WO2023193799A1 - 一种传输处理方法、装置、终端及网络设备 - Google Patents

一种传输处理方法、装置、终端及网络设备 Download PDF

Info

Publication number
WO2023193799A1
WO2023193799A1 PCT/CN2023/086944 CN2023086944W WO2023193799A1 WO 2023193799 A1 WO2023193799 A1 WO 2023193799A1 CN 2023086944 W CN2023086944 W CN 2023086944W WO 2023193799 A1 WO2023193799 A1 WO 2023193799A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
transmission
information
transmission parameters
amplification factor
Prior art date
Application number
PCT/CN2023/086944
Other languages
English (en)
French (fr)
Inventor
王欢
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023193799A1 publication Critical patent/WO2023193799A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a transmission processing method, device, terminal and network equipment.
  • Relay equipment with signal amplification function receives and amplifies the downlink signal from the upstream base station, so that the strength of the downlink signal reaching the terminal is increased; on the other hand, it receives and amplifies the uplink signal from the terminal, so that the uplink signal reaching the upstream base station is increased. The strength of the signal increases.
  • the amplification factor for the amplification of uplink signals, if the amplification factor is large, it will introduce a certain amount of noise to the upstream base station, and even increase the thermal noise level of the upstream base station, resulting in a reduction in the sensitivity of the upstream base station receiver, resulting in the upstream failure of the base station. Problems such as coverage reduction; if the amplification factor is too small, the coverage will be limited, causing some terminals to be unable to access the network. Therefore, how to achieve more reasonable amplification of uplink signals by relay equipment has become an urgent problem to be solved.
  • Embodiments of the present application provide a transmission processing method, device, terminal and network equipment, which can achieve more reasonable amplification of uplink signals by relay equipment.
  • a transmission processing method which method includes:
  • the relay device configures relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • a transmission processing device including:
  • Configuration module used to configure relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • the third aspect provides a transmission processing method, including:
  • the network device sends at least one of the following to the relay device:
  • Transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device;
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • a transmission processing device including:
  • the sending module is used to send at least one of the following to the relay device:
  • Transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device;
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • a relay device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect.
  • a relay device including a processor and a communication interface, wherein the processor is used to configure relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • a network device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the third aspect.
  • a network device including a processor and a communication interface, wherein the communication interface is used to send at least one of the following to a relay device:
  • Transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device;
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • a transmission processing system including: a relay device and a network device.
  • the relay device is used to perform the steps of the transmission processing method as described in the first aspect.
  • the network device can be used to perform as The steps of the transmission processing method described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to Implement the steps of the method as described in the first aspect, or implement the steps of the method as described in the third aspect.
  • the relay device may be based on the transmission parameter control information sent by the network device and determined by the noise coefficient related information of the relay device, the restrictions on the relay transmission parameters, and the association between the relay transmission parameters and the transmission resources. Relationship, at least one of the effective time of the relay transmission parameters is used to configure the relay transmission parameters, so as to achieve a more reasonable amplification of the signal by the relay device.
  • Figure 1 is one of the block diagrams of a wireless communication system
  • Figure 2 is the second block diagram of the wireless communication system
  • FIG. 3 is one of the flow diagrams of the transmission processing method according to the embodiment of the present application.
  • Figure 4 is the second schematic flowchart of the transmission processing method according to the embodiment of the present application.
  • Figure 5 is one of the module structure schematic diagrams of the transmission processing device according to the embodiment of the present application.
  • FIG. 6 is a second schematic diagram of the module structure of the transmission processing device according to the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a relay device according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a radio access network device.
  • Access network equipment may include base stations, Wireless Local Area Network (WLAN) access points or WiFi nodes, etc.
  • Base stations Can be called Node B, Evolved NodeB (eNB), Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set, BSS) , extended service set (Extended Service Set, ESS), home B-node, home evolved B-node, transmitting receiving point (Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved , the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the relay device can include a terminal part (Mobile Termination, MT) and a relay part (Repeater Unit, RU); the relay device can also include only one of the MT or RU.
  • the MT can establish a connection with the network device, and the network device exchanges control signaling with the relay device through the MT, and can instruct the relay device to send/receive related parameters of the MT/RU.
  • the relay device can be a signal amplifier, a reconfigurable intelligent surface (RIS) with amplification function, a base station with amplification function, etc.
  • RIS reconfigurable intelligent surface
  • a transmission processing method includes:
  • Step 301 The relay device configures relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • the relay device can be based on the transmission parameter control information sent by the network device and determined by the noise coefficient related information of the relay device, the restrictions on the relay transmission parameters, and the association between the relay transmission parameters and the transmission resources. Relationship, at least one of the effective time of the relay transmission parameters is used to configure the relay transmission parameters, so as to achieve a more reasonable amplification of the signal by the relay device.
  • the relay device realizes the signal amplification function through the set amplifier, and the relay transmission parameters are parameters related to signal amplification.
  • the relay transmission parameters include at least one of the following:
  • the amplification factor is the amplification factor of the signal by the relay device.
  • the amplification factor configured by the relay device includes at least one of the following: the value of the amplification factor, the maximum value of the amplification factor, the minimum value of the amplification factor, and the range value of the amplification factor. Magnification adjustment value.
  • the amplification factor is associated with the transmission beam, so that the amplification factor configured by the relay device will be applied to the transmission beam that is associated with the amplification factor.
  • the transmission beam is the beam that the relay device expects or does not expect to use for amplified signal transmission.
  • the transmission beam is at least an uplink transmission beam between the network device and the relay device.
  • Whether the amplifier is enabled can also be understood as whether the relay device amplifies the signal.
  • whether the amplifier is enabled is associated with the transmission beam, so that the relay device determines whether to amplify the signal on the transmission beam for the transmission beam.
  • the relay device since the transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device, if the relay device configures the relay transmission parameters based on the transmission parameter control information, it can respond to the network device's Control the configured relay transmission parameters to meet the requirements of the network equipment, reduce the interference of the amplified uplink signal on the reception of the network equipment (that is, control the increment of the noise level of the network equipment), and maintain the coverage of the uplink signal.
  • the noise coefficient related information is obtained by the network device in at least one of the following ways:
  • the noise level of the receiver can be processed to obtain noise figure related value information. Therefore, the net The noise coefficient related information used by the network device to determine the transmission parameter control information can be the predefined noise coefficient related information, the noise coefficient related information reported by the relay device, or the noise coefficient related information obtained from the noise level of the receiver. At least one of.
  • step 301 it also includes:
  • the relay device sends the noise coefficient related information to the network device.
  • the relay device sends noise coefficient related information to the network device, so that the network device determines the transmission parameter control information based on the noise coefficient related information.
  • the relay device sends capability information to the network device, and the capability information carries noise coefficient-related information.
  • the noise figure related information includes at least one of the following:
  • the relevant value information of the noise coefficient includes at least one of the following: the value of the noise coefficient, the maximum value of the noise coefficient, the minimum value of the noise coefficient, the range value of the noise coefficient, and the adjustment value of the noise coefficient.
  • the noise coefficient level information is obtained by dividing the levels according to the size of the noise coefficient value to roughly reflect the noise coefficient. When using the noise coefficient level information, it can avoid exposing the specific noise coefficient value.
  • the type information of the relay device can also be understood as the level information of the relay device.
  • the type information of the relay device is associated with the correlation value information of the noise coefficient to roughly reflect the noise coefficient, which can be avoided when using the type information of the relay device. Expose specific noise figure values.
  • the transmission parameter control information is used to guide the configuration of relay transmission parameters.
  • the transmission parameter control information indicates the value or value range of the relay transmission parameter, etc.
  • the network device determines the transmission parameter control information according to the predefined correlation value information of the noise coefficient (such as the maximum value A1 of the noise coefficient).
  • the transmission parameter control information indicates that the amplification factor is less than a1 (that is, the amplification corresponding to the maximum value A1 of the noise coefficient). multiple), and sends the transmission parameter control information to the relay device. Therefore, the relay device can configure the amplification factor to be a2. At this time, a2 is smaller than a1.
  • the network device determines the transmission parameter control information according to the relevant value information of the noise coefficient (such as the value of the noise coefficient A2) reported by the relay device.
  • the transmission parameter control information indicates that the amplification factor is a3 (that is, the amplification corresponding to the value of the noise coefficient A2 multiple), and sends the transmission parameter control information to the relay device. Therefore, the relay device can configure the amplification factor to be a3. Or, the network device obtains the noise of its receiver through measurement. sound level, and then obtain the relevant value information of the noise coefficient (such as the range value of the noise coefficient A3 ⁇ A4) to determine the transmission parameter control information.
  • the transmission parameter control information indicates that the amplification factor is greater than a4 (that is, the amplification factor corresponding to the noise coefficient value A3 ) and less than a5 (that is, the amplification factor corresponding to the noise coefficient value A4), and sends the transmission parameter control information to the relay device. Therefore, the relay device can configure the amplification factor to a6. At this time, a6 is greater than a4 and less than a5 .
  • the network device can determine the transmission parameter control information based on the noise coefficient related information and the transmission path loss (pathloss); or, the network device can also combine the noise coefficient related information and the transmission path loss (pathloss) to determine the transmission parameter control information.
  • the information, pathloss and amplification factor determine the transmission parameter control information.
  • the transmission parameter control information guides the configuration of other parameters except the amplification factor, such as desired or undesired transmission beams.
  • pathloss at least includes the path loss between the network device and the relay device, which can be measured by the network device or measured and reported by the relay device.
  • the pathloss can be associated with the transmission beam, that is, the network device or relay device measures the transmission beam to obtain the corresponding pathloss.
  • the amplification factor can be reported by the relay device, notified by the operation and maintenance management device (Operation Administration and Maintenance, OAM), or instructed by the network device in advance.
  • OAM Opera and maintenance management device
  • the restrictive conditions include at least one of the following:
  • the amplification factor and transmission path loss meet the first condition
  • the amplification factor, transmission path loss and noise figure satisfy the second condition.
  • the first condition may be that the value of G-PL is less than or equal to the first threshold; the second condition may be that the value of NF+G-PL is less than or equal to the second threshold.
  • G represents the amplification factor
  • PL represents the transmission path loss
  • NF represents the noise factor (Noise Factor).
  • both the first threshold and the second threshold may be predefined or indicated by the network device.
  • the relay device configures the relay transmission parameters based on the restriction condition, including at least one of the following:
  • the relay device configures the amplification factor in the relay transmission parameter to an expected value
  • the relay device configures the transmission beam in the relay transmission parameter as a desired beam.
  • the priority will be to amplify the The multiple is configured as the desired value, and/or the transmission beam is configured as the desired beam first, and then other parameters are configured.
  • the expected value of the amplification factor and the expected beam may be expectations of the relay device.
  • the relay device can report the expected value of the amplification factor and/or the expected beam to the network device, so that the network device controls the configuration of the relay transmission parameters by sending the restriction condition to the relay device. .
  • the relay device configures the relay transmission parameters based on the restriction conditions in order to maximize the configured relay transmission parameters to meet the restriction conditions.
  • the configured relay transmission parameters still cannot satisfy the restriction conditions. Therefore, optionally, after the relay device configures the relay transmission parameters based on the restriction condition, it further includes:
  • the relay device When the configured relay transmission parameters do not meet the restriction conditions, the relay device performs at least one of the following:
  • the first beam and the second beam are beams that do not meet the restriction condition after configuration.
  • the configuration failure information indicates that this relay transmission parameter configuration does not meet the restriction condition.
  • Feedback of configuration failure information and/or beam information of the second beam to the network device can assist the network device in deciding at least one of the following: how to configure relay transmission parameters, how to schedule resources, and how to control the relay device.
  • step 301 it also includes:
  • the relay device receives the first indication information and/or the second indication information of the network device
  • the first indication information is used to indicate the relay transmission parameters
  • the second indication information is used to indicate transmission resources that are associated with the relay transmission parameters.
  • the relay device can further configure the relay transmission parameters based on the effective time of the relay transmission parameters according to the first indication information. For example, by default, different relays indicated by the first indication information The effective time corresponding to the input parameter (such as amplification factor) does not overlap; or the first indication information indicates the relay transmission parameter and its effective time.
  • the relay device does not need instructions from the network device and can configure the relay transmission parameters by itself based on the effective time of the relay transmission parameters. For example, if the effective times of the predefined amplification factors do not overlap and are all 1 hour, and the relay device is configured with multiple amplification factors, then different amplification factors will be used to amplify the signal in sequence every hour.
  • the relay device further configures the relay transmission parameters based on the association between the relay transmission parameters and the transmission resources according to the first indication information and/or the second indication information. For example, the association between the relay transmission parameters and the transmission resources is predefined. For the case where only the first indication information is received, the relay transmission parameters corresponding to the transmission resources are configured according to the predefined association between the relay transmission parameters and the transmission resources.
  • the relay transmission parameters corresponding to the transmission resources (such as amplification factor); or, for the case of receiving the first indication information and the second indication information, configure the relay transmission parameters corresponding to the transmission resources according to the association between the relay transmission parameters indicated by the second indication information and the transmission resources ( (such as an amplification factor); or, for the case of receiving only the second indication information, configure the relay transmission parameters of the corresponding transmission resources (such as an amplification factor).
  • the relay device does not need instructions from the network device, and can also configure the relay transmission parameters on its own based on the association between the relay transmission parameters and the transmission resources.
  • the association between the amplification factor and the transmission resources is predefined.
  • the relay device configures multiple The amplification factor is based on the predefined relationship between the amplification factor and the transmission resource, and the multiple amplification factors are applied to the respective corresponding transmission resources.
  • the transmission resources include time domain resources and/or frequency domain resources.
  • the relay device can configure specific time domain resources and/or frequency domain resources.
  • the amplification factor used on frequency domain resources means that the amplification factor only takes effect on the associated time domain resources and/or frequency domain resources.
  • the effective times of the multiple amplification factors configured by the relay device do not overlap.
  • magnification factors will take effect in different time periods to avoid confusion of magnification factors. For example, if the effective time of different amplification factors does not overlap and the relay device receives the first indication information indicating an amplification factor, if the effective time of the amplification factor has not expired, the relay device will not Expect to receive new first indication information indicating a new magnification factor. Of course, the effective time of other relay transmission parameters does not need to overlap, so no more Repeat.
  • the relay device configures the relay transmission parameters, and the effective times of the configured multiple amplification factors overlap.
  • it also includes: :
  • the relay device selects an amplification factor within the overlapping time.
  • the selection method may be random selection among the multiple magnification factors, or selection according to preset rules.
  • the preset rule includes at least one of the following:
  • the relay device after the relay device selects an amplification factor within the overlapping time, it further includes:
  • the relay device reports the selected amplification factor to the network device.
  • the relay device After the relay device selects an amplification factor from multiple amplification factors with overlapping effective times, it reports the higher magnification factor to the network device, so that the network device can learn the amplification factor and assist in network device scheduling.
  • selection and reporting can also be performed in the same manner as the above-mentioned amplification factors, which will not be described again here.
  • the amplification factor includes at least one of the following: uplink amplification factor; downlink amplification factor.
  • the first indication information and the second indication information can also indicate the amplification factor independently for uplink and downlink, which will not be described again here.
  • the amplification factor can also be replaced by output power or output power spectral density.
  • the amplification factor is 0, it means that the amplifier is disabled, which can also be understood as not enabling the amplification function.
  • the relay device can be based on the transmission parameter control information sent by the network device and determined by the noise coefficient related information of the relay device, the restrictions on the relay transmission parameters, and the relay transmission parameters. Association with transmission resources, effective time of relay transmission parameters Use at least one of them to configure the relay transmission parameters to achieve more reasonable amplification of the signal by the relay device.
  • the configuration method of the relay transmission parameter restrictions can more effectively reduce the noise impact caused by the amplified signal; based on the relationship between the relay transmission parameters and transmission resources, the relay transmission.
  • the method of the embodiment of the present application includes:
  • Step 401 The network device sends at least one of the following to the relay device:
  • Transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device;
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • the network device sends at least one of the transmission parameter control information, the restriction conditions of the relay transmission parameters, the first indication information, and the second indication information, so that the relay device can be based on the transmission parameter control information sent by the network device.
  • the relay transmission parameters include at least one of the following:
  • the noise figure related information includes at least one of the following:
  • the restrictions include at least one of the following:
  • the amplification factor and transmission path loss meet the first condition
  • the amplification factor, transmission path loss and noise figure satisfy the second condition.
  • the noise figure related information is obtained by the network device in at least one of the following ways:
  • the effective times of the multiple amplification factors configured by the relay device do not overlap.
  • step 401 it also includes:
  • the network device receives the amplification factor sent by the relay device; wherein the amplification factor is the amplification factor selected by the relay device within the overlapping time when multiple configured amplification factors have overlapping effective times. multiple.
  • the execution subject may be a transmission processing device.
  • a transmission processing device executing a transmission processing method is used as an example to illustrate the transmission processing device provided by the embodiment of the present application.
  • a transmission processing device 500 includes:
  • Configuration module 510 used to configure relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • the relay transmission parameters include at least one of the following:
  • the noise figure related information includes at least one of the following:
  • the restrictions include at least one of the following:
  • the amplification factor and transmission path loss meet the first condition
  • the amplification factor, transmission path loss and noise figure satisfy the second condition.
  • the configuration module is also used for at least one of the following:
  • the device also includes:
  • a processing module configured to perform at least one of the following when the configured relay transmission parameters do not meet the restriction conditions:
  • the first beam and the second beam are beams that do not meet the restriction condition after configuration.
  • the association between the relay transmission parameters and transmission resources includes at least one of the following:
  • the device also includes:
  • a first receiving module configured to receive first indication information and/or second indication information of the network device
  • the first indication information is used to indicate the relay transmission parameters
  • the second indication information is used to indicate transmission resources that are associated with the relay transmission parameters.
  • the amplification factor includes at least one of the following: uplink amplification factor; downlink amplification factor number.
  • the effective times of the multiple amplification factors configured by the relay device do not overlap.
  • the device also includes:
  • a selection module configured to select an amplification factor within the overlapping time by the relay device when multiple configured amplification factors overlap in their effective time.
  • the device also includes:
  • a parameter reporting module is used to report the selected amplification factor to the network device.
  • the device also includes:
  • a noise coefficient related information sending module is configured to send the noise coefficient related information to the network device.
  • the device can be based on the transmission parameter control information sent by the network device and determined by the noise coefficient related information of the relay device, the restrictions on the relay transmission parameters, the association between the relay transmission parameters and the transmission resources, and the validity of the relay transmission parameters. At least one of the times is used to configure relay transmission parameters to achieve more reasonable amplification of signals by the relay device.
  • the transmission processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a relay base station.
  • the relay base station includes but is not limited to the types of network devices 12 listed above, which are not specifically limited in the embodiment of this application.
  • the transmission processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 3 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • a transmission processing device 600 in this embodiment of the present application includes:
  • the sending module 610 is used to send at least one of the following to the relay device:
  • Transmission parameter control information is determined by the network device based on the noise coefficient related information of the relay device;
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • the relay transmission parameters include at least one of the following:
  • the noise figure related information includes at least one of the following:
  • the restrictions include at least one of the following:
  • the amplification factor and transmission path loss meet the first condition
  • the amplification factor, transmission path loss and noise figure satisfy the second condition.
  • the noise figure related information is obtained by the network device in at least one of the following ways:
  • the effective times of the multiple amplification factors configured by the relay device do not overlap.
  • the device also includes:
  • the second receiving module is configured to receive the amplification factor sent by the relay device; wherein the amplification factor is the value set by the relay device within the overlapping time when multiple configured amplification factors have overlapping effective times. Selected magnification.
  • the device can send at least one of transmission parameter control information, restrictions on relay transmission parameters, first indication information, and second indication information, so that the relay device can be based on the noise sent by the network device and transmitted by the relay device.
  • the relay transmission parameters are configured using at least one of the transmission parameter control information determined by the coefficient-related information, the restrictions on the relay transmission parameters, the association between the relay transmission parameters and the transmission resources, and the effective time of the relay transmission parameters.
  • the relay equipment can more reasonably amplify the signal.
  • the transmission processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a base station.
  • the base station includes but is not limited to the types of network devices 12 listed above. type, there is no specific limitation in the embodiments of this application.
  • the transmission processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, for example.
  • the communication device 700 is a relay device
  • the program or instruction is executed by the processor 701
  • each step of the above embodiment of the transmission processing method executed by the relay device is implemented, and the same technical effect can be achieved.
  • the communication device 700 is a network device, when the program or instruction is executed by the processor 701, each step of the above embodiment of the transmission processing method executed by the network device is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be repeated here. Repeat.
  • Embodiments of the present application also provide a relay device, including a processor and a communication interface.
  • the processor is used to configure relay transmission parameters; wherein the configuration is based on at least one of the following information:
  • Transmission parameter control information sent by the network device to the relay device where the transmission parameter control information is determined by the network device based on noise coefficient related information of the relay device;
  • the effective time of the relay transmission parameters is the effective time of the relay transmission parameters.
  • FIG. 8 is a schematic diagram of the hardware structure of a relay device that implements an embodiment of the present application.
  • the relay device 800 includes: a processor 801, a network interface 802, and a memory 803.
  • the relay device 800 in the embodiment of the present application also includes: instructions or programs stored in the memory 803 and executable on the processor 801.
  • the processor 801 calls the instructions or programs in the memory 803 to execute each of the steps shown in Figure 5.
  • the method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • An embodiment of the present application also provides a network device, including a processor and a communication interface.
  • the communication interface is used to send at least one of the following to the relay device:
  • Transmission parameter control information is the network device
  • the equipment is determined based on the information related to the noise coefficient of the relay equipment
  • the first indication information is used to indicate relay transmission parameters
  • Second indication information the second indication information is used to indicate transmission resources that are associated with relay transmission parameters.
  • This network equipment embodiment corresponds to the above-mentioned network equipment method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network equipment embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network device.
  • the network device 900 includes: an antenna 91 , a radio frequency device 92 , a baseband device 93 , a processor 94 and a memory 95 .
  • the antenna 91 is connected to the radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91 and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92.
  • the radio frequency device 92 processes the received information and then sends it out through the antenna 91.
  • the method performed by the network device in the above embodiment can be implemented in the baseband device 93, which includes a baseband processor.
  • the baseband device 93 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network device may also include a network interface 96, such as a common public radio interface (CPRI).
  • a network interface 96 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network device 900 in the embodiment of the present application also includes: instructions or programs stored in the memory 95 and executable on the processor 94.
  • the processor 94 calls the instructions or programs in the memory 95 to execute the modules shown in Figure 6
  • the implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • Embodiments of the present application also provide a readable storage medium, which stores a program or instructions.
  • the program or instructions are executed by a processor, the above-mentioned transmission processing method executed by the relay device is implemented, or the above-mentioned transmission processing method is implemented.
  • Each process of the transmission processing method embodiment executed by the network device can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage media includes computer-readable storage media, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned operations executed by the relay device.
  • the transmission processing method, or each process of implementing the above embodiment of the transmission processing method executed by the network device, can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above execution by a relay device.
  • the transmission processing method, or the various processes of the above embodiments of the transmission processing method executed by the network device, can achieve the same technical effect. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a transmission processing system, including: a relay device and a network device.
  • the relay device can be used to perform the steps of the transmission processing method performed by the relay device as described above.
  • the network device May be used to perform the steps of the transmission processing method performed by the network device as described above.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other Divide in such a way that, for example, multiple units or components can be combined or integrated into another system, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输处理方法、装置、终端及网络设备,属于通信技术领域,本申请实施例的传输处理方法包括:中继设备配置中继传输参数;其中,所述配置基于以下至少一项信息:网络设备向所述中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据所述中继设备的噪声系数相关信息确定的;所述中继传输参数的限制条件;所述中继传输参数与传输资源的关联关系;所述中继传输参数的生效时间。

Description

一种传输处理方法、装置、终端及网络设备
相关申请的交叉引用
本申请主张在2022年04月08日在中国提交的中国专利申请No.202210370069.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输处理方法、装置、终端及网络设备。
背景技术
随着通信技术的发展,为扩展小区的覆盖范围,引入了配置信号放大功能的中继设备。具备信号放大功能的中继设备,一方面,接收和放大来自上游基站的下行信号,使得到达终端的下行信号强度增加;另一方面,接收和放大来自终端的上行信号,使得到达上游基站的上行信号的强度增加。
其中,对于上行信号的放大,若放大倍数较大,会给上游基站引入一定的噪声,甚至会使上游基站的热噪声电平升高,导致上游基站接收机的灵敏度降低,从而发生基站的上行覆盖缩小等问题;若放大倍数过小,覆盖范围则会受限,导致部分终端无法接入网络。所以,如何实现中继设备对上行信号进行更为合理的放大已成为目前亟待解决的问题。
发明内容
本申请实施例提供一种传输处理方法、装置、终端及网络设备,能够实现中继设备对上行信号的更为合理的放大。
第一方面,提供了一种传输处理方法,该方法包括:
中继设备配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
第二方面,提供了一种传输处理装置,包括:
配置模块,用于配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
第三方面,提供了一种传输处理方法,包括:
网络设备向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
第四方面,提供了一种传输处理装置,包括:
发送模块,用于向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
第五方面,提供了一种中继设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种中继设备,包括处理器及通信接口,其中,所述处理器用于配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
第七方面,提供了一种网络设备,该网络设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络设备,包括处理器及通信接口,其中,所述通信接口用于向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
第九方面,提供了一种传输处理系统,包括:中继设备及网络设备,所述中继设备用于执行如第一方面所述的传输处理方法的步骤,所述网络设备可用于执行如第三方面所述的传输处理方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以 实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
在本申请实施例中,中继设备可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。
附图说明
图1是无线通信系统的框图之一;
图2是无线通信系统的框图之二;
图3是本申请实施例的传输处理方法的流程示意图之一;
图4是本申请实施例的传输处理方法的流程示意图之二;
图5是本申请实施例的传输处理装置的模块结构示意图之一;
图6是本申请实施例的传输处理装置的模块结构示意图之二;
图7是本申请实施例的通信设备的结构示意图;
图8是本申请实施例的中继设备的结构示意图;
图9是本申请实施例的网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站 可被称为节点B、演进节点B(Evolved NodeB,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
应该知道的是,本申请实施例中,如图2所示,网络设备和终端能够通过中继设备进行传输,该中继设备具有信号放大功能。中继设备可以包含一个终端部分(Mobile Termination,MT)和一个中继部分(Repeater Unit,RU);中继设备也可以只包含MT或RU中的一个。其中,MT可以与网络设备建立连接,网络设备通过MT与中继设备交互控制信令,可以指示中继设备的MT/RU的发送/接收相关参数。具体地,中继设备可以是信号放大器、具备放大功能的智能超表面(Reconfigurable Intelligent Surfaces,RIS)、具备放大功能的基站等。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输处理方法进行详细地说明。
如图3所示,本申请实施例的一种传输处理方法,包括:
步骤301,中继设备配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向所述中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据所述中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
如此,按照上述步骤301,中继设备可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。
其中,中继设备通过设置的放大器实现对信号的放大功能,所述中继传输参数是与信号放大有关的参数。
可选地,该实施例中,所述中继传输参数包括以下至少一项:
放大倍数;
传输波束;
放大器是否启用。
其中,放大倍数即中继设备对信号的放大倍数,中继设备配置的放大倍数包括以下至少一项:放大倍数的值、放大倍数的最大值、放大倍数的最小值、放大倍数的范围值、放大倍数的调整值。可选的,放大倍数与传输波束(beam)存在关联关系,这样,中继设备配置的放大倍数将应用于与该放大倍数具有关联关系的传输波束。
其中,传输波束即中继设备对放大后的信号传输期望或不期望使用的波束。该传输波束至少为网络设备和中继设备间的上行传输波束。可选的,传输波束与放大倍数存在关联关系,这样,中继设备基于一放大倍数对信号放大后,仅在与该放大倍数具有关联关系的传输波束上传输该信号。
而放大器是否启用,也可理解为中继设备是否对信号进行放大。可选的,放大器是否启用与传输波束存在关联关系,这样,中继设备针对传输波束确定是否对该传输波束上的信号进行放大。
另外,该实施例中,由于传输参数控制信息是网络设备根据该中继设备的噪声系数相关信息确定的,若中继设备基于该传输参数控制信息配置中继传输参数,即能够响应网络设备的控制使所配置的中继传输参数满足网络设备要求,降低放大后上行信号对网络设备接收的干扰(即控制网络设备的噪声电平的增量),并维持上行信号的覆盖范围。
其中,所述噪声系数相关信息是所述网络设备按照以下至少一种方式获取到的:
预定义;
中继设备上报;
接收机的噪声电平。
这里,接收机的噪声电平可通过处理得到噪声系数相关值信息。故,网 络设备确定传输参数控制信息时使用的噪声系数相关信息,可以是预定义的噪声系数相关信息,中继设备上报的噪声系数相关信息,或者由接收机的噪声电平所得的噪声系数相关信息中的至少一者。
可选地,该实施例中,步骤301之前,还包括:
所述中继设备向所述网络设备发送所述噪声系数相关信息。
也就是说,中继设备向网络设备发送噪声系数相关信息,以便网络设备基于该噪声系数相关信息确定传输参数控制信息。例如,中继设备向网络设备发送能力(capability)信息,capability信息中携带有噪声系数相关信息。
可选地,该实施例中,所述噪声系数相关信息包括以下至少一项:
噪声系数的相关值信息;
噪声系数的等级信息;
中继设备的种类信息。
这里,噪声系数的相关值信息包括以下至少一项:噪声系数的值,噪声系数的最大值,噪声系数的最小值,噪声系数的范围值,噪声系数的调整值。噪声系数的等级信息是根据噪声系数的值的大小划分等级后所得,以粗略的反映噪声系数,在使用噪声系数的等级信息时能够避免暴露具体噪声系数的值。中继设备的种类信息也可以理解为中继设备的等级信息,中继设备的种类信息与噪声系数的相关值信息关联,以粗略的反映噪声系数,在使用中继设备的种类信息时能够避免暴露具体噪声系数的值。
需要说明的是,该实施例中,传输参数控制信息用于指导中继传输参数的配置,如传输参数控制信息指示中继传输参数的取值或取值范围等。
例如,网络设备按照预定义的噪声系数的相关值信息(如噪声系数的最大值A1)确定传输参数控制信息,该传输参数控制信息指示放大倍数小于a1(即噪声系数的最大值A1对应的放大倍数),并发送该传输参数控制信息至中继设备,故,中继设备可配置放大倍数为a2,此时,a2小于a1。或者,网络设备按照中继设备上报的噪声系数的相关值信息(如噪声系数的值A2)确定传输参数控制信息,该传输参数控制信息指示放大倍数为a3(即噪声系数的值A2对应的放大倍数),并发送该传输参数控制信息至中继设备,故,中继设备可配置放大倍数为a3。又或者,网络设备通过测量获取其接收机的噪 声电平,进而得到噪声系数的相关值信息(如噪声系数的范围值A3~A4)确定传输参数控制信息,该传输参数控制信息指示放大倍数大于a4(即噪声系数的值A3对应的放大倍数)且小于a5(即噪声系数的值A4对应的放大倍数),并发送该传输参数控制信息至中继设备,故,中继设备可配置放大倍数为a6,此时,a6大于a4且小于a5。
当然,网络设备根据噪声系数相关信息确定传输参数控制信息的过程中,网络设备可以结合噪声系数相关信息和传输路损(pathloss)来确定传输参数控制信息;或者,网络设备还可以结合噪声系数相关信息、pathloss和放大倍数确定传输参数控制信息,此时该传输参数控制信息指导除放大倍数之外其它参数的配置,如期望或不期望使用的传输波束。
其中,pathloss至少包括网络设备和中继设备间的路损,可以是网络设备测量的,或者中继设备测量并上报的。可选的,pathloss可以与传输波束存在关联关系,即网络设备或中继设备针对传输波束测量,得到对应的pathloss。而网络设备需要结合放大倍数来确定传输参数控制信息的情况下,该放大倍数可以是中继设备上报的、操作维护管理设备(Operation Administration and Maintenance,OAM)通知的、网络设备预先指示的。
可选地,该实施例中,所述限制条件包括以下至少一项:
放大倍数与传输路损满足第一条件;
放大倍数、传输路损以及噪声系数满足第二条件。
其中,第一条件可以为G-PL的值小于或等于第一阈值;第二条件可以为NF+G-PL的值小于或等于第二阈值。G表示放大倍数,PL表示传输路损,NF表示噪声系数(Noise Factor)。这里,第一阈值、第二阈值都可以是预先定义或者网络设备指示的。
还应该知道的是,该限制条件可以是预先定义或者网络设备指示的。
可选地,所述中继设备基于所述限制条件配置所述中继传输参数,包括以下至少一项:
所述中继设备将所述中继传输参数中的放大倍数配置为期望值;
所述中继设备将所述中继传输参数中的传输波束配置为期望波束。
也就是说,中继设备在基于限制条件配置中继传输参数时,优先将放大 倍数配置为期望值,和/或优先将传输波束配置为期望波束,然后再配置其他参数。
这里,放大倍数的期望值、期望波束可以是中继设备的期望。其中,在限制条件是网络设备指示的情况下,中继设备可以向网络设备上报该放大倍数的期望值和/或期望波束,以便网络设备通过向中继设备发送限制条件控制中继传输参数的配置。
当然,中继设备基于限制条件配置中继传输参数,是使配置后的中继传输参数最大化满足限制条件,然而,不排除配置的中继传输参数存在仍然无法满足限制条件的情况。因此,可选地,所述中继设备基于所述限制条件配置所述中继传输参数之后,还包括:
在配置的所述中继传输参数未满足所述限制条件的情况下,所述中继设备执行以下至少一项:
禁用放大器;
向网络设备发送配置失败信息;
停止对第一波束上传输信号的放大;
向网络设备发送第二波束的波束信息;
其中,所述第一波束和所述第二波束为配置后未满足所述限制条件的波束。
这里,配置失败信息指示本次中继传输参数配置未满足所述限制条件。其中,向网络设备反馈配置失败信息和/或第二波束的波束信息,能够辅助网络设备决定以下至少一项:如何配置中继传输参数,如何调度资源,如何对中继设备进行控制。
可选地,该实施例中,步骤301之前,还包括:
所述中继设备接收所述网络设备的第一指示信息和/或第二指示信息;
其中,所述第一指示信息用于指示所述中继传输参数;
所述第二指示信息用于指示与所述中继传输参数具有关联关系的传输资源。
如此,中继设备能够根据第一指示信息,进一步基于中继传输参数的生效时间来配置中继传输参数。例如,默认第一指示信息指示的不同的中继传 输参数(如放大倍数)对应的生效时间不重叠;或者,第一指示信息指示中继传输参数以及其生效时间。
当然,中继设备无需网络设备指示,也能够自行基于中继传输参数的生效时间来配置中继传输参数。例如,预定义放大倍数的生效时间不重叠且均为1小时,中继设备配置多个放大倍数,则后续在每个小时依次使用不同的放大倍数进行信号的放大。
中继设备根据第一指示信息和/或第二指示信息,进一步基于中继传输参数与传输资源的关联关系来配置中继传输参数。例如,预定义了中继传输参数与传输资源的关联关系,对于仅接收第一指示信息的情况,按照预定义的中继传输参数与传输资源的关联关系,配置对应传输资源的中继传输参数(如放大倍数);或者,对于接收第一指示信息和第二指示信息的情况,按照第二指示信息指示的中继传输参数与传输资源的关联关系,配置对应传输资源的中继传输参数(如放大倍数);或者,对于仅接收第二指示信息的情况,配置对应传输资源的中继传输参数(如放大倍数)。
当然,中继设备无需网络设备指示,也能够自行基于中继传输参数与传输资源的关联关系来配置中继传输参数,例如,预定义放大倍数与传输资源的关联关系,中继设备配置多个放大倍数,则由预定义的放大倍数与传输资源的关联关系,将该多个放大倍数应用到各自对应的传输资源上。
该实施例中,传输资源包括时域资源和/或频域资源。示例性的,该第一指示信息指示多种放大倍数,第二指示信息指示该多种放大倍数关联的时域资源和/或频域资源,则中继设备能够配置具体时域资源和/或频域资源上使用的放大倍数,即仅在关联的时域资源和/或频域资源上放大倍数生效。
可选地,该实施例中,所述中继设备配置的多个放大倍数的生效时间不重叠。
如此,不同放大倍数会在不同的时间段生效,避免出现放大倍数混淆的情况。例如,预先定义不同的放大倍数的生效时间不重叠,中继设备接收第一指示信息,该第一指示信息指示一个放大倍数的情况下,如果该放大倍数生效时间没有到期,中继设备不期待接收到新的第一指示信息指示一个新的放大倍数。当然,其他的中继传输参数的生效时间也可以不重叠,在此不再 赘述。
还需要说明的是,该实施例中,中继设备配置中继传输参数,存在配置的多个放大倍数的生效时间发生重叠,如此,可选地,该实施例中,步骤301之后,还包括:
在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内选择一个放大倍数。
其中,选择方式可以是在该多个放大倍数中随机选择,也可以按照预设规则进行选择。这里,该预设规则包括以下至少一项:
采用最新的放大倍数;
采用最小的放大倍数;
采用最大的放大倍数。
可选地,该实施例中,所述中继设备在重叠时间内选择一个放大倍数之后,还包括:
所述中继设备将所选的放大倍数上报给所述网络设备。
也就是,中继设备将生效时间重叠的多个放大倍数中选择一个放大倍数后,将该上大倍数上报给网络设备,以便网络设备能够得知该放大倍数,辅助网络设备调度。
当然,其他的中继传输参数配置为多个的情况下,也可如上述放大倍数的一样进行选择、上报等处理,在此不再赘述。
可选地,该实施例中,所述放大倍数包括以下至少一项:上行放大倍数;下行放大倍数。
这样,第一指示信息和第二指示信息,对放大倍数的指示也可针对上行、下行独立指示,在此不再赘述。
还需要说明的是,该实施例中,放大倍数还可以替换为输出功率或输出功率谱密度。而当放大倍数为0,表示放大器被禁用,也可以理解为不启用放大功能。
综上所述,本申请实施例的方法,中继设备可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间 中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。其中,基于传输参数控制信息,中继传输参数的限制条件的配置方式,能够更为有效的降低了放大信号所带来的噪声影响;基于中继传输参数与传输资源的关联关系,中继传输参数的生效时间的配置方式,从控制网络设备噪声电平的角度和控制中继设备的覆盖范围的角度,对中继传输参数设定进行一定的平衡,能够更为有效的避免中继设备覆盖范围受限。
如图4所示,本申请实施例的方法,包括:
步骤401,网络设备向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
这样,按照上述步骤401,网络设备发送传输参数控制信息、中继传输参数的限制条件、第一指示信息、第二指示信息中的至少一者,以使中继设备可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。
可选地,所述中继传输参数包括以下至少一项:
放大倍数;
传输波束;
放大器是否启用。
可选地,所述噪声系数相关信息包括以下至少一项:
噪声系数的相关值信息;
噪声系数的等级信息;
中继设备的种类信息。
可选地,所述限制条件包括以下至少一项:
放大倍数与传输路损满足第一条件;
放大倍数、传输路损以及噪声系数满足第二条件。
可选地,所述噪声系数相关信息是所述网络设备按照以下至少一种方式获取到的:
预定义;
中继设备上报;
接收机的噪声电平。
可选地,所述中继设备配置的多个放大倍数的生效时间不重叠。
可选地,所述步骤401之后,还包括:
所述网络设备接收所述中继设备发送的放大倍数;其中,所述放大倍数是在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内所选的放大倍数。
需要说明的是,该方法是与上述由中继设备执行的方法配合实现的,上述方法实施例的实现方式适用于该方法,也能达到相同的技术效果。
本申请实施例提供的传输处理方法,执行主体可以为传输处理装置。本申请实施例中以传输处理装置执行传输处理方法为例,说明本申请实施例提供的传输处理装置。
如图5所示,本申请实施例的一种传输处理装置500,包括:
配置模块510,用于配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
可选地,所述中继传输参数包括以下至少一项:
放大倍数;
传输波束;
放大器是否启用。
可选地,所述噪声系数相关信息包括以下至少一项:
噪声系数的相关值信息;
噪声系数的等级信息;
中继设备的种类信息。
可选地,所述限制条件包括以下至少一项:
放大倍数与传输路损满足第一条件;
放大倍数、传输路损以及噪声系数满足第二条件。
可选地,所述配置模块还用于以下至少一项:
将所述中继传输参数中的放大倍数配置为期望值;
将所述中继传输参数中的传输波束配置为期望波束。
可选地,所述装置还包括:
处理模块,用于在配置的所述中继传输参数未满足所述限制条件的情况下,执行以下至少一项:
禁用放大器;
向网络设备发送配置失败信息;
停止对第一波束上传输信号的放大;
向网络设备发送第二波束的波束信息;
其中,所述第一波束和所述第二波束为配置后未满足所述限制条件的波束。
可选地,所述中继传输参数与传输资源的关联关系包括以下至少一项:
所述中继传输参数与时域资源的对应关系;
所述中继传输参数与频域资源的对应关系。
可选地,所述装置还包括:
第一接收模块,用于接收所述网络设备的第一指示信息和/或第二指示信息;
其中,所述第一指示信息用于指示所述中继传输参数;
所述第二指示信息用于指示与所述中继传输参数具有关联关系的传输资源。
可选地,所述放大倍数包括以下至少一项:上行放大倍数;下行放大倍 数。
可选地,所述中继设备配置的多个放大倍数的生效时间不重叠。
可选地,所述装置还包括:
选择模块,用于在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内选择一个放大倍数。
可选地,所述装置还包括:
参数上报模块,用于将所选的放大倍数上报给所述网络设备。
可选地,所述装置还包括:
噪声系数相关信息发送模块,用于向所述网络设备发送所述噪声系数相关信息。
该装置可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。
本申请实施例中的传输处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是中继基站。示例性的,中继基站以包括但不限于上述所列举的网络设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图6所示,本申请实施例的一种传输处理装置600,包括:
发送模块610,用于向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
可选地,所述中继传输参数包括以下至少一项:
放大倍数;
传输波束;
放大器是否启用。
可选地,所述噪声系数相关信息包括以下至少一项:
噪声系数的相关值信息;
噪声系数的等级信息;
中继设备的种类信息。
可选地,所述限制条件包括以下至少一项:
放大倍数与传输路损满足第一条件;
放大倍数、传输路损以及噪声系数满足第二条件。
可选地,所述噪声系数相关信息是所述网络设备按照以下至少一种方式获取到的:
预定义;
中继设备上报;
接收机的噪声电平。
可选地,所述中继设备配置的多个放大倍数的生效时间不重叠。
可选地,所述装置还包括:
第二接收模块,用于接收所述中继设备发送的放大倍数;其中,所述放大倍数是在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内所选的放大倍数。
该装置可以发送传输参数控制信息、中继传输参数的限制条件、第一指示信息、第二指示信息中的至少一者,以使中继设备可以基于网络设备发送的、由中继设备的噪声系数相关信息确定的传输参数控制信息,中继传输参数的限制条件,中继传输参数与传输资源的关联关系,中继传输参数的生效时间中的至少一者来配置中继传输参数,实现中继设备对信号的更为合理的放大。
本申请实施例中的传输处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是基站。示例性的,基站以包括但不限于上述所列举的网络设备12的类 型,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700为中继设备时,该程序或指令被处理器701执行时实现上述由中继设备执行的传输处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700为网络设备时,该程序或指令被处理器701执行时实现上述由网络设备执行的传输处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种中继设备,包括处理器和通信接口,处理器用于用于配置中继传输参数;其中,所述配置基于以下至少一项信息:
网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
所述中继传输参数的限制条件;
所述中继传输参数与传输资源的关联关系;
所述中继传输参数的生效时间。
该中继设备实施例与上述中继设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种中继设备的硬件结构示意图。
该中继设备800包括:处理器801、网络接口802和存储器803。
具体地,本申请实施例的中继设备800还包括:存储在存储器803上并可在处理器801上运行的指令或程序,处理器801调用存储器803中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种网络设备,包括处理器和通信接口,通信接口用于向中继设备发送以下至少一项:
传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设 备根据中继设备的噪声系数相关信息确定的;
中继传输参数的限制条件;
第一指示信息,所述第一指示信息用于指示中继传输参数;
第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
该网络设备实施例与上述网络设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备。如图9所示,该网络设备900包括:天线91、射频装置92、基带装置93、处理器94和存储器95。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
以上实施例中网络设备执行的方法可以在基带装置93中实现,该基带装置93包括基带处理器。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该网络设备还可以包括网络接口96,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络设备900还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述由中继设备执行的传输处理方法,或者实现上述由网络设备执行的传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述由中继设备执行的传输处理方法,或者实现上述由网络设备执行的传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述由中继设备执行的传输处理方法,或者实现上述由网络设备执行的传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种传输处理系统,包括:中继设备及网络设备,所述中继设备可用于执行如上所述的由中继设备执行的传输处理方法的步骤,所述网络设备可用于执行如上所述由网络设备执行的传输处理方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、 方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种传输处理方法,包括:
    中继设备配置中继传输参数;其中,所述配置基于以下至少一项信息:
    网络设备向所述中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据所述中继设备的噪声系数相关信息确定的;
    所述中继传输参数的限制条件;
    所述中继传输参数与传输资源的关联关系;
    所述中继传输参数的生效时间。
  2. 根据权利要求1所述的方法,其中,所述中继传输参数包括以下至少一项:
    放大倍数;
    传输波束;
    放大器是否启用。
  3. 根据权利要求1或2所述的方法,其中,所述噪声系数相关信息包括以下至少一项:
    噪声系数的相关值信息;
    噪声系数的等级信息;
    中继设备的种类信息。
  4. 根据权利要求1所述的方法,其中,所述限制条件包括以下至少一项:
    放大倍数与传输路损满足第一条件;
    放大倍数、传输路损以及噪声系数满足第二条件。
  5. 根据权利要求4所述的方法,其中,所述中继设备基于所述限制条件配置所述中继传输参数,包括以下至少一项:
    所述中继设备将所述中继传输参数中的放大倍数配置为期望值;
    所述中继设备将所述中继传输参数中的传输波束配置为期望波束。
  6. 根据权利要求5所述的方法,其中,所述中继设备基于所述限制条件配置所述中继传输参数之后,还包括:
    在配置的所述中继传输参数未满足所述限制条件的情况下,所述中继设 备执行以下至少一项:
    禁用放大器;
    向网络设备发送配置失败信息;
    停止对第一波束上传输信号的放大;
    向网络设备发送第二波束的波束信息;
    其中,所述第一波束和所述第二波束为配置后未满足所述限制条件的波束。
  7. 根据权利要求1所述的方法,其中,所述中继传输参数与传输资源的关联关系包括以下至少一项:
    所述中继传输参数与时域资源的对应关系;
    所述中继传输参数与频域资源的对应关系。
  8. 根据权利要求1所述的方法,其中,所述中继设备配置中继传输参数之前,还包括:
    所述中继设备接收所述网络设备的第一指示信息和/或第二指示信息;
    其中,所述第一指示信息用于指示所述中继传输参数;
    所述第二指示信息用于指示与所述中继传输参数具有关联关系的传输资源。
  9. 根据权利要求2所述的方法,其中,所述放大倍数包括以下至少一项:上行放大倍数;下行放大倍数。
  10. 根据权利要求2所述方法,其中,所述中继设备配置的多个放大倍数的生效时间不重叠。
  11. 根据权利要求2所述的方法,其中,所述中继设备配置中继传输参数之后,还包括:
    在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内选择一个放大倍数。
  12. 根据权利要求11所述的方法,其中,所述中继设备在重叠时间内选择一个放大倍数之后,还包括:
    所述中继设备将所选的放大倍数上报给所述网络设备。
  13. 根据权利要求1所述的方法,其中,所述中继设备配置中继传输参 数之前,还包括:
    所述中继设备向所述网络设备发送所述噪声系数相关信息。
  14. 一种传输处理方法,包括:
    网络设备向中继设备发送以下至少一项:
    传输参数控制信息,所述控制信息所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
    中继传输参数的限制条件;
    第一指示信息,所述第一指示信息用于指示中继传输参数;
    第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
  15. 根据权利要求14所述的方法,其中,所述中继传输参数包括以下至少一项:
    放大倍数;传输波束;放大器是否启用。
  16. 根据权利要求14或15所述的方法,其中,所述噪声系数相关信息包括以下至少一项:
    噪声系数的相关值信息;
    噪声系数的等级信息;
    中继设备的种类信息。
  17. 根据权利要求14所述的方法,其中,所述限制条件包括以下至少一项:
    放大倍数与传输路损满足第一条件;
    放大倍数、传输路损以及噪声系数满足第二条件。
  18. 根据权利要求14所述的方法,其中,所述噪声系数相关信息是所述网络设备按照以下至少一种方式获取到的:
    预定义;
    中继设备上报;
    接收机的噪声电平。
  19. 根据权利要求15所述的方法,其中,所述中继设备配置的多个放大倍数的生效时间不重叠。
  20. 根据权利要求14所述的方法,其中,还包括:
    所述网络设备接收所述中继设备发送的放大倍数;其中,所述放大倍数是在配置的多个放大倍数存在生效时间重叠的情况下,所述中继设备在重叠时间内所选的放大倍数。
  21. 一种传输处理装置,包括:
    配置模块,用于配置中继传输参数;其中,所述配置基于以下至少一项信息:
    网络设备向中继设备发送的传输参数控制信息,所述传输参数控制信息是所述网络设备根据中继设备的噪声系数相关信息确定的;
    所述中继传输参数的限制条件;
    所述中继传输参数与传输资源的关联关系;
    所述中继传输参数的生效时间。
  22. 根据权利要求21所述的装置,其中,所述中继传输参数包括以下至少一项:
    放大倍数;
    传输波束;
    放大器是否启用。
  23. 根据权利要求21或22所述的装置,其中,所述噪声系数相关信息包括以下至少一项:
    噪声系数的相关值信息;
    噪声系数的等级信息;
    中继设备的种类信息。
  24. 根据权利要求21所述的装置,其中,所述限制条件包括以下至少一项:
    放大倍数与传输路损满足第一条件;
    放大倍数、传输路损以及噪声系数满足第二条件。
  25. 一种传输处理装置,包括:
    发送模块,用于向中继设备发送以下至少一项:
    传输参数控制信息,所述控制信息所述传输参数控制信息是网络设备根 据中继设备的噪声系数相关信息确定的;
    中继传输参数的限制条件;
    第一指示信息,所述第一指示信息用于指示中继传输参数;
    第二指示信息,所述第二指示信息用于指示与中继传输参数具有关联关系的传输资源。
  26. 根据权利要求25所述的装置,其中,所述中继传输参数包括以下至少一项:
    放大倍数;
    传输波束;
    放大器是否启用。
  27. 根据权利要求25或26所述的装置,其中,所述噪声系数相关信息包括以下至少一项:
    噪声系数的相关值信息;
    噪声系数的等级信息;
    中继设备的种类信息。
  28. 根据权利要求25所述的装置,其中,所述限制条件包括以下至少一项:
    放大倍数与传输路损满足第一条件;
    放大倍数、传输路损以及噪声系数满足第二条件。
  29. 一种中继设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的传输处理方法的步骤。
  30. 一种网络设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求14至20任一项所述的传输处理方法的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至13任一项所述的传输处理方法,或者实现如权利要求14至20任一项所述的传输处理方法的步骤。
PCT/CN2023/086944 2022-04-08 2023-04-07 一种传输处理方法、装置、终端及网络设备 WO2023193799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210370069.8 2022-04-08
CN202210370069.8A CN116938309A (zh) 2022-04-08 2022-04-08 一种传输处理方法、装置、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2023193799A1 true WO2023193799A1 (zh) 2023-10-12

Family

ID=88244104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086944 WO2023193799A1 (zh) 2022-04-08 2023-04-07 一种传输处理方法、装置、终端及网络设备

Country Status (2)

Country Link
CN (1) CN116938309A (zh)
WO (1) WO2023193799A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020279A1 (en) * 2009-04-03 2012-01-26 Dong-In Kim Multiple data stream transmission method and apparatus in relay system
CN105338612A (zh) * 2014-08-08 2016-02-17 中国移动通信集团公司 一种无线直放站的同步和控制方法、装置以及无线直放站
CN110121191A (zh) * 2018-02-05 2019-08-13 成都华为技术有限公司 一种中继系统中资源配置的方法及装置
WO2021056463A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 信号放大方法及装置
US20210126701A1 (en) * 2019-10-24 2021-04-29 Verizon Patent And Licensing Inc. System and method for next generation new radio repeater control
US20210306962A1 (en) * 2020-03-31 2021-09-30 Qualcomm Incorporated Power control techniques for a communication system that includes a repeater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020279A1 (en) * 2009-04-03 2012-01-26 Dong-In Kim Multiple data stream transmission method and apparatus in relay system
CN105338612A (zh) * 2014-08-08 2016-02-17 中国移动通信集团公司 一种无线直放站的同步和控制方法、装置以及无线直放站
CN110121191A (zh) * 2018-02-05 2019-08-13 成都华为技术有限公司 一种中继系统中资源配置的方法及装置
WO2021056463A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 信号放大方法及装置
US20210126701A1 (en) * 2019-10-24 2021-04-29 Verizon Patent And Licensing Inc. System and method for next generation new radio repeater control
US20210306962A1 (en) * 2020-03-31 2021-09-30 Qualcomm Incorporated Power control techniques for a communication system that includes a repeater

Also Published As

Publication number Publication date
CN116938309A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US20210219155A1 (en) Interference Measurement Method and Apparatus
CN108990153B (zh) 一种针对终端自干扰的传输方法、相关设备和系统
CN106465399A (zh) 无线通信网络中的全双工操作
CN108990154B (zh) 一种针对终端自干扰的传输方法、相关设备和系统
US20150156001A1 (en) Communication apparatus and space division duplex method thereof
JP2017521005A (ja) リモート無線ユニットを決定するための方法およびデバイス
US20230189290A1 (en) Information determining method, information sending method, terminal, and network side device
WO2022218229A1 (zh) 一种信号转发方法、中继设备及通信系统
CN114007216A (zh) 波束管理方法、装置及中继节点
WO2023193799A1 (zh) 一种传输处理方法、装置、终端及网络设备
WO2022206740A1 (zh) 波束切换方法、装置及存储介质
US10171222B2 (en) Method for configuring CQI measurement subframe, base station, and user equipment
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
WO2023160571A1 (zh) 干扰或自激处理方法及装置、中继节点及宿主基站
WO2024012493A1 (zh) 波束调整方法、信息交互方法、装置及设备
WO2024027652A1 (zh) 传输参数确定方法、装置、网络侧设备及介质
WO2023246882A1 (zh) 波束控制方法、装置、中继设备及网络侧设备
WO2023246682A1 (zh) Ncr节点的开关状态配置方法、ncr节点及网络侧设备
US20240172140A1 (en) P-MPR Reporting Method and Terminal
CN115333598B (zh) 信号放大器的增益控制方法、装置及网络侧设备
WO2023208195A1 (zh) 定时调整方法、配置方法、装置、放大器及基站
WO2023217173A1 (zh) 无线辅助设备的波束控制方法、装置及网络侧设备
US20230042335A1 (en) Quasi co-located relationship management method and apparatus
WO2023066295A1 (zh) 测量方法、网络设备、中继设备及终端设备
WO2024022272A1 (zh) 回传链路的传输配置确定方法、装置、中继设备及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784361

Country of ref document: EP

Kind code of ref document: A1