WO2023195079A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023195079A1
WO2023195079A1 PCT/JP2022/017121 JP2022017121W WO2023195079A1 WO 2023195079 A1 WO2023195079 A1 WO 2023195079A1 JP 2022017121 W JP2022017121 W JP 2022017121W WO 2023195079 A1 WO2023195079 A1 WO 2023195079A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
encoder
channel
base station
model
Prior art date
Application number
PCT/JP2022/017121
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
浩樹 原田
リュー リュー
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/017121 priority Critical patent/WO2023195079A1/en
Publication of WO2023195079A1 publication Critical patent/WO2023195079A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • AI artificial intelligence
  • ML machine learning
  • CSI channel state information reference signal
  • An autoencoder may be used to compress/reconstruct channel information.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable overhead reduction/channel estimation/resource utilization.
  • a terminal includes a control unit that compresses information to be transmitted using a set encoder, and a transmission unit that transmits a request to change the encoder when a certain condition is satisfied.
  • suitable overhead reduction/channel estimation/resource utilization can be achieved.
  • FIG. 1 is a diagram illustrating an example of CSI feedback using an encoder/decoder.
  • FIG. 2 is a diagram illustrating an example of the relationship between channel characteristics and performance.
  • 3A-3C are diagrams illustrating an example of channel characteristics and training of an AI model.
  • FIG. 4 is a diagram illustrating an example of an encoder specified by type information.
  • FIG. 5 is a diagram illustrating an example of an encoder specified by type information.
  • FIG. 6 is a diagram illustrating an example of an encoder specified by type information.
  • FIG. 7 is a diagram illustrating an example of the flow up to MCR transmission in the third embodiment.
  • FIG. 8 is a diagram showing an example of MFD occurrence.
  • FIG. 9 is a diagram illustrating an example of multiple sets of information regarding the MFD.
  • FIG. 1 is a diagram illustrating an example of CSI feedback using an encoder/decoder.
  • FIG. 2 is a diagram illustrating an example of the relationship between channel characteristics and performance.
  • FIG. 10 is a diagram illustrating an example of the flow from receiving the MCC to applying the model in the fifth embodiment.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of a vehicle according to an embodiment.
  • AI Artificial Intelligence
  • ML machine learning
  • improved Channel State Information Reference Signal e.g., reduced overhead, improved accuracy, prediction
  • improved beam management e.g., improved accuracy, time
  • CSI feedback based on AI technology may be referred to as AI-aided CSI feedback.
  • Channel measurement/estimation is performed using, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/physical broadcast channel (SS /PBCH)) block, a demodulation reference signal (DMRS), a measurement reference signal (Sounding Reference Signal (SRS)), or the like.
  • CSI-RS channel state information reference signal
  • SS synchronization signal
  • SS /PBCH synchronization signal/physical broadcast channel
  • DMRS demodulation reference signal
  • SRS Sounding Reference Signal
  • the existing CSI is a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI-RS resource indicator (CRI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP Reference in Layer 1 Signal received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio) ) etc. May include.
  • AI-assisted CSI feedback it is required to reduce this information or feed back smaller information that replaces this information.
  • An autoencoder may be used to compress/reconstruct channel information.
  • the channel information may be information regarding a channel (or a channel matrix).
  • the channel matrix may include information on channel coefficients for each subband/antenna port, or may include information obtained by performing an inverse discrete Fourier transform (IDFT) from the channel coefficients.
  • IDFT inverse discrete Fourier transform
  • the latter information can be used to make the matrix sparser than the former information by converting the channel matrix into the angle/delay domain, so it can be expected to contribute to speeding up encoder calculations.
  • the channel information may be information regarding a precoding matrix.
  • the precoding matrix may include information on precoding coefficients (precoding matrix elements) for each subband/antenna port/MIMO layer, or may include information obtained by IDFT from the precoding coefficients.
  • the latter information can be used to make the matrix sparser than the former information by converting the precoding matrix into the angle/delay domain, so it can be expected to contribute to speeding up encoder calculations.
  • FIG. 1 is a diagram showing an example of CSI feedback using an encoder/decoder.
  • the encoding part (encoder) and the corresponding decoding part (decoder) of the autoencoder are trained at the base station, but they may also be trained at the UE.
  • information regarding the encoder trained by the base station is notified to the UE using upper layer signaling, etc., and the UE inputs the channel matrix H/precoding matrix W, which is channel information, to the encoder, and the encoder is encoded.
  • the value/bit (and quantization may also be applied) and information (CSI feedback) containing that bit may be transmitted from the antenna.
  • the decoder trained by the base station is retained at the base station and used for inference.
  • the base station inputs the received CSI feedback bits to a decoder and outputs reconstructed input information.
  • the encoder and decoder need to be trained using the same dataset. Otherwise, the reconstructed input information will be completely different from the original input information. However, even within the coverage area of one base station, multiple channel characteristics may exist.
  • the channel characteristics may correspond to, for example, Line Of Site (LOS)/Non-Line Of Site (NLOS).
  • LOS may mean that the UE and the base station are in an environment where they can see each other (or there is no shielding), and NLOS may mean that the UE and the base station are not in an environment where they can see each other (or there is no shielding). ) may also mean that.
  • the inventors discovered that there is a trade-off between encoder performance (e.g. compression ratio, error in reconstructed information from the original information, etc.) and the applicability of the AI model.
  • encoder performance e.g. compression ratio, error in reconstructed information from the original information, etc.
  • the inventors discovered the following: ⁇ If an AI model trained specifically for a specific channel is used, optimal performance can be expected for that specific channel. - When an AI model trained specifically on a set of channels with similar channel characteristics (for example, NLOS channels) is used, suboptimal performance can be expected for that set. - If an AI model trained on a set of channels with diverse channel characteristics (eg, NLOS channels and LOS channels) is used, poor performance can be expected for that set.
  • FIG. 2 is a diagram showing an example of the relationship between channel characteristics and performance.
  • This example is a bird's eye view (or top view) including a base station, some buildings (obstructions), etc.
  • points AE are shown.
  • the channel characteristics with the base station points A to C correspond to NLOS
  • points D to E correspond to LOS.
  • the A/B/C channel characteristics may correspond to relatively bad (NLOS) channel characteristics
  • the D/E channel characteristics may correspond to relatively good (LOS) channel characteristics.
  • AE referred to hereinafter corresponds to points AE in FIG. 2, respectively.
  • the present inventors found that, for example, when creating an AI model using only the channel information acquired at A (by the UE), although the inference performance for A is very good, the applicability of the AI model is narrow ( It was found that this method is not suitable for inferring channel information of other BEs.
  • the inference performance for the A-E is not very good, but the application of the AI model is We found that the range is wide.
  • the UE/network can flexibly deal with the relationship between performance and model applicability.
  • the present inventors came up with a control method suitable for transmitting AI support information. Note that each embodiment of the present disclosure may be applied when AI/prediction is not used.
  • a terminal User Equipment (UE)
  • BS Base Station
  • UE User Equipment
  • BS Base Station
  • UE User Equipment
  • inference mode the accuracy of the trained ML model trained in the training mode may be verified.
  • the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information, etc. /Wireless link quality, etc. may be output.
  • AI may be read as an object (also referred to as a target, object, data, function, program, etc.) that has (implements) at least one of the following characteristics: ⁇ Estimation based on observed or collected information; - Selection based on observed or collected information; - Predictions based on observed or collected information.
  • the object may be, for example, an apparatus, a device, etc., such as a terminal or a base station. Further, the object may correspond to a program included in the device.
  • the ML model may be replaced by an object that has (implements) at least one of the following characteristics: ⁇ Produce estimates by feeding information, ⁇ Predict the estimated value by giving information, ⁇ Discover characteristics by providing information, ⁇ Select an action by providing information.
  • ML model, model, AI model, predictive analytics, predictive analysis model, etc. may be read interchangeably.
  • the ML model may be derived using at least one of regression analysis (eg, linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, and the like.
  • regression analysis eg, linear regression analysis, multiple regression analysis, logistic regression analysis
  • support vector machine random forest, neural network, deep learning, and the like.
  • a model may be interpreted as at least one of an encoder, a decoder, a tool, etc.
  • the ML model Based on the input information, the ML model outputs at least one information such as an estimated value, a predicted value, a selected action, a classification, etc.
  • the ML model may include supervised learning, unsupervised learning, reinforcement learning, and the like.
  • Supervised learning may be used to learn general rules that map inputs to outputs.
  • Unsupervised learning may be used to learn features of the data.
  • Reinforcement learning may be used to learn actions to maximize a goal.
  • implementation, operation, operation, execution, etc. may be read interchangeably. Further, in this disclosure, inference, after-training, actual use, actual use, etc. may be read interchangeably. Signal may be interchanged with signal/channel.
  • the training mode may correspond to a mode in which the UE/BS transmits/receives signals for the ML model (in other words, an operation mode during the training period).
  • the inference mode may correspond to a mode in which the UE/BS implements an ML model (e.g., implements a trained ML model to predict an output) (in other words, an operating mode during the inference period). good.
  • the training mode may mean a mode in which a specific signal transmitted in the inference mode has a large overhead (for example, a large amount of resources).
  • the training mode may mean a mode that refers to a first configuration (eg, a first DMRS configuration, a first CSI-RS configuration).
  • the inference mode may mean a mode that refers to a second configuration (eg, a second DMRS configuration, a second CSI-RS configuration) that is different from the first configuration.
  • the first setting at least one of measurement-related time resources, frequency resources, code resources, and ports (antenna ports) may be set more than in the second setting.
  • the relevant entities are the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this.
  • the UE and BS in the embodiment below may be replaced with a first UE and a second UE.
  • the UE, BS, etc. of the present disclosure may be replaced with any UE/BS.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • CSI-RS Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) are: They may be read interchangeably. Additionally, the CSI-RS may include other reference signals.
  • NZP Non Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • RS to be measured/reported may mean RS to be measured/reported for CSI reporting.
  • timing, time, time, slot, subslot, symbol, subframe, etc. may be read interchangeably.
  • direction, axis, dimension, domain, polarization, polarization component, etc. may be read interchangeably.
  • the RS may be, for example, a CSI-RS, an SS/PBCH block (SS block (SSB)), or the like.
  • the RS index may be a CSI-RS resource indicator (CSI-RS resource indicator (CRI)), an SS/PBCH block resource indicator (SS/PBCH block indicator (SSBRI)), or the like.
  • estimation, prediction, and inference may be used interchangeably.
  • estimate the terms “estimate,” “predict,” and “infer” may be used interchangeably.
  • autoencoder, encoder, decoder, etc. may be replaced with at least one of a model, ML model, neural network model, AI model, AI algorithm, etc. Further, the autoencoder may be interchanged with any autoencoder such as a stacked autoencoder or a convolutional autoencoder.
  • the encoder/decoder of the present disclosure may adopt models such as Residual Network (ResNet), DenseNet, RefineNet, etc.
  • encoder encoding, encoding, modification/change/control by encoder, etc.
  • decoder decoding, decoding, modification/change/control by decoder, etc.
  • UCI UCI
  • CSI report CSI feedback
  • feedback information feedback bit, etc.
  • bits, bit strings, bit sequences, sequences, values, information, values obtained from bits, information obtained from bits, etc. may be interchanged.
  • layers for encoders may be interchanged with layers (input layer, intermediate layer, etc.) used in the AI model.
  • the layer of the present disclosure may correspond to at least one of an input layer, an intermediate layer, an output layer, a batch normalization layer, a convolution layer, a dropout layer, a fully connected layer, and the like.
  • a layer regarding a precoding matrix may be interchanged with a Multi Input Multi Output (MIMO) layer, stream, etc.
  • MIMO Multi Input Multi Output
  • the first embodiment relates to information regarding channel characteristics (which may also be referred to as channel characteristics information, additional information, improvement information, detailed information, etc.).
  • the UE sends channel characteristic information to the network in addition to channel information.
  • the channel characteristic information may be transmitted at the same time as the channel information, or may be transmitted at different timings.
  • the UE may obtain channel information by obtaining channel coefficients based on measurements regarding reference signals, for example.
  • the channel characteristic information may indicate channel characteristics at the timing of acquisition of the channel information.
  • the UE may transmit information regarding the reporting of channel information/channel characteristics information using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels, or a combination thereof. It may be notified from the network. The UE may report channel information/channel characteristic information based on this information.
  • physical layer signaling e.g. DCI
  • higher layer signaling e.g. RRC signaling, MAC CE
  • specific signals/channels e.g. RRC signaling, MAC CE
  • the UE may transmit channel characteristic information to the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), specific signals/channels, or a combination thereof. good.
  • Physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • specific signals/channels e.g., MAC CE
  • Channel characteristic information may be included in a CSI report and transmitted together with channel information, for example.
  • the channel characteristic information may include, for example, information regarding LOS/NLOS, or location information.
  • the channel characteristics may correspond to LOS, NLOS, UE location, etc.
  • the channel characteristic information may include information on the timing (time) at which the channel information (/channel characteristic/channel characteristic information) was acquired/determined.
  • the location information may be location information regarding the UE/base station.
  • Location information includes information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.), and information (e.g., latitude, longitude, altitude) adjacent to the UE.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • Information on the base station serving (or serving) e.g.
  • the base station/cell identifier ID
  • BS-UE distance e.g., X/Y/Z axis coordinates, etc.
  • IP Internet Protocol
  • the location information of the UE is not limited to information based on the location of the BS, but may be information based on a specific point.
  • the location information may include information regarding its own implementation (for example, location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
  • the location information may include mobility information.
  • the mobility information may include information indicating at least one of the mobility type, the moving speed of the UE, the acceleration of the UE, the moving direction of the UE, and the like.
  • the mobility types are fixed location UE, movable/moving UE, no mobility UE, low mobility UE, and medium mobility UE.
  • the UE may determine the channel characteristic information based on at least one of the RS measurement results and the location information acquisition results.
  • Channel characteristic information (for example, LOS/NLOS, etc.) may be indicated by an index (for example, LOS/NLOS indicator).
  • the base station may train an AI model (encoder/decoder) of the channel information at different granularity for the channel characteristics, taking into account the channel characteristics information reported by the UE.
  • AI model encoder/decoder
  • the UE/base station may be able to use one or more encoders/decoders.
  • the one or more encoders/decoders may be, for example, encoders/decoders common to all channel characteristics, encoders/decoders common to several channel characteristics, or encoders/decoders common to each channel characteristic. It may be an encoder/decoder.
  • FIGS. 3A-3C are diagrams illustrating an example of channel characteristics and training of an AI model.
  • FIG. 3A shows an example of training an AI model using all channel information without distinguishing channel characteristics.
  • FIG. 3B shows an example of training an AI model using channel information regarding several channel characteristics.
  • FIG. 3C shows an example of training an AI model using channel information regarding one channel characteristic.
  • Encoder (ABC)/decoder (ABC) may mean suitable for inferring channels with A/B/C channel characteristics.
  • the base station trains an AI model of channel information for ABCDE by using the reported channel information together with channel characteristic information indicating A/B/C/D/E as one data set without distinguishing it. do.
  • the base station trains an AI model of channel information for ABC, using the channel information reported together with the channel characteristic information indicating A/B/C as one data set without distinguishing it. Further, in FIG. 3B, the base station trains an AI model of channel information for DE by using the channel information reported together with the channel characteristic information indicating D/E as one data set without distinguishing it. That is, channel information reported together with channel characteristic information indicating A/B/C is not used for training an AI model of channel information for DE.
  • the base station uses the channel information reported together with channel characteristic information indicating X (where X is one of A, B, C, D, and E) as one data set without distinguishing, Train an AI model of channel information for That is, channel information reported together with channel characteristic information indicating different channel characteristics is not used to train an AI model of channel information for one channel characteristic.
  • the channel characteristic of the channel characteristic information is different from that of the channel corresponding to the other channel characteristic information. It may be determined that the characteristics are different.
  • an AI model can be appropriately trained using only channel information that corresponds to specific channel characteristics as a data set.
  • the second embodiment relates to information for identifying an encoder used by a UE.
  • This information may be referred to as encoder specific information, type information for the encoder, encoder type information, simply type information, etc. Note that type may be interchanged with mode, set, subset, group, type, classification, etc.
  • the UE may determine the type information based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels. , or a combination thereof may be used for notification from the network.
  • physical layer signaling e.g. DCI
  • higher layer signaling e.g. RRC signaling, MAC CE
  • specific signals/channels. e.g. RRC signaling, MAC CE
  • Type information may relate to any or a combination of the following: ⁇ Applicable range of specific encoder, ⁇ Accuracy/performance of a particular encoder, ⁇ Channel characteristics, ⁇ Encoder complexity, -Encoder input/output.
  • each encoder may be a cell-specific encoder, an area-specific encoder, a channel-specific encoder, etc. may be called.
  • Cell-specific encoders may be used across any different channels.
  • Area-specific encoders may be used across channels with the same characteristics.
  • Channel-specific encoders may be used for one channel characteristic.
  • Type information indicating that the scope of the encoder is a cell may be called type X.
  • Type information indicating that the scope of the encoder is an area may be referred to as type Y.
  • Type information indicating that the scope of the encoder is a channel may be referred to as type Z.
  • the accuracy/performance may be, for example, high performance, medium performance, low performance, etc.
  • Accuracy/performance evaluation indicators (which may be referred to as Performance Indicators (PI), Key Performance Indicators (KPI), etc.) may be set/defined together with the type or type information.
  • the evaluation metrics may be expected normalized mean square error (NMSE), spectrum efficiency, etc. in different application scenarios.
  • Type information indicating that the encoder has high accuracy/performance may be referred to as Type I.
  • Type information indicating that the encoder's accuracy/performance is medium may be referred to as Type II.
  • Type information indicating that the encoder has low accuracy/performance may be referred to as type III.
  • the channel characteristics may be, for example, a LOS channel, an NLOS channel, a mix of LOS and NLOS channels, etc.
  • the channel characteristics may be, for example, urban, rural, indoor, etc.
  • Type information indicating that the channel characteristics are LOS or urban may be referred to as type a.
  • Type information indicating that the channel characteristics are NLOS or rural may be referred to as type b.
  • Type information indicating that the channel characteristics are mixed or indoor may be referred to as type c.
  • the above complexity includes, for example, the number of encoder layers, input size, output size, number of encoder parameters, floating point operations (FLOPs (note, s is lowercase)) required for encoding (this is a floating point may be expressed using at least one of the following:
  • the above input/output may be channel information, channel matrix, eigenvector, etc.
  • FIG. 4-6 is a diagram showing an example of an encoder specified by type information.
  • the number of encoders corresponding to type X may be one (encoder (ABCDE)).
  • the encoder corresponding to type Y may be at least one of two (encoder (ABC) and encoder (DE)).
  • the encoder corresponding to type Z may be at least one of five (encoder (A), encoder (B), encoder (C), encoder (D), and encoder (E)).
  • the encoder corresponding to type I may be at least one of three (encoder (DE), encoder (D), encoder (E)). Moreover, the encoder corresponding to type II may be at least one of four (encoder (ABC), encoder (A), encoder (B), and encoder (C)). Further, the number of encoders corresponding to type III may be one (encoder (ABCDE)).
  • encoders may be identified based on the encoder's coverage and accuracy/performance.
  • a UE configured as type Z and type II may use at least one of encoder (A), encoder (B), and encoder (C).
  • a UE configured with type Z and type I may use at least one of an encoder (D) and an encoder (E).
  • a UE configured with type Y and type II may use an encoder (ABC).
  • a UE configured with type Y and type I may use an encoder (DE).
  • a Type X/Type III configured UE may use an encoder (ABCDE).
  • the UE/base station does not need to be able to handle all of AE, and may be able to handle points other than AE.
  • the UE can appropriately specify the encoder to be used.
  • the third embodiment relates to model modification.
  • the base station and the UE have a common understanding of the AI model that is actually used (for example, the AI model that is used when the UE and the network cooperate during model inference). Otherwise, the decoded result will be different than expected.
  • the type information (see the second embodiment) is notified to the UE and only one encoder is specified by the information, there is no discrepancy in the recognition of the AI model between the base station and the UE.
  • the UE may select one encoder from the multiple encoders and transmit information regarding the selected encoder to the network. .
  • the UE may obtain current channel characteristic information and decide which encoder to select based on this.
  • the UE transmits information about the selected encoder to the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. It's okay.
  • Information regarding the selected encoder may be transmitted, for example, in a CSI report.
  • the UE may transmit information regarding the selected other encoder to the network.
  • the UE may send a Model Change Request (MCR) to the network if certain conditions are met.
  • MCR is configured to communicate with the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), specific signals/channels (e.g., PRACH, PUCCH, PUSCH), or a combination thereof. May be sent.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • specific signals/channels e.g., PRACH, PUCCH, PUSCH
  • MCR triggering conditions Conditions for transmitting the MCR (triggering conditions) may be set by upper layer signaling.
  • MCR may be triggered by Model Failure Monitoring (MFM).
  • MFM Model Failure Monitoring
  • the UE may be configured with configuration information for MFM (MFM configuration) through upper layer signaling.
  • MFM may also be referred to as Model Failure Detection (MFD). Further, the MCR may be called a model failure recovery request (MFRR) or a model feedback.
  • MFM Model Failure Detection
  • MFRR model failure recovery request
  • FIG. 7 is a diagram showing an example of the flow up to MCR transmission in the third embodiment.
  • the base station sets two type information for the UE (one is type X that can identify the encoder (ABCDE), and the other is type Z that can identify the encoder (A)). .
  • the UE determines that the current channel characteristics correspond to point A and selects encoder (A).
  • the UE transmits information regarding the selected encoder (A) to the base station.
  • the base station transmits MCR settings (described later) to the UE.
  • MCR settings described later
  • the transmission timing of the MCR settings is not limited to the timing shown in the figure (for example, it may be before the type information is set).
  • the MFM settings may be sent to the UE at the same timing as the MCR settings, or may be sent at different timings.
  • the UE performs measurements based on the MFM settings and triggers the MCR if certain conditions are met.
  • a triggered MCR may be sent one or more times (described below).
  • MFM settings may include information regarding at least one of the following: ⁇ MFD judgment criteria (criterion, criteria), ⁇ MF instance max counter (MF instance max counter), - MFD timer (or period for MFD).
  • ⁇ MFD judgment criteria criteria, criteria
  • MF instance max counter MF instance max counter
  • - MFD timer or period for MFD.
  • this information may be notified to the UE using one or more RRC information elements.
  • the UE may determine that an MFD has occurred (MF has been detected) if the MF instance counter becomes equal to or greater than the MF instance maximum counter from when the MFD timer starts until it expires.
  • MFD processing may be managed in the MAC layer (L2 (layer-2) layer) of the UE.
  • the MFD timer may be started or restarted and the MF instance counter is incremented. (In other words, it may be +1).
  • the initial value of the MF instance counter may be 0. If the MFD timer expires or an MCR is sent, the MF instance counter may be set to the initial value.
  • the PHY layer of the UE may perform measurements corresponding to the MFD criteria, and transmit the MF instance to the MAC layer when the measurement results satisfy the conditions corresponding to the MFD criteria.
  • an MFD timer is started/restarted and counts (increments a counter) when a condition corresponding to the MFD criteria is met, and if the counter is greater than or equal to the MF instance maximum counter, an MFD has occurred. It may be determined that this is the case, and the MCR may be triggered. In this case, the MF instance may not be generated/notified.
  • MFD criteria may include, for example, at least one of the following: - Reference signal for measurement (e.g. SSB, CSI-RS, DMRS), - Channel for measurement (e.g. PDCCH, PDSCH, PUCCH, PUSCH), ⁇ Metrics for measurement, ⁇ Threshold values for the above conditions, ⁇ Applicable/assumed model.
  • - Reference signal for measurement e.g. SSB, CSI-RS, DMRS
  • - Channel for measurement e.g. PDCCH, PDSCH, PUCCH, PUSCH
  • ⁇ Metrics for measurement e.g. PDCCH, PDSCH, PUCCH, PUSCH
  • the metric may be at least one of the following: ⁇ Block Error Rate (BLER), ⁇ Modulation and Coding Scheme (MCS), ⁇ LOS/NLOS (detection of LOS/NLOS or detection of change from LOS to NLOS (or from NLOS to LOS)), ⁇ Position (detection of position change (movement)), ⁇ Loss function (value) corresponding to the deployed AI model, ⁇ Accuracy/performance evaluation metrics (e.g. NMSE), - CSI (eg, L1-RSRP, L1-SINR).
  • BLER Block Error Rate
  • MCS Modulation and Coding Scheme
  • ⁇ LOS/NLOS detection of LOS/NLOS or detection of change from LOS to NLOS (or from NLOS to LOS)
  • ⁇ Position detection of position change (movement)
  • ⁇ Loss function value
  • ⁇ Accuracy/performance evaluation metrics e.g. NMSE
  • - CSI
  • the threshold for the above condition may be a threshold for the metric (for example, a BLER threshold, an MCS threshold).
  • the MFM settings may include MFD resource settings.
  • the MFD criteria is used to perform measurements corresponding to the MFD criteria for one or more (for example, all) of the MFD resources configured by the MFD resource configuration, and when the measurement results satisfy the conditions corresponding to the MFD criteria, the MAC layer
  • the MF instance counter may be sent to the MF instance counter.
  • FIG. 8 is a diagram showing an example of MFD occurrence.
  • the flow in FIG. 8 corresponds to an example of the "condition determination" process in FIG.
  • the MFD criterion is set to "BLER>Threshold 1”
  • the MF instance maximum counter is set to "5 times”
  • the MFD timer is set to "10 slots”.
  • notifications exchanged between the L1 (PHY) layer and the L2 (MAC) layer are shown.
  • the L1 layer When BLER>Threshold 1 occurs, the L1 layer notifies the MAC layer of the MF instance.
  • the MAC layer When the MAC layer receives five or more MF instances, it may determine that an MFD has occurred, and may notify the L1 layer of an MCR transmission instruction. Note that candidate model selection, which will be described later, may be performed until the MCR transmission instruction is notified.
  • the MFM settings may include more than one set of information regarding the MFD described above. Each set may be associated with different type information.
  • the MFM settings may include type information corresponding to each set.
  • FIG. 9 is a diagram illustrating an example of multiple sets of information regarding the MFD.
  • set 1 corresponding to type X set 2 corresponding to type Y, and set 3 corresponding to type Z are set by MFM settings.
  • the MFD criteria, MF instance maximum counter, and MFD timer of set i are denoted as MFD criterion i, MF instance maximum counter i, and MFD timer i, respectively.
  • the cell-specific encoder is not a trigger target for MCR. Therefore, the MFD criteria of set 1 may indicate criteria that cannot occur (eg, BLER>1, BLER ⁇ 0, etc.). Further, the MF instance maximum counter and MFD timer of set 1 may be arbitrary values, may be set or ignored, or may not be set in the first place.
  • Area-specific encoders may have MCR triggered frequently, and channel-specific encoders may have MCR triggered less frequently. Therefore, the MFD criteria of set 2 may be criteria that are more likely to occur than the MFD criteria of set 3.
  • the UE may activate/deactivate the sets using the MAC CE/DCI. Furthermore, when multiple sets of information regarding MFD are configured, the UE may activate the sets based on the type information corresponding to the configured/selected encoder (corresponding to encoders that are not configured/selected). may be deactivated). The UE may detect the MF based on the active set only.
  • the UE may select (determine) a model that is a candidate for change from the current model (candidate model).
  • the PHY layer of the UE performs measurements corresponding to the criteria for candidate model selection, and when the measurement results satisfy the conditions corresponding to the criteria for candidate model selection, notifies the MAC layer that a candidate model has been found. may be sent.
  • the criteria for candidate model selection may be similar to the MFD criteria described above.
  • the UE may be configured with information regarding one or more candidate models through upper layer signaling.
  • the information regarding the model may include a (candidate) model ID, information regarding the above-mentioned criteria, and the like.
  • the MCR may be triggered when one or more candidate models are found, or when no candidate model is found.
  • the UE shall apply (( may be used).
  • the contents of the MCR may be set by upper layer signaling.
  • the UE may be configured with configuration information for MCR (MCR configuration) through upper layer signaling, and the MCR configuration includes information regarding the contents of the MCR (information regarding what information is included in the MCR). But that's fine.
  • Setting information regarding the contents of the MCR may be referred to as model change configuration (MC setting).
  • Information regarding the contents of the MCR may be at least one of the following: ⁇ Candidate model ID or list of candidate model IDs, ⁇ Measurement results (metric values) corresponding to criteria for candidate model selection, - the current status of the model (in which MF was detected) (e.g. the value of at least one of the above metrics); ⁇ Channel characteristic information (see first embodiment), - Information regarding model updates.
  • the information regarding the model update may include information regarding at least one of the following: ⁇ The value of the weight to be updated in the current model/candidate model (note that it may be an absolute value or a relative value), ⁇ Updated model configuration, - the value of the loss function for the model being updated, - No candidate model was found.
  • the UE may transmit the MCR on the closest uplink resource after the MCR is triggered.
  • the UE may be configured with MCR configuration including information regarding uplink resources for MCR by upper layer signaling, or may be scheduled with uplink resources by DCI.
  • Information regarding uplink resources for MCR may include information regarding at least one of the following: ⁇ MCR periodicity, ⁇ Time to stop MCR transmission, ⁇ Number of attempts to send MCR, - Time/frequency resources for transmitting MCR.
  • the UE may periodically transmit the MCR based on the MCR period from the time the MCR is triggered (or the first MCR is transmitted) until the time to stop transmitting the MCR has elapsed. .
  • time to stop MCR transmission may be expressed by the number of MCR transmissions (which may be referred to as a transmission counter), or may be expressed by a time period (for example, the number of slots, the number of seconds). Further, the time to stop MCR transmission may correspond to a period (which may be referred to as a response window, a monitoring window, etc.) for monitoring responses to MCR transmission.
  • the response may be a model change command (MCC), which will be described later in the fourth embodiment.
  • the UE may monitor downlink channels (PDCCH, PDSCH, etc.) in a search space of X symbols/slots/ms after MCR transmission.
  • the UE may repeatedly monitor the search space Y times. Note that this "MCR transmission" may be the first transmission or the i-th transmission (i is an integer).
  • the UE may determine the X, Y based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals. / channel, or a combination thereof.
  • the X and Y may differ depending on the SCS (for example, the SCS of active BWP) and the frequency band (for example, the frequency band to which active BWP belongs, the frequency range, etc.).
  • MFM settings may be set separately.
  • the UE can appropriately transmit the MCR.
  • the fourth embodiment relates to model modification.
  • the UE may be notified of the model change instruction by the network using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof.
  • physical layer signaling e.g., DCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • the model change instruction may be called a model change command (MCC).
  • MCC model change command
  • the MCC may include information indicating at least one of the following: - an acknowledgment (ACKnowledgement (ACK)) corresponding to the candidate model (recommended model) indicated by the MCR (see the third embodiment); ⁇ AI model, - Type information related to the AI model (see second embodiment).
  • ACK acknowledgment
  • ACK acknowledgement
  • ⁇ AI model - Type information related to the AI model
  • the above approval may also be called confirmation.
  • the UE may implicitly determine (the reception of) the ACK for the MCR based on the following (based on the following occurring): - PDCCH reception with DCI format, scheduling PUSCH transmission with the same Hybrid Automatic Repeat reQuest (HARQ) process number as the transmission of PUSCH with MCR, and with toggled new data indicator (NDI) field value.
  • HARQ Hybrid Automatic Repeat reQuest
  • NDI toggled new data indicator
  • the MCC may include at least one of MFM settings, MC settings, and MCR settings for the confirmed model/new model to be configured.
  • the UE can appropriately understand the MCC.
  • the fifth embodiment relates to the timing of model application.
  • the UE may apply the confirmed model according to the fourth embodiment at at least one of the following timings: ⁇ Reference time, ⁇ The time obtained by adding the time offset to the reference time.
  • the UE may start applying the confirmed model from the first symbol/slot (for example, the first UL symbol/slot) after the timing.
  • the reference time may be at least one of the following: ⁇ Reception timing of PDCCH/PDSCH including MCC, - Transmission timing of PUCCH/PUSCH to report HARQ-ACK information (or ACK) for MCC.
  • the time offset may be expressed using one or more of the following: ⁇ Number of symbols, ⁇ Number of slots, ⁇ Number of subframes, - Seconds (e.g. milliseconds, microseconds, etc.).
  • the UE may determine the time offset based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/
  • the notification may be sent from the network using a channel or a combination thereof.
  • the time offset may be a default value (for example, 3 ms) if there is no setting regarding the time offset from the network.
  • the above time offset may be a value common to all UEs, or a value may be determined for each specific band.
  • FIG. 10 is a diagram illustrating an example of the flow from receiving the MCC to applying the model in the fifth embodiment. This example is the same as FIG. 7 up to MCR, so a redundant explanation will not be given.
  • the UE receives the MCC for approval of the candidate model indicated by the MCR.
  • the reference time is the MCC reception timing. After a time offset has elapsed from the reference time, the UE applies the MCC (candidate model approved by).
  • the UE can apply the model at an appropriate timing.
  • the encoder/decoder may be interchanged with the AI model deployed at the UE/base station. That is, the present disclosure is not limited to the case of using an autoencoder, but may be applied to the case of inference using any model. Furthermore, the object that the UE/base station compresses using the encoder in the present disclosure is not limited to CSI (or channel/precoding matrix), but may be any information. In this case, the channel information in the embodiments described above may be simply replaced with information.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - supporting processing/operation/control/information (e.g., an encoder for AI-assisted information transmission) for at least one of the above embodiments; Supporting acquisition/reporting of channel characteristic information (e.g. LOS, NLOS, location information); ⁇ Supporting multiple AI models that correspond to different types (type information), -Supported levels of computational complexity.
  • processing/operation/control/information e.g., an encoder for AI-assisted information transmission
  • channel characteristic information e.g. LOS, NLOS, location information
  • the above UE capabilities may be reported for each frequency, or for each frequency range (for example, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2). , may be reported for each cell, or may be reported for each subcarrier spacing (SCS).
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • SCS subcarrier spacing
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the specific information may be information indicating that the use of an AI model is enabled for CSI feedback, arbitrary RRC parameters for a specific release (eg, Rel. 18), or the like.
  • the UE may be used for (for compression of) transmission of information between the UE and the base station other than CSI feedback.
  • the UE generates information related to location (or positioning)/information related to location estimation in a location management function (LMF) according to at least one of the above-described embodiments (e.g., using an encoder). You may report it to the network.
  • the information may be channel impulse response (CIR) information for each subband/antenna port. By reporting this, the base station can estimate the location of the UE without reporting the angle/time difference of received signals.
  • CIR channel impulse response
  • a control unit that obtains channel information based on the measurement;
  • a terminal comprising: a transmitter configured to transmit the channel information and channel characteristic information related to the channel information.
  • the channel characteristic information includes information regarding at least one of Line Of Site (LOS), Non-Line Of Site (NLOS), and location.
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • 3 further comprising a receiver for receiving type information indicating a type for the encoder;
  • the terminal according to appendix 1 or 2 wherein the control unit compresses information to be transmitted using an encoder determined based on the type information.
  • Additional note 4 further comprising a receiving unit that receives type information indicating a type regarding the scope of application of the encoder; The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit compresses information to be transmitted using an encoder determined based on the type information.
  • [Additional note 1] a control unit that compresses information to be transmitted using the set encoder;
  • a terminal comprising: a transmitter that transmits a request to change the encoder when a certain condition is met.
  • the terminal according to supplementary note 1 wherein if the condition is satisfied, a model failure is detected for the encoder.
  • [Additional note 4] further comprising a receiving unit that receives approval corresponding to the change request, The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit starts using a new encoder based on the timing of receiving the approval.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 12 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit information regarding channel information reporting to the user terminal 20.
  • the transmitting/receiving unit 120 may receive the channel information and channel characteristic information related to the channel information from the user terminal 20.
  • the transmitting/receiving unit 120 may transmit encoder setting information to the user terminal 20.
  • the transmitting/receiving unit 120 may receive the encoder change request transmitted from the user terminal 20 when a certain condition is satisfied.
  • FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • control unit 210 may acquire channel information based on measurement.
  • the transmitting/receiving unit 220 may transmit the channel information and channel characteristic information related to the channel information.
  • the channel characteristic information may include information regarding at least one of Line Of Site (LOS), Non-Line Of Site (NLOS), and location.
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • the transceiver unit 220 may receive type information indicating the type for the encoder.
  • the control unit 210 may compress the information to be transmitted using the encoder determined based on the type information.
  • the transmitter/receiver 220 may receive type information indicating the type related to the scope of application of the encoder.
  • the control unit 210 may compress the information to be transmitted using the encoder determined based on the type information.
  • control unit 210 may compress the information to be transmitted using a set encoder.
  • the transmitter/receiver 220 may transmit the encoder change request when a certain condition is met.
  • a model failure may be detected in the encoder.
  • the transmitting/receiving unit 220 may receive an approval corresponding to the change request.
  • the transmitting/receiving unit 220 may receive an approval corresponding to the change request.
  • the control unit 210 may start using the new encoder based on the timing of receiving the approval.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 15 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”

Abstract

A terminal according to an aspect of the present disclosure has a control unit that compresses information to be transmitted using an encoder to be set, and a transmission unit that transmits a request to change the encoder when certain conditions are met. This aspect of the present disclosure can be used to realize optimal overhead reduction, channel estimation, and resource utilization.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). Additionally, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。例えば、将来の無線通信技術について、チャネル状態情報(Channel State Information Reference Signal(CSI))フィードバックの向上、例えば、オーバーヘッド低減、正確度改善、予測などのためにAI技術を活用することが検討されている。AI技術に基づくCSIフィードバックは、AI支援CSIフィードバック(AI-aided CSI feedback)と呼ばれてもよい。 Regarding future wireless communication technology, the use of artificial intelligence (AI) technology such as machine learning (ML) is being considered for network/device control and management. For example, with regard to future wireless communication technology, the use of AI technology is being considered to improve channel state information reference signal (CSI) feedback, such as reducing overhead, improving accuracy, and predicting. There is. CSI feedback based on AI technology may be referred to as AI-aided CSI feedback.
 AI支援CSIフィードバックの1つの方法として、自己符号化器(オートエンコーダ(autoencoder))の利用が検討されている。オートエンコーダは、チャネル情報の圧縮/再構成に用いられてもよい。 As one method of AI-assisted CSI feedback, the use of an autoencoder is being considered. An autoencoder may be used to compress/reconstruct channel information.
 チャネル特性を考慮してオートエンコーダを訓練しなければ、適切な推論を行うことが難しい。しかしながら、オートエンコーダの訓練のデータセットをどのように決定するか、適切なエンコーダをどのようにUEに通知するかなどの具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 If the autoencoder is not trained in consideration of the channel characteristics, it is difficult to make appropriate inferences. However, specific details such as how to determine a training dataset for an autoencoder and how to notify a UE of an appropriate encoder have not yet been studied. If these are not properly defined, appropriate overhead reduction/highly accurate channel estimation/highly efficient resource utilization cannot be achieved, and there is a risk that improvement in communication throughput/communication quality may be suppressed.
 そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable overhead reduction/channel estimation/resource utilization.
 本開示の一態様に係る端末は、設定されるエンコーダを用いて、送信する情報を圧縮する制御部と、ある条件を満たす場合に、前記エンコーダの変更要求を送信する送信部と、を有する。 A terminal according to an aspect of the present disclosure includes a control unit that compresses information to be transmitted using a set encoder, and a transmission unit that transmits a request to change the encoder when a certain condition is satisfied.
 本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。 According to one aspect of the present disclosure, suitable overhead reduction/channel estimation/resource utilization can be achieved.
図1は、エンコーダ/デコーダを用いたCSIフィードバックの一例を示す図である。FIG. 1 is a diagram illustrating an example of CSI feedback using an encoder/decoder. 図2は、チャネル特性とパフォーマンスとの関係の一例を示す図である。FIG. 2 is a diagram illustrating an example of the relationship between channel characteristics and performance. 図3A-3Cは、チャネル特性及びAIモデルの訓練の一例を示す図である。3A-3C are diagrams illustrating an example of channel characteristics and training of an AI model. 図4は、タイプ情報によって特定されるエンコーダの一例を示す図である。FIG. 4 is a diagram illustrating an example of an encoder specified by type information. 図5は、タイプ情報によって特定されるエンコーダの一例を示す図である。FIG. 5 is a diagram illustrating an example of an encoder specified by type information. 図6は、タイプ情報によって特定されるエンコーダの一例を示す図である。FIG. 6 is a diagram illustrating an example of an encoder specified by type information. 図7は、第3の実施形態におけるMCRの送信までの流れの一例を示す図である。FIG. 7 is a diagram illustrating an example of the flow up to MCR transmission in the third embodiment. 図8は、MFD発生の一例を示す図である。FIG. 8 is a diagram showing an example of MFD occurrence. 図9は、MFDに関する情報の複数のセットの一例を示す図である。FIG. 9 is a diagram illustrating an example of multiple sets of information regarding the MFD. 図10は、第5の実施形態におけるMCC受信後のモデルの適用までの流れの一例を示す図である。FIG. 10 is a diagram illustrating an example of the flow from receiving the MCC to applying the model in the fifth embodiment. 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図12は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図15は、一実施形態に係る車両の一例を示す図である。FIG. 15 is a diagram illustrating an example of a vehicle according to an embodiment.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of Artificial Intelligence (AI) technology to wireless communications)
Regarding future wireless communication technology, the use of AI technology such as machine learning (ML) is being considered for network/device control and management.
 例えば、将来の無線通信技術について、チャネル状態情報(Channel State Information Reference Signal(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのためにAI技術を活用することが検討されている。AI技術に基づくCSIフィードバックは、AI支援CSIフィードバック(AI-aided CSI feedback)と呼ばれてもよい。 For example, for future wireless communication technologies, improved Channel State Information Reference Signal (CSI) feedback (e.g., reduced overhead, improved accuracy, prediction), improved beam management (e.g., improved accuracy, time The use of AI technology is being considered to improve positioning (e.g., position estimation/prediction in the spatial domain), position measurement (e.g., position estimation/prediction), and so on. CSI feedback based on AI technology may be referred to as AI-aided CSI feedback.
 チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。 Channel measurement/estimation is performed using, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/physical broadcast channel (SS /PBCH)) block, a demodulation reference signal (DMRS), a measurement reference signal (Sounding Reference Signal (SRS)), or the like.
 なお、既存のCSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。 Note that the existing CSI is a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI-RS resource indicator (CRI). , SS/PBCH Block Resource Indicator (SSBRI), Layer Indicator (LI), Rank Indicator (RI), L1-RSRP (Reference in Layer 1) Signal received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio) ) etc. May include.
 AI支援CSIフィードバックにおいては、これらの情報を削減するか、これらの情報に置き換わるより小さい情報をフィードバックすることが求められる。 In AI-assisted CSI feedback, it is required to reduce this information or feed back smaller information that replaces this information.
 AI支援CSIフィードバックの1つの方法として、自己符号化器(オートエンコーダ(autoencoder))の利用が検討されている。オートエンコーダは、チャネル情報の圧縮/再構成に用いられてもよい。 As one method of AI-assisted CSI feedback, the use of an autoencoder is being considered. An autoencoder may be used to compress/reconstruct channel information.
 なお、本開示において、チャネル情報は、チャネル(又はチャネル行列)に関する情報であってもよい。当該チャネル行列は、サブバンドごと/アンテナポートごとのチャネル係数の情報を含んでもよいし、当該チャネル係数から逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))された情報を含んでもよい。後者の情報は、チャネル行列を角度/遅延ドメインに変換することによって、前者の情報に比べて行列を疎(sparse)にできるため、エンコーダの演算の高速化などへの貢献が期待できる。 Note that in the present disclosure, the channel information may be information regarding a channel (or a channel matrix). The channel matrix may include information on channel coefficients for each subband/antenna port, or may include information obtained by performing an inverse discrete Fourier transform (IDFT) from the channel coefficients. The latter information can be used to make the matrix sparser than the former information by converting the channel matrix into the angle/delay domain, so it can be expected to contribute to speeding up encoder calculations.
 また、チャネル情報は、プリコーディング行列に関する情報であってもよい。当該プリコーディング行列は、サブバンドごと/アンテナポートごと/MIMOレイヤごとのプリコーディング係数(プリコーディング行列の要素)の情報を含んでもよいし、当該プリコーディング係数からIDFTされた情報を含んでもよい。後者の情報は、プリコーディング行列を角度/遅延ドメインに変換することによって、前者の情報に比べて行列を疎(sparse)にできるため、エンコーダの演算の高速化などへの貢献が期待できる。 Additionally, the channel information may be information regarding a precoding matrix. The precoding matrix may include information on precoding coefficients (precoding matrix elements) for each subband/antenna port/MIMO layer, or may include information obtained by IDFT from the precoding coefficients. The latter information can be used to make the matrix sparser than the former information by converting the precoding matrix into the angle/delay domain, so it can be expected to contribute to speeding up encoder calculations.
 図1は、エンコーダ/デコーダを用いたCSIフィードバックの一例を示す図である。本例では、オートエンコーダのうちのエンコード部分(エンコーダ)及び対応するデコード部分(デコーダ)は、基地局において訓練されると想定するが、UEにおいて訓練されてもよい。 FIG. 1 is a diagram showing an example of CSI feedback using an encoder/decoder. In this example, we assume that the encoding part (encoder) and the corresponding decoding part (decoder) of the autoencoder are trained at the base station, but they may also be trained at the UE.
 本例では、基地局が訓練したエンコーダに関する情報は、UEに上位レイヤシグナリングなどを用いて通知され、UEは、チャネル情報であるチャネル行列H/プリコーディング行列Wを、エンコーダに入力し、エンコードされた値/ビットを実施し(さらに量子化が適用されてもよい)、当該ビットを含む情報(CSIフィードバック)を、アンテナから送信してもよい。 In this example, information regarding the encoder trained by the base station is notified to the UE using upper layer signaling, etc., and the UE inputs the channel matrix H/precoding matrix W, which is channel information, to the encoder, and the encoder is encoded. the value/bit (and quantization may also be applied) and information (CSI feedback) containing that bit may be transmitted from the antenna.
 本例では、基地局が訓練したデコーダはそのまま基地局に保持され、推論に用いられる。基地局は、受信したCSIフィードバックのビットを、デコーダに入力して、再構成された(reconstructed)入力情報を出力する。 In this example, the decoder trained by the base station is retained at the base station and used for inference. The base station inputs the received CSI feedback bits to a decoder and outputs reconstructed input information.
 上記エンコーダ及びデコーダは、同じデータセットを用いて訓練される必要がある。でなければ、再構成される入力情報は、元々の入力情報とは全くの別物となる。しかしながら、1つの基地局のカバレッジエリア内であっても、複数のチャネル特性が存在し得る。チャネル特性は、例えば、Line Of Site(LOS)/Non-Line Of Site(NLOS)に該当してもよい。 The encoder and decoder need to be trained using the same dataset. Otherwise, the reconstructed input information will be completely different from the original input information. However, even within the coverage area of one base station, multiple channel characteristics may exist. The channel characteristics may correspond to, for example, Line Of Site (LOS)/Non-Line Of Site (NLOS).
 ここで、LOSは、UE及び基地局が互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及び基地局が互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。 Here, LOS may mean that the UE and the base station are in an environment where they can see each other (or there is no shielding), and NLOS may mean that the UE and the base station are not in an environment where they can see each other (or there is no shielding). ) may also mean that.
 チャネル特性を考慮してオートエンコーダを訓練しなければ、適切な推論を行うことが難しい。しかしながら、オートエンコーダの訓練のデータセットをどのように決定するか、適切なエンコーダをどのようにUEに通知するかなどの具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 If the autoencoder is not trained in consideration of the channel characteristics, it is difficult to make appropriate inferences. However, specific details such as how to determine a training dataset for an autoencoder and how to notify a UE of an appropriate encoder have not yet been studied. If these are not properly defined, appropriate overhead reduction/highly accurate channel estimation/highly efficient resource utilization cannot be achieved, and there is a risk that improvement in communication throughput/communication quality may be suppressed.
 本発明者らは、エンコーダの性能(例えば、圧縮率、元の情報からの再構成される情報の誤差など)と、AIモデルの適用範囲との間にトレードオフがあることを発見した。 The inventors discovered that there is a trade-off between encoder performance (e.g. compression ratio, error in reconstructed information from the original information, etc.) and the applicability of the AI model.
 具体的には、本発明者らは、以下を発見した:
 ・特定のチャネルに特化して訓練されたAIモデルが利用される場合、当該特定のチャネルについて最適なパフォーマンスが期待できる、
 ・チャネル特性の似たチャネル(例えば、NLOSのチャネル)のセットに特化して訓練されたAIモデルが利用される場合、当該セットについて準最適なパフォーマンスが期待できる、
 ・多様なチャネル特性のチャネル(例えば、NLOSのチャネル及びLOSのチャネル)のセットについて訓練されたAIモデルが利用される場合、当該セットについてあまり良くないパフォーマンスが期待できる。
Specifically, the inventors discovered the following:
・If an AI model trained specifically for a specific channel is used, optimal performance can be expected for that specific channel.
- When an AI model trained specifically on a set of channels with similar channel characteristics (for example, NLOS channels) is used, suboptimal performance can be expected for that set.
- If an AI model trained on a set of channels with diverse channel characteristics (eg, NLOS channels and LOS channels) is used, poor performance can be expected for that set.
 図2は、チャネル特性とパフォーマンスとの関係の一例を示す図である。本例は、基地局、いくつかの建築物(遮蔽物)などを含む鳥瞰図(又は上から見た平面図)である。図2には、地点A-Eが示されている。基地局との間のチャネル特性を考えると、地点A-CはNLOSに該当し、地点D-EはLOSに該当する。言い換えるとA/B/Cのチャネル特性は、比較的悪い(NLOSの)チャネル特性に該当し、D/Eのチャネル特性は、比較的良い(LOSの)チャネル特性に該当してもよい。 FIG. 2 is a diagram showing an example of the relationship between channel characteristics and performance. This example is a bird's eye view (or top view) including a base station, some buildings (obstructions), etc. In FIG. 2, points AE are shown. Considering the channel characteristics with the base station, points A to C correspond to NLOS, and points D to E correspond to LOS. In other words, the A/B/C channel characteristics may correspond to relatively bad (NLOS) channel characteristics, and the D/E channel characteristics may correspond to relatively good (LOS) channel characteristics.
 なお、本開示において、以降で参照されるA-Eは、図2の地点A-Eのことにそれぞれ該当する。 Note that in this disclosure, AE referred to hereinafter corresponds to points AE in FIG. 2, respectively.
 本発明者らは、例えばAにおいて(UEによって)取得されたチャネル情報のみを用いてAIモデルを作成する場合、当該Aについての推論性能は非常に良いものの、当該AIモデルの適用範囲が狭い(他のB-Eのチャネル情報の推論には適当でない)旨を見出した。 The present inventors found that, for example, when creating an AI model using only the channel information acquired at A (by the UE), although the inference performance for A is very good, the applicability of the AI model is narrow ( It was found that this method is not suitable for inferring channel information of other BEs.
 また、本発明者らは、NLOSに対応するA-Cにおいて(UEによって)取得されたチャネル情報のみを用いてAIモデルを作成する場合、当該A-Cについての推論性能は良いものの、当該AIモデルの適用範囲がやや狭い(他のD-Eのチャネル情報の推論には適当でない)旨を見出した。 Furthermore, when creating an AI model using only the channel information acquired (by the UE) in A-C corresponding to NLOS, the inference performance for the A-C is good, but the AI model We found that the model's applicability is rather narrow (it is not suitable for inferring channel information of other DEs).
 また、本発明者らは、A-Eにおいて(UEによって)取得されたチャネル情報を用いてAIモデルを作成する場合、当該A-Eについての推論性能はあまり良くないものの、当該AIモデルの適用範囲が広い旨を見出した。 Furthermore, when creating an AI model using the channel information acquired (by the UE) at A-E, the inference performance for the A-E is not very good, but the application of the AI model is We found that the range is wide.
 これらのパフォーマンス及びモデルの適用範囲の関係について、UE/ネットワークが柔軟に対応できることが好ましい。 It is preferable that the UE/network can flexibly deal with the relationship between performance and model applicability.
 そこで、本発明者らは、AI支援情報伝送向けに好適な制御方法を着想した。なお、本開示の各実施形態は、AI/予測が利用されない場合に適用されてもよい。 Therefore, the present inventors came up with a control method suitable for transmitting AI support information. Note that each embodiment of the present disclosure may be applied when AI/prediction is not used.
 本開示の一実施形態では、端末(ユーザ端末、User Equipment(UE))/基地局(Base Station(BS))は、訓練モード(training mode)においてMLモデルの訓練を行い、推論モード(inference mode、inference modeなどとも呼ばれる)においてMLモデルを実施する。推論モードでは、訓練モードにおいて訓練されたMLモデル(trained ML model)の精度の検証(バリデーション)が行われてもよい。 In an embodiment of the present disclosure, a terminal (User Equipment (UE))/Base Station (BS) trains an ML model in a training mode, and in an inference mode. , inference mode, etc.). In the inference mode, the accuracy of the trained ML model trained in the training mode may be verified.
 本開示においては、UE/BSは、MLモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 In this disclosure, the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information, etc. /Wireless link quality, etc. may be output.
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
Note that in this disclosure, AI may be read as an object (also referred to as a target, object, data, function, program, etc.) that has (implements) at least one of the following characteristics:
・Estimation based on observed or collected information;
- Selection based on observed or collected information;
- Predictions based on observed or collected information.
 本開示において、当該物体は、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、当該物体は、当該装置に含まれるプログラムに該当してもよい。 In the present disclosure, the object may be, for example, an apparatus, a device, etc., such as a terminal or a base station. Further, the object may correspond to a program included in the device.
 また、本開示において、MLモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
Furthermore, in this disclosure, the ML model may be replaced by an object that has (implements) at least one of the following characteristics:
・Produce estimates by feeding information,
・Predict the estimated value by giving information,
・Discover characteristics by providing information,
・Select an action by providing information.
 また、本開示において、MLモデル、モデル、AIモデル、予測分析(predictive analytics)、予測分析モデルなどは、互いに読み替えられてもよい。また、MLモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。本開示において、モデルは、エンコーダ、デコーダ、ツールなどの少なくとも1つで読み替えられてもよい。 Additionally, in the present disclosure, ML model, model, AI model, predictive analytics, predictive analysis model, etc. may be read interchangeably. Further, the ML model may be derived using at least one of regression analysis (eg, linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, and the like. In this disclosure, a model may be interpreted as at least one of an encoder, a decoder, a tool, etc.
 MLモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力する。 Based on the input information, the ML model outputs at least one information such as an estimated value, a predicted value, a selected action, a classification, etc.
 MLモデルには、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)などが含まれてもよい。教師あり学習は、入力を出力にマップする一般的なルールを学習するために用いられてもよい。教師なし学習は、データの特徴を学習するために用いられてもよい。強化学習は、目的(ゴール)を最大化するための動作を学習するために用いられてもよい。 The ML model may include supervised learning, unsupervised learning, reinforcement learning, and the like. Supervised learning may be used to learn general rules that map inputs to outputs. Unsupervised learning may be used to learn features of the data. Reinforcement learning may be used to learn actions to maximize a goal.
 後述の各実施形態は、MLモデルに教師あり学習を利用する場合を想定して主に説明するが、これに限られない。 Each of the embodiments described below will be mainly described assuming that supervised learning is used for the ML model, but the present invention is not limited to this.
 本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。また、本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。信号は、信号/チャネルと互いに読み替えられてもよい。 In the present disclosure, implementation, operation, operation, execution, etc. may be read interchangeably. Further, in this disclosure, inference, after-training, actual use, actual use, etc. may be read interchangeably. Signal may be interchanged with signal/channel.
 本開示において、訓練モードは、UE/BSがMLモデルのために信号を送信/受信するモード(言い換えると、訓練期間における動作モード)に該当してもよい。本開示において、推論モードは、UE/BSがMLモデルを実施する(例えば、訓練されたMLモデルを実施して出力を予測する)モード(言い換えると、推論期間における動作モード)に該当してもよい。 In the present disclosure, the training mode may correspond to a mode in which the UE/BS transmits/receives signals for the ML model (in other words, an operation mode during the training period). In this disclosure, the inference mode may correspond to a mode in which the UE/BS implements an ML model (e.g., implements a trained ML model to predict an output) (in other words, an operating mode during the inference period). good.
 本開示において、訓練モードは、推論モードで送信される特定の信号について、オーバーヘッドが大きい(例えば、リソース量が多い)当該特定の信号が送信されるモードを意味してもよい。 In the present disclosure, the training mode may mean a mode in which a specific signal transmitted in the inference mode has a large overhead (for example, a large amount of resources).
 本開示において、訓練モードは、第1の設定(例えば、第1のDMRS設定、第1のCSI-RS設定)を参照するモードを意味してもよい。本開示において、推論モードは、第1の設定とは別の第2の設定(例えば、第2のDMRS設定、第2のCSI-RS設定)を参照するモードを意味してもよい。第1の設定は、第2の設定よりも、測定に関する時間リソース、周波数リソース、符号リソース、ポート(アンテナポート)の少なくとも1つが多く設定されてもよい。 In the present disclosure, the training mode may mean a mode that refers to a first configuration (eg, a first DMRS configuration, a first CSI-RS configuration). In this disclosure, the inference mode may mean a mode that refers to a second configuration (eg, a second DMRS configuration, a second CSI-RS configuration) that is different from the first configuration. In the first setting, at least one of measurement-related time resources, frequency resources, code resources, and ports (antenna ports) may be set more than in the second setting.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied singly or in combination.
 以下の実施形態では、UE-BS間の通信に関するMLモデルを説明するため、関連する主体はUE及びBSであるが、本開示の各実施形態の適用は、これに限られない。例えば、別の主体間の通信(例えば、UE-UE間の通信)については、下記実施形態のUE及びBSを、第1のUE及び第2のUEで読み替えてもよい。言い換えると、本開示のUE、BSなどは、いずれも任意のUE/BSで読み替えられてもよい。 In the following embodiments, in order to explain the ML model regarding communication between UE and BS, the relevant entities are the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this. For example, for communication between different entities (for example, communication between UE and UE), the UE and BS in the embodiment below may be replaced with a first UE and a second UE. In other words, the UE, BS, etc. of the present disclosure may be replaced with any UE/BS.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, fields, Information Elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
 本開示において、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))は、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。 In the present disclosure, CSI-RS, Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) are: They may be read interchangeably. Additionally, the CSI-RS may include other reference signals.
 本開示において、測定/報告されるRSは、CSIレポートのために測定/報告されるRSを意味してもよい。 In this disclosure, RS to be measured/reported may mean RS to be measured/reported for CSI reporting.
 本開示において、タイミング、時刻、時間、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。 In the present disclosure, timing, time, time, slot, subslot, symbol, subframe, etc. may be read interchangeably.
 本開示において、方向、軸、次元、ドメイン、偏波、偏波成分などは、互いに読み替えられてもよい。 In the present disclosure, direction, axis, dimension, domain, polarization, polarization component, etc. may be read interchangeably.
 本開示において、RSは、例えば、CSI-RS、SS/PBCHブロック(SSブロック(SSB))などであってもよい。また、RSインデックスは、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Indicator(SSBRI))などであってもよい。 In the present disclosure, the RS may be, for example, a CSI-RS, an SS/PBCH block (SS block (SSB)), or the like. Further, the RS index may be a CSI-RS resource indicator (CSI-RS resource indicator (CRI)), an SS/PBCH block resource indicator (SS/PBCH block indicator (SSBRI)), or the like.
 本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In the present disclosure, estimation, prediction, and inference may be used interchangeably. Furthermore, in the present disclosure, the terms "estimate," "predict," and "infer" may be used interchangeably.
 本開示において、オートエンコーダ、エンコーダ、デコーダなどは、モデル、MLモデル、ニューラルネットワークモデル、AIモデル、AIアルゴリズムなどの少なくとも1つで読み替えられてもよい。また、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In the present disclosure, autoencoder, encoder, decoder, etc. may be replaced with at least one of a model, ML model, neural network model, AI model, AI algorithm, etc. Further, the autoencoder may be interchanged with any autoencoder such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of the present disclosure may adopt models such as Residual Network (ResNet), DenseNet, RefineNet, etc.
 また、本開示において、エンコーダ、エンコーディング、エンコード、エンコーダによる修正/変更/制御などは、互いに読み替えられてもよい。また、本開示において、デコーダ、デコーディング、デコード、デコーダによる修正/変更/制御などは、互いに読み替えられてもよい。 Furthermore, in the present disclosure, the terms encoder, encoding, encoding, modification/change/control by encoder, etc. may be read interchangeably. Furthermore, in the present disclosure, decoder, decoding, decoding, modification/change/control by decoder, etc. may be read interchangeably.
 本開示において、UCI、CSIレポート、CSIフィードバック、フィードバック情報、フィードバックビットなどは、互いに読み替えられてもよい。また、本開示において、ビット、ビット列、ビット系列、系列、値、情報、ビットから得られる値、ビットから得られる情報などは、互いに読み替えられてもよい。 In this disclosure, UCI, CSI report, CSI feedback, feedback information, feedback bit, etc. may be read interchangeably. Furthermore, in the present disclosure, bits, bit strings, bit sequences, sequences, values, information, values obtained from bits, information obtained from bits, etc. may be interchanged.
 本開示において、(エンコーダについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤは、入力層、中間層、出力層、バッチ正規化層、畳み込み層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In this disclosure, layers (for encoders) may be interchanged with layers (input layer, intermediate layer, etc.) used in the AI model. The layer of the present disclosure may correspond to at least one of an input layer, an intermediate layer, an output layer, a batch normalization layer, a convolution layer, a dropout layer, a fully connected layer, and the like.
 本開示において、プリコーディング行列についてのレイヤは、Multi Input Multi Output(MIMO)レイヤ、ストリームなどと互いに読み替えられてもよい。 In the present disclosure, a layer regarding a precoding matrix may be interchanged with a Multi Input Multi Output (MIMO) layer, stream, etc.
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、チャネル特性(channel characteristics)に関する情報(チャネル特性情報、追加情報、改善情報、詳細情報などと呼ばれてもよい)に関する。
(Wireless communication method)
<First embodiment>
The first embodiment relates to information regarding channel characteristics (which may also be referred to as channel characteristics information, additional information, improvement information, detailed information, etc.).
 第1の実施形態において、UEは、チャネル情報に加えて、チャネル特性情報をネットワークに送信する。なお、チャネル特性情報は、チャネル情報と同時に送信されてもよいし、異なるタイミングで送信されてもよい。 In the first embodiment, the UE sends channel characteristic information to the network in addition to channel information. Note that the channel characteristic information may be transmitted at the same time as the channel information, or may be transmitted at different timings.
 UEは、例えば、参照信号に関する測定に基づいてチャネル係数を取得して、チャネル情報を得てもよい。上記チャネル特性情報は、上記チャネル情報の取得のタイミングにおけるチャネル特性を示してもよい。 The UE may obtain channel information by obtaining channel coefficients based on measurements regarding reference signals, for example. The channel characteristic information may indicate channel characteristics at the timing of acquisition of the channel information.
 UEは、チャネル情報/チャネル特性情報の報告に関する情報を、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてネットワークから通知されてもよい。UEは、当該情報に基づいてチャネル情報/チャネル特性情報の報告を行ってもよい。 The UE may transmit information regarding the reporting of channel information/channel characteristics information using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels, or a combination thereof. It may be notified from the network. The UE may report channel information/channel characteristic information based on this information.
 UEは、チャネル特性情報を、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いて、ネットワークに送信してもよい。チャネル特性情報は、例えばチャネル情報とともにCSIレポートに含まれて送信されてもよい。 The UE may transmit channel characteristic information to the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), specific signals/channels, or a combination thereof. good. Channel characteristic information may be included in a CSI report and transmitted together with channel information, for example.
 チャネル特性情報は、例えば、LOS/NLOSに関する情報を含んでもよいし、位置情報を含んでもよい。言い換えると、チャネル特性は、LOS、NLOS、UEの位置などに対応してもよい。また、チャネル特性情報は、チャネル情報(/チャネル特性/チャネル特性情報)が取得/判断されたタイミング(時間)の情報を含んでもよい。 The channel characteristic information may include, for example, information regarding LOS/NLOS, or location information. In other words, the channel characteristics may correspond to LOS, NLOS, UE location, etc. Further, the channel characteristic information may include information on the timing (time) at which the channel information (/channel characteristic/channel characteristic information) was acquired/determined.
 位置情報は、UE/基地局に関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)基地局の情報(例えば、基地局/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。 The location information may be location information regarding the UE/base station. Location information includes information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.), and information (e.g., latitude, longitude, altitude) adjacent to the UE. Information on the base station serving (or serving) (e.g. base station/cell identifier (ID)), BS-UE distance, direction/angle of the BS (UE) as seen from the UE (BS), It includes at least one of the coordinates of the BS (UE) as seen from the UE (BS) (e.g., X/Y/Z axis coordinates, etc.), the specific address of the UE (e.g., Internet Protocol (IP) address), etc. But that's fine. The location information of the UE is not limited to information based on the location of the BS, but may be information based on a specific point.
 位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。 The location information may include information regarding its own implementation (for example, location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
 位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。 The location information may include mobility information. The mobility information may include information indicating at least one of the mobility type, the moving speed of the UE, the acceleration of the UE, the moving direction of the UE, and the like.
 ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。 Here, the mobility types are fixed location UE, movable/moving UE, no mobility UE, low mobility UE, and medium mobility UE. (middle mobility UE), high mobility UE (high mobility UE), cell-edge UE (cell-edge UE), and non-cell-edge UE (not-cell-edge UE).
 UEは、チャネル特性情報を、RSの測定結果と、位置情報の取得結果と、の少なくとも1つに基づいて判断してもよい。 The UE may determine the channel characteristic information based on at least one of the RS measurement results and the location information acquisition results.
 チャネル特性情報(例えば、LOS/NLOSなど)は、インデックス(例えば、LOS/NLOSインディケーター)によって示されてもよい。 Channel characteristic information (for example, LOS/NLOS, etc.) may be indicated by an index (for example, LOS/NLOS indicator).
 基地局は、UEから報告されたチャネル特性情報を考慮して、チャネル特性について異なる粒度で、チャネル情報のAIモデル(エンコーダ/デコーダ)を訓練してもよい。 The base station may train an AI model (encoder/decoder) of the channel information at different granularity for the channel characteristics, taking into account the channel characteristics information reported by the UE.
 なお、本開示において、UE/基地局は1つ以上のエンコーダ/デコーダを利用可能であってもよい。当該1つ以上のエンコーダ/デコーダは、例えば、全てのチャネル特性に共通のエンコーダ/デコーダであってもよいし、いくつかのチャネル特性に共通のエンコーダ/デコーダであってもよいし、チャネル特性ごとのエンコーダ/デコーダであってもよい。 Note that in this disclosure, the UE/base station may be able to use one or more encoders/decoders. The one or more encoders/decoders may be, for example, encoders/decoders common to all channel characteristics, encoders/decoders common to several channel characteristics, or encoders/decoders common to each channel characteristic. It may be an encoder/decoder.
 図3A-3Cは、チャネル特性及びAIモデルの訓練の一例を示す図である。図3Aは、チャネル特性を区別せず全てのチャネル情報を用いてAIモデルを訓練する例を示す。図3Bは、いくつかのチャネル特性に関するチャネル情報を用いてAIモデルを訓練する例を示す。図3Cは、1つのチャネル特性に関するチャネル情報を用いてAIモデルを訓練する例を示す。 FIGS. 3A-3C are diagrams illustrating an example of channel characteristics and training of an AI model. FIG. 3A shows an example of training an AI model using all channel information without distinguishing channel characteristics. FIG. 3B shows an example of training an AI model using channel information regarding several channel characteristics. FIG. 3C shows an example of training an AI model using channel information regarding one channel characteristic.
 本開示において、本例及び以降の例において、想定されるチャネル特性は5つ(図2のA/B/C/D/Eに対応)とする。エンコーダ(ABC)/デコーダ(ABC)は、A/B/Cのチャネル特性を有するチャネルの推論に好適であることを意味してもよい。 In this disclosure, in this example and subsequent examples, there are five assumed channel characteristics (corresponding to A/B/C/D/E in FIG. 2). Encoder (ABC)/decoder (ABC) may mean suitable for inferring channels with A/B/C channel characteristics.
 図3Aでは、基地局は、A/B/C/D/Eを示すチャネル特性情報とともに報告されたチャネル情報を区別せず1つのデータセットとして用いて、ABCDE向けのチャネル情報のAIモデルを訓練する。 In Figure 3A, the base station trains an AI model of channel information for ABCDE by using the reported channel information together with channel characteristic information indicating A/B/C/D/E as one data set without distinguishing it. do.
 図3Bでは、基地局は、A/B/Cを示すチャネル特性情報とともに報告されたチャネル情報を区別せず1つのデータセットとして用いて、ABC向けのチャネル情報のAIモデルを訓練する。また、図3Bでは、基地局は、D/Eを示すチャネル特性情報とともに報告されたチャネル情報を区別せず1つのデータセットとして用いて、DE向けのチャネル情報のAIモデルを訓練する。つまり、DE向けのチャネル情報のAIモデルの訓練には、A/B/Cを示すチャネル特性情報とともに報告されたチャネル情報は用いられない。 In FIG. 3B, the base station trains an AI model of channel information for ABC, using the channel information reported together with the channel characteristic information indicating A/B/C as one data set without distinguishing it. Further, in FIG. 3B, the base station trains an AI model of channel information for DE by using the channel information reported together with the channel characteristic information indicating D/E as one data set without distinguishing it. That is, channel information reported together with channel characteristic information indicating A/B/C is not used for training an AI model of channel information for DE.
 図3Cでは、基地局は、X(Xは、A、B、C、D及びEのいずれか)を示すチャネル特性情報とともに報告されたチャネル情報を区別せず1つのデータセットとして用いて、X向けのチャネル情報のAIモデルを訓練する。つまり、あるチャネル特性向けのチャネル情報のAIモデルの訓練には、異なるチャネル特性を示すチャネル特性情報とともに報告されたチャネル情報は用いられない。 In FIG. 3C, the base station uses the channel information reported together with channel characteristic information indicating X (where X is one of A, B, C, D, and E) as one data set without distinguishing, Train an AI model of channel information for That is, channel information reported together with channel characteristic information indicating different channel characteristics is not used to train an AI model of channel information for one channel characteristic.
 なお、あるチャネル特性情報と別のチャネル特性情報が、同じLOS/NLOS/位置情報を示すが異なる時間に対応する場合、当該チャネル特性情報のチャネル特性は、当該別のチャネル特性情報に対応するチャネル特性と異なると判断されてもよい。 Note that when one channel characteristic information and another channel characteristic information indicate the same LOS/NLOS/location information but correspond to different times, the channel characteristic of the channel characteristic information is different from that of the channel corresponding to the other channel characteristic information. It may be determined that the characteristics are different.
 以上説明した第1の実施形態によれば、例えば、チャネル情報がチャネル特性情報と関連付けて送信されることによって、特定のチャネル特性に該当するチャネル情報のみをデータセットとしてAIモデルを適切に訓練できる。 According to the first embodiment described above, for example, by transmitting channel information in association with channel characteristic information, an AI model can be appropriately trained using only channel information that corresponds to specific channel characteristics as a data set. .
<第2の実施形態>
 第2の実施形態は、UEが利用するエンコーダの特定のための情報に関する。当該情報は、エンコーダ特定情報、エンコーダのためのタイプ情報、エンコーダタイプ情報、単にタイプ情報などと呼ばれてもよい。なお、タイプは、モード、セット、サブセット、グループ、種類、分類などと互いに読み替えられてもよい。
<Second embodiment>
The second embodiment relates to information for identifying an encoder used by a UE. This information may be referred to as encoder specific information, type information for the encoder, encoder type information, simply type information, etc. Note that type may be interchanged with mode, set, subset, group, type, classification, etc.
 UEは、タイプ情報を、特定のルール/UE能力に基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてネットワークから通知されてもよい。 The UE may determine the type information based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels. , or a combination thereof may be used for notification from the network.
 タイプ情報は、以下のいずれか又はこれらの組み合わせに関連してもよい:
 ・特定のエンコーダの適用範囲、
 ・特定のエンコーダの精度/パフォーマンス、
 ・チャネル特性、
 ・エンコーダの複雑さ、
 ・エンコーダの入力/出力。
Type information may relate to any or a combination of the following:
・Applicable range of specific encoder,
・Accuracy/performance of a particular encoder,
・Channel characteristics,
・Encoder complexity,
-Encoder input/output.
 上記適用範囲は、例えば、セル、エリア、チャネルなどであってもよく、それぞれのエンコーダは、セル固有(cell-specific)エンコーダ、エリア固有(area-specific)エンコーダ、チャネル固有(channel-specific)エンコーダと呼ばれてもよい。セル固有エンコーダは、あらゆる異なるチャネルにわたって用いられてもよい。エリア固有エンコーダは、同じ特徴を有するチャネルにわたって用いられてもよい。チャネル固有エンコーダは、1つのチャネル特性において用いられてもよい。 The scope of application may be, for example, a cell, an area, a channel, etc., and each encoder may be a cell-specific encoder, an area-specific encoder, a channel-specific encoder, etc. may be called. Cell-specific encoders may be used across any different channels. Area-specific encoders may be used across channels with the same characteristics. Channel-specific encoders may be used for one channel characteristic.
 エンコーダの適用範囲がセルであることを示すタイプ情報は、タイプXと呼ばれてもよい。エンコーダの適用範囲がエリアであることを示すタイプ情報は、タイプYと呼ばれてもよい。エンコーダの適用範囲がチャネルであることを示すタイプ情報は、タイプZと呼ばれてもよい。 Type information indicating that the scope of the encoder is a cell may be called type X. Type information indicating that the scope of the encoder is an area may be referred to as type Y. Type information indicating that the scope of the encoder is a channel may be referred to as type Z.
 上記精度/パフォーマンスは、例えば、高(high)パフォーマンス、中(medium)パフォーマンス、低(low)パフォーマンスなどであってもよい。精度/パフォーマンスの評価指標(Performance Indicator(PI)、Key Performance Indicator(KPI)などと呼ばれてもよい)は、タイプ又はタイプ情報とともに設定/規定されてもよい。当該評価指標は、異なる適用シナリオにおける、期待される正規化平均二乗誤差(Expected Normalized Mean Square Error(NMSE))、スペクトラム効率(spectrum efficiency)などであってもよい。 The accuracy/performance may be, for example, high performance, medium performance, low performance, etc. Accuracy/performance evaluation indicators (which may be referred to as Performance Indicators (PI), Key Performance Indicators (KPI), etc.) may be set/defined together with the type or type information. The evaluation metrics may be expected normalized mean square error (NMSE), spectrum efficiency, etc. in different application scenarios.
 エンコーダの精度/パフォーマンスが高であることを示すタイプ情報は、タイプIと呼ばれてもよい。エンコーダの精度/パフォーマンスが中であることを示すタイプ情報は、タイプIIと呼ばれてもよい。エンコーダの精度/パフォーマンスが低であることを示すタイプ情報は、タイプIIIと呼ばれてもよい。 Type information indicating that the encoder has high accuracy/performance may be referred to as Type I. Type information indicating that the encoder's accuracy/performance is medium may be referred to as Type II. Type information indicating that the encoder has low accuracy/performance may be referred to as type III.
 上記チャネル特性は、例えば、LOSチャネル、NLOSチャネル、LOS及びNLOSチャネルのミックス(mixed)などであってもよい。上記チャネル特性は、例えば、都会的(urban)、田舎的(rural)、屋内的(indoor)などであってもよい。 The channel characteristics may be, for example, a LOS channel, an NLOS channel, a mix of LOS and NLOS channels, etc. The channel characteristics may be, for example, urban, rural, indoor, etc.
 チャネル特性がLOS又は都会的であることを示すタイプ情報は、タイプaと呼ばれてもよい。チャネル特性がNLOS又は田舎的であることを示すタイプ情報は、タイプbと呼ばれてもよい。チャネル特性がミックス又は屋内的であることを示すタイプ情報は、タイプcと呼ばれてもよい。 Type information indicating that the channel characteristics are LOS or urban may be referred to as type a. Type information indicating that the channel characteristics are NLOS or rural may be referred to as type b. Type information indicating that the channel characteristics are mixed or indoor may be referred to as type c.
 なお、タイプX-Z、I-III、a-cなどの呼称は一例であって、実際の呼称はこれらに限られない。 Note that the names such as Type XZ, I-III, and ac are just examples, and the actual names are not limited to these.
 上記複雑さは、例えば、エンコーダのレイヤ数、入力サイズ、出力サイズ、エンコーダのパラメータ数、エンコードにかかる浮動小数点演算(floating point operations(FLOPs(なお、sは小文字)))(これは、浮動小数点演算量を意味する)などの少なくとも1つを用いて表されてもよい。 The above complexity includes, for example, the number of encoder layers, input size, output size, number of encoder parameters, floating point operations (FLOPs (note, s is lowercase)) required for encoding (this is a floating point may be expressed using at least one of the following:
 上記入力/出力は、チャネル情報、チャネル行列、固有ベクトルなどであってもよい。 The above input/output may be channel information, channel matrix, eigenvector, etc.
 図4-6は、タイプ情報によって特定されるエンコーダの一例を示す図である。 FIG. 4-6 is a diagram showing an example of an encoder specified by type information.
 図4に示されるように、タイプXに対応するエンコーダは1つ(エンコーダ(ABCDE))であってもよい。また、タイプYに対応するエンコーダは2つ(エンコーダ(ABC)、エンコーダ(DE))のうちの少なくとも1つであってもよい。また、タイプZに対応するエンコーダは5つ(エンコーダ(A)、エンコーダ(B)、エンコーダ(C)、エンコーダ(D)、エンコーダ(E))のうちの少なくとも1つであってもよい。 As shown in FIG. 4, the number of encoders corresponding to type X may be one (encoder (ABCDE)). Further, the encoder corresponding to type Y may be at least one of two (encoder (ABC) and encoder (DE)). Further, the encoder corresponding to type Z may be at least one of five (encoder (A), encoder (B), encoder (C), encoder (D), and encoder (E)).
 図5に示されるように、タイプIに対応するエンコーダは3つ(エンコーダ(DE)、エンコーダ(D)、エンコーダ(E))のうちの少なくとも1つであってもよい。また、タイプIIに対応するエンコーダは4つ(エンコーダ(ABC)、エンコーダ(A)、エンコーダ(B)、エンコーダ(C))のうちの少なくとも1つであってもよい。また、タイプIIIに対応するエンコーダは1つ(エンコーダ(ABCDE))であってもよい。 As shown in FIG. 5, the encoder corresponding to type I may be at least one of three (encoder (DE), encoder (D), encoder (E)). Moreover, the encoder corresponding to type II may be at least one of four (encoder (ABC), encoder (A), encoder (B), and encoder (C)). Further, the number of encoders corresponding to type III may be one (encoder (ABCDE)).
 図6に示されるように、エンコーダの適用範囲及び精度/パフォーマンスに基づいて、エンコーダが特定されてもよい。例えば、タイプZかつタイプIIが設定されたUEは、エンコーダ(A)、エンコーダ(B)及びエンコーダ(C)のうちの少なくとも1つを用いてもよい。タイプZかつタイプIが設定されたUEは、エンコーダ(D)及びエンコーダ(E)のうちの少なくとも1つを用いてもよい。 As shown in FIG. 6, encoders may be identified based on the encoder's coverage and accuracy/performance. For example, a UE configured as type Z and type II may use at least one of encoder (A), encoder (B), and encoder (C). A UE configured with type Z and type I may use at least one of an encoder (D) and an encoder (E).
 また、タイプYかつタイプIIが設定されたUEは、エンコーダ(ABC)を用いてもよい。タイプYかつタイプIが設定されたUEは、エンコーダ(DE)を用いてもよい。タイプX/タイプIIIが設定されたUEは、エンコーダ(ABCDE)を用いてもよい。 Additionally, a UE configured with type Y and type II may use an encoder (ABC). A UE configured with type Y and type I may use an encoder (DE). A Type X/Type III configured UE may use an encoder (ABCDE).
 なお、本開示において、UE/基地局は、A-Eの全てについて扱える必要はないし、A-E以外の地点について扱えてもよい。 Note that in the present disclosure, the UE/base station does not need to be able to handle all of AE, and may be able to handle points other than AE.
 以上説明した第2の実施形態によれば、UEが、利用するエンコーダを適切に特定できる。 According to the second embodiment described above, the UE can appropriately specify the encoder to be used.
<第3の実施形態>
 第3の実施形態は、モデルの変更に関する。
<Third embodiment>
The third embodiment relates to model modification.
 基地局及びUEは、実際に利用するAIモデル(例えば、モデル推論時にUE及びネットワーク間で協調する場合のAIモデル)について、共通認識を有することが好ましい。そうでなければ、デコードされる結果が期待と異なることになる。 It is preferable that the base station and the UE have a common understanding of the AI model that is actually used (for example, the AI model that is used when the UE and the network cooperate during model inference). Otherwise, the decoded result will be different than expected.
 タイプ情報(第2の実施形態を参照)がUEに通知され、当該情報によって1つだけのエンコーダが特定される場合には、基地局及びUE間のAIモデルの認識に齟齬はない。 If the type information (see the second embodiment) is notified to the UE and only one encoder is specified by the information, there is no discrepancy in the recognition of the AI model between the base station and the UE.
 タイプ情報がUEに通知され、当該情報によって複数のエンコーダが特定される場合には、UEは、当該複数のエンコーダから1つのエンコーダを選択し、選択したエンコーダに関する情報をネットワークに送信してもよい。 If the type information is notified to the UE and multiple encoders are identified by the information, the UE may select one encoder from the multiple encoders and transmit information regarding the selected encoder to the network. .
 なお、UEは、現在のチャネル特性情報を取得し、これに基づいてどのエンコーダを選択するかを決定してもよい。 Note that the UE may obtain current channel characteristic information and decide which encoder to select based on this.
 UEは、選択したエンコーダに関する情報を、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いて、ネットワークに送信してもよい。選択したエンコーダに関する情報は、例えばCSIレポートに含まれて送信されてもよい。 The UE transmits information about the selected encoder to the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. It's okay. Information regarding the selected encoder may be transmitted, for example, in a CSI report.
 UEは、選択したエンコーダに関する情報を送信後、上記複数のエンコーダから別のエンコーダを選択する場合には、当該選択した別のエンコーダに関する情報をネットワークに送信してもよい。 After transmitting the information regarding the selected encoder, if the UE selects another encoder from the plurality of encoders, the UE may transmit information regarding the selected other encoder to the network.
 UEは、特定の条件を満たす場合に、モデル変更要求(Model Change Request(MCR))をネットワークに送信してもよい。MCRは、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PRACH、PUCCH、PUSCH)、又はこれらの組み合わせを用いて、ネットワークに送信されてもよい。 The UE may send a Model Change Request (MCR) to the network if certain conditions are met. The MCR is configured to communicate with the network using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), specific signals/channels (e.g., PRACH, PUCCH, PUSCH), or a combination thereof. May be sent.
 なお、MCR送信後の制御については、第4の実施形態で後述する。 Note that control after MCR transmission will be described later in the fourth embodiment.
[MCRのトリガリング条件]
 MCRの送信のための条件(トリガリング条件)は、上位レイヤシグナリングによって設定されてもよい。MCRは、モデル障害モニタリング(Model Failure Monitoring(MFM))によってトリガされてもよい。例えば、UEは、MFMのための設定情報(MFM設定)を、上位レイヤシグナリングによって設定されてもよい。
[MCR triggering conditions]
Conditions for transmitting the MCR (triggering conditions) may be set by upper layer signaling. MCR may be triggered by Model Failure Monitoring (MFM). For example, the UE may be configured with configuration information for MFM (MFM configuration) through upper layer signaling.
 なお、MFMは、モデル障害検出(Model Failure Detection(MFD))と呼ばれてもよい。また、MCRは、モデル障害回復要求(Model Failure Recovery Request(MFRR))、モデルフィードバック(model feedback)と呼ばれてもよい。 Note that MFM may also be referred to as Model Failure Detection (MFD). Further, the MCR may be called a model failure recovery request (MFRR) or a model feedback.
 図7は、第3の実施形態におけるMCRの送信までの流れの一例を示す図である。本例では、まず、基地局はUEに対して2つのタイプ情報(1つは、エンコーダ(ABCDE)を特定できるタイプX、もう1つは、エンコーダ(A)を特定できるタイプZ)を設定する。 FIG. 7 is a diagram showing an example of the flow up to MCR transmission in the third embodiment. In this example, first, the base station sets two type information for the UE (one is type X that can identify the encoder (ABCDE), and the other is type Z that can identify the encoder (A)). .
 UEは、現在のチャネル特性がA地点に対応すると判断し、エンコーダ(A)を選択する。UEは、選択したエンコーダ(A)に関する情報を、基地局に対して送信する。 The UE determines that the current channel characteristics correspond to point A and selects encoder (A). The UE transmits information regarding the selected encoder (A) to the base station.
 基地局は、UEに対してMCR設定(後述)を送信する。なお、MCR設定の送信タイミングは、図示されるタイミングに限られない(例えば、タイプ情報の設定前であってもよい)。MFM設定は、MCR設定と同じタイミングでUEに対して送信されてもよいし、異なるタイミングで送信されてもよい。 The base station transmits MCR settings (described later) to the UE. Note that the transmission timing of the MCR settings is not limited to the timing shown in the figure (for example, it may be before the type information is set). The MFM settings may be sent to the UE at the same timing as the MCR settings, or may be sent at different timings.
 UEは、MFM設定に基づいて測定を行い、ある条件が満たされる場合にMCRをトリガする。トリガされたMCRは、1回以上送信されてもよい(後述する)。 The UE performs measurements based on the MFM settings and triggers the MCR if certain conditions are met. A triggered MCR may be sent one or more times (described below).
 MFM設定は、以下の少なくとも1つに関する情報を含んでもよい:
 ・MFD判断基準(クライテリア(criterion、criteria))、
 ・MFインスタンス最大カウンタ(MF instance max counter)、
 ・MFDタイマ(又はMFDのための期間)。
MFM settings may include information regarding at least one of the following:
・MFD judgment criteria (criterion, criteria),
・MF instance max counter (MF instance max counter),
- MFD timer (or period for MFD).
 なお、これらの情報は、1つ又は複数のRRC情報要素を用いてUEに通知されてもよい。 Note that this information may be notified to the UE using one or more RRC information elements.
 UEは、MFDタイマが開始してから満了するまでに、MFインスタンスカウンタがMFインスタンス最大カウンタ以上となる場合に、MFDが発生した(MFが検出された)と判断してもよい。なお、UEのMACレイヤ(L2(layer-2)レイヤ)において、MFDの処理が管理されてもよい。 The UE may determine that an MFD has occurred (MF has been detected) if the MF instance counter becomes equal to or greater than the MF instance maximum counter from when the MFD timer starts until it expires. Note that MFD processing may be managed in the MAC layer (L2 (layer-2) layer) of the UE.
 より低いレイヤ(lower layer)(例えばPHYレイヤ、L1(layer-1)レイヤ)からMFインスタンスが受信(通知)される場合に、MFDタイマが開始又は再開始されてもよく、MFインスタンスカウンタがインクリメント(言い換えると、+1)されてもよい。 If an MF instance is received (notified) from a lower layer (e.g. PHY layer, L1 (layer-1) layer), the MFD timer may be started or restarted and the MF instance counter is incremented. (In other words, it may be +1).
 なお、MFインスタンスカウンタの初期値は0であってもよい。MFDタイマが満了した又はMCRが送信された場合、MFインスタンスカウンタは初期値にセットされてもよい。 Note that the initial value of the MF instance counter may be 0. If the MFD timer expires or an MCR is sent, the MF instance counter may be set to the initial value.
 UEのPHYレイヤは、MFDクライテリアに対応する測定を行い、測定結果がMFDクライテリアに対応する条件を満たす場合に、MACレイヤにMFインスタンスを送信してもよい。 The PHY layer of the UE may perform measurements corresponding to the MFD criteria, and transmit the MF instance to the MAC layer when the measurement results satisfy the conditions corresponding to the MFD criteria.
 なお、上述のMACレイヤの処理及びPHYレイヤの処理の少なくとも一部は、これらのレイヤに限定されなくてもよく、他のレイヤが用いられてもよいし、1つのレイヤにおいてまとめて行われてもよい。例えば、1つのレイヤにおいて、MFDタイマが開始/再開始され、MFDクライテリアに対応する条件を満たす場合にカウント(カウンタをインクリメント)し、カウンタがMFインスタンス最大カウンタ以上となる場合に、MFDが発生したと判断し、MCRをトリガしてもよい。この場合、MFインスタンスは生成/通知されなくてもよい。 Note that at least a part of the above-mentioned MAC layer processing and PHY layer processing does not need to be limited to these layers, and other layers may be used, or they may be performed collectively in one layer. Good too. For example, in one layer, an MFD timer is started/restarted and counts (increments a counter) when a condition corresponding to the MFD criteria is met, and if the counter is greater than or equal to the MF instance maximum counter, an MFD has occurred. It may be determined that this is the case, and the MCR may be triggered. In this case, the MF instance may not be generated/notified.
 MFDクライテリアは、例えば、以下の少なくとも1つを含んでもよい:
 ・測定のための参照信号(例えば、SSB、CSI-RS、DMRS)、
 ・測定のためのチャネル(例えば、PDCCH、PDSCH、PUCCH、PUSCH)、
 ・測定のためのメトリック、
 ・上記条件のための閾値、
 ・適用/想定するモデル。
MFD criteria may include, for example, at least one of the following:
- Reference signal for measurement (e.g. SSB, CSI-RS, DMRS),
- Channel for measurement (e.g. PDCCH, PDSCH, PUCCH, PUSCH),
・Metrics for measurement,
・Threshold values for the above conditions,
・Applicable/assumed model.
 上記メトリックは、以下の少なくとも1つであってもよい:
 ・ブロック誤り率(Block Error Rate(BLER))、
 ・変調符号化方式(Modulation and Coding Scheme(MCS))、
 ・LOS/NLOS(LOS/NLOSの検出、又はLOSからNLOS(又はNLOSからLOS)への変更の検出)、
 ・位置(位置の変更(移動)の検出)、
 ・デプロイされたAIモデルに対応する損失関数(loss function)(の値)、
 ・精度/パフォーマンスの評価指標(例えば、NMSE)、
 ・CSI(例えば、L1-RSRP、L1-SINR)。
The metric may be at least one of the following:
・Block Error Rate (BLER),
・Modulation and Coding Scheme (MCS),
・LOS/NLOS (detection of LOS/NLOS or detection of change from LOS to NLOS (or from NLOS to LOS)),
・Position (detection of position change (movement)),
・Loss function (value) corresponding to the deployed AI model,
・Accuracy/performance evaluation metrics (e.g. NMSE),
- CSI (eg, L1-RSRP, L1-SINR).
 上記条件のための閾値は、上記メトリックに関する閾値であってもよい(例えば、BLERの閾値、MCSの閾値)。 The threshold for the above condition may be a threshold for the metric (for example, a BLER threshold, an MCS threshold).
 MFM設定は、MFDリソース設定を含んでもよい。MFDクライテリアは、MFDリソース設定によって設定されるMFDリソースの1つ又は複数(例えば、全て)についてそれぞれMFDクライテリアに対応する測定を行い、測定結果がMFDクライテリアに対応する条件を満たす場合に、MACレイヤにMFインスタンスカウンタを送信してもよい。 The MFM settings may include MFD resource settings. The MFD criteria is used to perform measurements corresponding to the MFD criteria for one or more (for example, all) of the MFD resources configured by the MFD resource configuration, and when the measurement results satisfy the conditions corresponding to the MFD criteria, the MAC layer The MF instance counter may be sent to the MF instance counter.
 図8は、MFD発生の一例を示す図である。図8のフローは、図7の「条件判定」の処理の一例に該当する。本例では、MFDに関する情報として、MFDクライテリアが「BLER>閾値1」に、MFインスタンス最大カウンタが「5回」に、MFDタイマが「10スロット」に設定されたと想定する。本例では、L1(PHY)レイヤ及びL2(MAC)レイヤ間でやり取りされる通知が示されている。 FIG. 8 is a diagram showing an example of MFD occurrence. The flow in FIG. 8 corresponds to an example of the "condition determination" process in FIG. In this example, it is assumed that, as information regarding the MFD, the MFD criterion is set to "BLER>Threshold 1", the MF instance maximum counter is set to "5 times", and the MFD timer is set to "10 slots". In this example, notifications exchanged between the L1 (PHY) layer and the L2 (MAC) layer are shown.
 L1レイヤは、BLER>閾値1が生じると、MFインスタンスをMACレイヤに通知する。MACレイヤは、受信したMFインスタンスが5回以上となると、MFDが発生したと判断し、L1レイヤに対してMCRの送信指示を通知してもよい。なお、MCRの送信指示の通知までの間に、後述の候補モデル選択などが実施されてもよい。 When BLER>Threshold 1 occurs, the L1 layer notifies the MAC layer of the MF instance. When the MAC layer receives five or more MF instances, it may determine that an MFD has occurred, and may notify the L1 layer of an MCR transmission instruction. Note that candidate model selection, which will be described later, may be performed until the MCR transmission instruction is notified.
 MFM設定は、上述したMFDに関する情報のセットを、1つより多く含んでもよい。各セットは、それぞれ異なるタイプ情報と関連付けられてもよい。MFM設定は、各セットに対応するタイプ情報を含んでもよい。 The MFM settings may include more than one set of information regarding the MFD described above. Each set may be associated with different type information. The MFM settings may include type information corresponding to each set.
 図9は、MFDに関する情報の複数のセットの一例を示す図である。本例では、タイプXに対応するセット1と、タイプYに対応するセット2と、タイプZに対応するセット3と、がMFM設定によって設定されると想定する。セットi(i=1-3)のMFDクライテリア、MFインスタンス最大カウンタ及びMFDタイマは、それぞれMFDクライテリアi、MFインスタンス最大カウンタi及びMFDタイマiと示されている。 FIG. 9 is a diagram illustrating an example of multiple sets of information regarding the MFD. In this example, it is assumed that set 1 corresponding to type X, set 2 corresponding to type Y, and set 3 corresponding to type Z are set by MFM settings. The MFD criteria, MF instance maximum counter, and MFD timer of set i (i=1-3) are denoted as MFD criterion i, MF instance maximum counter i, and MFD timer i, respectively.
 セル固有エンコーダは、MCRのトリガ対象でないことが好ましい。このため、セット1のMFDクライテリアは、起こり得ないクライテリア(例えば、BLER>1、BLER<0など)を示してもよい。また、セット1のMFインスタンス最大カウンタ及びMFDタイマは任意の値であってもよく、設定されても無視されてもよいし、そもそも設定されなくてもよい。 Preferably, the cell-specific encoder is not a trigger target for MCR. Therefore, the MFD criteria of set 1 may indicate criteria that cannot occur (eg, BLER>1, BLER<0, etc.). Further, the MF instance maximum counter and MFD timer of set 1 may be arbitrary values, may be set or ignored, or may not be set in the first place.
 エリア固有エンコーダは、MCRを頻繁にトリガされてもよく、チャネル固有エンコーダは、MCRをあまり頻繁にトリガされなくてもよい。このため、セット2のMFDクライテリアは、セット3のMFDクライテリアより発生しやすいクライテリアであってもよい。 Area-specific encoders may have MCR triggered frequently, and channel-specific encoders may have MCR triggered less frequently. Therefore, the MFD criteria of set 2 may be criteria that are more likely to occur than the MFD criteria of set 3.
 なお、UEは、MFDに関する情報のセットを複数設定される場合、MAC CE/DCIによって当該セットをアクティベート/ディアクティベートしてもよい。また、UEは、MFDに関する情報のセットを複数設定される場合、設定/選択されたエンコーダに対応するタイプ情報に基づいて、当該セットをアクティベートしてもよい(設定/選択されなかったエンコーダに対応するセットはディアクティベートされてもよい)。UEは、アクティブなセットのみに基づいてMFを検出してもよい。 Note that when the UE is configured with multiple sets of information regarding the MFD, the UE may activate/deactivate the sets using the MAC CE/DCI. Furthermore, when multiple sets of information regarding MFD are configured, the UE may activate the sets based on the type information corresponding to the configured/selected encoder (corresponding to encoders that are not configured/selected). may be deactivated). The UE may detect the MF based on the active set only.
[候補モデル選択]
 MFDが発生した場合、UEは、現状のモデルからの変更の候補となるモデル(候補モデル)を選択(決定)してもよい。
[Candidate model selection]
When MFD occurs, the UE may select (determine) a model that is a candidate for change from the current model (candidate model).
 UEのPHYレイヤは、候補モデル選択のためのクライテリアに対応する測定を行い、測定結果が候補モデル選択のためのクライテリアに対応する条件を満たす場合に、MACレイヤに候補モデルが見つかった旨の通知を送信してもよい。 The PHY layer of the UE performs measurements corresponding to the criteria for candidate model selection, and when the measurement results satisfy the conditions corresponding to the criteria for candidate model selection, notifies the MAC layer that a candidate model has been found. may be sent.
 候補モデル選択のためのクライテリアは、上述のMFDクライテリアと同様であってもよい。UEは、候補モデルとなる1つ以上のモデルに関する情報を、上位レイヤシグナリングによって設定されてもよい。当該モデルに関する情報は、(候補)モデルID、上記クライテリアに関する情報などを含んでもよい。 The criteria for candidate model selection may be similar to the MFD criteria described above. The UE may be configured with information regarding one or more candidate models through upper layer signaling. The information regarding the model may include a (candidate) model ID, information regarding the above-mentioned criteria, and the like.
 なお、MCRのトリガは、候補モデルが1つ以上見つかった場合に行われてもよいし、候補モデルが見つからなかった場合に行われてもよい。 Note that the MCR may be triggered when one or more candidate models are found, or when no candidate model is found.
 候補モデルが1つ以上見つかった場合、UEは、基地局からの返答/指示/モデルの設定を待たずに、MCRの送信後の一定期間において、1つ以上の候補モデルのいずれかを適用(利用)してもよい。 If one or more candidate models are found, the UE shall apply (( may be used).
[MCRの内容]
 MCRの内容(MCRに含まれる情報)は、上位レイヤシグナリングによって設定されてもよい。例えば、UEは、MCRのための設定情報(MCR設定)を、上位レイヤシグナリングによって設定されてもよく、当該MCR設定は、MCRの内容に関する情報(MCRにどの情報を含めるかに関する情報)を含んでもよい。MCRの内容に関する情報の設定は、モデル変更設定(model change configuration(MC設定))と呼ばれてもよい。
[MCR contents]
The contents of the MCR (information included in the MCR) may be set by upper layer signaling. For example, the UE may be configured with configuration information for MCR (MCR configuration) through upper layer signaling, and the MCR configuration includes information regarding the contents of the MCR (information regarding what information is included in the MCR). But that's fine. Setting information regarding the contents of the MCR may be referred to as model change configuration (MC setting).
 MCRの内容に関する情報は、以下の少なくとも1つであってもよい:
 ・候補モデルID又は候補モデルIDのリスト、
 ・候補モデル選択のクライテリアに対応する測定結果(メトリックの値)、
 ・現在の(MFが検出された)モデルのステータス(例えば、上記メトリックの少なくとも1つの値)、
 ・チャネル特性情報(第1の実施形態を参照)、
 ・モデル更新に関する情報。
Information regarding the contents of the MCR may be at least one of the following:
・Candidate model ID or list of candidate model IDs,
・Measurement results (metric values) corresponding to criteria for candidate model selection,
- the current status of the model (in which MF was detected) (e.g. the value of at least one of the above metrics);
・Channel characteristic information (see first embodiment),
- Information regarding model updates.
 上記モデル更新に関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・現在のモデル/候補モデルにおける更新されるウェイトの値(なお、絶対値でもよいし、相対値でもよい)、
 ・更新されるモデル構成、
 ・更新されるモデルのための損失関数の値、
 ・候補モデルが見つからなかったこと。
The information regarding the model update may include information regarding at least one of the following:
・The value of the weight to be updated in the current model/candidate model (note that it may be an absolute value or a relative value),
・Updated model configuration,
- the value of the loss function for the model being updated,
- No candidate model was found.
[MCRのための上りリンクリソース]
 UEは、MCRがトリガされた後の最も近い上りリンクリソースにおいて、MCRを送信してもよい。
[Uplink resources for MCR]
The UE may transmit the MCR on the closest uplink resource after the MCR is triggered.
 UEは、MCRのための上りリンクリソースに関する情報を含むMCR設定を、上位レイヤシグナリングによって設定されてもよいし、DCIによって上りリンクリソースをスケジューリングされても良い。 The UE may be configured with MCR configuration including information regarding uplink resources for MCR by upper layer signaling, or may be scheduled with uplink resources by DCI.
 MCRのための上りリンクリソースに関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・MCRの周期(periodicity)、
 ・MCR送信を停止する時間、
 ・MCR送信を試行する回数、
 ・MCRを送信する時間/周波数リソース。
Information regarding uplink resources for MCR may include information regarding at least one of the following:
・MCR periodicity,
・Time to stop MCR transmission,
・Number of attempts to send MCR,
- Time/frequency resources for transmitting MCR.
 UEは、MCRがトリガされる(又は最初のMCRが送信される)タイミングから、MCR送信を停止する時間が経過するまでの間、MCRの周期に基づいてMCRを周期的に送信してもよい。 The UE may periodically transmit the MCR based on the MCR period from the time the MCR is triggered (or the first MCR is transmitted) until the time to stop transmitting the MCR has elapsed. .
 なお、MCR送信を停止する時間は、MCRの送信回数(送信カウンタと呼ばれてもよい)で表されてもよいし、時間期間(例えば、スロット数、秒数)で表されてもよい。また、MCR送信を停止する時間は、MCR送信に対する応答をモニタする期間(レスポンスウィンドウ、モニタリングウィンドウなどと呼ばれてもよい)に該当してもよい。当該応答は、第4の実施形態で後述するモデル変更コマンド(Model Change Command(MCC))であってもよい。 Note that the time to stop MCR transmission may be expressed by the number of MCR transmissions (which may be referred to as a transmission counter), or may be expressed by a time period (for example, the number of slots, the number of seconds). Further, the time to stop MCR transmission may correspond to a period (which may be referred to as a response window, a monitoring window, etc.) for monitoring responses to MCR transmission. The response may be a model change command (MCC), which will be described later in the fourth embodiment.
 UEは、MCR送信後、Xシンボル/スロット/ミリ秒の間のサーチスペースにおいて、下りリンクチャネル(PDCCH、PDSCHなど)をモニタしてもよい。UEは、当該サーチスペースを、Y回繰り返してモニタしてもよい。なお、この「MCR送信」は、初回送信であってもよいし、i回目(iは整数)の送信であってもよい。 The UE may monitor downlink channels (PDCCH, PDSCH, etc.) in a search space of X symbols/slots/ms after MCR transmission. The UE may repeatedly monitor the search space Y times. Note that this "MCR transmission" may be the first transmission or the i-th transmission (i is an integer).
 UEは、当該X、Yを、特定のルール/UE能力に基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてネットワークから通知されてもよい。当該X、Yは、SCS(例えばアクティブBWPのSCS)、周波数帯(例えばアクティブBWPの属する周波数帯、周波数レンジなど)ごとに異なってもよい。 The UE may determine the X, Y based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals. / channel, or a combination thereof. The X and Y may differ depending on the SCS (for example, the SCS of active BWP) and the frequency band (for example, the frequency band to which active BWP belongs, the frequency range, etc.).
 なお、MFM設定、MC設定、MCR設定は、それぞれ別々に設定されてもよい。 Note that the MFM settings, MC settings, and MCR settings may be set separately.
 以上説明した第3の実施形態によれば、UEが、MCRを適切に送信できる。 According to the third embodiment described above, the UE can appropriately transmit the MCR.
<第4の実施形態>
 第4の実施形態は、モデルの変更に関する。
<Fourth embodiment>
The fourth embodiment relates to model modification.
 UEは、モデル変更指示を、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてネットワークから通知されてもよい。 The UE may be notified of the model change instruction by the network using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. .
 モデル変更指示は、モデル変更コマンド(Model Change Command(MCC))とよばれてもよい。 The model change instruction may be called a model change command (MCC).
 MCCは、以下の少なくとも1つを示す情報を含んでもよい:
 ・MCR(第3の実施形態を参照)によって示される候補モデル(推薦されるモデル)に対応する承認(ACKnowledgement(ACK))、
 ・AIモデル、
 ・上記AIモデルに関連するタイプ情報(第2の実施形態を参照)。
The MCC may include information indicating at least one of the following:
- an acknowledgment (ACKnowledgement (ACK)) corresponding to the candidate model (recommended model) indicated by the MCR (see the third embodiment);
・AI model,
- Type information related to the AI model (see second embodiment).
 上記承認は、確認(confirmation)と呼ばれてもよい。 The above approval may also be called confirmation.
 MCCに対応するモデルの適用については、第5の実施形態で後述する。 Application of the model corresponding to MCC will be described later in the fifth embodiment.
 なお、UEは、MCRに対するACK(の受信)を、以下に基づいて(以下が生じたことに基づいて)暗示的に判断してもよい:
 ・MCRを含むPUSCHの送信と同じHybrid Automatic Repeat reQuest(HARQ)プロセス番号を有するPUSCH送信をスケジュールし、トグルされたnew data indicator(NDI)フィールド値を有する、DCIフォーマットを有するPDCCH受信。
Note that the UE may implicitly determine (the reception of) the ACK for the MCR based on the following (based on the following occurring):
- PDCCH reception with DCI format, scheduling PUSCH transmission with the same Hybrid Automatic Repeat reQuest (HARQ) process number as the transmission of PUSCH with MCR, and with toggled new data indicator (NDI) field value.
 なお、MCCは、確認されたモデル(confirmed model)/設定される新しいモデルについての、MFM設定、MC設定及びMCR設定の少なくとも1つを含んでもよい。 Note that the MCC may include at least one of MFM settings, MC settings, and MCR settings for the confirmed model/new model to be configured.
 以上説明した第4の実施形態によれば、UEが、MCCを適切に把握できる。 According to the fourth embodiment described above, the UE can appropriately understand the MCC.
<第5の実施形態>
 第5の実施形態は、モデルの適用のタイミングに関する。
<Fifth embodiment>
The fifth embodiment relates to the timing of model application.
 UEは、第4の実施形態における確認によって確認されたモデル(confirmed model)を、以下の少なくとも1つのタイミング以降において適用してもよい:
 ・参照時間(reference time)、
 ・参照時間に時間オフセットを加えた時間。
The UE may apply the confirmed model according to the fourth embodiment at at least one of the following timings:
・Reference time,
・The time obtained by adding the time offset to the reference time.
 例えば、UEは、上記確認されたモデルを、上記タイミング以降の最初のシンボル/スロット(例えば、最初のULシンボル/スロット)から適用開始してもよい。 For example, the UE may start applying the confirmed model from the first symbol/slot (for example, the first UL symbol/slot) after the timing.
 上記参照時間は、以下の少なくとも1つであってもよい:
 ・MCCを含むPDCCH/PDSCHの受信タイミング、
 ・MCCに対するHARQ-ACK情報(又はACK)を報告するPUCCH/PUSCHの送信タイミング。
The reference time may be at least one of the following:
・Reception timing of PDCCH/PDSCH including MCC,
- Transmission timing of PUCCH/PUSCH to report HARQ-ACK information (or ACK) for MCC.
 上記時間オフセットは、以下の1つ及び複数を用いて表現されてもよい:
 ・シンボル数、
 ・スロット数、
 ・サブフレーム数、
 ・秒(例えば、ミリ秒、マイクロ秒など)。
The time offset may be expressed using one or more of the following:
・Number of symbols,
・Number of slots,
・Number of subframes,
- Seconds (e.g. milliseconds, microseconds, etc.).
 UEは、上記時間オフセットを、特定のルール/UE能力に基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてネットワークから通知されてもよい。例えば、上記時間オフセットは、ネットワークから上記時間オフセットに関する設定がない場合には、デフォルト値(例えば、3ms)であってもよい。 The UE may determine the time offset based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/ The notification may be sent from the network using a channel or a combination thereof. For example, the time offset may be a default value (for example, 3 ms) if there is no setting regarding the time offset from the network.
 上記時間オフセットは、全てのUEに共通の値であってもよいし、特定のバンドごとに値が決まってもよい。 The above time offset may be a value common to all UEs, or a value may be determined for each specific band.
 図10は、第5の実施形態におけるMCC受信後のモデルの適用までの流れの一例を示す図である。本例は、MCRまでは図7と同様であるため、重複した説明は行わない。 FIG. 10 is a diagram illustrating an example of the flow from receiving the MCC to applying the model in the fifth embodiment. This example is the same as FIG. 7 up to MCR, so a redundant explanation will not be given.
 UEは、MCRが示す候補モデルの承認のためのMCCを受信する。本例では、参照時間はMCCの受信タイミングである。参照時間から時間オフセットが経過後、UEはMCC(によって承認された候補モデル)を適用する。 The UE receives the MCC for approval of the candidate model indicated by the MCR. In this example, the reference time is the MCC reception timing. After a time offset has elapsed from the reference time, the UE applies the MCC (candidate model approved by).
 以上説明した第5の実施形態によれば、UEが、適切なタイミングでモデルを適用できる。 According to the fifth embodiment described above, the UE can apply the model at an appropriate timing.
<補足>
 上述の実施形態においては、UEがエンコーダを有し、基地局がデコーダを有する例が示された。上述の実施形態は、UEがデコーダを有し、基地局がエンコーダを有する例に適用されてもよい。
<Supplement>
In the embodiments described above, an example was shown in which the UE has an encoder and the base station has a decoder. The embodiments described above may be applied to examples where the UE has a decoder and the base station has an encoder.
 上述の実施形態における、エンコーダ/デコーダは、UE/基地局に配備されているAIモデルと互いに読み替えられてもよい。つまり、本開示は、オートエンコーダを用いる場合に限られず、任意のモデルを用いて推論する場合に適用されてもよい。また、本開示におけるUE/基地局がエンコーダを用いて圧縮する対象は、CSI(又はチャネル/プリコーディング行列)に限られず、任意の情報であってもよい。この場合、上述の実施形態におけるチャネル情報は、単に情報で読み替えられてもよい。 In the above embodiments, the encoder/decoder may be interchanged with the AI model deployed at the UE/base station. That is, the present disclosure is not limited to the case of using an autoencoder, but may be applied to the case of inference using any model. Furthermore, the object that the UE/base station compresses using the encoder in the present disclosure is not limited to CSI (or channel/precoding matrix), but may be any information. In this case, the channel information in the embodiments described above may be simply replaced with information.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての処理/動作/制御/情報(例えば、AI支援情報伝送のためのエンコーダ)をサポートすること、
 ・チャネル特性情報(例えば、LOS、NLOS、位置情報)の取得/報告をサポートすること、
 ・異なるタイプ(タイプ情報)に対応する複数のAIモデルをサポートすること、
 ・計算複雑さのサポートするレベル。
The particular UE capability may indicate at least one of the following:
- supporting processing/operation/control/information (e.g., an encoder for AI-assisted information transmission) for at least one of the above embodiments;
Supporting acquisition/reporting of channel characteristic information (e.g. LOS, NLOS, location information);
・Supporting multiple AI models that correspond to different types (type information),
-Supported levels of computational complexity.
 上記UE能力は、周波数ごとに報告されてもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、Frequency Range 2(FR2)、FR2-1、FR2-2)ごとに報告されてもよいし、セルごとに報告されてもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとに報告されてもよい。 The above UE capabilities may be reported for each frequency, or for each frequency range (for example, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2). , may be reported for each cell, or may be reported for each subcarrier spacing (SCS).
 上記UE能力は、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))に共通に報告されてもよいし、独立に報告されてもよい。 The above-mentioned UE capabilities may be commonly reported for Time Division Duplex (TDD) and Frequency Division Duplex (FDD), or may be reported independently.
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、CSIフィードバックのためにAIモデルの利用を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。 Also, at least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling. For example, the specific information may be information indicating that the use of an AI model is enabled for CSI feedback, arbitrary RRC parameters for a specific release (eg, Rel. 18), or the like.
 なお、上述の実施形態の少なくとも1つは、CSIフィードバック以外のUE-基地局間の情報の伝送(の圧縮のために)に用いられてもよい。例えば、UEは、位置(又はポジショニング)に関する情報/ロケーション管理機能(Location Management Function(LMF))における位置推定に関する情報を、上述の実施形態の少なくとも1つに従って(例えば、エンコーダを用いて生成し)ネットワークに報告してもよい。当該情報は、サブバンドごと/アンテナポートごとのチャネルインパルス応答(Channel Impulse Response(CIR))の情報であってもよい。これを報告すると、受信信号の角度/時間差などを報告しなくても基地局はUEの位置を推定することができる。 Note that at least one of the embodiments described above may be used for (for compression of) transmission of information between the UE and the base station other than CSI feedback. For example, the UE generates information related to location (or positioning)/information related to location estimation in a location management function (LMF) according to at least one of the above-described embodiments (e.g., using an encoder). You may report it to the network. The information may be channel impulse response (CIR) information for each subband/antenna port. By reporting this, the base station can estimate the location of the UE without reporting the angle/time difference of received signals.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 測定に基づいてチャネル情報を取得する制御部と、
 前記チャネル情報と、前記チャネル情報に関連するチャネル特性情報と、を送信する送信部と、を有する端末。
[付記2]
 前記チャネル特性情報は、Line Of Site(LOS)、Non-Line Of Site(NLOS)及び位置の少なくとも1つに関する情報を含む付記1に記載の端末。
[付記3]
 エンコーダのためのタイプを示すタイプ情報を受信する受信部をさらに有し、
 前記制御部は、前記タイプ情報に基づいて決定したエンコーダを用いて、送信する情報を圧縮する付記1又は付記2に記載の端末。
[付記4]
 エンコーダの適用範囲に関するタイプを示すタイプ情報を受信する受信部をさらに有し、
 前記制御部は、前記タイプ情報に基づいて決定したエンコーダを用いて、送信する情報を圧縮する付記1から付記3のいずれかに記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a control unit that obtains channel information based on the measurement;
A terminal comprising: a transmitter configured to transmit the channel information and channel characteristic information related to the channel information.
[Additional note 2]
The terminal according to supplementary note 1, wherein the channel characteristic information includes information regarding at least one of Line Of Site (LOS), Non-Line Of Site (NLOS), and location.
[Additional note 3]
further comprising a receiver for receiving type information indicating a type for the encoder;
The terminal according to appendix 1 or 2, wherein the control unit compresses information to be transmitted using an encoder determined based on the type information.
[Additional note 4]
further comprising a receiving unit that receives type information indicating a type regarding the scope of application of the encoder;
The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit compresses information to be transmitted using an encoder determined based on the type information.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 設定されるエンコーダを用いて、送信する情報を圧縮する制御部と、
 ある条件を満たす場合に、前記エンコーダの変更要求を送信する送信部と、を有する端末。
[付記2]
  前記条件を満たす場合は、前記エンコーダについてモデル障害が検出される場合である付記1に記載の端末。
[付記3]
 前記変更要求に対応する承認を受信する受信部をさらに有する付記1又は付記2に記載の端末。
[付記4]
 前記変更要求に対応する承認を受信する受信部をさらに有し、
 前記制御部は、前記承認を受信するタイミングに基づいて、新しいエンコーダの利用を開始する付記1から付記3のいずれかに記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a control unit that compresses information to be transmitted using the set encoder;
A terminal comprising: a transmitter that transmits a request to change the encoder when a certain condition is met.
[Additional note 2]
The terminal according to supplementary note 1, wherein if the condition is satisfied, a model failure is detected for the encoder.
[Additional note 3]
The terminal according to Supplementary note 1 or 2, further comprising a receiving unit that receives approval corresponding to the change request.
[Additional note 4]
further comprising a receiving unit that receives approval corresponding to the change request,
The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit starts using a new encoder based on the timing of receiving the approval.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 12 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 なお、送受信部120は、チャネル情報の報告に関する情報をユーザ端末20に送信してもよい。送受信部120は、前記チャネル情報と、前記チャネル情報に関連するチャネル特性情報と、を前記ユーザ端末20から受信してもよい。 Note that the transmitting/receiving unit 120 may transmit information regarding channel information reporting to the user terminal 20. The transmitting/receiving unit 120 may receive the channel information and channel characteristic information related to the channel information from the user terminal 20.
 また、送受信部120は、エンコーダの設定情報をユーザ端末20に送信してもよい。送受信部120は、ある条件を満たす場合に前記ユーザ端末20から送信される、前記エンコーダの変更要求を受信してもよい。 Additionally, the transmitting/receiving unit 120 may transmit encoder setting information to the user terminal 20. The transmitting/receiving unit 120 may receive the encoder change request transmitted from the user terminal 20 when a certain condition is satisfied.
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 なお、制御部210は、測定に基づいてチャネル情報を取得してもよい。送受信部220は、前記チャネル情報と、前記チャネル情報に関連するチャネル特性情報と、を送信してもよい。 Note that the control unit 210 may acquire channel information based on measurement. The transmitting/receiving unit 220 may transmit the channel information and channel characteristic information related to the channel information.
 前記チャネル特性情報は、Line Of Site(LOS)、Non-Line Of Site(NLOS)及び位置の少なくとも1つに関する情報を含んでもよい。 The channel characteristic information may include information regarding at least one of Line Of Site (LOS), Non-Line Of Site (NLOS), and location.
 送受信部220は、エンコーダのためのタイプを示すタイプ情報を受信してもよい。制御部210は、前記タイプ情報に基づいて決定したエンコーダを用いて、送信する情報を圧縮してもよい。 The transceiver unit 220 may receive type information indicating the type for the encoder. The control unit 210 may compress the information to be transmitted using the encoder determined based on the type information.
 送受信部220は、エンコーダの適用範囲に関するタイプを示すタイプ情報を受信してもよい。制御部210は、前記タイプ情報に基づいて決定したエンコーダを用いて、送信する情報を圧縮してもよい。 The transmitter/receiver 220 may receive type information indicating the type related to the scope of application of the encoder. The control unit 210 may compress the information to be transmitted using the encoder determined based on the type information.
 また、制御部210は、設定されるエンコーダを用いて、送信する情報を圧縮してもよい。送受信部220は、ある条件を満たす場合に、前記エンコーダの変更要求を送信してもよい。 Additionally, the control unit 210 may compress the information to be transmitted using a set encoder. The transmitter/receiver 220 may transmit the encoder change request when a certain condition is met.
 前記条件を満たす場合は、前記エンコーダについてモデル障害が検出される場合であってもよい。 If the condition is satisfied, a model failure may be detected in the encoder.
 送受信部220は、前記変更要求に対応する承認を受信してもよい。 The transmitting/receiving unit 220 may receive an approval corresponding to the change request.
 送受信部220は、前記変更要求に対応する承認を受信してもよい。制御部210は、前記承認を受信するタイミングに基づいて、新しいエンコーダの利用を開始してもよい。 The transmitting/receiving unit 220 may receive an approval corresponding to the change request. The control unit 210 may start using the new encoder based on the timing of receiving the approval.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図15は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 15 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New Radio Access (NX), Future Generation Radio Access (FX), Global System for Mobile Communications ), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  設定されるエンコーダを用いて、送信する情報を圧縮する制御部と、
     ある条件を満たす場合に、前記エンコーダの変更要求を送信する送信部と、を有する端末。
    a control unit that compresses information to be transmitted using the set encoder;
    A terminal comprising: a transmitter that transmits a request to change the encoder when a certain condition is met.
  2.  前記条件を満たす場合は、前記エンコーダについてモデル障害が検出される場合である請求項1に記載の端末。 The terminal according to claim 1, wherein if the condition is met, a model failure is detected in the encoder.
  3.  前記変更要求に対応する承認を受信する受信部をさらに有する請求項1に記載の端末。 The terminal according to claim 1, further comprising a receiving unit that receives an approval corresponding to the change request.
  4.  前記変更要求に対応する承認を受信する受信部をさらに有し、
     前記制御部は、前記承認を受信するタイミングに基づいて、新しいエンコーダの利用を開始する請求項1に記載の端末。
    further comprising a receiving unit that receives approval corresponding to the change request,
    The terminal according to claim 1, wherein the control unit starts using a new encoder based on the timing of receiving the approval.
  5.  設定されるエンコーダを用いて、送信する情報を圧縮するステップと、
     ある条件を満たす場合に、前記エンコーダの変更要求を送信するステップと、を有する端末の無線通信方法。
    compressing the information to be transmitted using the configured encoder;
    A wireless communication method for a terminal, comprising the step of transmitting a request to change the encoder when a certain condition is met.
  6.  エンコーダの設定情報を端末に送信する送信部と、
     ある条件を満たす場合に前記端末から送信される、前記エンコーダの変更要求を受信する受信部と、を有する基地局。
    a transmitter that transmits encoder setting information to the terminal;
    A base station comprising: a receiving unit that receives the encoder change request transmitted from the terminal when a certain condition is met.
PCT/JP2022/017121 2022-04-05 2022-04-05 Terminal, wireless communication method, and base station WO2023195079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017121 WO2023195079A1 (en) 2022-04-05 2022-04-05 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017121 WO2023195079A1 (en) 2022-04-05 2022-04-05 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023195079A1 true WO2023195079A1 (en) 2023-10-12

Family

ID=88242686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017121 WO2023195079A1 (en) 2022-04-05 2022-04-05 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023195079A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011397A (en) * 2008-06-30 2010-01-14 Toshiba Corp Wireless communication equipment and wireless communication method
JP2014003512A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Ofdm signal transmission and reception system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011397A (en) * 2008-06-30 2010-01-14 Toshiba Corp Wireless communication equipment and wireless communication method
JP2014003512A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Ofdm signal transmission and reception system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO, TOMOKO: "Performance Evaluation of CSI Compression Scheme Using Multiuser MIMO Testbed", IEICE TECHNICAL REPORT, vol. 112, no. 443 (RCS2012-292), 20 February 2013 (2013-02-20) - 1 March 2013 (2013-03-01), pages 49 - 54, XP009549324, ISSN: 0913-5685 *
YASUYUKI HATAKAWA, TOMOKO MATSUMOTO, SATOSHI KONISHI: "Development of Multiuser-MIMO Testbed with Limited CSI Feedback and Non-Linear Precoding", IEICE TECHNICAL REPORT, IEICE, JP, vol. Vol 112 Paper: AP2012-100, RCS2012-167, no. 286, 8 November 2012 (2012-11-08) - 14 September 2012 (2012-09-14), JP, pages 37 - 42, XP009549321 *

Similar Documents

Publication Publication Date Title
WO2023195079A1 (en) Terminal, wireless communication method, and base station
WO2023195080A1 (en) Terminal, radio communication method, and base station
WO2024004199A1 (en) Terminal, wireless communication method, and base station
WO2023228370A1 (en) Terminal, wireless communication method, and base station
WO2024034065A1 (en) Terminal, wireless communication method, and base station
WO2024034066A1 (en) Terminal, wireless communication method, and base station
WO2024069753A1 (en) Terminal, wireless communication method, and base station
WO2023218658A1 (en) Terminal, radio communication method, and base station
WO2024069752A1 (en) Terminal, wireless communication method, and base station
WO2023218657A1 (en) Terminal, radio communication method, and base station
WO2023218543A1 (en) Terminal, radio communication method, and base station
WO2023188432A1 (en) Terminal, wireless communication method, and base station
WO2024004219A1 (en) Terminal, radio communication method, and base station
WO2023135820A1 (en) Terminal, wireless communication method, and base station
WO2024004220A1 (en) Terminal, radio communication method, and base station
WO2024004194A1 (en) Terminal, wireless communication method, and base station
WO2023135819A1 (en) Terminal, wireless communication method, and base station
WO2023135821A1 (en) Terminal, radio communication method, and base station
WO2023199512A1 (en) Terminal, wireless communication method, and base station
WO2023248419A1 (en) Terminal, wireless communication method, and base station
WO2023218544A1 (en) Terminal, radio communication method, and base station
WO2024038594A1 (en) Terminal, wireless communication method, and base station
WO2023218650A1 (en) Terminal, radio communication method, and base station
WO2024042953A1 (en) Terminal, wireless communication method, and base station
WO2024042866A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936479

Country of ref document: EP

Kind code of ref document: A1