WO2023140272A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2023140272A1
WO2023140272A1 PCT/JP2023/001277 JP2023001277W WO2023140272A1 WO 2023140272 A1 WO2023140272 A1 WO 2023140272A1 JP 2023001277 W JP2023001277 W JP 2023001277W WO 2023140272 A1 WO2023140272 A1 WO 2023140272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wave device
elastic wave
piezoelectric layer
electrodes
Prior art date
Application number
PCT/JP2023/001277
Other languages
French (fr)
Japanese (ja)
Inventor
和則 井上
昌和 三村
明洋 井山
宗久 渡辺
年麿 米田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023140272A1 publication Critical patent/WO2023140272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an acoustic wave device including a piezoelectric layer (piezoelectric layer).
  • Patent Document 1 discloses an elastic wave device that uses plate waves.
  • An acoustic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode.
  • the support is provided with a cavity.
  • a piezoelectric substrate is provided on the support so as to overlap the cavity.
  • the IDT electrode is provided on the piezoelectric substrate so as to overlap the cavity.
  • plate waves are excited by IDT electrodes.
  • the edge of the cavity does not include a straight portion extending parallel to the propagation direction of the Lamb waves excited by the IDT electrodes.
  • An object of the present disclosure is to provide an elastic wave device capable of suppressing the occurrence of cracks in the membrane portion.
  • An elastic wave device includes: a support substrate; a piezoelectric layer provided on the support substrate; a functional electrode provided on the piezoelectric layer; a hollow portion provided inside the support substrate and overlapping with a part of the functional electrode in a plan view along the stacking direction of the support substrate and the piezoelectric layer; and at least one protrusion extending in a direction intersecting the stacking direction from a portion of the supporting substrate forming the inner surface of the hollow portion and supporting the piezoelectric layer in the stacking direction.
  • an elastic wave device capable of suppressing the occurrence of cracks in the membrane portion.
  • FIG. 1 is a schematic perspective view showing the appearance of elastic wave devices of first and second aspects
  • FIG. FIG. 4 is a plan view showing an electrode structure on the piezoelectric layer; Sectional drawing of the part which follows the AA line in FIG. 1A.
  • FIG. 2 is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device.
  • FIG. 2 is a schematic front cross-sectional view for explaining waves of the elastic wave device of the present disclosure;
  • FIG. 4 is a schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode so that the potential of the second electrode is higher than that of the first electrode.
  • FIG. 4 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram showing the relationship between d/2p and the fractional bandwidth as a resonator of an acoustic wave device; The top view of another elastic wave device concerning a 1st embodiment of this indication.
  • FIG. 2 is a reference diagram showing an example of resonance characteristics of an elastic wave device;
  • FIG. 4 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured; 4 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth;
  • FIG. 4 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0; 1 is a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure;
  • FIG. The top view which shows an example of the elastic wave apparatus of 2nd Embodiment of this indication. Sectional drawing along the XIV-XIV line of FIG. Sectional drawing along the XV-XV line of FIG. The top view which shows the 1st modification of the elastic wave apparatus of FIG.
  • the top view which shows the 2nd modification of the elastic wave apparatus of FIG.
  • the top view of the elastic wave device which is not provided with the protrusion.
  • FIG. 19 is a second cross-sectional view for explaining a state in which the membrane portion of the elastic wave device of FIG. 18 is deformed;
  • the elastic wave devices of the first, second, and third aspects of the present disclosure include, for example, a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode that face each other in a direction intersecting the thickness direction of the piezoelectric layer.
  • the first electrode and the second electrode are adjacent electrodes, and d/p is 0.5 or less, where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the first electrode and the second electrode.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave can be obtained.
  • An elastic wave device includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode facing each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween, and utilizes bulk waves.
  • FIG. 1A is a schematic perspective view showing the appearance of the elastic wave device according to the first embodiment with respect to the first and second aspects
  • FIG. 1B is a plan view showing the electrode structure on the piezoelectric layer
  • FIG. 2 is a cross-sectional view along line AA in FIG. 1A.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment, but may be rotational Y-cut or X-cut.
  • the Y-propagation and X-propagation ⁇ 30° propagation orientations are preferred.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness-shear primary mode.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to a first busbar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrodes 3 and 4 have a rectangular shape and a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction.
  • These electrodes 3 and 4, the first bus bar 5 and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode.
  • IDT Interdigital Transducer
  • Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
  • a plurality of pairs of adjacent electrodes 3 connected to one potential and electrodes 4 connected to the other potential are provided in a direction perpendicular to the length direction of the electrodes 3 and 4 .
  • the electrodes 3 and 4 are adjacent to each other, not when the electrodes 3 and 4 are arranged so as to be in direct contact, but when the electrodes 3 and 4 are arranged with a gap therebetween.
  • the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Further, the center-to-center distance between the electrodes 3 and 4 is the distance connecting the center of the width dimension of the electrode 3 in the direction perpendicular to the length direction of the electrode 3 and the center of the width dimension of the electrode 4 in the direction perpendicular to the length direction of the electrode 4.
  • the center-to-center distance between the electrodes 3 and 4 refers to the average value of the center-to-center distances of the adjacent electrodes 3 and 4 among the 1.5 or more pairs of electrodes 3 and 4.
  • the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but may be substantially perpendicular (the angle between the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 2, have openings 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 k ⁇ or more is desirable. However, the supporting member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Examples of materials for the support member 8 include piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and quartz crystal; various ceramics such as alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and forsterite; dielectrics such as diamond and glass; and semiconductors such as gallium nitride.
  • piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and quartz crystal
  • various ceramics such as alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and forsterite
  • dielectrics such as diamond and glass
  • semiconductors such as gallium nitride.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
  • d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other.
  • d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the center-to-center distance p between the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
  • FIG. 3A is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device.
  • a conventional elastic wave device is described, for example, in Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2012-257019).
  • FIG. 3A in the conventional acoustic wave device, waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG.
  • the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
  • the wave propagates and resonates substantially in the direction connecting the first main surface 2a and the second main surface 2b of the piezoelectric layer 2, that is, in the Z direction. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude direction of the bulk wave of the thickness shear primary mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C, as shown in FIG. FIG. 4 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the elastic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged, but since the waves are not propagated in the X direction, the number of electrode pairs consisting of the electrodes 3 and 4 does not necessarily need to be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 5 is a diagram showing resonance characteristics of the acoustic wave device according to the first embodiment of the present disclosure.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • the number of pairs of electrodes consisting of the electrodes 3 and 4 21 pairs
  • the center distance between the electrodes 3 ⁇ m
  • the width of the electrodes 3 and 4 500 nm
  • d/p 0.133.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is 0.5 or less, more preferably 0.24 or less. This will be explained with reference to FIG.
  • FIG. 6 is a diagram showing the relationship between this d/2p and the fractional bandwidth of the acoustic wave device as a resonator.
  • At least one pair of electrodes may be one pair, and p is the center-to-center distance between adjacent electrodes 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 should be p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure.
  • elastic wave device 31 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
  • the metallization ratio MR of the adjacent electrodes 3 and 4 with respect to the excitation region which is the overlapping region when viewed in the direction in which one of the adjacent electrodes 3 and 4 faces each other, satisfies MR ⁇ 1.75 (d/p)+0.075.
  • the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap is the excitation region (intersection region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers to the excitation region is MR, it is preferable to satisfy MR ⁇ 1.75 (d/p)+0.075. In that case, spurious can be effectively reduced.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the acoustic wave device 1.
  • a spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the portion surrounded by the dashed-dotted line C is the excitation region.
  • the excitation regions are regions in which the electrodes 3 and 4 overlap, regions in which the electrodes 4 overlap the electrodes 3, and regions between the electrodes 3 and 4 in which the electrodes 3 and 4 overlap.
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the drive region.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 9 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of elastic wave resonators are configured according to this embodiment.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 9 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more appears in the passband even if the parameters constituting the fractional band are changed. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less.
  • FIG. 11 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • the hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained, and the range of the region is approximated by the following formulas (1), (2), and (3).
  • the fractional band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining an elastic wave device according to a modification of the first embodiment of the present disclosure.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with a concave portion that is open on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • a hollow portion 9 is thereby formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction.
  • the outer periphery of the hollow portion 9 is indicated by broken lines.
  • the IDT electrode 84 has first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers and an electrode 84d as a plurality of second electrode fingers.
  • the multiple electrodes 84c are connected to the first bus bar 84a.
  • the multiple electrodes 84d are connected to the second bus bar 84b.
  • the multiple electrodes 84c and the multiple electrodes 84d are interposed.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • the elastic wave device 1 includes a support substrate 110, a piezoelectric layer 2 provided on the support substrate 110, and a functional electrode 120 provided on the piezoelectric layer 2.
  • a hollow portion 9 and at least one protrusion 140 are provided inside the support substrate 110 .
  • the hollow portion 9 is provided at a position overlapping with a portion of the functional electrode 120 in plan view along the stacking direction (for example, Z direction) of the support substrate 110 and the piezoelectric layer 2 .
  • At least one protrusion 140 extends in a direction intersecting the stacking direction Z (for example, the Y direction) from a portion forming the inner surface of the hollow portion 9 of the support substrate 110 and supports the piezoelectric layer 2 in the stacking direction Z.
  • the piezoelectric layer 2 has a membrane portion 21 .
  • the membrane part 21 constitutes a part of the piezoelectric layer 2 that at least partially overlaps the hollow part 9 in the stacking direction Z, for example.
  • a functional electrode 120 is positioned on the membrane portion 21 to form an excitation region.
  • the elastic wave device 1 is provided with four protrusions 140 .
  • two projections 140 are provided on each of the two surfaces 111 and 112 that face in the Y direction, and are spaced apart in the X direction that intersects the stacking directions Z and Y directions.
  • Each protrusion 140 provided on the surface 111 faces one of the protrusions 140 provided on the surface 112 in the Y direction and forms a pair.
  • the elastic wave device 1 has at least a pair of projections 140 facing each other in the facing direction (for example, Y direction).
  • the functional electrode 120 is, for example, an IDT electrode having a plurality of electrode fingers, and is positioned between two wiring electrodes 130 spaced apart in a direction intersecting the stacking direction Z (eg, Y direction).
  • the plurality of electrode fingers of the functional electrode 120 each extend along the Y direction and are positioned with gaps along the X direction.
  • Each electrode finger of the functional electrode 120 is connected to one of the two wiring electrodes 130 .
  • W1 is the dimension of the projection 140 in the extension direction (eg, Y direction) of the projection when viewed along the stacking direction Z
  • W2 is the dimension of the projection 140 in the width direction (eg, X direction) intersecting with the extension direction.
  • the dimension W1 is 5 ⁇ m or more and 20 ⁇ m or less
  • the dimension W2 is 5 ⁇ m or more and 50 ⁇ m or less.
  • the two wiring electrodes 130 are respectively referred to as a first bus bar 131 and a second bus bar 132, the electrode finger connected to the first bus bar 131 is referred to as a first electrode finger 121, and the electrode finger connected to the second bus bar 132 is referred to as a second electrode finger 122.
  • Each projection 140 extends, for example, along the facing direction (eg, Y direction) in which the first busbar 131 and the second busbar 132 face each other.
  • the two protrusions 140 provided on the surface 111 are located farther from the second bus bar 132 than the connection ends 133 to which the first electrode fingers 121 of the first bus bar 131 are connected in the facing direction.
  • the two protrusions 140 provided on the surface 112 are located farther from the first bus bar 131 than the connection ends 134 to which the second electrode fingers 122 of the second bus bar 132 are connected in the facing direction.
  • a distance W3 between the protrusion 140 and the connection ends 133 and 134 in the opposing direction is, for example, 0 ⁇ m or more and 5 ⁇ m or less.
  • FIG. 15 shows the distance W3 between the projection 140 and the connecting end 133 as an example.
  • FIG. 18 and 19 show the elastic wave device 100 without the protrusion 140.
  • FIG. 20 a plurality of convex structures 210 may be generated in the membrane part 21 due to heating such as reflow for substrate mounting (see FIG. 20), and the convex structures 210 may spread in the vertical and horizontal directions of the membrane part 21 and become larger.
  • a large concave deformation occurs in the region where the convex structure 210 contacts in the horizontal direction of the functional electrode 120, and a membrane crack 220 may occur in the region where the concave deformation occurs (see FIG. 21).
  • the acoustic wave device 1 of the second embodiment includes a support substrate 110, a piezoelectric layer 2 provided on the support substrate 110, a functional electrode 120 provided on the piezoelectric layer 2, a cavity 9, and at least one projection 140.
  • the hollow portion 9 is provided inside the support substrate 110 and is positioned so as to partially overlap the functional electrode 120 in plan view along the stacking direction Z.
  • At least one protrusion 140 extends in a direction intersecting the stacking direction Z from a portion forming the inner surface of the cavity 9 of the support substrate 110 and supports the piezoelectric layer 2 in the stacking direction Z. As shown in FIG.
  • the elastic wave device 1 of the second embodiment can also be configured as follows.
  • the plurality of electrode fingers may all have the same dimension in the width direction, or may have two or more different dimensions in the width direction.
  • the electrode fingers positioned between one end 141 and the other end 142 in the width direction (for example, the X direction) intersecting the extension direction of the protrusion 140 are inner electrode fingers 123, and the electrode fingers not positioned between the one end 141 and the other end 142 of the protrusion 140 in the width direction are outer electrode fingers 124.
  • the functional electrode 120 may be configured such that the widthwise dimension W4 of the inner electrode fingers 123 is 1.05 times or more the widthwise dimension W5 of the outer electrode fingers 124 and smaller than the widthwise dimension W2 of the projection 140.
  • Positioning the electrode fingers of the functional electrode 120 in the extending direction of the protrusion 140 can more reliably suppress downward deformation of the membrane portion 21 .
  • the growth of convex structures in the membrane portion 21 is suppressed, and the occurrence of cracks in the membrane portion 21 can be suppressed.
  • the total width of the electrode fingers included in the functional electrode 120 is increased, deformation of the membrane portion 21 can be suppressed and heat dissipation can be improved.
  • FIG. 17 shows an example of an elastic wave device 1 including functional electrodes 120 in which a plurality of electrode fingers all have the same dimension W6 in the width direction.
  • the functional electrode 120 has a plurality of electrode fingers (first electrode fingers 121) positioned between one end 141 and the other end 142 in the width direction (e.g., X direction) of the projection 140 when viewed along the stacking direction Z.
  • the electrode fingers of the functional electrode 120 are positioned in the extending direction of the projection 140, so downward deformation of the membrane portion 21 can be suppressed more reliably.
  • the total width of the electrode fingers included in the functional electrode 120 is increased, deformation of the membrane portion 21 can be suppressed and heat dissipation can be improved.
  • the elastic wave device 1 can be manufactured using any method such as a method of forming the cavity 9 using a sacrificial layer or a method of etching the support substrate 110 from the back surface.
  • the support substrate 110 may include the support member 8 and the insulating layer (bonding layer) 7 provided on the support member 8 (see FIG. 2), or may be composed of the support member 8 alone.
  • the support substrate 110 includes the support member 8 and the insulating layer 7 provided on the support member 8 , for example, the insulating layer 7 is provided on one main surface of the support member 8 facing the piezoelectric layer 2 .
  • the cavity 9 is provided in the insulating layer 7 at a position overlapping with a part of the functional electrode 120 in plan view along the stacking direction Z. As shown in FIG.
  • At least part of the configuration of the elastic wave device 1 of the second embodiment may be added to the elastic wave device 1 of the first embodiment, or at least part of the configuration of the elastic wave device 1 of the first embodiment may be added to the elastic wave device 1 of the second embodiment.
  • the elastic wave device of the first aspect is a support substrate; a piezoelectric layer provided on the support substrate; a functional electrode provided on the piezoelectric layer; a hollow portion provided inside the support substrate and overlapping with a part of the functional electrode in a plan view along the stacking direction of the support substrate and the piezoelectric layer; and at least one protrusion extending in a direction intersecting the stacking direction from a portion of the supporting substrate forming the inner surface of the hollow portion and supporting the piezoelectric layer in the stacking direction.
  • the elastic wave device of the second aspect is the elastic wave device of the first aspect, When viewed along the stacking direction, the dimension of the projection in the extension direction is 5 ⁇ m or more and 20 ⁇ m or less, and the dimension of the projection in the width direction intersecting the extension direction is 5 ⁇ m or more and 50 ⁇ m or less.
  • the elastic wave device of the third aspect is the elastic wave device of the first aspect or the second aspect
  • the functional electrode is a first bus bar and a second bus bar facing each other in a direction intersecting the stacking direction; a first electrode finger connected to the first busbar and extending from the first busbar toward the second busbar; a second electrode finger connected to the second bus bar and extending from the second bus bar toward the first bus bar;
  • the protrusion extends along the facing direction in which the first bus bar and the second bus bar face each other, and is located farther from the second bus bar in the facing direction than a connection end to which the first electrode finger of the first bus bar is connected.
  • the elastic wave device of the fourth aspect is the elastic wave device of any one of the first to third aspects, A distance between the protrusion and the connection end in the opposing direction is 0 ⁇ m or more and 5 ⁇ m or less.
  • the elastic wave device of the fifth aspect is the elastic wave device of the fourth aspect, A pair of said protrusions which oppose in the said opposing direction are provided.
  • the elastic wave device of the sixth aspect is the elastic wave device of any one of the first to fifth aspects, wherein the functional electrode has a plurality of electrode fingers extending along the direction in which the projection extends, Among the plurality of electrode fingers, when viewed along the stacking direction, an electrode finger positioned between one end and the other end in the width direction intersecting the extension direction is defined as an inner electrode finger, and an electrode finger not positioned between one end and the other end in the width direction is defined as an outer electrode finger, the width direction dimension of the inner electrode finger is 1.05 times or more the width direction dimension of the outer electrode finger and smaller than the width direction dimension of the protrusion.
  • the elastic wave device of the seventh aspect is the elastic wave device of any one of the first to fifth aspects
  • the functional electrode is The protrusion extends along the extension direction, and has a plurality of electrode fingers located between one end and the other end in the width direction that intersects the extension direction when viewed along the stacking direction.
  • the elastic wave device of the eighth aspect is the elastic wave device of any one of the first to seventh aspects
  • the support substrate includes a support member and a bonding layer provided on the support member;
  • the bonding layer is provided on one main surface of the support member facing the piezoelectric layer,
  • the hollow portion is provided in the bonding layer at a position overlapping with a part of the functional electrode in plan view along the stacking direction.
  • the elastic wave device of the ninth aspect is the elastic wave device of any one of the first to eighth aspects,
  • the functional electrodes are IDT electrodes.
  • the elastic wave device of the tenth aspect is the elastic wave device of the ninth aspect, the piezoelectric layer contains lithium niobate or lithium tantalate, the IDT electrode has a first electrode finger and a second electrode finger facing each other in a direction intersecting the stacking direction; the first electrode finger and the second electrode finger are adjacent electrodes; Where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the first electrode finger and the second electrode finger, d/p is 0.5 or less.
  • the elastic wave device of the eleventh aspect is the elastic wave device of the tenth aspect, d/p is 0.24 or less.
  • the elastic wave device of the twelfth aspect is the elastic wave device of the tenth aspect or the eleventh aspect,
  • a metallization ratio MR which is a ratio of the area of the first electrode fingers and the second electrode fingers in the excitation region to the excitation region, which is the region where the first electrode fingers and the second electrode fingers overlap, satisfies MR ⁇ 1.75 (d/p)+0.075 in the direction crossing the stacking direction.
  • the elastic wave device of the thirteenth aspect is the elastic wave device of any one of the tenth to twelfth aspects,
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the lithium niobate or lithium tantalate are within the range of the following formula (1), formula (2) or formula (3).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2/900 ) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180°-60° (1-( ⁇ -50) 2/900 ) 1/2 ] to 180°) Equation (2)
  • Equation (3) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the elastic wave device of the fourteenth aspect is the elastic wave device of any one of the ninth to thirteenth aspects, the piezoelectric layer contains lithium niobate or lithium tantalate, It is configured to be able to utilize bulk waves in the thickness-shlip mode.
  • the elastic wave device of the fifteenth aspect is the elastic wave device of any one of the first to eighth aspects, the piezoelectric layer contains lithium niobate or lithium tantalate, It is configured to be able to use plate waves.

Abstract

In the present invention, an elastic wave device comprises a support substrate, a piezoelectric layer provided on the support substrate, a functional electrode provided on the piezoelectric layer, a cavity part, and at least one protrusion. The cavity part is provided in the interior of the support substrate, and positioned overlapping a portion of the functional electrode in plan view as viewed along the direction in which the support substrate and the piezoelectric layer have been layered The at least one protrusion extends in the direction intersecting the layering direction from a part constituting the inner surface of the cavity part of the support substrate, and supports the piezoelectric layer in the layering direction.

Description

弾性波装置Acoustic wave device
 本開示は、圧電層(圧電体層)を備える弾性波装置に関する。 The present disclosure relates to an acoustic wave device including a piezoelectric layer (piezoelectric layer).
 例えば、特許文献1には、板波を利用する弾性波装置が開示されている。特許文献1に記載の弾性波装置は、支持体と、圧電基板と、IDT電極とを備えている。支持体には、空洞部が設けられている。圧電基板は、支持体の上に空洞部と重なるように設けられている。IDT電極は、圧電基板の上に空洞部と重なるように設けられている。弾性波装置では、IDT電極により板波が励振される。空洞部の端縁部は、IDT電極により励振される板波の伝搬方向と平行に延びる直線部を含まない。 For example, Patent Document 1 discloses an elastic wave device that uses plate waves. An acoustic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode. The support is provided with a cavity. A piezoelectric substrate is provided on the support so as to overlap the cavity. The IDT electrode is provided on the piezoelectric substrate so as to overlap the cavity. In an elastic wave device, plate waves are excited by IDT electrodes. The edge of the cavity does not include a straight portion extending parallel to the propagation direction of the Lamb waves excited by the IDT electrodes.
特開2012-257019号公報JP 2012-257019 A
 近年、メンブレン構造を有する弾性波装置において、メンブレン部におけるクラックの発生を抑制可能な弾性波装置が求められている。 In recent years, in elastic wave devices having a membrane structure, there has been a demand for elastic wave devices capable of suppressing the occurrence of cracks in the membrane portion.
 本開示は、メンブレン部におけるクラックの発生を抑制可能な弾性波装置を提供することを目的とする。 An object of the present disclosure is to provide an elastic wave device capable of suppressing the occurrence of cracks in the membrane portion.
 本開示の一態様の弾性波装置は、
 支持基板と、
 前記支持基板上に設けられた圧電体層と、
 前記圧電体層上に設けられた機能電極と、
 前記支持基板の内部に設けられ、前記支持基板および前記圧電体層の積層方向に沿って見た平面視において前記機能電極の一部と重なる位置にある空洞部と、
 前記支持基板の前記空洞部の内面を構成する部分から前記積層方向に交差する方向に延びて、前記積層方向において前記圧電体層を支持する少なくとも1つの突起と
を備える。
An elastic wave device according to one aspect of the present disclosure includes:
a support substrate;
a piezoelectric layer provided on the support substrate;
a functional electrode provided on the piezoelectric layer;
a hollow portion provided inside the support substrate and overlapping with a part of the functional electrode in a plan view along the stacking direction of the support substrate and the piezoelectric layer;
and at least one protrusion extending in a direction intersecting the stacking direction from a portion of the supporting substrate forming the inner surface of the hollow portion and supporting the piezoelectric layer in the stacking direction.
 本開示によれば、メンブレン部におけるクラックの発生を抑制可能な弾性波装置を提供できる。 According to the present disclosure, it is possible to provide an elastic wave device capable of suppressing the occurrence of cracks in the membrane portion.
第1,第2の態様の弾性波装置の外観を示す略図的斜視図。1 is a schematic perspective view showing the appearance of elastic wave devices of first and second aspects; FIG. 圧電層上の電極構造を示す平面図。FIG. 4 is a plan view showing an electrode structure on the piezoelectric layer; 図1A中のA-A線に沿う部分の断面図。Sectional drawing of the part which follows the AA line in FIG. 1A. 従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図。FIG. 2 is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device. 本開示の弾性波装置の波を説明するための模式的正面断面図。FIG. 2 is a schematic front cross-sectional view for explaining waves of the elastic wave device of the present disclosure; 第1の電極と第2の電極との間に、第2の電極が第1の電極よりも高電位となる電圧が印加された場合のバルク波を示す模式図。FIG. 4 is a schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode so that the potential of the second electrode is higher than that of the first electrode. 本開示の第1実施形態に係る弾性波装置の共振特性を示す図。FIG. 4 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure; d/2pと、弾性波装置の共振子としての比帯域との関係を示す図。FIG. 4 is a diagram showing the relationship between d/2p and the fractional bandwidth as a resonator of an acoustic wave device; 本開示の第1実施形態に係る別の弾性波装置の平面図。The top view of another elastic wave device concerning a 1st embodiment of this indication. 弾性波装置の共振特性の一例を示す参考図。FIG. 2 is a reference diagram showing an example of resonance characteristics of an elastic wave device; 多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図。FIG. 4 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured; d/2pと、メタライゼーション比MRと、比帯域との関係を示す図。4 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth; FIG. d/pを限りなく0に近づけた場合のLiNbO3のオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図。FIG. 4 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0; 本開示の第1実施形態に係る弾性波装置を説明するための部分切り欠き斜視図。1 is a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure; FIG. 本開示の第2実施形態の弾性波装置の一例を示す平面図。The top view which shows an example of the elastic wave apparatus of 2nd Embodiment of this indication. 図13のXIV-XIV線に沿った断面図。Sectional drawing along the XIV-XIV line of FIG. 図14のXV-XV線に沿った断面図。Sectional drawing along the XV-XV line of FIG. 図13の弾性波装置の第1の変形例を示す平面図。The top view which shows the 1st modification of the elastic wave apparatus of FIG. 図13の弾性波装置の第2の変形例を示す平面図。The top view which shows the 2nd modification of the elastic wave apparatus of FIG. 突起を備えていない弾性波装置の平面図。The top view of the elastic wave device which is not provided with the protrusion. 図18のXIX-XIX線に沿った断面図。Sectional drawing along the XIX-XIX line of FIG. 図18の弾性波装置のメンブレン部が変形した状態を説明するための第1の断面図。The 1st sectional drawing for demonstrating the state which the membrane part of the elastic wave apparatus of FIG. 18 deform|transformed. 図18の弾性波装置のメンブレン部が変形した状態を説明するための第2の断面図。FIG. 19 is a second cross-sectional view for explaining a state in which the membrane portion of the elastic wave device of FIG. 18 is deformed;
 以下、本開示の一例を添付図面に従って説明する。以下の説明は、本質的に例示に過ぎず、本開示、本開示の適用物、または、本開示の用途を制限することを意図するものではない。図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。 An example of the present disclosure will be described below with reference to the accompanying drawings. The following description is merely exemplary in nature and is not intended to limit the disclosure, the application of the disclosure, or the uses of the disclosure. The drawings are schematic, and the ratio of each dimension does not necessarily match the actual one.
 本開示における第1,第2,第3の態様の弾性波装置は、例えば、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。 The elastic wave devices of the first, second, and third aspects of the present disclosure include, for example, a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode that face each other in a direction intersecting the thickness direction of the piezoelectric layer.
 第1の態様の弾性波装置では、厚み滑り1次モードのバルク波が利用されている。 In the elastic wave device of the first aspect, bulk waves in the primary mode of thickness shear are used.
 また、第2の態様の弾性波装置では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1,第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。 Further, in the elastic wave device of the second aspect, the first electrode and the second electrode are adjacent electrodes, and d/p is 0.5 or less, where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the first electrode and the second electrode. As a result, in the first and second aspects, the Q value can be increased even when the miniaturization is promoted.
 また、第3の態様の弾性波装置では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。 Also, in the elastic wave device of the third aspect, Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave can be obtained.
 本開示における第4の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備え、バルク波を利用する。 An elastic wave device according to a fourth aspect of the present disclosure includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode facing each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween, and utilizes bulk waves.
 以下、図面を参照しつつ、第1~第4の態様の弾性波装置の具体的な実施形態を説明することにより、本開示を明らかにする。 Hereinafter, the present disclosure will be clarified by describing specific embodiments of the elastic wave devices of the first to fourth aspects with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is exemplary, and partial replacement or combination of configurations is possible between different embodiments.
(第1実施形態)
 図1Aは、第1,第2の態様についての第1実施形態に係る弾性波装置の外観を示す略図的斜視図であり、図1Bは、圧電層上の電極構造を示す平面図であり、図2は、図1A中のA-A線に沿う部分の断面図である。
(First embodiment)
FIG. 1A is a schematic perspective view showing the appearance of the elastic wave device according to the first embodiment with respect to the first and second aspects, FIG. 1B is a plan view showing the electrode structure on the piezoelectric layer, and FIG. 2 is a cross-sectional view along line AA in FIG. 1A.
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットであるが、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。 The acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may consist of LiTaO 3 . The cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment, but may be rotational Y-cut or X-cut. Preferably, the Y-propagation and X-propagation ±30° propagation orientations are preferred. Although the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness-shear primary mode.
 圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。 The piezoelectric layer 2 has first and second main surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a. Here, the electrode 3 is an example of the "first electrode" and the electrode 4 is an example of the "second electrode". In FIGS. 1A and 1B, the multiple electrodes 3 are multiple first electrode fingers connected to a first busbar 5 . The multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 . The plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。これら複数の電極3,4、及び第1のバスバー5,第2のバスバー6によりIDT(Interdigital Transuducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。 The electrodes 3 and 4 have a rectangular shape and a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. These electrodes 3 and 4, the first bus bar 5 and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
 また、電極3,4の長さ方向が図1A及び図1Bに示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3,4が延びている方向に延びることとなる。 Also, the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
 そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。 A plurality of pairs of adjacent electrodes 3 connected to one potential and electrodes 4 connected to the other potential are provided in a direction perpendicular to the length direction of the electrodes 3 and 4 . Here, the electrodes 3 and 4 are adjacent to each other, not when the electrodes 3 and 4 are arranged so as to be in direct contact, but when the electrodes 3 and 4 are arranged with a gap therebetween.
 また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とし、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。 Also, when the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4. The logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 μm or more and 10 μm or less. Further, the center-to-center distance between the electrodes 3 and 4 is the distance connecting the center of the width dimension of the electrode 3 in the direction perpendicular to the length direction of the electrode 3 and the center of the width dimension of the electrode 4 in the direction perpendicular to the length direction of the electrode 4. Furthermore, when at least one of the electrodes 3 and 4 is a plurality (when the electrodes 3 and 4 are a pair of electrodes and there are 1.5 or more pairs of electrodes), the center-to-center distance between the electrodes 3 and 4 refers to the average value of the center-to-center distances of the adjacent electrodes 3 and 4 among the 1.5 or more pairs of electrodes 3 and 4. Moreover, the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less. The center-to-center distance between the electrodes 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
 また、本実施形態では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 In addition, since the Z-cut piezoelectric layer is used in this embodiment, the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 . This is not the case when a piezoelectric material with a different cut angle is used as the piezoelectric layer 2 . Here, "perpendicular" is not limited to being strictly perpendicular, but may be substantially perpendicular (the angle between the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90°±10°).
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図2に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween. The insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 2, have openings 7a and 8a. A cavity 9 is thereby formed. The cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 The insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used. The support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 kΩ or more is desirable. However, the supporting member 8 can also be constructed using an appropriate insulating material or semiconductor material. Examples of materials for the support member 8 include piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and quartz crystal; various ceramics such as alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and forsterite; dielectrics such as diamond and glass; and semiconductors such as gallium nitride.
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys. In this embodiment, the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。 When driving, an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 In the elastic wave device 1, d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. As a result, the thickness-shear primary mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組とし、電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。 When at least one of the electrodes 3 and 4 is plural as in the present embodiment, that is, when the electrodes 3 and 4 form one pair of electrodes and there are 1.5 or more pairs of the electrodes 3 and 4, the center-to-center distance p between the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。 Since the elastic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
 従来の弾性波装置で利用したラム波と、上記厚み滑り1次モードのバルク波の相違を、図3A及び図3Bを参照して説明する。 The difference between the Lamb wave used in the conventional elastic wave device and the bulk wave of the thickness shear primary mode will be described with reference to FIGS. 3A and 3B.
 図3Aは、従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。従来の弾性波装置については、例えば、特許文献1(特開2012-257019号公報)に記載されている。図3Aに示すように、従来の弾性波装置においては、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 3A is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device. A conventional elastic wave device is described, for example, in Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2012-257019). As shown in FIG. 3A, in the conventional acoustic wave device, waves propagate through the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. The X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG. 3A, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
 これに対して、図3Bに示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 3B, in the acoustic wave device 1 of the present embodiment, since the vibration displacement is in the thickness shear direction, the wave propagates and resonates substantially in the direction connecting the first main surface 2a and the second main surface 2b of the piezoelectric layer 2, that is, in the Z direction. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4は、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示している。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 It should be noted that the amplitude direction of the bulk wave of the thickness shear primary mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C, as shown in FIG. FIG. 4 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 . The first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 . The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As described above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged, but since the waves are not propagated in the X direction, the number of electrode pairs consisting of the electrodes 3 and 4 does not necessarily need to be plural. That is, it is sufficient that at least one pair of electrodes is provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, electrode 3 may also be connected to ground potential and electrode 4 to hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
 図5は、本開示の第1実施形態の弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
FIG. 5 is a diagram showing resonance characteristics of the acoustic wave device according to the first embodiment of the present disclosure. The design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm.
When viewed in a direction orthogonal to the length direction of the electrodes 3 and 4, the length of the region where the electrodes 3 and 4 overlap, that is, the length of the excitation region C = 40 µm, the number of pairs of electrodes consisting of the electrodes 3 and 4 = 21 pairs, the center distance between the electrodes = 3 µm, the width of the electrodes 3 and 4 = 500 nm, and d/p = 0.133.
Insulating layer 7: Silicon oxide film with a thickness of 1 μm.
Support member 8: Si.
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。 The length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In this embodiment, the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 5, good resonance characteristics with a specific bandwidth of 12.5% are obtained in spite of having no reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d and the distance between the centers of the electrodes 3 and 4 is p, in the present embodiment, d/p is 0.5 or less, more preferably 0.24 or less. This will be explained with reference to FIG.
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained by changing d/2p in the same manner as the elastic wave device that obtained the resonance characteristics shown in FIG. FIG. 6 is a diagram showing the relationship between this d/2p and the fractional bandwidth of the acoustic wave device as a resonator.
 図6から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本開示の第2の態様の弾性波装置のように、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 6, when d/2p exceeds 0.25, that is, when d/p>0.5, even if d/p is adjusted, the fractional bandwidth is less than 5%. On the other hand, if d/2p≦0.25, that is, d/p≦0.5, the fractional bandwidth can be increased to 5% or more by changing d/p within that range, that is, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more. In addition, by adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less as in the elastic wave device of the second aspect of the present disclosure, it is possible to configure a resonator having a high coupling coefficient using the bulk wave of the primary thickness-shlip mode.
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。 As described above, at least one pair of electrodes may be one pair, and p is the center-to-center distance between adjacent electrodes 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 should be p.
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Also, for the thickness d of the piezoelectric layer, if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
 図7は、本開示の第1実施形態に係る別の弾性波装置の平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置31では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。 FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure. In elastic wave device 31 , a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 . Note that K in FIG. 7 is the intersection width. As described above, in the elastic wave device 31 of the present disclosure, the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。つまり、隣り合う複数の第1電極指と複数の第2電極指とが対向している方向に視たときに複数の第1電極指と複数の第2電極指とが重なっている領域が励振領域(交差領域)であり、励振領域に対する、複数の第1電極指及び複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たすことが好ましい。その場合には、スプリアスを効果的に小さくすることができる。 In the elastic wave device 1, it is preferable that the metallization ratio MR of the adjacent electrodes 3 and 4 with respect to the excitation region, which is the overlapping region when viewed in the direction in which one of the adjacent electrodes 3 and 4 faces each other, satisfies MR≦1.75 (d/p)+0.075. That is, when viewed in the direction in which the plurality of adjacent first electrode fingers and the plurality of second electrode fingers are opposed to each other, the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap is the excitation region (intersection region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers to the excitation region is MR, it is preferable to satisfy MR≦1.75 (d/p)+0.075. In that case, spurious can be effectively reduced.
 これを、図8及び図9を参照して説明する。図8は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 This will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a reference diagram showing an example of resonance characteristics of the acoustic wave device 1. As shown in FIG. A spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Also, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が励振領域となる。この励振領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域の面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域の面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 1B. In the electrode structure of FIG. 1B, when focusing on the pair of electrodes 3 and 4, it is assumed that only the pair of electrodes 3 and 4 are provided. In this case, the portion surrounded by the dashed-dotted line C is the excitation region. When the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in the facing direction, the excitation regions are regions in which the electrodes 3 and 4 overlap, regions in which the electrodes 4 overlap the electrodes 3, and regions between the electrodes 3 and 4 in which the electrodes 3 and 4 overlap. The area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the drive region.
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。 When a plurality of pairs of electrodes are provided, MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
 図9は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 9 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of elastic wave resonators are configured according to this embodiment. The ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes. Also, FIG. 9 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by ellipse J in FIG. 9, the spurious is as large as 1.0. As is clear from FIG. 9, when the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more appears in the passband even if the parameters constituting the fractional band are changed. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. In the elastic wave device described above, various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured. The hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less. The boundary between the hatched area and the non-hatched area is expressed by MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≤1.75(d/p)+0.075. In that case, it is easy to set the fractional bandwidth to 17% or less. More preferably, it is the area on the right side of MR=3.5(d/2p)+0.05 indicated by the dashed-dotted line D1 in FIG. That is, if MR≤1.75(d/p)+0.05, the fractional bandwidth can be reliably reduced to 17% or less.
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 11 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. In FIG. The hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained, and the range of the region is approximated by the following formulas (1), (2), and (3).
 (0°±10°,0°~20°,任意のψ)  …式(1) (0°±10°, 0° to 20°, arbitrary ψ) ……Equation (1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2) (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2/900 ) 1/2 ) or (0°±10°, 20° to 80°, [180°-60° (1-(θ-50) 2/900 ) 1/2 ] to 180°) Equation (2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3) (0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。 Therefore, in the case of the Euler angle range of formula (1), formula (2), or formula (3), the fractional band can be sufficiently widened, which is preferable.
 図12は、本開示の第1実施形態の変形例に係る弾性波装置を説明するための部分切り欠き斜視図である。弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図12において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指としての電極84c及び複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー84aに接続されている。複数本の電極84dは、第2のバスバー84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。 FIG. 12 is a partially cutaway perspective view for explaining an elastic wave device according to a modification of the first embodiment of the present disclosure. The elastic wave device 81 has a support substrate 82 . The support substrate 82 is provided with a concave portion that is open on the upper surface. A piezoelectric layer 83 is laminated on the support substrate 82 . A hollow portion 9 is thereby formed. An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 . Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 12, the outer periphery of the hollow portion 9 is indicated by broken lines. Here, the IDT electrode 84 has first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers and an electrode 84d as a plurality of second electrode fingers. The multiple electrodes 84c are connected to the first bus bar 84a. The multiple electrodes 84d are connected to the second bus bar 84b. The multiple electrodes 84c and the multiple electrodes 84d are interposed.
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。 In the elastic wave device 81, a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
 このように、本開示の弾性波装置は、板波を利用するものであってもよい。 Thus, the elastic wave device of the present disclosure may utilize plate waves.
(第2実施形態)
 第2実施形態の弾性波装置1について説明する。第2実施形態においては、第1実施形態と重複する内容については適宜、説明を省略する。第2実施形態においては、第1実施形態で説明した内容を適用することができる。
(Second embodiment)
An elastic wave device 1 according to a second embodiment will be described. In the second embodiment, descriptions of the same contents as in the first embodiment will be omitted as appropriate. In the second embodiment, the contents described in the first embodiment can be applied.
 図13および図14に示すように、弾性波装置1は、支持基板110と、支持基板110上に設けられた圧電層2と、圧電層2上に設けられた機能電極120とを備える。支持基板110の内部には、空洞部9と、少なくとも1つの突起140とが設けられている。空洞部9は、支持基板110および圧電層2の積層方向(例えば、Z方向)に沿って見た平面視において、機能電極120の一部と重なる位置に設けられている。少なくとも1つの突起140は、支持基板110の空洞部9の内面を構成する部分から積層方向Zに交差する方向(例えば、Y方向)に延びて、積層方向Zにおいて圧電層2を支持する。 As shown in FIGS. 13 and 14, the elastic wave device 1 includes a support substrate 110, a piezoelectric layer 2 provided on the support substrate 110, and a functional electrode 120 provided on the piezoelectric layer 2. A hollow portion 9 and at least one protrusion 140 are provided inside the support substrate 110 . The hollow portion 9 is provided at a position overlapping with a portion of the functional electrode 120 in plan view along the stacking direction (for example, Z direction) of the support substrate 110 and the piezoelectric layer 2 . At least one protrusion 140 extends in a direction intersecting the stacking direction Z (for example, the Y direction) from a portion forming the inner surface of the hollow portion 9 of the support substrate 110 and supports the piezoelectric layer 2 in the stacking direction Z.
 圧電層2は、メンブレン部21を有している。メンブレン部21は、例えば、積層方向Zにおいて少なくとも部分的に空洞部9を重なる圧電層2の一部を構成している。メンブレン部21には、機能電極120が位置し、励振領域を形成する。 The piezoelectric layer 2 has a membrane portion 21 . The membrane part 21 constitutes a part of the piezoelectric layer 2 that at least partially overlaps the hollow part 9 in the stacking direction Z, for example. A functional electrode 120 is positioned on the membrane portion 21 to form an excitation region.
 本実施形態では、弾性波装置1は、4つの突起140を備えている。各突起140は、空洞部9を構成する支持基板110の内面のうち、Y方向に対向する2つの面111、112にそれぞれ2つ、積層方向ZおよびY方向に交差するX方向に間隔を空けて設けられている。面111に設けられている各突起140は、面112に設けられている突起140の1つとY方向において対向し、対を成している。つまり、弾性波装置1は、対向方向(例えば、Y方向)において対向する少なくとも一対の突起140を備えている。 In this embodiment, the elastic wave device 1 is provided with four protrusions 140 . Of the inner surfaces of the support substrate 110 forming the hollow portion 9, two projections 140 are provided on each of the two surfaces 111 and 112 that face in the Y direction, and are spaced apart in the X direction that intersects the stacking directions Z and Y directions. Each protrusion 140 provided on the surface 111 faces one of the protrusions 140 provided on the surface 112 in the Y direction and forms a pair. In other words, the elastic wave device 1 has at least a pair of projections 140 facing each other in the facing direction (for example, Y direction).
 機能電極120は、例えば、複数の電極指を有するIDT電極であり、積層方向Zに交差する方向(例えば、Y方向)において間隔を空けて配置された2つの配線電極130の間に位置している。機能電極120の複数の電極指は、それぞれY方向に沿って延びており、X方向に沿って隙間を空けて位置している。機能電極120の各電極指は、2つの配線電極130のいずれかに接続されている。 The functional electrode 120 is, for example, an IDT electrode having a plurality of electrode fingers, and is positioned between two wiring electrodes 130 spaced apart in a direction intersecting the stacking direction Z (eg, Y direction). The plurality of electrode fingers of the functional electrode 120 each extend along the Y direction and are positioned with gaps along the X direction. Each electrode finger of the functional electrode 120 is connected to one of the two wiring electrodes 130 .
 図15に示すように、積層方向Zに沿って見た場合における突起が延びる延長方向(例えば、Y方向)における突起140の寸法をW1とし、延長方向に交差する幅方向(例えば、X方向)における突起140の寸法をW2とする。例えば、寸法W1は5μm以上20μm以下であり、寸法W2は5μm以上50μm以下である。 As shown in FIG. 15, W1 is the dimension of the projection 140 in the extension direction (eg, Y direction) of the projection when viewed along the stacking direction Z, and W2 is the dimension of the projection 140 in the width direction (eg, X direction) intersecting with the extension direction. For example, the dimension W1 is 5 μm or more and 20 μm or less, and the dimension W2 is 5 μm or more and 50 μm or less.
 2つの配線電極130をそれぞれ第1バスバー131および第2バスバー132とし、第1バスバー131に接続された電極指を第1電極指121とし、第2バスバー132に接続された電極指を第2電極指122とする。各突起140は、例えば、第1バスバー131および第2バスバー132が対向する対向方向(例えば、Y方向)に沿って延びている。例えば、図14に示すように、面111に設けられている2つの突起140は、対向方向において第1バスバー131の第1電極指121が接続されている接続端133よりも第2バスバー132から離れた位置にある。面112に設けられている2つの突起140は、対向方向において第2バスバー132の第2電極指122が接続されている接続端134よりも第1バスバー131から離れた位置にある。対向方向における突起140および接続端133、134の間の距離W3は、例えば、ゼロμm以上5μm以下である。図15には、一例として、突起140および接続端133の間の距離W3を示している。 The two wiring electrodes 130 are respectively referred to as a first bus bar 131 and a second bus bar 132, the electrode finger connected to the first bus bar 131 is referred to as a first electrode finger 121, and the electrode finger connected to the second bus bar 132 is referred to as a second electrode finger 122. Each projection 140 extends, for example, along the facing direction (eg, Y direction) in which the first busbar 131 and the second busbar 132 face each other. For example, as shown in FIG. 14, the two protrusions 140 provided on the surface 111 are located farther from the second bus bar 132 than the connection ends 133 to which the first electrode fingers 121 of the first bus bar 131 are connected in the facing direction. The two protrusions 140 provided on the surface 112 are located farther from the first bus bar 131 than the connection ends 134 to which the second electrode fingers 122 of the second bus bar 132 are connected in the facing direction. A distance W3 between the protrusion 140 and the connection ends 133 and 134 in the opposing direction is, for example, 0 μm or more and 5 μm or less. FIG. 15 shows the distance W3 between the projection 140 and the connecting end 133 as an example.
 図18および図19に、突起140を備えていない弾性波装置100を示す。弾性波装置100では、基板実装のためのリフローなどの加熱により、メンブレン部21に複数の凸構造210が発生し(図20参照)、メンブレン部21の縦横方向に凸構造210が広がって大きくなる場合がある。この場合、機能電極120の横方向における凸構造210が接触する領域で大きな凹変形が発生し、凹変形が発生した領域においてメンブレンクラック220が発生するおそれがある(図21参照)。 18 and 19 show the elastic wave device 100 without the protrusion 140. FIG. In the acoustic wave device 100, a plurality of convex structures 210 may be generated in the membrane part 21 due to heating such as reflow for substrate mounting (see FIG. 20), and the convex structures 210 may spread in the vertical and horizontal directions of the membrane part 21 and become larger. In this case, a large concave deformation occurs in the region where the convex structure 210 contacts in the horizontal direction of the functional electrode 120, and a membrane crack 220 may occur in the region where the concave deformation occurs (see FIG. 21).
 第2実施形態の弾性波装置1では、支持基板110と、支持基板110上に設けられた圧電層2と、圧電層2上に設けられた機能電極120と、空洞部9と、少なくとも1つの突起140とを備える。空洞部9は、支持基板110の内部に設けられ、積層方向Zに沿って見た平面視において機能電極120の一部と重なる位置にある。少なくとも1つの突起140は、支持基板110の空洞部9の内面を構成する部分から積層方向Zに交差する方向に延びて、積層方向Zにおいて圧電層2を支持する。このような構成により、基板実装等のためのリフロー時において、メンブレン部21に発生し得る凸構造の成長を抑制することができる。その結果、メンブレン部(言い換えると、圧電層2の空洞部9を覆う部分)におけるクラックの発生を抑制できる。 The acoustic wave device 1 of the second embodiment includes a support substrate 110, a piezoelectric layer 2 provided on the support substrate 110, a functional electrode 120 provided on the piezoelectric layer 2, a cavity 9, and at least one projection 140. The hollow portion 9 is provided inside the support substrate 110 and is positioned so as to partially overlap the functional electrode 120 in plan view along the stacking direction Z. As shown in FIG. At least one protrusion 140 extends in a direction intersecting the stacking direction Z from a portion forming the inner surface of the cavity 9 of the support substrate 110 and supports the piezoelectric layer 2 in the stacking direction Z. As shown in FIG. With such a configuration, it is possible to suppress the growth of convex structures that may occur in the membrane portion 21 during reflow for substrate mounting or the like. As a result, the occurrence of cracks in the membrane portion (in other words, the portion covering the hollow portion 9 of the piezoelectric layer 2) can be suppressed.
 第2実施形態の弾性波装置1は、次のように構成することもできる。 The elastic wave device 1 of the second embodiment can also be configured as follows.
 機能電極120は、複数の電極指が全て同じ幅方向の寸法を有していてもよいし、2種類以上の異なる幅方向の寸法を有していてもよい。 In the functional electrode 120, the plurality of electrode fingers may all have the same dimension in the width direction, or may have two or more different dimensions in the width direction.
 例えば、図16に示すように、機能電極120の複数の電極指のうち、積層方向Zに沿って見た場合、突起140の延長方向に交差する幅方向(例えば、X方向)の一端141および他端142の間に位置する電極指を内電極指123とし、突起140の幅方向の一端141および他端142の間に位置しない電極指を外電極指124とする。この場合、内電極指123の幅方向の寸法W4が、外電極指124の幅方向の寸法W5の1.05倍以上で、かつ、突起140の幅方向の寸法W2よりも小さくなるように、機能電極120を構成してもよい。突起140の延長方向に機能電極120の電極指を位置させることで、メンブレン部21の下方向への変形をより確実に抑制できる。その結果、メンブレン部21において凸構造の成長が抑制され、メンブレン部21におけるクラックの発生を抑制できる。また、機能電極120に含まれる電極指の幅の合計が大きくなるので、メンブレン部21の変形を抑制しつつ、放熱性を向上させることができる。 For example, as shown in FIG. 16, among the plurality of electrode fingers of the functional electrode 120, when viewed along the stacking direction Z, the electrode fingers positioned between one end 141 and the other end 142 in the width direction (for example, the X direction) intersecting the extension direction of the protrusion 140 are inner electrode fingers 123, and the electrode fingers not positioned between the one end 141 and the other end 142 of the protrusion 140 in the width direction are outer electrode fingers 124. In this case, the functional electrode 120 may be configured such that the widthwise dimension W4 of the inner electrode fingers 123 is 1.05 times or more the widthwise dimension W5 of the outer electrode fingers 124 and smaller than the widthwise dimension W2 of the projection 140. Positioning the electrode fingers of the functional electrode 120 in the extending direction of the protrusion 140 can more reliably suppress downward deformation of the membrane portion 21 . As a result, the growth of convex structures in the membrane portion 21 is suppressed, and the occurrence of cracks in the membrane portion 21 can be suppressed. In addition, since the total width of the electrode fingers included in the functional electrode 120 is increased, deformation of the membrane portion 21 can be suppressed and heat dissipation can be improved.
 図17に、複数の電極指が全て同じ幅方向の寸法W6を有している機能電極120を備える弾性波装置1の一例と示す。図17の弾性波装置1では、機能電極120が、積層方向Zに沿って見た場合、突起140の幅方向(例えば、X方向)の一端141および他端142の間に位置する複数の電極指(第1電極指121)を有している。この場合も図16の弾性波装置1と同様に、突起140の延長方向に機能電極120の電極指が位置しているので、メンブレン部21の下方向への変形をより確実に抑制できる。また、機能電極120に含まれる電極指の幅の合計が大きくなるので、メンブレン部21の変形を抑制しつつ、放熱性を向上させることができる。 FIG. 17 shows an example of an elastic wave device 1 including functional electrodes 120 in which a plurality of electrode fingers all have the same dimension W6 in the width direction. In the elastic wave device 1 of FIG. 17, the functional electrode 120 has a plurality of electrode fingers (first electrode fingers 121) positioned between one end 141 and the other end 142 in the width direction (e.g., X direction) of the projection 140 when viewed along the stacking direction Z. In this case, similarly to the elastic wave device 1 of FIG. 16, the electrode fingers of the functional electrode 120 are positioned in the extending direction of the projection 140, so downward deformation of the membrane portion 21 can be suppressed more reliably. In addition, since the total width of the electrode fingers included in the functional electrode 120 is increased, deformation of the membrane portion 21 can be suppressed and heat dissipation can be improved.
 弾性波装置1は、犠牲層を用いて空洞部9を形成する方法、または、支持基板110を裏面からエッチングする方法等の任意の方法を用いて製造できる。 The elastic wave device 1 can be manufactured using any method such as a method of forming the cavity 9 using a sacrificial layer or a method of etching the support substrate 110 from the back surface.
 支持基板110は、支持部材8と支持部材8上に設けられた絶縁層(接合層)7とを含んでいてもよいし(図2参照)、支持部材8のみで構成されていてもよい。支持基板110が、支持部材8と、支持部材8の上に設けられた絶縁層7とを含む場合、例えば、絶縁層7は、圧電層2と対向する支持部材8の一方主面に設けられる。空洞部9は、積層方向Zに沿って見た平面視において機能電極120の一部と重なる位置で絶縁層7に設けられる。 The support substrate 110 may include the support member 8 and the insulating layer (bonding layer) 7 provided on the support member 8 (see FIG. 2), or may be composed of the support member 8 alone. When the support substrate 110 includes the support member 8 and the insulating layer 7 provided on the support member 8 , for example, the insulating layer 7 is provided on one main surface of the support member 8 facing the piezoelectric layer 2 . The cavity 9 is provided in the insulating layer 7 at a position overlapping with a part of the functional electrode 120 in plan view along the stacking direction Z. As shown in FIG.
 第1実施形態の弾性波装置1に、第2実施形態の弾性波装置1の構成の少なくとも一部を追加してもよいし、第2実施形態の弾性波装置1に、第1実施形態の弾性波装置1の構成の少なくとも一部を追加してもよい。 At least part of the configuration of the elastic wave device 1 of the second embodiment may be added to the elastic wave device 1 of the first embodiment, or at least part of the configuration of the elastic wave device 1 of the first embodiment may be added to the elastic wave device 1 of the second embodiment.
 以上、図面を参照して本開示における種々の実施形態を詳細に説明したが、最後に、本開示の種々の態様について説明する。 Various embodiments of the present disclosure have been described in detail above with reference to the drawings. Finally, various aspects of the present disclosure will be described.
 第1態様の弾性波装置は、
 支持基板と、
 前記支持基板上に設けられた圧電体層と、
 前記圧電体層上に設けられた機能電極と、
 前記支持基板の内部に設けられ、前記支持基板および前記圧電体層の積層方向に沿って見た平面視において前記機能電極の一部と重なる位置にある空洞部と、
 前記支持基板の前記空洞部の内面を構成する部分から前記積層方向に交差する方向に延びて、前記積層方向において前記圧電体層を支持する少なくとも1つの突起と
を備える。
The elastic wave device of the first aspect is
a support substrate;
a piezoelectric layer provided on the support substrate;
a functional electrode provided on the piezoelectric layer;
a hollow portion provided inside the support substrate and overlapping with a part of the functional electrode in a plan view along the stacking direction of the support substrate and the piezoelectric layer;
and at least one protrusion extending in a direction intersecting the stacking direction from a portion of the supporting substrate forming the inner surface of the hollow portion and supporting the piezoelectric layer in the stacking direction.
 第2態様の弾性波装置は、第1態様の弾性波装置において、
 前記積層方向に沿って見た場合、前記突起が延びる延長方向における前記突起の寸法が5μm以上20μm以下であり、前記延長方向に交差する幅方向における前記突起の寸法が5μm以上50μm以下である。
The elastic wave device of the second aspect is the elastic wave device of the first aspect,
When viewed along the stacking direction, the dimension of the projection in the extension direction is 5 μm or more and 20 μm or less, and the dimension of the projection in the width direction intersecting the extension direction is 5 μm or more and 50 μm or less.
 第3態様の弾性波装置は、第1態様または第2態様の弾性波装置において、
 前記機能電極が、
 前記積層方向に交差する方向において対向する第1バスバーおよび第2バスバーと、
 前記第1バスバーに接続され、前記第1バスバーから前記第2バスバーに向かって延びる第1電極指と、
 前記第2バスバーに接続され、前記第2バスバーから前記第1バスバーに向かって延びる第2電極指と
を有し、
 前記突起が、前記第1バスバーおよび前記第2バスバーが対向する対向方向に沿って延び、前記対向方向において前記第1バスバーの前記第1電極指が接続されている接続端よりも前記第2バスバーから離れた位置にある。
The elastic wave device of the third aspect is the elastic wave device of the first aspect or the second aspect,
The functional electrode is
a first bus bar and a second bus bar facing each other in a direction intersecting the stacking direction;
a first electrode finger connected to the first busbar and extending from the first busbar toward the second busbar;
a second electrode finger connected to the second bus bar and extending from the second bus bar toward the first bus bar;
The protrusion extends along the facing direction in which the first bus bar and the second bus bar face each other, and is located farther from the second bus bar in the facing direction than a connection end to which the first electrode finger of the first bus bar is connected.
 第4態様の弾性波装置は、第1態様~第3態様のいずれかの弾性波装置において、
 前記対向方向における前記突起および前記接続端の間の距離が、ゼロμm以上5μm以下である。
The elastic wave device of the fourth aspect is the elastic wave device of any one of the first to third aspects,
A distance between the protrusion and the connection end in the opposing direction is 0 μm or more and 5 μm or less.
 第5態様の弾性波装置は、第4態様の弾性波装置において、
 前記対向方向において対向する一対の前記突起を備える。
The elastic wave device of the fifth aspect is the elastic wave device of the fourth aspect,
A pair of said protrusions which oppose in the said opposing direction are provided.
 第6態様の弾性波装置は、第1態様~第5態様のいずれかの弾性波装置において、
 前記機能電極が、前記突起が延びる延長方向に沿って延びる複数の電極指を有し、
 前記複数の電極指のうち、前記積層方向に沿って見た場合、前記延長方向に交差する幅方向の一端および他端の間に位置する電極指を内電極指とし、前記幅方向の一端および他端の間に位置しない電極指を外電極指とすると、前記内電極指の前記幅方向の寸法が、前記外電極指の前記幅方向の寸法の1.05倍以上で、かつ、前記突起の前記幅方向の寸法よりも小さい。
The elastic wave device of the sixth aspect is the elastic wave device of any one of the first to fifth aspects,
wherein the functional electrode has a plurality of electrode fingers extending along the direction in which the projection extends,
Among the plurality of electrode fingers, when viewed along the stacking direction, an electrode finger positioned between one end and the other end in the width direction intersecting the extension direction is defined as an inner electrode finger, and an electrode finger not positioned between one end and the other end in the width direction is defined as an outer electrode finger, the width direction dimension of the inner electrode finger is 1.05 times or more the width direction dimension of the outer electrode finger and smaller than the width direction dimension of the protrusion.
 第7態様の弾性波装置は、第1態様~第5態様のいずれかの弾性波装置において、
 前記機能電極が、
 前記突起が延びる延長方向に沿って延びると共に、前記積層方向に沿って見た場合、前記延長方向に交差する幅方向の一端および他端の間に位置する複数の電極指を有する。
The elastic wave device of the seventh aspect is the elastic wave device of any one of the first to fifth aspects,
The functional electrode is
The protrusion extends along the extension direction, and has a plurality of electrode fingers located between one end and the other end in the width direction that intersects the extension direction when viewed along the stacking direction.
 第8態様の弾性波装置は、第1態様~第7態様のいずれかの弾性波装置において、
 前記支持基板が、支持部材と、前記支持部材の上に設けられた接合層とを含み、
 前記接合層は、前記圧電体層と対向する前記支持部材の一方主面に設けられており、
 前記空洞部は、前記積層方向に沿って見た平面視において前記機能電極の一部と重なる位置で前記接合層に設けられている。
The elastic wave device of the eighth aspect is the elastic wave device of any one of the first to seventh aspects,
the support substrate includes a support member and a bonding layer provided on the support member;
The bonding layer is provided on one main surface of the support member facing the piezoelectric layer,
The hollow portion is provided in the bonding layer at a position overlapping with a part of the functional electrode in plan view along the stacking direction.
 第9態様の弾性波装置は、第1態様~第8態様のいずれかの弾性波装置において、
 前記機能電極がIDT電極である。
The elastic wave device of the ninth aspect is the elastic wave device of any one of the first to eighth aspects,
The functional electrodes are IDT electrodes.
 第10態様の弾性波装置は、第9態様の弾性波装置において、
 前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
 前記IDT電極が、前記積層方向に交差する方向において対向する第1電極指および第2電極指を有し、
 前記第1電極指および前記第2電極指は隣り合う電極同士であり、
 前記圧電体層の厚みをd、前記第1電極指および前記第2電極指との中心間距離をpとした場合、d/pが0.5以下である。
The elastic wave device of the tenth aspect is the elastic wave device of the ninth aspect,
the piezoelectric layer contains lithium niobate or lithium tantalate,
the IDT electrode has a first electrode finger and a second electrode finger facing each other in a direction intersecting the stacking direction;
the first electrode finger and the second electrode finger are adjacent electrodes;
Where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the first electrode finger and the second electrode finger, d/p is 0.5 or less.
 第11態様の弾性波装置は、第10態様の弾性波装置において、
 d/pが0.24以下である。
The elastic wave device of the eleventh aspect is the elastic wave device of the tenth aspect,
d/p is 0.24 or less.
 第12態様の弾性波装置は、第10態様または第11態様の弾性波装置において、
 前記積層方向に交差する方向において、前記第1電極指および前記第2電極指が重なり合っている領域である励振領域に対する、前記励振領域内の前記第1電極指および前記第2電極指の面積の割合であるメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たす。
The elastic wave device of the twelfth aspect is the elastic wave device of the tenth aspect or the eleventh aspect,
A metallization ratio MR, which is a ratio of the area of the first electrode fingers and the second electrode fingers in the excitation region to the excitation region, which is the region where the first electrode fingers and the second electrode fingers overlap, satisfies MR≦1.75 (d/p)+0.075 in the direction crossing the stacking direction.
 第13態様の弾性波装置は、第10態様~第12態様のいずれかの弾性波装置において、
 前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
The elastic wave device of the thirteenth aspect is the elastic wave device of any one of the tenth to twelfth aspects,
The Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate are within the range of the following formula (1), formula (2) or formula (3).
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2/900 ) 1/2 ) or (0°±10°, 20° to 80°, [180°-60° (1-(θ-50) 2/900 ) 1/2 ] to 180°) Equation (2)
(0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 第14態様の弾性波装置は、第9態様~第13態様のいずれかの弾性波装置において、
 前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
 厚み滑りモードのバルク波を利用可能に構成されている。
The elastic wave device of the fourteenth aspect is the elastic wave device of any one of the ninth to thirteenth aspects,
the piezoelectric layer contains lithium niobate or lithium tantalate,
It is configured to be able to utilize bulk waves in the thickness-shlip mode.
 第15態様の弾性波装置は、第1態様~第8態様のいずれかの弾性波装置において、
 前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
 板波を利用可能に構成されている。
The elastic wave device of the fifteenth aspect is the elastic wave device of any one of the first to eighth aspects,
the piezoelectric layer contains lithium niobate or lithium tantalate,
It is configured to be able to use plate waves.
 前記様々な実施形態または変形例のうちの任意の実施形態または変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせまたは実施例同士の組み合わせまたは実施形態と実施例との組み合わせが可能であると共に、異なる実施形態または実施例の中の特徴同士の組み合わせも可能である。 By appropriately combining any of the various embodiments or modifications described above, the respective effects can be achieved. In addition, combinations of embodiments, combinations of examples, or combinations of embodiments and examples are possible, as well as combinations of features in different embodiments or examples.
 本開示は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present disclosure has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such variations and modifications are to be understood as included therein insofar as they do not depart from the scope of the present disclosure by the appended claims.

Claims (15)

  1.  支持基板と、
     前記支持基板上に設けられた圧電体層と、
     前記圧電体層上に設けられた機能電極と、
     前記支持基板の内部に設けられ、前記支持基板および前記圧電体層の積層方向に沿って見た平面視において前記機能電極の一部と重なる位置にある空洞部と、
     前記支持基板の前記空洞部の内面を構成する部分から前記積層方向に交差する方向に延びて、前記積層方向において前記圧電体層を支持する少なくとも1つの突起と
    を備える、弾性波装置。
    a support substrate;
    a piezoelectric layer provided on the support substrate;
    a functional electrode provided on the piezoelectric layer;
    a hollow portion provided inside the support substrate and overlapping with a part of the functional electrode in a plan view along the stacking direction of the support substrate and the piezoelectric layer;
    and at least one projection extending in a direction intersecting the stacking direction from a portion of the support substrate forming the inner surface of the hollow portion and supporting the piezoelectric layer in the stacking direction.
  2.  前記積層方向に沿って見た場合、前記突起が延びる延長方向における前記突起の寸法が5μm以上20μm以下であり、前記延長方向に交差する幅方向における前記突起の寸法が5μm以上50μm以下である、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein, when viewed along the stacking direction, the dimension of the projection in the extension direction in which the projection extends is 5 µm or more and 20 µm or less, and the dimension of the projection in the width direction intersecting the extension direction is 5 µm or more and 50 µm or less.
  3.  前記機能電極が、
     前記積層方向に交差する方向において対向する第1バスバーおよび第2バスバーと、
     前記第1バスバーに接続され、前記第1バスバーから前記第2バスバーに向かって延びる第1電極指と、
     前記第2バスバーに接続され、前記第2バスバーから前記第1バスバーに向かって延びる第2電極指と
    を有し、
     前記突起が、前記第1バスバーおよび前記第2バスバーが対向する対向方向に沿って延び、前記対向方向において前記第1バスバーの前記第1電極指が接続されている接続端よりも前記第2バスバーから離れた位置にある、請求項1または2に記載の弾性波装置。
    The functional electrode is
    a first bus bar and a second bus bar facing each other in a direction intersecting the stacking direction;
    a first electrode finger connected to the first busbar and extending from the first busbar toward the second busbar;
    a second electrode finger connected to the second bus bar and extending from the second bus bar toward the first bus bar;
    The elastic wave device according to claim 1 or 2, wherein the protrusion extends along the facing direction in which the first bus bar and the second bus bar face each other, and is located farther from the second bus bar than a connection end to which the first electrode finger of the first bus bar is connected in the facing direction.
  4.  前記対向方向における前記突起および前記接続端の間の距離が、ゼロμm以上5μm以下である、請求項3に記載の弾性波装置。 The elastic wave device according to claim 3, wherein the distance between the projection and the connection end in the opposing direction is 0 µm or more and 5 µm or less.
  5.  前記対向方向において対向する一対の前記突起を備える、請求項4に記載の弾性波装置。 The elastic wave device according to claim 4, comprising a pair of said protrusions facing each other in said facing direction.
  6.  前記機能電極が、前記突起が延びる延長方向に沿って延びる複数の電極指を有し、
     前記複数の電極指のうち、前記積層方向に沿って見た場合、前記延長方向に交差する幅方向の一端および他端の間に位置する電極指を内電極指とし、前記幅方向の一端および他端の間に位置しない電極指を外電極指とすると、前記内電極指の前記幅方向の寸法が、前記外電極指の前記幅方向の寸法の1.05倍以上で、かつ、前記突起の前記幅方向の寸法よりも小さい、請求項1から5のいずれか1つに記載の弾性波装置。
    wherein the functional electrode has a plurality of electrode fingers extending along the direction in which the projection extends,
    The elastic wave device according to any one of claims 1 to 5, wherein, when viewed along the stacking direction, the electrode fingers positioned between one end and the other end in the width direction intersecting the extension direction are inner electrode fingers, and the electrode fingers not positioned between one end and the other end in the width direction are outer electrode fingers, the width direction dimension of the inner electrode fingers being 1.05 times or more the width direction dimension of the outer electrode fingers and smaller than the width direction dimension of the projection. .
  7.  前記機能電極が、
     前記突起が延びる延長方向に沿って延びると共に、前記積層方向に沿って見た場合、前記延長方向に交差する幅方向の一端および他端の間に位置する複数の電極指を有する、請求項1から5のいずれか1つに記載の弾性波装置。
    The functional electrode is
    The elastic wave device according to any one of claims 1 to 5, wherein the projection extends along the extension direction and, when viewed along the stacking direction, has a plurality of electrode fingers located between one end and the other end in a width direction that intersects with the extension direction.
  8.  前記支持基板が、支持部材と、前記支持部材の上に設けられた接合層とを含み、
     前記接合層は、前記圧電体層と対向する前記支持部材の一方主面に設けられており、
     前記空洞部は、前記積層方向に沿って見た平面視において前記機能電極の一部と重なる位置で前記接合層に設けられている、請求項1から7のいずれか1つに記載の弾性波装置。
    the support substrate includes a support member and a bonding layer provided on the support member;
    The bonding layer is provided on one main surface of the support member facing the piezoelectric layer,
    The elastic wave device according to any one of claims 1 to 7, wherein the cavity is provided in the bonding layer at a position overlapping with a part of the functional electrode in plan view along the stacking direction.
  9.  前記機能電極がIDT電極である、請求項1から8のいずれか1つに記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 8, wherein the functional electrode is an IDT electrode.
  10.  前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
     前記IDT電極が、前記積層方向に交差する方向において対向する第1電極指および第2電極指を有し、
     前記第1電極指および前記第2電極指は隣り合う電極同士であり、
     前記圧電体層の厚みをd、前記第1電極指および前記第2電極指との中心間距離をpとした場合、d/pが0.5以下である、請求項9に記載の弾性波装置。
    the piezoelectric layer contains lithium niobate or lithium tantalate,
    the IDT electrode has a first electrode finger and a second electrode finger facing each other in a direction intersecting the stacking direction;
    the first electrode finger and the second electrode finger are adjacent electrodes;
    10. The elastic wave device according to claim 9, wherein d/p is 0.5 or less, where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the first electrode finger and the second electrode finger.
  11.  d/pが0.24以下である、請求項10に記載の弾性波装置。 The elastic wave device according to claim 10, wherein d/p is 0.24 or less.
  12.  前記積層方向に交差する方向において、前記第1電極指および前記第2電極指が重なり合っている領域である励振領域に対する、前記励振領域内の前記第1電極指および前記第2電極指の面積の割合であるメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たす、請求項10または11に記載の弾性波装置。 The elastic wave device according to claim 10 or 11, wherein a metallization ratio MR, which is a ratio of the area of the first electrode fingers and the second electrode fingers in the excitation region to the excitation region, which is the region where the first electrode fingers and the second electrode fingers overlap, satisfies MR≦1.75 (d/p)+0.075 in the direction crossing the stacking direction.
  13.  前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項10から12のいずれか1つに記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
    The elastic wave device according to any one of claims 10 to 12, wherein Euler angles (φ, θ, ψ) of said lithium niobate or lithium tantalate are in the range of the following formula (1), formula (2) or formula (3).
    (0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2/900 ) 1/2 ) or (0°±10°, 20° to 80°, [180°-60° (1-(θ-50) 2/900 ) 1/2 ] to 180°) Equation (2)
    (0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
  14.  前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
     厚み滑りモードのバルク波を利用可能に構成されている、請求項9から13のいずれか1つに記載の弾性波装置。
    the piezoelectric layer contains lithium niobate or lithium tantalate,
    The acoustic wave device according to any one of claims 9 to 13, configured to be able to use thickness-shear mode bulk waves.
  15.  前記圧電体層が、ニオブ酸リチウムまたはタンタル酸リチウムを含み、
     板波を利用可能に構成されている、請求項1から8のいずれか1つに記載の弾性波装置。
    the piezoelectric layer contains lithium niobate or lithium tantalate,
    The acoustic wave device according to any one of claims 1 to 8, configured to be able to use plate waves.
PCT/JP2023/001277 2022-01-19 2023-01-18 Elastic wave device WO2023140272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263300695P 2022-01-19 2022-01-19
US63/300,695 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023140272A1 true WO2023140272A1 (en) 2023-07-27

Family

ID=87348238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001277 WO2023140272A1 (en) 2022-01-19 2023-01-18 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2023140272A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124640A (en) * 2007-11-19 2009-06-04 Hitachi Media Electoronics Co Ltd Thin-film piezoelectric bulk wave resonator and its manufacturing method, and thin-film piezoelectric bulk wave resonator filter using thin-film piezoelectric bulk wave resonator
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device
JP6984800B1 (en) * 2020-03-16 2021-12-22 株式会社村田製作所 Elastic wave device
WO2022102719A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124640A (en) * 2007-11-19 2009-06-04 Hitachi Media Electoronics Co Ltd Thin-film piezoelectric bulk wave resonator and its manufacturing method, and thin-film piezoelectric bulk wave resonator filter using thin-film piezoelectric bulk wave resonator
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device
JP6984800B1 (en) * 2020-03-16 2021-12-22 株式会社村田製作所 Elastic wave device
WO2022102719A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
US20230015397A1 (en) Acoustic wave device
WO2023223906A1 (en) Elastic wave element
WO2023013742A1 (en) Elastic wave device
WO2023002790A1 (en) Elastic wave device
WO2022210809A1 (en) Elastic wave device
WO2023002823A1 (en) Elastic wave device
WO2022120025A1 (en) Acoustic wave device
WO2023140272A1 (en) Elastic wave device
WO2023145878A1 (en) Elastic wave device
WO2023058755A1 (en) Acoustic wave device, and method for manufacturing acoustic wave device
WO2023167316A1 (en) Elastic wave device
WO2023140362A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
WO2023054703A1 (en) Elastic wave device
WO2022265071A1 (en) Elastic wave device
WO2023140327A1 (en) Elastic wave device
WO2022264914A1 (en) Elastic wave device
WO2023191089A1 (en) Elastic wave device
WO2023210762A1 (en) Acoustic wave element
WO2023191070A1 (en) Elastic wave device
WO2023286605A1 (en) Elastic wave device
WO2023282264A1 (en) Elastic wave device
WO2022211055A1 (en) Elastic wave device
WO2023190721A1 (en) Elastic wave device
WO2023140331A1 (en) Elastic wave device
WO2023054675A1 (en) Acoustic wave device and method for manufacturing acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743266

Country of ref document: EP

Kind code of ref document: A1