第1の態様の弾性波装置では、厚み滑りモードのバルク波が利用されている。 The elastic wave device of the first aspect utilizes a bulk wave in a thickness shear mode.
 また、第2の態様の弾性波装置では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1,第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。 Further, in the acoustic wave device of the second aspect, the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p. In this case, d/p is 0.5 or less. Thereby, in the first and second aspects, the Q value can be increased even when miniaturization is promoted.
 また、第3の態様の弾性波装置では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。 Furthermore, in the third aspect of the elastic wave device, Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
 本開示における第4の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備え、バルク波を利用する。 An acoustic wave device according to a fourth aspect of the present disclosure includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween. Take advantage of.
 以下、図面を参照しつつ、第1~第4の態様の弾性波装置の具体的な実施形態を説明することにより、本開示を明らかにする。 Hereinafter, the present disclosure will be clarified by describing specific embodiments of the elastic wave devices of the first to fourth aspects with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an illustrative example, and it is possible to partially replace or combine the configurations between different embodiments.
(第1の実施形態)
 図1Aは、第1,第2の態様についての第1の実施形態に係る弾性波装置の外観を示す略図的斜視図であり、図1Bは、圧電層上の電極構造を示す平面図であり、図2は、図1A中のA-A線に沿う部分の断面図である。
(First embodiment)
FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment of the first and second aspects, and FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer. , FIG. 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットであるが、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、50nm以上、1000nm以下が好ましい。 The acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may be made of LiTaO 3 . Although the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in this embodiment, it may be a rotational Y cut or an X cut. Preferably, the propagation directions of Y propagation and X propagation are ±30°. The thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear mode.
 圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。 The piezoelectric layer 2 has first and second main surfaces 2a and 2b that face each other. An electrode 3 and an electrode 4 are provided on the first main surface 2a. Here, electrode 3 is an example of a "first electrode", and electrode 4 is an example of a "second electrode". In FIGS. 1A and 1B, the plurality of electrodes 3 are a plurality of first electrode fingers connected to the first bus bar 5. In FIGS. The plurality of electrodes 4 are a plurality of second electrode fingers connected to the second bus bar 6. The plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other.
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。これら複数の電極3,4、及び第1のバスバー5,第2のバスバー6によりIDT(Interdigital Transuducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。 The electrode 3 and the electrode 4 have a rectangular shape and have a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction. These plurality of electrodes 3 and 4, the first bus bar 5, and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode. The length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2.
 また、電極3,4の長さ方向が図1A及び図1Bに示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3,4が延びている方向に延びることとなる。 Furthermore, the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first bus bar 5 and the second bus bar 6 extend. In that case, the first bus bar 5 and the second bus bar 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
 そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。 A plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4. There is. Here, the expression "electrode 3 and electrode 4 are adjacent" does not mean that electrode 3 and electrode 4 are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them. refers to
 また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とし、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。 Further, when the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4. This logarithm does not need to be an integer pair, and may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 μm or more and 10 μm or less. In addition, the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance between the center of Furthermore, when there is a plurality of at least one of the electrodes 3 and 4 ( electrodes 3 and 4 are a pair of electrode sets, and there are 1.5 or more pairs of electrode sets), the distance between the centers of the electrodes 3 and 4 is 1 It refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 5 or more pairs of electrodes 3 and 4. Further, the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4, is preferably in the range of 150 nm or more and 1000 nm or less. Note that the distance between the centers of the electrodes 3 and 4 refers to the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. This is the distance between the center of the dimension (width dimension).
 また、本実施形態では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 Furthermore, in this embodiment, since a Z-cut piezoelectric layer is used, the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2. Here, "orthogonal" is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90°±10°) But that's fine.
 圧電層2の第2の主面2b側には、絶縁層7を介して支持基板8が積層されている。絶縁層7と支持基板8とによって支持部材が構成されている。絶縁層7及び支持基板8は、枠状の形状を有し、図2に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の交差領域Cの振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 in between. The insulating layer 7 and the support substrate 8 constitute a support member. The insulating layer 7 and the support substrate 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed. The cavity 9 is provided so as not to impede the vibration of the intersection area C of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support substrate 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持基板8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 The insulating layer 7 is made of silicon oxide. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used. The support substrate 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 kΩ or more. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material. Examples of materials for the support substrate 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and starch. Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3 and 4 and the first and second bus bars 5 and 6 are made of a suitable metal or alloy such as Al or AlCu alloy. In this embodiment, the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。 During driving, an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. Thereby, it is possible to obtain resonance characteristics using the thickness shear mode bulk wave excited in the piezoelectric layer 2.
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 Further, in the acoustic wave device 1, when the thickness of the piezoelectric layer 2 is d, and the distance between the centers of any adjacent electrodes 3, 4 among the plurality of pairs of electrodes 3, 4 is p, d/p is 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組と、電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。 In addition, when there is a plurality of at least one of the electrodes 3 and 4 as in the present embodiment, that is, when there are one pair of electrodes 3 and 4 and 1.5 or more pairs of electrodes 3 and 4, the electrodes 3 and 4 are adjacent to each other. The distance p between the centers of the electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑りモードのバルク波を利用していることによる。 Since the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used.
 従来の弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図3A及び図3Bを参照して説明する。 The difference between the Lamb waves used in conventional elastic wave devices and the thickness-shear mode bulk waves will be explained with reference to FIGS. 3A and 3B.
 図3Aは、従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。従来の弾性波装置については、例えば、日本公開特許公報 特開2012-257019号公報に記載されている。図3Aに示すように、従来の弾性波装置においては、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 3A is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device. A conventional elastic wave device is described in, for example, Japanese Patent Publication No. 2012-257019. As shown in FIG. 3A, in the conventional acoustic wave device, waves propagate in the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is. The X direction is the direction in which the electrode fingers of the IDT electrodes are lined up. As shown in FIG. 3A, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
 これに対して、図3Bに示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 3B, in the elastic wave device 1 of this embodiment, the vibration displacement is in the thickness-slip direction, so the waves are generated between the first principal surface 2a and the second principal surface of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑りモードのバルク波の振幅方向は、図4に示すように、圧電層2の交差領域Cに含まれる第1領域451と、交差領域Cに含まれる第2領域452とで逆になる。図4は、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、交差領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、交差領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 Note that, as shown in FIG. 4, the amplitude direction of the bulk wave in the thickness shear mode is reversed between the first region 451 included in the intersection region C of the piezoelectric layer 2 and the second region 452 included in the intersection region C. Become. FIG. 4 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3. In FIG. The first region 451 is a region of the intersection region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a. The second region 452 is a region of the intersection region C between the virtual plane VP1 and the second principal surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
 図5は、本発明の第1の実施形態に係る弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち交差領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持基板8:Si。
FIG. 5 is a diagram showing the resonance characteristics of the elastic wave device according to the first embodiment of the present invention. Note that the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm. When viewed in a direction perpendicular to the length direction of electrodes 3 and 4, the length of the region where electrodes 3 and 4 overlap, that is, the intersection region C = 40 μm, the logarithm of the electrodes consisting of electrodes 3 and 4 = 21 pairs, center distance between electrodes = 3 μm, width of electrodes 3 and 4 = 500 nm, d/p = 0.133.
Insulating layer 7: silicon oxide film with a thickness of 1 μm.
Support substrate 8: Si.
 なお、交差領域Cの長さとは、交差領域Cの電極3,4の長さ方向に沿う寸法である。 Note that the length of the crossing region C is the dimension along the length direction of the electrodes 3 and 4 of the crossing region C.
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In this embodiment, the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 were all made equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 5, good resonance characteristics with a fractional band of 12.5% are obtained despite not having a reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrodes 3 and 4 is p, in this embodiment, d/p is preferably 0.5 or less, as described above. is 0.24 or less. This will be explained with reference to FIG.
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained in the same way as the elastic wave devices that obtained the resonance characteristics shown in FIG. 5, except that d/2p was changed. FIG. 6 is a diagram showing the relationship between d/2p and the fractional band of the resonator of the elastic wave device.
 図6から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本開示の第2の態様の弾性波装置のように、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 6, when d/2p exceeds 0.25, that is, when d/p>0.5, the fractional band is less than 5% even if d/p is adjusted. On the other hand, if d/2p≦0.25, that is, d/p≦0.5, the fractional bandwidth can be increased to 5% or more by changing d/p within that range. In other words, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the fractional band can be increased to 7% or more. In addition, by adjusting d/p within this range, it is possible to obtain a resonator with an even wider specific band, and it is possible to realize a resonator with an even higher coupling coefficient. Therefore, as in the elastic wave device of the second aspect of the present disclosure, by setting d/p to 0.5 or less, a resonator having a high coupling coefficient that utilizes the bulk wave of the thickness shear mode is configured. I know what I can do.
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。 Note that, as described above, the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Also, regarding the thickness d of the piezoelectric layer, if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
 図7は、本開示の第1の実施形態に係る別の弾性波装置の平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本発明の弾性波装置31では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。 FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure. In the acoustic wave device 31, a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2. Note that K in FIG. 7 is the intersection width. As described above, in the acoustic wave device 31 of the present invention, the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である交差領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。即ち、隣り合う複数の第1電極指と複数の第2電極指とが対向している方向に視たときに複数の第1電極指と複数の第2電極指とが重なっている領域が交差領域(励振領域)であり、交差領域に対する、複数の第1電極指及び複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たすことが好ましい。その場合には、スプリアスを効果的に小さくすることができる。 In the elastic wave device 1, preferably, in the plurality of electrodes 3, 4, the above-mentioned adjacent It is desirable that the metallization ratio MR of the electrodes 3 and 4 satisfies MR≦1.75(d/p)+0.075. That is, when viewed in the direction in which adjacent first electrode fingers and second electrode fingers are facing each other, the regions where the plurality of first electrode fingers and the plurality of second electrode fingers overlap intersect. region (excitation region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers with respect to the intersection region is MR, MR≦1.75 (d/p) + 0.075. It is preferable to meet the requirements. In that case, spurious can be effectively reduced.
 これを、図8及び図9を参照して説明する。図8は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 This will be explained with reference to FIGS. 8 and 9. FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device 1. As shown in FIG. A spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Further, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が交差領域となる。この交差領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この交差領域の面積に対する、交差領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の交差領域の面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 1B. In the electrode structure of FIG. 1B, when focusing on a pair of electrodes 3 and 4, it is assumed that only this pair of electrodes 3 and 4 are provided. In this case, the area surrounded by the dashed line C becomes the intersection area. This intersection area is a region where electrode 3 overlaps electrode 4 when electrode 3 and electrode 4 are viewed in a direction perpendicular to the length direction of electrodes 3 and 4, that is, in a direction in which electrode 4 overlaps, and electrode 3 overlaps electrode 4 in electrode 4. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap. Then, the area of the electrodes 3 and 4 in the intersection region C with respect to the area of this intersection region becomes the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallized portion to the area of the intersection region.
 なお、複数対の電極が設けられている場合、交差領域の面積の合計に対する全交差領域に含まれているメタライゼーション部分の割合をMRとすればよい。 Note that when multiple pairs of electrodes are provided, MR may be the ratio of the metallized portion included in all the intersection regions to the total area of the intersection regions.
 図9は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 9 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. be. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 9 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by the ellipse J in FIG. 9, the spurious is as large as 1.0. As is clear from FIG. 9, when the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band. Among the above elastic wave devices, various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured. The hatched area on the right side of the broken line D in FIG. 10 is a region where the fractional band is 17% or less. The boundary between the hatched area and the unhatched area is expressed as MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≦1.75 (d/p)+0.075. In that case, it is easy to set the fractional band to 17% or less. More preferably, it is the region to the right of MR=3.5(d/2p)+0.05 indicated by the dashed line D1 in FIG. That is, if MR≦1.75(d/p)+0.05, the fractional band can be reliably set to 17% or less.
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 11 is a diagram showing a map of the fractional band with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought as close to 0 as possible. The hatched areas in FIG. 11 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
 (0°±10°,0°~20°,任意のψ)  …式(1) (0°±10°, 0° to 20°, arbitrary ψ)...Formula (1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2) (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3) (0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。 Therefore, in the case of the Euler angle range of the above formula (1), formula (2), or formula (3), the fractional band can be made sufficiently wide, which is preferable.
 図12は、本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図12において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指としての電極84c及び複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー84aに接続されている。複数本の電極84dは、第2のバスバー84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。 FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure. The elastic wave device 81 has a support substrate 82 . The support substrate 82 is provided with an open recess on the upper surface. A piezoelectric layer 83 is laminated on the support substrate 82 . Thereby, a cavity 9 is formed. An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 . Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 12, the outer periphery of the cavity 9 is indicated by a broken line. Here, the IDT electrode 84 includes first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers. The plurality of electrodes 84c are connected to the first bus bar 84a. The plurality of electrodes 84d are connected to the second bus bar 84b. The plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。 In the elastic wave device 81, by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
 このように、本開示の弾性波装置は、板波を利用するものであってもよい。 In this way, the elastic wave device of the present disclosure may utilize plate waves.
(第2の実施形態)
 第2の実施形態の弾性波装置について説明する。第2の実施形態においては、第1の実施形態と重複する内容については適宜、説明を省略する。第2の実施形態においては、第1の実施形態で説明した内容を適用することができる。
(Second embodiment)
An elastic wave device according to a second embodiment will be described. In the second embodiment, descriptions of contents that overlap with those in the first embodiment will be omitted as appropriate. In the second embodiment, the contents described in the first embodiment can be applied.
 従来の弾性波装置の課題について説明する。図27は、従来の弾性波装置の一例の概略平面図である。図28~図33は、従来の弾性波装置の製造過程を示す端面図であって図27に示す弾性波装置をE-E線で切断した部分に対応する概略端面図である。図34は、図27に示す弾性波装置をE-E線で切断した概略端面図である。 Problems with conventional elastic wave devices will be explained. FIG. 27 is a schematic plan view of an example of a conventional elastic wave device. 28 to 33 are end views showing the manufacturing process of a conventional elastic wave device, and are schematic end views corresponding to a section of the elastic wave device shown in FIG. 27 taken along the line EE. FIG. 34 is a schematic end view of the elastic wave device shown in FIG. 27 taken along line EE.
 圧電体層620が空洞部610Bを覆うことによって圧電体層620のうち空洞部610Bに面する部分がメンブレン621として構成される弾性波装置600が知られている(図27及び図34参照)。以下、空洞部610Bを有する弾性波装置600の製造方法の一例が、図28~図34を参照しつつ説明される。 An acoustic wave device 600 is known in which a piezoelectric layer 620 covers a cavity 610B, so that a portion of the piezoelectric layer 620 facing the cavity 610B is configured as a membrane 621 (see FIGS. 27 and 34). An example of a method for manufacturing the acoustic wave device 600 having the cavity 610B will be described below with reference to FIGS. 28 to 34.
 最初に、図28に示すように、圧電体層620の一方主面620Aに犠牲層650が成膜される。犠牲層650は、例えば、レジストのパターニングと、エッチングによるレジストの除去とによって形成される。 First, as shown in FIG. 28, a sacrificial layer 650 is formed on one main surface 620A of the piezoelectric layer 620. The sacrificial layer 650 is formed, for example, by patterning a resist and removing the resist by etching.
 次に、図29に示すように、圧電体層620の一方主面620Aに接合層660が積層される。このとき、犠牲層650は、接合層660に覆われる。 Next, as shown in FIG. 29, a bonding layer 660 is laminated on one main surface 620A of the piezoelectric layer 620. At this time, the sacrificial layer 650 is covered with the bonding layer 660.
 次に、図30に示すように、接合層660に支持基板670が接合される。接合層660および支持基板670によって、支持部材610が形成される。 Next, as shown in FIG. 30, a support substrate 670 is bonded to the bonding layer 660. The support member 610 is formed by the bonding layer 660 and the support substrate 670.
 次に、図31に示すように、圧電体層620が研削等によって薄化される。 Next, as shown in FIG. 31, the piezoelectric layer 620 is thinned by grinding or the like.
 次に、図32に示すように、リフトオフ等によって、圧電体層620の他方主面620C(一方主面620Aの裏面)に、IDT電極630と積層電極640とが形成される。図32には示されていないが、IDT電極630と積層電極640とは電気的に接続されている。図32には、IDT電極630のうち、第1電極指633及び第2電極指634が示されている。 Next, as shown in FIG. 32, an IDT electrode 630 and a laminated electrode 640 are formed on the other main surface 620C (the back surface of the one main surface 620A) of the piezoelectric layer 620 by lift-off or the like. Although not shown in FIG. 32, the IDT electrode 630 and the laminated electrode 640 are electrically connected. FIG. 32 shows a first electrode finger 633 and a second electrode finger 634 of the IDT electrode 630.
 次に、図33に示すように、圧電体層620に貫通孔620Bが形成される。貫通孔620Bは、レジストパターニング、ドライエッチング、レジスト除去などの公知の過程が実行されることによって形成される。 Next, as shown in FIG. 33, a through hole 620B is formed in the piezoelectric layer 620. The through hole 620B is formed by performing a known process such as resist patterning, dry etching, and resist removal.
 次に、レジストパターニングによる表面の保護の後に、犠牲層650が除去され、犠牲層650の除去後に表面を保護するレジストが除去される。本製造方法では、エッチング液が貫通孔620Bを通じて犠牲層650へ浸透され、犠牲層650がエッチング液によって溶解される。溶解された犠牲層650は、貫通孔620Bを通じて外部へ排出される。これにより、図34に示すように、それまで犠牲層650が存在していた箇所に、空洞部610Bが形成され、圧電体層620のうち空洞部610Bに面した部分はメンブレン621として構成される。その結果、図27及び図34に示す弾性波装置600が完成する。 Next, after the surface is protected by resist patterning, the sacrificial layer 650 is removed, and after the sacrificial layer 650 is removed, the resist that protects the surface is removed. In this manufacturing method, an etching solution permeates into the sacrificial layer 650 through the through hole 620B, and the sacrificial layer 650 is dissolved by the etching solution. The dissolved sacrificial layer 650 is discharged to the outside through the through hole 620B. As a result, as shown in FIG. 34, a cavity 610B is formed at the location where the sacrificial layer 650 was previously present, and a portion of the piezoelectric layer 620 facing the cavity 610B is configured as a membrane 621. . As a result, an elastic wave device 600 shown in FIGS. 27 and 34 is completed.
 図27及び図34に示す弾性波装置600において、IDT電極630は、互いに対向する第1バスバー電極631及び第2バスバー電極632と、第1バスバー電極631に接続される複数の第1電極指633と、第2バスバー電極632に接続される複数の第2電極指634とを有する。複数の第1電極指633と複数の第2電極指634とは互いに間挿し合っており、隣り合う第1電極指633と第2電極指634とは一対の電極組を構成している。第1電極指633と第2電極指634とは、メンブレン621上にある。 In the acoustic wave device 600 shown in FIGS. 27 and 34, the IDT electrode 630 includes a first busbar electrode 631 and a second busbar electrode 632 facing each other, and a plurality of first electrode fingers 633 connected to the first busbar electrode 631. and a plurality of second electrode fingers 634 connected to the second bus bar electrode 632. The plurality of first electrode fingers 633 and the plurality of second electrode fingers 634 are interposed with each other, and adjacent first electrode fingers 633 and second electrode fingers 634 constitute a pair of electrode sets. The first electrode finger 633 and the second electrode finger 634 are on the membrane 621.
 メンブレン621は薄いため、クラックが発生するおそれがある。例えば、図27の破線矢印で示すように位置680において発生したクラックが幅方向に沿って延伸すると、第1電極指633が断線するおそれがある。クラックの発生位置によっては、第2電極指634も同様に断線するおそれがある。第1電極指633や第2電極指634が断線すると、弾性波装置600のフィルタ特性が変化して、弾性波装置600の特性が劣化するおそれがある。例えば、第1電極指633Aの基端部が断線すると、第1電極指633Aと第2電極指634Aとの間の領域の容量が付加されなくなるため、フィルタ特性が変化する。 Since the membrane 621 is thin, cracks may occur. For example, if a crack that occurs at a position 680 extends along the width direction as indicated by the broken line arrow in FIG. 27, there is a risk that the first electrode finger 633 will break. Depending on the position where the crack occurs, the second electrode finger 634 may also break. If the first electrode finger 633 or the second electrode finger 634 is disconnected, the filter characteristics of the elastic wave device 600 may change, and the characteristics of the elastic wave device 600 may deteriorate. For example, if the base end of the first electrode finger 633A is disconnected, the filter characteristics change because no capacitance is added to the area between the first electrode finger 633A and the second electrode finger 634A.
 特に、第1電極指633の基端部の幅方向の両側には第2電極指634が存在せず、第2電極指634の基端部の幅方向の両側には第1電極指633が存在しない。そのため、第1電極指633及び第2電極指634の基端部の近傍のメンブレン621の強度は、メンブレン621の他の部分に比べて弱く、クラックが発生しやすい。 In particular, the second electrode fingers 634 are not present on both sides of the base end of the first electrode fingers 633 in the width direction, and the first electrode fingers 633 are not present on both sides of the base end of the second electrode fingers 634 in the width direction. not exist. Therefore, the strength of the membrane 621 near the base end portions of the first electrode finger 633 and the second electrode finger 634 is weaker than other parts of the membrane 621, and cracks are likely to occur.
 また、第1電極指633及び第2電極指634の基端部が断線すると、断線した第1電極指633及び第2電極指634の全体が機能しなくなる。そのため、基端部以外が断線した場合に比べて、弾性波装置600の特性が大きく劣化するおそれがある。 Furthermore, if the base end portions of the first electrode finger 633 and the second electrode finger 634 are disconnected, the entirety of the disconnected first electrode finger 633 and second electrode finger 634 ceases to function. Therefore, the characteristics of the elastic wave device 600 may deteriorate significantly compared to a case where a wire other than the base end is disconnected.
 本開示の第2の実施形態の弾性波装置では、第1電極指及び第2電極指の断線の可能性を低くすることができる。これにより、弾性波装置の特性の劣化を低減することができる。 In the elastic wave device of the second embodiment of the present disclosure, the possibility of disconnection of the first electrode finger and the second electrode finger can be reduced. Thereby, deterioration of the characteristics of the elastic wave device can be reduced.
 図13は、本開示の第2の実施形態に係る弾性波装置の概略平面図である。図14は、図13に示す弾性波装置をA-A線で切断した概略端面図である。 FIG. 13 is a schematic plan view of an elastic wave device according to a second embodiment of the present disclosure. FIG. 14 is a schematic end view of the elastic wave device shown in FIG. 13 taken along line AA.
 図13及び図14に示すように、弾性波装置100は、支持部材110と、圧電体層120と、IDT電極130と、積層電極140とを備える。支持部材110は、第1の実施形態の支持部材8に対応している。圧電体層120は、第1の実施形態の圧電層2に対応している。 As shown in FIGS. 13 and 14, the acoustic wave device 100 includes a support member 110, a piezoelectric layer 120, an IDT electrode 130, and a laminated electrode 140. The support member 110 corresponds to the support member 8 of the first embodiment. The piezoelectric layer 120 corresponds to the piezoelectric layer 2 of the first embodiment.
 支持部材110は、積層方向D11に厚みを有する。積層方向D11は、支持部材110の厚み方向であり、支持部材110と圧電体層120とが積層する方向を意味する。なお、第1の実施形態と同様に、支持部材110と圧電体層120との間に、絶縁層が介在していてもよい。 The support member 110 has a thickness in the stacking direction D11. The stacking direction D11 is the thickness direction of the support member 110, and means the direction in which the support member 110 and the piezoelectric layer 120 are stacked. Note that, similarly to the first embodiment, an insulating layer may be interposed between the support member 110 and the piezoelectric layer 120.
 支持部材110は、例えば、シリコン、ガラス、水晶、またはアルミナで構成されている。第2の実施形態では、支持部材110は、例えば、酸化シリコン(SiOx)で構成されている。なお、支持部材110は、第1の実施形態と同様に、支持基板(例えば第1の実施形態における支持基板8に対応)と、支持基板上に設けられた中間層(例えば第1の実施形態における絶縁層7に対応)とを含んでいてもよい。 The support member 110 is made of silicon, glass, crystal, or alumina, for example. In the second embodiment, the support member 110 is made of silicon oxide (SiOx), for example. Note that, as in the first embodiment, the support member 110 includes a support substrate (e.g., corresponding to the support substrate 8 in the first embodiment) and an intermediate layer provided on the support substrate (e.g., in the first embodiment). (corresponding to the insulating layer 7 in).
 支持部材110は凹部111を有する。凹部111は、支持部材110の一方主面110Aから積層方向D11に凹んでいる。凹部111と圧電体層120の一方主面120Aとに区画された空間が、空洞部110Bである。つまり、支持部材110は一方主面110Aに空洞部110Bを有する。空洞部110Bは、第1の実施形態の空洞部9に対応している。 The support member 110 has a recess 111. The recessed portion 111 is recessed from one main surface 110A of the support member 110 in the stacking direction D11. A space defined by the recess 111 and one main surface 120A of the piezoelectric layer 120 is a cavity 110B. That is, the support member 110 has a cavity 110B on one main surface 110A. The cavity 110B corresponds to the cavity 9 of the first embodiment.
 圧電体層120は、支持部材110に積層されている。圧電体層120の一方主面120Aが支持部材110の一方主面110Aに接触している。つまり、圧電体層120は、支持部材110の一方主面110A上に設けられている。圧電体層120は、支持部材110の凹部111を閉塞している。 The piezoelectric layer 120 is laminated on the support member 110. One main surface 120A of the piezoelectric layer 120 is in contact with one main surface 110A of the support member 110. That is, the piezoelectric layer 120 is provided on one main surface 110A of the support member 110. The piezoelectric layer 120 closes the recess 111 of the support member 110.
 圧電体層120は、メンブレン121を有する。メンブレン121は、圧電体層120のうち、積層方向D11から見て(言い換えると積層方向D11に平面視して)空洞部110Bと重なる部分である。言い換えると、メンブレン121は、圧電体層120のうち、積層方向D11に平面視して支持部材110の一方主面110Aと接触していない部分である。空洞部110Bは、凹部111とメンブレン121とに区画された空間とも言える。図13、図14、及び前述した図27(並びに後述する図16、図17、図19、図20、図22、図23、図25、及び図26)では、圧電体層120におけるメンブレン121と他の部分との境界が、破線で示されている。 The piezoelectric layer 120 has a membrane 121. The membrane 121 is a portion of the piezoelectric layer 120 that overlaps the cavity 110B when viewed from the stacking direction D11 (in other words, when viewed from above in the stacking direction D11). In other words, the membrane 121 is a portion of the piezoelectric layer 120 that is not in contact with the one main surface 110A of the support member 110 when viewed from above in the stacking direction D11. The cavity 110B can also be said to be a space partitioned into the recess 111 and the membrane 121. 13, FIG. 14, and FIG. 27 described above (and FIG. 16, FIG. 17, FIG. 19, FIG. 20, FIG. 22, FIG. 23, FIG. 25, and FIG. Boundaries with other parts are indicated by broken lines.
 積層方向D11に平面視したときのメンブレン121の形状は、空洞部110Bの形状に依存する。メンブレン121及び空洞部110Bの形状は、図13及び図14に示す形状に限らない。 The shape of the membrane 121 when viewed in plan in the stacking direction D11 depends on the shape of the cavity 110B. The shapes of the membrane 121 and the cavity 110B are not limited to the shapes shown in FIGS. 13 and 14.
 圧電体層120は、例えば、ニオブ酸リチウム(LiNbOx)又はタンタル酸リチウム(LiTaOx)で構成されている。 The piezoelectric layer 120 is made of, for example, lithium niobate (LiNbOx) or lithium tantalate (LiTaOx).
 図13に示すように、圧電体層120は、2つの貫通孔120Bを有する。貫通孔120Bは、圧電体層120を積層方向D11に貫通している。貫通孔120Bは、積層方向D11に平面視して、空洞部110Bと重なる位置に形成されている。空洞部110Bは、貫通孔120Bを介して弾性波装置100の外部と連通している。なお、貫通孔120Bの数は2つに限らない。 As shown in FIG. 13, the piezoelectric layer 120 has two through holes 120B. The through hole 120B penetrates the piezoelectric layer 120 in the stacking direction D11. The through hole 120B is formed at a position overlapping the cavity 110B when viewed from above in the stacking direction D11. The cavity 110B communicates with the outside of the acoustic wave device 100 via the through hole 120B. Note that the number of through holes 120B is not limited to two.
 図13及び図14に示すように、IDT電極130は、圧電体層120の他方主面120Cに積層されている。他方主面120Cは、一方主面120Aの裏面である。第2の実施形態では、IDT電極130は、互いに対向する第1バスバー電極131及び第2バスバー電極132と、第1バスバー電極131に接続される第1電極指133と、第2バスバー電極132に接続される第2電極指134と、第1電極指133及び第2電極指134に設けられる補強電極135とを有する。少なくとも1本の第1電極指133と少なくとも1本の第2電極指134とは互いに間挿し合っており、隣り合う第1電極指133と第2電極指134とは一対の電極組を構成している。 As shown in FIGS. 13 and 14, the IDT electrode 130 is laminated on the other main surface 120C of the piezoelectric layer 120. The other main surface 120C is the back surface of the one main surface 120A. In the second embodiment, the IDT electrode 130 has a first busbar electrode 131 and a second busbar electrode 132 facing each other, a first electrode finger 133 connected to the first busbar electrode 131, and a second busbar electrode 132. It has a second electrode finger 134 to be connected, and a reinforcing electrode 135 provided on the first electrode finger 133 and the second electrode finger 134. At least one first electrode finger 133 and at least one second electrode finger 134 are interposed with each other, and adjacent first electrode fingers 133 and second electrode fingers 134 constitute a pair of electrode sets. ing.
 第1バスバー電極131は、第1の実施形態の電極5に対応している。第2バスバー電極132は、第1の実施形態の電極6に対応している。第1電極指133は、第1の実施形態の電極3に対応している。第2電極指134は、第1の実施形態の電極4に対応している。 The first busbar electrode 131 corresponds to the electrode 5 of the first embodiment. The second busbar electrode 132 corresponds to the electrode 6 of the first embodiment. The first electrode finger 133 corresponds to the electrode 3 of the first embodiment. The second electrode finger 134 corresponds to the electrode 4 of the first embodiment.
 図13に示すように、積層方向D11に平面視して、IDT電極130の少なくとも一部は、空洞部110Bと重なる位置で圧電体層120の他方主面120C上に設けられている。第2の実施形態では、積層方向D11に平面視して、IDT電極130のうち、第1電極指133、第2電極指134、及び補強電極135が、空洞部110Bと重なる位置に設けられている。 As shown in FIG. 13, when viewed in plan in the stacking direction D11, at least a portion of the IDT electrode 130 is provided on the other main surface 120C of the piezoelectric layer 120 at a position overlapping with the cavity 110B. In the second embodiment, when viewed in plan in the stacking direction D11, the first electrode finger 133, the second electrode finger 134, and the reinforcing electrode 135 of the IDT electrode 130 are provided at a position overlapping with the cavity 110B. There is.
 複数の第1電極指133及び複数の第2電極指134の各々は、電極指対向方向D12から見て(言い換えると電極指対向方向D12に側面視して)重なり合って配置されている。また、複数の第1電極指133及び複数の第2電極指134の各々は、電極指延伸方向D13に延伸して配置されている。電極指対向方向D12は、積層方向D11と交差する方向であり且つ圧電体層120の他方主面120Cに沿った方向である。電極指延伸方向D13は、積層方向D11と交差する方向であり且つ電極指対向方向D12と交差する方向である。第2の実施形態において、積層方向D11、電極指対向方向D12、及び電極指延伸方向D13は、互いに直交している。 Each of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged to overlap when viewed from the electrode finger facing direction D12 (in other words, when viewed from the side in the electrode finger facing direction D12). Moreover, each of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 is arranged to extend in the electrode finger extension direction D13. The electrode finger facing direction D12 is a direction that intersects with the stacking direction D11 and is a direction along the other main surface 120C of the piezoelectric layer 120. The electrode finger extending direction D13 is a direction that intersects with the lamination direction D11 and a direction that intersects with the electrode finger facing direction D12. In the second embodiment, the stacking direction D11, the electrode finger facing direction D12, and the electrode finger extending direction D13 are orthogonal to each other.
 積層方向D11に平面視して、複数の第1電極指133及び複数の第2電極指134は、互いに隣り合って配置されている。また、電極指対向方向D12に側面視して、複数の第1電極指133及び複数の第2電極指134は、互いに重なって配置されている。即ち、少なくとも1本の第1電極指133と少なくとも1本の第2電極指134とは、電極指対向方向D12に沿って交互に並んでいる。隣り合う第1電極指133と第2電極指134とは、電極指対向方向D12に対向して配置され、一対の電極組を構成している。 When viewed in plan in the stacking direction D11, the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged adjacent to each other. Further, when viewed from the side in the electrode finger facing direction D12, the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134 are arranged to overlap with each other. That is, at least one first electrode finger 133 and at least one second electrode finger 134 are arranged alternately along the electrode finger opposing direction D12. Adjacent first electrode fingers 133 and second electrode fingers 134 are arranged to face each other in the electrode finger facing direction D12, and constitute a pair of electrode sets.
 複数の第1電極指133の各々は、第1バスバー電極131から第2バスバー電極132に向かって電極指延伸方向D13に沿って延伸している。複数の第1電極指133の基端部は、第1バスバー電極131に接続されている。一方、複数の第1電極指133の先端部は、第2バスバー電極132に接続されていない。つまり、複数の第1電極指133の先端部は、第2バスバー電極132から離れている。 Each of the plurality of first electrode fingers 133 extends from the first busbar electrode 131 toward the second busbar electrode 132 along the electrode finger extension direction D13. The base end portions of the plurality of first electrode fingers 133 are connected to the first busbar electrode 131. On the other hand, the tips of the plurality of first electrode fingers 133 are not connected to the second busbar electrode 132. That is, the tips of the plurality of first electrode fingers 133 are separated from the second busbar electrode 132.
 複数の第2電極指134の各々は、第2バスバー電極132から第1バスバー電極131に向かって電極指延伸方向D13に沿って延伸している。複数の第2電極指134の基端部は、第2バスバー電極132に接続されている。一方、複数の第2電極指134の先端部は、第1バスバー電極131に接続されていない。つまり、複数の第2電極指134の先端部は、第1バスバー電極131から離れている。 Each of the plurality of second electrode fingers 134 extends from the second busbar electrode 132 toward the first busbar electrode 131 along the electrode finger extension direction D13. The base end portions of the plurality of second electrode fingers 134 are connected to the second busbar electrode 132. On the other hand, the tips of the plurality of second electrode fingers 134 are not connected to the first busbar electrode 131. That is, the tips of the plurality of second electrode fingers 134 are separated from the first busbar electrode 131.
 IDT電極130は、交差領域(励振領域)C1と、一対のギャップ領域C2とを有している。交差領域C1は、電極指対向方向D12に側面視して、隣り合う第1電極指133と第2電極指134とが重なり合っている領域である。ギャップ領域C2は、電極指対向方向D12に側面視して、隣り合う第1電極指133と第2電極指134が重なり合っていない領域である。つまり、複数の第1電極指133において、ギャップ領域C2は、交差領域C1に対して第1バスバー電極131側の領域である。また、複数の第2電極指134において、ギャップ領域C2は、交差領域C1に対して第2バスバー電極132側の領域である。つまり、一対のギャップ領域C2は、第1電極指133の先端と第2バスバー電極132の間のギャップを結ぶ領域、および第2電極指134の先端と第1バスバー電極131の間のギャップを結ぶ領域である。 The IDT electrode 130 has an intersection region (excitation region) C1 and a pair of gap regions C2. The intersection area C1 is an area where the adjacent first electrode finger 133 and second electrode finger 134 overlap when viewed from the side in the electrode finger opposing direction D12. The gap region C2 is a region where adjacent first electrode fingers 133 and second electrode fingers 134 do not overlap when viewed from the side in the electrode finger opposing direction D12. That is, in the plurality of first electrode fingers 133, the gap region C2 is a region on the first bus bar electrode 131 side with respect to the intersection region C1. Furthermore, in the plurality of second electrode fingers 134, the gap region C2 is a region on the second bus bar electrode 132 side with respect to the intersection region C1. In other words, the pair of gap regions C2 connects the gap between the tip of the first electrode finger 133 and the second busbar electrode 132 and the gap between the tip of the second electrode finger 134 and the first busbar electrode 131. It is an area.
 補強電極135は、複数の第1電極指133及び複数の第2電極指134に設けられている。つまり、補強電極135は、第1電極指133及び第2電極指134に接触している。第2の実施形態において、補強電極135は、図14に示すように、各第1電極指133上と各第2電極指134上とに積層されている。 The reinforcing electrodes 135 are provided on the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. That is, the reinforcing electrode 135 is in contact with the first electrode finger 133 and the second electrode finger 134. In the second embodiment, the reinforcing electrode 135 is laminated on each first electrode finger 133 and on each second electrode finger 134, as shown in FIG.
 図15は、図13において一点鎖線で囲まれた部分の拡大図である。 FIG. 15 is an enlarged view of the portion surrounded by a dashed line in FIG. 13.
 図13~図15に示すように、補強電極135は、メンブレン121上に設けられている。つまり、積層方向D11に平面視して、補強電極135は、空洞部110Bと重なっている。すなわち、第2の実施形態では、積層方向D11に平面視して、補強電極135の全部分が、空洞部110Bと重なっている。 As shown in FIGS. 13 to 15, the reinforcing electrode 135 is provided on the membrane 121. That is, when viewed from above in the stacking direction D11, the reinforcing electrode 135 overlaps the cavity 110B. That is, in the second embodiment, the entire portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11.
 また、積層方向D11に平面視して、補強電極135は、交差領域C1とギャップ領域C2との双方に重なっている。つまり、積層方向D11に平面視して、補強電極135の一部は、ギャップ領域C2上に設けられている。 Furthermore, when viewed in plan in the stacking direction D11, the reinforcing electrode 135 overlaps both the intersection region C1 and the gap region C2. That is, when viewed in plan in the stacking direction D11, a portion of the reinforcing electrode 135 is provided on the gap region C2.
 ここで、前述したように、第2の実施形態では、積層方向D11に平面視して、補強電極135は空洞部110Bと重なる位置に設けられている。つまり、第2の実施形態では、積層方向D11に平面視して、ギャップ領域C2上の補強電極135は、空洞部110Bと重なっている。 Here, as described above, in the second embodiment, the reinforcing electrode 135 is provided at a position overlapping with the cavity 110B when viewed in plan in the stacking direction D11. That is, in the second embodiment, the reinforcing electrode 135 on the gap region C2 overlaps with the cavity portion 110B when viewed in plan in the stacking direction D11.
 なお、第2の実施形態では、積層方向D11に平面視して、補強電極135は、交差領域C1とギャップ領域C2との双方に重なっているが、これに限らない。例えば、補強電極135は、ギャップ領域C2のみに重なっており、交差領域C1に重なっていなくてもよい。つまり、積層方向D11に平面視して、補強電極135の全部が、ギャップ領域C2上に設けられていてもよい。以上より、積層方向D11に平面視して、補強電極135の少なくとも一部が、ギャップ領域C2上に設けられていてもよい。 Note that in the second embodiment, the reinforcing electrode 135 overlaps both the intersection region C1 and the gap region C2 when viewed in plan in the stacking direction D11, but the invention is not limited to this. For example, the reinforcing electrode 135 may overlap only the gap region C2 and not the intersection region C1. That is, when viewed in plan in the stacking direction D11, the entire reinforcing electrode 135 may be provided on the gap region C2. As described above, at least a portion of the reinforcing electrode 135 may be provided on the gap region C2 when viewed in plan in the stacking direction D11.
 なお、補強電極135は、第1電極指133上以外や第2電極指134上以外に設けられていてもよい。例えば、補強電極135は、第1電極指133や第2電極指134の側方に接触するように設けられていてもよい。言い換えると、補強電極135は、第1電極指133や第2電極指134に対して電極指対向方向D12に隣接して設けられていてもよい。また、例えば、補強電極135は、第1電極指133や第2電極指134の側方および上方を覆うように設けられていてもよい。 Note that the reinforcing electrode 135 may be provided other than on the first electrode finger 133 or on the second electrode finger 134. For example, the reinforcing electrode 135 may be provided so as to contact the sides of the first electrode finger 133 and the second electrode finger 134. In other words, the reinforcing electrode 135 may be provided adjacent to the first electrode finger 133 and the second electrode finger 134 in the electrode finger opposing direction D12. Further, for example, the reinforcing electrode 135 may be provided so as to cover the sides and top of the first electrode finger 133 and the second electrode finger 134.
 第2の実施形態において、補強電極135は、複数の第1電極指133の全て及び複数の第2電極指134の全てに設けられている。しかし、補強電極135は、複数の第1電極指133のうちの一部の第1電極指133に設けられていてもよいし、複数の第2電極指134のうちの一部の第2電極指134に設けられていてもよい。つまり、補強電極135は、複数の第1電極指133及び複数の第2電極指134のうちの少なくとも一部の電極指に設けられている。 In the second embodiment, the reinforcing electrodes 135 are provided on all of the plurality of first electrode fingers 133 and all of the plurality of second electrode fingers 134. However, the reinforcing electrode 135 may be provided on some of the first electrode fingers 133 of the plurality of first electrode fingers 133, or may be provided on some of the second electrode fingers 134 of the plurality of second electrode fingers 134. It may also be provided on the finger 134. That is, the reinforcing electrode 135 is provided on at least some of the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134.
 図13及び図14に示すように、積層電極140は、圧電体層120の他方主面120Cと、IDT電極130の第1バスバー電極131と、IDT電極130の第2バスバー電極132とに積層されている。第2の実施形態において、積層電極140は、2つの積層電極141、142を有する。積層電極141は、圧電体層120の他方主面120Cと、IDT電極130の第1バスバー電極131とに積層されている。積層電極142は、圧電体層120の他方主面120Cと、IDT電極130の第2バスバー電極132とに積層されている。 As shown in FIGS. 13 and 14, the laminated electrode 140 is laminated on the other main surface 120C of the piezoelectric layer 120, the first busbar electrode 131 of the IDT electrode 130, and the second busbar electrode 132 of the IDT electrode 130. ing. In the second embodiment, the laminated electrode 140 has two laminated electrodes 141 and 142. The laminated electrode 141 is laminated on the other main surface 120C of the piezoelectric layer 120 and the first busbar electrode 131 of the IDT electrode 130. The laminated electrode 142 is laminated on the other main surface 120C of the piezoelectric layer 120 and the second busbar electrode 132 of the IDT electrode 130.
 メンブレン121にクラックが発生した場合、当該クラックによって第1電極指133や第2電極指134が断線するおそれがある。しかし、第2の実施形態によれば、第1電極指133や第2電極指134が補強電極135によって補強されているため、第1電極指133や第2電極指134の断線の可能性を低くすることができる。また、仮に、第1電極指133における第1バスバー電極131の近傍部が断線しても、補強電極135によって第1電極指133と第1バスバー電極131との電気的導通を確保し得る。同様に、第2電極指134における第2バスバー電極132の近傍部が断線しても、補強電極135によって第2電極指134と第2バスバー電極132との電気的導通を確保し得る。 If a crack occurs in the membrane 121, there is a risk that the first electrode finger 133 or the second electrode finger 134 will be disconnected due to the crack. However, according to the second embodiment, since the first electrode finger 133 and the second electrode finger 134 are reinforced by the reinforcing electrode 135, the possibility of disconnection of the first electrode finger 133 and the second electrode finger 134 is reduced. It can be lowered. Further, even if a portion of the first electrode finger 133 near the first bus bar electrode 131 is disconnected, electrical continuity between the first electrode finger 133 and the first bus bar electrode 131 can be ensured by the reinforcing electrode 135. Similarly, even if a portion of the second electrode finger 134 near the second bus bar electrode 132 is disconnected, electrical continuity between the second electrode finger 134 and the second bus bar electrode 132 can be ensured by the reinforcing electrode 135.
 メンブレン121における第1バスバー電極131の近傍部や第2バスバー電極132の近傍部でクラックが発生した場合に、当該クラックが電極指対向方向D12に沿って伸長すると、第1電極指133や第2電極指134が断線するおそれがある。しかし、前述したように、補強電極135によって第1電極指133や第2電極指134の断線の可能性を低くすることができる。 If a crack occurs in the vicinity of the first busbar electrode 131 or the second busbar electrode 132 in the membrane 121 and the crack extends along the electrode finger opposing direction D12, the first electrode finger 133 or the second busbar electrode 132 There is a risk that the electrode fingers 134 may be disconnected. However, as described above, the reinforcing electrode 135 can reduce the possibility of disconnection of the first electrode finger 133 and the second electrode finger 134.
 以上より、第1電極指133や第2電極指134の断線による発生容量の変動を抑制できるため、弾性波装置100の意図しない特性変化を低減することができる。 As described above, it is possible to suppress fluctuations in the generated capacitance due to disconnection of the first electrode finger 133 and the second electrode finger 134, and thus it is possible to reduce unintended characteristic changes of the acoustic wave device 100.
(第3の実施形態)
 図16は、本開示の第3の実施形態に係る弾性波装置の概略平面図である。図17は、図16に示す弾性波装置をB-B線で切断した概略端面図である。図18は、図16において一点鎖線で囲まれた部分の拡大図である。
(Third embodiment)
FIG. 16 is a schematic plan view of an elastic wave device according to a third embodiment of the present disclosure. FIG. 17 is a schematic end view of the elastic wave device shown in FIG. 16 taken along line BB. FIG. 18 is an enlarged view of a portion surrounded by a dashed line in FIG. 16.
 第3の実施形態に係る弾性波装置100Aが第2の実施形態に係る弾性波装置100と
異なる点は、補強電極が第1バスバー電極131及び第2バスバー電極132まで延びている点である。以下、第2の実施形態との相違点が説明される。第2の実施形態に係る弾性波装置100との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
The elastic wave device 100A according to the third embodiment differs from the elastic wave device 100 according to the second embodiment in that the reinforcing electrodes extend to the first busbar electrode 131 and the second busbar electrode 132. Hereinafter, differences from the second embodiment will be explained. Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
 図16~図18に示すように、弾性波装置100AのIDT電極130は、補強電極135の代わりに補強電極135Aを有する。 As shown in FIGS. 16 to 18, the IDT electrode 130 of the acoustic wave device 100A has a reinforcing electrode 135A instead of the reinforcing electrode 135.
 補強電極135Aは、複数の第1電極指133及び複数の第2電極指134に加えて第1バスバー電極131及び第2バスバー電極132に設けられている。この点、補強電極135Aは、複数の第1電極指133及び複数の第2電極指134に設けられている一方で第1バスバー電極131及び第2バスバー電極132に設けられていない補強電極135とは異なる。 The reinforcing electrode 135A is provided on the first busbar electrode 131 and the second busbar electrode 132 in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. In this respect, the reinforcing electrode 135A is provided on the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134, while the reinforcing electrode 135A is not provided on the first busbar electrode 131 and the second busbar electrode 132. is different.
 第1電極指133上に設けられる補強電極135Aは、第1バスバー電極131上に延びている。また、第2電極指134上に設けられる補強電極135Aは、第2バスバー電極132上に延びている。つまり、補強電極135Aは、第1電極指133上から第1バスバー電極131上に亘って設けられている。また、補強電極135Aは、第2電極指134上から第2バスバー電極132上に亘って設けられている。 The reinforcing electrode 135A provided on the first electrode finger 133 extends above the first busbar electrode 131. Furthermore, the reinforcing electrode 135A provided on the second electrode finger 134 extends above the second busbar electrode 132. That is, the reinforcing electrode 135A is provided from above the first electrode finger 133 to above the first bus bar electrode 131. Further, the reinforcing electrode 135A is provided from above the second electrode finger 134 to above the second busbar electrode 132.
 ここで、前述したように、第2の実施形態では、積層方向D11に平面視して、補強電極135の全部分が、空洞部110Bと重なっている。つ Here, as described above, in the second embodiment, the entire portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11. One
 一方、第3の実施形態では、積層方向D11に平面視して、第1電極指133及び第2電極指134は空洞部110Bと重なる位置に設けられている。一方、積層方向D11に平面視して、第1バスバー電極131及び第2バスバー電極132は空洞部110Bと重なっていない位置に設けられている。 On the other hand, in the third embodiment, the first electrode fingers 133 and the second electrode fingers 134 are provided at positions overlapping with the cavity 110B when viewed in plan in the stacking direction D11. On the other hand, when viewed in plan in the stacking direction D11, the first busbar electrode 131 and the second busbar electrode 132 are provided at positions that do not overlap with the cavity 110B.
 つまり、第3の実施形態では、積層方向D11に平面視して、補強電極135Aのうち第1電極指133及び第2電極指134に設けられた部分が、空洞部110Bと重なっている。一方、補強電極135Aのうち第1バスバー電極131及び第2バスバー電極132に設けられた部分は、空洞部110Bと重なっていない。すなわち、第3の実施形態では、積層方向D11に平面視して、補強電極135の一部分が、空洞部110Bと重なっている。 That is, in the third embodiment, when viewed in plan in the stacking direction D11, the portions of the reinforcing electrode 135A provided in the first electrode fingers 133 and the second electrode fingers 134 overlap with the cavity portion 110B. On the other hand, the portions of the reinforcing electrode 135A provided in the first busbar electrode 131 and the second busbar electrode 132 do not overlap with the cavity 110B. That is, in the third embodiment, a portion of the reinforcing electrode 135 overlaps with the cavity 110B when viewed in plan in the stacking direction D11.
 第3の実施形態によれば、補強電極135Aを電極指延伸方向D13に大きくすることができる。また、補強電極135Aは、第1電極指133と第1バスバー電極131とを跨ぐように設けられており、第2電極指134と第2バスバー電極132とを跨ぐように設けられている。これにより、第1電極指133と第1バスバー電極131との接続を強化することができる。また、第2電極指134と第2バスバー電極132との接続を強化することができる。 According to the third embodiment, the reinforcing electrode 135A can be made larger in the electrode finger extending direction D13. Further, the reinforcing electrode 135A is provided so as to straddle the first electrode finger 133 and the first bus bar electrode 131, and is provided so as to straddle the second electrode finger 134 and the second bus bar electrode 132. Thereby, the connection between the first electrode finger 133 and the first bus bar electrode 131 can be strengthened. Further, the connection between the second electrode finger 134 and the second bus bar electrode 132 can be strengthened.
(第4の実施形態)
 図19は、本開示の第4の実施形態に係る弾性波装置の概略平面図である。図20は、図19に示す弾性波装置をC-C線で切断した概略端面図である。図21は、図19において一点鎖線で囲まれた部分の拡大図である。
(Fourth embodiment)
FIG. 19 is a schematic plan view of an elastic wave device according to a fourth embodiment of the present disclosure. FIG. 20 is a schematic end view of the elastic wave device shown in FIG. 19 taken along line CC. FIG. 21 is an enlarged view of a portion surrounded by a dashed line in FIG. 19.
 第4の実施形態に係る弾性波装置100Bが第2の実施形態に係る弾性波装置100と
異なる点は、積層電極140が補強電極135Bを含む点である。以下、第2の実施形態との相違点が説明される。第2の実施形態に係る弾性波装置100との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
The elastic wave device 100B according to the fourth embodiment differs from the elastic wave device 100 according to the second embodiment in that the laminated electrode 140 includes a reinforcing electrode 135B. Hereinafter, differences from the second embodiment will be explained. Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
 図19~図21に示すように、弾性波装置100Aの積層電極140は、IDT電極130の補強電極135Bと一体に構成されている。補強電極135Bは、積層電極140から電極指延伸方向D13に沿って延びている。積層電極141から延びた補強電極135Bは、第1バスバー電極131上を経由して、第1電極指133上へ延びている。積層電極142から延びた補強電極135Bは、第2バスバー電極132上を経由して、第2電極指134上へ延びている。つまり、補強電極135Bは、第3の実施形態の補強電極135Aと同様に、複数の第1電極指133及び複数の第2電極指134に加えて、第1バスバー電極131及び第2バスバー電極132に設けられている。 As shown in FIGS. 19 to 21, the laminated electrode 140 of the acoustic wave device 100A is configured integrally with the reinforcing electrode 135B of the IDT electrode 130. The reinforcing electrode 135B extends from the laminated electrode 140 along the electrode finger extension direction D13. The reinforcing electrode 135B extending from the laminated electrode 141 passes over the first bus bar electrode 131 and extends onto the first electrode finger 133. The reinforcing electrode 135B extending from the laminated electrode 142 extends onto the second electrode finger 134 via the second bus bar electrode 132. That is, like the reinforcing electrode 135A of the third embodiment, the reinforcing electrode 135B includes, in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134, the first busbar electrode 131 and the second busbar electrode 132. It is set in.
 第4の実施形態によれば、補強電極135Bを電極指延伸方向D13に大きくすることができる。また、補強電極135Aは、第1電極指133と第1バスバー電極131とを跨ぐように設けられており、第2電極指134と第2バスバー電極132とを跨ぐように設けられている。これにより、第1電極指133と第1バスバー電極131との接続を強化することができる。また、第2電極指134と第2バスバー電極132との接続を強化することができる。 According to the fourth embodiment, the reinforcing electrode 135B can be made larger in the electrode finger extending direction D13. Further, the reinforcing electrode 135A is provided so as to straddle the first electrode finger 133 and the first bus bar electrode 131, and is provided so as to straddle the second electrode finger 134 and the second bus bar electrode 132. Thereby, the connection between the first electrode finger 133 and the first bus bar electrode 131 can be strengthened. Further, the connection between the second electrode finger 134 and the second bus bar electrode 132 can be strengthened.
(第5の実施形態)
 図22は、本開示の第5の実施形態に係る弾性波装置の概略平面図である。図23は、図22に示す弾性波装置をD-D線で切断した概略端面図である。図24は、図22において一点鎖線で囲まれた部分の拡大図である。
(Fifth embodiment)
FIG. 22 is a schematic plan view of an elastic wave device according to a fifth embodiment of the present disclosure. FIG. 23 is a schematic end view of the elastic wave device shown in FIG. 22 taken along line DD. FIG. 24 is an enlarged view of a portion surrounded by a dashed line in FIG. 22.
 第5の実施形態に係る弾性波装置100Cが第2の実施形態に係る弾性波装置100Aと異なる点は、第1に、補強電極が第1バスバー電極131及び第2バスバー電極132まで延びている点である。これは、第3の実施形態と同様であるため、説明は省略される。第5の実施形態に係る弾性波装置100Cが第2の実施形態に係る弾性波装置100Aと異なる点は、第2に、補強電極の幅が、第1電極指133の幅より短く、第2電極指134の幅より短い点である。以下、第2の実施形態との第2の相違点が説明される。第2の実施形態に係る弾性波装置100との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。 The elastic wave device 100C according to the fifth embodiment differs from the elastic wave device 100A according to the second embodiment in that, first, the reinforcing electrode extends to the first busbar electrode 131 and the second busbar electrode 132. It is a point. Since this is similar to the third embodiment, the explanation will be omitted. The elastic wave device 100C according to the fifth embodiment differs from the elastic wave device 100A according to the second embodiment in that, secondly, the width of the reinforcing electrode is shorter than the width of the first electrode finger 133; This point is shorter than the width of the electrode finger 134. The second difference from the second embodiment will be explained below. Points in common with the elastic wave device 100 according to the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted in principle and will be explained as necessary.
 図22~図24に示すように、弾性波装置100CのIDT電極130は、補強電極135の代わりに補強電極135Cを有する。 As shown in FIGS. 22 to 24, the IDT electrode 130 of the acoustic wave device 100C has a reinforcing electrode 135C instead of the reinforcing electrode 135.
 補強電極135Cは、第3の実施形態の補強電極135Aと同様に、複数の第1電極指133及び複数の第2電極指134に加えて、第1バスバー電極131及び第2バスバー電極132に設けられている。第1電極指133上に設けられる補強電極135Cは、第1バスバー電極131上に延びている。また、第2電極指134上に設けられる補強電極135Cは、第2バスバー電極132上に延びている。 Similar to the reinforcing electrode 135A of the third embodiment, the reinforcing electrode 135C is provided on the first bus bar electrode 131 and the second bus bar electrode 132 in addition to the plurality of first electrode fingers 133 and the plurality of second electrode fingers 134. It is being The reinforcing electrode 135C provided on the first electrode finger 133 extends above the first busbar electrode 131. Furthermore, the reinforcing electrode 135C provided on the second electrode finger 134 extends above the second busbar electrode 132.
 第1電極指133上に設けられる補強電極135Cの幅は、第1電極指133の幅より短い。つまり、第1電極指133上に設けられる補強電極135Cの電極指対向方向D12の長さは、第1電極指133の電極指対向方向D12の長さより短い。 The width of the reinforcing electrode 135C provided on the first electrode finger 133 is shorter than the width of the first electrode finger 133. That is, the length of the reinforcing electrode 135C provided on the first electrode finger 133 in the electrode finger facing direction D12 is shorter than the length of the first electrode finger 133 in the electrode finger facing direction D12.
 第2電極指134上に設けられる補強電極135Cの幅は、第2電極指134の幅より短い。つまり、第2電極指134上に設けられる補強電極135Cの電極指対向方向D12の長さは、第2電極指134の電極指対向方向D12の長さより短い。 The width of the reinforcing electrode 135C provided on the second electrode finger 134 is shorter than the width of the second electrode finger 134. That is, the length of the reinforcing electrode 135C provided on the second electrode finger 134 in the electrode finger facing direction D12 is shorter than the length of the second electrode finger 134 in the electrode finger facing direction D12.
 例えば、図24に示すように、第1電極指133上に設けられる補強電極135Cの電極指対向方向D12の長さL1は、第1電極指133の電極指対向方向D12の長さL2より短い。 For example, as shown in FIG. 24, the length L1 of the reinforcing electrode 135C provided on the first electrode finger 133 in the electrode finger facing direction D12 is shorter than the length L2 of the first electrode finger 133 in the electrode finger facing direction D12. .
 第5の実施形態によれば、補強電極135C、第1電極指133、第2電極指134の寸法精度や位置精度に公差等のばらつきが生じても、補強電極135Cが第1電極指133や第2電極指134から電極指対向方向D12にはみ出す可能性(言い換えると、電極指対向方向D12において、補強電極135Cが第1電極指133や第2電極指134の外側に位置する可能性)を低くすることができる。 According to the fifth embodiment, even if variations in the dimensional accuracy and positional accuracy of the reinforcing electrode 135C, the first electrode finger 133, and the second electrode finger 134 occur due to tolerances, the reinforcing electrode 135C, the first electrode finger 133, and the second electrode finger 134 The possibility of the reinforcing electrode 135C protruding from the second electrode finger 134 in the electrode finger facing direction D12 (in other words, the possibility that the reinforcing electrode 135C is located outside the first electrode finger 133 and the second electrode finger 134 in the electrode finger facing direction D12) It can be lowered.
(各実施形態の変形例)
 図25は、変形例に係る弾性波装置100Dの図14のA-A線に対応する概略端面図である。前述した各実施形態では、積層方向D11に平面視して、第1バスバー電極131及び第2バスバー電極132は、空洞部110B及びメンブレン121と重なっていない。しかし、図25に示すように、積層方向D11に平面視して、第1バスバー電極131及び第2バスバー電極132は、空洞部110B及びメンブレン121と重なっていてもよい。
(Modifications of each embodiment)
FIG. 25 is a schematic end view of an elastic wave device 100D according to a modified example, taken along line AA in FIG. 14. In each of the embodiments described above, the first busbar electrode 131 and the second busbar electrode 132 do not overlap with the cavity 110B and the membrane 121 when viewed in plan in the stacking direction D11. However, as shown in FIG. 25, the first busbar electrode 131 and the second busbar electrode 132 may overlap the cavity 110B and the membrane 121 when viewed in plan in the stacking direction D11.
 図26は、変形例に係る弾性波装置100Eの図14のA-A線に対応する概略端面図である。前述した各実施形態では、積層方向D11に平面視して、第1電極指133の全部分及び第2電極指134の全部分が、空洞部110Bと重なっている。しかし、図26に示すように、積層方向D11に平面視して、第1電極指133の一部及び第2電極指134の一部が空洞部110Bと重なり、第1電極指133の残りの部分及び第2電極指134の残りの部分が空洞部110Bと重なっていなくてもよい。つまり、積層方向D11に平面視して、第1電極指133及び第2電極指134は、空洞部110Bの外側まで延びていてもよい。 FIG. 26 is a schematic end view of an elastic wave device 100E according to a modification, taken along line AA in FIG. 14. In each of the embodiments described above, the entire first electrode finger 133 and the second electrode finger 134 overlap with the cavity 110B when viewed in plan in the stacking direction D11. However, as shown in FIG. 26, when viewed from above in the stacking direction D11, a part of the first electrode finger 133 and a part of the second electrode finger 134 overlap with the cavity 110B, and the remaining part of the first electrode finger 133 overlaps with the cavity 110B. The remaining portion of the second electrode finger 134 does not need to overlap the cavity 110B. That is, when viewed in plan in the stacking direction D11, the first electrode fingers 133 and the second electrode fingers 134 may extend to the outside of the cavity 110B.
(実施形態の概要)
 (1) 本開示の弾性波装置は、
 一方主面に空洞部を有する支持部材と、
 前記支持部材の一方主面上に設けられる圧電体層と、
 前記圧電体層に設けられ、前記支持部材及び前記圧電体層の積層方向から見て少なくとも一部が前記空洞部と重なるIDT電極と、を備え、
 前記IDT電極は、
 第1バスバー電極と、
 前記第1バスバー電極と対向する第2バスバー電極と、
 前記第1バスバー電極と接続され、前記第1バスバー電極から前記第2バスバー電極に向かって延伸し、前記第2バスバー電極から離れている第1電極指と、
 前記第2バスバー電極と接続され、前記第2バスバー電極から前記第1バスバー電極に向かって延伸し、前記第1バスバー電極から離れている第2電極指と、
 前記第1電極指及び前記第2電極指のうちの少なくとも一部の電極指に設けられる補強電極と、を備え、
 少なくとも1本の前記第1電極指と少なくとも1本の前記第2電極指とは、電極指延伸方向と交差する電極指対向方向に沿って交互に並んでおり、
 前記積層方向から見て、前記補強電極の少なくとも一部は、前記空洞部と重なる。
(Summary of embodiment)
(1) The elastic wave device of the present disclosure includes:
a support member having a hollow portion on its main surface;
a piezoelectric layer provided on one main surface of the support member;
an IDT electrode provided on the piezoelectric layer and at least partially overlapping the cavity when viewed from the stacking direction of the support member and the piezoelectric layer,
The IDT electrode is
a first busbar electrode;
a second busbar electrode facing the first busbar electrode;
a first electrode finger connected to the first busbar electrode, extending from the first busbar electrode toward the second busbar electrode, and separated from the second busbar electrode;
a second electrode finger connected to the second busbar electrode, extending from the second busbar electrode toward the first busbar electrode, and separated from the first busbar electrode;
a reinforcing electrode provided on at least some of the first electrode fingers and the second electrode fingers;
At least one of the first electrode fingers and at least one of the second electrode fingers are arranged alternately along an electrode finger opposing direction that intersects the electrode finger extending direction,
When viewed from the stacking direction, at least a portion of the reinforcing electrode overlaps with the cavity.
 (2) (1)の弾性波装置において、
 前記IDT電極は、前記電極指対向方向から見て、隣り合う前記第1電極指と前記第2電極指とが重なりあっている交差領域と、前記第1電極指の先端と前記第2バスバー電極の間のギャップを結ぶ領域および前記第2電極指の先端と前記第1バスバー電極の間のギャップを結ぶ領域の一対のギャップ領域とを有していてもよく、
 前記補強電極の少なくとも一部は、前記ギャップ領域上に設けられていてもよい。
(2) In the elastic wave device of (1),
The IDT electrode includes an intersection area where the first electrode finger and the second electrode finger that are adjacent to each other overlap when viewed from the electrode finger opposing direction, and a tip of the first electrode finger and the second bus bar electrode. and a pair of gap regions, a region connecting the gap between the tips of the second electrode fingers and the first bus bar electrode,
At least a portion of the reinforcing electrode may be provided on the gap region.
 (3) (2)の弾性波装置において、
 前記積層方向から見て、前記ギャップ領域上の前記補強電極の少なくとも一部は、前記空洞部と重なっていてもよい。
(3) In the elastic wave device of (2),
When viewed from the stacking direction, at least a portion of the reinforcing electrode on the gap region may overlap with the cavity.
 (4) (1)から(3)のいずれか1つの弾性波装置において、
 前記第1電極指上に設けられる前記補強電極は、前記第1バスバー電極上に延びていてもよく、
 前記第2電極指上に設けられる前記補強電極は、前記第2バスバー電極上に延びていてもよい。
(4) In any one of the elastic wave devices (1) to (3),
The reinforcing electrode provided on the first electrode finger may extend over the first busbar electrode,
The reinforcing electrode provided on the second electrode finger may extend over the second busbar electrode.
 (5) (1)から(4)のいずれか1つの弾性波装置は、
 前記第1バスバー電極及び前記第2バスバー電極の各々に積層された積層電極を更に備えていてもよく、
 前記積層電極は、前記補強電極を含んでいてもよい。
(5) Any one of the elastic wave devices (1) to (4) is
It may further include a laminated electrode laminated on each of the first busbar electrode and the second busbar electrode,
The laminated electrode may include the reinforcing electrode.
 (6) (1)から(5)のいずれか1つの弾性波装置において、
 前記第1電極指上に設けられる前記補強電極の前記電極指対向方向の長さは、前記第1電極指の前記電極指対向方向の長さより短くてもよく、
 前記第2電極指上に設けられる前記補強電極の前記電極指対向方向の長さは、前記第2電極指の前記電極指対向方向の長さより短くてもよい。
(6) In any one of the elastic wave devices (1) to (5),
The length of the reinforcing electrode provided on the first electrode finger in the electrode finger opposing direction may be shorter than the length of the first electrode finger in the electrode finger opposing direction,
The length of the reinforcing electrode provided on the second electrode finger in the direction in which the electrode finger faces may be shorter than the length of the second electrode finger in the direction in which the electrode finger faces.
 (7) (1)から(6)のいずれか1つの弾性波装置において、
 前記支持部材が、支持基板と、前記支持基板上に設けられた中間層とを含んでいてもよい。
(7) In any one of the elastic wave devices (1) to (6),
The support member may include a support substrate and an intermediate layer provided on the support substrate.
 (8) (1)から(7)のいずれか1つの弾性波装置において、
 前記圧電体層の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合、d/pが0.5以下であってもよい。
(8) In any one of the elastic wave devices (1) to (7),
When the thickness of the piezoelectric layer is d, and the center-to-center distance between the adjacent first and second electrode fingers is p, d/p may be 0.5 or less.
 (9) (8)の弾性波装置において、
 前記d/pが0.24以下であってもよい。
(9) In the elastic wave device of (8),
The d/p may be 0.24 or less.
 (10) (1)から(9)のいずれか1つの弾性波装置において、
 前記圧電体層の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合において、
 前記電極指対向方向から見て、前記第1電極指と前記第2電極指とが重なり合っている領域である交差領域の面積に対する、前記交差領域内の前記第1電極指の面積と前記第2電極指の面積との合計面積の割合であるメタライゼーション比をMRとする場合、MRが以下の式を満たしていてもよい。
 MR≦1.75×(d/p)+0.075
(10) In any one of the elastic wave devices (1) to (9),
When the film thickness of the piezoelectric layer is d, and the center-to-center distance between the adjacent first electrode finger and the second electrode finger is p,
The area of the first electrode finger in the intersection area and the second When the metallization ratio, which is the ratio of the total area to the area of the electrode finger, is MR, MR may satisfy the following formula.
MR≦1.75×(d/p)+0.075
 (11) (1)から(10)のいずれか1つの弾性波装置において、
 前記圧電体層は、ニオブ酸リチウムまたはタンタル酸リチウムであってもよく、
 前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にあってもよい。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
(11) In any one of the elastic wave devices (1) to (10),
The piezoelectric layer may be lithium niobate or lithium tantalate,
The Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate may be within the range of the following formula (1), formula (2), or formula (3).
(0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
(0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
 (12) (1)から(11)のいずれか1つの弾性波装置において、
 厚み滑りモードのバルク波を利用可能に構成されていてもよい。
(12) In any one of the elastic wave devices (1) to (11),
It may be configured to be able to utilize bulk waves in thickness shear mode.
 (13) (1)から(7)のいずれか1つの弾性波装置において、
 板波を利用可能に構成されていてもよい。
(13) In any one of the elastic wave devices (1) to (7),
It may be configured such that plate waves can be used.

Claims (13)

  1.  一方主面に空洞部を有する支持部材と、
     前記支持部材の一方主面上に設けられる圧電体層と、
     前記圧電体層に設けられ、前記支持部材及び前記圧電体層の積層方向から見て少なくとも一部が前記空洞部と重なるIDT電極と、を備え、
     前記IDT電極は、
     第1バスバー電極と、
     前記第1バスバー電極と対向する第2バスバー電極と、
     前記第1バスバー電極と接続され、前記第1バスバー電極から前記第2バスバー電極に向かって延伸し、前記第2バスバー電極から離れている第1電極指と、
     前記第2バスバー電極と接続され、前記第2バスバー電極から前記第1バスバー電極に向かって延伸し、前記第1バスバー電極から離れている第2電極指と、
     前記第1電極指及び前記第2電極指のうちの少なくとも一部の電極指に設けられる補強電極と、を備え、
     少なくとも1本の前記第1電極指と少なくとも1本の前記第2電極指とは、電極指延伸方向と交差する電極指対向方向に沿って交互に並んでおり、
     前記積層方向から見て、前記補強電極の少なくとも一部は、前記空洞部と重なる弾性波装置。
    a support member having a hollow portion on its main surface;
    a piezoelectric layer provided on one main surface of the support member;
    an IDT electrode provided on the piezoelectric layer and at least partially overlapping the cavity when viewed from the stacking direction of the support member and the piezoelectric layer,
    The IDT electrode is
    a first busbar electrode;
    a second busbar electrode facing the first busbar electrode;
    a first electrode finger connected to the first busbar electrode, extending from the first busbar electrode toward the second busbar electrode, and separated from the second busbar electrode;
    a second electrode finger connected to the second busbar electrode, extending from the second busbar electrode toward the first busbar electrode, and separated from the first busbar electrode;
    a reinforcing electrode provided on at least some of the first electrode fingers and the second electrode fingers;
    At least one of the first electrode fingers and at least one of the second electrode fingers are arranged alternately along an electrode finger facing direction that intersects with the electrode finger extending direction,
    In the acoustic wave device, at least a portion of the reinforcing electrode overlaps with the cavity when viewed from the stacking direction.
  2.  前記IDT電極は、前記電極指対向方向から見て、隣り合う前記第1電極指と前記第2電極指とが重なりあっている交差領域と、前記第1電極指の先端と前記第2バスバー電極の間のギャップを結ぶ領域および前記第2電極指の先端と前記第1バスバー電極の間のギャップを結ぶ領域の一対のギャップ領域とを有し、
     前記補強電極の少なくとも一部は、前記ギャップ領域上に設けられる請求項1に記載の弾性波装置。
    The IDT electrode includes an intersection area where the first electrode finger and the second electrode finger that are adjacent to each other overlap when viewed from the electrode finger opposing direction, and a tip of the first electrode finger and the second bus bar electrode. and a pair of gap regions, a region connecting the gap between the tips of the second electrode fingers and the first bus bar electrode,
    The acoustic wave device according to claim 1, wherein at least a portion of the reinforcing electrode is provided on the gap region.
  3.  前記積層方向から見て、前記ギャップ領域上の前記補強電極の少なくとも一部は、前記空洞部と重なる請求項2に記載の弾性波装置。 The acoustic wave device according to claim 2, wherein at least a portion of the reinforcing electrode on the gap region overlaps with the cavity when viewed from the stacking direction.
  4.  前記第1電極指上に設けられる前記補強電極は、前記第1バスバー電極上に延び、
     前記第2電極指上に設けられる前記補強電極は、前記第2バスバー電極上に延びている請求項1から3のいずれか1項に記載の弾性波装置。
    The reinforcing electrode provided on the first electrode finger extends over the first busbar electrode,
    The elastic wave device according to any one of claims 1 to 3, wherein the reinforcing electrode provided on the second electrode finger extends over the second busbar electrode.
  5.  前記第1バスバー電極及び前記第2バスバー電極の各々に積層された積層電極を更に備え、
     前記積層電極は、前記補強電極を含む請求項1から4のいずれか1項に記載の弾性波装置。
    further comprising a laminated electrode laminated on each of the first busbar electrode and the second busbar electrode,
    The acoustic wave device according to any one of claims 1 to 4, wherein the laminated electrode includes the reinforcing electrode.
  6.  前記第1電極指上に設けられる前記補強電極の前記電極指対向方向の長さは、前記第1電極指の前記電極指対向方向の長さより短く、
     前記第2電極指上に設けられる前記補強電極の前記電極指対向方向の長さは、前記第2電極指の前記電極指対向方向の長さより短い請求項1から5のいずれか1項に記載の弾性波装置。
    The length of the reinforcing electrode provided on the first electrode finger in the electrode finger opposing direction is shorter than the length of the first electrode finger in the electrode finger opposing direction,
    6 . The length of the reinforcing electrode provided on the second electrode finger in the direction in which the electrode finger faces is shorter than the length of the second electrode finger in the direction in which the electrode finger faces. 6 . elastic wave device.
  7.  前記支持部材が、支持基板と、前記支持基板上に設けられた中間層とを含む、請求項1から6のいずれかに記載の弾性波装置。 The acoustic wave device according to any one of claims 1 to 6, wherein the support member includes a support substrate and an intermediate layer provided on the support substrate.
  8.  前記圧電体層の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合、d/pが0.5以下である請求項1から7のいずれか1項に記載の弾性波装置。 From claim 1, wherein d/p is 0.5 or less, where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent first electrode fingers and the second electrode fingers. 7. The elastic wave device according to any one of 7.
  9.  前記d/pが0.24以下である、請求項8に記載の弾性波装置。 The elastic wave device according to claim 8, wherein the d/p is 0.24 or less.
  10.  前記圧電体層の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合において、
     前記電極指対向方向から見て、前記第1電極指と前記第2電極指とが重なり合っている領域である交差領域の面積に対する、前記交差領域内の前記第1電極指の面積と前記第2電極指の面積との合計面積の割合であるメタライゼーション比をMRとする場合、MRが以下の式を満たす、請求項1から9のいずれか1項に記載の弾性波装置。
     MR≦1.75×(d/p)+0.075
    When the film thickness of the piezoelectric layer is d, and the center-to-center distance between the adjacent first electrode finger and the second electrode finger is p,
    The area of the first electrode finger in the intersection area and the second The elastic wave device according to any one of claims 1 to 9, wherein MR satisfies the following formula, where MR is a metallization ratio that is a ratio of the total area to the area of the electrode fingers.
    MR≦1.75×(d/p)+0.075
  11.  前記圧電体層は、ニオブ酸リチウムまたはタンタル酸リチウムであり、
     前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1から10のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
    The piezoelectric layer is lithium niobate or lithium tantalate,
    Any one of claims 1 to 10, wherein the Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate are in the range of the following formula (1), formula (2), or formula (3). The elastic wave device described in .
    (0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
    (0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
  12.  厚み滑りモードのバルク波を利用可能に構成されている、請求項1から11のいずれか一項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 11, configured to be able to utilize a bulk wave in a thickness shear mode.
  13.  板波を利用可能に構成されている、請求項1から7のいずれか一項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, configured to be able to utilize plate waves.
PCT/JP2023/014265 2022-04-08 2023-04-06 Elastic wave device WO2023195523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263328999P 2022-04-08 2022-04-08
US63/328,999 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195523A1 true WO2023195523A1 (en) 2023-10-12

Family

ID=88243102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014265 WO2023195523A1 (en) 2022-04-08 2023-04-06 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2023195523A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188342A1 (en) * 2016-04-27 2017-11-02 京セラ株式会社 Elastic wave element and communication device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device
JP6984800B1 (en) * 2020-03-16 2021-12-22 株式会社村田製作所 Elastic wave device
WO2022045307A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Elastic wave element and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188342A1 (en) * 2016-04-27 2017-11-02 京セラ株式会社 Elastic wave element and communication device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device
JP6984800B1 (en) * 2020-03-16 2021-12-22 株式会社村田製作所 Elastic wave device
WO2022045307A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Elastic wave element and communication device

Similar Documents

Publication Publication Date Title
WO2023002858A1 (en) Elastic wave device and filter device
WO2022044869A1 (en) Elastic wave device
WO2022085581A1 (en) Acoustic wave device
WO2022239630A1 (en) Piezoelectric bulk wave device
US20240154595A1 (en) Acoustic wave device
WO2023223906A1 (en) Elastic wave element
US20230327639A1 (en) Acoustic wave device
WO2023002790A1 (en) Elastic wave device
WO2022014496A1 (en) Filter
WO2023195523A1 (en) Elastic wave device
WO2023210762A1 (en) Acoustic wave element
WO2023195409A1 (en) Elastic wave device and production method for elastic wave device
WO2023210764A1 (en) Acoustic wave element and acoustic wave device
WO2022211055A1 (en) Elastic wave device
WO2023145878A1 (en) Elastic wave device
WO2023140362A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
WO2023191089A1 (en) Elastic wave device
US20240154601A1 (en) Acoustic wave device and method of manufacturing the same
WO2022211087A1 (en) Elastic wave device
WO2023058755A1 (en) Acoustic wave device, and method for manufacturing acoustic wave device
WO2023140354A1 (en) Elastic wave device and filter device
WO2023224072A1 (en) Elastic wave device
US20230275562A1 (en) Acoustic wave device
WO2022210687A1 (en) Elastic wave device
WO2023136292A1 (en) Elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784807

Country of ref document: EP

Kind code of ref document: A1