WO2023002790A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2023002790A1
WO2023002790A1 PCT/JP2022/024551 JP2022024551W WO2023002790A1 WO 2023002790 A1 WO2023002790 A1 WO 2023002790A1 JP 2022024551 W JP2022024551 W JP 2022024551W WO 2023002790 A1 WO2023002790 A1 WO 2023002790A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode fingers
electrode
film
mass
wave device
Prior art date
Application number
PCT/JP2022/024551
Other languages
French (fr)
Japanese (ja)
Inventor
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023002790A1 publication Critical patent/WO2023002790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present invention relates to elastic wave devices.
  • An object of the present invention is to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
  • An elastic wave device includes a support member including a support substrate, a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer, and a piezoelectric layer provided on the piezoelectric layer. and an IDT electrode having a pair of busbars and a plurality of electrode fingers, an acoustic reflection portion being provided in the support member, and the acoustic reflection portion being, in plan view, at least one of the IDT electrodes.
  • d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less, and one of the bus bars of the IDT electrodes has Some of the plurality of electrode fingers are connected, the rest of the plurality of electrode fingers are connected to the other bus bar, and the other electrode fingers are connected to the one bus bar.
  • a plurality of electrode fingers and the plurality of electrode fingers connected to the other bus bar are inserted into each other, and the direction in which the adjacent electrode fingers face each other is defined as the electrode finger facing direction. When viewed from the direction, a region where the adjacent electrode fingers overlap is an intersecting region.
  • the length of the mass addition film is the length of the mass addition film along the finger extending direction, and two arbitrary points in the electrode finger facing direction of the portion where the mass addition film is positioned are the first point and the second point, The lengths of the mass addition film at at least one set of first and second points are different from each other.
  • an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a schematic plan view of an elastic wave device of a first comparative example.
  • FIG. 4 is a diagram showing phase characteristics in the first embodiment of the present invention and the first comparative example.
  • FIG. 5 is a diagram showing the relationship between the length of the mass addition film in the edge region and the phase characteristics.
  • FIG. 6 is an enlarged view of FIG. 5 around 4000 MHz.
  • FIG. 7 is a schematic plan view of an elastic wave device according to a modification of the first embodiment of the invention.
  • FIG. 8 is a schematic plan view of an elastic wave device according to a second embodiment of the invention.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is
  • FIG. 9 is a schematic plan view of an elastic wave device of a reference example.
  • FIG. 10 is a diagram showing the relationship between the length of the mass addition film in the gap region and the phase characteristics.
  • FIG. 11 is an enlarged view of FIG. 10 around 4000 MHz.
  • FIG. 12 is a schematic plan view of an elastic wave device according to a first modification of the second embodiment of the invention.
  • FIG. 13 is a schematic plan view of an elastic wave device according to a second modification of the second embodiment of the invention.
  • FIG. 14 is a schematic plan view of an elastic wave device according to a third embodiment of the invention.
  • 15 is a schematic cross-sectional view taken along line II in FIG. 14.
  • FIG. FIG. 16 is a schematic plan view of an elastic wave device according to a fourth embodiment of the invention.
  • FIG. 10 is a diagram showing the relationship between the length of the mass addition film in the gap region and the phase characteristics.
  • FIG. 11 is an enlarged view of FIG. 10 around 4000 MHz.
  • FIG. 17 is a schematic plan view of an elastic wave device according to a fifth embodiment of the invention.
  • FIG. 18 is a schematic cross-sectional view along the II line in FIG. 17
  • FIG. 19 is a schematic plan view of an elastic wave device according to a sixth embodiment of the invention.
  • FIG. 20 is a schematic plan view of an elastic wave device according to a modification of the sixth embodiment of the invention.
  • FIG. 21(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness-shear mode bulk wave
  • FIG. 21(b) is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 22 is a cross-sectional view of a portion taken along line AA in FIG. 21(a).
  • FIG. 23(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device
  • FIG. FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode
  • FIG. 24 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 25 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode.
  • FIG. 26 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 27 is a plan view of an acoustic wave device that utilizes thickness shear mode bulk waves.
  • FIG. 28 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears.
  • FIG. 29 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 30 is a diagram showing the relationship between d/2p and metallization ratio MR.
  • FIG. 31 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought infinitely close to 0.
  • FIG. FIG. 32 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11.
  • the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 .
  • the support member 13 includes a support substrate 16 and an insulating layer 15 .
  • An insulating layer 15 is provided on the support substrate 16 .
  • a piezoelectric layer 14 is provided on the insulating layer 15 .
  • the support member 13 may be composed of only the support substrate 16 .
  • the piezoelectric layer 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the second principal surface 14b is located on the support member 13 side.
  • the piezoelectric layer 14 may be, for example, a lithium niobate layer, such as a LiNbO3 layer, or a lithium tantalate layer , such as a LiTaO3 layer.
  • the support member 13 is provided with a hollow portion 10a. More specifically, the insulating layer 15 is provided with a recess. A piezoelectric layer 14 is provided on the insulating layer 15 so as to close the recess. Thereby, the hollow portion 10a is configured. However, the cavity 10 a may be provided over the insulating layer 15 and the support substrate 16 or may be provided only in the support substrate 16 . Note that the hollow portion 10 a may be a through hole provided in the support member 13 .
  • the elastic wave device 10 of the present embodiment is an elastic wave resonator configured to be able to use bulk waves in a thickness-shear mode such as a primary thickness-shear mode.
  • the elastic wave device of the present invention may be a filter device having a plurality of elastic wave resonators, a multiplexer, or the like.
  • planar view means viewing from a direction corresponding to the upper direction in FIG. 2, for example, of the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
  • the IDT electrode 11 has a pair of busbars and a plurality of electrode fingers.
  • a pair of busbars is specifically a first busbar 26 and a second busbar 27 .
  • the first busbar 26 and the second busbar 27 face each other.
  • the plurality of electrode fingers are specifically a plurality of first electrode fingers 28 and a plurality of second electrode fingers 29 .
  • One ends of the plurality of first electrode fingers 28 are each connected to the first bus bar 26 .
  • One ends of the plurality of second electrode fingers 29 are each connected to the second bus bar 27 .
  • the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 are interleaved with each other.
  • the IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
  • the first electrode finger 28 and the second electrode finger 29 may be simply referred to as electrode fingers.
  • the electrode finger extending direction When the direction in which a plurality of electrode fingers extends is defined as the electrode finger extending direction, and the direction in which adjacent electrode fingers face each other is defined as the electrode finger facing direction, in the present embodiment, the electrode finger extending direction and the electrode finger facing direction are Orthogonal.
  • d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 14 and p is the center-to-center distance between adjacent electrode fingers. As a result, thickness-shear mode bulk waves are preferably excited.
  • the hollow portion 10a of the support member 13 shown in FIG. 2 is the acoustic reflection portion in the present invention.
  • the acoustic reflector can effectively confine the energy of the elastic wave to the piezoelectric layer 14 side.
  • An acoustic multilayer film, which will be described later, may be provided as the acoustic reflector.
  • the IDT electrode 11 has an intersecting region F.
  • the intersecting region F is a region where adjacent electrode fingers overlap each other when viewed from the direction in which the electrode fingers are opposed.
  • the intersection region F has a central region H and a pair of edge regions.
  • a pair of edge regions is specifically a first edge region E1 and a second edge region E2.
  • the first edge region E1 and the second edge region E2 are arranged so as to sandwich the central region H in the extending direction of the electrode fingers.
  • the first edge region E1 is located on the first bus bar 26 side.
  • the second edge region E2 is located on the second busbar 27 side.
  • the IDT electrode 11 has a pair of gap regions.
  • a pair of gap regions are located between the intersection region F and a pair of busbars.
  • a pair of gap regions is specifically a first gap region G1 and a second gap region G2.
  • the first gap region G1 is located between the first busbar 26 and the first edge region E1.
  • the second gap region G2 is located between the second busbar 27 and the second edge region E2.
  • the elastic wave device 10 has a pair of mass adding films 24 .
  • One mass addition film 24 of the pair of mass addition films 24 is provided over the first edge region E1 and the first gap region G1.
  • the other mass addition film 24 is provided over the second edge region E2 and the second gap region G2.
  • Each mass addition film 24 has a strip shape.
  • Each mass addition film 24 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover the plurality of electrode fingers.
  • Each mass addition film 24 is also provided on the portion between the electrode fingers on the first main surface 14a.
  • the low sound velocity region is a region in which the sound velocity is lower than the sound velocity in the central region H.
  • a central region H and a low-frequency region are arranged in this order from the inner side to the outer side of the IDT electrode 11 in the electrode finger extending direction. Thereby, the piston mode is established and the transverse mode can be suppressed.
  • the elastic wave device of the present invention utilizes thickness-shear mode bulk waves instead of surface acoustic waves.
  • the piston mode can be suitably established.
  • each mass addition film 24 extends from each edge region to each gap region. However, each mass addition film 24 may be provided only in each edge region. In the elastic wave device of the present invention, the mass adding film 24 should be provided at least in the edge region. More specifically, the mass adding film 24 may be provided in at least one of the first edge region E1 and the second edge region E2.
  • the edge portion on the side of the central region H and the edge portion on the side of the first bus bar 26 in the mass addition film 24 provided in the first edge region E1 is The edge portion extends obliquely with respect to the facing direction of the electrode fingers.
  • the edge portion of the mass addition film 24 on the side of the first bus bar 26 extends parallel to the electrode finger facing direction. Therefore, when the length of the mass addition film 24 is defined as the dimension of the mass addition film 24 along the extending direction of the electrode fingers, the length of the mass addition film 24 is not uniform. More specifically, in this embodiment, the length of the mass adding film 24 increases from one side to the other side of the electrode finger facing direction. The same applies to the mass addition film 24 provided in the second edge region E2.
  • the aspect in which the length of the mass addition film 24 is not uniform is not limited to the above.
  • first point O1 and a second point O2 arbitrary two points in the electrode finger facing direction of the portion where the mass addition film 24 is located are referred to as a first point O1 and a second point O2.
  • first point O1 and the second point O2 shown in FIG. 1 are examples.
  • a feature of this embodiment is that at least one mass addition film 24 is provided at least in the edge region, and the lengths of the mass addition film 24 at at least one pair of first point O1 and second point O2 are different from each other. There are different things. That is, in this embodiment, the length of the mass addition film 24 is not uniform. As a result, it is possible to suppress unnecessary waves having frequencies lower than the resonance frequency and located near the resonance frequency. The details will be shown below by comparing the present embodiment with the first comparative example.
  • the first comparative example differs from the first embodiment in that the length of the mass addition film 104 is constant.
  • the elastic wave device of the first comparative example also uses bulk waves in the thickness-shear mode, like the elastic wave device of the first embodiment.
  • the phase characteristics of the elastic wave devices of the first embodiment and the first comparative example were compared.
  • FIG. 4 is a diagram showing phase characteristics in the first embodiment and the first comparative example.
  • ripples caused by unwanted waves occur at frequencies lower than and near the resonance frequency.
  • This unwanted wave is a unique unwanted wave in an acoustic wave device that utilizes bulk waves in the thickness-shear mode.
  • ripples that occur in the first comparative example are suppressed. From this, it can be seen that in the first embodiment, unnecessary waves can be suppressed at frequencies lower than and near the resonance frequency.
  • an unwanted wave when simply described, it means an unwanted wave generated at a frequency lower than the resonance frequency and located near the resonance frequency, unless otherwise specified.
  • the length of the mass adding film 24 differs for each position in the electrode finger facing direction.
  • the frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed. Details of this effect are given below by referring to a second comparative example.
  • the second comparative example is different from the first embodiment in that the pair of mass addition films are provided only in the pair of edge regions and the length of the pair of mass addition films is constant.
  • a plurality of acoustic wave devices of the second comparative example were prepared, each having a different length of the mass addition film. The phase characteristics of each elastic wave device prepared were measured.
  • FIG. 5 is a diagram showing the relationship between the length of the mass addition film in the edge region and the phase characteristics.
  • FIG. 6 is an enlarged view of FIG. 5 around 4000 MHz.
  • one mass addition film 24 has two or more portions with different lengths. More specifically, in the first embodiment, the length of the mass adding film 24 changes continuously in the electrode finger facing direction. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
  • the intersecting region F in the IDT electrode 11 of the acoustic wave device 10 includes a plurality of excitation regions C. More specifically, the excitation region C is the region between the centers of adjacent electrode fingers. Elastic waves are excited in a plurality of excitation regions C by applying an AC voltage to the IDT electrodes 11 .
  • the intersection region is one excitation region.
  • the acoustic wave device 10 that uses thickness-shear mode bulk waves is substantially equivalent to a configuration in which a plurality of resonators each having an excitation region C are connected in parallel. . Therefore, in the acoustic wave device 10, even if the length of the mass adding film 24 is not uniform in the direction in which the electrode fingers are opposed, the waveform of the frequency characteristics such as the phase characteristics is unlikely to collapse. Therefore, in the first embodiment, unnecessary waves can be suppressed without deteriorating electrical characteristics.
  • each of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 has a first surface 11a, a second surface 11b, and a side surface 11c.
  • the first surface 11a and the second surface 11b of each electrode finger face each other in the thickness direction of each electrode finger.
  • the second surface 11b is the surface on the piezoelectric layer 14 side.
  • a side surface 11c is connected to the first surface 11a and the second surface 11b.
  • the side surface 11c of the electrode finger refers to the side surface 11c in the electrode finger facing direction.
  • the mass addition film 24 is provided on the first surfaces 11 a of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 . More specifically, the mass addition film 24 is provided so as to cover the first surface 11 a and the side surface 11 c of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 . As described above, in the first embodiment, the piezoelectric layer 14, the electrode fingers, and the mass addition film 24 are laminated in this order in the portions where the mass addition film 24 is provided on the electrode fingers. However, the mass adding film 24 may be provided between the piezoelectric layer 14 and the electrode fingers.
  • the mass adding film 24 may overlap with a plurality of electrode fingers in plan view, and may not overlap with all of the electrode fingers. However, the mass addition film 24 preferably overlaps all the electrode fingers in plan view. As a result, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
  • the mass addition film 24 may be provided in at least one of the first edge region E1 and the second edge region E2.
  • at least one mass adding film 24 should be provided.
  • the mass addition film 24 is provided in both the first edge region E1 and the second edge region E2. Thereby, the transverse mode can be suppressed more reliably.
  • At least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium pentoxide, tantalum oxide and hafnium oxide is preferably used as the material of the mass addition film 24 .
  • the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
  • At least one mass addition film 24 is preferably provided over the edge region and the gap region. More preferably, all the mass adding films 24 are provided over the edge region and the gap region as in the first embodiment. As a result, it is possible to effectively suppress unwanted waves of frequencies lower than and near the resonance frequency.
  • the shape of the mass addition film 24 in plan view is a trapezoid. Therefore, the edge portion on the side of the first bus bar 26 and the edge portion on the side of the central region H of the mass addition film 24 provided in the first edge region E1 have a linear shape in plan view. .
  • the shape of both the edge portions of the mass adding film 24 in a plan view may be a curved shape.
  • the shape of both the edge portions of the mass addition film 24 in plan view may be a shape in which straight lines are connected, curved lines are connected, or a curved line and a straight line are connected. The same applies to the mass addition film 24 provided in the second edge region E2.
  • the length of the mass adding film 24 changes continuously in the electrode finger facing direction.
  • the length of the mass addition film 24 at least one set of the first point O1 and the second point O2 should be different from each other.
  • the length of the mass adding film 24A changes discontinuously in the electrode finger facing direction.
  • the mass addition film 24A has a plurality of stepped portions 24a. Portions of the mass addition film 24A having different lengths are connected to each other by the stepped portion 24a.
  • the stepped portion 24a extends parallel to the extending direction of the electrode fingers.
  • Each portion of the mass addition film 24A connected by the step portion 24a has a constant length. At least one stepped portion 24a may be provided. Also in this modified example, unwanted waves can be suppressed as in the first embodiment.
  • each mass addition film 24 is not uniform in each edge region.
  • the length of each mass addition film 24 is uniform in each gap region.
  • each mass addition film 24 need not be uniform in each gap region. An example of this is illustrated by the second embodiment.
  • FIG. 8 is a schematic plan view of an elastic wave device according to the second embodiment.
  • This embodiment differs from the first embodiment in the shape of each mass addition film 34 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • One of the mass addition films 34 of the pair of mass addition films 34 is provided over the entire first edge region E1. That is, the mass addition film 34 has a uniform length in the first edge region E1. Of the edge portion of the mass addition film 34 on the side of the first bus bar 26 and the edge portion on the side of the central region H, the edge portion on the side of the central region H extends parallel to the electrode finger facing direction. There is On the other hand, the mass addition film 34 is not uniform in length in the first gap region G1. More specifically, the edge portion of the mass addition film 34 on the side of the first bus bar 26 extends obliquely with respect to the electrode finger facing direction.
  • the edge portion on the central region H side of the mass adding film 34 provided over the second edge region E2 and the second gap region G2 extends parallel to the electrode finger facing direction.
  • the end edge portion of the mass addition film 34 on the side of the second bus bar 27 extends obliquely with respect to the electrode finger facing direction.
  • one of the mass adding films 104 of the pair of mass adding films 104 is provided only in the first gap region G1.
  • the other mass addition film 104 is provided only in the second gap region G2.
  • a plurality of elastic wave devices of reference examples were prepared, each having a different length of the mass addition film 104 .
  • the length of the mass adding film 104 is constant.
  • the phase characteristics of each elastic wave device prepared were measured.
  • FIG. 10 is a diagram showing the relationship between the length of the mass addition film in the gap region and the phase characteristics.
  • FIG. 11 is an enlarged view of FIG. 10 around 4000 MHz.
  • the frequencies at which ripples caused by unwanted waves are generated are also different.
  • the length of the mass adding film 34 is uniform in each edge region, but not uniform in each gap region. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
  • each mass addition film 34 is provided over the entire gap region in the electrode finger facing direction.
  • a portion of one of the mass addition films 34A of the pair of mass addition films 34A is the first edge region E1 and the first edge region E1. It is provided over the gap region G1.
  • Another part of the mass adding film 34A is provided only in the first edge region E1.
  • the mass addition film 34A has a step portion 34a. A portion of the mass addition film 34A provided only in the first edge region E1 and a portion provided over the first edge region E1 and the first gap region G1 are connected by a step portion 34a. ing.
  • each mass adding film 34 is provided over the entire edge region.
  • the mass addition film 34 may be provided in a part of the edge region.
  • one of the mass addition films 34B of the pair of mass addition films 34B has a portion of the first edge region E1 and a portion of the first edge region E1. is provided in a part of the gap region G1.
  • Both the edge portion of the mass addition film 34B on the side of the first bus bar 26 and the edge portion on the side of the central region H extend obliquely with respect to the facing direction of the electrode fingers.
  • the other mass addition film 34B is similarly provided in part of the second edge region E2 and part of the second gap region G2. Both the edge portion of the mass addition film 34B on the side of the second bus bar 27 and the edge portion on the side of the central region H extend obliquely with respect to the facing direction of the electrode fingers. Also in this modified example, unwanted waves can be suppressed as in the second embodiment.
  • FIG. 14 is a schematic plan view of an elastic wave device according to the third embodiment.
  • 15 is a schematic cross-sectional view taken along line II in FIG. 14.
  • FIG. 14 is a schematic plan view of an elastic wave device according to the third embodiment.
  • 15 is a schematic cross-sectional view taken along line II in FIG. 14.
  • this embodiment differs from the first embodiment in that a pair of mass addition films 24 are provided between the plurality of electrode fingers and the piezoelectric layer 14.
  • FIG. 14 the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • one mass addition film 24 is located on the first edge region E1 so that the second surfaces 11b of the plurality of first electrode fingers 28 and the plurality of second electrodes 28 It is provided between the second surface 11 b of the finger 29 and the piezoelectric layer 14 .
  • the mass adding film 24 is provided between the second surfaces 11b of the plurality of first electrode fingers 28 and the piezoelectric layer 14 also in the first gap region G1.
  • the other mass addition film 24 has the second surfaces 11b of the plurality of first electrode fingers 28 and the second surfaces 11b of the plurality of second electrode fingers 29, It is provided between the piezoelectric layer 14 and the piezoelectric layer 14 .
  • the mass adding film 24 is provided between the second surfaces 11b of the plurality of second electrode fingers 29 and the piezoelectric layer 14 also in the second gap region G2. In addition, in each edge region and each gap region, the mass addition film 24 is also provided on the first main surface 14a of the piezoelectric layer 14 between the electrode fingers.
  • the length of the mass adding film 24 is not uniform in each edge region. Therefore, unwanted waves can be suppressed. In addition, it is possible to establish the piston mode and suppress the lateral mode.
  • the mass adding film is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • a plurality of mass adding films 24 may be provided so as to overlap the electrode fingers and not overlap the region between the electrode fingers in plan view. An example of this is illustrated by the fourth embodiment.
  • FIG. 16 is a schematic plan view of an elastic wave device according to the fourth embodiment.
  • This embodiment differs from the first embodiment in that a plurality of mass adding films 44 are provided in each edge region. This embodiment also differs from the first embodiment in that the mass addition film 44 is not provided between the electrode fingers on the first main surface 14a of the piezoelectric layer 14 in each edge region. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • each mass addition film 44 is applied only to the first surface 11a of one first electrode finger 28 or only to the first surface 11a of one second electrode finger 29. is provided.
  • a plurality of mass addition films 44 are arranged in the electrode finger facing direction.
  • the length of each mass adding film 44 is increased from one side to the other side in the direction in which the electrode fingers are opposed.
  • two adjacent mass addition films 44 have the same length, and the length of the two mass addition films 44 and The length of the remaining one mass addition film 44 is different from each other.
  • the length of the mass addition film 44 changes periodically in the first edge region E1.
  • each mass addition film 44 is formed only on the first surface 11a of one first electrode finger 28 or on the first surface 11a of one second electrode finger 29. It is provided only on the surface 11a.
  • the length of each mass adding film 44 increases from one to the other in the direction in which the electrode fingers are opposed. Note that the period in which the length of the mass addition film 44 changes is not limited to the above. Alternatively, the length of the mass addition film 44 may not change periodically.
  • at least two mass addition films 44 among the plurality of mass addition films 44 should have different lengths. In this case, the lengths of the mass addition film 44 at least one set of the first point O1 and the second point O2 are different from each other.
  • the lengths of the plurality of mass adding films 44 are not uniform in each edge region. Therefore, unwanted waves can be suppressed as in the first embodiment. In addition, it is possible to establish the piston mode and suppress the lateral mode.
  • the piezoelectric layer 14 In the portion where each mass addition film 44 is provided, the piezoelectric layer 14, the electrode fingers and the mass addition film 44 are laminated in this order.
  • the plurality of mass addition films 44 includes the second surfaces 11b of the plurality of first electrode fingers 28 and the second surfaces 11b of the plurality of second electrode fingers 29, It may be provided between the piezoelectric layer 14 and the piezoelectric layer 14 .
  • At least one mass addition film 44 among the plurality of mass addition films 44 may be provided over the first edge region E1 and the first gap region G1.
  • at least one mass addition film 44 among the plurality of mass addition films 44 may be provided over the second edge region E2 and the second gap region G2.
  • Each mass addition film 44 contacts only the first electrode finger 28 or only the second electrode finger 29 .
  • the mass addition film 44 may be made of metal.
  • the mass adding film 44 is provided directly on the first surfaces 11a of the plurality of electrode fingers.
  • the mass adding film is provided directly between the electrode fingers on the first main surface 14a of the piezoelectric layer 14.
  • FIG. Even if the mass addition film is indirectly provided on the first surface 11a of the plurality of electrode fingers and the portion between the electrode fingers on the first main surface 14a of the piezoelectric layer 14 via the dielectric film. good. An example of this is illustrated by the fifth embodiment.
  • FIG. 17 is a schematic plan view of an elastic wave device according to the fifth embodiment.
  • 18 is a schematic cross-sectional view taken along line II in FIG. 17.
  • FIG. 17 is a schematic plan view of an elastic wave device according to the fifth embodiment.
  • 18 is a schematic cross-sectional view taken along line II in FIG. 17.
  • this embodiment differs from the first embodiment in that a dielectric film 53 is provided so as to cover the IDT electrodes 11 .
  • the length of the mass adding film 54 is also different from the first embodiment in that it changes discontinuously in the electrode finger facing direction.
  • the shape of the mass addition film 54 provided in each edge region in the present embodiment in plan view is the same as the shape of the mass addition film in the modified example of the first embodiment.
  • this embodiment differs from the first embodiment and its modification in that each mass addition film 54 is provided only in each edge region.
  • this embodiment differs from the first embodiment in that the mass addition film 54 is made of metal.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • One of the pair of mass addition films 54 is provided on the dielectric film 53 in the first edge region E1.
  • the other mass addition film 54 is provided on the dielectric film 53 in the second edge region E2.
  • a mass addition film 54 is indirectly provided through a dielectric film 53 on the first surface 11a of the plurality of electrode fingers and the portion between the electrode fingers on the first main surface 14a of the piezoelectric layer 14. is provided.
  • Each mass adding film 54 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • each mass addition film 54 is made of a suitable metal.
  • each mass addition film 54 may be made of an appropriate dielectric.
  • At least one mass adding film 54 may be provided over the edge region and the gap region.
  • FIG. 19 is a schematic plan view of an elastic wave device according to the sixth embodiment.
  • This embodiment differs from the first embodiment in that a plurality of mass adding films 64 are provided in each edge region. This embodiment also differs from the first embodiment in the position where the mass addition film 64 is provided in each edge region, and also in the shape and material of the mass addition film 64 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the mass adding film 64 is provided integrally with the electrode fingers. Therefore, in FIG. 19, among the plurality of mass adding films 64, some of the mass adding films 64 indicated by reference numerals are indicated by dashed lines.
  • a plurality of mass addition films 64 are provided on the first main surface 14a of the piezoelectric layer 14 between the electrode fingers. More specifically, in the first edge region E1, the multiple mass addition films 64 are provided on the side surfaces 11c of the multiple first electrode fingers 28 and the side surfaces 11c of the multiple second electrode fingers 29. there is On the other hand, the plurality of mass addition films 64 are formed on the first surfaces 11a and the second surfaces 11b of the plurality of first electrode fingers 28 and the first surfaces 11a and the second surfaces 11b of the plurality of second electrode fingers 29 . is not provided on the surface 11b.
  • the multiple mass addition films 64 are provided on the side surfaces 11c of the multiple first electrode fingers 28 and the side surfaces 11c of the multiple second electrode fingers 29.
  • the plurality of mass addition films 64 are formed on the first surfaces 11a and the second surfaces 11b of the plurality of first electrode fingers 28 and the first surfaces 11a and the second surfaces 11b of the plurality of second electrode fingers 29 . is not provided on the surface 11b.
  • each mass addition film 64 is provided only on the side surface 11 c of one first electrode finger 28 or only on the side surface 11 c of one second electrode finger 29 .
  • one mass adding film 64 is provided on both side surfaces 11c of all first electrode fingers 28 and both side surfaces 11c of all second electrode fingers 29 in each edge region. ing. Both side surfaces 11c are a pair of side surfaces 11c of each electrode finger that are opposed to each other in the electrode finger facing direction. Note that the mass adding film 64 may be provided only on one side surface of one electrode finger.
  • the material and thickness of the plurality of mass adding films 64 are the same as the material and thickness of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 .
  • the mass addition film 64 and the first electrode finger 28 or the second electrode finger 29 are integrally provided. Therefore, the width of the electrode finger is widened in the portion where the mass addition film 64 is provided.
  • the width of the edge regions of the electrode fingers provided with the mass adding films 64 on the side surfaces 11c is wider than the width thereof in the central region H.
  • each edge region constitutes a low sound velocity region. Therefore, the piston mode is established and the lateral mode can be suppressed.
  • the width of the electrode finger is the dimension along the direction in which the electrode finger faces the electrode finger.
  • the plurality of mass addition films 64 need only be provided on the side surfaces 11c of the electrode fingers, and the plurality of mass addition films 64 need not be provided on all the side surfaces 11c of the electrode fingers. However, it is preferable that the plurality of mass adding films 64 are provided on the side surfaces 11c of all the electrode fingers as in this embodiment. As a result, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
  • the mass addition film 64 provided on one side surface 11c of one electrode finger and the mass addition film 64 provided on the other side surface 11c Same as length.
  • the length of the mass addition film 64 provided on the side surface 11c of one of the adjacent first electrode fingers 28 and the length of the mass addition film 64 provided on the side surface 11c of the other first electrode finger 28 It is different from the length of the mass adding membrane 64 .
  • the length of the mass addition film 64 provided on the side surface 11c of one of the adjacent second electrode fingers 29 and the length of the mass addition film 64 provided on the side surface 11c of the other second electrode finger 29 The length of membrane 64 is different.
  • the length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 is the length of one of the two second electrode fingers 29 adjacent to the first electrode finger 28. It is the same length as the mass adding film 64 provided on the side surface 11 c of the electrode finger 29 . The same applies to the second edge region E2.
  • the length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 increases from one side to the other side in the electrode finger opposing direction.
  • the length of the mass adding film 64 provided on the side surface 11c of the second electrode finger 29 increases from one to the other in the electrode finger facing direction.
  • the length of the mass addition film 64 provided on the side surface 11c of at least one electrode finger should be different from the length of the mass addition film 64 provided on the side surface 11c of the other electrode fingers. Just do it. In this case, the lengths of the mass addition film 64 at at least one set of the first point O1 and the second point O2 are different from each other.
  • the lengths of the plurality of mass adding films 64 are not uniform in each edge region. Therefore, unwanted waves can be suppressed as in the first embodiment.
  • the length of the mass addition film 64 is changed periodically.
  • the direction of change in the length of the mass addition film 64 is one direction.
  • the direction of change in the length of the mass addition film 64 is not limited to the above.
  • the length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 increases from one side to the other side in the electrode finger facing direction. A lengthened portion and a shortened portion are provided. Also in this case, unwanted waves can be suppressed as in the sixth embodiment.
  • Electrodes in the IDT electrodes to be described later correspond to electrode fingers in the present invention.
  • the supporting member in the following examples corresponds to the supporting substrate in the present invention.
  • the term "a certain member is made of a certain material” includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the acoustic wave device are not significantly degraded.
  • FIG. 21(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes thickness-shear mode bulk waves
  • FIG. 21(b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 22 is a cross-sectional view of a portion taken along line AA in FIG. 21(a).
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to the first bus bar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other. Electrodes 3 and 4 have a rectangular shape and a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 .
  • the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 21(a) and 21(b). That is, in FIGS. 21(a) and 21(b), the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 21(a) and 21(b).
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimension of the electrodes 3 and 4 in the facing direction is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). within the range).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 22, have through holes 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 k ⁇ cm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the elastic wave device 1 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the elastic wave device and the bulk wave in the thickness shear mode will be described with reference to FIGS. 23(a) and 23(b).
  • FIG. 23(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an elastic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged.
  • the Lamb wave propagates in the X direction as shown.
  • the wave is generated on the first principal surface 2a and the second principal surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonate. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 24 schematically shows a bulk wave when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the acoustic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged.
  • the number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 25 is a diagram showing resonance characteristics of the elastic wave device shown in FIG.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be explained with reference to FIG.
  • FIG. 26 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
  • FIG. 27 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • elastic wave device 80 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 27 is the crossing width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the adjacent excitation region C is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 28 and 29.
  • the metallization ratio MR will be explained with reference to FIG. 21(b).
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 .
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 29 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 29 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the passband appear within. That is, as in the resonance characteristics shown in FIG. 28, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 30 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 30 is the area where the fractional bandwidth is 17% or less.
  • FIG. 31 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought infinitely close to 0.
  • FIG. The hatched portion in FIG. 31 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • the piezoelectric layer 2 is a lithium tantalate layer.
  • FIG. 32 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • an acoustic multilayer film 82 is laminated on the second main surface 2 b of the piezoelectric layer 2 .
  • the acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e with relatively low acoustic impedance and high acoustic impedance layers 82b, 82d with relatively high acoustic impedance.
  • the thickness shear mode bulk wave can be confined in the piezoelectric layer 2 without using the cavity 9 in the elastic wave device 1 .
  • the elastic wave device 81 by setting d/p to 0.5 or less, it is possible to obtain resonance characteristics based on bulk waves in the thickness-shear mode.
  • the number of lamination of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. At least one of the high acoustic impedance layers 82b, 82d should be arranged farther from the piezoelectric layer 2 than the low acoustic impedance layers 82a, 82c, 82e.
  • the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of appropriate materials as long as the acoustic impedance relationship is satisfied.
  • Examples of materials for the low acoustic impedance layers 82a, 82c, 82e include silicon oxide and silicon oxynitride.
  • Materials for the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metals.
  • an acoustic multilayer film 82 shown in FIG. 32 may be provided between the support substrate and the piezoelectric layer.
  • low acoustic impedance layers and high acoustic impedance layers may be alternately laminated in the acoustic multilayer film 82 .
  • the acoustic multilayer film 82 may be an acoustic reflector in the elastic wave device.
  • d/p is preferably 0.5 or less, and 0.24 The following are more preferable. Thereby, even better resonance characteristics can be obtained. Furthermore, in the crossover regions of the elastic wave devices of the first to sixth embodiments and modifications using thickness shear mode bulk waves, MR ⁇ 1.75(d/p)+0. 075 is preferred. In this case, spurious can be suppressed more reliably.
  • the piezoelectric layer in the elastic wave devices of the first to sixth embodiments and modifications using thickness-shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an elastic wave device capable of suppressing unwanted waves at a frequency lower than and around a resonance frequency. An elastic wave device 10 of the present invention comprises: a support member including a support substrate; a piezoelectric layer 14 provided on the support member and comprising a lithium niobate layer or a lithium tantalate layer; and an IDT electrode 11 provided on the piezoelectric layer 14 and having a pair of bus bars (first and second bus bars 26, 27) and a plurality of electrode fingers (first and second electrode fingers 28, 29). The support member is provided with an acoustic reflecting portion. The acoustic reflecting portion overlaps at least a part of the IDT electrode 11 in plan view. If the thickness of the piezoelectric layer 14 is d and the distance between the centers of adjacent electrode fingers is p, d/p is 0.5 or less. Some of the plurality of electrode fingers are connected to one of the bus bars of the IDT electrode 11. The remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar. A plurality of electrode fingers connected to one bus bar and a plurality of electrode fingers connected to the other bus bar are interdigitated. If a direction in which adjacent electrode fingers oppose each other is defined as an electrode finger opposing direction, the adjacent electrode fingers overlap each other in an intersecting region F when viewed from the electrode finger opposing direction. If the direction of extension of the plurality of electrode fingers is defined as an electrode finger extending direction, the intersecting region F includes a central region H and a pair of edge regions (first and second edge regions E1, E2) disposed so as to sandwich the central region H in the electrode finger extending direction. At least one mass-adding film 24 is provided in at least the edge regions. If the dimension of the mass-adding film 24 along the electrode finger extending direction is defined as the length of the mass-adding film 24, and arbitrary two points in the electrode finger opposing direction in a portion in which the mass-adding film 24 is located are defined as a first point O1 and a second point O2, the length of the mass-adding film 24 is different between the first point O1 and the second point O2 of at least one group thereof.

Description

弾性波装置Acoustic wave device
 本発明は、弾性波装置に関する。 The present invention relates to elastic wave devices.
 従来、弾性波装置は、携帯電話器のフィルタなどに広く用いられている。近年においては、下記の特許文献1に記載のような、厚み滑りモードのバルク波を用いた弾性波装置が提案されている。この弾性波装置においては、支持体上に圧電層が設けられている。圧電層上に、対となる電極が設けられている。対となる電極は圧電層上において互いに対向しており、かつ互いに異なる電位に接続される。上記電極間に交流電圧を印加することにより、厚み滑りモードのバルク波を励振させている。 Conventionally, elastic wave devices have been widely used in filters for mobile phones. In recent years, there has been proposed an elastic wave device using a thickness-shear mode bulk wave, as described in Patent Document 1 below. In this elastic wave device, a piezoelectric layer is provided on a support. A pair of electrodes is provided on the piezoelectric layer. The paired electrodes face each other on the piezoelectric layer and are connected to different potentials. By applying an AC voltage between the electrodes, a thickness-shear mode bulk wave is excited.
米国特許第10491192号明細書U.S. Patent No. 10491192
 特許文献1に記載のような、厚み滑りモードのバルク波を利用する弾性波装置においては、共振周波数よりも低く、共振周波数付近に位置する周波数において不要波が生じる。そのため、電気的特性が劣化するおそれがある。 In an elastic wave device that utilizes thickness-shear mode bulk waves, such as that described in Patent Document 1, unnecessary waves are generated at frequencies that are lower than and near the resonance frequency. Therefore, electrical characteristics may deteriorate.
 本発明の目的は、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波を抑制することができる、弾性波装置を提供することにある。 An object of the present invention is to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
 本発明に係る弾性波装置は、支持基板を含む支持部材と、前記支持部材上に設けられており、ニオブ酸リチウム層またはタンタル酸リチウム層である圧電層と、前記圧電層上に設けられており、1対のバスバーと、複数の電極指とを有するIDT電極とを備え、前記支持部材に音響反射部が設けられており、前記音響反射部が、平面視において、前記IDT電極の少なくとも一部と重なっており、前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、前記IDT電極の一方の前記バスバーに前記複数の電極指のうち一部の電極指が接続されており、他方の前記バスバーに前記複数の電極指のうち残りの電極指が接続されており、一方の前記バスバーに接続されている前記複数の電極指、及び他方の前記バスバーに接続されている前記複数の電極指が互いに間挿し合っており、隣り合う前記電極指同士が対向し合う方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記複数の電極指が延びる方向を電極指延伸方向としたときに、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置された1対のエッジ領域とを有し、少なくとも1つの質量付加膜が、少なくとも前記エッジ領域に設けられており、前記質量付加膜の前記電極指延伸方向に沿う寸法を前記質量付加膜の長さとし、前記質量付加膜が位置する部分の、前記電極指対向方向における任意の2点を第1の点及び第2の点としたときに、少なくとも1組の前記第1の点及び前記第2の点における前記質量付加膜の前記長さが互いに異なる。 An elastic wave device according to the present invention includes a support member including a support substrate, a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer, and a piezoelectric layer provided on the piezoelectric layer. and an IDT electrode having a pair of busbars and a plurality of electrode fingers, an acoustic reflection portion being provided in the support member, and the acoustic reflection portion being, in plan view, at least one of the IDT electrodes. where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less, and one of the bus bars of the IDT electrodes has Some of the plurality of electrode fingers are connected, the rest of the plurality of electrode fingers are connected to the other bus bar, and the other electrode fingers are connected to the one bus bar. A plurality of electrode fingers and the plurality of electrode fingers connected to the other bus bar are inserted into each other, and the direction in which the adjacent electrode fingers face each other is defined as the electrode finger facing direction. When viewed from the direction, a region where the adjacent electrode fingers overlap is an intersecting region. and a pair of edge regions arranged so as to sandwich a central region in the extending direction of the electrode fingers, at least one mass addition film being provided in at least the edge regions, the electrode of the mass addition film When the length of the mass addition film is the length of the mass addition film along the finger extending direction, and two arbitrary points in the electrode finger facing direction of the portion where the mass addition film is positioned are the first point and the second point, The lengths of the mass addition film at at least one set of first and second points are different from each other.
 本発明によれば、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波を抑制することができる、弾性波装置を提供することができる。 According to the present invention, it is possible to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention. 図2は、図1中のI-I線に沿う模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II in FIG. 図3は、第1の比較例の弾性波装置の模式的平面図である。FIG. 3 is a schematic plan view of an elastic wave device of a first comparative example. 図4は、本発明の第1の実施形態及び第1の比較例における位相特性を示す図である。FIG. 4 is a diagram showing phase characteristics in the first embodiment of the present invention and the first comparative example. 図5は、エッジ領域における質量付加膜の長さと、位相特性との関係を示す図である。FIG. 5 is a diagram showing the relationship between the length of the mass addition film in the edge region and the phase characteristics. 図6は、図5を、4000MHz付近において拡大した図である。FIG. 6 is an enlarged view of FIG. 5 around 4000 MHz. 図7は、本発明の第1の実施形態の変形例に係る弾性波装置の模式的平面図である。FIG. 7 is a schematic plan view of an elastic wave device according to a modification of the first embodiment of the invention. 図8は、本発明の第2の実施形態に係る弾性波装置の模式的平面図である。FIG. 8 is a schematic plan view of an elastic wave device according to a second embodiment of the invention. 図9は、参考例の弾性波装置の模式的平面図である。FIG. 9 is a schematic plan view of an elastic wave device of a reference example. 図10は、ギャップ領域における質量付加膜の長さと、位相特性との関係を示す図である。FIG. 10 is a diagram showing the relationship between the length of the mass addition film in the gap region and the phase characteristics. 図11は、図10を、4000MHz付近において拡大した図である。FIG. 11 is an enlarged view of FIG. 10 around 4000 MHz. 図12は、本発明の第2の実施形態の第1の変形例に係る弾性波装置の模式的平面図である。FIG. 12 is a schematic plan view of an elastic wave device according to a first modification of the second embodiment of the invention. 図13は、本発明の第2の実施形態の第2の変形例に係る弾性波装置の模式的平面図である。FIG. 13 is a schematic plan view of an elastic wave device according to a second modification of the second embodiment of the invention. 図14は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。FIG. 14 is a schematic plan view of an elastic wave device according to a third embodiment of the invention. 図15は、図14中のI-I線に沿う模式的断面図である。15 is a schematic cross-sectional view taken along line II in FIG. 14. FIG. 図16は、本発明の第4の実施形態に係る弾性波装置の模式的平面図である。FIG. 16 is a schematic plan view of an elastic wave device according to a fourth embodiment of the invention. 図17は、本発明の第5の実施形態に係る弾性波装置の模式的平面図である。FIG. 17 is a schematic plan view of an elastic wave device according to a fifth embodiment of the invention. 図18は、図17中のI-I線に沿う模式的断面図であるFIG. 18 is a schematic cross-sectional view along the II line in FIG. 17 図19は、本発明の第6の実施形態に係る弾性波装置の模式的平面図である。FIG. 19 is a schematic plan view of an elastic wave device according to a sixth embodiment of the invention. 図20は、本発明の第6の実施形態の変形例に係る弾性波装置の模式的平面図である。FIG. 20 is a schematic plan view of an elastic wave device according to a modification of the sixth embodiment of the invention. 図21(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図21(b)は、圧電層上の電極構造を示す平面図である。FIG. 21(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness-shear mode bulk wave, and FIG. 21(b) is a plan view showing an electrode structure on a piezoelectric layer. 図22は、図21(a)中のA-A線に沿う部分の断面図である。FIG. 22 is a cross-sectional view of a portion taken along line AA in FIG. 21(a). 図23(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図23(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。FIG. 23(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device, and FIG. FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode; 図24は、厚み滑りモードのバルク波の振幅方向を示す図である。FIG. 24 is a diagram showing amplitude directions of bulk waves in the thickness shear mode. 図25は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。FIG. 25 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode. 図26は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/pと共振子としての比帯域との関係を示す図である。FIG. 26 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer. 図27は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。FIG. 27 is a plan view of an acoustic wave device that utilizes thickness shear mode bulk waves. 図28は、スプリアスが現れている参考例の弾性波装置の共振特性を示す図である。FIG. 28 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears. 図29は、比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。FIG. 29 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. 図30は、d/2pと、メタライゼーション比MRとの関係を示す図である。FIG. 30 is a diagram showing the relationship between d/2p and metallization ratio MR. 図31は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。FIG. 31 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought infinitely close to 0. FIG. 図32は、音響多層膜を有する弾性波装置の正面断面図である。FIG. 32 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an example, and partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。図2は、図1中のI-I線に沿う模式的断面図である。 FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention. FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
 図1に示すように、弾性波装置10は、圧電性基板12と、IDT電極11とを有する。図2に示すように、圧電性基板12は、支持部材13と、圧電層14とを有する。本実施形態では、支持部材13は、支持基板16と、絶縁層15とを含む。支持基板16上に絶縁層15が設けられている。絶縁層15上に圧電層14が設けられている。もっとも、支持部材13は支持基板16のみにより構成されていてもよい。 As shown in FIG. 1, the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11. As shown in FIG. 2, the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 . In this embodiment, the support member 13 includes a support substrate 16 and an insulating layer 15 . An insulating layer 15 is provided on the support substrate 16 . A piezoelectric layer 14 is provided on the insulating layer 15 . However, the support member 13 may be composed of only the support substrate 16 .
 圧電層14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14a及び第2の主面14bのうち、第2の主面14bが支持部材13側に位置している。 The piezoelectric layer 14 has a first main surface 14a and a second main surface 14b. The first main surface 14a and the second main surface 14b face each other. Of the first principal surface 14a and the second principal surface 14b, the second principal surface 14b is located on the support member 13 side.
 支持基板16の材料としては、例えば、シリコンなどの半導体や、酸化アルミニウムなどのセラミックスなどを用いることができる。絶縁層15の材料としては、酸化ケイ素または酸化タンタルなどの、適宜の誘電体を用いることができる。圧電層14は、例えば、LiNbO層などのニオブ酸リチウム層であってもよく、あるいは、LiTaO層などのタンタル酸リチウム層であってもよい。 As the material of the support substrate 16, for example, semiconductors such as silicon, ceramics such as aluminum oxide, and the like can be used. As a material for the insulating layer 15, any suitable dielectric such as silicon oxide or tantalum oxide can be used. The piezoelectric layer 14 may be, for example, a lithium niobate layer, such as a LiNbO3 layer, or a lithium tantalate layer , such as a LiTaO3 layer.
 図2に示すように、支持部材13には空洞部10aが設けられている。より具体的には、絶縁層15に凹部が設けられている。絶縁層15上に、凹部を塞ぐように、圧電層14が設けられている。これにより、空洞部10aが構成されている。もっとも、空洞部10aは、絶縁層15及び支持基板16にわたり設けられていてもよく、あるいは、支持基板16のみに設けられていてもよい。なお、空洞部10aは、支持部材13に設けられた貫通孔であってもよい。 As shown in FIG. 2, the support member 13 is provided with a hollow portion 10a. More specifically, the insulating layer 15 is provided with a recess. A piezoelectric layer 14 is provided on the insulating layer 15 so as to close the recess. Thereby, the hollow portion 10a is configured. However, the cavity 10 a may be provided over the insulating layer 15 and the support substrate 16 or may be provided only in the support substrate 16 . Note that the hollow portion 10 a may be a through hole provided in the support member 13 .
 圧電層14の第1の主面14aには、IDT電極11が設けられている。本実施形態の弾性波装置10は、例えば厚み滑り1次モードなどの、厚み滑りモードのバルク波を利用可能に構成された弾性波共振子である。もっとも、本発明の弾性波装置は、複数の弾性波共振子を有するフィルタ装置や、マルチプレクサなどであってもよい。 An IDT electrode 11 is provided on the first main surface 14a of the piezoelectric layer 14. As shown in FIG. The elastic wave device 10 of the present embodiment is an elastic wave resonator configured to be able to use bulk waves in a thickness-shear mode such as a primary thickness-shear mode. However, the elastic wave device of the present invention may be a filter device having a plurality of elastic wave resonators, a multiplexer, or the like.
 平面視において、IDT電極11の少なくとも一部が、支持部材13の空洞部10aと重なっている。本明細書において平面視とは、図2における上方に相当する方向から見ることをいう。なお、図2においては、例えば、支持基板16及び圧電層14のうち、圧電層14側が上方である。 At least a portion of the IDT electrode 11 overlaps the hollow portion 10a of the support member 13 in plan view. In this specification, "planar view" means viewing from a direction corresponding to the upper direction in FIG. In FIG. 2, for example, of the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
 図1に示すように、IDT電極11は、1対のバスバーと、複数の電極指とを有する。1対のバスバーは、具体的には、第1のバスバー26及び第2のバスバー27である。第1のバスバー26及び第2のバスバー27は互いに対向している。複数の電極指は、具体的には、複数の第1の電極指28及び複数の第2の電極指29である。複数の第1の電極指28の一端はそれぞれ、第1のバスバー26に接続されている。複数の第2の電極指29の一端はそれぞれ、第2のバスバー27に接続されている。複数の第1の電極指28及び複数の第2の電極指29は互いに間挿し合っている。IDT電極11は、単層の金属膜からなっていてもよく、あるいは、積層金属膜からなっていてもよい。 As shown in FIG. 1, the IDT electrode 11 has a pair of busbars and a plurality of electrode fingers. A pair of busbars is specifically a first busbar 26 and a second busbar 27 . The first busbar 26 and the second busbar 27 face each other. The plurality of electrode fingers are specifically a plurality of first electrode fingers 28 and a plurality of second electrode fingers 29 . One ends of the plurality of first electrode fingers 28 are each connected to the first bus bar 26 . One ends of the plurality of second electrode fingers 29 are each connected to the second bus bar 27 . The plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 are interleaved with each other. The IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
 以下においては、第1の電極指28及び第2の電極指29を、単に電極指と記載することがある。複数の電極指が延びる方向を電極指延伸方向とし、隣り合う電極指同士が互いに対向する方向を電極指対向方向としたときに、本実施形態においては、電極指延伸方向及び電極指対向方向は直交する。 In the following, the first electrode finger 28 and the second electrode finger 29 may be simply referred to as electrode fingers. When the direction in which a plurality of electrode fingers extends is defined as the electrode finger extending direction, and the direction in which adjacent electrode fingers face each other is defined as the electrode finger facing direction, in the present embodiment, the electrode finger extending direction and the electrode finger facing direction are Orthogonal.
 弾性波装置10においては、圧電層14の厚みをd、隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑りモードのバルク波が好適に励振される。 In the elastic wave device 10, d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 14 and p is the center-to-center distance between adjacent electrode fingers. As a result, thickness-shear mode bulk waves are preferably excited.
 ところで、図2に示す支持部材13の空洞部10aは、本発明における音響反射部である。音響反射部により、弾性波のエネルギーを圧電層14側に効果的に閉じ込めることができる。なお、音響反射部として、後述する音響多層膜が設けられていてもよい。 By the way, the hollow portion 10a of the support member 13 shown in FIG. 2 is the acoustic reflection portion in the present invention. The acoustic reflector can effectively confine the energy of the elastic wave to the piezoelectric layer 14 side. An acoustic multilayer film, which will be described later, may be provided as the acoustic reflector.
 図1に戻り、IDT電極11は交叉領域Fを有する。交叉領域Fは、電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域である。交叉領域Fは、中央領域Hと、1対のエッジ領域とを有する。1対のエッジ領域は、具体的には、第1のエッジ領域E1及び第2のエッジ領域E2である。第1のエッジ領域E1及び第2のエッジ領域E2は、電極指延伸方向において中央領域Hを挟むように配置されている。第1のエッジ領域E1は第1のバスバー26側に位置している。第2のエッジ領域E2は第2のバスバー27側に位置している。 Returning to FIG. 1, the IDT electrode 11 has an intersecting region F. The intersecting region F is a region where adjacent electrode fingers overlap each other when viewed from the direction in which the electrode fingers are opposed. The intersection region F has a central region H and a pair of edge regions. A pair of edge regions is specifically a first edge region E1 and a second edge region E2. The first edge region E1 and the second edge region E2 are arranged so as to sandwich the central region H in the extending direction of the electrode fingers. The first edge region E1 is located on the first bus bar 26 side. The second edge region E2 is located on the second busbar 27 side.
 IDT電極11は1対のギャップ領域を有する。1対のギャップ領域は、交叉領域Fと1対のバスバーとの間に位置している。1対のギャップ領域は、具体的には、第1のギャップ領域G1及び第2のギャップ領域G2である。第1のギャップ領域G1は、第1のバスバー26及び第1のエッジ領域E1の間に位置している。第2のギャップ領域G2は、第2のバスバー27及び第2のエッジ領域E2の間に位置している。 The IDT electrode 11 has a pair of gap regions. A pair of gap regions are located between the intersection region F and a pair of busbars. A pair of gap regions is specifically a first gap region G1 and a second gap region G2. The first gap region G1 is located between the first busbar 26 and the first edge region E1. The second gap region G2 is located between the second busbar 27 and the second edge region E2.
 本実施形態においては、弾性波装置10は1対の質量付加膜24を有する。1対の質量付加膜24のうち一方の質量付加膜24が、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられている。他方の質量付加膜24が、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられている。各質量付加膜24は帯状の形状を有する。各質量付加膜24は、圧電層14の第1の主面14aに、複数の電極指を覆うように設けられている。各質量付加膜24は、第1の主面14aにおける電極指間の部分にも設けられている。 In this embodiment, the elastic wave device 10 has a pair of mass adding films 24 . One mass addition film 24 of the pair of mass addition films 24 is provided over the first edge region E1 and the first gap region G1. The other mass addition film 24 is provided over the second edge region E2 and the second gap region G2. Each mass addition film 24 has a strip shape. Each mass addition film 24 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover the plurality of electrode fingers. Each mass addition film 24 is also provided on the portion between the electrode fingers on the first main surface 14a.
 質量付加膜24が設けられていることにより、各エッジ領域において、低音速領域が構成されている。低音速領域とは、中央領域Hにおける音速よりも、音速が低い領域である。電極指延伸方向において、IDT電極11の内側から外側にかけて、中央領域H及び低音速領域がこの順序において配置されている。それによって、ピストンモードが成立し、横モードを抑制することができる。 By providing the mass addition film 24, a low sound velocity region is formed in each edge region. The low sound velocity region is a region in which the sound velocity is lower than the sound velocity in the central region H. A central region H and a low-frequency region are arranged in this order from the inner side to the outer side of the IDT electrode 11 in the electrode finger extending direction. Thereby, the piston mode is established and the transverse mode can be suppressed.
 なお、本発明の弾性波装置は、弾性表面波ではなく、厚み滑りモードのバルク波を利用する。この場合には、各ギャップ領域に質量付加膜24が設けられていても、ピストンモードを好適に成立させることができる。 It should be noted that the elastic wave device of the present invention utilizes thickness-shear mode bulk waves instead of surface acoustic waves. In this case, even if the mass addition film 24 is provided in each gap region, the piston mode can be suitably established.
 本実施形態においては、各質量付加膜24は、各エッジ領域から各ギャップ領域に至っている。もっとも、各質量付加膜24は各エッジ領域のみに設けられていてもよい。本発明の弾性波装置においては、質量付加膜24は、少なくともエッジ領域に設けられていればよい。より具体的には、質量付加膜24は、第1のエッジ領域E1及び第2のエッジ領域E2のうち少なくとも一方に設けられていればよい。 In this embodiment, each mass addition film 24 extends from each edge region to each gap region. However, each mass addition film 24 may be provided only in each edge region. In the elastic wave device of the present invention, the mass adding film 24 should be provided at least in the edge region. More specifically, the mass adding film 24 may be provided in at least one of the first edge region E1 and the second edge region E2.
 図1に示すように、第1のエッジ領域E1に設けられた質量付加膜24における、中央領域H側の端縁部及び第1のバスバー26側の端縁部のうち、中央領域H側の端縁部は、電極指対向方向に対して傾斜して延びている。他方、該質量付加膜24における、第1のバスバー26側の端縁部は、電極指対向方向と平行に延びている。よって、質量付加膜24の、電極指延伸方向に沿う寸法を質量付加膜24の長さとしたときに、質量付加膜24の長さが一様ではない。より具体的には、本実施形態では、電極指対向方向の一方から他方に向かうにつれて、質量付加膜24の長さが長くなっている。第2のエッジ領域E2に設けられた質量付加膜24も同様である。なお、質量付加膜24の長さが一様ではない態様は、上記に限定されない。 As shown in FIG. 1, of the edge portion on the side of the central region H and the edge portion on the side of the first bus bar 26 in the mass addition film 24 provided in the first edge region E1, the edge portion on the side of the central region H is The edge portion extends obliquely with respect to the facing direction of the electrode fingers. On the other hand, the edge portion of the mass addition film 24 on the side of the first bus bar 26 extends parallel to the electrode finger facing direction. Therefore, when the length of the mass addition film 24 is defined as the dimension of the mass addition film 24 along the extending direction of the electrode fingers, the length of the mass addition film 24 is not uniform. More specifically, in this embodiment, the length of the mass adding film 24 increases from one side to the other side of the electrode finger facing direction. The same applies to the mass addition film 24 provided in the second edge region E2. In addition, the aspect in which the length of the mass addition film 24 is not uniform is not limited to the above.
 以下においては、質量付加膜24が位置する部分の、電極指対向方向における任意の2点を第1の点O1及び第2の点O2とする。なお、図1に示す第1の点O1及び第2の点O2は一例である。本実施形態の特徴は、少なくとも1つの質量付加膜24が、少なくともエッジ領域に設けられており、少なくとも1組の第1の点O1及び第2の点O2における質量付加膜24の長さが互いに異なることにある。すなわち、本実施形態では、質量付加膜24の長さが一様ではない。これにより、共振周波数よりも低く、共振周波数付近に位置する周波数の不要波を抑制することができる。この詳細を、本実施形態と、第1の比較例とを比較することにより、以下において示す。 In the following, arbitrary two points in the electrode finger facing direction of the portion where the mass addition film 24 is located are referred to as a first point O1 and a second point O2. Note that the first point O1 and the second point O2 shown in FIG. 1 are examples. A feature of this embodiment is that at least one mass addition film 24 is provided at least in the edge region, and the lengths of the mass addition film 24 at at least one pair of first point O1 and second point O2 are different from each other. There are different things. That is, in this embodiment, the length of the mass addition film 24 is not uniform. As a result, it is possible to suppress unnecessary waves having frequencies lower than the resonance frequency and located near the resonance frequency. The details will be shown below by comparing the present embodiment with the first comparative example.
 図3に示すように、第1の比較例は、質量付加膜104の長さが一定である点において、第1の実施形態と異なる。第1の比較例の弾性波装置も、第1の実施形態の弾性波装置と同様に、厚み滑りモードのバルク波を利用する。第1の実施形態及び第1の比較例の弾性波装置の位相特性を比較した。 As shown in FIG. 3, the first comparative example differs from the first embodiment in that the length of the mass addition film 104 is constant. The elastic wave device of the first comparative example also uses bulk waves in the thickness-shear mode, like the elastic wave device of the first embodiment. The phase characteristics of the elastic wave devices of the first embodiment and the first comparative example were compared.
 図4は、第1の実施形態及び第1の比較例における位相特性を示す図である。 FIG. 4 is a diagram showing phase characteristics in the first embodiment and the first comparative example.
 図4に示すように、第1の比較例の位相特性においては、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波に起因するリップルが生じている。この不要波は、厚み滑りモードのバルク波を利用する弾性波装置において固有の不要波である。これに対して、第1の実施形態における位相特性では、第1の比較例において生じているリップルは抑制されている。このことから、第1の実施形態においては、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波を抑制できることがわかる。なお、以下においては、単に不要波と記載されている場合、特に断りがない限り、該不要波は、共振周波数よりも低く、共振周波数付近に位置する周波数において生じる不要波をいうものとする。 As shown in FIG. 4, in the phase characteristics of the first comparative example, ripples caused by unwanted waves occur at frequencies lower than and near the resonance frequency. This unwanted wave is a unique unwanted wave in an acoustic wave device that utilizes bulk waves in the thickness-shear mode. In contrast, in the phase characteristics of the first embodiment, ripples that occur in the first comparative example are suppressed. From this, it can be seen that in the first embodiment, unnecessary waves can be suppressed at frequencies lower than and near the resonance frequency. In the following description, when an unwanted wave is simply described, it means an unwanted wave generated at a frequency lower than the resonance frequency and located near the resonance frequency, unless otherwise specified.
 第1の実施形態では、質量付加膜24の長さが、電極指対向方向における位置毎に異なる。これにより、不要波が生じる周波数を分散させることができ、不要波の強度を低くすることができる。従って、不要波を抑制することができる。この効果の詳細を、第2の比較例を参照することにより、以下において示す。 In the first embodiment, the length of the mass adding film 24 differs for each position in the electrode finger facing direction. As a result, the frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed. Details of this effect are given below by referring to a second comparative example.
 第2の比較例は、1対の質量付加膜が1対のエッジ領域のみに設けられている点、及び1対の質量付加膜の長さがそれぞれ一定である点において、第1の実施形態と異なる。ここで、質量付加膜の長さがそれぞれ異なる、複数の第2の比較例の弾性波装置を用意した。用意した各弾性波装置の位相特性を測定した。 The second comparative example is different from the first embodiment in that the pair of mass addition films are provided only in the pair of edge regions and the length of the pair of mass addition films is constant. different from Here, a plurality of acoustic wave devices of the second comparative example were prepared, each having a different length of the mass addition film. The phase characteristics of each elastic wave device prepared were measured.
 図5は、エッジ領域における質量付加膜の長さと、位相特性との関係を示す図である。図6は、図5を、4000MHz付近において拡大した図である。 FIG. 5 is a diagram showing the relationship between the length of the mass addition film in the edge region and the phase characteristics. FIG. 6 is an enlarged view of FIG. 5 around 4000 MHz.
 図5及び図6に示すように質量付加膜の長さが異なる場合には、不要波に起因するリップルが生じる周波数も異なることがわかる。そして、図1に示すように、第1の実施形態では、1つの質量付加膜24が、長さが互いに異なる2箇所以上の部分を有する。より具体的には、第1の実施形態では、質量付加膜24の長さは、電極指対向方向において連続的に変化している。それによって、不要波が生じる周波数を分散させることができ、不要波の強度を低くすることができる。従って、不要波を抑制することができる。 As shown in FIGS. 5 and 6, it can be seen that when the length of the mass addition film differs, the frequency at which ripples caused by unnecessary waves occur also differs. As shown in FIG. 1, in the first embodiment, one mass addition film 24 has two or more portions with different lengths. More specifically, in the first embodiment, the length of the mass adding film 24 changes continuously in the electrode finger facing direction. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
 ところで、図1に示すように、弾性波装置10のIDT電極11における交叉領域Fは、複数の励振領域Cを含む。より具体的には、励振領域Cは、隣り合う電極指同士の中心間の領域である。IDT電極11に交流電圧を印加することにより、複数の励振領域Cにおいて、弾性波が励振される。一方で、弾性表面波を利用する弾性波装置においては、交叉領域が1つの励振領域である。 By the way, as shown in FIG. 1, the intersecting region F in the IDT electrode 11 of the acoustic wave device 10 includes a plurality of excitation regions C. More specifically, the excitation region C is the region between the centers of adjacent electrode fingers. Elastic waves are excited in a plurality of excitation regions C by applying an AC voltage to the IDT electrodes 11 . On the other hand, in an acoustic wave device that utilizes surface acoustic waves, the intersection region is one excitation region.
 弾性表面波を利用する弾性波装置とは異なり、厚み滑りモードのバルク波を利用する弾性波装置10は、励振領域Cをそれぞれ有する複数の共振子が並列に接続された構成とほぼ等価である。そのため、弾性波装置10においては、質量付加膜24の長さが、電極指対向方向において一様ではなくとも、位相特性などの周波数特性の波形は崩れ難い。従って、第1の実施形態においては、電気的特性を劣化させずして、不要波を抑制することができる。 Unlike an acoustic wave device that uses surface acoustic waves, the acoustic wave device 10 that uses thickness-shear mode bulk waves is substantially equivalent to a configuration in which a plurality of resonators each having an excitation region C are connected in parallel. . Therefore, in the acoustic wave device 10, even if the length of the mass adding film 24 is not uniform in the direction in which the electrode fingers are opposed, the waveform of the frequency characteristics such as the phase characteristics is unlikely to collapse. Therefore, in the first embodiment, unnecessary waves can be suppressed without deteriorating electrical characteristics.
 以下において、質量付加膜24が設けられている部分をより詳細に説明する。図2に示すように、複数の第1の電極指28及び複数の第2の電極指29はそれぞれ、第1の面11a及び第2の面11bと、側面11cとを有する。各電極指の第1の面11a及び第2の面11bは、各電極指の厚み方向において互いに対向している。第1の面11a及び第2の面11bのうち、第2の面11bが圧電層14側の面である。第1の面11a及び第2の面11bに側面11cが接続されている。以下において、電極指の側面11cは、特に断りがない限り、電極指対向方向における側面11cをいうものとする。 The portion where the mass addition film 24 is provided will be described in more detail below. As shown in FIG. 2, each of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 has a first surface 11a, a second surface 11b, and a side surface 11c. The first surface 11a and the second surface 11b of each electrode finger face each other in the thickness direction of each electrode finger. Of the first surface 11a and the second surface 11b, the second surface 11b is the surface on the piezoelectric layer 14 side. A side surface 11c is connected to the first surface 11a and the second surface 11b. Hereinafter, unless otherwise specified, the side surface 11c of the electrode finger refers to the side surface 11c in the electrode finger facing direction.
 質量付加膜24は、複数の第1の電極指28及び複数の第2の電極指29の第1の面11aに設けられている。より具体的には、質量付加膜24は、複数の第1の電極指28及び複数の第2の電極指29の第1の面11a及び側面11cを覆うように設けられている。このように、第1の実施形態では、電極指上に質量付加膜24が設けられている部分においては、圧電層14、電極指及び質量付加膜24が、この順序で積層されている。もっとも、圧電層14及び電極指の間に質量付加膜24が設けられていてもよい。 The mass addition film 24 is provided on the first surfaces 11 a of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 . More specifically, the mass addition film 24 is provided so as to cover the first surface 11 a and the side surface 11 c of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 . As described above, in the first embodiment, the piezoelectric layer 14, the electrode fingers, and the mass addition film 24 are laminated in this order in the portions where the mass addition film 24 is provided on the electrode fingers. However, the mass adding film 24 may be provided between the piezoelectric layer 14 and the electrode fingers.
 質量付加膜24は、平面視において、複数の電極指と重なっていればよく、全ての電極指とは重なっていなくともよい。もっとも、質量付加膜24は、平面視において、全ての電極指と重なっていることが好ましい。それによって、ピストンモードをより確実に成立させることができ、横モードをより確実に抑制することができる。 The mass adding film 24 may overlap with a plurality of electrode fingers in plan view, and may not overlap with all of the electrode fingers. However, the mass addition film 24 preferably overlaps all the electrode fingers in plan view. As a result, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
 図1に戻り、質量付加膜24は、第1のエッジ領域E1及び第2のエッジ領域E2のうち少なくとも一方に設けられていればよい。本発明の弾性波装置においては、少なくとも1つの質量付加膜24が設けられていればよい。もっとも、質量付加膜24が、第1のエッジ領域E1及び第2のエッジ領域E2の双方に設けられていることが好ましい。それによって、横モードをより確実に抑制することができる。 Returning to FIG. 1, the mass addition film 24 may be provided in at least one of the first edge region E1 and the second edge region E2. In the elastic wave device of the present invention, at least one mass adding film 24 should be provided. However, it is preferable that the mass addition film 24 is provided in both the first edge region E1 and the second edge region E2. Thereby, the transverse mode can be suppressed more reliably.
 質量付加膜24の材料として、酸化ケイ素、酸化タングステン、五酸化ニオブ、酸化タンタル及び酸化ハフニウムからなる群から選択された少なくとも1種の誘電体が用いられていることが好ましい。それによって、ピストンモードをより確実に成立させることができ、横モードをより確実に抑制することができる。 At least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium pentoxide, tantalum oxide and hafnium oxide is preferably used as the material of the mass addition film 24 . As a result, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
 少なくとも1つの質量付加膜24が、エッジ領域及びギャップ領域にわたり設けられていることが好ましい。第1の実施形態のように、全ての質量付加膜24が、エッジ領域及びギャップ領域にわたり設けられていることがより好ましい。それによって、共振周波数よりも低く、共振周波数付近に位置する周波数の不要波を効果的に抑制することができる。 At least one mass addition film 24 is preferably provided over the edge region and the gap region. More preferably, all the mass adding films 24 are provided over the edge region and the gap region as in the first embodiment. As a result, it is possible to effectively suppress unwanted waves of frequencies lower than and near the resonance frequency.
 質量付加膜24の平面視における形状は台形である。よって、第1のエッジ領域E1に設けられた質量付加膜24における第1のバスバー26側の端縁部、及び中央領域H側の端縁部の平面視における形状は、直線状の形状である。もっとも、例えば、質量付加膜24における上記双方の端縁部の平面視おける形状は、曲線状の形状であってもよい。あるいは、例えば、質量付加膜24における上記双方の端縁部の平面視における形状は、直線同士、曲線同士、または曲線及び直線が接続された形状であってもよい。第2のエッジ領域E2に設けられた質量付加膜24においても同様である。 The shape of the mass addition film 24 in plan view is a trapezoid. Therefore, the edge portion on the side of the first bus bar 26 and the edge portion on the side of the central region H of the mass addition film 24 provided in the first edge region E1 have a linear shape in plan view. . However, for example, the shape of both the edge portions of the mass adding film 24 in a plan view may be a curved shape. Alternatively, for example, the shape of both the edge portions of the mass addition film 24 in plan view may be a shape in which straight lines are connected, curved lines are connected, or a curved line and a straight line are connected. The same applies to the mass addition film 24 provided in the second edge region E2.
 第1の実施形態では、質量付加膜24の長さは、電極指対向方向において連続的に変化している。もっとも、少なくとも1組の第1の点O1及び第2の点O2における質量付加膜24の長さが、互いに異なっていればよい。例えば、図7に示す第1の実施形態の変形例においては、質量付加膜24Aの長さは、電極指対向方向において不連続に変化している。より具体的には、質量付加膜24Aは複数の段差部24aを有する。段差部24aにより、質量付加膜24Aの長さが異なる部分同士が接続されている。段差部24aは電極指延伸方向と平行に延びている。質量付加膜24Aにおける、段差部24aにより接続されている各部分においては、長さは一定である。なお、少なくとも1つの段差部24aが設けられていればよい。本変形例においても、第1の実施形態と同様に、不要波を抑制することができる。 In the first embodiment, the length of the mass adding film 24 changes continuously in the electrode finger facing direction. However, the length of the mass addition film 24 at least one set of the first point O1 and the second point O2 should be different from each other. For example, in the modification of the first embodiment shown in FIG. 7, the length of the mass adding film 24A changes discontinuously in the electrode finger facing direction. More specifically, the mass addition film 24A has a plurality of stepped portions 24a. Portions of the mass addition film 24A having different lengths are connected to each other by the stepped portion 24a. The stepped portion 24a extends parallel to the extending direction of the electrode fingers. Each portion of the mass addition film 24A connected by the step portion 24a has a constant length. At least one stepped portion 24a may be provided. Also in this modified example, unwanted waves can be suppressed as in the first embodiment.
 第1の実施形態では、各質量付加膜24の長さは各エッジ領域においては一様ではない。他方、各質量付加膜24の長さは、各ギャップ領域においては一様である。もっとも、各質量付加膜24は、各ギャップ領域において一様ではなくともよい。この例を、第2の実施形態により示す。 In the first embodiment, the length of each mass addition film 24 is not uniform in each edge region. On the other hand, the length of each mass addition film 24 is uniform in each gap region. However, each mass addition film 24 need not be uniform in each gap region. An example of this is illustrated by the second embodiment.
 図8は、第2の実施形態に係る弾性波装置の模式的平面図である。 FIG. 8 is a schematic plan view of an elastic wave device according to the second embodiment.
 本実施形態は、各質量付加膜34の形状において第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in the shape of each mass addition film 34 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 1対の質量付加膜34のうち一方の質量付加膜34は、第1のエッジ領域E1の全体にわたり設けられている。すなわち、該質量付加膜34は、第1のエッジ領域E1においては、長さは一様である。そして、該質量付加膜34の第1のバスバー26側の端縁部、及び中央領域H側の端縁部のうち、中央領域H側の端縁部は、電極指対向方向と平行に延びている。一方で、該質量付加膜34は、第1のギャップ領域G1においては、長さが一様ではない。より具体的には、該質量付加膜34の第1のバスバー26側の端縁部は、電極指対向方向に対して傾斜して延びている。 One of the mass addition films 34 of the pair of mass addition films 34 is provided over the entire first edge region E1. That is, the mass addition film 34 has a uniform length in the first edge region E1. Of the edge portion of the mass addition film 34 on the side of the first bus bar 26 and the edge portion on the side of the central region H, the edge portion on the side of the central region H extends parallel to the electrode finger facing direction. there is On the other hand, the mass addition film 34 is not uniform in length in the first gap region G1. More specifically, the edge portion of the mass addition film 34 on the side of the first bus bar 26 extends obliquely with respect to the electrode finger facing direction.
 同様に、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられた質量付加膜34の中央領域H側の端縁部は、電極指対向方向と平行に延びている。該質量付加膜34の第2のバスバー27側の端縁部は、電極指対向方向に対して傾斜して延びている。 Similarly, the edge portion on the central region H side of the mass adding film 34 provided over the second edge region E2 and the second gap region G2 extends parallel to the electrode finger facing direction. The end edge portion of the mass addition film 34 on the side of the second bus bar 27 extends obliquely with respect to the electrode finger facing direction.
 本実施形態においても、第1の実施形態と同様に不要波を抑制できることを、参考例を参照して、以下において示す。なお、図9に示すように、参考例の弾性波装置においては、1対の質量付加膜104のうち一方の質量付加膜104が、第1のギャップ領域G1のみに設けられている。他方の質量付加膜104が、第2のギャップ領域G2のみに設けられている。 It will be shown below with reference to a reference example that unwanted waves can be suppressed in this embodiment as well as in the first embodiment. As shown in FIG. 9, in the elastic wave device of the reference example, one of the mass adding films 104 of the pair of mass adding films 104 is provided only in the first gap region G1. The other mass addition film 104 is provided only in the second gap region G2.
 質量付加膜104の長さがそれぞれ異なる、複数の参考例の弾性波装置を用意した。なお、それぞれの弾性波装置においては、質量付加膜104の長さは一定である。用意した各弾性波装置の位相特性を測定した。 A plurality of elastic wave devices of reference examples were prepared, each having a different length of the mass addition film 104 . In each elastic wave device, the length of the mass adding film 104 is constant. The phase characteristics of each elastic wave device prepared were measured.
 図10は、ギャップ領域における質量付加膜の長さと、位相特性との関係を示す図である。図11は、図10を、4000MHz付近において拡大した図である。 FIG. 10 is a diagram showing the relationship between the length of the mass addition film in the gap region and the phase characteristics. FIG. 11 is an enlarged view of FIG. 10 around 4000 MHz.
 図10及び図11に示すようにギャップ領域における質量付加膜34の長さが異なる場合には、不要波に起因するリップルが生じる周波数も異なることがわかる。そして、図8に示すように、本実施形態では、質量付加膜34の長さが、各エッジ領域においては一様であるが、各ギャップ領域においては一様ではない。それによって、不要波が生じる周波数を分散させることができ、不要波の強度を低くすることができる。従って、不要波を抑制することができる。 As shown in FIGS. 10 and 11, when the length of the mass addition film 34 in the gap region is different, the frequencies at which ripples caused by unwanted waves are generated are also different. As shown in FIG. 8, in this embodiment, the length of the mass adding film 34 is uniform in each edge region, but not uniform in each gap region. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
 本実施形態では、各ギャップ領域の、電極指対向方向における全体にわたり、各質量付加膜34が設けられている。もっとも、これに限定されるものではない。例えば、図12に示す第2の実施形態の第1の変形例においては、1対の質量付加膜34Aのうち一方の質量付加膜34Aの一部が、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられている。該質量付加膜34Aの他の一部は、第1のエッジ領域E1のみに設けられている。該質量付加膜34Aは段差部34aを有する。該質量付加膜34Aにおける、第1のエッジ領域E1のみに設けられている部分と、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられている部分とは、段差部34aにより接続されている。 In this embodiment, each mass addition film 34 is provided over the entire gap region in the electrode finger facing direction. However, it is not limited to this. For example, in the first modification of the second embodiment shown in FIG. 12, a portion of one of the mass addition films 34A of the pair of mass addition films 34A is the first edge region E1 and the first edge region E1. It is provided over the gap region G1. Another part of the mass adding film 34A is provided only in the first edge region E1. The mass addition film 34A has a step portion 34a. A portion of the mass addition film 34A provided only in the first edge region E1 and a portion provided over the first edge region E1 and the first gap region G1 are connected by a step portion 34a. ing.
 他方の質量付加膜34Aにおいても同様に、第2のエッジ領域E2のみに設けられている部分と、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられている部分とが、段差部により接続されている。本変形例においても、第2の実施形態と同様に、不要波を抑制することができる。 In the other mass addition film 34A, similarly, a portion provided only in the second edge region E2 and a portion provided over the second edge region E2 and the second gap region G2 are stepped portions. connected by Also in this modified example, unwanted waves can be suppressed as in the second embodiment.
 図8に示す第2の実施形態では、各質量付加膜34は、エッジ領域の全てにわたり設けられている。もっとも、質量付加膜34がエッジ領域及びギャップ領域にわたり設けられている場合においても、質量付加膜34は、エッジ領域の一部に設けられていてもよい。例えば、図13に示す第2の実施形態の第2の変形例においては、1対の質量付加膜34Bのうち一方の質量付加膜34Bは、第1のエッジ領域E1の一部、及び第1のギャップ領域G1の一部に設けられている。該質量付加膜34Bの第1のバスバー26側の端縁部と、中央領域H側の端縁部との双方が、電極指対向方向に対して傾斜して延びている。 In the second embodiment shown in FIG. 8, each mass adding film 34 is provided over the entire edge region. However, even when the mass addition film 34 is provided over the edge region and the gap region, the mass addition film 34 may be provided in a part of the edge region. For example, in a second modification of the second embodiment shown in FIG. 13, one of the mass addition films 34B of the pair of mass addition films 34B has a portion of the first edge region E1 and a portion of the first edge region E1. is provided in a part of the gap region G1. Both the edge portion of the mass addition film 34B on the side of the first bus bar 26 and the edge portion on the side of the central region H extend obliquely with respect to the facing direction of the electrode fingers.
 他方の質量付加膜34Bも同様に、第2のエッジ領域E2の一部、及び第2のギャップ領域G2の一部に設けられている。該質量付加膜34Bの第2のバスバー27側の端縁部と、中央領域H側の端縁部との双方が、電極指対向方向に対して傾斜して延びている。本変形例においても、第2の実施形態と同様に、不要波を抑制することができる。 The other mass addition film 34B is similarly provided in part of the second edge region E2 and part of the second gap region G2. Both the edge portion of the mass addition film 34B on the side of the second bus bar 27 and the edge portion on the side of the central region H extend obliquely with respect to the facing direction of the electrode fingers. Also in this modified example, unwanted waves can be suppressed as in the second embodiment.
 図14は、第3の実施形態に係る弾性波装置の模式的平面図である。図15は、図14中のI-I線に沿う模式的断面図である。 FIG. 14 is a schematic plan view of an elastic wave device according to the third embodiment. 15 is a schematic cross-sectional view taken along line II in FIG. 14. FIG.
 図14に示すように、本実施形態は、1対の質量付加膜24が、複数の電極指及び圧電層14の間に設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 As shown in FIG. 14, this embodiment differs from the first embodiment in that a pair of mass addition films 24 are provided between the plurality of electrode fingers and the piezoelectric layer 14. FIG. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 より具体的には、図15に示すように、一方の質量付加膜24が、第1のエッジ領域E1において、複数の第1の電極指28の第2の面11b及び複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられている。なお、図示しないが、該質量付加膜24は、第1のギャップ領域G1においても、複数の第1の電極指28の第2の面11bと、圧電層14との間に設けられている。同様に、他方の質量付加膜24が、第2のエッジ領域E2において、複数の第1の電極指28の第2の面11b及び複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられている。該質量付加膜24は、第2のギャップ領域G2においても、複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられている。なお、各エッジ領域及び各ギャップ領域において、質量付加膜24は、圧電層14の第1の主面14aにおける電極指間の部分にも設けられている。 More specifically, as shown in FIG. 15, one mass addition film 24 is located on the first edge region E1 so that the second surfaces 11b of the plurality of first electrode fingers 28 and the plurality of second electrodes 28 It is provided between the second surface 11 b of the finger 29 and the piezoelectric layer 14 . Although not shown, the mass adding film 24 is provided between the second surfaces 11b of the plurality of first electrode fingers 28 and the piezoelectric layer 14 also in the first gap region G1. Similarly, in the second edge region E2, the other mass addition film 24 has the second surfaces 11b of the plurality of first electrode fingers 28 and the second surfaces 11b of the plurality of second electrode fingers 29, It is provided between the piezoelectric layer 14 and the piezoelectric layer 14 . The mass adding film 24 is provided between the second surfaces 11b of the plurality of second electrode fingers 29 and the piezoelectric layer 14 also in the second gap region G2. In addition, in each edge region and each gap region, the mass addition film 24 is also provided on the first main surface 14a of the piezoelectric layer 14 between the electrode fingers.
 本実施形態においても、第1の実施形態と同様に、各エッジ領域において、質量付加膜24の長さは一様ではない。従って、不要波を抑制することができる。加えて、ピストンモードを成立させ、横モードを抑制することもできる。 Also in this embodiment, as in the first embodiment, the length of the mass adding film 24 is not uniform in each edge region. Therefore, unwanted waves can be suppressed. In addition, it is possible to establish the piston mode and suppress the lateral mode.
 上記の第1~第3の実施形態においては、質量付加膜は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。もっとも、これに限られるものではない。例えば、各エッジ領域において、平面視したときに、複数の電極指と重なり、かつ電極指間の領域と重ならないように、複数の質量付加膜24が設けられていてもよい。この例を、第4の実施形態により示す。 In the above-described first to third embodiments, the mass adding film is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view. However, it is not limited to this. For example, in each edge region, a plurality of mass adding films 24 may be provided so as to overlap the electrode fingers and not overlap the region between the electrode fingers in plan view. An example of this is illustrated by the fourth embodiment.
 図16は、第4の実施形態に係る弾性波装置の模式的平面図である。 FIG. 16 is a schematic plan view of an elastic wave device according to the fourth embodiment.
 本実施形態は、各エッジ領域に複数の質量付加膜44が設けられている点において第1の実施形態と異なる。本実施形態は、各エッジ領域において、圧電層14の第1の主面14aにおける電極指間の部分に質量付加膜44が設けられていない点においても、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in that a plurality of mass adding films 44 are provided in each edge region. This embodiment also differs from the first embodiment in that the mass addition film 44 is not provided between the electrode fingers on the first main surface 14a of the piezoelectric layer 14 in each edge region. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 第1のエッジ領域E1において、各質量付加膜44は、1本の第1の電極指28の第1の面11aのみ、または1本の第2の電極指29の第1の面11aのみに設けられている。複数の質量付加膜44が、電極指対向方向において並んでいる。本実施形態では、電極指対向方向における一方から他方に向かうにつれて、質量付加膜44の長さが1つおきに長くなっている。具体的には、電極指対向方向において連続する3つの質量付加膜44のうち、2つの隣接している質量付加膜44の長さが同じであり、該2つの質量付加膜44の長さと、残りの1つの質量付加膜44の長さとが互いに異なる。このように、第1のエッジ領域E1においては、質量付加膜44の長さが周期的に変化している。 In the first edge region E1, each mass addition film 44 is applied only to the first surface 11a of one first electrode finger 28 or only to the first surface 11a of one second electrode finger 29. is provided. A plurality of mass addition films 44 are arranged in the electrode finger facing direction. In the present embodiment, the length of each mass adding film 44 is increased from one side to the other side in the direction in which the electrode fingers are opposed. Specifically, among the three mass addition films 44 that are continuous in the electrode finger facing direction, two adjacent mass addition films 44 have the same length, and the length of the two mass addition films 44 and The length of the remaining one mass addition film 44 is different from each other. Thus, the length of the mass addition film 44 changes periodically in the first edge region E1.
 同様に、第2のエッジ領域E2においても、各質量付加膜44は、1本の第1の電極指28の第1の面11aのみ、または1本の第2の電極指29の第1の面11aのみに設けられている。電極指対向方向における一方から他方に向かうにつれて、質量付加膜44の長さが1つおきに長くなっている。なお、質量付加膜44の長さが変化する周期は上記に限定されない。あるいは、質量付加膜44の長さは周期的に変化していなくともよい。各エッジ領域において、複数の質量付加膜44のうち、少なくとも2つの質量付加膜44の長さが互いに異なっていればよい。この場合、少なくとも1組の第1の点O1及び第2の点O2における質量付加膜44の長さが互いに異なる。 Similarly, in the second edge region E2, each mass addition film 44 is formed only on the first surface 11a of one first electrode finger 28 or on the first surface 11a of one second electrode finger 29. It is provided only on the surface 11a. The length of each mass adding film 44 increases from one to the other in the direction in which the electrode fingers are opposed. Note that the period in which the length of the mass addition film 44 changes is not limited to the above. Alternatively, the length of the mass addition film 44 may not change periodically. In each edge region, at least two mass addition films 44 among the plurality of mass addition films 44 should have different lengths. In this case, the lengths of the mass addition film 44 at least one set of the first point O1 and the second point O2 are different from each other.
 本実施形態においては、各エッジ領域において、複数の質量付加膜44の長さは一様ではない。従って、第1の実施形態と同様に、不要波を抑制することができる。加えて、ピストンモードを成立させ、横モードを抑制することもできる。 In this embodiment, the lengths of the plurality of mass adding films 44 are not uniform in each edge region. Therefore, unwanted waves can be suppressed as in the first embodiment. In addition, it is possible to establish the piston mode and suppress the lateral mode.
 各質量付加膜44が設けられている部分においては、圧電層14、電極指及び質量付加膜44が、この順序で積層されている。もっとも、第3の実施形態と同様に、複数の質量付加膜44は、複数の第1の電極指28の第2の面11b及び複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられていてもよい。 In the portion where each mass addition film 44 is provided, the piezoelectric layer 14, the electrode fingers and the mass addition film 44 are laminated in this order. However, as in the third embodiment, the plurality of mass addition films 44 includes the second surfaces 11b of the plurality of first electrode fingers 28 and the second surfaces 11b of the plurality of second electrode fingers 29, It may be provided between the piezoelectric layer 14 and the piezoelectric layer 14 .
 例えば、複数の質量付加膜44のうち、少なくとも1つの質量付加膜44が、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられていてもよい。同様に、複数の質量付加膜44のうち、少なくとも1つの質量付加膜44が、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられていてもよい。 For example, at least one mass addition film 44 among the plurality of mass addition films 44 may be provided over the first edge region E1 and the first gap region G1. Similarly, at least one mass addition film 44 among the plurality of mass addition films 44 may be provided over the second edge region E2 and the second gap region G2.
 なお、各質量付加膜44は、第1の電極指28のみ、または第2の電極指29のみに接触している。この場合、質量付加膜44は金属からなっていてもよい。 Each mass addition film 44 contacts only the first electrode finger 28 or only the second electrode finger 29 . In this case, the mass addition film 44 may be made of metal.
 本実施形態では、複数の電極指の第1の面11aに、直接的に質量付加膜44が設けられている。あるいは、上記の第1~第3の実施形態においては、圧電層14の第1の主面14aにおける電極指間の部分に、直接的に質量付加膜が設けられている。もっとも、複数の電極指の第1の面11a、及び圧電層14の第1の主面14aにおける電極指間の部分に、誘電体膜を介して間接的に質量付加膜が設けられていてもよい。この例を、第5の実施形態により示す。 In this embodiment, the mass adding film 44 is provided directly on the first surfaces 11a of the plurality of electrode fingers. Alternatively, in the above-described first to third embodiments, the mass adding film is provided directly between the electrode fingers on the first main surface 14a of the piezoelectric layer 14. FIG. However, even if the mass addition film is indirectly provided on the first surface 11a of the plurality of electrode fingers and the portion between the electrode fingers on the first main surface 14a of the piezoelectric layer 14 via the dielectric film. good. An example of this is illustrated by the fifth embodiment.
 図17は、第5の実施形態に係る弾性波装置の模式的平面図である。図18は、図17中のI-I線に沿う模式的断面図である。 FIG. 17 is a schematic plan view of an elastic wave device according to the fifth embodiment. 18 is a schematic cross-sectional view taken along line II in FIG. 17. FIG.
 図17及び図18に示すように、本実施形態は、IDT電極11を覆うように、誘電体膜53が設けられている点において、第1の実施形態と異なる。図17に示すように、質量付加膜54の長さが、電極指対向方向において、不連続に変化している点おいても、第1の実施形態と異なる。なお、本実施形態の、各エッジ領域に設けられた質量付加膜54の平面視における形状は、第1の実施形態の変形例における質量付加膜の形状と同様である。もっとも、本実施形態は、各質量付加膜54が、各エッジ領域のみに設けられている点において、第1の実施形態及びその変形例と異なる。さらに、本実施形態は、質量付加膜54が金属からなる点においても第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 As shown in FIGS. 17 and 18, this embodiment differs from the first embodiment in that a dielectric film 53 is provided so as to cover the IDT electrodes 11 . As shown in FIG. 17, the length of the mass adding film 54 is also different from the first embodiment in that it changes discontinuously in the electrode finger facing direction. Note that the shape of the mass addition film 54 provided in each edge region in the present embodiment in plan view is the same as the shape of the mass addition film in the modified example of the first embodiment. However, this embodiment differs from the first embodiment and its modification in that each mass addition film 54 is provided only in each edge region. Furthermore, this embodiment differs from the first embodiment in that the mass addition film 54 is made of metal. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 第1のエッジ領域E1において、誘電体膜53上に、1対の質量付加膜54のうち一方の質量付加膜54が設けられている。同様に、第2のエッジ領域E2において、誘電体膜53上に、他方の質量付加膜54が設けられている。各エッジ領域において、複数の電極指の第1の面11a、及び圧電層14の第1の主面14aにおける電極指間の部分に、誘電体膜53を介して間接的に質量付加膜54が設けられている。各質量付加膜54は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。 One of the pair of mass addition films 54 is provided on the dielectric film 53 in the first edge region E1. Similarly, the other mass addition film 54 is provided on the dielectric film 53 in the second edge region E2. In each edge region, a mass addition film 54 is indirectly provided through a dielectric film 53 on the first surface 11a of the plurality of electrode fingers and the portion between the electrode fingers on the first main surface 14a of the piezoelectric layer 14. is provided. Each mass adding film 54 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
 誘電体膜53には、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。各質量付加膜54は適宜の金属からなる。もっとも、各質量付加膜54は適宜の誘電体からなっていてもよい。 For example, silicon oxide, silicon nitride, or silicon oxynitride can be used for the dielectric film 53 . Each mass addition film 54 is made of a suitable metal. However, each mass addition film 54 may be made of an appropriate dielectric.
 本実施形態のように誘電体膜53が設けられている場合においても、少なくとも1つの質量付加膜54が、エッジ領域及びギャップ領域にわたり設けられていてもよい。 Even when the dielectric film 53 is provided as in this embodiment, at least one mass adding film 54 may be provided over the edge region and the gap region.
 図19は、第6の実施形態に係る弾性波装置の模式的平面図である。 FIG. 19 is a schematic plan view of an elastic wave device according to the sixth embodiment.
 本実施形態は、各エッジ領域において複数の質量付加膜64が設けられている点において第1の実施形態と異なる。本実施形態は、各エッジ領域において質量付加膜64が設けられている位置、並びに質量付加膜64の形状及び材料においても第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in that a plurality of mass adding films 64 are provided in each edge region. This embodiment also differs from the first embodiment in the position where the mass addition film 64 is provided in each edge region, and also in the shape and material of the mass addition film 64 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 なお、本実施形態においては、質量付加膜64は電極指と一体として設けられている。そのため、図19においては、複数の質量付加膜64のうち、符号で示した一部の質量付加膜64を、一点鎖線により示している。 Note that in the present embodiment, the mass adding film 64 is provided integrally with the electrode fingers. Therefore, in FIG. 19, among the plurality of mass adding films 64, some of the mass adding films 64 indicated by reference numerals are indicated by dashed lines.
 複数の質量付加膜64は、圧電層14の第1の主面14aにおける、電極指間の部分に設けられている。より具体的には、第1のエッジ領域E1において、複数の質量付加膜64は、複数の第1の電極指28の側面11c、及び複数の第2の電極指29の側面11cに設けられている。一方で、複数の質量付加膜64は、複数の第1の電極指28の第1の面11a及び第2の面11b、並びに複数の第2の電極指29の第1の面11a及び第2の面11bには設けられていない。 A plurality of mass addition films 64 are provided on the first main surface 14a of the piezoelectric layer 14 between the electrode fingers. More specifically, in the first edge region E1, the multiple mass addition films 64 are provided on the side surfaces 11c of the multiple first electrode fingers 28 and the side surfaces 11c of the multiple second electrode fingers 29. there is On the other hand, the plurality of mass addition films 64 are formed on the first surfaces 11a and the second surfaces 11b of the plurality of first electrode fingers 28 and the first surfaces 11a and the second surfaces 11b of the plurality of second electrode fingers 29 . is not provided on the surface 11b.
 同様に、第2のエッジ領域E2において、複数の質量付加膜64は、複数の第1の電極指28の側面11c、及び複数の第2の電極指29の側面11cに設けられている。一方で、複数の質量付加膜64は、複数の第1の電極指28の第1の面11a及び第2の面11b、並びに複数の第2の電極指29の第1の面11a及び第2の面11bには設けられていない。 Similarly, in the second edge region E2, the multiple mass addition films 64 are provided on the side surfaces 11c of the multiple first electrode fingers 28 and the side surfaces 11c of the multiple second electrode fingers 29. On the other hand, the plurality of mass addition films 64 are formed on the first surfaces 11a and the second surfaces 11b of the plurality of first electrode fingers 28 and the first surfaces 11a and the second surfaces 11b of the plurality of second electrode fingers 29 . is not provided on the surface 11b.
 より詳細には、それぞれの質量付加膜64は、1本の第1の電極指28の側面11cのみ、または1本の第2の電極指29の側面11cのみに設けられている。本実施形態では、各エッジ領域において、全ての第1の電極指28の双方の側面11c、及び全ての第2の電極指29の双方の側面11cに、1つずつ質量付加膜64が設けられている。双方の側面11cとは、電極指対向方向において互いに対向する、各電極指の1対の側面11cである。なお、1本の電極指において、一方の側面のみに質量付加膜64が設けられていてもよい。 More specifically, each mass addition film 64 is provided only on the side surface 11 c of one first electrode finger 28 or only on the side surface 11 c of one second electrode finger 29 . In this embodiment, one mass adding film 64 is provided on both side surfaces 11c of all first electrode fingers 28 and both side surfaces 11c of all second electrode fingers 29 in each edge region. ing. Both side surfaces 11c are a pair of side surfaces 11c of each electrode finger that are opposed to each other in the electrode finger facing direction. Note that the mass adding film 64 may be provided only on one side surface of one electrode finger.
 複数の質量付加膜64の材料及び厚みは、複数の第1の電極指28及び複数の第2の電極指29の材料及び厚みと同じである。本実施形態では、質量付加膜64及び第1の電極指28または第2の電極指29は、一体として設けられている。よって、質量付加膜64が設けられている部分においては、電極指の幅が広くなっている。これにより、側面11cに質量付加膜64が設けられた電極指の、エッジ領域における幅は、中央領域Hにおける幅よりも広くなっている。この場合においても、各エッジ領域において、低音速領域が構成されている。従って、ピストンモードが成立し、横モードを抑制することができる。なお、電極指の幅とは、電極指の電極指対向方向に沿う寸法である。 The material and thickness of the plurality of mass adding films 64 are the same as the material and thickness of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 . In this embodiment, the mass addition film 64 and the first electrode finger 28 or the second electrode finger 29 are integrally provided. Therefore, the width of the electrode finger is widened in the portion where the mass addition film 64 is provided. As a result, the width of the edge regions of the electrode fingers provided with the mass adding films 64 on the side surfaces 11c is wider than the width thereof in the central region H. As shown in FIG. Also in this case, each edge region constitutes a low sound velocity region. Therefore, the piston mode is established and the lateral mode can be suppressed. The width of the electrode finger is the dimension along the direction in which the electrode finger faces the electrode finger.
 複数の質量付加膜64が複数の電極指の側面11cに設けられていればよく、複数の質量付加膜64は全ての電極指の側面11cには設けられていなくともよい。もっとも、本実施形態のように、複数の質量付加膜64は全ての電極指の側面11cに設けられていることが好ましい。それによって、ピストンモードをより確実に成立させることができ、横モードをより確実に抑制することができる。 The plurality of mass addition films 64 need only be provided on the side surfaces 11c of the electrode fingers, and the plurality of mass addition films 64 need not be provided on all the side surfaces 11c of the electrode fingers. However, it is preferable that the plurality of mass adding films 64 are provided on the side surfaces 11c of all the electrode fingers as in this embodiment. As a result, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
 本実施形態では、第1のエッジ領域E1においては、1本の電極指の、一方の側面11cに設けられている質量付加膜64と、他方の側面11cに設けられている質量付加膜64の長さとは同じである。もっとも、隣接する第1の電極指28のうち一方の第1の電極指28の側面11cに設けられた質量付加膜64の長さと、他方の第1の電極指28の側面11cに設けられた質量付加膜64の長さとは異なる。隣接する第2の電極指29のうち一方の第2の電極指29の側面11cに設けられた質量付加膜64の長さと、他方の第2の電極指29の側面11cに設けられた質量付加膜64の長さとは異なる。そして、第1の電極指28の側面11cに設けられた質量付加膜64の長さは、該第1の電極指28と隣接する2つの第2の電極指29のうち、一方の第2の電極指29の側面11cに設けられた質量付加膜64の長さと同じである。第2のエッジ領域E2においても同様である。 In this embodiment, in the first edge region E1, the mass addition film 64 provided on one side surface 11c of one electrode finger and the mass addition film 64 provided on the other side surface 11c Same as length. However, the length of the mass addition film 64 provided on the side surface 11c of one of the adjacent first electrode fingers 28 and the length of the mass addition film 64 provided on the side surface 11c of the other first electrode finger 28 It is different from the length of the mass adding membrane 64 . The length of the mass addition film 64 provided on the side surface 11c of one of the adjacent second electrode fingers 29 and the length of the mass addition film 64 provided on the side surface 11c of the other second electrode finger 29 The length of membrane 64 is different. The length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 is the length of one of the two second electrode fingers 29 adjacent to the first electrode finger 28. It is the same length as the mass adding film 64 provided on the side surface 11 c of the electrode finger 29 . The same applies to the second edge region E2.
 図19に示すように、各エッジ領域において、電極指対向方向における一方から他方に向かうにつれて、第1の電極指28の側面11cに設けられた質量付加膜64の長さが長くなっている。同様に、各エッジ領域において、電極指対向方向における一方から他方に向かうにつれて、第2の電極指29の側面11cに設けられた質量付加膜64の長さが長くなっている。なお、各エッジ領域において、少なくとも1本の電極指の側面11cに設けられた質量付加膜64の長さが、他の電極指の側面11cに設けられた質量付加膜64の長さと異なっていればよい。この場合、少なくとも1組の第1の点O1及び第2の点O2における質量付加膜64の長さが互いに異なる。 As shown in FIG. 19, in each edge region, the length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 increases from one side to the other side in the electrode finger opposing direction. Similarly, in each edge region, the length of the mass adding film 64 provided on the side surface 11c of the second electrode finger 29 increases from one to the other in the electrode finger facing direction. In each edge region, the length of the mass addition film 64 provided on the side surface 11c of at least one electrode finger should be different from the length of the mass addition film 64 provided on the side surface 11c of the other electrode fingers. Just do it. In this case, the lengths of the mass addition film 64 at at least one set of the first point O1 and the second point O2 are different from each other.
 本実施形態では、各エッジ領域において、複数の質量付加膜64の長さは一様ではない。従って、第1の実施形態と同様に、不要波を抑制することができる。 In this embodiment, the lengths of the plurality of mass adding films 64 are not uniform in each edge region. Therefore, unwanted waves can be suppressed as in the first embodiment.
 本実施形態では、質量付加膜64の長さが周期的に変化している。もっとも、質量付加膜64の長さの変化の方向は一方向である。なお、質量付加膜64の長さの変化の方向は上記に限定されない。例えば、図20に示す第6の実施形態の変形例においては、電極指対向方向における一方から他方に向かうにつれて、第1の電極指28の側面11cに設けられた質量付加膜64の長さが長くなる部分、及び短くなる部分とが設けられている。この場合においても、第6の実施形態と同様に、不要波を抑制することができる。 In this embodiment, the length of the mass addition film 64 is changed periodically. However, the direction of change in the length of the mass addition film 64 is one direction. Note that the direction of change in the length of the mass addition film 64 is not limited to the above. For example, in the modification of the sixth embodiment shown in FIG. 20, the length of the mass adding film 64 provided on the side surface 11c of the first electrode finger 28 increases from one side to the other side in the electrode finger facing direction. A lengthened portion and a shortened portion are provided. Also in this case, unwanted waves can be suppressed as in the sixth embodiment.
 以下において、厚み滑りモードの詳細を説明する。なお、後述するIDT電極における「電極」は、本発明における電極指に相当する。以下の例における支持部材は、本発明における支持基板に相当する。以下において、ある部材がある材料からなるとは、弾性波装置の電気的特性が大きく劣化しない程度の微量な不純物が含まれる場合を含む。 The details of the thickness slip mode will be explained below. "Electrodes" in the IDT electrodes to be described later correspond to electrode fingers in the present invention. The supporting member in the following examples corresponds to the supporting substrate in the present invention. In the following description, the term "a certain member is made of a certain material" includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the acoustic wave device are not significantly degraded.
 図21(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図21(b)は、圧電層上の電極構造を示す平面図であり、図22は、図21(a)中のA-A線に沿う部分の断面図である。 FIG. 21(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes thickness-shear mode bulk waves, and FIG. 21(b) is a plan view showing an electrode structure on a piezoelectric layer, FIG. 22 is a cross-sectional view of a portion taken along line AA in FIG. 21(a).
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図21(a)及び図21(b)では、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図21(a)及び図21(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図21(a)及び図21(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図21(a)及び図21(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。 The acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may consist of LiTaO 3 . The cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut. Although the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode. The piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a. Here, the electrode 3 is an example of the "first electrode" and the electrode 4 is an example of the "second electrode". In FIGS. 21( a ) and 21 ( b ), the multiple electrodes 3 are multiple first electrode fingers connected to the first bus bar 5 . The multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 . The plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other. Electrodes 3 and 4 have a rectangular shape and a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 . Moreover, the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 21(a) and 21(b). That is, in FIGS. 21(a) and 21(b), the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 21(a) and 21(b). A plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4. there is Here, when the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4. FIG. The logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 μm or more and 10 μm or less. Moreover, the width of the electrodes 3 and 4, that is, the dimension of the electrodes 3 and 4 in the facing direction is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less. Note that the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。 In addition, since the Z-cut piezoelectric layer is used in the elastic wave device 1 , the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 . This is not the case when a piezoelectric material with a different cut angle is used as the piezoelectric layer 2 . Here, "perpendicular" is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ± 10°). within the range).
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図22に示すように、貫通孔7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween. The insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 22, have through holes 7a and 8a. A cavity 9 is thereby formed. The cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩcm以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。 The insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used. The support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 kΩcm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer. Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys. In this embodiment, the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 When driving, an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using bulk waves in the thickness-shear mode excited in the piezoelectric layer 2 . Further, in the acoustic wave device 1, d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図23(a)及び図23(b)を参照して説明する。 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the elastic wave device and the bulk wave in the thickness shear mode will be described with reference to FIGS. 23(a) and 23(b).
 図23(a)は、日本公開特許公報 特開2012-257019号公報に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図23(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 23(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an elastic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019. Here, waves propagate through the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is. The X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG. 23(a), the Lamb wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
 これに対して、図23(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 23(b), in the elastic wave device 1, since the vibration displacement is in the thickness slip direction, the wave is generated on the first principal surface 2a and the second principal surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonate. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑りモードのバルク波の振幅方向は、図24に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図24では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 Note that the amplitude direction of the bulk wave in the thickness-shear mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C, as shown in FIG. Become. FIG. 24 schematically shows a bulk wave when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 . The first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 . The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As described above, in the acoustic wave device 1, at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged. The number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, electrode 3 may also be connected to ground potential and electrode 4 to hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
 図25は、図22に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。 FIG. 25 is a diagram showing resonance characteristics of the elastic wave device shown in FIG. The design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm.
When viewed in the direction orthogonal to the length direction of the electrodes 3 and 4, the length of the region where the electrodes 3 and 4 overlap, that is, the length of the excitation region C = 40 μm, the number of pairs of electrodes 3 and 4 = 21 pairs, center distance between electrodes = 3 µm, width of electrodes 3 and 4 = 500 nm, d/p = 0.133.
Insulating layer 7: Silicon oxide film with a thickness of 1 μm.
Support member 8: Si.
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。 The length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In this embodiment, the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図25から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 25, good resonance characteristics with a fractional bandwidth of 12.5% are obtained in spite of having no reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図26を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrodes 3 and 4 is p, in the present embodiment, d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be explained with reference to FIG.
 図25に示した共振特性を得た弾性波装置と同様に、但しd/pを変化させ、複数の弾性波装置を得た。図26は、このd/pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained by changing d/p in the same manner as the elastic wave device that obtained the resonance characteristics shown in FIG. FIG. 26 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
 図26から明らかなように、d/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 26, when d/p>0.5, even if d/p is adjusted, the specific bandwidth is less than 5%. On the other hand, when d/p≤0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. can be configured. Further, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more. In addition, by adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear mode bulk wave.
 図27は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図27中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。 FIG. 27 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves. In elastic wave device 80 , a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 . Note that K in FIG. 27 is the crossing width. As described above, in the elastic wave device of the present invention, the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図28及び図29を参照して説明する。図28は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 In the elastic wave device 1, preferably, in the plurality of electrodes 3 and 4, the adjacent excitation region C is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR≤1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 28 and 29. FIG. FIG. 28 is a reference diagram showing an example of resonance characteristics of the elastic wave device 1. As shown in FIG. A spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Also, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図21(b)を参照して説明する。図21(b)の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に見たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 21(b). In the electrode structure of FIG. 21(b), when focusing attention on the pair of electrodes 3 and 4, it is assumed that only the pair of electrodes 3 and 4 are provided. In this case, the excitation region C is the portion surrounded by the dashed-dotted line. The excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 . The area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。 When a plurality of pairs of electrodes are provided, MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
 図29は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図29は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 29 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be. The ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes. Also, FIG. 29 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図29中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図29から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図28に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by ellipse J in FIG. 29, the spurious is as large as 1.0. As is clear from FIG. 29, when the fractional band exceeds 0.17, that is, when it exceeds 17%, even if a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, the passband appear within. That is, as in the resonance characteristics shown in FIG. 28, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
 図30は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図30の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図30中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 30 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. In the elastic wave device described above, various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured. The hatched portion on the right side of the dashed line D in FIG. 30 is the area where the fractional bandwidth is 17% or less. The boundary between the hatched area and the non-hatched area is expressed by MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≤1.75(d/p)+0.075. In that case, it is easy to set the fractional bandwidth to 17% or less. More preferably, it is the area on the right side of MR=3.5(d/2p)+0.05 indicated by the dashed-dotted line D1 in FIG. That is, if MR≤1.75(d/p)+0.05, the fractional bandwidth can be reliably reduced to 17% or less.
 図31は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図31のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 31 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought infinitely close to 0. FIG. The hatched portion in FIG. 31 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
(0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。 Therefore, in the case of the Euler angle range of formula (1), formula (2), or formula (3), the fractional band can be sufficiently widened, which is preferable. The same applies when the piezoelectric layer 2 is a lithium tantalate layer.
 図32は、音響多層膜を有する弾性波装置の正面断面図である。 FIG. 32 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
 弾性波装置81では、圧電層2の第2の主面2bに音響多層膜82が積層されている。音響多層膜82は、音響インピーダンスが相対的に低い低音響インピーダンス層82a,82c,82eと、音響インピーダンスが相対的に高い高音響インピーダンス層82b,82dとの積層構造を有する。音響多層膜82を用いた場合、弾性波装置1における空洞部9を用いずとも、厚み滑りモードのバルク波を圧電層2内に閉じ込めることができる。弾性波装置81においても、上記d/pを0.5以下とすることにより、厚み滑りモードのバルク波に基づく共振特性を得ることができる。なお、音響多層膜82においては、その低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dの積層数は特に限定されない。低音響インピーダンス層82a,82c,82eよりも、少なくとも1層の高音響インピーダンス層82b,82dが圧電層2から遠い側に配置されておりさえすればよい。 In the acoustic wave device 81 , an acoustic multilayer film 82 is laminated on the second main surface 2 b of the piezoelectric layer 2 . The acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e with relatively low acoustic impedance and high acoustic impedance layers 82b, 82d with relatively high acoustic impedance. When the acoustic multilayer film 82 is used, the thickness shear mode bulk wave can be confined in the piezoelectric layer 2 without using the cavity 9 in the elastic wave device 1 . Also in the elastic wave device 81, by setting d/p to 0.5 or less, it is possible to obtain resonance characteristics based on bulk waves in the thickness-shear mode. In the acoustic multilayer film 82, the number of lamination of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. At least one of the high acoustic impedance layers 82b, 82d should be arranged farther from the piezoelectric layer 2 than the low acoustic impedance layers 82a, 82c, 82e.
 上記低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dは、上記音響インピーダンスの関係を満たす限り、適宜の材料で構成することができる。例えば、低音響インピーダンス層82a,82c,82eの材料としては、酸化ケイ素または酸窒化ケイ素などを挙げることができる。また、高音響インピーダンス層82b,82dの材料としては、アルミナ、窒化ケイ素または金属などを挙げることができる。 The low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of appropriate materials as long as the acoustic impedance relationship is satisfied. Examples of materials for the low acoustic impedance layers 82a, 82c, 82e include silicon oxide and silicon oxynitride. Materials for the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metals.
 第1~第6の実施形態及び各変形例の弾性波装置においては、例えば、支持基板及び圧電層の間に、図32に示す音響多層膜82が設けられていてもよい。この場合、音響多層膜82において、低音響インピーダンス層と高音響インピーダンス層とが交互に積層されていればよい。音響多層膜82が、弾性波装置における音響反射部であってもよい。 In the elastic wave devices of the first to sixth embodiments and modifications, for example, an acoustic multilayer film 82 shown in FIG. 32 may be provided between the support substrate and the piezoelectric layer. In this case, low acoustic impedance layers and high acoustic impedance layers may be alternately laminated in the acoustic multilayer film 82 . The acoustic multilayer film 82 may be an acoustic reflector in the elastic wave device.
 厚み滑りモードのバルク波を利用する第1~第6の実施形態及び各変形例の弾性波装置においては、上記のように、d/pが0.5以下であることが好ましく、0.24以下であることがより好ましい。それによって、より一層良好な共振特性を得ることができる。さらに、厚み滑りモードのバルク波を利用する第1~第6の実施形態及び各変形例の弾性波装置における交叉領域においては、上記のように、MR≦1.75(d/p)+0.075を満たすことが好ましい。この場合には、スプリアスをより確実に抑制することができる。 In the elastic wave devices of the first to sixth embodiments and modifications using thickness shear mode bulk waves, as described above, d/p is preferably 0.5 or less, and 0.24 The following are more preferable. Thereby, even better resonance characteristics can be obtained. Furthermore, in the crossover regions of the elastic wave devices of the first to sixth embodiments and modifications using thickness shear mode bulk waves, MR≤1.75(d/p)+0. 075 is preferred. In this case, spurious can be suppressed more reliably.
 厚み滑りモードのバルク波を利用する第1~第6の実施形態及び各変形例の弾性波装置における圧電層は、ニオブ酸リチウム層またはタンタル酸リチウム層であることが好ましい。そして、該圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、上記の式(1)、式(2)または式(3)の範囲にあることが好ましい。この場合、比帯域を十分に広くすることができる。 The piezoelectric layer in the elastic wave devices of the first to sixth embodiments and modifications using thickness-shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer. The Euler angles (φ, θ, ψ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.
1…弾性波装置
2…圧電層
2a,2b…第1,第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…貫通孔
8…支持部材
8a…貫通孔
9…空洞部
10…弾性波装置
10a…空洞部
11…IDT電極
11a,11b…第1,第2の面
11c…側面
12…圧電性基板
13…支持部材
14…圧電層
14a,14b…第1,第2の主面
15…絶縁層
16…支持基板
24,24A…質量付加膜
24a…段差部
26,27…第1,第2のバスバー
28,29…第1,第2の電極指
34,34A,34B…質量付加膜
34a…段差部
44…質量付加膜
53…誘電体膜
54,64…質量付加膜
80,81…弾性波装置
82…音響多層膜
82a,82c,82e…低音響インピーダンス層
82b,82d…高音響インピーダンス層
104…質量付加膜
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
B…矢印
C…励振領域
E1,E2…第1,第2のエッジ領域
F…交叉領域
G1,G2…第1,第2のギャップ領域
H…中央領域
O1,O2…第1,第2の点
VP1…仮想平面
REFERENCE SIGNS LIST 1 elastic wave device 2 piezoelectric layers 2a, 2b first and second main surfaces 3, 4 electrodes 5, 6 first and second bus bars 7 insulating layer 7a through hole 8 supporting member 8a Through hole 9 Hollow portion 10 Acoustic wave device 10a Hollow portion 11 IDT electrodes 11a, 11b First and second surfaces 11c Side surface 12 Piezoelectric substrate 13 Supporting member 14 Piezoelectric layers 14a, 14b First and second main surfaces 15 Insulating layer 16 Supporting substrates 24 and 24A Mass adding film 24a Stepped portions 26 and 27 First and second bus bars 28 and 29 First and second electrodes Fingers 34, 34A, 34B Mass adding film 34a Step portion 44 Mass adding film 53 Dielectric films 54, 64 Mass adding films 80, 81 Elastic wave device 82 Acoustic multilayer films 82a, 82c, 82e Low Acoustic impedance layers 82b, 82d High acoustic impedance layer 104 Mass addition film 201 Piezoelectric films 201a, 201b First and second main surfaces 451, 452 First and second regions B Arrow C Excitation region E1 , E2 First and second edge regions F Crossing regions G1 and G2 First and second gap regions H Central regions O1 and O2 First and second points VP1 Virtual plane

Claims (14)

  1.  支持基板を含む支持部材と、
     前記支持部材上に設けられており、ニオブ酸リチウム層またはタンタル酸リチウム層である圧電層と、
     前記圧電層上に設けられており、1対のバスバーと、複数の電極指と、を有するIDT電極と、
    を備え、
     前記支持部材に音響反射部が設けられており、前記音響反射部が、平面視において、前記IDT電極の少なくとも一部と重なっており、
     前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、
     前記IDT電極の一方の前記バスバーに前記複数の電極指のうち一部の電極指が接続されており、他方の前記バスバーに前記複数の電極指のうち残りの電極指が接続されており、一方の前記バスバーに接続されている前記複数の電極指、及び他方の前記バスバーに接続されている前記複数の電極指が互いに間挿し合っており、
     隣り合う前記電極指同士が対向し合う方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記複数の電極指が延びる方向を電極指延伸方向としたときに、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置された1対のエッジ領域と、を有し、
     少なくとも1つの質量付加膜が、少なくとも前記エッジ領域に設けられており、前記質量付加膜の前記電極指延伸方向に沿う寸法を前記質量付加膜の長さとし、前記質量付加膜が位置する部分の、前記電極指対向方向における任意の2点を第1の点及び第2の点としたときに、少なくとも1組の前記第1の点及び前記第2の点における前記質量付加膜の前記長さが互いに異なる、弾性波装置。
    a support member including a support substrate;
    a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer;
    an IDT electrode provided on the piezoelectric layer and having a pair of bus bars and a plurality of electrode fingers;
    with
    an acoustic reflection portion is provided on the support member, and the acoustic reflection portion overlaps at least a portion of the IDT electrode in a plan view;
    where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less,
    Some of the plurality of electrode fingers are connected to one bus bar of the IDT electrode, and the remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar, the plurality of electrode fingers connected to one of the bus bars and the plurality of electrode fingers connected to the other bus bar are inserted into each other,
    A direction in which the adjacent electrode fingers face each other is defined as an electrode finger facing direction, and a region where the adjacent electrode fingers overlap each other when viewed from the electrode finger facing direction is an intersecting region. When the extending direction is defined as the electrode finger extending direction, the crossing area has a central area and a pair of edge areas arranged to sandwich the central area in the electrode finger extending direction,
    At least one mass addition film is provided in at least the edge region, and the length of the mass addition film is defined as a dimension along the electrode finger extending direction of the mass addition film. When arbitrary two points in the electrode finger facing direction are defined as a first point and a second point, the length of the mass addition film at at least one set of the first point and the second point is Acoustic wave devices that are different from each other.
  2.  少なくとも双方の前記エッジ領域にそれぞれ、前記少なくとも1つの質量付加膜が設けられている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the at least one mass addition film is provided in each of at least both of the edge regions.
  3.  前記複数の電極指がそれぞれ、対向し合う第1の面及び第2の面を有し、前記第1の面及び前記第2の面のうち前記第2の面が前記圧電層側の面であり、前記少なくとも1つの質量付加膜が、前記複数の電極指の前記第1の面に設けられている、請求項1または2に記載の弾性波装置。 Each of the plurality of electrode fingers has a first surface and a second surface facing each other, and the second surface of the first surface and the second surface is the surface on the piezoelectric layer side. 3. The acoustic wave device according to claim 1, wherein said at least one mass adding film is provided on said first surface of said plurality of electrode fingers.
  4.  前記複数の電極指がそれぞれ、対向し合う第1の面及び第2の面を有し、前記第1の面及び前記第2の面のうち前記第2の面が前記圧電層側の面であり、前記少なくとも1つの質量付加膜が、前記複数の電極指の前記第2の面及び前記圧電層の間に設けられている、請求項1または2に記載の弾性波装置。 Each of the plurality of electrode fingers has a first surface and a second surface facing each other, and the second surface of the first surface and the second surface is the surface on the piezoelectric layer side. 3. The acoustic wave device according to claim 1, wherein said at least one mass adding film is provided between said second surface of said plurality of electrode fingers and said piezoelectric layer.
  5.  前記圧電層上に、前記IDT電極を覆うように誘電体膜が設けられており、前記誘電体膜上に前記少なくとも1つの質量付加膜が設けられている、請求項1または2に記載の弾性波装置。 3. The elasticity according to claim 1, wherein a dielectric film is provided on said piezoelectric layer so as to cover said IDT electrodes, and said at least one mass adding film is provided on said dielectric film. wave equipment.
  6.  前記質量付加膜が金属からなる、請求項5に記載の弾性波装置。 The elastic wave device according to claim 5, wherein the mass addition film is made of metal.
  7.  前記質量付加膜に、酸化ケイ素、酸化タングステン、五酸化ニオブ、酸化タンタル及び酸化ハフニウムからなる群から選択された少なくとも1種の誘電体が用いられている、請求項1~5のいずれか1項に記載の弾性波装置。 6. The mass addition film according to any one of claims 1 to 5, wherein at least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium pentoxide, tantalum oxide and hafnium oxide is used. Elastic wave device according to.
  8.  前記質量付加膜が、平面視において、前記複数の電極指と、前記電極指間の領域とに重なるように、連続的に設けられている、請求項1~7のいずれか1項に記載の弾性波装置。 8. The mass-applying film according to claim 1, wherein the mass-applying film is continuously provided so as to overlap the plurality of electrode fingers and regions between the electrode fingers in a plan view. Elastic wave device.
  9.  前記複数の電極指がそれぞれ、対向し合う第1の面及び第2の面と、前記第1の面及び前記第2の面に接続されている側面と、を有し、前記第1の面及び前記第2の面のうち前記第2の面が前記圧電層側の面であり、
     複数の前記質量付加膜が前記電極指の側面に設けられており、前記複数の質量付加膜が金属からなり、前記質量付加膜が設けられている部分において、前記電極指の幅が広くなっている、請求項1または2に記載の弾性波装置。
    each of the plurality of electrode fingers has a first surface and a second surface facing each other and a side surface connected to the first surface and the second surface; and the second surface of the second surfaces is a surface on the piezoelectric layer side,
    A plurality of the mass addition films are provided on the side surfaces of the electrode fingers, the plurality of mass addition films are made of metal, and the width of the electrode fingers is widened at portions where the mass addition films are provided. The acoustic wave device according to claim 1 or 2, wherein
  10.  前記交叉領域と前記1対のバスバーとの間に位置する領域が1対のギャップ領域であり、前記少なくとも1つの質量付加膜が、前記エッジ領域及び前記ギャップ領域にわたり設けられている、請求項1~9のいずれか1項に記載の弾性波装置。 2. A region located between said crossing region and said pair of bus bars is a pair of gap regions, and said at least one mass adding film is provided over said edge region and said gap region. 10. The elastic wave device according to any one of 1 to 9.
  11.  前記音響反射部が、前記支持部材に設けられた空洞部である、請求項1~10のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 10, wherein the acoustic reflection portion is a hollow portion provided in the support member.
  12.  d/pが0.24以下である、請求項1~11のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 11, wherein d/p is 0.24 or less.
  13.  前記交叉領域に対する、前記複数の電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項1~12のいずれか1項に記載の弾性波装置。 13. The method according to claim 1, wherein MR≦1.75(d/p)+0.075 is satisfied, where MR is a metallization ratio of the plurality of electrode fingers to the intersecting region. Elastic wave device.
  14.  前記圧電層としての前記ニオブ酸リチウム層または前記タンタル酸リチウム層のオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1~13のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
    Euler angles (φ, θ, ψ) of the lithium niobate layer or the lithium tantalate layer as the piezoelectric layer are within the range of the following formula (1), formula (2), or formula (3). Item 14. The elastic wave device according to any one of items 1 to 13.
    (0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
    (0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
PCT/JP2022/024551 2021-07-21 2022-06-20 Elastic wave device WO2023002790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163224118P 2021-07-21 2021-07-21
US63/224,118 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002790A1 true WO2023002790A1 (en) 2023-01-26

Family

ID=84979969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024551 WO2023002790A1 (en) 2021-07-21 2022-06-20 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2023002790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140354A1 (en) * 2022-01-21 2023-07-27 株式会社村田製作所 Elastic wave device and filter device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186808A (en) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc Acoustic wave guide device and method for minimizing trimming effects and piston mode instabilities
WO2015182521A1 (en) * 2014-05-26 2015-12-03 株式会社村田製作所 Elastic wave device and ladder-type filter
WO2020100949A1 (en) * 2018-11-14 2020-05-22 京セラ株式会社 Elastic wave device, duplexer, and communication device
WO2020171050A1 (en) * 2019-02-18 2020-08-27 株式会社村田製作所 Elastic wave device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186808A (en) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc Acoustic wave guide device and method for minimizing trimming effects and piston mode instabilities
WO2015182521A1 (en) * 2014-05-26 2015-12-03 株式会社村田製作所 Elastic wave device and ladder-type filter
WO2020100949A1 (en) * 2018-11-14 2020-05-22 京セラ株式会社 Elastic wave device, duplexer, and communication device
WO2020171050A1 (en) * 2019-02-18 2020-08-27 株式会社村田製作所 Elastic wave device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140354A1 (en) * 2022-01-21 2023-07-27 株式会社村田製作所 Elastic wave device and filter device

Similar Documents

Publication Publication Date Title
JP2023113959A (en) Acoustic wave device
WO2022163865A1 (en) Elastic wave device
WO2023002858A1 (en) Elastic wave device and filter device
WO2021246447A1 (en) Elastic wave device
WO2022044869A1 (en) Elastic wave device
US20240154595A1 (en) Acoustic wave device
WO2023002790A1 (en) Elastic wave device
WO2022210809A1 (en) Elastic wave device
WO2023048144A1 (en) Elastic wave device
WO2023048140A1 (en) Elastic wave device
WO2023002824A1 (en) Elastic wave device
WO2022244635A1 (en) Piezoelectric bulk wave device
WO2023136291A1 (en) Elastic wave device
WO2023136292A1 (en) Elastic wave device
WO2023136293A1 (en) Elastic wave device
WO2023085347A1 (en) Elastic wave device
WO2023136294A1 (en) Elastic wave device
WO2023085408A1 (en) Elastic wave device
WO2022239630A1 (en) Piezoelectric bulk wave device
WO2023140354A1 (en) Elastic wave device and filter device
WO2022190743A1 (en) Elastic wave device
WO2023190370A1 (en) Elastic wave device
WO2024043346A1 (en) Acoustic wave device
WO2022211104A1 (en) Elastic wave device
WO2024043347A1 (en) Elastic wave device and filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE