WO2023193522A1 - 推靠式旋转导向装置 - Google Patents

推靠式旋转导向装置 Download PDF

Info

Publication number
WO2023193522A1
WO2023193522A1 PCT/CN2023/075990 CN2023075990W WO2023193522A1 WO 2023193522 A1 WO2023193522 A1 WO 2023193522A1 CN 2023075990 W CN2023075990 W CN 2023075990W WO 2023193522 A1 WO2023193522 A1 WO 2023193522A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
module
push
slip ring
type rotary
Prior art date
Application number
PCT/CN2023/075990
Other languages
English (en)
French (fr)
Inventor
贾建波
兰洪波
尚捷
孙师贤
菅志军
张玉霖
张冠祺
孟巍
朱伟红
丁旭东
吉玲
王红亮
李辉
药晓江
Original Assignee
中海油田服务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中海油田服务股份有限公司 filed Critical 中海油田服务股份有限公司
Publication of WO2023193522A1 publication Critical patent/WO2023193522A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/08Slip-rings

Definitions

  • the present disclosure belongs to the technical field of petroleum exploration and development, and specifically relates to a push-type rotary guide device.
  • the existing push-type rotary guide tool mainly consists of an upper drive shaft, a circuit control module, a hydraulic push module, a lower drive shaft and other components.
  • the upper drive shaft is connected to the drive device, and the lower drive shaft is equipped with a drill bit.
  • the circuit control module receives instructions to control the hydraulic push module to provide the magnitude and direction of the push force resultant, so that the rotary steering tool can perform directional drilling as required.
  • push-type rotary steering tools usually have the following defects when used specifically: 1)
  • the push-type rotary steering tools in the prior art usually only have the function of measuring the well inclination near the bit, and with the With the development of oil exploration and development technology, more measurement functions need to be integrated. Due to the complex structure of the push-type rotary steering tool itself, other measurement functions are often integrated into the rotary guidance instrument in the existing technology, thereby increasing the measurement distance. For geosteering, when the measurement distance is increased, it often happens that the measurement module can only detect this situation after the drill bit drills out of the reservoir for a certain distance, making it impossible to correct the drilling trajectory in a timely manner; 2) Deflection of existing rotary steering tools The ability mainly depends on the hydraulic push module.
  • the purpose of this disclosure is to provide a push-type rotary guide device to shorten the distance between the gamma measurement point and the drill bit. At the same time, it solves the problems of power supply and communication of the gamma measurement module, and improves the efficiency of the gamma measurement module.
  • the tilting capability of the push-type rotary guide device is to provide a push-type rotary guide device to shorten the distance between the gamma measurement point and the drill bit.
  • the present disclosure provides a push-type rotary guide device, which includes: an upper drive shaft and a lower drive shaft.
  • the upper drive shaft and the lower drive shaft are coaxially arranged and fixedly connected.
  • the upper drive shaft is used to connect to an external drive device, and the lower drive shaft
  • the end of the shaft is provided with a drill bit.
  • a circuit control module and a hydraulic push module are arranged on the outer peripheral wall of the upper drive shaft in a direction close to the lower drive shaft.
  • the circuit control module is used to receive control instructions.
  • the circuit control module is used to control the driving of the hydraulic push module.
  • Lower drive shaft; a gamma measurement module is provided on the outer peripheral wall of the lower drive shaft. The gamma measurement module is located close to the hydraulic push module.
  • the gamma measurement module is provided with a measurement control circuit and an orientation electrically connected to the measurement control circuit.
  • Measuring module ; and an electrical connection system, including an electrical connection component and a communication module.
  • the electrical connection component is arranged on the connecting end of the upper drive shaft and the lower drive shaft, and the communication module is arranged in the circuit control module and the hydraulic push module; wherein,
  • the measurement control circuit is connected to the electrical connecting component through a cable, the electrical connecting component is connected to the circuit control module through the cable, and the circuit control module is connected to the hydraulic push module through the communication module.
  • the distance between the center measuring point of the gamma measurement module and the drill bit is less than or equal to 1 meter.
  • the electrical connection component is configured as an electrically conductive slip ring.
  • the conductive slip ring includes a conductive male slip ring and a conductive female slip ring, the conductive male slip ring is disposed at the end of the upper drive shaft, and the conductive female slip ring is disposed at the end of the lower drive shaft, wherein the electrical connection system It also includes a connector for connecting the conductive male slip ring and the circuit control module, and the conductive female slip ring is connected to the measurement control circuit through a cable.
  • a number of first holes are formed on the end surface of the upper drive shaft where the conductive male slip ring is provided.
  • the first holes penetrate through the wall of the upper drive shaft, and the first holes are used to place and connect the conductive male slip rings. Cables for slip rings and circuit control modules.
  • a number of second holes are formed on the end surface of the lower drive shaft equipped with the conductive female slip ring.
  • the second holes penetrate the wall of the lower drive shaft, and are used to place the connecting conductive female slip rings in the second holes. Slip rings and cables for measurement control circuits.
  • the upper drive shaft and the lower drive shaft are threadedly connected, and at the same time, the upper drive shaft and the lower drive shaft form a seal through a conductive slip ring.
  • a centralizing structure is further included, and the centralizing structure is provided at a position of the lower driving shaft close to the drill bit.
  • the centralizing structure includes a plurality of vertical walls spaced apart in the axial direction, and each vertical wall forms a spiral structure along the outer peripheral wall of the lower driving shaft.
  • the push-type rotary guide device of the present disclosure shortens the distance between the gamma measurement module and the drill bit by integrating the gamma measurement module on the lower drive shaft, so that the push-type rotary guide device of the present disclosure has close proximity Drill bit gamma measurement function;
  • the push-type rotary guide device of the present disclosure realizes wired connection by constructing the electrical connection component as a conductive slip ring, thereby improving the communication rate of the gamma measurement module and solving the power supply and communication problems of the gamma measurement module. ;
  • the push-type rotary guide device of the present disclosure is provided with a centralizing structure at a preset position of the lower drive shaft close to the drill bit, thereby reducing the distance between the centralizing structure and the drill bit. In this way, the tilting capability of the push-type rotary guide device can be improved, thereby appropriately reducing the push force provided by the hydraulic push module, thereby reducing the design difficulty of the hydraulic push module.
  • Figure 1 is a schematic structural diagram of some embodiments of a push-type rotary guide device according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural cross-sectional view of a push-type rotary guide device according to an embodiment of the present disclosure
  • Figure 3 is an enlarged schematic view of position C of the push-type rotary guide device shown in Figure 2;
  • Figure 4 is a schematic structural diagram of some embodiments of the lower drive shaft shown in Figure 1;
  • Figure 5 is a schematic structural diagram of the lower drive shaft shown in Figure 4 along the B-B direction;
  • FIG. 6 is a schematic structural diagram of the lower driving shaft shown in FIG. 4 along the A-A direction.
  • FIG. 1 is a schematic structural diagram of some embodiments of a push-type rotary guide device according to an embodiment of the present disclosure
  • FIG. 2 is a structural sectional view of some embodiments of a push-type rotary guide device according to an embodiment of the present disclosure. intention.
  • the push-type rotary guide device 100 includes: an upper drive shaft 1 and a lower drive shaft 2.
  • the upper drive shaft 1 and the lower drive shaft 2 are coaxially arranged and fixedly connected.
  • Shaft 1 is used to connect to an external driving device, and the end of the lower driving shaft 2 is provided with a drill bit.
  • a circuit control module 3 and a hydraulic push module 4 are arranged on the outer peripheral wall of the upper drive shaft 1 in a direction close to the lower drive shaft 2.
  • the circuit control module 3 is used to receive control instructions.
  • the circuit control module 3 is used to
  • the hydraulic push module 4 is controlled to drive the lower drive shaft 2;
  • a gamma measurement module 5 is provided on the outer peripheral wall of the lower drive shaft 2 close to the hydraulic push module 4, and a measurement control circuit 51 and a measurement control circuit 51 are provided in the gamma measurement module 5.
  • the orientation measurement module 52 is electrically connected to the measurement control circuit 51;
  • the electrical connection system includes an electrical connection component 6 and a communication module (not shown in the figure).
  • the electrical connection component 6 is provided at the connection between the upper drive shaft 1 and the lower drive shaft 2.
  • the communication module is arranged in the circuit control module 3 and the hydraulic push module 4 .
  • the measurement control circuit 51 is connected to the electrical connection component 6 through a cable
  • the electrical connection component 6 is connected to the circuit control module 3 through a cable
  • the circuit control module 3 is connected to the hydraulic push module 4 through the communication module.
  • the gamma measurement module is installed close to the drill bit, not only the arrangement and structure of the circuit control module, hydraulic push module and lower drive shaft need to be changed, but the relative rotation of the upper drive shaft and hydraulic push module also becomes a factor in data transmission. difficulty, thus increasing the difficulty of setting up the gamma measurement module near the drill bit. Therefore, how to place the gamma measurement module close to the drill bit, improve the communication rate of the gamma measurement module, and solve the problems of power supply and communication of the gamma measurement module are issues that technicians in the field need to solve urgently.
  • the push-type rotary guide 100 of the embodiment of the present disclosure integrates the gamma measurement module 5 on the lower drive shaft 2.
  • the designed electrical connection system can connect the measurement control circuit 51 to the electrical connection component 6 through a cable.
  • the electrical connection component 6 is connected to the circuit control module 3 through a cable, and the circuit control module 3 is connected to the hydraulic push module 4 through the communication module.
  • the push-type rotary guide device 100 of the present disclosure integrates the gamma measurement module 5 on the lower drive shaft 2,
  • the distance between the gamma measurement module 5 and the drill bit is shortened, so that the push-type rotary steering device 100 of the present disclosure has the function of gamma measurement near the drill bit.
  • the push-type rotary guide device 100 of the present disclosure realizes wired connection through the electrical connection component 6, thereby improving the communication rate of the gamma measurement module 5 and solving the power supply and communication problems of the gamma measurement module 5.
  • the circuit control module 3 on the upper drive shaft 1 is electrically connected to the upper instrument through a cable.
  • the present disclosure wirelessly transmits the circuit control module 3 and the hydraulic push module 4 through the communication module, thereby enabling wireless transmission of power and signals.
  • the measurement control circuit 51 is connected to the electrical connection component 6 through a cable
  • the electrical connection component 6 is connected to the circuit control module 3 through a cable
  • the circuit control module 3 is externally connected to the upper instrument.
  • the distance 71 between the center measuring point of the gamma measurement module 5 and the drill bit is less than or equal to 1 meter, so that the push-type rotary guide 100 of the embodiment of the present disclosure can further reduce gamma.
  • the distance between the measurement module 5 and the drill bit can improve the measurement accuracy and feedback efficiency of the gamma measurement module 5 .
  • the electrical connection component 6 may be configured as a conductive slip ring.
  • the conductive slip ring may include a conductive male slip ring 61 and a conductive female slip ring 62 .
  • the conductive male slip ring 61 is disposed on the upper drive shaft 1
  • the conductive female slip ring 62 is provided at the end of the lower drive shaft 2 .
  • the electrical connection system may also include a connector (not shown in the figure) for connecting the conductive male slip ring 61 and the circuit control module 3, and the conductive female slip ring 62 may be connected to the measurement control circuit 51 through a cable.
  • the electrical connection component 6 as a conductive slip ring, the transmission of electric energy and signals of the gamma measurement module 5 of the push-type rotary guide device 100 in the embodiment of the present disclosure can be made more stable and reliable.
  • a plurality of first holes 63 penetrating the wall surface of the upper drive shaft 1 may be formed on the end surface of the upper drive shaft 1 on which the conductive male slip ring 61 is provided.
  • the first hole positions 63 is used to place the cable connecting the conductive male slip ring 61 and the circuit control module 3; the end surface of the lower drive shaft 2 with the conductive female slip ring 62 is formed with several second holes penetrating the wall of the lower drive shaft 2 64.
  • the second hole 64 is used to place the cable connecting the conductive female slip ring 62 and the measurement control circuit 51.
  • the push-type rotary guide 100 can effectively prevent external impurities from affecting each electrical circuit after the upper drive shaft 1 and the lower drive shaft 2 are connected.
  • the interference of gas parts makes the circuit connection of each electrical part more reliable, and the integration of the push-type rotary guide device 100 is better.
  • the upper drive shaft 1 and the lower drive shaft 2 are threadedly connected, the conductive male slip ring 61 is sealingly provided on the end face of the upper drive shaft 1 , the conductive female slip ring 62 is sealingly disposed on the end face of the lower drive shaft 2 , and the upper conductive slip ring 61 is sealingly disposed on the end face of the upper drive shaft 1 .
  • the drive shaft 1 and the lower drive shaft 2 form a sealed connection through a conductive slip ring.
  • the push-type rotary guide device 100 further includes a centering structure 7 .
  • the centering structure 7 is provided at a preset position of the lower driving shaft 2 close to the drill bit.
  • the push-type rotary guide device 100 of the embodiment of the present disclosure is provided with a centralizing structure 7 at a preset position of the lower driving shaft close to the drill bit, thereby reducing the distance 72 between the centralizing structure 7 and the drill bit. It can be seen from simulation calculations that the closer the centering structure 7 is to the drill bit, the more it can improve the deflection capability of the push-type rotary guide device 100 of the embodiment of the present disclosure, thereby appropriately reducing the push force provided by the hydraulic push module 4 to reduce the risk of The design difficulty of hydraulic push module 4.
  • the distance 72 between the center of the centering structure 7 and the drill bit in the axial direction ranges from 350mm to 450mm. Preferably it is 400mm. In some embodiments, the distance between an end of the centering structure 7 facing the drill bit and the drill bit ranges from 200 cm to 300 mm. In some embodiments, the outer diameter of the centralizing structure 7 ranges from 200 cm to 300 mm, and the axial length of the centralizing structure 7 ranges from 300 cm to 400 mm.
  • the centralizing structure 7 is placed close to the drill bit to improve the deflection capability of the push-type rotary guide 100 in the embodiment of the present disclosure. Please refer to the following tables for the results of simulation calculations compared with the prior art. in:
  • the centralizing structure 7 may include a plurality of vertical walls spaced apart in the axial direction, and each vertical wall forms a spiral structure along the outer peripheral wall of the lower driving shaft 2 .
  • the centralizing structure 7 with a spiral structure can better fit the well wall during use of the push-type rotary guide device 100 of the embodiment of the present disclosure, so as to improve the push-type rotation of the embodiment of the present disclosure.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种推靠式旋转导向装置,包括:上驱动轴(1)和下驱动轴(2),上驱动轴和下驱动轴同轴设置且固定连接,上驱动轴的外周壁上依次设有电路控制模块(3)和液压推靠模块(4);下驱动轴的外周壁上设有伽马测量模块(5),伽马测量模块内设置有测量控制电路(51)和与测量控制电路电连接的方位测量模块(52);电连接系统,包括电连接部件(6)、通讯模块以及电缆,电连接部件设置在上驱动轴和下驱动轴的连接端部上,通讯模块设置在电路控制模块和液压推靠模块内,测量控制电路通过电缆与电连接部件相连,电连接部件通过电缆与电路控制模块相连,电路控制模块通过通讯模块与液压推靠模块相连。

Description

推靠式旋转导向装置
相关申请的交叉参考
本申请要求于2022年4月8日提交中国专利局、申请号为2022103676862、名称为“一种推靠式旋转导向装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于石油勘探开发技术领域,具体涉及一种推靠式旋转导向装置。
背景技术
现有的推靠式旋转导向工具主要由上驱动轴、电路控制模块、液压推靠模块以及下驱动轴等部件组成。其中,上驱动轴与驱动装置相连,下驱动轴上设有钻头,电路控制模块接收指令控制液压推靠模块提供推靠力合力的大小与方向,从而使得旋转导向工具能够按要求进行定向钻井。
现有技术中,推靠式旋转导向工具在具体使用时,通常存在以下几方面的缺陷:1)现有技术中的推靠式旋转导向工具通常仅具备近钻头井斜测量功能,而随着石油勘探开发技术的发展,更多的测量功能需要进行集成,由于推靠式旋转导向工具自身结构复杂,现有技术中常将其他测量功能集成到旋转导向仪器上,从而增加了测量的距离。而对地质导向来说,增加测量距离,常会发生钻头钻出储层一定距离后,测量模块才能发现这种情况,从而无法及时地纠正钻进轨迹;2)现有的旋转导向工具的造斜能力主要取决于液压推靠模块,若想提高旋转导向工具的造斜能力,则需要提高液压推靠模块推靠合力的大小。这就需要提高液压压力或增大活塞面积,从而使得液压系统尺寸增大,不利于旋转导向工具的设计与应用。
发明内容
为了解决上述全部或部分问题,本公开目的在于提供一种推靠式旋转导向装置,以缩短伽马测点与钻头的距离,同时,解决了伽马测量模块的供电和通讯的难题,提高了推靠式旋转导向装置的造斜能力。
本公开提供了一种推靠式旋转导向装置,包括:上驱动轴和下驱动轴,上驱动轴和下驱动轴同轴设置且固定连接,上驱动轴用于与外部驱动装置相连,下驱动轴的端部设有钻头。其中,上驱动轴的外周壁上沿靠近下驱动轴的方向依次设有电路控制模块和液压推靠模块,电路控制模块用于接收控制指令,同时,电路控制模块用于控制液压推靠模块驱动下驱动轴;下驱动轴的外周壁上设有伽马测量模块,伽马测量模块位于靠近液压推靠模块的位置,伽马测量模块内设置有测量控制电路和与测量控制电路电连接的方位测量模块;以及电连接系统,包括电连接部件和通讯模块,电连接部件设置在上驱动轴和下驱动轴的连接端部上,通讯模块设置在电路控制模块和液压推靠模块内;其中,测量控制电路通过电缆与电连接部件相连,电连接部件通过电缆与电路控制模块相连,电路控制模块通过通讯模块与液压推靠模块相连。
在一些实施例中,伽马测量模块的中心测点与钻头的距离小于等于1米。
在一些实施例中,电连接部件构造为导电滑环。
在一些实施例中,导电滑环包括导电公滑环和导电母滑环,导电公滑环设置在上驱动轴的端部,导电母滑环设置在下驱动轴的端部,其中,电连接系统还包括用于连接导电公滑环和电路控制模块的接插件,导电母滑环通过电缆连接测量控制电路。
在一些实施例中,上驱动轴的设有导电公滑环的端面上形成有若干个第一孔位,第一孔位贯穿上驱动轴的壁面,第一孔位内用于放置连接导电公滑环和电路控制模块的电缆。
在一些实施例中,下驱动轴的设有导电母滑环的端面上形成有若干个第二孔位,第二孔位贯穿下驱动轴的壁面,第二孔位内用于放置连接导电母滑环和测量控制电路的电缆。
在一些实施例中,上驱动轴与下驱动轴螺纹连接,同时,上驱动轴与下驱动轴通过导电滑环形成密封。
在一些实施例中,还包括扶正结构,扶正结构设于下驱动轴的靠近钻头的位置。
在一些实施例中,扶正结构包括多个沿轴向间隔设置的立壁,各立壁沿下驱动轴的外周壁呈螺旋状结构。
本公开的推靠式旋转导向装置具有以下几方面的优点:
1)本公开的推靠式旋转导向装置通过将伽马测量模块集成设置在下驱动轴上,缩短了伽马测量模块与钻头之间的距离,从而使得本公开的推靠式旋转导向装置具有近钻头伽马测量的功能;
2)本公开的推靠式旋转导向装置通过将电连接部件构造为导电滑环,实现了有线连接,从而能够提高伽马测量模块的通讯速率,解决了伽马测量模块的供电和通讯的难题;
3)本公开的推靠式旋转导向装置在下驱动轴的靠近钻头的预设位置上设置有扶正结构,减少了扶正结构与钻头之间的距离。这样,能够提高推靠式旋转导向装置的造斜能力,从而能够适当减少液压推靠模块提供的推靠力,以降低液压推靠模块的设计难度。
附图概述
图1为本公开实施例的推靠式旋转导向装置的一些实施例的结构示意图;
图2为本公开实施例的推靠式旋转导向装置的结构剖视示意图;
图3为图2所示的推靠式旋转导向装置的C处放大示意图;
图4为图1所示的下驱动轴的一些实施例的结构示意图;
图5为图4所示的下驱动轴的沿B-B方向上的结构示意图;
图6为图4所示的下驱动轴的沿A-A方向上的结构示意图。
本公开的较佳实施方式
为了更好的了解本公开的目的、结构及功能,下面结合附图,对本公开的一种推靠式旋转导向装置做进一步详细的描述。
图1为本公开实施例的推靠式旋转导向装置的一些实施例的结构示意图;图2为本公开实施例的推靠式旋转导向装置的一些实施例的结构剖视示 意图。结合图1、图2以及图5所示,该推靠式旋转导向装置100包括:上驱动轴1和下驱动轴2,上驱动轴1和下驱动轴2同轴设置且固定连接,上驱动轴1用于与外部驱动装置相连,下驱动轴2的端部设有钻头。其中,上驱动轴1的外周壁上沿靠近下驱动轴2的方向依次设有电路控制模块3和液压推靠模块4,电路控制模块3用于接收控制指令,同时,电路控制模块3用于控制液压推靠模块4驱动下驱动轴2;下驱动轴2的外周壁上靠近液压推靠模块4的位置上设有伽马测量模块5,伽马测量模块5内设置有测量控制电路51和与测量控制电路51电连接的方位测量模块52;电连接系统,包括电连接部件6和通讯模块(图中未示出),电连接部件6设置在上驱动轴1和下驱动轴2的连接端部上,通讯模块设置在电路控制模块3和液压推靠模块4内。其中,测量控制电路51通过电缆与电连接部件6相连,电连接部件6通过电缆与电路控制模块3相连,电路控制模块3通过通讯模块与液压推靠模块4相连。
现有技术中,为满足客户的具体使用需求,有时需要在推靠式旋转导向工具上实现伽马测量功能。而实现该功能的方式通常是将伽马测量模块集成到随钻仪器中。这种方式虽然使得推靠式旋转导向工具具有了伽马测量功能,但在实际使用时,集成到随钻仪器中的伽马测量模块的测点距离井底太远,常会发生推靠式旋转导向工具钻出储层测量数据仍未显示的情况,从而不利于及时调整推靠式旋转导向工具轨迹。若将伽马测量模块安装在靠近钻头的位置,不仅需要改变电路控制模块、液压推靠模块以及下驱动轴的设置方式和结构,上驱动轴与液压推靠模块的相对旋转也成为数据传输的难点,从而提高了近钻头设置伽马测量模块的难度。因此,如何将伽马测量模块近钻头设置,并提高伽马测量模块的通讯速率,解决伽马测量模块的供电和通讯的难题,是本领域的技术人员亟需解决的问题。
本公开实施例的推靠式旋转导向装置100通过将伽马测量模块5集成设置在下驱动轴2上,同时,设计的电连接系统能够将测量控制电路51通过电缆与电连接部件6相连,将电连接部件6通过电缆与电路控制模块3相连,将电路控制模块3通过通讯模块与液压推靠模块4相连。这样,使得本公开的推靠式旋转导向装置100通过将伽马测量模块5集成设置在下驱动轴2上, 缩短了伽马测量模块5与钻头之间的距离,从而使得本公开的推靠式旋转导向装置100具有近钻头伽马测量的功能,而对地质导向来说,缩短伽马测量距离,能够便于及时地纠正钻进轨迹。同时,本公开的推靠式旋转导向装置100通过电连接部件6实现了有线连接,从而能够提高伽马测量模块5的通讯速率,解决了伽马测量模块5的供电和通讯的难题。
本公开实施例的推靠式旋转导向装置100在具体使用时,上驱动轴1上的电路控制模块3通过电缆与上部仪器进行电连接。同时,因为上驱动轴1与液压推靠模块4会有相对旋转,本公开将电路控制模块3与液压推靠模块4通过通讯模块进行无线传输,从而能够实现无线传输电能和信号。进一步地,将测量控制电路51通过电缆与电连接部件6相连,将电连接部件6通过电缆与电路控制模块3相连,最后将电路控制模块3外接至上部仪器中。
请参照图4,在一些实施例中,伽马测量模块5的中心测点与钻头的距离71小于等于1米,以使得本公开实施例的推靠式旋转导向装置100能够进一步地减少伽马测量模块5与钻头之间的距离,从而能够提高伽马测量模块5的测量精确度和反馈效率。
请参照图3,在一些实施例中,电连接部件6可构造为导电滑环,导电滑环可包括导电公滑环61和导电母滑环62,导电公滑环61设置在上驱动轴1的端部,导电母滑环62设置在下驱动轴2的端部。其中,电连接系统还可包括用于连接导电公滑环61和电路控制模块3的接插件(图中未示出),导电母滑环62可通过电缆连接测量控制电路51。本公开中,通过将电连接部件6构造为导电滑环能够使得本公开实施例的推靠式旋转导向装置100的伽马测量模块5的电能和信号的传输更为稳定可靠。
请继续参照图3,在一些实施例中,上驱动轴1的设有导电公滑环61的端面上可形成有贯穿上驱动轴1的壁面的若干个第一孔位63,第一孔位63内用于放置连接导电公滑环61和电路控制模块3的电缆;下驱动轴2的设有导电母滑环62的端面上形成有贯穿下驱动轴2的壁面的若干个第二孔位64,第二孔位64内用于放置连接导电母滑环62和测量控制电路51的电缆。通过该设置,壁面内部走线的方式,可使得本公开实施例的推靠式旋转导向装置100在上驱动轴1和下驱动轴2连接后,能够有效避免外部杂质对各电 气件的干扰,从而使得各电气件的线路连接更为可靠,推靠式旋转导向装置100的一体性更好。
在一些实施例中,上驱动轴1与下驱动轴2螺纹连接,导电公滑环61密封设置在上驱动轴1的端面上,导电母滑环62密封设置在下驱动轴2的端面上,上驱动轴1与下驱动轴2通过导电滑环形成密封连接。
请参照图1、图2以及图4,在一些实施例中,推靠式旋转导向装置100还包括扶正结构7,扶正结构7设于下驱动轴2的靠近钻头的预设位置。
现有技术中,若需要提高推靠式旋转导向工具的造斜能力,常采用增大液压推靠模块提供的推靠力的方式。然而,液压推靠模块的推靠力的大小与压力和活塞面积有直接关系,当推靠式旋转导向工具的结构定型后很难改变。
本公开实施例的推靠式旋转导向装置100在下驱动轴的靠近钻头的预设位置上设置有扶正结构7,减少了扶正结构7与钻头之间的距离72。通过仿真计算可知,扶正结构7离钻头越近,越能够提高本公开实施例的推靠式旋转导向装置100的造斜能力,从而能够适当减少液压推靠模块4提供的推靠力,以降低液压推靠模块4的设计难度。
请参照图4和图6,在一些实施例中,扶正结构7的中心沿轴向距钻头的距离72范围为350mm至450mm。优选为400mm。在一些实施例中,扶正结构7的朝向钻头的一端距离钻头的距离范围200cm至300mm。在一些实施例中,扶正结构7的外径尺寸范围为200cm至300mm,扶正结构7的沿轴向的长度尺寸范围为300cm至400mm。
本公开中,将扶正结构7靠近钻头设置,以提高本公开实施例的推靠式旋转导向装置100的造斜能力,可参考以下各表格中与现有技术的对比后的仿真计算的结果。其中:
表一(0°井斜角)
表二(45°井斜角)
表三(90°井斜角)
结合上述表一、表二、表三可知,在工具施加推力相同的情况下,本公开实施例的推靠式旋转导向装置100将扶正结构7靠近钻头设置,钻头实际的推靠力和钻进趋势角度均能够有效提高。
表四(0°井斜角)
表五(45°井斜角)
表六(90°井斜角)
结合上述表四、表五、表六可知,在同等的钻头获得推靠力的情况下,本公开实施例的推靠式旋转导向装置100将扶正结构7靠近钻头设置,输出力大幅减小,从而使得本公开实施例的推靠式旋转导向装置100的寿命进一步提升。
请参照图4和图6,在一些实施例中,扶正结构7可包括多个沿轴向间隔设置的立壁,各立壁沿下驱动轴2的外周壁呈螺旋状结构。通过该设置,呈螺旋状结构的扶正结构7,在本公开实施例的推靠式旋转导向装置100使用过程中,能够更好的贴合井壁,以提高本公开实施例的推靠式旋转导向装置100使用时的稳定性。
需要注意的是,除非另有说明,本公开使用的技术术语或者科学术语应当为本公开所属领域技术人员所理解的通常意义。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示 或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本公开的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围,其均应涵盖在本公开的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (9)

  1. 一种推靠式旋转导向装置,其特征在于,包括:
    上驱动轴和下驱动轴,所述上驱动轴和所述下驱动轴同轴设置且固定连接,所述上驱动轴用于与外部驱动装置相连,所述下驱动轴的端部设有钻头,其中,所述上驱动轴的外周壁上沿靠近所述下驱动轴的方向依次设有电路控制模块和液压推靠模块,所述电路控制模块用于接收控制指令,同时,所述电路控制模块用于控制所述液压推靠模块驱动所述下驱动轴;所述下驱动轴的外周壁上设有伽马测量模块,所述伽马测量模块位于靠近所述液压推靠模块的位置,所述伽马测量模块内设置有测量控制电路和与所述测量控制电路电连接的方位测量模块;以及
    电连接系统,包括电连接部件和通讯模块,所述电连接部件设置在所述上驱动轴和所述下驱动轴的连接端部上,所述通讯模块设置在所述电路控制模块和所述液压推靠模块内;
    其中,所述测量控制电路通过电缆与所述电连接部件相连,所述电连接部件通过电缆与所述电路控制模块相连,所述电路控制模块通过所述通讯模块与所述液压推靠模块相连。
  2. 根据权利要求1所述的推靠式旋转导向装置,其特征在于,所述伽马测量模块的中心测点与钻头的距离小于等于1米。
  3. 根据权利要求1所述的推靠式旋转导向装置,其特征在于,所述电连接部件构造为导电滑环。
  4. 根据权利要求3所述的推靠式旋转导向装置,其特征在于,所述导电滑环包括导电公滑环和导电母滑环,所述导电公滑环设置在所述上驱动轴的端部,所述导电母滑环设置在所述下驱动轴的端部,其中,所述电连接系统还包括用于连接所述导电公滑环和所述电路控制模块的接插件,所述导电母滑环通过电缆连接所述测量控制电路。
  5. 根据权利要求4所述的推靠式旋转导向装置,其特征在于,所述上驱动轴的设有所述导电公滑环的端面上形成有若干个第一孔位,所述第一孔位构造成贯穿所述上驱动轴的壁面,所述第一孔位内用于放置连接所述导电公 滑环和所述电路控制模块的电缆。
  6. 根据权利要求5所述的推靠式旋转导向装置,其特征在于,所述下驱动轴的设有所述导电母滑环的端面上形成有若干个第二孔位,所述第二孔位构造成贯穿所述下驱动轴的壁面,所述第二孔位内用于放置连接所述导电母滑环和所述测量控制电路的电缆。
  7. 根据权利要求6所述的推靠式旋转导向装置,其特征在于,所述上驱动轴与所述下驱动轴螺纹连接,同时,所述上驱动轴与所述下驱动轴通过所述导电滑环形成密封。
  8. 根据权利要求1至7中任一项所述的推靠式旋转导向装置,其特征在于,还包括扶正结构,所述扶正结构设于所述下驱动轴的靠近所述钻头的位置。
  9. 根据权利要求8所述的推靠式旋转导向装置,其特征在于,所述扶正结构包括多个沿轴向间隔设置的立壁,各所述立壁沿所述下驱动轴的外周壁呈螺旋状结构。
PCT/CN2023/075990 2022-04-08 2023-02-14 推靠式旋转导向装置 WO2023193522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210367686.2A CN114658363A (zh) 2022-04-08 2022-04-08 一种推靠式旋转导向装置
CN202210367686.2 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023193522A1 true WO2023193522A1 (zh) 2023-10-12

Family

ID=82035694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075990 WO2023193522A1 (zh) 2022-04-08 2023-02-14 推靠式旋转导向装置

Country Status (2)

Country Link
CN (1) CN114658363A (zh)
WO (1) WO2023193522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658363A (zh) * 2022-04-08 2022-06-24 中海油田服务股份有限公司 一种推靠式旋转导向装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806542A2 (en) * 1996-05-09 1997-11-12 Camco International (UK) Limited Steerable rotary drilling system
CN107110993A (zh) * 2015-02-19 2017-08-29 哈利伯顿能源服务公司 旋转导向工具中的伽马检测传感器
CN209277812U (zh) * 2018-11-08 2019-08-20 中国石油化工股份有限公司 一种带伽马测量功能的旋转导向推靠装置
CN111677445A (zh) * 2020-06-17 2020-09-18 中国科学院地质与地球物理研究所 一种推靠式旋转导向钻井系统
CN114151011A (zh) * 2021-12-07 2022-03-08 中海油田服务股份有限公司 一种旋转导向钻井装置和导向其的方法
CN114658363A (zh) * 2022-04-08 2022-06-24 中海油田服务股份有限公司 一种推靠式旋转导向装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806542A2 (en) * 1996-05-09 1997-11-12 Camco International (UK) Limited Steerable rotary drilling system
CN107110993A (zh) * 2015-02-19 2017-08-29 哈利伯顿能源服务公司 旋转导向工具中的伽马检测传感器
CN209277812U (zh) * 2018-11-08 2019-08-20 中国石油化工股份有限公司 一种带伽马测量功能的旋转导向推靠装置
CN111677445A (zh) * 2020-06-17 2020-09-18 中国科学院地质与地球物理研究所 一种推靠式旋转导向钻井系统
CN114151011A (zh) * 2021-12-07 2022-03-08 中海油田服务股份有限公司 一种旋转导向钻井装置和导向其的方法
CN114658363A (zh) * 2022-04-08 2022-06-24 中海油田服务股份有限公司 一种推靠式旋转导向装置

Also Published As

Publication number Publication date
CN114658363A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023193522A1 (zh) 推靠式旋转导向装置
EP2156015B1 (en) Repeater for wired drill pipe
CN101315022A (zh) 一种可传输电力及信号的石油钻杆接头
CN108222918B (zh) 一种分体式双平衡系统小直径机械推靠器
NO344430B1 (no) En anordning for å foreta resistivitetsmålinger i et brønnhull
CN102713138A (zh) 井下导引工具
CN105247164A (zh) 井下电连接器
CN106522922B (zh) 一种连续管钻井随钻测量工具
CN115522921B (zh) 一种超深钻孔地应力测量系统及方法
CN201045282Y (zh) 一种可传输电力及信号的石油钻杆接头
CN112502626A (zh) 一种全旋转指向式导向工具及提高造斜率结构设计方法
CN114439466B (zh) 一种具有随钻测斜及导向功能的动力钻具轴承节
US11441412B2 (en) Tool coupler with data and signal transfer methods for top drive
CN107905731A (zh) 旋转导向钻井设备
CN211777186U (zh) 一种岩土工程勘察用钻探装置
CN114382408A (zh) 导向钻井装置
AU2017355273A1 (en) Flexible collar for a rotary steerable system
BR102019027985A2 (pt) Anel conector, sistema, e, método
CN115434694A (zh) 一种煤矿井下多参数随钻测量系统及测量方法
CN105422004A (zh) 基于空心无刷电机的连续管电控定向装置
CN110847821B (zh) 高造斜、高钻速旋转导向系统
RU60619U1 (ru) Телеметрическая система для контроля проводки наклонной и горизонтальной скважины
CN109751041B (zh) 一种柔性测井仪
CN112901139B (zh) 随钻测量装置
US11248423B2 (en) Drilling tool with thread profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784086

Country of ref document: EP

Kind code of ref document: A1