WO2022210809A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2022210809A1
WO2022210809A1 PCT/JP2022/015737 JP2022015737W WO2022210809A1 WO 2022210809 A1 WO2022210809 A1 WO 2022210809A1 JP 2022015737 W JP2022015737 W JP 2022015737W WO 2022210809 A1 WO2022210809 A1 WO 2022210809A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric layer
electrode fingers
electrode
elastic wave
wave device
Prior art date
Application number
PCT/JP2022/015737
Other languages
French (fr)
Japanese (ja)
Inventor
優太 石井
勝己 鈴木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022210809A1 publication Critical patent/WO2022210809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to elastic wave devices.
  • Patent Document 1 describes an elastic wave device.
  • a through-hole communicating with the cavity may be provided, and the sacrificial layer in the portion that will become the cavity may be etched through the through-hole. The longer the etchant is injected into the through-hole, the more likely the etchant will cause process damage to the piezoelectric layer.
  • An object of the present disclosure is to solve the above-described problems, and to suppress the influence of process damage on the piezoelectric layer.
  • An acoustic wave device includes a support substrate having a thickness in a first direction, a first main surface provided in the first direction of the support substrate, and a side opposite to the first main surface. a piezoelectric layer having a second principal surface on the side of the supporting substrate; and functional electrodes provided on the piezoelectric layer. Between the supporting substrate and the piezoelectric layer, the second A space is provided at a position that at least partially overlaps with the functional electrode when viewed in one direction, and at least one through hole penetrates the piezoelectric layer, and the through hole communicates with the space.
  • the opening area of the through hole on the first main surface of the piezoelectric layer is larger than the opening area of the through hole on the second main surface of the piezoelectric layer.
  • the influence of process damage on the piezoelectric layer is suppressed.
  • FIG. 1A is a perspective view showing the elastic wave device of this embodiment.
  • FIG. 1B is a plan view showing the electrode structure of this embodiment.
  • FIG. 2 is a cross-sectional view of a portion along line II-II of FIG. 1A.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment.
  • FIG. 1A is a perspective view showing the elastic wave device of this embodiment.
  • FIG. 1B is a plan view showing the electrode structure of this embodiment.
  • FIG. 2 is a cross-sectional view of a portion along line II-II of FIG.
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of this embodiment.
  • FIG. 6 shows that, in the elastic wave device of the present embodiment, d/2p and d/2p, where p is the center-to-center distance between adjacent electrodes or the average distance of the center-to-center distances, and d is the average thickness of the piezoelectric layer.
  • FIG. 5 is an explanatory diagram showing a relationship with a fractional band;
  • FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the acoustic wave device of this embodiment.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of this embodiment.
  • FIG. 9 shows the ratio of the bandwidth of the elastic wave device of the present embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. It is an explanatory view showing a relationship.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to this embodiment.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNb
  • FIG. 13 is a plan view of the elastic wave device according to the first embodiment;
  • FIG. 14 is a diagram showing a cross section along line XIV-XIV in FIG.
  • FIG. 15 is an explanatory diagram showing the relationship between the first angle formed by the second main surface of the piezoelectric layer and the side wall of the through hole and the maximum von Mises stress.
  • FIG. 16 is a partially enlarged cross-sectional view around the through hole of the second embodiment.
  • FIG. 17 is a partially enlarged cross-sectional view around the through-hole of the third embodiment.
  • FIG. 18 is a plan view of an elastic wave device according to a fourth embodiment;
  • FIG. 19 is a diagram showing another cross-sectional example of the functional electrode in the fourth embodiment.
  • FIG. 1A is a perspective view showing the elastic wave device of this embodiment.
  • FIG. 1B is a plan view showing the electrode structure of this embodiment.
  • the acoustic wave device 1 of this embodiment has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment.
  • the cut angles of LiNbO 3 and LiTaO 3 may be rotated Y-cut or X-cut.
  • the Y-propagation and X-propagation ⁇ 30° propagation orientations are preferred.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear primary mode.
  • the piezoelectric layer 2 has a first main surface 2a and a second main surface 2b facing each other in the Z direction. Electrode fingers 3 and 4 are provided on the first main surface 2a.
  • the electrode finger 3 is an example of the "first electrode finger” and the electrode finger 4 is an example of the "second electrode finger”.
  • the multiple electrode fingers 3 are multiple “first electrode fingers” connected to the first busbar electrodes 5 .
  • the multiple electrode fingers 4 are multiple “second electrode fingers” connected to the second busbar electrodes 6 .
  • the plurality of electrode fingers 3 and the plurality of electrode fingers 4 are interdigitated with each other.
  • the functional electrode 30 including the electrode finger 3, the electrode finger 4, the first busbar electrode 5, and the second busbar electrode 6 is configured.
  • Such a functional electrode 30 is also called an IDT (Interdigital Transducer) electrode.
  • the electrode fingers 3 and 4 have a rectangular shape and a length direction.
  • the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in a direction perpendicular to the length direction.
  • Both the length direction of the electrode fingers 3 and 4 and the direction orthogonal to the length direction of the electrode fingers 3 and 4 are directions that intersect the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
  • the thickness direction of the piezoelectric layer 2 is defined as the Z direction (or first direction)
  • the length direction of the electrode fingers 3 and 4 is defined as the Y direction (or second direction)
  • the electrode fingers 3 and 4 4 may be described as the X direction (or the third direction).
  • the length direction of the electrode fingers 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrode fingers 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrode fingers 3 and 4 may extend in the direction in which the first busbar electrodes 5 and the second busbar electrodes 6 extend. In that case, the first busbar electrode 5 and the second busbar electrode 6 extend in the direction in which the electrode fingers 3 and 4 extend in FIGS. 1A and 1B.
  • a pair of structures in which the electrode fingers 3 connected to one potential and the electrode fingers 4 connected to the other potential are adjacent to each other are arranged in a direction perpendicular to the length direction of the electrode fingers 3 and 4. Multiple pairs are provided.
  • the electrode finger 3 and the electrode finger 4 are adjacent to each other, not when the electrode finger 3 and the electrode finger 4 are arranged so as to be in direct contact, but when the electrode finger 3 and the electrode finger 4 are arranged with a gap therebetween. It refers to the case where the When the electrode finger 3 and the electrode finger 4 are adjacent to each other, there are electrodes connected to the hot electrode and the ground electrode, including other electrode fingers 3 and 4, between the electrode finger 3 and the electrode finger 4. is not placed.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance, that is, the pitch, between the electrode fingers 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Further, the center-to-center distance between the electrode fingers 3 and 4 means the center of the width dimension of the electrode fingers 3 in the direction orthogonal to the length direction of the electrode fingers 3 and the distance orthogonal to the length direction of the electrode fingers 4 . It is the distance connecting the center of the width dimension of the electrode finger 4 in the direction of
  • the electrode fingers 3 and 4 when at least one of the electrode fingers 3 and 4 is plural (when there are 1.5 or more pairs of electrodes when the electrode fingers 3 and 4 are paired as a pair of electrode pairs), the electrode fingers 3.
  • the center-to-center distance of the electrode fingers 4 refers to the average value of the center-to-center distances of adjacent electrode fingers 3 and electrode fingers 4 among 1.5 or more pairs of electrode fingers 3 and electrode fingers 4 .
  • the width of the electrode fingers 3 and 4 that is, the dimension in the facing direction of the electrode fingers 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrode fingers 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode finger 3 in the direction perpendicular to the length direction of the electrode finger 3 and the length of the electrode finger 4. It is the distance connecting the center of the dimension (width dimension) of the electrode finger 4 in the direction orthogonal to the direction.
  • the direction perpendicular to the length direction of the electrode fingers 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrode fingers 3 and electrode fingers 4 and the polarization direction is, for example, 90° ⁇ 10°).
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer 7 interposed therebetween.
  • the intermediate layer 7 and the support substrate 8 have a frame shape and, as shown in FIG. 2, openings 7a and 8a.
  • a cavity (air gap) 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrode fingers 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the intermediate layer 7 is made of silicon oxide.
  • the intermediate layer 7 can be formed of an appropriate insulating material other than silicon oxide, such as silicon nitride and alumina.
  • the intermediate layer 7 is an example of the "intermediate layer”.
  • the support substrate 8 is made of Si.
  • the plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111).
  • high-resistance Si having a resistivity of 4 k ⁇ or more is desirable.
  • the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support substrate 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrode fingers 3, electrode fingers 4, first busbar electrodes 5, and second busbar electrodes 6 are made of appropriate metals or alloys such as Al and AlCu alloys.
  • the electrode fingers 3, the electrode fingers 4, the first busbar electrodes 5, and the second busbar electrodes 6 have a structure in which an Al film is laminated on a Ti film. Note that materials other than the Ti film may be used for the adhesion layer.
  • an AC voltage is applied between the multiple electrode fingers 3 and the multiple electrode fingers 4 . More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
  • d/p is set to 0.5 or less.
  • the thickness-shear primary mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the center-to-center distance p between the adjacent electrode fingers 3 and 4 is the average distance between the center-to-center distances between the adjacent electrode fingers 3 and 4 .
  • the acoustic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrode fingers 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment.
  • FIG. 3A shows an acoustic wave device as described in Patent Document 1, in which Lamb waves propagate through the piezoelectric layer.
  • waves propagate through the piezoelectric layer 201 as indicated by arrows.
  • the piezoelectric layer 201 has a first principal surface 201a and a second principal surface 201b, and the thickness direction connecting the first principal surface 201a and the second principal surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers 3 and 4 of the functional electrode 30 are aligned.
  • the wave propagates in the X direction as shown.
  • the wave is generated on the first main surface 2a and the second main surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonate. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrode fingers 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude direction of the bulk wave of the primary thickness-shear mode is the first region 451 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 451 included in the excitation region C (see FIG. 1B). 2 area 452 is reversed.
  • FIG. 4 schematically shows bulk waves when a voltage is applied between the electrode fingers 3 so that the electrode fingers 4 have a higher potential than the electrode fingers 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • At least one pair of electrodes consisting of the electrode fingers 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode finger 3 is an electrode connected to a hot potential
  • the electrode finger 4 is an electrode connected to a ground potential.
  • the electrode finger 3 may be connected to the ground potential and the electrode finger 4 to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of this embodiment.
  • the design parameters of the acoustic wave device 1 that obtained the resonance characteristics shown in FIG. 5 are as follows.
  • Piezoelectric layer 2 LiNbO3 with Euler angles (0°, 0°, 90°) Thickness of piezoelectric layer 2: 400 nm
  • Length of excitation region C (see FIG. 1B): 40 ⁇ m Number of electrode pairs consisting of electrode fingers 3 and 4: 21 pairs Center-to-center distance (pitch) between electrode fingers 3 and 4: 3 ⁇ m Width of electrode fingers 3 and 4: 500 nm d/p: 0.133
  • Middle layer 7 Silicon oxide film with a thickness of 1 ⁇ m
  • Support substrate 8 Si
  • the excitation region C (see FIG. 1B) is a region where the electrode fingers 3 and 4 overlap when viewed in the X direction perpendicular to the length direction of the electrode fingers 3 and 4. .
  • the length of the excitation region C is the dimension along the length direction of the electrode fingers 3 and 4 of the excitation region C. As shown in FIG. Here, the excitation region C is an example of the "intersection region".
  • the inter-electrode distances of the electrode pairs consisting of the electrode fingers 3 and 4 are all made equal in the plurality of pairs. That is, the electrode fingers 3 and the electrode fingers 4 are arranged at equal pitches.
  • d/p is 0.5 or less, more preferably 0.5. 24 or less. This will be explained with reference to FIG.
  • FIG. 6 shows that, in the elastic wave device of the present embodiment, when p is the center-to-center distance between adjacent electrodes or the average distance of the center-to-center distances, and d is the average thickness of the piezoelectric layer 2, d/2p is used as a resonator.
  • 2 is an explanatory diagram showing the relationship between , and the fractional band.
  • At least one pair of electrodes may be one pair, and the above p is the center-to-center distance between adjacent electrode fingers 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrode fingers 3 and 4 should be p.
  • the thickness d of the piezoelectric layer 2 if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of this embodiment.
  • a pair of electrodes having electrode fingers 3 and 4 are provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
  • the excitation region is an overlapping region of the plurality of electrode fingers 3 and 4 when viewed in the direction in which any adjacent electrode fingers 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the adjacent electrode fingers 3 and 4 with respect to the region C satisfies MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 8 and 9. FIG.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of this embodiment.
  • a spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode fingers 3 and 4 overlap with the electrode fingers 4 when viewed in a direction perpendicular to the length direction of the electrode fingers 3 and 4, that is, in a facing direction. a region where the electrode fingers 3 overlap each other; and a region between the electrode fingers 3 and 4 where the electrode fingers 3 and 4 overlap each other.
  • the area of the electrode fingers 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • the ratio of the metallization portion included in the entire excitation region C to the total area of the excitation region C should be MR.
  • FIG. 9 shows the ratio of the bandwidth of the elastic wave device of the present embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. It is an explanatory view showing a relationship. The ratio band was adjusted by changing the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4 .
  • FIG. 9 shows the results when the piezoelectric layer 2 made of Z-cut LiNbO 3 is used, but the same tendency is obtained when the piezoelectric layer 2 with other cut angles is used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4, the spurious response can be reduced.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices 1 with different d/2p and MR were configured and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less.
  • FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. A hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained. When the range of the area is approximated, it becomes the range represented by the following formulas (1), (2) and (3).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to this embodiment.
  • the outer periphery of the hollow portion 9 is indicated by broken lines.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • the elastic wave device 301 has reflectors 310 and 311 as shown in FIG. Reflectors 310 and 311 are provided on both sides of the electrode fingers 3 and 4 of the piezoelectric layer 2 in the acoustic wave propagation direction.
  • a Lamb wave as a plate wave is excited by applying an alternating electric field to the electrode fingers 3 and 4 on the cavity 9.
  • the reflectors 310 and 311 are provided on both sides, it is possible to obtain resonance characteristics due to Lamb waves as Lamb waves.
  • the elastic wave devices 1 and 101 use bulk waves in the primary mode of thickness shear.
  • the electrode fingers 3 and 4 are adjacent electrodes, and when the thickness of the piezoelectric layer 2 is d and the distance between the centers of the electrode fingers 3 and 4 is p, d/p is 0.5 or less. As a result, the Q value can be increased even if the elastic wave device is miniaturized.
  • piezoelectric layer 2 is made of lithium niobate or lithium tantalate.
  • the first main surface 2a or the second main surface 2b of the piezoelectric layer 2 has electrode fingers 3 and 4 facing each other in a direction intersecting the thickness direction of the piezoelectric layer 2. should be covered with a protective film.
  • FIG. 13 is a plan view of the elastic wave device according to the first embodiment
  • FIG. 14 is a diagram showing a cross section along line XIV-XIV in FIG.
  • a portion Q in FIG. 14 is a partially enlarged sectional view around the through hole 2H.
  • the first busbar electrode 5 and the second busbar electrode 6 are connected to the wiring 12 provided on the first main surface 2a of the piezoelectric layer 2, but this configuration is Just an example.
  • a hollow portion 9 is provided on the surface of the support substrate 8 on the side of the piezoelectric layer 2 in the Z direction.
  • the hollow portion 9 is provided so as to at least partially overlap the functional electrode 30 when viewed in the Z direction.
  • the cavity 9 is provided in a part of the intermediate layer 7 and is a space surrounded by the piezoelectric layer 2 and the intermediate layer 7 .
  • the cavity 9 may be a space surrounded by the piezoelectric layer 2 , the support substrate 8 and the intermediate layer 7 .
  • the support substrate 8 is, for example, a silicon substrate.
  • the intermediate layer 7 is, for example, silicon oxide.
  • the piezoelectric layer also includes, for example, lithium niobate or lithium tantalate.
  • the piezoelectric layer 2 may contain lithium niobate or lithium tantalate and inevitable impurities.
  • the functional electrode 30 includes the first busbar electrode 5 and the second busbar electrode 6 facing each other, the electrode fingers 3 connected to the first busbar electrode 5, and the electrodes connected to the second busbar electrode 6. finger 4 and an IDT electrode.
  • the functional electrode 30 is provided on the first main surface 2a of the piezoelectric layer 2, but may be provided on the second main surface of the piezoelectric layer 2 opposite to the first main surface 2a.
  • the piezoelectric layer 2 has a through hole 2H penetrating through the piezoelectric layer 2 at a position overlapping with the hollow portion 9 when viewed in plan in the Z direction. is provided.
  • the through hole 2H is an etching hole for etching the sacrificial layer embedded in the portion that will become the hollow portion 9 .
  • the etchant is injected from the first main surface 2 a of the piezoelectric layer 2 .
  • the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2
  • the cross section of the side wall 2Ha of the through hole 2H is It has a tapered shape.
  • the first angle ⁇ formed by the second main surface 2b of the piezoelectric layer 2 and the side wall 2Ha of the through hole 2H becomes an acute angle, and the etchant is smoothly injected. As a result, process damage to the piezoelectric layer 2 is suppressed.
  • FIG. 15 is an explanatory diagram showing the relationship between the first angle formed by the second main surface of the piezoelectric layer and the side wall of the through hole and the maximum von Mises stress.
  • the first angle ⁇ becomes smaller than 40 degrees, the maximum von Mises stress increases.
  • the first angle ⁇ is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • the first angle ⁇ is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • the elastic wave device 1A includes the support substrate 8 having a thickness in the first direction, the piezoelectric layer 2 provided in the first direction on the support substrate 8, and the piezoelectric layer 2. and a functional electrode 30 provided in the first direction.
  • the functional electrode 30 faces any one of the plurality of electrode fingers 3 extending in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction. and a plurality of electrode fingers 4 extending in a direction.
  • a hollow portion (space portion) 9 is provided between the support substrate 8 and the piezoelectric layer 2 at a position at least partially overlapping the functional electrode 30 when viewed in the first direction.
  • the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2.
  • the etchant is smoothly injected into the through holes 2H. As a result, process damage to the piezoelectric layer 2 is suppressed.
  • the thickness of the piezoelectric layer 2 is 2p or less, where p is the center-to-center distance between adjacent electrode fingers 3 and 4 among the plurality of electrode fingers 3 and 4. be.
  • the piezoelectric layer 2 contains lithium niobate or lithium tantalate. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer 2 are within the range of the following formula (1), formula (2), or formula (3). It is in. In this case, the fractional bandwidth can be widened sufficiently.
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the elastic wave device 1 is configured to be able to use bulk waves in the thickness shear mode. As a result, it is possible to provide an elastic wave device with a high coupling coefficient and good resonance characteristics.
  • d/p 0.5, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between the adjacent electrode fingers 3 and 4 .
  • a more desirable aspect is that d/p is 0.24 or less. Thereby, the acoustic wave device 1 can be miniaturized and the Q value can be increased.
  • the region where the adjacent electrode fingers 3 and 4 overlap in the facing direction is the excitation region C, and the metallization of the plurality of electrode fingers 3 and the plurality of electrode fingers 4 to the excitation region C.
  • the ratio is MR, MR ⁇ 1.75(d/p)+0.075 is satisfied. In this case, the fractional bandwidth can be reliably set to 17% or less.
  • the elastic wave device 301 may be configured to be able to use plate waves. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
  • FIG. 16 is a partially enlarged cross-sectional view around the through hole of the second embodiment.
  • the cross section of the side wall of the through hole 2H is tapered in two stages.
  • the first angle ⁇ 1 between the second main surface 2b of the piezoelectric layer 2 and the first side wall 2Ha1 of the through hole 2H is the same as the first angle ⁇ in the first embodiment.
  • the first angle ⁇ 1 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • the first angle ⁇ 1 is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • a second angle ⁇ 2 between the second side wall 2Ha2 of the through hole 2H intersecting the first main surface 2a of the piezoelectric layer 2 and the parallel surface L2b with the second main surface 2b of the piezoelectric layer 2 is the first angle ⁇ 1. It has a different angle.
  • the first angle ⁇ 1 is smaller than the second angle ⁇ 2. Since the stress that causes cracks tends to occur on the second main surface 2b side of the piezoelectric layer 2, cracks can be suppressed by making the first angle ⁇ 1 smaller than the second angle ⁇ 2.
  • FIG. 17 is a partially enlarged cross-sectional view around the through-hole of the third embodiment.
  • the cross section of the side wall of the through hole 2H is tapered in two stages.
  • the first angle ⁇ 1 between the second main surface 2b of the piezoelectric layer 2 and the first side wall 2Ha1 of the through hole 2H is the same as the first angle ⁇ in the first embodiment.
  • the first angle ⁇ 1 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • the first angle ⁇ 1 is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • a second angle ⁇ 2 between the second side wall 2Ha2 of the through hole 2H intersecting the first main surface 2a of the piezoelectric layer 2 and the parallel surface L2b with the second main surface 2b of the piezoelectric layer 2 is the first angle ⁇ 1. It has a different angle.
  • the second angle ⁇ 2 is an acute angle. As a result, the opening area of the through holes 2H on the first main surface 2a of the piezoelectric layer 2 becomes larger than the opening area of the through holes 2H on the second main surface 2b of the piezoelectric layer 2 .
  • FIG. 18 is a plan view of an elastic wave device according to a fourth embodiment;
  • the through-hole 2H of the first embodiment is arranged at a position that is shifted in the X direction and does not overlap with the plurality of electrode fingers 3 and the plurality of electrode fingers 4, whereas the through-hole 2Hb of the fourth embodiment are arranged at positions that are displaced in the Y direction and do not overlap with the plurality of electrode fingers 3 and the plurality of electrode fingers 4 .
  • the through hole 2Hb is a through hole provided in the piezoelectric layer 2. As shown in FIG. The through hole 2Hb is provided between the end 3a of at least one electrode finger 3 and the second busbar electrode 6 when viewed in plan in the Z direction. Alternatively, the through hole 2Hb is provided between the end portion 4a of at least one electrode finger 4 and the first busbar electrode 5 in a plan view in the Z direction. The through hole 2Hb is shifted outward in the Y direction from the imaginary line connecting the ends 3a of the electrode fingers 3 or the ends 4a of the electrode fingers 4 .
  • the through-hole 2Hb penetrates the piezoelectric layer 2 in the Z direction and communicates with the hollow portion 9 .
  • a portion Q of the through hole 2Hb has a cross-sectional shape shown in FIG. 14, FIG. 16 or FIG. As a result, the opening area of the through holes 2Hb in the first main surface 2a of the piezoelectric layer 2 becomes larger than the opening area of the through holes 2Hb in the second main surface 2b of the piezoelectric layer 2 .
  • the through hole 2Hb By providing the through hole 2Hb, it is possible to suppress the energy of the elastic wave from leaking in the Y direction, thereby suppressing the energy loss of the elastic wave. In addition, by providing the through hole 2Hb, spurious emissions can be selectively leaked and the occurrence of spurious emissions can be suppressed. Thereby, the Q value can be improved.
  • FIG. 23 is a diagram showing another cross-sectional example of the functional electrode in the fifth embodiment.
  • a functional electrode 30 of the fifth embodiment has an upper electrode 31 and a lower electrode 32 .
  • the upper electrode 31 and the lower electrode 32 sandwich the piezoelectric layer 2 in the thickness direction.
  • the elastic wave device of the fifth embodiment is sometimes called a BAW element (Bulk Acoustic Wave element).
  • the through hole 2H is an etching hole for etching the sacrificial layer embedded in the portion that will become the hollow portion 9 .
  • the etchant is injected from the first main surface 2 a of the piezoelectric layer 2 .
  • the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2
  • the cross section of the side wall 2Ha of the through hole 2H is It has a tapered shape.
  • the first angle ⁇ formed by the second main surface 2b of the piezoelectric layer 2 and the side wall 2Ha of the through hole 2H becomes an acute angle, and the etchant is smoothly injected. As a result, process damage to the piezoelectric layer 2 is suppressed.
  • the first angle ⁇ shown in FIG. 19 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
  • the first angle ⁇ is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.

Abstract

An elastic wave device comprising: a support substrate having a thickness in a first direction; a piezoelectric layer provided in the first direction of the support substrate and having a first main surface and a second main surface, the second main surface being on a side opposite the first main surface and on the support substrate side; and a functional electrode provided on the piezoelectric layer. A space portion is provided between the support substrate and the piezoelectric layer in a position where at least a part of the space portion overlaps the functional electrode when viewed in plan in the first direction. The piezoelectric layer has at least one through hole extending therethrough and in communication with the space portion. The opening area of the through hole in the first main surface of the piezoelectric layer is greater than the opening area of the through hole in the second main surface of the piezoelectric layer.

Description

弾性波装置Acoustic wave device
 本開示は、弾性波装置に関する。 The present disclosure relates to elastic wave devices.
 特許文献1には、弾性波装置が記載されている。 Patent Document 1 describes an elastic wave device.
特開2012-257019号公報JP 2012-257019 A
 特許文献1において、空洞部と連通する貫通孔が設けられ、貫通孔を介して空洞部となる部分の犠牲層をエッチングすることがある。貫通孔にエッチング液を投入する時間が長いほど、エッチング液で圧電層にプロセスダメージが生じやすくなる。 In Patent Document 1, a through-hole communicating with the cavity may be provided, and the sacrificial layer in the portion that will become the cavity may be etched through the through-hole. The longer the etchant is injected into the through-hole, the more likely the etchant will cause process damage to the piezoelectric layer.
 本開示は、上述した課題を解決するものであり、圧電層へのプロセスダメージの影響が抑制されることを目的とする。 An object of the present disclosure is to solve the above-described problems, and to suppress the influence of process damage on the piezoelectric layer.
 一態様に係る弾性波装置は、第1方向に厚みを有する支持基板と、前記支持基板の前記第1方向に設けられ、かつ第1の主面と、前記第1の主面の反対側であって、前記支持基板側にある第2の主面とを有する圧電層と、前記圧電層に設けられた機能電極と、を備え、前記支持基板と前記圧電層との間には、前記第1方向に平面視して、前記機能電極と少なくとも一部が重なる位置に空間部が設けられており、前記圧電層を貫通する少なくとも1つの貫通孔があり、前記貫通孔が前記空間部に連通しており、前記圧電層の前記第1の主面における前記貫通孔の開口面積は、前記圧電層の前記第2の主面における前記貫通孔の開口面積よりも大きい。 An acoustic wave device according to one aspect includes a support substrate having a thickness in a first direction, a first main surface provided in the first direction of the support substrate, and a side opposite to the first main surface. a piezoelectric layer having a second principal surface on the side of the supporting substrate; and functional electrodes provided on the piezoelectric layer. Between the supporting substrate and the piezoelectric layer, the second A space is provided at a position that at least partially overlaps with the functional electrode when viewed in one direction, and at least one through hole penetrates the piezoelectric layer, and the through hole communicates with the space. The opening area of the through hole on the first main surface of the piezoelectric layer is larger than the opening area of the through hole on the second main surface of the piezoelectric layer.
 本開示によれば、圧電層へのプロセスダメージの影響が抑制される。 According to the present disclosure, the influence of process damage on the piezoelectric layer is suppressed.
図1Aは、本実施形態の弾性波装置を示す斜視図である。FIG. 1A is a perspective view showing the elastic wave device of this embodiment. 図1Bは、本実施形態の電極構造を示す平面図である。FIG. 1B is a plan view showing the electrode structure of this embodiment. 図2は、図1AのII-II線に沿う部分の断面図である。FIG. 2 is a cross-sectional view of a portion along line II-II of FIG. 1A. 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example. 図3Bは、本実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment. 図4は、本実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment. 図5は、本実施形態の弾性波装置の共振特性の例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of this embodiment. 図6は、本実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。FIG. 6 shows that, in the elastic wave device of the present embodiment, d/2p and d/2p, where p is the center-to-center distance between adjacent electrodes or the average distance of the center-to-center distances, and d is the average thickness of the piezoelectric layer. FIG. 5 is an explanatory diagram showing a relationship with a fractional band; 図7は、本実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the acoustic wave device of this embodiment. 図8は、本実施形態の弾性波装置の共振特性の一例を示す参考図である。FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of this embodiment. 図9は、本実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。FIG. 9 shows the ratio of the bandwidth of the elastic wave device of the present embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. It is an explanatory view showing a relationship. 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. 図12は、本実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to this embodiment. 図13は、第1実施形態に係る弾性波装置の平面図である。FIG. 13 is a plan view of the elastic wave device according to the first embodiment; 図14は、図13のXIV-XIV線に沿った断面を示す図である。FIG. 14 is a diagram showing a cross section along line XIV-XIV in FIG. 図15は、圧電層の第2の主面と貫通孔の側壁とがなす第1角と、最大ミーゼス応力との関係を示す説明図である。FIG. 15 is an explanatory diagram showing the relationship between the first angle formed by the second main surface of the piezoelectric layer and the side wall of the through hole and the maximum von Mises stress. 図16は、第2実施形態の貫通孔の周囲の部分拡大断面図である。FIG. 16 is a partially enlarged cross-sectional view around the through hole of the second embodiment. 図17は、第3実施形態の貫通孔の周囲の部分拡大断面図である。FIG. 17 is a partially enlarged cross-sectional view around the through-hole of the third embodiment. 図18は、第4実施形態に係る弾性波装置の平面図である。FIG. 18 is a plan view of an elastic wave device according to a fourth embodiment; 図19は、第4実施形態において、機能電極の他の断面の例を示す図である。FIG. 19 is a diagram showing another cross-sectional example of the functional electrode in the fourth embodiment.
 以下に、本開示の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。なお、本開示に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能である変形例や第2実施の形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Below, embodiments of the present disclosure will be described in detail based on the drawings. Note that the present disclosure is not limited by this embodiment. It should be noted that each embodiment described in the present disclosure is an example, and a modification that allows partial replacement or combination of configurations between different embodiments, and the first embodiment after the second embodiment A description of common matters with the form will be omitted, and only different points will be explained. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment.
 図1Aは、本実施形態の弾性波装置を示す斜視図である。図1Bは、本実施形態の電極構造を示す平面図である。 FIG. 1A is a perspective view showing the elastic wave device of this embodiment. FIG. 1B is a plan view showing the electrode structure of this embodiment.
 本実施形態の弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットである。LiNbOやLiTaOのカット角は、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。 The acoustic wave device 1 of this embodiment has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may consist of LiTaO 3 . The cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment. The cut angles of LiNbO 3 and LiTaO 3 may be rotated Y-cut or X-cut. Preferably, the Y-propagation and X-propagation ±30° propagation orientations are preferred.
 圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。 Although the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear primary mode.
 圧電層2は、Z方向に対向し合う第1の主面2aと、第2の主面2bとを有する。第1の主面2a上に、電極指3及び電極指4が設けられている。 The piezoelectric layer 2 has a first main surface 2a and a second main surface 2b facing each other in the Z direction. Electrode fingers 3 and 4 are provided on the first main surface 2a.
 ここで電極指3が「第1電極指」の一例であり、電極指4が「第2電極指」の一例である。図1A及び図1Bでは、複数の電極指3は、第1のバスバー電極5に接続されている複数の「第1電極指」である。複数の電極指4は、第2のバスバー電極6に接続されている複数の「第2電極指」である。複数の電極指3及び複数の電極指4は、互いに間挿し合っている。これにより、電極指3と、電極指4と、第1のバスバー電極5と、第2のバスバー電極6と、を備える機能電極30が構成される。このような機能電極30は、IDT(Interdigital Transuducer)電極ともいう。 Here, the electrode finger 3 is an example of the "first electrode finger" and the electrode finger 4 is an example of the "second electrode finger". In FIGS. 1A and 1B , the multiple electrode fingers 3 are multiple “first electrode fingers” connected to the first busbar electrodes 5 . The multiple electrode fingers 4 are multiple “second electrode fingers” connected to the second busbar electrodes 6 . The plurality of electrode fingers 3 and the plurality of electrode fingers 4 are interdigitated with each other. Thereby, the functional electrode 30 including the electrode finger 3, the electrode finger 4, the first busbar electrode 5, and the second busbar electrode 6 is configured. Such a functional electrode 30 is also called an IDT (Interdigital Transducer) electrode.
 電極指3及び電極指4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極指3と、電極指3と隣接する電極指4とが対向している。電極指3、電極指4の長さ方向、及び、電極指3、電極指4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極指3と、電極指3と隣接する電極指4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。以下の説明では、圧電層2の厚み方向をZ方向(または第1方向)とし、電極指3、電極指4の長さ方向をY方向(または第2方向)とし、電極指3、電極指4の直交する方向をX方向(または第3方向)として、説明することがある。 The electrode fingers 3 and 4 have a rectangular shape and a length direction. The electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in a direction perpendicular to the length direction. Both the length direction of the electrode fingers 3 and 4 and the direction orthogonal to the length direction of the electrode fingers 3 and 4 are directions that intersect the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 . In the following description, the thickness direction of the piezoelectric layer 2 is defined as the Z direction (or first direction), the length direction of the electrode fingers 3 and 4 is defined as the Y direction (or second direction), and the electrode fingers 3 and 4 4 may be described as the X direction (or the third direction).
 また、電極指3、電極指4の長さ方向が図1A及び図1Bに示す電極指3、電極指4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー電極5及び第2のバスバー電極6が延びている方向に電極指3、電極指4を延ばしてもよい。その場合、第1のバスバー電極5及び第2のバスバー電極6は、図1A及び図1Bにおいて電極指3、電極指4が延びている方向に延びることとなる。そして、一方電位に接続される電極指3と、他方電位に接続される電極指4とが隣り合う1対の構造が、上記電極指3、電極指4の長さ方向と直交する方向に、複数対設けられている。 Further, the length direction of the electrode fingers 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrode fingers 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrode fingers 3 and 4 may extend in the direction in which the first busbar electrodes 5 and the second busbar electrodes 6 extend. In that case, the first busbar electrode 5 and the second busbar electrode 6 extend in the direction in which the electrode fingers 3 and 4 extend in FIGS. 1A and 1B. A pair of structures in which the electrode fingers 3 connected to one potential and the electrode fingers 4 connected to the other potential are adjacent to each other are arranged in a direction perpendicular to the length direction of the electrode fingers 3 and 4. Multiple pairs are provided.
 ここで電極指3と電極指4とが隣り合うとは、電極指3と電極指4とが直接接触するように配置されている場合ではなく、電極指3と電極指4とが間隔を介して配置されている場合を指す。また、電極指3と電極指4とが隣り合う場合、電極指3と電極指4との間には、他の電極指3、電極指4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。 Here, the electrode finger 3 and the electrode finger 4 are adjacent to each other, not when the electrode finger 3 and the electrode finger 4 are arranged so as to be in direct contact, but when the electrode finger 3 and the electrode finger 4 are arranged with a gap therebetween. It refers to the case where the When the electrode finger 3 and the electrode finger 4 are adjacent to each other, there are electrodes connected to the hot electrode and the ground electrode, including other electrode fingers 3 and 4, between the electrode finger 3 and the electrode finger 4. is not placed. The logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
 電極指3と電極指4との間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の幅寸法の中心と、電極指4の長さ方向と直交する方向における電極指4の幅寸法の中心とを結んだ距離となる。 The center-to-center distance, that is, the pitch, between the electrode fingers 3 and 4 is preferably in the range of 1 μm or more and 10 μm or less. Further, the center-to-center distance between the electrode fingers 3 and 4 means the center of the width dimension of the electrode fingers 3 in the direction orthogonal to the length direction of the electrode fingers 3 and the distance orthogonal to the length direction of the electrode fingers 4 . It is the distance connecting the center of the width dimension of the electrode finger 4 in the direction of
 さらに、電極指3、電極指4の少なくとも一方が複数本ある場合(電極指3、電極指4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極指3、電極指4の中心間距離は、1.5対以上の電極指3、電極指4のうち隣り合う電極指3、電極指4それぞれの中心間距離の平均値を指す。 Furthermore, when at least one of the electrode fingers 3 and 4 is plural (when there are 1.5 or more pairs of electrodes when the electrode fingers 3 and 4 are paired as a pair of electrode pairs), the electrode fingers 3. The center-to-center distance of the electrode fingers 4 refers to the average value of the center-to-center distances of adjacent electrode fingers 3 and electrode fingers 4 among 1.5 or more pairs of electrode fingers 3 and electrode fingers 4 .
 また、電極指3、電極指4の幅、すなわち電極指3、電極指4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の寸法(幅寸法)の中心と、電極指4の長さ方向と直交する方向における電極指4の寸法(幅寸法)の中心とを結んだ距離となる。 Also, the width of the electrode fingers 3 and 4, that is, the dimension in the facing direction of the electrode fingers 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less. Note that the center-to-center distance between the electrode fingers 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode finger 3 in the direction perpendicular to the length direction of the electrode finger 3 and the length of the electrode finger 4. It is the distance connecting the center of the dimension (width dimension) of the electrode finger 4 in the direction orthogonal to the direction.
 また、本実施形態では、Zカットの圧電層を用いているため、電極指3、電極指4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極指3、電極指4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 In addition, since the Z-cut piezoelectric layer is used in this embodiment, the direction perpendicular to the length direction of the electrode fingers 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 . This is not the case when a piezoelectric material with a different cut angle is used as the piezoelectric layer 2 . Here, "perpendicular" is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrode fingers 3 and electrode fingers 4 and the polarization direction is, for example, 90° ± 10°).
 圧電層2の第2の主面2b側には、中間層7を介して支持基板8が積層されている。中間層7及び支持基板8は、枠状の形状を有し、図2に示すように、開口部7a、8aを有する。それによって、空洞部(エアギャップ)9が形成されている。 A support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer 7 interposed therebetween. The intermediate layer 7 and the support substrate 8 have a frame shape and, as shown in FIG. 2, openings 7a and 8a. A cavity (air gap) 9 is thereby formed.
 空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極指3、電極指4が設けられている部分と重ならない位置において、第2の主面2bに中間層7を介して積層されている。なお、中間層7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 The cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrode fingers 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
 中間層7は、酸化ケイ素で形成されている。もっとも、中間層7は、酸化ケイ素の他、窒化ケイ素、アルミナなどの適宜の絶縁性材料で形成することができる。ここで、中間層7は「中間層」の一例である。 The intermediate layer 7 is made of silicon oxide. However, the intermediate layer 7 can be formed of an appropriate insulating material other than silicon oxide, such as silicon nitride and alumina. Here, the intermediate layer 7 is an example of the "intermediate layer".
 支持基板8は、Siにより形成されている。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 The support substrate 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 kΩ or more is desirable. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material. Materials for the support substrate 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer. Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
 上記複数の電極指3、電極指4及び第1のバスバー電極5、第2のバスバー電極6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極指3、電極指4及び第1のバスバー電極5、第2のバスバー電極6は、Ti膜上にAl膜を積層した構造を有する。なお、密着層には、Ti膜以外を用いてもよい。 The plurality of electrode fingers 3, electrode fingers 4, first busbar electrodes 5, and second busbar electrodes 6 are made of appropriate metals or alloys such as Al and AlCu alloys. In this embodiment, the electrode fingers 3, the electrode fingers 4, the first busbar electrodes 5, and the second busbar electrodes 6 have a structure in which an Al film is laminated on a Ti film. Note that materials other than the Ti film may be used for the adhesion layer.
 駆動に際しては、複数の電極指3と、複数の電極指4との間に交流電圧を印加する。より具体的には、第1のバスバー電極5と第2のバスバー電極6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。 When driving, an AC voltage is applied between the multiple electrode fingers 3 and the multiple electrode fingers 4 . More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極指3、電極指4のうちいずれかの隣り合う電極指3、電極指4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 Further, in the elastic wave device 1, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between any one of the plurality of pairs of electrode fingers 3 and 4 adjacent to each other is p, d/p is set to 0.5 or less. As a result, the thickness-shear primary mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 なお、本実施形態のように電極指3、電極指4の少なくとも一方が複数本ある場合、すなわち、電極指3、電極指4を1対の電極組とした場合に電極指3、電極指4が1.5対以上ある場合、隣り合う電極指3、電極指4の中心間距離pは、各隣り合う電極指3、電極指4の中心間距離の平均距離となる。 When at least one of the electrode fingers 3 and 4 is plural as in the present embodiment, that is, when the electrode fingers 3 and 4 form a pair of electrode sets, the electrode fingers 3 and 4 , the center-to-center distance p between the adjacent electrode fingers 3 and 4 is the average distance between the center-to-center distances between the adjacent electrode fingers 3 and 4 .
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極指3、電極指4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。 Since the acoustic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrode fingers 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。図3Bは、本実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。図4は、本実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。 FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example. FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment. FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the present embodiment.
 図3Aでは、特許文献1に記載のような弾性波装置であり、圧電層をラム波が伝搬する。図3Aに示すように、圧電層201中を矢印で示すように波が伝搬する。ここで、圧電層201には、第1の主面201aと、第2の主面201bとがあり、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、機能電極30の電極指3、4が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電層201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指3、4の対数を少なくした場合、Q値が低下する。 FIG. 3A shows an acoustic wave device as described in Patent Document 1, in which Lamb waves propagate through the piezoelectric layer. As shown in FIG. 3A, waves propagate through the piezoelectric layer 201 as indicated by arrows. Here, the piezoelectric layer 201 has a first principal surface 201a and a second principal surface 201b, and the thickness direction connecting the first principal surface 201a and the second principal surface 201b is the Z direction. . The X direction is the direction in which the electrode fingers 3 and 4 of the functional electrode 30 are aligned. As shown in FIG. 3A, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric layer 201 vibrates as a whole, the wave propagates in the X direction, so reflectors are arranged on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of the electrode fingers 3 and 4 is reduced, the Q value is lowered.
 これに対して、図3Bに示すように、本実施形態の弾性波装置では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極指3、電極指4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 3B, in the acoustic wave device of this embodiment, since the vibration displacement is in the thickness sliding direction, the wave is generated on the first main surface 2a and the second main surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonate. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrode fingers 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域C(図1B参照)に含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4では、電極指3と電極指4との間に、電極指4が電極指3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 As shown in FIG. 4, the amplitude direction of the bulk wave of the primary thickness-shear mode is the first region 451 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 451 included in the excitation region C (see FIG. 1B). 2 area 452 is reversed. FIG. 4 schematically shows bulk waves when a voltage is applied between the electrode fingers 3 so that the electrode fingers 4 have a higher potential than the electrode fingers 3 . The first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 . The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
 弾性波装置1では、電極指3と電極指4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極指3、電極指4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 In the elastic wave device 1, at least one pair of electrodes consisting of the electrode fingers 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
 例えば、上記電極指3がホット電位に接続される電極であり、電極指4がグラウンド電位に接続される電極である。もっとも、電極指3がグラウンド電位に、電極指4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode finger 3 is an electrode connected to a hot potential, and the electrode finger 4 is an electrode connected to a ground potential. However, the electrode finger 3 may be connected to the ground potential and the electrode finger 4 to the hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
 図5は、本実施形態の弾性波装置の共振特性の例を示す説明図である。なお、図5に示す共振特性を得た弾性波装置1の設計パラメータは以下の通りである。 FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of this embodiment. The design parameters of the acoustic wave device 1 that obtained the resonance characteristics shown in FIG. 5 are as follows.
 圧電層2:オイラー角(0°、0°、90°)のLiNbO
 圧電層2の厚み:400nm
Piezoelectric layer 2 : LiNbO3 with Euler angles (0°, 0°, 90°)
Thickness of piezoelectric layer 2: 400 nm
 励振領域C(図1B参照)の長さ:40μm
 電極指3、電極指4からなる電極の対数:21対
 電極指3と電極指4との間の中心間距離(ピッチ):3μm
 電極指3、電極指4の幅:500nm
 d/p:0.133
Length of excitation region C (see FIG. 1B): 40 μm
Number of electrode pairs consisting of electrode fingers 3 and 4: 21 pairs Center-to-center distance (pitch) between electrode fingers 3 and 4: 3 μm
Width of electrode fingers 3 and 4: 500 nm
d/p: 0.133
 中間層7:1μmの厚みの酸化ケイ素膜  Middle layer 7: Silicon oxide film with a thickness of 1 μm
 支持基板8:Si Support substrate 8: Si
 なお、励振領域C(図1B参照)とは、電極指3と電極指4の長さ方向と直交するX方向に視たときに、電極指3と電極指4とが重なっている領域である。励振領域Cの長さとは、励振領域Cの電極指3、電極指4の長さ方向に沿う寸法である。ここで、励振領域Cとは、「交差領域」の一例である。 The excitation region C (see FIG. 1B) is a region where the electrode fingers 3 and 4 overlap when viewed in the X direction perpendicular to the length direction of the electrode fingers 3 and 4. . The length of the excitation region C is the dimension along the length direction of the electrode fingers 3 and 4 of the excitation region C. As shown in FIG. Here, the excitation region C is an example of the "intersection region".
 本実施形態では、電極指3、電極指4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極指3と電極指4とを等ピッチで配置した。 In the present embodiment, the inter-electrode distances of the electrode pairs consisting of the electrode fingers 3 and 4 are all made equal in the plurality of pairs. That is, the electrode fingers 3 and the electrode fingers 4 are arranged at equal pitches.
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 5, good resonance characteristics with a specific bandwidth of 12.5% are obtained in spite of having no reflector.
 ところで、上記圧電層2の厚みをd、電極指3と電極指4との電極の中心間距離をpとした場合、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrode fingers 3 and 4 is p, in the present embodiment, d/p is 0.5 or less, more preferably 0.5. 24 or less. This will be explained with reference to FIG.
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、本実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層2の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。 A plurality of elastic wave devices were obtained by changing d/2p in the same manner as the elastic wave device that obtained the resonance characteristics shown in FIG. FIG. 6 shows that, in the elastic wave device of the present embodiment, when p is the center-to-center distance between adjacent electrodes or the average distance of the center-to-center distances, and d is the average thickness of the piezoelectric layer 2, d/2p is used as a resonator. 2 is an explanatory diagram showing the relationship between , and the fractional band. FIG.
 図6に示すように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As shown in FIG. 6, when d/2p exceeds 0.25, that is, when d/p>0.5, even if d/p is adjusted, the fractional bandwidth is less than 5%. On the other hand, when d/2p≦0.25, that is, when d/p≦0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. , that is, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more. In addition, by adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear primary mode bulk wave.
 なお、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極指3、電極指4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極指3、電極指4の中心間距離の平均距離をpとすればよい。 Note that at least one pair of electrodes may be one pair, and the above p is the center-to-center distance between adjacent electrode fingers 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrode fingers 3 and 4 should be p.
 また、圧電層2の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Also, for the thickness d of the piezoelectric layer 2, if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
 図7は、本実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。弾性波装置101では、圧電層2の第1の主面2a上において、電極指3と電極指4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。 FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of this embodiment. In elastic wave device 101 , a pair of electrodes having electrode fingers 3 and 4 are provided on first main surface 2 a of piezoelectric layer 2 . Note that K in FIG. 7 is the intersection width. As described above, in the elastic wave device of the present disclosure, the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
 弾性波装置1では、好ましくは、複数の電極指3、電極指4において、いずれかの隣り合う電極指3、電極指4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極指3、電極指4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図8及び図9を参照して説明する。 In the elastic wave device 1, preferably, the excitation region is an overlapping region of the plurality of electrode fingers 3 and 4 when viewed in the direction in which any adjacent electrode fingers 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the adjacent electrode fingers 3 and 4 with respect to the region C satisfies MR≦1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 8 and 9. FIG.
 図8は、本実施形態の弾性波装置の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°、0°、90°)とした。また、上記メタライゼーション比MR=0.35とした。 FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of this embodiment. A spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Also, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極指3、電極指4に着目した場合、この1対の電極指3、電極指4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極指3と電極指4とを、電極指3、電極指4の長さ方向と直交する方向すなわち対向方向に視たときに電極指3における電極指4と重なり合っている領域、電極指4における電極指3と重なり合っている領域、及び、電極指3と電極指4との間の領域における電極指3と電極指4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極指3、電極指4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 1B. In the electrode structure of FIG. 1B, when focusing on the pair of electrode fingers 3 and 4, it is assumed that only the pair of electrode fingers 3 and 4 are provided. In this case, the excitation region C is the portion surrounded by the dashed-dotted line. The excitation region C is a region where the electrode fingers 3 and 4 overlap with the electrode fingers 4 when viewed in a direction perpendicular to the length direction of the electrode fingers 3 and 4, that is, in a facing direction. a region where the electrode fingers 3 overlap each other; and a region between the electrode fingers 3 and 4 where the electrode fingers 3 and 4 overlap each other. The area of the electrode fingers 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
 なお、複数対の電極指3、電極指4が設けられている場合、励振領域Cの面積の合計に対する全励振領域Cに含まれているメタライゼーション部分の割合をMRとすればよい。 When a plurality of pairs of electrode fingers 3 and 4 are provided, the ratio of the metallization portion included in the entire excitation region C to the total area of the excitation region C should be MR.
 図9は、本実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。なお、比帯域については、圧電層2の膜厚や電極指3、電極指4の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層2を用いた場合の結果であるが、他のカット角の圧電層2を用いた場合においても、同様の傾向となる。 FIG. 9 shows the ratio of the bandwidth of the elastic wave device of the present embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. It is an explanatory view showing a relationship. The ratio band was adjusted by changing the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4 . FIG. 9 shows the results when the piezoelectric layer 2 made of Z-cut LiNbO 3 is used, but the same tendency is obtained when the piezoelectric layer 2 with other cut angles is used.
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極指3、電極指4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by ellipse J in FIG. 9, the spurious is as large as 1.0. As is clear from FIG. 9, when the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4, the spurious response can be reduced.
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。本実施形態の弾性波装置1において、d/2pと、MRが異なる様々な弾性波装置1を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. In the elastic wave device 1 of the present embodiment, various elastic wave devices 1 with different d/2p and MR were configured and the fractional bandwidth was measured. The hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less. The boundary between the hatched area and the non-hatched area is expressed by MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≤1.75(d/p)+0.075. In that case, it is easy to set the fractional bandwidth to 17% or less. More preferably, it is the area on the right side of MR=3.5(d/2p)+0.05 indicated by the dashed-dotted line D1 in FIG. That is, if MR≤1.75(d/p)+0.05, the fractional bandwidth can be reliably reduced to 17% or less.
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域である。領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. A hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained. When the range of the area is approximated, it becomes the range represented by the following formulas (1), (2) and (3).
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2)または(0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
(0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。 Therefore, in the case of the Euler angle range of formula (1), formula (2), or formula (3), the fractional band can be sufficiently widened, which is preferable.
 図12は、本実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。図12において、空洞部9の外周縁を破線で示す。本開示の弾性波装置は、板波を利用するものであってもよい。この場合、図12に示すように、弾性波装置301は、反射器310、311を有する。反射器310、311は、圧電層2の電極指3、4の弾性波伝搬方向両側に設けられる。弾性波装置301では、空洞部9上の電極指3、4に、交流電界を印加することにより、板波としてのラム波が励振される。このとき、反射器310、311が両側に設けられているため、板波としてのラム波による共振特性を得ることができる。 FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to this embodiment. In FIG. 12, the outer periphery of the hollow portion 9 is indicated by broken lines. The elastic wave device of the present disclosure may utilize plate waves. In this case, the elastic wave device 301 has reflectors 310 and 311 as shown in FIG. Reflectors 310 and 311 are provided on both sides of the electrode fingers 3 and 4 of the piezoelectric layer 2 in the acoustic wave propagation direction. In the acoustic wave device 301, a Lamb wave as a plate wave is excited by applying an alternating electric field to the electrode fingers 3 and 4 on the cavity 9. FIG. At this time, since the reflectors 310 and 311 are provided on both sides, it is possible to obtain resonance characteristics due to Lamb waves as Lamb waves.
 以上説明したように、弾性波装置1、101では、厚み滑り1次モードのバルク波が利用されている。また、弾性波装置1、101では、電極指3及び電極指4は隣り合う電極同士であり、圧電層2の厚みをd、電極指3及び電極指4の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置が小型化しても、Q値を高めることができる。 As described above, the elastic wave devices 1 and 101 use bulk waves in the primary mode of thickness shear. In the elastic wave devices 1 and 101, the electrode fingers 3 and 4 are adjacent electrodes, and when the thickness of the piezoelectric layer 2 is d and the distance between the centers of the electrode fingers 3 and 4 is p, d/p is 0.5 or less. As a result, the Q value can be increased even if the elastic wave device is miniaturized.
 弾性波装置1、101では、圧電層2がニオブ酸リチウムまたはタンタル酸リチウムで形成されている。圧電層2の第1の主面2aまたは第2の主面2bには、圧電層2の厚み方向に交差する方向において対向する電極指3及び電極指4があり、電極指3及び電極指4の上を保護膜で覆うことが望ましい。 In elastic wave devices 1 and 101, piezoelectric layer 2 is made of lithium niobate or lithium tantalate. The first main surface 2a or the second main surface 2b of the piezoelectric layer 2 has electrode fingers 3 and 4 facing each other in a direction intersecting the thickness direction of the piezoelectric layer 2. should be covered with a protective film.
(第1実施形態)
 図13は、第1実施形態に係る弾性波装置の平面図である。図14は、図13のXIV-XIV線に沿った断面を示す図である。図14のQ部分は、貫通孔2Hの周囲の部分拡大断面図である。なお、図13に示す例では、第1のバスバー電極5、第2のバスバー電極6は、圧電層2の第1の主面2aに設けられた配線12と接続されているが、この構成は単なる一例である。
(First embodiment)
FIG. 13 is a plan view of the elastic wave device according to the first embodiment; FIG. 14 is a diagram showing a cross section along line XIV-XIV in FIG. A portion Q in FIG. 14 is a partially enlarged sectional view around the through hole 2H. In the example shown in FIG. 13, the first busbar electrode 5 and the second busbar electrode 6 are connected to the wiring 12 provided on the first main surface 2a of the piezoelectric layer 2, but this configuration is Just an example.
 図13及び図14に示すように、第1実施形態に係る弾性波装置1Aでは、支持基板8の、Z方向の圧電層2側の面に、空洞部9が設けられている。空洞部9は、Z方向に平面視して、機能電極30と少なくとも一部が重なるように設けられる。図14に示すように、空洞部9は、中間層7の一部に設けられ、圧電層2と、中間層7とに囲まれた空間部となっている。空洞部9は、圧電層2と、支持基板8と、中間層7とに囲まれた空間となっていてもよい。支持基板8は、例えばシリコン基板である。中間層7は、例えば酸化ケイ素である。また、圧電層は例えば、ニオブ酸リチウムまたはタンタル酸リチウムを含む。圧電層2が、ニオブ酸リチウムまたはタンタル酸リチウムと、不可避不純物とを含んでいてもよい。機能電極30は、ここでは対向する第1のバスバー電極5、第2のバスバー電極6と、第1のバスバー電極5に接続される電極指3と、第2のバスバー電極6に接続される電極指4と、を有するIDT電極である。機能電極30は、圧電層2の第1の主面2aに設けられているが、圧電層2の第1の主面2aとは反対側の第2の主面に設けられてもよい。 As shown in FIGS. 13 and 14, in an elastic wave device 1A according to the first embodiment, a hollow portion 9 is provided on the surface of the support substrate 8 on the side of the piezoelectric layer 2 in the Z direction. The hollow portion 9 is provided so as to at least partially overlap the functional electrode 30 when viewed in the Z direction. As shown in FIG. 14 , the cavity 9 is provided in a part of the intermediate layer 7 and is a space surrounded by the piezoelectric layer 2 and the intermediate layer 7 . The cavity 9 may be a space surrounded by the piezoelectric layer 2 , the support substrate 8 and the intermediate layer 7 . The support substrate 8 is, for example, a silicon substrate. The intermediate layer 7 is, for example, silicon oxide. The piezoelectric layer also includes, for example, lithium niobate or lithium tantalate. The piezoelectric layer 2 may contain lithium niobate or lithium tantalate and inevitable impurities. The functional electrode 30 includes the first busbar electrode 5 and the second busbar electrode 6 facing each other, the electrode fingers 3 connected to the first busbar electrode 5, and the electrodes connected to the second busbar electrode 6. finger 4 and an IDT electrode. The functional electrode 30 is provided on the first main surface 2a of the piezoelectric layer 2, but may be provided on the second main surface of the piezoelectric layer 2 opposite to the first main surface 2a.
 図13に示すように、第1実施形態に係る弾性波装置1Aにおいて、圧電層2には、Z方向に平面視して空洞部9と重なる位置に、圧電層2を貫通する貫通孔2Hが設けられている。 As shown in FIG. 13, in the acoustic wave device 1A according to the first embodiment, the piezoelectric layer 2 has a through hole 2H penetrating through the piezoelectric layer 2 at a position overlapping with the hollow portion 9 when viewed in plan in the Z direction. is provided.
 貫通孔2Hは、空洞部9となる部分に埋め込まれた犠牲層をエッチングするためのエッチングホールである。エッチング液は、圧電層2の第1の主面2aから注入される。圧電層2の第1の主面2aにおける貫通孔2Hの開口面積が、圧電層2の第2の主面2bにおける貫通孔2Hの開口面積よりも大きいと、貫通孔2Hの側壁2Haの断面がテーパ形状となる。圧電層2の第2の主面2bと貫通孔2Hの側壁2Haとがなす第1角度θが鋭角となり、エッチング液がスムーズに注入される。その結果、圧電層2に生じるプロセスダメージが抑制される。 The through hole 2H is an etching hole for etching the sacrificial layer embedded in the portion that will become the hollow portion 9 . The etchant is injected from the first main surface 2 a of the piezoelectric layer 2 . When the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2, the cross section of the side wall 2Ha of the through hole 2H is It has a tapered shape. The first angle θ formed by the second main surface 2b of the piezoelectric layer 2 and the side wall 2Ha of the through hole 2H becomes an acute angle, and the etchant is smoothly injected. As a result, process damage to the piezoelectric layer 2 is suppressed.
 図15は、圧電層の第2の主面と貫通孔の側壁とがなす第1角と、最大ミーゼス応力との関係を示す説明図である。図15に示すように、第1角度θが40度より小さくとなると、最大ミーゼス応力が上昇する。第1角度θが40度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することを抑制しやすくなる。第1角度θが60度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することをより抑制しやすくなる。 FIG. 15 is an explanatory diagram showing the relationship between the first angle formed by the second main surface of the piezoelectric layer and the side wall of the through hole and the maximum von Mises stress. As shown in FIG. 15, when the first angle θ becomes smaller than 40 degrees, the maximum von Mises stress increases. When the first angle θ is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H. When the first angle θ is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
 以上説明したように、第1実施形態に係る弾性波装置1Aは、第1方向に厚みを有する支持基板8と、支持基板8の第1方向に設けられた圧電層2と、圧電層2の第1方向に設けられ、機能電極30と、を備える。機能電極30は、第1方向に直交する第2方向に延びる複数の電極指3と、第1方向及び第2方向に直交する第3方向について複数の電極指3のいずれかと対向し、第2方向に延びる複数の電極指4と、を有する。支持基板8と圧電層2との間には、第1方向に平面視して、機能電極30と少なくとも一部が重なる位置に空洞部(空間部)9が設けられている。圧電層2を貫通する少なくとも1つの貫通孔2Hがあり、貫通孔2Hが空洞部9に連通している。少なくとも1つの貫通孔2Hにおいて、圧電層2の第1の主面2aにおける貫通孔2Hの開口面積が、圧電層2の第2の主面2bにおける貫通孔2Hの開口面積よりも大きい。 As described above, the elastic wave device 1A according to the first embodiment includes the support substrate 8 having a thickness in the first direction, the piezoelectric layer 2 provided in the first direction on the support substrate 8, and the piezoelectric layer 2. and a functional electrode 30 provided in the first direction. The functional electrode 30 faces any one of the plurality of electrode fingers 3 extending in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction. and a plurality of electrode fingers 4 extending in a direction. A hollow portion (space portion) 9 is provided between the support substrate 8 and the piezoelectric layer 2 at a position at least partially overlapping the functional electrode 30 when viewed in the first direction. There is at least one through hole 2H that penetrates the piezoelectric layer 2 and the through hole 2H communicates with the cavity 9 . In at least one through hole 2H, the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2.
 これにより、エッチング液がスムーズに貫通孔2Hへ注入される。その結果、圧電層2に生じるプロセスダメージが抑制される。 As a result, the etchant is smoothly injected into the through holes 2H. As a result, process damage to the piezoelectric layer 2 is suppressed.
 望ましい態様として、複数の電極指3と複数の電極指4のうち、隣り合う電極指3と電極指4との間の中心間距離をpとした場合、圧電層2の厚みは、2p以下である。これにより、弾性波装置1を小型化でき、かつQ値を高めることができる。 As a preferred embodiment, the thickness of the piezoelectric layer 2 is 2p or less, where p is the center-to-center distance between adjacent electrode fingers 3 and 4 among the plurality of electrode fingers 3 and 4. be. Thereby, the acoustic wave device 1 can be miniaturized and the Q value can be increased.
 より望ましい態様として、圧電層2は、ニオブ酸リチウムまたはタンタル酸リチウムを含む。これにより、良好な共振特性が得られる弾性波装置を提供することができる。 As a more desirable embodiment, the piezoelectric layer 2 contains lithium niobate or lithium tantalate. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
 さらに望ましい態様として、圧電層2を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある。この場合、比帯域を十分に広くすることができる。 In a more desirable mode, the Euler angles (φ, θ, ψ) of lithium niobate or lithium tantalate constituting the piezoelectric layer 2 are within the range of the following formula (1), formula (2), or formula (3). It is in. In this case, the fractional bandwidth can be widened sufficiently.
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
(0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 望ましい態様として、弾性波装置1は、厚み滑りモードのバルク波を利用可能に構成されている。これにより、結合係数が高まり、良好な共振特性が得られる弾性波装置を提供することができる。 As a desirable aspect, the elastic wave device 1 is configured to be able to use bulk waves in the thickness shear mode. As a result, it is possible to provide an elastic wave device with a high coupling coefficient and good resonance characteristics.
 より望ましい態様として、圧電層2の厚みをd、隣り合う電極指3と電極指4との中心間距離をpとした場合、d/p≦0.5である。これにより、弾性波装置1を小型化でき、かつQ値を高めることができる。 As a more desirable aspect, d/p≦0.5, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between the adjacent electrode fingers 3 and 4 . Thereby, the acoustic wave device 1 can be miniaturized and the Q value can be increased.
 さらに望ましい態様として、d/pが0.24以下である。これにより、弾性波装置1を小型化でき、かつQ値を高めることができる。 A more desirable aspect is that d/p is 0.24 or less. Thereby, the acoustic wave device 1 can be miniaturized and the Q value can be increased.
 望ましい態様として、隣り合う電極指3及び電極指4が対向している方向において重なっている領域が励振領域Cであり、励振領域Cに対する、複数の電極指3及び複数の電極指4のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす。この場合、比帯域を確実に17%以下にすることができる。 As a preferred embodiment, the region where the adjacent electrode fingers 3 and 4 overlap in the facing direction is the excitation region C, and the metallization of the plurality of electrode fingers 3 and the plurality of electrode fingers 4 to the excitation region C. When the ratio is MR, MR≦1.75(d/p)+0.075 is satisfied. In this case, the fractional bandwidth can be reliably set to 17% or less.
 望ましい態様として、弾性波装置301は、板波を利用可能に構成されていてもよい。これにより、良好な共振特性が得られる弾性波装置を提供することができる。 As a desirable aspect, the elastic wave device 301 may be configured to be able to use plate waves. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
(第2実施形態)
 図16は、第2実施形態の貫通孔の周囲の部分拡大断面図である。第2実施形態では、第1実施形態と比較して、貫通孔2Hの側壁の断面が2段階のテーパ形状になっている。
(Second embodiment)
FIG. 16 is a partially enlarged cross-sectional view around the through hole of the second embodiment. In the second embodiment, compared with the first embodiment, the cross section of the side wall of the through hole 2H is tapered in two stages.
 圧電層2の第2の主面2bと貫通孔2Hの第1側壁2Ha1とがなす第1角度θ1は、第1実施形態の第1角度θと同様である。第1角度θ1が40度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することを抑制しやすくなる。第1角度θ1が60度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することをより抑制しやすくなる。 The first angle θ1 between the second main surface 2b of the piezoelectric layer 2 and the first side wall 2Ha1 of the through hole 2H is the same as the first angle θ in the first embodiment. When the first angle θ1 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H. When the first angle θ1 is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
 圧電層2の第1の主面2aと交差する貫通孔2Hの第2側壁2Ha2と、圧電層2の第2の主面2bと平行面L2bとのなす第2角度θ2は、第1角度θ1とは異なる角度となっている。第2実施形態では、第1角度θ1は、第2角度θ2よりも小さい。クラックを発生させる応力は、圧電層2の第2の主面2b側に生じやすいので、第1角度θ1は、第2角度θ2よりも小さくすることで、クラックを抑制できる。 A second angle θ2 between the second side wall 2Ha2 of the through hole 2H intersecting the first main surface 2a of the piezoelectric layer 2 and the parallel surface L2b with the second main surface 2b of the piezoelectric layer 2 is the first angle θ1. It has a different angle. In the second embodiment, the first angle θ1 is smaller than the second angle θ2. Since the stress that causes cracks tends to occur on the second main surface 2b side of the piezoelectric layer 2, cracks can be suppressed by making the first angle θ1 smaller than the second angle θ2.
(第3実施形態)
 図17は、第3実施形態の貫通孔の周囲の部分拡大断面図である。第3実施形態では、第1実施形態と比較して、貫通孔2Hの側壁の断面が2段階のテーパ形状になっている。
(Third Embodiment)
FIG. 17 is a partially enlarged cross-sectional view around the through-hole of the third embodiment. In the third embodiment, compared with the first embodiment, the cross section of the side wall of the through hole 2H is tapered in two stages.
 圧電層2の第2の主面2bと貫通孔2Hの第1側壁2Ha1とがなす第1角度θ1は、第1実施形態の第1角度θと同様である。第1角度θ1が40度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することを抑制しやすくなる。第1角度θ1が60度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することをより抑制しやすくなる。 The first angle θ1 between the second main surface 2b of the piezoelectric layer 2 and the first side wall 2Ha1 of the through hole 2H is the same as the first angle θ in the first embodiment. When the first angle θ1 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H. When the first angle θ1 is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
 圧電層2の第1の主面2aと交差する貫通孔2Hの第2側壁2Ha2と、圧電層2の第2の主面2bと平行面L2bとのなす第2角度θ2は、第1角度θ1とは異なる角度となっている。第3実施形態では、第2角度θ2は、鋭角となっている。これにより、圧電層2の第1の主面2aにおける貫通孔2Hの開口面積が、圧電層2の第2の主面2bにおける貫通孔2Hの開口面積よりもより大きくなる。 A second angle θ2 between the second side wall 2Ha2 of the through hole 2H intersecting the first main surface 2a of the piezoelectric layer 2 and the parallel surface L2b with the second main surface 2b of the piezoelectric layer 2 is the first angle θ1. It has a different angle. In the third embodiment, the second angle θ2 is an acute angle. As a result, the opening area of the through holes 2H on the first main surface 2a of the piezoelectric layer 2 becomes larger than the opening area of the through holes 2H on the second main surface 2b of the piezoelectric layer 2 .
(第4実施形態)
 図18は、第4実施形態に係る弾性波装置の平面図である。第1実施形態の貫通孔2Hは、複数の電極指3及び複数の電極指4に対して、X方向にずれて重ならない位置に配置されていたのに対し、第4実施形態の貫通孔2Hbは、複数の電極指3及び複数の電極指4に対して、Y方向にずれて重ならない位置に配置されている。
(Fourth embodiment)
FIG. 18 is a plan view of an elastic wave device according to a fourth embodiment; The through-hole 2H of the first embodiment is arranged at a position that is shifted in the X direction and does not overlap with the plurality of electrode fingers 3 and the plurality of electrode fingers 4, whereas the through-hole 2Hb of the fourth embodiment are arranged at positions that are displaced in the Y direction and do not overlap with the plurality of electrode fingers 3 and the plurality of electrode fingers 4 .
 図18に示すように、貫通孔2Hbは、圧電層2に設けられる貫通孔である。貫通孔2Hbは、Z方向に平面視して、少なくとも1つの電極指3の端部3aと、第2のバスバー電極6と、の間に設けられている。または、貫通孔2Hbは、Z方向に平面視して、少なくとも1つの電極指4の端部4aと、第1のバスバー電極5と、の間に設けられている。貫通孔2Hbは、電極指3の端部3a同士又は電極指4の端部4aを結んだ仮想線よりもY方向外側にずれている。 As shown in FIG. 18, the through hole 2Hb is a through hole provided in the piezoelectric layer 2. As shown in FIG. The through hole 2Hb is provided between the end 3a of at least one electrode finger 3 and the second busbar electrode 6 when viewed in plan in the Z direction. Alternatively, the through hole 2Hb is provided between the end portion 4a of at least one electrode finger 4 and the first busbar electrode 5 in a plan view in the Z direction. The through hole 2Hb is shifted outward in the Y direction from the imaginary line connecting the ends 3a of the electrode fingers 3 or the ends 4a of the electrode fingers 4 .
 貫通孔2Hbは、圧電層2をZ方向に貫通し、空洞部9と連通している。貫通孔2HbのQ部分は、図14、図16又は図17に示す断面形状を有している。これにより、圧電層2の第1の主面2aにおける貫通孔2Hbの開口面積が、圧電層2の第2の主面2bにおける貫通孔2Hbの開口面積よりもより大きくなる。 The through-hole 2Hb penetrates the piezoelectric layer 2 in the Z direction and communicates with the hollow portion 9 . A portion Q of the through hole 2Hb has a cross-sectional shape shown in FIG. 14, FIG. 16 or FIG. As a result, the opening area of the through holes 2Hb in the first main surface 2a of the piezoelectric layer 2 becomes larger than the opening area of the through holes 2Hb in the second main surface 2b of the piezoelectric layer 2 .
 貫通孔2Hbを設けることで、Y方向に弾性波のエネルギーが漏洩することを抑制できるので、弾性波のエネルギー損失を抑制できる。また、貫通孔2Hbを設けることで、スプリアスを選択的に漏洩させ、スプリアスの発生を抑制しうる。これにより、Q値を向上させることができる。 By providing the through hole 2Hb, it is possible to suppress the energy of the elastic wave from leaking in the Y direction, thereby suppressing the energy loss of the elastic wave. In addition, by providing the through hole 2Hb, spurious emissions can be selectively leaked and the occurrence of spurious emissions can be suppressed. Thereby, the Q value can be improved.
(第5実施形態)
 図23は、第5実施形態において、機能電極の他の断面の例を示す図である。第5実施形態の機能電極30は、上部電極31及び下部電極32を有する。上部電極31と下部電極32とは、圧電層2を厚み方向に挟む。第5実施形態の弾性波装置は、BAW素子(Bulk Acoustic Wave 素子)とよばれることもある。
(Fifth embodiment)
FIG. 23 is a diagram showing another cross-sectional example of the functional electrode in the fifth embodiment. A functional electrode 30 of the fifth embodiment has an upper electrode 31 and a lower electrode 32 . The upper electrode 31 and the lower electrode 32 sandwich the piezoelectric layer 2 in the thickness direction. The elastic wave device of the fifth embodiment is sometimes called a BAW element (Bulk Acoustic Wave element).
 貫通孔2Hは、空洞部9となる部分に埋め込まれた犠牲層をエッチングするためのエッチングホールである。エッチング液は、圧電層2の第1の主面2aから注入される。圧電層2の第1の主面2aにおける貫通孔2Hの開口面積が、圧電層2の第2の主面2bにおける貫通孔2Hの開口面積よりも大きいと、貫通孔2Hの側壁2Haの断面がテーパ形状となる。圧電層2の第2の主面2bと貫通孔2Hの側壁2Haとがなす第1角度θが鋭角となり、エッチング液がスムーズに注入される。その結果、圧電層2に生じるプロセスダメージが抑制される。 The through hole 2H is an etching hole for etching the sacrificial layer embedded in the portion that will become the hollow portion 9 . The etchant is injected from the first main surface 2 a of the piezoelectric layer 2 . When the opening area of the through hole 2H on the first main surface 2a of the piezoelectric layer 2 is larger than the opening area of the through hole 2H on the second main surface 2b of the piezoelectric layer 2, the cross section of the side wall 2Ha of the through hole 2H is It has a tapered shape. The first angle θ formed by the second main surface 2b of the piezoelectric layer 2 and the side wall 2Ha of the through hole 2H becomes an acute angle, and the etchant is smoothly injected. As a result, process damage to the piezoelectric layer 2 is suppressed.
 図19に示す第1角度θが40度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することを抑制しやすくなる。第1角度θが60度以上であると、貫通孔2Hを起因として圧電層2にクラックが発生することをより抑制しやすくなる。 When the first angle θ shown in FIG. 19 is 40 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H. When the first angle θ is 60 degrees or more, it becomes easier to suppress the occurrence of cracks in the piezoelectric layer 2 caused by the through holes 2H.
 なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。 It should be noted that the above-described embodiments are intended to facilitate understanding of the present disclosure, and are not intended to limit and interpret the present disclosure. This disclosure may be modified/modified without departing from its spirit, and this disclosure also includes equivalents thereof.
1、1A、101、301 弾性波装置
2 圧電層
2a 第1の主面
2b 第2の主面
2H、2Hb 貫通孔
2Ha 側壁
2Ha1 第1側壁
2Ha2 第2側壁
3 電極指(第1の電極指)
4 電極指(第2の電極指)
5 第1のバスバー電極
6 第2のバスバー電極
7 中間層
8 支持基板
9 空洞部
12 配線
30 機能電極
201 圧電層
1, 1A, 101, 301 elastic wave device 2 piezoelectric layer 2a first main surface 2b second main surface 2H, 2Hb through hole 2Ha side wall 2Ha1 first side wall 2Ha2 second side wall 3 electrode finger (first electrode finger)
4 electrode finger (second electrode finger)
5 First busbar electrode 6 Second busbar electrode 7 Intermediate layer 8 Support substrate 9 Cavity 12 Wiring 30 Functional electrode 201 Piezoelectric layer

Claims (17)

  1.  第1方向に厚みを有する支持基板と、
     前記支持基板の前記第1方向に設けられ、かつ第1の主面と、前記第1の主面の反対側であって、前記支持基板側にある第2の主面とを有する圧電層と、
     前記圧電層に設けられた機能電極と、
     を備え、
     前記支持基板と前記圧電層との間には、前記第1方向に平面視して、前記機能電極と少なくとも一部が重なる位置に空間部が設けられており、
     前記圧電層を貫通する少なくとも1つの貫通孔があり、前記貫通孔が前記空間部に連通しており、
     前記圧電層の前記第1の主面における前記貫通孔の開口面積は、前記圧電層の前記第2の主面における前記貫通孔の開口面積よりも大きい、弾性波装置。
    a support substrate having a thickness in a first direction;
    a piezoelectric layer provided in the first direction of the support substrate and having a first main surface and a second main surface opposite to the first main surface and on the side of the support substrate; ,
    a functional electrode provided on the piezoelectric layer;
    with
    A space is provided between the support substrate and the piezoelectric layer at a position where at least a portion of the functional electrode overlaps with the functional electrode when viewed in plan in the first direction,
    there is at least one through-hole penetrating the piezoelectric layer, the through-hole communicating with the space,
    The elastic wave device, wherein the opening area of the through hole on the first main surface of the piezoelectric layer is larger than the opening area of the through hole on the second main surface of the piezoelectric layer.
  2.  前記圧電層の断面において、前記圧電層の前記第2の主面と、前記貫通孔の第1側壁とがなす第1角度は、鋭角である、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein a first angle formed by said second main surface of said piezoelectric layer and said first side wall of said through hole in a cross section of said piezoelectric layer is an acute angle.
  3.  前記第1角度は、40°以上である、請求項2に記載の弾性波装置。 The elastic wave device according to claim 2, wherein the first angle is 40° or more.
  4.  前記第1角度は、60°以上である、請求項2に記載の弾性波装置。 The elastic wave device according to claim 2, wherein the first angle is 60° or more.
  5.  前記圧電層の断面において、前記圧電層の前記第1の主面と交差する前記貫通孔の第2側壁と、前記圧電層の前記第2の主面と平行な平行面とがなす第2角度は、鋭角である、請求項2に記載の弾性波装置。 In the cross section of the piezoelectric layer, a second angle formed between a second side wall of the through hole intersecting the first main surface of the piezoelectric layer and a parallel plane parallel to the second main surface of the piezoelectric layer. is an acute angle.
  6.  前記圧電層の断面において、前記圧電層の前記第2の主面と前記貫通孔の前記第1側壁とがなす前記第1角度は、前記平行面と前記貫通孔の前記第2側壁とがなす前記第2角度より小さい、請求項5に記載の弾性波装置。 In the cross section of the piezoelectric layer, the first angle formed by the second main surface of the piezoelectric layer and the first side wall of the through hole is defined by the parallel plane and the second side wall of the through hole. The elastic wave device according to claim 5, wherein the angle is smaller than the second angle.
  7.  前記支持基板の上に設けられた中間層をさらに備え、前記中間層の一部には、前記空間部がある、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, further comprising an intermediate layer provided on said support substrate, wherein said intermediate layer has said space in a part thereof.
  8.  前記機能電極は、前記第1方向に交差する第2方向に延びる1つ以上の第1電極指と、前記第2方向に直交する第3方向に前記1つ以上の第1電極指と対向し、前記第2方向に延びる1つ以上の第2電極指と、を有する、請求項1から7のいずれか1項に記載の弾性波装置。 The functional electrode has one or more first electrode fingers extending in a second direction intersecting the first direction and faces the one or more first electrode fingers in a third direction perpendicular to the second direction. , and one or more second electrode fingers extending in the second direction.
  9.  前記圧電層の厚みは、前記1つ以上の第1電極指と前記1つ以上の第2電極指のうち、隣り合う第1電極指と第2電極指との間の中心間距離をpとした場合に2p以下である、請求項8に記載の弾性波装置。 The thickness of the piezoelectric layer is such that, of the one or more first electrode fingers and the one or more second electrode fingers, p is the center-to-center distance between adjacent first electrode fingers and second electrode fingers. The elastic wave device according to claim 8, wherein the elastic wave device is 2p or less when
  10.  前記機能電極は、前記第1方向に前記圧電層を挟んで対向する上部電極及び下部電極を有する、請求項1から7のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, wherein the functional electrode has an upper electrode and a lower electrode facing each other with the piezoelectric layer interposed therebetween in the first direction.
  11.  前記圧電層が、ニオブ酸リチウムまたはタンタル酸リチウムを含む、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the piezoelectric layer contains lithium niobate or lithium tantalate.
  12.  厚み滑りモードのバルク波を利用可能に構成されている、請求項8に記載の弾性波装置。 The elastic wave device according to claim 8, configured to be able to use bulk waves in thickness shear mode.
  13.  前記圧電層の厚みをd、前記1つ以上の第1電極指と前記1つ以上の第2電極指のうち、隣り合う第1電極指と第2電極指との中心間距離をpとした場合、d/p≦0.5である、請求項8に記載の弾性波装置。 Let d be the thickness of the piezoelectric layer, and let p be the center-to-center distance between the one or more first electrode fingers and the one or more second electrode fingers that are adjacent to each other. 9. The elastic wave device according to claim 8, wherein d/p≤0.5.
  14.  d/pが0.24以下である、請求項13に記載の弾性波装置。 The elastic wave device according to claim 13, wherein d/p is 0.24 or less.
  15.  前記機能電極は、前記第1方向に交差する第2方向に延びる複数の第1電極指と、前記第2方向に直交する第3方向に前記複数の第1電極指のいずれかと対向し、前記第2方向に延びる複数の第2電極指と、を有し、隣り合う前記第1電極指と前記第2電極指とが対向している方向に視たときに重なっている領域が励振領域であり、前記励振領域に対する、前記複数の第1電極指及び前記複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項1から7のいずれか1項に記載の弾性波装置。 The functional electrode faces a plurality of first electrode fingers extending in a second direction that intersects with the first direction, and faces any one of the plurality of first electrode fingers in a third direction that intersects with the second direction. and a plurality of second electrode fingers extending in a second direction, and an excitation region is a region where the adjacent first electrode fingers and the second electrode fingers overlap when viewed in the facing direction. wherein MR≦1.75(d/p)+0.075 is satisfied, where MR is a metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers to the excitation region. Item 8. The elastic wave device according to any one of Items 1 to 7.
  16.  板波を利用可能に構成されている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, configured to be able to use plate waves.
  17.  前記圧電層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
     前記ニオブ酸リチウムまたは前記タンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1に記載の弾性波装置。
     (0°±10°、0°~20°、任意のψ)  …式(1)
     (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
    the piezoelectric layer comprises lithium niobate or lithium tantalate;
    The elastic wave according to claim 1, wherein Euler angles (φ, θ, ψ) of the lithium niobate or the lithium tantalate are in the range of the following formula (1), formula (2), or formula (3) Device.
    (0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
    (0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
PCT/JP2022/015737 2021-03-31 2022-03-29 Elastic wave device WO2022210809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163168330P 2021-03-31 2021-03-31
US63/168,330 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210809A1 true WO2022210809A1 (en) 2022-10-06

Family

ID=83456458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015737 WO2022210809A1 (en) 2021-03-31 2022-03-29 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2022210809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085408A1 (en) * 2021-11-15 2023-05-19 株式会社村田製作所 Elastic wave device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022305A (en) * 2006-07-13 2008-01-31 Ube Ind Ltd Thin-film piezoelectric resonator and its manufacturing method
WO2012073871A1 (en) * 2010-11-30 2012-06-07 株式会社村田製作所 Elastic wave device and method for manufacturing same
WO2016147687A1 (en) * 2015-03-13 2016-09-22 株式会社村田製作所 Elastic wave device and production method for same
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
WO2021012396A1 (en) * 2019-07-19 2021-01-28 中芯集成电路(宁波)有限公司上海分公司 Packaging module and packaging method for baw resonator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022305A (en) * 2006-07-13 2008-01-31 Ube Ind Ltd Thin-film piezoelectric resonator and its manufacturing method
WO2012073871A1 (en) * 2010-11-30 2012-06-07 株式会社村田製作所 Elastic wave device and method for manufacturing same
WO2016147687A1 (en) * 2015-03-13 2016-09-22 株式会社村田製作所 Elastic wave device and production method for same
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
WO2021012396A1 (en) * 2019-07-19 2021-01-28 中芯集成电路(宁波)有限公司上海分公司 Packaging module and packaging method for baw resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085408A1 (en) * 2021-11-15 2023-05-19 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
US20230275556A1 (en) Acoustic wave device
WO2022210809A1 (en) Elastic wave device
US20230308072A1 (en) Acoustic wave device
US20230327636A1 (en) Acoustic wave device
WO2023013742A1 (en) Elastic wave device
WO2023002790A1 (en) Elastic wave device
WO2022186202A1 (en) Elastic wave device
WO2022186201A1 (en) Elastic wave device
WO2023140362A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
WO2023136292A1 (en) Elastic wave device
WO2022265071A1 (en) Elastic wave device
WO2023140331A1 (en) Elastic wave device
WO2022255482A1 (en) Elastic wave device
WO2022211055A1 (en) Elastic wave device
WO2023286605A1 (en) Elastic wave device
WO2023167316A1 (en) Elastic wave device
WO2022264914A1 (en) Elastic wave device
WO2023140272A1 (en) Elastic wave device
WO2023191089A1 (en) Elastic wave device
WO2022210953A1 (en) Elastic wave device
WO2023048140A1 (en) Elastic wave device
WO2022244635A1 (en) Piezoelectric bulk wave device
WO2023048144A1 (en) Elastic wave device
WO2022211104A1 (en) Elastic wave device
WO2023085408A1 (en) Elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781020

Country of ref document: EP

Kind code of ref document: A1