WO2023193460A1 - 电池控制电路、电子设备及充电控制方法 - Google Patents

电池控制电路、电子设备及充电控制方法 Download PDF

Info

Publication number
WO2023193460A1
WO2023193460A1 PCT/CN2022/137646 CN2022137646W WO2023193460A1 WO 2023193460 A1 WO2023193460 A1 WO 2023193460A1 CN 2022137646 W CN2022137646 W CN 2022137646W WO 2023193460 A1 WO2023193460 A1 WO 2023193460A1
Authority
WO
WIPO (PCT)
Prior art keywords
bare
charging
battery core
power
battery
Prior art date
Application number
PCT/CN2022/137646
Other languages
English (en)
French (fr)
Inventor
卢轮
朱华
周海滨
王晓洋
邓斌
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22888636.2A priority Critical patent/EP4287450A1/en
Publication of WO2023193460A1 publication Critical patent/WO2023193460A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery control circuit, electronic equipment and charging control method.
  • embodiments of the present application provide a battery control circuit, a charging control method and an electronic device to solve at least one of the above problems.
  • the first aspect of this application provides a battery control circuit for controlling battery charging and discharging, including a processor and one or more charging links.
  • the battery includes one or more bare cells.
  • the charging link is electrically connected to the bare battery core and the processor respectively, and the processor determines the charging strategy executed by the charging link according to the type of the bare battery core.
  • a battery control circuit including one or more charging links is provided, and the processor determines the charging strategy executed by the charging link according to the type of bare cells, so that Reduce the bias current and bias problems that occur in traditional series-parallel batteries, while also giving full play to battery performance.
  • the charging link includes a charging management chip, and the charging management chip is electrically connected to the processor and the bare battery core.
  • the processor controls the charging management chip to process the input current and input voltage of the charging link, and outputs the charging current and charging voltage to the bare battery core.
  • a charging management chip is provided in the charging link, and the input circuit and input voltage of each charging link are processed through the charging management chip to provide appropriate charging current and charging voltage for the corresponding bare cell.
  • the battery control circuit also includes a charging port.
  • One end of the charging port is used to electrically connect to the power supply unit to receive the input current and input voltage output by the power supply unit.
  • the other end of the charging port is electrically connected to the charging management chip to output the input current and input voltage to the charging management chip;
  • the processor is electrically connected to the charging port and detects the voltage change of the charging port to determine the electrical connection between the battery control circuit and the power supply unit state.
  • the processor is electrically connected to the charging port to determine the electrical connection status of the battery and the power supply unit.
  • the number of charging links and bare cells is the same, and the charging links and bare cells are electrically connected in a one-to-one correspondence.
  • the charging link and the bare battery cells are connected in a one-to-one correspondence to achieve independent charge and discharge control of each bare battery core, so that the performance of each bare battery core can be fully utilized.
  • the battery control circuit also includes a fuel gauge.
  • the fuel gauge is electrically connected between the bare battery core and the processor.
  • the processor monitors the voltage, current and/or power of the corresponding bare battery core through the fuel gauge, and controls the charging process of the corresponding charging link based on the monitoring results.
  • a fuel meter is set to enable the processor to monitor the voltage, current and/or power of each bare cell.
  • the battery also includes several protective plates.
  • the protection plate is electrically connected to the bare cell.
  • the protection board includes a storage unit for storing information corresponding to the type of the connected bare battery core.
  • the charge management chip is electrically connected to the corresponding bare cell through the protection board, and the processor receives a feedback signal including information through communication between the charge management chip and the protection board, thereby confirming the type of each bare cell.
  • the protection board is provided with a radio frequency chip, and the radio frequency chip is electrically connected to the storage unit.
  • the charging management chip is equipped with a radio frequency identification circuit.
  • the processor communicates with the radio frequency chip through the radio frequency identification circuit to receive the feedback signal.
  • a storage unit or radio frequency chip is provided on the protection board, so that the processor can confirm the type of the corresponding bare battery core through communication between the charging management chip and the corresponding protection board.
  • the battery control circuit also includes a power management module.
  • the power management module is electrically connected between each bare cell and the processor, and the processor controls the discharge of the bare cell through the power management module.
  • the power management module is set up in the battery control circuit to realize the processor controlling the discharge of the bare battery core.
  • a second aspect of this application also provides an electronic device, including a battery.
  • the battery includes several bare cells.
  • the electronic device also includes a battery control circuit as described above for controlling battery charging and discharging.
  • the third aspect of this application is a charging control method, used to control battery charging.
  • the charging control method is applied to the battery control circuit.
  • the battery includes several bare cells.
  • the charging control method includes:
  • Corresponding charging strategies are executed according to the confirmed types of bare cells.
  • the charging strategy includes: charging the bare cell until the bare cell is full; stopping charging the bare cell; determining that the power supply unit is electrically connected to the battery; and executing a recharge strategy on the bare cell.
  • charging the bare battery core until the bare battery core is full includes:
  • the bare battery core When the power of the bare battery core is greater than or equal to the first power preset threshold, the bare battery core is charged in a conventional charging mode until the bare battery core is fully charged.
  • the fast charging mode when the power of the bare battery core is less than the first power preset threshold, the fast charging mode is triggered, so that the bare battery core quickly reaches a full state when charging for the first time; it is also used when the power of the bare battery core is greater than or When equal to the first power preset threshold, the regular charging mode is triggered to ensure safe charging of bare cells. In this way, by switching between the fast charging mode and the regular charging mode, the number of high-voltage fast charges of the bare battery core can be reduced and the service life of the bare battery core can be extended.
  • charging the bare battery core until the bare battery core is fully charged includes: charging the bare battery core in a conventional charging mode until the bare battery core is fully charged. The battery is fully charged.
  • the conventional charging mode is used to ensure that the bare cell reaches a full state safely during the first charge.
  • the recharging strategy for bare cells includes:
  • the duration of the power supply unit being electrically connected to the bare battery core is less than or equal to the preset threshold of duration, it is determined whether the power of the bare battery core is less than the second preset threshold of power;
  • the bare battery core When the power of the bare battery core is less than the second power preset threshold, the bare battery core is charged in the conventional charging mode until the bare battery core is fully charged and the recharging strategy is executed; or until the power supply unit is disconnected from the battery, the charging process ends.
  • the damage to the bare cells can be reduced and the battery life can be reduced. Eliminate risks such as lithium deposition and overcharging, maintain the health of bare cells, extend the service life of bare cells, and even reduce the risk of short-circuit fires of bare cells.
  • the recharge strategy for the bare cell when the bare cell is confirmed to be the first type of bare cell, the recharge strategy for the bare cell also includes:
  • the bare battery when the power supply unit is in the long-term state and the power of the bare battery is less than the third power preset threshold, the bare battery is recharged in the fast charging mode and recharged to the power of the bare battery.
  • the fourth power preset threshold When the fourth power preset threshold is reached, charging is stopped. In this way, on the one hand, when the power of the bare battery core is less than the third power preset threshold, charging is performed in the fast charging mode, thereby increasing the charging speed; on the other hand, when the power of the bare battery core is equal to the fourth power preset threshold, the charging is stopped. Charging, reducing long-term high-voltage scenarios of bare batteries and extending the service life of bare batteries.
  • the charging control method also includes:
  • the recharge strategy for the bare cell also includes:
  • the duration of the power supply unit being electrically connected to the bare battery core is greater than the preset threshold of duration, it is determined whether the power of the bare battery core is less than the third preset threshold of power;
  • the bare battery core is recharged through the conventional charging mode, and charging is stopped when the power of the bare battery core reaches the fifth power preset threshold.
  • the conventional charging mode when the power of the bare battery core is less than the third power preset threshold, the high power state of the bare battery core is maintained; on the other hand, when the power of the bare battery core is equal to the fifth power preset threshold, When the threshold is reached, charging is stopped to reduce long-term high-voltage scenarios of bare cells and extend the service life of bare cells.
  • the duration of the power supply unit being electrically connected to the bare battery core is greater than the preset duration threshold, and the power of the bare battery core is greater than or equal to the third power preset threshold, it is determined whether the duration of the power supply unit being electrically connected to the bare battery core is greater than the preset duration. threshold until the power of the bare battery core is less than the third power preset threshold.
  • the bare cell is charged only when the power supply unit is in a long-term in-position state and the power of the bare cell is less than the third power preset threshold, so , can reduce the number of high-voltage charging of bare cells and extend the service life of bare cells.
  • Figure 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a three-dimensional schematic diagram of the battery shown in Figure 1;
  • FIG 3 is a partially disassembled schematic diagram of the battery body shown in Figure 2;
  • FIG 4 is a schematic structural diagram of the battery body shown in Figure 3;
  • FIG. 5 is a schematic diagram of the connection between the battery and the protection board shown in Figure 4;
  • Figure 6 is a functional block diagram of the connection between the electronic device and the power supply unit provided by the embodiment of the present application.
  • Figure 7 is a partially disassembled schematic diagram of a battery provided by another embodiment of the present application.
  • Figure 8 is a functional block diagram of the connection between an electronic device and a power supply unit provided by another embodiment of the present application.
  • Figure 9 is a partially disassembled schematic diagram of a battery body provided by another embodiment of the present application.
  • Figure 10 is a schematic flowchart of a battery control method provided by an embodiment of the present application.
  • FIG 11 is a schematic flow chart of step S3 shown in Figure 10;
  • FIG. 12 is a schematic flowchart of steps S31 to S35 shown in FIG. 11 .
  • Power supply unit 200 electronic equipment 100, 100a; battery 10, 10a; battery body 1, 1a, 1b; case 11;
  • second overvoltage protection circuit 232 second fuel gauge 242; fuel gauge 240; connector 25; power management module 26;
  • Protection plate 3 first protection plate 31; second protection plate 32; third protection plate 33.
  • first”, “second” and “third” are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
  • the terms “comprising”, “comprises” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or apparatus that includes a list of elements not only includes those elements, but also Includes other elements not expressly listed or elements inherent to the process, method, article or apparatus.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element.
  • Batteries are widely used in electronic devices to provide power for electronic devices. As the performance of electronic devices becomes stronger and stronger, batteries consume power faster and faster; as electronic devices are used in more and more application scenarios, batteries with a single characteristic cannot meet the needs of users well.
  • existing electronic equipment in order to improve the battery life of the electronic equipment, multiple batteries of the same capacity and the same material are usually used in series and/or parallel, and multiple batteries can only be charged using the same charging method to reduce battery life. Problems such as bias current and bias voltage occur during the charging process, thereby reducing the impact on battery life.
  • the existing solution of using multiple batteries in series and/or parallel can increase the battery capacity and enhance the battery life, a single battery characteristic and charging method cannot satisfactorily meet the needs of users in multiple scenarios and fast operation at the same time. recharging needs.
  • embodiments of the present application provide batteries, electronic devices and charging control methods, and the batteries have different characteristics, which can fully utilize the battery performance and meet the user's needs for multi-scenario use and fast charging.
  • an embodiment of the present application provides an electronic device 100 , including a battery 10 and a battery control circuit 2 that are electrically connected to each other.
  • the electronic device 100 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a handheld computer, a walkie-talkie, a netbook, and a Point of Sales (POS) machine.
  • PDA personal digital assistant
  • wearable devices virtual reality devices
  • wireless USB flash drives Bluetooth speakers/headphones
  • vehicle-mounted equipment driving recorders
  • security equipment or medical equipment and other mobile terminals or fixed terminals including batteries .
  • the battery 10 is used to provide power to the electrical devices in the electronic device 100 .
  • electrical devices include but are not limited to one or more of a display screen, a camera module, a speaker, and a SIM module, which are not specifically limited here.
  • the battery control circuit 2 is used to control the battery 10 to charge and discharge.
  • the battery 10 includes a battery body 1 and a protection plate 3 .
  • the battery body 1 includes a casing 11 and a plurality of bare cells 12 .
  • the casing 11 is used to cover the bare battery core 12 and encapsulate the electrolyte. In this way, the bare battery core 12 is immersed in the electrolyte.
  • the casing 11 is used to house the bare battery core 12 and the electrolyte on the one hand, and on the other hand, it is also used to protect the bare battery core 12 and reduce the risk of short circuit fire caused by impact or scratching of the bare battery core 12 .
  • This application does not limit the material of the housing 11.
  • the housing 11 includes but is not limited to aluminum plastic film and steel shell.
  • the design parameters such as structure, component materials, material proportions, manufacturing processes, and pole piece design of each bare cell can be all the same, or can be any of the above five.
  • the plurality of bare battery cells 12 may be the same or different.
  • the number of bare cells 12 in the casing 11 is not limited.
  • the number of bare cells 12 of the battery body 1 includes two Bare battery cores, such as the first bare battery core 13 and the second bare battery core 14 are used as examples for description.
  • the first bare battery core 13 may be a laminated structure or a wound structure; the second bare battery core 14 may be a laminated structure or a wound structure.
  • the first bare cell 13 and the second bare cell 14 are both laminated structures.
  • the first bare battery core 13 and the second bare battery core 14 are immersed in the same electrolyte, wherein the first bare battery core 13 and the second bare battery core 14 have different battery core types.
  • the first bare battery core 13 is a first type of bare battery core
  • the second bare battery core 14 is a second type of bare battery core.
  • the first type of bare cell may be a fast charging cell.
  • the second type of bare battery core can be a high energy density and high temperature resistant battery core.
  • a fast charging core is a battery core with fast charging capability, which refers to a battery core that can achieve a charging process with a rate (C rate) not lower than a preset threshold.
  • High-energy-density and high-temperature-resistant batteries refer to batteries that have high volume energy density or mass energy density and can work stably for a long time at high temperatures.
  • High energy density generally means that the volumetric energy density is greater than 600Wh/L, and high temperature resistance means that the battery core can continue to work stably at temperatures above 30°C.
  • the first bare cell 13 is formed by a stack of several first pole piece combinations C1. Among them, a diaphragm S is also provided between adjacent first pole piece combinations C1.
  • Each first pole piece assembly C1 includes a plurality of first pole pieces P1, diaphragms S and second pole pieces P2. The diaphragm S is disposed between the adjacent first pole piece P1 and the second pole piece P2 to prevent short circuit between the first pole piece P1 and the second pole piece P2.
  • the first pole piece P1 and the second pole piece P2 have opposite polarities.
  • the first pole piece P1 and the second pole piece P2 both include a current collector and an electrode material (not shown) coated on the current collector, and the electrode materials on the first pole piece P1 and the second pole piece P2 are different. In this way, the first bare cell 13 can store or release electrical energy through the electrochemical reaction generated by the electrode materials on the first pole piece P1 and the second pole piece P2.
  • each first pole piece P1 is connected to a first sub-tab 131
  • each second pole piece P2 is connected to a second sub-tab 132.
  • one end of the first sub-tab 131 and the second sub-tab 132 is connected to the corresponding first pole piece P1 and the second pole piece P2 respectively, and the other end extends toward the outside of the battery body 1 .
  • the corresponding sub-pole tabs (for example, the first sub-pole tabs 131 or the second sub-pole tabs 132) are respectively connected to the corresponding pole pieces (for example, the first pole piece P1 or the second pole piece P2), therefore, the corresponding sub-poles
  • the lug has the same polarity as the corresponding pole piece.
  • the first sub-tab 131 has the same polarity as the first pole piece P1
  • the second sub-tab 132 has the same polarity as the second pole piece P2.
  • the corresponding pole pieces (for example, the first pole piece P1 and the second pole piece P2) have opposite polarities
  • the first sub-pole tab 131 and the second sub-pole tab 132 have opposite polarities.
  • the first sub-lugs 131 in the first bare cell 13 are electrically connected to each other to form the first tabs 134 .
  • the second sub-lugs 132 in the first bare cell 13 are electrically connected to each other to form a second tab 135 .
  • the first tab 134 and the second tab 135 are used to lead out the positive electrode and the negative electrode of the first bare battery core 13 respectively, and serve as contact points during charging and discharging of the first bare battery core 13 .
  • the second bare cell 14 is formed by a stack of several second pole piece combinations C2 .
  • a diaphragm S is also provided between adjacent second pole piece combinations C2.
  • Each second pole piece assembly C2 includes a third pole piece P3, a diaphragm S, and a fourth pole piece P4.
  • Each third pole piece P3 is respectively connected to a third sub-tab 141
  • each fourth pole piece P4 is respectively connected to a fourth sub-tab 142.
  • one end of the third sub-tab 141 and the fourth sub-tab 142 is connected to the corresponding third pole piece P3 and the fourth pole piece P4 respectively, and the other end extends toward the outside of the battery body 1 .
  • the third sub-tab 141 has the same polarity as the third pole piece P3, and the fourth sub-tab 142 has the same polarity as the fourth pole piece P4.
  • the polarity of the third sub-tab 141 is opposite to that of the fourth sub-tab 142 .
  • the third sub-tab 141 is a negative electrode tab
  • the fourth sub-tab 142 is a positive electrode tab.
  • the third sub-lugs 141 in the second bare cell 14 are electrically connected to each other to form a third tab 144 .
  • the fourth sub-lugs 142 in the second bare cell 14 are electrically connected to each other to form a fourth tab 145 .
  • the third tab 144 and the fourth tab 145 are used to lead out the negative electrode and the positive electrode of the second bare battery core 14 respectively, and serve as contact points during charging and discharging of the second bare battery core 14 .
  • the first pole 134 , the second pole 135 , the third pole 144 and the fourth pole 145 are all exposed from the housing 11 .
  • the first pole 134 , the second pole 135 , the third pole 144 and the fourth pole 145 are all exposed from the same side of the housing 11 .
  • the first pole 134 is disposed close to the second pole 135 .
  • the third pole 144 is disposed close to the fourth pole 145 .
  • the first tab 134 and the second tab 135 together form the charging and discharging port of the first bare battery core 13 .
  • the third tab 144 and the fourth tab 145 together form the charging and discharging port of the second bare battery core 14 . In this way, the first bare cell 13 and the second bare cell 14 can be charged or discharged independently.
  • the first bare battery core 13 and the second bare battery core 14 are directly overlapped. In this way, a separator S is disposed between the adjacent first pole piece combination C1 and the second pole piece combination C2.
  • first bare battery core 13 and the second bare battery core 14 may also be covered with insulating shells respectively to separate the first bare battery core 13 and the second bare battery core 14 .
  • the design system of the first bare battery core 13 and the second bare battery core 14 may be the same, with only a difference in the position of the tab.
  • the same system design means that the design parameters such as the material, compaction density, and coating weight of the positive electrode plates of the first bare cell 13 and the second bare cell 14 are consistent.
  • the negative electrode plates of the first bare cell 13 and the second bare cell 14 also adopt the same design. In this way, the design capacity and characteristics of the first bare cell 13 and the second bare cell 14 are also the same.
  • Protection board 3 is a circuit board integrated with a sampling resistor and a current fuse.
  • a plurality of protective plates 3 are disposed on the surface of the casing 11 of the battery body 1 and are electrically connected to the tabs disposed outside the casing 11 to reduce the occurrence of overcharge, overdischarge, overcurrent, short circuit and ultra-high temperature charging of the battery. The probability.
  • the number of protective plates 3 is set corresponding to the number of bare cells.
  • the number of protective plates 3 is two, including, for example, a first protective plate 31 and a second protective plate 32 .
  • the first protection plate 31 is electrically connected to the first bare cell 13 .
  • the second protection plate 32 is electrically connected to the second bare cell 14 .
  • One end of the first protection plate 31 is electrically connected to the first tab 133 and the second tab 135 of the first bare cell 13 , and the other end is used to receive electrical energy and transmit it through the first tab 133 and the second tab 135 to the first bare battery core 13; or the first bare battery core 13 releases electric energy outward through the first protection plate 31.
  • One end of the second protection plate 32 is electrically connected to the third tab 144 and the fourth tab 145 of the second bare cell 14 for receiving electrical energy and transmitting it to the second bare cell via the third tab 144 and the fourth tab 145 .
  • the battery core 14; or the second bare battery core 14 releases electric energy outward through the second protection plate 32.
  • FIG. 6 is a functional block diagram when the electronic device 100 is connected to the power supply unit 200 .
  • One end of the battery control circuit 2 is electrically connected to the power supply unit 200 , and the other end is electrically connected to the battery body 1 through a protection plate (such as the first protection plate 31 and the second protection plate 32 ), for realizing charging management of the battery body 1 , as well as the detection of parameters such as the capacity, cycle times, and health status of the battery body 1.
  • a protection plate such as the first protection plate 31 and the second protection plate 32
  • the power supply unit 200 is used to output DC voltage.
  • the power supply unit 200 may be a wired charger with an adapter, or a mobile power supply, or the like.
  • the battery control circuit 2 includes a processor 21 and a plurality of charging links 22 .
  • the number of charging links 22 may be one charging link or multiple charging links.
  • the number of charging links 22 is the same as the number of bare cells 12 , and the charging links 22 are electrically connected to the bare cells 12 in a one-to-one correspondence.
  • the processor 21 is electrically connected to each charging link to control each charging link to execute different charging strategies according to the type of each bare cell.
  • One end of a plurality of charging links 22 is electrically connected to the power supply unit 200, and the other end is electrically connected to the corresponding bare cell through a corresponding protection plate.
  • each bare cell passes through the corresponding protection plate (for example, the first protection plate 31 and the second protection plate 32) and the charging link 22 (for example, the third A charging link 221 and a second charging link 224) are electrically connected to the power supply unit 200, thereby receiving the electric energy provided by the power supply unit 200.
  • the corresponding protection plate for example, the first protection plate 31 and the second protection plate 32
  • the charging link 22 for example, the third A charging link 221 and a second charging link 224
  • the plurality of charging links 22 include a first charging link 221 and a second charging link 224.
  • the first charging link 221 at least includes a first charging management chip 222 and a first charging port 223 .
  • One end of the first charging management chip 222 is electrically connected to the first bare battery core 13 through the first protection plate 31 .
  • One end of the first charging port 223 is used to be electrically connected to the power supply unit 200 to receive the input current and input voltage output by the power supply unit 200 .
  • the other end of the first charging port 223 is electrically connected to the first charging management chip 222 to input the received input current and input voltage to the first charging management chip 222 .
  • the first charge management chip 222 is also electrically connected to the processor 21 . In this way, under the control of the processor 21, the first charging management chip 222 receives the voltage and current input from the power supply unit 200 through the first charging port 223, and then processes the input voltage and input current to output the charging voltage and charging current to The first bare battery cell to achieve safe and efficient charging. For example, in some embodiments, after the power supply unit 200 is electrically connected to the first charging port 223, the maximum charging voltage input to the first charging port 223 is 10V and the maximum charging current input is 5A.
  • the first charging management chip 222 is used to reduce the maximum charging voltage of 10V to 5V and increase the maximum charging current of 5V to 10A, so that the charging voltage and charging current match the first bare cell. 13 safety regulations to reduce the safety risks of the battery body 1.
  • the first charging port 223 is also electrically connected to the processor 21 .
  • the processor 21 determines the electrical connection state between the first charging link 221 in the battery control circuit 2 and the power supply unit 200 by detecting the voltage change of the first charging port 223 . That is to say, the processor 21 detects the voltage change of the first charging port 223 to determine the electrical connection status between the power supply unit 200 and the battery 10 .
  • the first charging port 223 may be a USB interface that complies with the universal serial bus (USB) standard specification. Specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc., which are not specifically limited here.
  • the power supply unit 200 may also be a device supporting the Universal Serial Bus standard specification.
  • the second charging link 224 includes a second charging management chip 225 and a second charging port 226 .
  • One end of the second charging management chip 225 is electrically connected to the second bare battery core 14 through the second protection plate 32 .
  • the other end of the second charging management chip 225 is electrically connected to the power supply unit 200 through the second charging port 226 .
  • the structure of the second charging link 224 is substantially the same as that of the first charging link 221, and its component functions and working principles are similar to those of the first charging link 221. For details, please refer to the description of the first charging link 221, here No longer.
  • the first charging port 223 and the second charging port 226 are both electrically connected to the processor 21 .
  • the processor 21 can determine whether the electronic device 100 is connected to the corresponding power supply unit 200 by detecting voltage changes of the first charging port 223 and the second charging port 226 .
  • the processor 21 is also electrically connected to the first charging management chip 222 and the second charging management chip 225 for controlling the first bare battery core 13 and the second bare battery through the first charging management chip 222 and the second charging management chip 225 respectively. Core 14 is charged.
  • the power supply unit 200 When the power supply unit 200 is electrically connected to the electronic device 100, the power supply unit 200 is electrically connected to the first charging port 223 and the second charging port 226, and the processor 21 detects the first charging port 223 and the second charging port. The voltage at port 226 changes. In this way, the processor 21 communicates with the power supply unit 200 through the first charging port 223 and the second charging port 226 to confirm various charging parameters, such as the maximum input voltage and the maximum input current. Then, the processor 21 controls the first charging management chip 222 and the second charging management chip 225 to perform corresponding processing on the input voltage and input current to achieve independent charging of the first bare battery core 13 and the second bare battery core 14 .
  • the battery 10 provided in the embodiment of the present application integrates several different bare cells in the same battery body 1 so that the battery 10 has different characteristics. In this way, the battery 10 can meet the user's usage needs in at least two scenarios.
  • different bare battery cells also lead to corresponding positive and negative electrode tabs as contact points for charging and discharging, so that different bare battery cells have independent charging and discharging functions.
  • first charging link 221 and the second charging link 224 in the battery control circuit 2 provided by this application are respectively connected to the tabs of the first bare battery core 13 and the second bare battery core 14, so as to according to the first The different characteristics of the first bare cell 13 and the second bare cell 14 are charged at the same time, thereby realizing fast charging and giving full play to the performance of the battery 10 .
  • the processor 21 can also confirm the cell types of the first bare cell 13 and the second bare cell 14 through the first charging management chip 222 and the second charging management chip 225, respectively. According to the cell types of the first bare cell 13 and the second bare cell 14, corresponding charging strategies are respectively executed.
  • storage units are respectively provided on the first protection plate 31 correspondingly connected to the first bare battery core 13 and the second protection plate 32 correspondingly connected to the second bare battery core 14 .
  • the storage unit is used to store information indicating the type of the first bare cell 13 or the second bare cell 14 .
  • the processor 21 detects that the power supply unit 200 is electrically connected to the electronic device 100, it communicates with the corresponding first protection board 31 and the second protection board 32 through the first charging management chip 222 and the second charging management chip 225 respectively, so that the processor 21 21. Receive a feedback signal including this information to confirm the cell types of the first bare cell 13 and the second bare cell 14 respectively connected to the first charging management chip 222 and the second charging management chip 225.
  • the processor 21 outputs detection signals to the first protection board 31 and the second protection board 32 through the first charging management chip 222 and the second charging management chip 225 respectively. After receiving the corresponding detection signals, the two protection boards 32 respectively output feedback signals to the processor 21 . In this way, the processor 21 confirms the corresponding bare cell types of the first bare cell 13 and the second bare cell 14 through the received feedback signal, thereby charging the first bare cell 13 and the second bare cell 14 respectively through the corresponding charging link.
  • the bare battery core 14 matches the corresponding charging control method.
  • radio frequency chips are respectively provided on the first protection board 31 and the second protection board 32, and the two radio frequency chips are electrically connected to the memory cells on the first protection board 31 and the second protection board 32 respectively.
  • the first charging management chip 222 and the second charging management chip 225 are respectively provided with corresponding radio frequency identification circuits.
  • the processor 21 can communicate with the radio frequency chips of the first protection board 31 and the second protection board 32 respectively through the radio frequency identification circuits on the first charging management chip 222 and the second charging management chip 225 to receive the information output by the radio frequency chips.
  • the feedback signal of the corresponding bare cell type information confirms the bare cell types of the first bare cell 13 and the second bare cell 14, thereby matching the corresponding charging control method.
  • the battery control circuit 2 can control the first bare battery core 13 and the second bare battery core 14 to adapt to different charging parameters for charging.
  • the first bare battery core 13 and the second bare battery core 14 can correspond to different charging parameters. Different charging currents, different charging rates, different charging times and/or different charging cut-off voltages.
  • the first bare battery core 13 is a fast charging core
  • the second bare battery core 14 is a high energy density and high temperature resistant battery core.
  • the first bare battery core 13 and the second bare battery core 14 are independently charged with different charging currents through the first charging link 221 and the second charging link 224 respectively.
  • the first bare battery core 13 is charged with a current greater than a charging rate of 0.7C
  • the second bare battery core 14 is charged with a current less than a charging rate of 0.7C
  • the second bare battery core 14 can be charged at a temperature above 30 degrees Celsius. Works at stable temperature. In this way, the battery 10 can not only meet the user's battery usage needs in higher temperature scenarios, but also meet the user's fast charging needs.
  • the battery control circuit 2 also includes a plurality of overvoltage protection circuits and a plurality of fuel gauges.
  • the number of several overvoltage protection circuits and fuel gauges respectively corresponds to the number of bare cells.
  • the battery control circuit 2 includes two overvoltage protection circuits and two fuel gauges.
  • Each overvoltage protection circuit and voltage meter correspond to the corresponding charging link settings.
  • the first overvoltage protection circuit 231 and the first fuel gauge 241 are provided corresponding to the first charging link 221 .
  • the second overvoltage protection circuit 232 and the second fuel gauge 242 are provided corresponding to the second charging link 224 .
  • the first overvoltage protection circuit 231 is electrically connected between the first charging port 223 and the first charging management chip 222 to protect the electronic device from the impact of instantaneous high voltage.
  • the first fuel gauge 241 is electrically connected between the first protection board 31 and the processor 21 . That is, the first fuel gauge 241 is electrically connected between the first bare cell 13 of the battery 10 and the processor 21 . In this way, the processor 21 can measure the voltage, current and power of the first bare cell 13 through the first fuel gauge 241, and control the charging of the first charging link 221 according to the detected data.
  • the electrical connection relationship and function of the second overvoltage protection circuit 232 and the second fuel gauge 242 in the second charging chain 224 are the same as those of the first overvoltage protection circuit 231 and the first fuel gauge 241 in the first charging chain.
  • the electrical connection relationships and functions in path 221 are the same and will not be described again.
  • the battery control circuit 2 also includes a memory (not shown). Instructions related to charging control methods corresponding to different bare cell types are set in the memory. In this way, after determining the cell types of the first bare cell 13 and the second bare cell 14, the processor 21 can retrieve corresponding instructions from the memory to adjust the current and voltage input by the power supply unit 200, thereby controlling the third The first bare battery core 13 and the second bare battery core 14 are charged.
  • the first charging port 223 and the second charging port 226 in the battery control circuit 2 can also be integrated into a shared charging port. In this way, by electrically connecting the shared charging port to the power supply unit 200, charging current can be provided for the first charging link 221 and the second charging link 224 at the same time.
  • battery control circuit 2 also includes power management module 26 .
  • the power management module 26 is electrically connected between each bare cell (such as the first bare cell 13 and the second bare cell 14 ) and the processor 21 .
  • the processor 21 controls each bare cell of the battery body 1 to supply power to other power-consuming components of the electronic device 100 through the power management module 26, such as internal memory, display screen, camera or wireless communication module.
  • the battery control circuit 2 can also be integrated into a control chip.
  • the embodiment of the present application does not limit the number of pole piece combinations in each bare cell (such as the first bare cell 13 and the second bare cell 14).
  • the several bare battery cores in the battery body 1 when several bare battery cores in the battery body 1 are respectively covered with cases, the several bare battery cores can be immersed in different electrolytes respectively.
  • This application also provides a battery 10a, which includes a battery body 1a and a third protection plate 33.
  • the structure of the battery body 1 a is substantially the same as that of the battery body 1 .
  • the battery body 1 a also includes a first bare cell 13 and a second bare cell 14 .
  • the difference between the structure of the battery body 1a and the structure of the battery body 1 is that the battery body 1a includes a first tab 134a, a second tab 135a, and a third tab 144a. That is, in this embodiment, the first bare battery core 13 and the second bare battery core 14 of the battery body 1a share one pole, and the first bare battery core 13 and the second bare battery core 14 form two poles through three poles. Independent charging and discharging contact points. In this way, the battery body 1a can further reduce the complexity of the battery body compared to the battery body 1 and reduce the manufacturing cost.
  • the first tab 134a and the third tab 144a are formed in the same manner as the first tab 134 and the third tab 144 in the battery body 1. . That is, the first tab 134a is formed by electrically connecting a plurality of first sub- tabs 131 of the first bare battery core 13 to each other. The third tab 144a is formed by electrically connecting a plurality of fourth sub tabs 142 of the second bare cell 14 to each other. The formation method of the second tab 135a is different from the formation method of the second tab 135 in the battery body 1 .
  • the second tab 135a is formed by electrically connecting a plurality of second sub- tabs 132 of the first bare cell 13 and a plurality of third sub- tabs 141 of the second bare cell 14 to each other. That is to say, in the battery body 1a, the second tab 135 and the third tab 144 in the battery body 1 are connected to each other, so that the first bare battery core 13 and the second bare battery core 14 are shared. One polar ear, and then one polar ear is omitted.
  • the first tab 134a and the second tab 135a together form the charging and discharging port of the first bare cell 13 .
  • the second tab 135a and the third tab 144a together form the charging and discharging port of the second bare battery core 14 .
  • the projections of the second sub-tab 132 and the third sub-tab 141 in the thickness direction of the battery body 1 a are aligned with each other, so as to facilitate the second sub-tab 132 and the third sub-tab 141 .
  • the sub-lugs 141 are electrically connected to each other.
  • This application does not limit the number of tabs in the battery 10 . It is only required that the number of tabs in the battery 10 is greater than or equal to 3, so that at least two cells are formed in the battery 10 .
  • the battery 10/10a can also be formed with 4 or more tabs.
  • the battery body 1a only includes one protection plate, such as the third protection plate 33.
  • one end of the third protection plate 33 is electrically connected to the power supply unit 200 through the battery control circuit 2a, and the other end is electrically connected to the battery body 1a to output the charging current input by the power supply unit 200 to the third battery body 1a.
  • a bare battery core 13 and a second bare battery core 14 are electrically connected to the battery body 1a to output the charging current input by the power supply unit 200 to the third battery body 1a.
  • the structures of the third protection plate 33 and the first protection plate 31 are substantially the same.
  • the difference between the third protection plate 33 and the first protection plate 31 is that the third protection plate 33 is correspondingly connected to the three tabs of the battery body 1a. In this way, the battery body 1a shares the second tab 135a through the third protection plate 33.
  • An embodiment of the present application also provides an electronic device 100a, including the battery 10a as described above (ie, the battery body 1a and the third protection plate 33) and the battery control circuit 2a.
  • the battery control circuit 2a is electrically connected to the battery body 1a through the third protection plate 33 to realize independent control of the charging and discharging processes of the first bare cell 13 and the second bare cell 14 in the battery body 1a.
  • the battery 10a only includes one third protection plate 33. Therefore, the circuit structure of the battery control circuit 2 a is also different from the circuit structure of the battery control circuit 2 in the battery body 1 .
  • the battery control circuit 2a is provided with a connector 25 corresponding to the third protection plate 33 . One end of the connector 25 is electrically connected to the third protection board 33 , and the other end is electrically connected to the first charging management chip 222 and the second charging management chip 225 .
  • the difference between the battery control circuit 2a and the battery control circuit 2 in the battery body 1 is that the battery control circuit 2a is only provided with one fuel gauge, such as the fuel gauge 240.
  • the processor 21 can simultaneously measure the voltage, current and power of the first bare cell 13 and the second bare cell 14 through the fuel gauge 240, and adjust various parameters during the charging process of the battery 10a at any time based on the detected data.
  • the electronic device 100a can further reduce the number of electronic components, reduce the size of the electronic device 100a, and reduce manufacturing costs.
  • This embodiment of the present application also provides a battery body 1b.
  • the structure of the battery body 1b is roughly the same as that of the battery body 1a. The difference is that the battery body 1b includes a plurality of stacked pole piece combinations, and at least one pole piece combination at any position among the plurality of pole piece combinations can form a bare battery core.
  • Each pole piece combination includes a first polarity pole piece, a separator S and a second polarity pole piece stacked in sequence. The polarity of the first polarity pole piece and the second polarity pole piece are opposite.
  • first polarity sub-lugs of several pole piece combinations forming the same bare cell core are electrically connected to each other to form the first polarity tabs
  • second polarity sub-lugs of several pole piece combinations forming the same bare cell core are electrically connected to each other. Electrically connected to form a second polarity tab, so that the first polarity tab and the second polarity tab form charging and discharging contact points corresponding to the bare battery core.
  • the battery body 1b provided by the embodiment of the present application compared with the previous two battery bodies (such as the battery body 1 and the battery body 1a), can realize the flexible arrangement of several bare cells in the battery body.
  • the battery body 1b includes a plurality of first pole piece combinations C1 and a plurality of second pole piece combinations C2.
  • the battery body 1b is stacked in sequence with a first pole piece combination C1 and a plurality of second pole piece combinations C2.
  • a diaphragm S is also provided between the adjacent first pole piece assembly C1 and the second pole piece assembly C2.
  • a plurality of first pole piece combinations C1 form a first bare battery core 13b.
  • a plurality of second pole piece combinations C2 form a second bare battery core 14b.
  • the first pole piece assembly C1 includes a first pole piece P1, a diaphragm S and a second pole piece P2.
  • the second pole piece assembly C2 includes a third pole piece P3, a diaphragm S, and a fourth pole piece P4.
  • the first pole piece P1 and the third pole piece P3 are both first polarity pole pieces, such as positive pole pieces.
  • the second pole piece P2 and the fourth pole piece P4 are both second polarity pole pieces, such as negative pole pieces.
  • the battery body 1b is also formed with a first tab 134a, a second tab 135a and a third tab 144a as shown in FIG. 7 .
  • a plurality of second sub-lugs 132 respectively formed on a plurality of second pole pieces P2 are electrically connected to each other to jointly form the first tab 134a of the battery body 1b.
  • a plurality of first sub-pole tabs 131 respectively formed on a plurality of first pole pieces P1 are electrically connected to a plurality of third sub-pole tabs 141 respectively formed on a plurality of third pole pieces P3 to jointly form the third pole of the battery body 1b.
  • Diode lug 135a Diode lug 135a.
  • the fourth sub-lugs 142 respectively formed on a plurality of fourth pole pieces P4 are electrically connected to each other to jointly form the third tab 144a of the battery body 1b. That is, in the embodiment of the present application, the first bare battery core 13b and the second bare battery core 14b share the positive electrode tab.
  • the first sub-tab 131, the second sub-tab 132, the third sub-tab 141 and the fourth sub-tab 142 are all disposed on the same side of several pole piece combinations.
  • the projections of a plurality of first sub-lugs 131 and a plurality of third sub-lugs 141 in the thickness direction of the battery body 1b overlap with each other
  • the projections of a plurality of second sub-lugs 132 in the thickness direction of the battery body 1b overlap with each other.
  • the projections of the plurality of fourth sub-lugs 142 in the thickness direction of the battery body 1 b overlap with each other.
  • the first sub-tab 131 and the third sub-tab 141 are disposed between the second sub-tab 132 and the fourth sub-tab 142 .
  • the first pole piece P1 and the third pole piece P3 are coated with The electrode materials coated on the second pole piece P2 and the fourth pole piece P4 are different.
  • the electrode materials coated on the first pole piece P1 and the third pole piece P3 are the same, and the second pole piece P2 and the fourth pole are coated with the same electrode material.
  • the electrode material coated on sheet P4 is the same.
  • the battery body 1b provided by the present application can replace the battery body 1a shown in FIG. 8 to form another electronic device (not shown).
  • Embodiments of the present application also provide a charging control method, which can be applied to the charging control circuit of the electronic equipment mentioned in the above three embodiments for controlling battery charging.
  • the charging control method is applied to the battery 10 in the electronic device 100 as an example.
  • the charging control method is executed by the processor 21.
  • the charging control method can confirm the type of each bare cell in the battery 10 when the electronic device 100 is electrically connected to the power supply unit 200, and perform corresponding processing according to the confirmed type of the bare cell. charging strategy.
  • the control method provided by this application is suitable for the battery 10 provided by this application with different types of bare cells, and can realize independent charging control of several bare cells in the battery 10, effectively improving The charging speed is high, and while ensuring the charging safety of the battery 10, the performance of the battery 10 can also be fully utilized. It can be understood that when the battery 10 includes N different types of bare cells, the charging control method provided by the embodiment of the present application can correspond to the N different types of bare cells and execute corresponding N charging strategies respectively.
  • the electronic device 100 continues to include a first bare battery core 13 and a second bare battery core 14, and the first bare battery core 13 and the second bare battery core 14.
  • the battery core 14 executes the first charging strategy and the second charging strategy respectively as an example to illustrate the specific process of the charging control method.
  • the charging control method includes:
  • Step S1 Determine that the battery 10 is electrically connected to the power supply unit 200.
  • the processor 21 can determine or confirm whether the battery 10 is electrically connected to the power supply unit 200 by respectively detecting the voltages of the first charging port 223 and the second charging port 226. For example, when the processor 21 detects that the voltage at the first charging port 223 and/or the second charging port 226 is greater than a preset voltage value, it is determined that the battery 10 is electrically connected to the power supply unit 200 .
  • Step S2 Determine whether the bare cells in the battery 10 are first-type bare cells.
  • the first type of bare battery core is a fast charging core as an example for explanation.
  • the processor 21 may respectively determine the correspondence between the corresponding charging management chip (such as the first charging management chip 222 and the second charging management chip 225) and the protection board (such as the first protection board 31 and the second protection board 32).
  • the corresponding charging management chip such as the first charging management chip 222 and the second charging management chip 225
  • the protection board such as the first protection board 31 and the second protection board 32.
  • step S2 when the processor 21 determines that the bare cells in the battery 10 are the first type of bare cells, for example, when the processor 21 determines that the first bare cells 13 in the battery 10 are the first type of bare cells. , jump to step S3.
  • step S2 when the processor 21 determines that the bare cells in the battery 10 are not the first type of bare cells, for example, when the processor 21 determines that the first bare cells 13 in the battery 10 are not the first type of bare cells. , jump to step S4.
  • Step S3 Execute the first charging strategy.
  • Step S4 Determine whether the bare cells in the battery 10 are second type bare cells.
  • the second type of bare battery core is a high-energy-density and high-temperature-resistant battery core as an example.
  • step S4 when the processor 21 determines that the bare cell in the battery 10 is not the first type of bare cell, it will continue to determine whether it is the second type of bare cell. For example, when the processor 21 determines that the first bare cell 13 is not a first type of bare cell, the processor 21 will continue to determine whether the first bare cell 13 is a second type of bare cell. When the processor 21 determines that the bare battery core is the second type of bare battery core, it jumps to step S5; when the processor 21 determines that the bare battery core is not the second type of bare battery core, it jumps to step S6.
  • Step S5 Execute the second charging strategy.
  • Step S6 Constant current charging.
  • the processor 21 determines that the bare cells (such as the first bare cell 13 and the second bare cell 14) included in the battery 10 are neither the first type of bare cells nor the second type of bare cells.
  • the processor 21 controls the bare cells (such as the first bare cell 13 and the second bare cell 14) to perform constant current and constant voltage charging.
  • Constant current and constant voltage charging refers to charging the first bare cell 13 and the second bare cell 14 with a constant current in the first stage; when the voltage reaches a predetermined value, it switches to the second stage for constant voltage charging. At this time, the current Gradually decrease; when the charging current drops to zero, it means that the battery 10 is fully charged.
  • FIG 11 is a specific flow diagram of step S3 shown in Figure 10.
  • executing the first charging strategy in step S3 specifically includes steps S31-S35.
  • steps S31-S35 For convenience of description, in the embodiment of the present application, execution of the first charging strategy on the first bare cell 13 is taken as an example for description.
  • Step S31 Charge the first bare battery core 13 until the power of the first bare battery core 13 reaches 100%, then jump to step S32.
  • Step S32 Stop charging.
  • step S32 the processor 21 detects the power of the first bare battery core 13 through the first fuel gauge 241, and stops charging the first bare battery core 13 when the power of the first bare battery core 13 is 100%. Charge.
  • Step S33 Determine whether the power supply unit 200 is electrically connected to the battery 10.
  • step S33 when the judgment result in step S33 is yes, jump to step S34. When the judgment result in step S33 is no, jump to step S35, which ends.
  • step S33 the processor 21 determines that the power supply unit 200 is electrically connected to the battery 10 to decide to continue charging the first bare battery core 13 to maintain a high power level of the first bare battery core 13 .
  • the processor 21 can determine whether the power supply unit 200 is in place by outputting a detection signal to the corresponding first charging port 223 .
  • the processor 21 determines that the power supply unit 200 and the battery 10 maintain an electrical connection state.
  • the processor 21 detects that the voltage of the charging port is less than the preset voltage, the processor 21 determines that the power supply unit 200 is disconnected from the battery 10 . In this way, the processor 21 further jumps to step S35 to end charging.
  • Step S34 Execute the recharge strategy.
  • the recharging strategy refers to a charging control method performed when the power supply unit 200 is electrically connected to the battery 10 and the first bare battery core 13 is fully charged for the first time, and the first bare battery core 13 is charged again.
  • Step S35 End.
  • the processor 21 can also regularly detect the electrical connection status between the power supply unit 200 and the battery 10, and when detecting that the power supply unit 200 is disconnected from the battery 10, jump to step S35 to end charging.
  • step S31 also includes steps S311 to S314.
  • Step S311 Determine whether the power of the first bare battery core 13 is less than a first preset power threshold.
  • the first preset power threshold is, for example, 80% of the power of the first bare battery core 13 when it is fully charged.
  • the power preset threshold is a preset value that describes the power of the bare battery core.
  • the charging control method provided by this application sets multiple power preset thresholds to control the corresponding bare cell to switch to different charging stages when the power of the bare cell reaches the corresponding preset power threshold during the charging process.
  • the first power preset threshold is that after the battery 10 is connected to the power supply unit 200, during the first charging process of the first bare cell 13, the first bare cell 13 switches from the fast charging mode to the normal mode.
  • the power threshold value of charging mode is that after the battery 10 is connected to the power supply unit 200, during the first charging process of the first bare cell 13, the first bare cell 13 switches from the fast charging mode to the normal mode.
  • step S311 the processor 21 detects the power of the first bare battery core 13 through the corresponding first fuel gauge 241 .
  • the processor 21 detects the power of the first bare battery core 13 through the corresponding first fuel gauge 241 .
  • step S312 the processor 21 detects the power of the first bare battery core 13 through the corresponding first fuel gauge 241 .
  • Step S312 Control the first charging management chip 222 to charge the first bare battery core 13 in the fast charging mode, and detect the power of the first bare battery core 13 through the first fuel gauge 241.
  • the fast charging mode refers to a charging mode that charges with a current with a charging rate of 0.7C or above. In this way, step S312 can realize fast charging of the first bare cell 13 .
  • the charging rate is a measure of charging speed, which refers to the current value required when the battery is charged to its rated capacity within a specified time.
  • charging rate charging current/ Rated capacity
  • the processor 21 jumps to step S313.
  • Step S313 Control the first charging management chip 222 to charge the first bare battery core 13 in the normal charging mode, and detect the power of the first bare battery core 13 through the first fuel gauge 241.
  • the conventional charging mode refers to a charging mode in which the charging rate is below 0.7C.
  • Conventional charging mode can reduce damage to bare cells, reduce risks of lithium precipitation, overcharging, etc., maintain the health of bare cells, extend the service life of bare cells, and even reduce the risk of short circuit fire during the charging process of bare cells, improving Bare cell safety.
  • the charging speed can be reduced to ensure charging safety.
  • Step S314 Determine whether the power of the first bare battery core 13 is less than the power of the first bare battery core 13 when it is fully charged.
  • step S314 is used to determine whether the first bare cell 13 is full.
  • step S314 When the processor 21 determines in step S314 that the power of the first bare battery core 13 is less than the power of the first bare battery core 13 when it is fully charged, that is, when the first bare battery core 13 is not fully charged, the processor 21 jumps to step S314. S313, that is, charging the first bare battery cell 13 in the conventional charging mode. Until the processor 21 detects through the first fuel gauge 241 that the power of the first bare cell 13 is fully charged, that is, when the power reaches 100%, the processor 21 jumps to step S32.
  • the processor 21 When the processor 21 detects that the power of the first bare battery core 13 is 100%, that is, when the first bare battery core 13 is fully charged, the processor 21 controls the first charging management chip 222 to stop charging the first bare battery core 13 to ensure that Security of electronic device 100 .
  • Steps S311 to S313 trigger the fast charging mode when the power of the bare cell 13 is less than the first power preset threshold to increase the initial charging speed of the first bare cell 13 so that the power of the bare cell quickly reaches a full state. ; Also by triggering the regular charging mode when the power of the bare battery core is greater than or equal to the first power preset threshold, so that the power of the bare battery core reaches a full state. In this way, by designing the switching between the fast charging mode and the regular charging mode in steps S311 to S314, fast charging can be achieved while reducing the number of high-voltage fast charges of the bare battery core and extending the service life of the bare battery core.
  • the processor 21 After stopping charging, the processor 21 also controls the first bare battery core 13 to discharge to other power-consuming components of the electronic device 100 through the power management module 26 to provide power for each power-consuming component. Therefore, after stopping charging, the power of the first bare cell 13 will decrease.
  • the electronic device 100 may be charged for a long time. In one case, in order to ensure the battery life of the electronic device 100 in a high power consumption scenario, the electronic device 100 may be plugged in for a long time. For example, charge your phone while playing games on it. Another situation is to reduce the inconvenience caused by charging and unplugging operations. Therefore, charging is stopped whenever the battery 10 is charged to the full charge cutoff capacity, and charging is continued whenever the capacity of the battery 10 drops to the recharge capacity.
  • the charging control method provided by the embodiment of the present application also includes a recharging strategy for the first bare cell 13 .
  • the recharge strategy of step S34 includes steps S341 to step S345.
  • Step S341 Determine whether the duration of the power supply unit 200 being electrically connected to the battery 10 is greater than or equal to a preset duration threshold.
  • the processor 21 when the processor 21 determines that the battery 10 is electrically connected to the power supply unit 200, the processor 21 starts timing until the power supply unit 200 is disconnected from the battery 10, and ends the timing.
  • the duration preset threshold is a value indicating the duration of the power supply unit 200 being electrically connected to the battery 10 .
  • the preset duration threshold is used to determine whether the power supply unit 200 is in a short-term in-service state or a long-term in-service state. For example, when the time period for which the power supply unit 200 is electrically connected to the battery 10 is less than or equal to the preset threshold value, the processor 21 determines that the power supply unit 200 is in a short-term in-service state; when the time period for which the power supply unit 200 is electrically connected to the battery 10 is greater than the preset time period. When the threshold value is reached, the processor 21 determines that the power supply unit 200 is in a long-term in-position state.
  • the processor 21 determines that the duration of the power supply unit 200 being electrically connected to the battery 10 is less than or equal to a preset threshold (for example, 72 hours), the processor 21 jumps to step S342; when the processor 21 determines that the power supply unit 200 is electrically connected to the battery 10 When the duration connected to the battery 10 is greater than the preset duration threshold, the processor 21 jumps to step S343. In this way, it is thought that the first bare battery core 13 provides different recharging strategies according to different on-site states of the power supply unit 200 .
  • a preset threshold for example, 72 hours
  • Step S342 Determine whether the power of the first bare battery core 13 is less than a second preset power threshold.
  • the second preset power threshold is 90% of the power of the first bare battery core 13 when it is fully charged.
  • the second power preset threshold is the recharge power threshold of the first bare cell 13 when the power supply unit 200 is in a short-term in-service state. That is, when the processor 21 determines that the power supply unit 200 is currently in a short-term in-service state and the power of the first bare battery core 13 is less than the second power preset threshold, it charges the first bare battery core 13 again; when the processor 21 determines that the power supply When the unit 200 is currently in a short-term in-service state and the power of the first bare battery core 13 is greater than or equal to the second power preset threshold, the unit 200 continues to detect the power of the first bare battery core 13 until the power of the first bare battery core 13 is less than The first bare battery core 13 is charged only when the second power preset threshold is reached.
  • step S342 when the processor 21 determines that the power of the first bare battery core 13 is less than the second power preset threshold, it jumps to step S313 to charge the first bare battery core 13 in the regular charging mode, and Detect the electric power; when it is determined that the electric power of the first bare battery core 13 is greater than or equal to the second preset electric power threshold, return to step S341.
  • Steps S341 to S342 realize that when the power supply unit 200 is in a short-term in-service state and the power of the first bare cell 13 is less than the second power preset threshold, the first bare cell 13 is recharged in the normal charging mode until the first One bare cell 13 is fully charged. In this way, on the one hand, there is no need to reserve a margin when charging the first bare battery core 13, and the performance of the first bare battery core 13 can be fully utilized. On the other hand, the damage to the first bare battery core 13 can be reduced through the conventional charging mode, reducing the battery life. Risks such as lithium deposition and overcharging are eliminated, the health of the first bare battery core 13 is maintained, the service life of the first bare battery core 13 is extended, and the risk of short circuit fire of the first bare battery core 13 is even reduced.
  • the second power preset threshold is greater than the first power preset threshold.
  • Step S343 Determine whether the power of the first bare battery core 13 is less than a third preset power threshold.
  • the third preset power threshold is 60% of the power of the first bare battery core 13 when it is fully charged.
  • the third power preset threshold is the recharge power threshold of the first bare battery core 13 when the power supply unit 200 is in a long-term in-position state. That is, when the processor 21 determines that the power supply unit 200 is currently in a long-term in-position state (that is, the time the power supply unit 200 is electrically connected to the battery 10 is greater than the preset threshold of duration), and the power of the first bare battery core 13 is less than the third preset power threshold. when the first bare battery core 13 is charged again; when the processor 21 determines that the power supply unit 200 is currently in a long-term in-position state and the power of the first bare battery core 13 is greater than or equal to the third power preset threshold, it continues to detect the third power preset threshold. The power of a bare battery core 13 is not charged until the power of the first bare battery core 13 is less than the third power preset threshold.
  • step S343 when the power of the first bare cell 13 is less than the third power preset threshold, the processor 21 jumps to step S344. When the power of the first bare cell 13 is greater than or equal to the third power preset threshold, the processor 21 returns to step S341.
  • Step S344 Charge the first bare battery core 13 in the fast charging mode, and detect the power of the first bare battery core 13.
  • the fast charging mode in step S344 is the same as the fast charging mode mentioned in step S312, and will not be described again.
  • the third power preset threshold is smaller than the second power preset threshold.
  • the charging control method further includes step S345.
  • Step S345 Determine whether the power of the first bare battery core 13 is less than a fourth preset power threshold.
  • the fourth preset power threshold is, for example, 95% of the power of the first bare battery core 13 when it is fully charged.
  • the fourth power preset threshold is the power threshold at which the first bare cell 13 is in a long-term in-position state and stops charging after passing through the recharging stage of the fast charging mode. For example, in step S345, when the processor 21 confirms that the power of the first bare cell 13 is less than the fourth power preset threshold through the first fuel gauge 241, it returns to step S344 and continues charging in the fast charging mode, so that the A bare battery cell 13 is maintained in a high power state.
  • step S345 when the processor 21 confirms through the first fuel gauge 241 that the power of the first bare battery core 13 is greater than or equal to the fourth power preset threshold, it returns to step S32 to stop charging to reserve the first bare battery. The remaining power of the core 13 ensures the safety of the battery 10.
  • the above-mentioned steps S343 to S345 realize that the power supply unit 200 is in a long-term in-position state, and when the power of the first bare battery core 13 is less than the third power preset threshold, the first bare battery core 13 is recharged in the fast charging mode, and When the power of the recharged first bare cell 13 reaches the fourth preset power threshold, charging is stopped. In this way, on the one hand, when the power of the first bare cell 13 is less than the third power preset threshold, the charging speed is increased by charging in the fast charging mode; on the other hand, by strictly limiting the power threshold of recharging, the first bare cell 13 is reduced. Long-term high-voltage scenarios of cell 13 extend the service life of bare cells.
  • the fourth power preset threshold is greater than the second power preset threshold and less than 100%.
  • the processor 21 executes the second charging strategy on the second bare cell 14 .
  • the second type of bare battery core is, for example, a high energy density and high temperature resistant battery core.
  • the process of the second charging strategy is substantially the same as that of the first charging strategy shown in FIG. 12 .
  • the difference is that steps S31 and S34 in the second charging strategy are different from steps S31 and S34 in the first charging strategy.
  • the second charging strategy adopted by the second bare cell 14 since the second bare cell 14 is a high-energy-density and high-temperature-resistant cell, the second charging strategy adopted by the second bare cell 14 only uses the conventional charging mode for charging.
  • the conventional charging mode in the second charging strategy is the same as the conventional charging mode in the second charging strategy, and will not be described again here.
  • step S31 the second bare battery core 14 is charged in the conventional charging mode until the second bare battery core 14 is fully charged.
  • step S344 of the second charging strategy when the power supply unit 200 is in the long-term in-position state, the second bare battery core 14 is recharged in the normal charging mode, and when the power of the second bare battery core 14 is recharged to a level When the power threshold value (for example, the fifth preset power threshold value) is reached, charging of the second bare cell 14 is stopped.
  • the power threshold value for example, the fifth preset power threshold value
  • the second power preset threshold, the third power preset threshold, and the third power preset threshold in the charging control method shown in FIG. 12 can be adjusted.
  • the second power preset threshold is, for example, 95% of the power of the second bare battery core 14 when it is fully charged
  • the third power preset threshold is, for example, the power of the second bare battery core 14 when it is fully charged. 90%
  • the fourth power preset threshold in step S344 is replaced with a fifth power preset threshold
  • the fifth power preset threshold is, for example, 97% of the power when the second bare cell 14 is fully charged.
  • the power thresholds mentioned in the above embodiments are only used to illustrate specific charging strategies, but are not intended to limit the control method provided by the embodiments of the present application. In other embodiments, those skilled in the art can change the specific values of each power threshold mentioned above according to specific needs.
  • the above embodiment only illustrates the process in which the processor 21 controls the first bare battery core 13 and the second bare battery core 14 to charge using different charging strategies.
  • the processor 21 can also control the first bare battery core 13 and the second bare battery core 14 to discharge respectively, or control one of the first bare battery core 13 and the second bare battery core 14 to charge.
  • the other one of the first bare battery core 13 and the second bare battery core 14 supplies power to the electronic device 100 through the power management chip.
  • the processor 21 can control either one of the first bare battery core 13 and the second bare battery core 14 to discharge until the power of the bare battery core is exhausted, and then control the first bare battery core 13 and the second bare battery core 14 .
  • the other of the second bare cells 14 discharges; alternatively, the processor 21 can also control the first bare cells 13 and the second bare cells 14 to discharge in turn; alternatively, the processor 21 can also control the first bare cells 13 and the second bare cell 14 are discharged simultaneously.
  • the two charging strategies provided by the above embodiments can also be implemented separately in a battery with only one bare cell.
  • the electronic devices 100 and 100a and the charging control method provided by the embodiments of the present application set different types of bare cells in the same battery 10 and 10a and electrically connect the bare cells to different charging management chips to control the processor. Under the control of 21, different charging control methods are used for charging to achieve discrete control of different bare cells within the battery 10/10a, thereby matching the most reasonable charge and discharge management strategy for each bare cell. In this way, compared with existing electronic devices, electronic devices equipped with battery 10/10a can charge faster, can fully unleash battery performance, and can meet users' battery usage needs in different scenarios, such as charging in high-temperature scenarios. The battery is quickly charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电池控制电路、电子设备及充电控制方法。其中,电池控制电路用于控制电池充放电。电池控制电路包括处理器及一条或多条充电链路。电池包括一个或多个裸电芯。充电链路与裸电芯和处理器分别电连接。处理器根据裸电芯的类型确定充电链路执行的充电策略。上述设计通过在同一电池内集成若干裸电芯,以使不同的裸电芯具备独立的充放电功能,可充分发挥电池性能。

Description

电池控制电路、电子设备及充电控制方法
相关申请的交叉引用
本申请要求在2022-04-08提交中国专利局、申请号为202210369450.2、申请名称为“电池控制电路、电子设备及充电控制方法”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池控制电路、电子设备及充电控制方法。
背景技术
现有移动终端中即使采用多个电池(例如多个电池串联或多个电池并联等方式)进行充放电,多个电池通常只能采用同一充电方式进行充电,且可能存在严重的偏流、偏压问题。
另外,为保证电池安全,对电池一致性要求极高,通常需要对电池进行严格的筛选,并且需要在电池充电时预留部分余量,导致电池性能无法充分发挥。
发明内容
有鉴于此,本申请实施例提供一种电池控制电路、充电控制方法及电子设备,以解决上述至少一问题。
本申请第一方面提供一种电池控制电路,用于控制电池充放电,包括处理器及一条或多条充电链路。其中,电池包括一个或多个裸电芯。充电链路与裸电芯和处理器分别电连接,处理器根据裸电芯的类型确定充电链路执行的充电策略。
上述设计中,对应包括一个或多个裸电芯的电池,提供包括一条或多条充电链路的电池控制电路,且通过处理器根据裸电芯的类型确定充电链路执行的充电策略,从而减少传统的串并联电池出现的偏流、偏压问题,同时还可充分发挥电池性能。
在一种可能的设计中,充电链路包括充电管理芯片,充电管理芯片电连接至处理器和裸电芯。处理器控制充电管理芯片处理充电链路的输入电流及输入电压,向裸电芯输出充电电流及充电电压。
上述设计中,通过在充电链路中设置充电管理芯片,以通过充电管理芯片对每一充电链路的输入电路及输入电压进行处理,以为对应的裸电芯提供合适的充电电流及充电电压。
在一种可能的设计中,电池控制电路还包括充电端口。充电端口一端用于电连接至供电单元,以接收供电单元输出的输入电流及输入电压。充电端口另一端电连接至充电管理芯片,以将输入电流及输入电压输出至充电管理芯片;处理器电连接至充电端口,检测充电端口的电压变化,以确定电池控制电路与供电单元的电连接状态。
上述设计中,通过处理器电连接至充电端口,以确定电池与供电单元的电连接状态。
在一种可能的设计中,充电链路与裸电芯的数量相同,充电链路与裸电芯一一对应电连 接。
上述设计中,通过充电链路与裸电芯一一对应连接,以实现对每一裸电芯的独立充放电控制,可充分发挥每一裸电芯的性能。
在一种可能的设计中,电池控制电路还包括电量计。电量计电连接于裸电芯与处理器之间,处理器通过电量计监测对应的裸电芯的电压、电流及/或电量,并根据监测结果控制对应的充电链路的充电过程。
上述设计中,通过设置电量计,以实现处理器对每一裸电芯的电压、电流及/或电量的监测。
在一种可能的设计中,电池还包括若干保护板。保护板电连接至裸电芯。保护板包括存储单元,用于存储对应连接的裸电芯的类型的信息。充电管理芯片通过保护板电连接至对应的裸电芯,处理器通过充电管理芯片与保护板之间的通信,以接收包括信息的反馈信号,从而确认每一裸电芯的类型。
在一种可能的设计中,保护板设置有射频芯片,射频芯片与存储单元电连接。充电管理芯片设置有射频识别电路。处理器通过射频识别电路与射频芯片之间的通信,以接收反馈信号。
上述设计中,通过保护板上设置存储单元或射频芯片,使得处理器通过充电管理芯片与对应的保护板之间的通信,确认对应的裸电芯的类型。
在一种可能的设计中,电池控制电路还包括电源管理模块。电源管理模块电连接于各裸电芯与处理器之间,处理器通过电源管理模块控制裸电芯放电。
上述设计中,通过在电池控制电路中设置电源管理模块,以实现处理器控制裸电芯放电。
本申请第二方面还提供一种电子设备,包括电池。电池包括若干裸电芯。电子设备还包括如上任一项的电池控制电路,用于控制电池充放电。
本申请第三方面一种充电控制方法,用于控制电池充电。充电控制方法应用于电池控制电路,电池包括若干裸电芯,充电控制方法包括:
当确定电池电连接至供电单元时,确认电池中的若干裸电芯的类型;
根据确认的若干裸电芯的类型分别执行对应的充电策略。
上述设计中,通过确定电池中的若干裸电芯的电芯类型,以根据确认的裸电芯的类型,分别执行对应的充电策略,以充分发挥每一裸电芯的性能。
在一种可能的设计中,充电策略包括:对裸电芯充电,直到裸电芯充满;停止对裸电芯充电;确定供电单元电连接至电池;对裸电芯执行复充策略。
上述设计中,通过在确认供电单元与电池保持电连接时,执行复充策略,以使裸电芯的电量保持充满状态。
在一种可能的设计中,当确认裸电芯为第一类裸电芯时,所述对裸电芯充电,直到裸电芯充满包括:
当裸电芯的电量小于第一电量预设阈值时,以快速充电模式为裸电芯充电,直至裸电芯充满;
当裸电芯的电量大于或等于第一电量预设阈值时,以常规充电模式为裸电芯充电,直至裸电芯充满。
上述设计中,通过在裸电芯的电量小于第一电量预设阈值时,触发快速充电模式,以使 裸电芯在首次充电时,快速达到充满状态;还通过在裸电芯的电量大于或等于第一电量预设阈值时,触发常规充电模式,以保证裸电芯安全充电。如此,通过快速充电模式与常规充电模式的切换,可降低裸电芯的高压快充次数,延长裸电芯的使用寿命。
在一种可能的设计中,当确认裸电芯为第二类裸电芯时,所述对裸电芯充电,直到裸电芯充满包括:以常规充电模式对裸电芯进行充电,直至裸电芯充满。
上述设计中,对应第二裸电芯的类型,通过常规充电模式,以使裸电芯在首次充电时安全达到充满状态。
在一种可能的设计中,所述对裸电芯执行复充策略包括:
当供电单元电连接至裸电芯的时长小于或等于时长预设阈值时,判断裸电芯的电量是否小于第二电量预设阈值;其中,
当裸电芯的电量大于或等于第二电量预设阈值时,继续判断供电单元电连接至裸电芯的时长是否大于时长预设阈值,直至供电单元电连接至裸电芯的时长大于时长预设阈值;
当裸电芯的电量小于第二电量预设阈值时,以常规充电模式为裸电芯充电,直至裸电芯充满,执行复充策略;或直至供电单元与电池断开,结束充电流程。
上述设计中,通过在供电单元处于短期在位状态,且裸电芯的电量小于第二电量预设阈值时,以常规充电模式对裸电芯进行复充,可以减小裸电芯损伤,降低析锂、过充等风险,保持裸电芯健康状态,延长裸电芯的使用寿命,甚至降低裸电芯的短路起火风险。
在一种可能的设计中,当确认裸电芯为第一类裸电芯时,对裸电芯执行复充策略还包括:
当供电单元电连接至裸电芯的时长大于时长预设阈值,判断裸电芯的电量是否小于第三电量预设阈值;
当裸电芯的电量小于第三电量预设阈值时,以快速充电模式对裸电芯进行充电,并检测电量;
当裸电芯的电量小于第四电量预设阈值时,继续以快速充电模式对裸电芯充电,直至裸电芯的电量大于或等于第四电量预设阈值;
当裸电芯的电量大于或等于第四电量预设阈值时,停止对裸电芯充电,执行复充策略,或直至供电单元与电池断开,结束充电流程。
上述设计中,通过在供电单元处于长期在位状态,且裸电芯的电量小于第三电量预设阈值时,以快速充电模式对裸电芯进行复充,并复充至裸电芯的电量达到第四电量预设阈值时,停止充电。如此,一方面通过在裸电芯的电量小于第三电量预设阈值时,以快速充电模式充电,从而提高充电速度;另一方面在裸电芯的电量等于第四电量预设阈值时,停止充电,减少裸电芯的长期高压场景,延长裸电芯的使用寿命。
在一种可能的设计中,充电控制方法还包括:
在一种可能的设计中,当确认裸电芯为第二类裸电芯时,对裸电芯执行复充策略还包括:
当供电单元电连接至裸电芯的时长大于时长预设阈值时,判断裸电芯的电量是否小于第三电量预设阈值;
当裸电芯的电量小于第三电量预设阈值时,以常规充电模式对裸电芯进行充电;
当裸电芯的电量小于第五电量预设阈值时,继续以常规充电模式对裸电芯进行充电,直至裸电芯的电量大于或等于第五电量预设阈值;
当裸电芯的电量大于或等于第五电量预设阈值时,停止对裸电芯充电,并执行复充策略, 或直至供电单元与电池断开,结束充电流程。
上述设计中,通过常规充电模式对裸电芯进行复充,并复充至裸电芯的电量达到第五电量预设阈值时,停止充电。如此,一方面通过在裸电芯的电量小于第三电量预设阈值时,以常规充电模式充电,保持裸电芯的高电量状态;另一方面在裸电芯的电量等于第五电量预设阈值时,停止充电,减少裸电芯的长期高压场景,延长裸电芯的使用寿命。
当供电单元电连接至裸电芯的时长大于时长预设阈值,且裸电芯的电量大于或等于第三电量预设阈值时,判断供电单元电连接至裸电芯的时长是否大于时长预设阈值,直至裸电芯的电量小于第三电量预设阈值。
上述设计中,通过设置时长预设阈值及第三电量预设阈值,以在供电单元处于长期在位状态,且裸电芯的电量小于第三电量预设阈值时才对裸电芯充电,如此,可降低裸电芯高压充电的次数,延长裸电芯的使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的电子设备的示意图;
图2为图1所示的电池的立体示意图;
图3为图2所示的电池本体的部分拆解示意图;
图4为图3所示电池本体的结构示意图;
图5为图4所示电池与保护板的连接示意图;
图6为本申请实施例提供的电子设备与供电单元连接的功能框图;
图7为本申请另一实施例提供的电池的部分拆解示意图;
图8为本申请另一实施例提供的电子设备与供电单元连接的功能框图;
图9为本申请另一实施例提供的电池本体的部分拆解示意图;
图10为本申请实施例提供的电池控制方法的流程示意图;
图11为图10所示的步骤S3的流程示意图;
图12为图11所示的步骤S31至步骤S35的流程示意图。
主要元件符号说明:
供电单元200;电子设备100、100a;电池10、10a;电池本体1、1a、1b;壳体11;
裸电芯12;第一裸电芯13、13a、13b;隔膜S;第一极片P1;第二极片P2;
第一子极耳131;第二子极耳132;第一极耳134、134a;第二极耳135、135a;
第一极片组合C1;第三极片组合C3;第二裸电芯14、14a、14b;第三极片P3;
第四极片P4;第三子极耳141;第四子极耳142;第三极耳144、144a;第四极耳145;
第二极片组合C2;第四极片组合C4;电池控制电路2、2a;处理器21;充电链路22;
第一充电链路221;第一充电管理芯片222;第一充电端口223;第一过压保护电路231;
第一电量计241;第二充电链路224;第二充电管理芯片225;第二充电端口226;
第二过压保护电路232;第二电量计242;电量计240;连接器25;电源管理模块26;
保护板3;第一保护板31;第二保护板32;第三保护板33。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本申请实施例中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
电池广泛应用于电子设备中,为电子设备提供电量。随着电子设备的性能越来越强,电池的耗电速度也越来越快;随着电子设备的应用场景越来越多,具有单一特性的电池不能很好地满足用户的需求。现有的电子设备中,为了提高电子设备的续航能力,通常采用同容量、同材料的多个电池串联及/或并联使用,且多个电池也只能采用同一充电方式进行充电,以降低电池充电过程中偏流、偏压等问题的发生,从而降低对电池寿命的影响。显然,现有的多电池串联及/或并联使用的方案,虽然能提高电池容量,提升电池的续航能力,但单一的电池特性及充电方式,并不能很好地同时满足用户多场景使用及快充的需求。
为此,本申请实施例提供电池、电子设备及充电控制方法,且电池具有不同特性,可充分发挥电池性能,同时满足用户多场景使用及快速充电的需求。
请参阅图1,本申请实施例提供一种电子设备100,包括互相电连接的电池10及电池控制电路2。其中,电子设备100包括,但不限于,手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、销售点(Point of sales,POS)机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响/耳机、车载设备、行车记录仪、安防设备或医疗设备等包括电池的移动终端或固定终端。
本申请实施例中,对电子设备100的具体形式不做特殊限制,仅以手机为例来说明电子设备100如何实现实施例中的具体技术方案。
电池10用于向电子设备100内的用电器件提供电量。具体的,用电器件包括但不限于显示屏、摄像头模组、扬声器、SIM模块中的一种或者多种,在此不做具体限定。
电池控制电路2用于控制电池10进行充放电。
请继续参阅图2,电池10包括电池本体1及保护板3。
其中,请继续参阅图3,电池本体1包括壳体11及若干裸电芯12。壳体11用于包覆裸电芯12,且封装有电解液。如此,裸电芯12浸润在电解液中。壳体11一方面用于收容裸电芯12及电解液,另一方面还用于保护裸电芯12,降低裸电芯12因撞击或刮擦造成的电芯短路起火风险。本申请不对壳体11的材料进行限制,例如,壳体11包括但不限于铝塑膜和钢壳。
在一些实施例中,若干裸电芯12中,各个裸电芯的结构、组分材料、材料比例、制造工艺及极片设计等设计参数可以全部相同,亦可以在上述五者之中的任一种不同。即,在电池本体1中,若干裸电芯12可以相同,亦可以不同。请继续参阅图4,在本申请实施例中,并不限定壳体11内裸电芯12的数量,为清楚描述,如图3所示,以电池本体1的若干裸电芯12包括两个裸电芯,例如第一裸电芯13和第二裸电芯14为例进行说明。
本申请不对各裸电芯12的结构进行限制。例如,第一裸电芯13可以是叠片式结构或卷绕式结构;第二裸电芯14可以为叠片式结构或卷绕式结构。如图3所示,在本申请实施例中,以第一裸电芯13与第二裸电芯14均为叠片式结构为例加以说明。
在本申请实施例中,第一裸电芯13与第二裸电芯14浸润在同一种电解液中,其中,第一裸电芯13与第二裸电芯14的电芯类型不同。例如,第一裸电芯13为第一类裸电芯,第二裸电芯14为第二类裸电芯。示例的,第一类裸电芯可以为快充电芯。第二类裸电芯可以为高能量密度耐高温电芯。其中,快充电芯为具备快速充电能力的电芯,是指可以实现倍率(C率)不低于预设阈值的充电过程的电芯。预设阈值通常大于0.7C。高能量密度耐高温电芯是指具有较高体积能量密度或质量能量密度且能在高温下长期稳定工作的电芯。高能量密度一般指体积能量密度大于600Wh/L,耐高温指代电芯能够在30℃以上温度持续稳定工作。
示例的,第一裸电芯13由若干第一极片组合C1层叠设置形成。其中,相邻的第一极片组合C1之间还设置有隔膜S。每一第一极片组合C1包括若干第一极片P1、隔膜S及第二极片P2。其中,隔膜S设置于相邻的第一极片P1与第二极片P2之间,用于防止第一极片P1与第二极片P2之间发生短路。
第一极片P1与第二极片P2的极性相反。第一极片P1和第二极片P2均包括集流体以及涂覆于集流体上的电极材料(图未示),且第一极片P1和第二极片P2上的电极材料不同。如此,第一裸电芯13可通过第一极片P1和第二极片P2上的电极材料产生的电化学反应来储存电能或释放电能。
在本实施例中,每一第一极片P1分别对应连接有第一子极耳131,每一第二极片P2分别对应连接有第二子极耳132。其中,第一子极耳131及第二子极耳132的一端分别与相应的第一极片P1及第二极片P2连接,另一端朝向电池本体1外侧的方向延伸。
由于相应的子极耳(例如第一子极耳131或第二子极耳132)分别连接至对应的极片(例如第一极片P1或第二极片P2),因此,相应的子极耳与对应的极片的极性相同。例如,第一 子极耳131与第一极片P1的极性相同,第二子极耳132与第二极片P2的极性相同。
另外,由于对应的极片(例如第一极片P1及第二极片P2)的极性相反,因此第一子极耳131与第二子极耳132的极性相反。
请参图4,在本申请实施例中,第一裸电芯13中的第一子极耳131互相电连接,以形成第一极耳134。第一裸电芯13中的第二子极耳132互相电连接,以形成第二极耳135。第一极耳134及第二极耳135分别用于引出第一裸电芯13的正极及负极,以充当第一裸电芯13充放电时的接触点。
如图3所示,类似地,在本申请实施例中,第二裸电芯14由若干第二极片组合C2层叠设置形成。其中,相邻的第二极片组合C2之间还设置有隔膜S。每一第二极片组合C2包括第三极片P3、隔膜S及第四极片P4。每一第三极片P3分别对应连接有第三子极耳141,每一第四极片P4分别对应连接有第四子极耳142。其中,第三子极耳141及第四子极耳142的一端分别与相应的第三极片P3及第四极片P4连接,另一端朝向电池本体1外侧的方向延伸。第三子极耳141与第三极片P3的极性相同,第四子极耳142与第四极片P4的极性相同。第三子极耳141的极性与第四子极耳142的极性相反。在本申请实施例中,第三子极耳141为负极极耳,第四子极耳142为正极极耳。
请参图4,在本申请实施例中,第二裸电芯14中的第三子极耳141互相电连接,以形成第三极耳144。第二裸电芯14中的第四子极耳142互相电连接,以形成第四极耳145。第三极耳144及第四极耳145分别用于引出第二裸电芯14的负极及正极,以充当第二裸电芯14充放电时的接触点。
如图4所示,第一极耳134,第二极耳135,第三极耳144及第四极耳145均从壳体11露出。在本申请实施例中,第一极耳134、第二极耳135、第三极耳144及第四极耳145均从壳体11的同一侧露出。其中,第一极耳134靠近第二极耳135设置。第三极耳144靠近第四极耳145设置。且第一极耳134与第二极耳135共同形成第一裸电芯13的充放电端口。第三极耳144与第四极耳145共同形成第二裸电芯14的充放电端口。如此,第一裸电芯13及第二裸电芯14可分别独立进行充电或独立进行放电。
在本申请实施例中,第一裸电芯13与第二裸电芯14直接重叠设置,如此,相邻的第一极片组合C1与第二极片组合C2之间还设置有隔膜S。
在其他实施例中,第一裸电芯13及第二裸电芯14亦可分别外覆绝缘壳体,以分隔第一裸电芯13及第二裸电芯14。
在其他实施例中,第一裸电芯13亦可与第二裸电芯14的设计体系相同,仅极耳位置存在差异。其中,所述体系设计相同是指第一裸电芯13与第二裸电芯14的正极极片的材料、压实密度、涂布重量等设计参数均保持一致。第一裸电芯13与第二裸电芯14的负极极片也采用一致的设计。如此,第一裸电芯13与第二裸电芯14的设计容量及特性也相同。
请继续参阅图5,保护板3为集成有采样电阻和电流保险器的电路板。若干保护板3设置于电池本体1的壳体11的表面,并与设置于壳体11外的极耳电连接,用于降低电池出现过充、过放、过流、短路及超高温充电等的概率。
在本实施例中,保护板3的数量与裸电芯的数量对应设置。例如,在本申请实施例中,保护板3的数量为两个,例如,包括第一保护板31及第二保护板32。第一保护板31对应电连接至第一裸电芯13。第二保护板32对应电连接至第二裸电芯14。
其中,第一保护板31一端电连接至第一裸电芯13的第一极耳133及第二极耳135,另一端用于接收电能并经由第一极耳133及第二极耳135传递至第一裸电芯13;或第一裸电芯13经由第一保护板31向外释放电能。
第二保护板32一端电连接至第二裸电芯14的第三极耳144及第四极耳145,用于接收电能并经由第三极耳144及第四极耳145传递至第二裸电芯14;或第二裸电芯14经由第二保护板32向外释放电能。
请继续参阅图6,图6为电子设备100与供电单元200连接时的功能框图。其中,电池控制电路2一端电连接至供电单元200,另一端通过保护板(例如第一保护板31及第二保护板32)电连接至电池本体1,用于实现对电池本体1的充电管理,以及对电池本体1的容量、循环次数、健康状态等参数的检测。
其中,供电单元200用于输出直流电压。在一些实施例中,供电单元200可以是带有适配器的有线充电器,或移动电源等。
具体地,如图6所示,在一些实施例中,电池控制电路2包括处理器21,及若干充电链路22。若干充电链路22可以是一条充电链路或多条充电链路。在本申请实施例中,若干充电链路22的数量与若干裸电芯12的数量相同,且若干充电链路22与若干裸电芯12一一对应电连接。处理器21电连接至每一充电链路,以根据每一裸电芯的类型分别控制每一充电链路分别执行不同的充电策略。若干充电链路22一端电连接至供电单元200,另一端分别通过对应的保护板电连接至对应的裸电芯。如此,每一裸电芯(例如第一裸电芯13及第二裸电芯14)通过对应的保护板(例如第一保护板31及第二保护板32)及充电链路22(例如第一充电链路221与第二充电链路224)与供电单元200电连接,从而接收供电单元200提供的电能。
在本申请实施例中,若干充电链路22包括第一充电链路221及第二充电链路224。其中,第一充电链路221至少包括第一充电管理芯片222及第一充电端口223。第一充电管理芯片222一端通过第一保护板31电连接至第一裸电芯13。第一充电端口223一端用于电连接至供电单元200,以接收供电单元200输出的输入电流及输入电压。第一充电端口223另一端电连接至第一充电管理芯片222,以将接收到的输入电流及输入电压输入至第一充电管理芯片222。
第一充电管理芯片222还电连接至处理器21。如此,第一充电管理芯片222在处理器21的控制下,通过第一充电端口223接收供电单元200输入的电压及电流后,对输入电压及输入电流进行处理,以输出充电电压及充电电流至第一裸电芯,从而实现安全高效的充电。例如,在一些实施例中,供电单元200电连接至第一充电端口223后,向第一充电端口223输入的最高充电电压为10V,输入的最大充电电流为5A。第一充电管理芯片222在处理器21的控制下,用于将10V的最高充电电压降低至5V,并将5V的最大充电电流提高至10A,以使得充电电压及充电电流匹配第一裸电芯13的安规,降低电池本体1的安全风险。
第一充电端口223还电连接至处理器21。如此,处理器21通过检测第一充电端口223的电压变化,确定电池控制电路2中的第一充电链路221与供电单元200的电连接状态。也就是说,处理器21通过检测第一充电端口223的电压变化,以确定供电单元200与电池10的电连接状态。
第一充电端口223可以是符合通用串行总线(universal serial bus,USB)标准规范的接口的 USB接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等,在此不作具体限定。对应于第一充电端口223,供电单元200亦可以是支持通用串行总线标准规范的设备。
第二充电链路224包括第二充电管理芯片225及第二充电端口226。第二充电管理芯片225一端通过第二保护板32电连接至第二裸电芯14。第二充电管理芯片225的另一端通过第二充电端口226电连接至供电单元200。
第二充电链路224的结构与第一充电链路221的结构大致相同,且其元件功能及工作原理与第一充电链路221类似,具体可参阅第一充电链路221的描述,在此不再赘述。
第一充电端口223与第二充电端口226均电连接至处理器21。处理器21可通过检测第一充电端口223及第二充电端口226的电压变化,以确定电子设备100是否连接至对应的供电单元200。处理器21还电连接至第一充电管理芯片222及第二充电管理芯片225,用以分别通过第一充电管理芯片222及第二充电管理芯片225控制第一裸电芯13及第二裸电芯14进行充电。
电池控制电路2的工作原理大致如下:
请继续参阅图6,当供电单元200电连接至电子设备100时,供电单元200电连接至第一充电端口223及第二充电端口226,处理器21检测到第一充电端口223及第二充电端口226的电压产生变化。如此,处理器21通过第一充电端口223及第二充电端口226与供电单元200通信,以确认各充电参数,例如最高输入电压及最高输入电流等参数。然后,处理器21控制第一充电管理芯片222及第二充电管理芯片225分别对输入电压及输入电流进行相应的处理,以实现对第一裸电芯13及第二裸电芯14的独立充电。
本申请实施例提供的电池10,通过在同一电池本体1内集成若干不同裸电芯,使得电池10具有不同的特性,如此,电池10可满足用户在至少两种场景下的使用需求。在电池10中,不同的裸电芯还分别引出相应的正负极极耳作为充放电的接触点,以使不同的裸电芯具备独立的充放电功能。进一步地,本申请提供的电池控制电路2中的第一充电链路221及第二充电链路224分别对应连接至第一裸电芯13及第二裸电芯14的极耳,以根据第一裸电芯13及第二裸电芯14的不同的特性同时进行充电,从而在实现快速充电的同时,充分发挥电池10的性能。
在一些实施例中,在充电之前,处理器21还可以通过第一充电管理芯片222及第二充电管理芯片225分别确认第一裸电芯13及第二裸电芯14的电芯类型,以根据第一裸电芯13与第二裸电芯14各自的电芯类型,分别执行相应的充电策略。
例如,在一些实施例中,与第一裸电芯13对应连接的第一保护板31及与第二裸电芯14对应连接的第二保护板32上分别设置有存储单元(图未示)。存储单元用于存储有表示第一裸电芯13或第二裸电芯14的裸电芯的类型的信息。处理器21检测到供电单元200电连接至电子设备100后,分别通过第一充电管理芯片222及第二充电管理芯片225与对应的第一保护板31及第二保护板32通信,从而处理器21接收包括该信息的反馈信号,以确认与第一充电管理芯片222及第二充电管理芯片225分别对应连接的第一裸电芯13及第二裸电芯14的电芯类型。
具体地,在一些实施例中,处理器21分别通过第一充电管理芯片222及第二充电管理芯片225输出检测信号至第一保护板31及第二保护板32,第一保护板31及第二保护板32接 收到相应的检测信号后,分别输出反馈信号至处理器21。如此,处理器21通过接收到的反馈信号确认第一裸电芯13及第二裸电芯14相应的裸电芯类型,从而通过相应的充电链路分别为第一裸电芯13及第二裸电芯14匹配相应的充电控制方法。
又例如,在一些实施例中,第一保护板31及第二保护板32上分别设置有射频芯片,且两射频芯片分别与第一保护板31及第二保护板32上的存储单元电连接。第一充电管理芯片222及第二充电管理芯片225上分别设置有相应的射频识别电路。如此,处理器21可通过第一充电管理芯片222及第二充电管理芯片225上的射频识别电路分别与第一保护板31及第二保护板32的射频芯片通信,以接收射频芯片输出的包括对应的裸电芯类型的信息的反馈信号,确认第一裸电芯13及第二裸电芯14的裸电芯类型,从而匹配相应的充电控制方法。
如此,电池控制电路2可控制第一裸电芯13及第二裸电芯14分别适配不同的充电参数进行充电,例如第一裸电芯13及第二裸电芯14对应的可以是不同的充电电流、不同的充电倍率、不同的充电时间及/或不同的充电截止电压。示例的,在本申请实施例中,第一裸电芯13为快充电芯,第二裸电芯14为高能量密度且耐高温电芯。第一裸电芯13及第二裸电芯14分别通过第一充电链路221及第二充电链路224,独立地以不同的充电电流进行充电。其中,第一裸电芯13以大于0.7C的充电倍率的电流进行充电,第二裸电芯14以小于0.7C的充电倍率的电流进行充电,且第二裸电芯14可在30摄氏度以上温度稳定工作。如此,电池10既可满足用户在较高温度场景下的电池使用需求,又可满足用户的快充需求。
请再次参阅图6,在一些实施例中,电池控制电路2还包括若干过压保护电路及若干电量计。其中,若干过压保护电路及电量计的数量均分别与裸电芯的数量对应。例如,电池控制电路2包括两个过压保护电路及两个电量计。每一过压保护电路及电压计分别对应相应的充电链路设置。例如,第一过压保护电路231及第一电量计241对应第一充电链路221设置。第二过压保护电路232及第二电量计242对应第二充电链路224设置。
其中,第一过压保护电路231电连接于第一充电端口223与第一充电管理芯片222之间,用于防止电子器件免受瞬间高压的冲击。第一电量计241电连接于第一保护板31与处理器21之间。即第一电量计241电连接于电池10的第一裸电芯13与处理器21之间。如此,处理器21可通过第一电量计241测量第一裸电芯13的电压、电流及电量,并根据检测到的数据控制第一充电链路221的充电。
相应地,第二过压保护电路232及第二电量计242在第二充电链路224中的电连接关系及功能,与第一过压保护电路231及第一电量计241在第一充电链路221中的电连接关系及功能相同,在此不再赘述。
电池控制电路2中还包括存储器(图未示)。存储器中设置有对应于不同裸电芯类型的充电控制方法相关的指令。如此,处理器21可在确定第一裸电芯13与第二裸电芯14的电芯类型之后,从存储器中调取相应的指令,以调整供电单元200输入的电流及电压,从而控制第一裸电芯13及第二裸电芯14充电。
在一些申请实施例中,电池控制电路2中的第一充电端口223及第二充电端口226亦可集成为一共享充电端口。如此,通过共享充电端口电连接至供电单元200,即可同时为第一充电链路221及第二充电链路224提供充电电流。
在一些实施例中,电池控制电路2还包括电源管理模块26。电源管理模块26电连接于各裸电芯(例如第一裸电芯13及第二裸电芯14)与处理器21之间。处理器21通过电源管 理模块26控制电池本体1的各裸电芯向电子设备100的其他用电元件,例如内部存储器、显示屏、摄像头或无线通信模块等供电。
可以理解,本申请不对电池控制电路2的形成形式进行限制。在一些实施例中,电池控制电路2亦可集成为一控制芯片。
本申请实施例不对每一极片上的子极耳的数量进行限制,在另一些实施例中,本领域技术人员可根据实际需要,在每一极片上设置若干子极耳。
本申请实施例不对每一裸电芯(例如第一裸电芯13及第二裸电芯14)中的极片组合的数量进行限制。
在一些实施例中,当电池本体1中的若干裸电芯还分别包覆有壳体时,若干裸电芯可分别浸润在不同的电解液中。
请继续参阅图7,本申请还提供一种电池10a,包括电池本体1a及第三保护板33。其中,电池本体1a的结构与电池本体1的结构大致相同,例如电池本体1a亦包括第一裸电芯13及第二裸电芯14。电池本体1a的结构与电池本体1的结构的区别在于,电池本体1a包括第一极耳134a、第二极耳135a及第三极耳144a。即在本实施例中,电池本体1a的第一裸电芯13及第二裸电芯14共用一极耳,且第一裸电芯13及第二裸电芯14通过三个极耳形成两独立的充放电接触点。如此,电池本体1a相对电池本体1可进一步减少电池本体的复杂度,降低制造成本。
示例的,请再次参阅图3,在本申请实施例中,第一极耳134a与第三极耳144a的形成方式与电池本体1中第一极耳134与第三极耳144的形成方式相同。即第一极耳134a由第一裸电芯13的若干第一子极耳131互相电连接而形成。第三极耳144a由第二裸电芯14的若干第四子极耳142互相电连接而共同形成。第二极耳135a的形成方式与电池本体1中的第二极耳135的形成方式不同。具体地,第二极耳135a是由第一裸电芯13的若干第二子极耳132与第二裸电芯14的若干第三子极耳141互相电连接而共同形成。也就是说,在电池本体1a中,是将电池本体1中的第二极耳135与第三极耳144互相连接在一起而形成,使得第一裸电芯13及第二裸电芯14共用一个极耳,进而省略一个极耳。
请再次参阅图7,在本申请实施例中,第一极耳134a与第二极耳135a共同形成第一裸电芯13的充放电端口。第二极耳135a与第三极耳144a共同形成第二裸电芯14的充放电端口。
如图3所示,在本申请实施例中,第二子极耳132及第三子极耳141在电池本体1a的厚度方向上的投影互相对齐,以方便第二子极耳132与第三子极耳141互相电连接。
本申请不对电池10中的极耳的数量进行限制,仅需电池10中的极耳的数量大于等于3,以使得在电池10中至少形成两电芯。例如,在其他实施例中,电池10/10a亦可形成4个及4个以上的极耳。
可以理解,在本申请实施例中,对应于电池本体1a的设计,电池本体1a仅包括一个保护板,例如第三保护板33。如图8所示,第三保护板33一端通过电池控制电路2a电连接至供电单元200,另一端电连接至电池本体1a,以将供电单元200输入的充电电流输出至电池本体1a中的第一裸电芯13及第二裸电芯14。
请再次参阅图8,在本申请实施例中,第三保护板33与第一保护板31的结构大致相同。第三保护板33与第一保护板31的区别在于,第三保护板33对应连接至电池本体1a的三个 极耳。如此,电池本体1a通过第三保护板33共享第二极耳135a。
请继续参阅图8,本申请实施例还提供一种电子设备100a,包括如上所述的电池10a(即电池本体1a与第三保护板33)及电池控制电路2a。电池控制电路2a通过第三保护板33电连接至电池本体1a,以实现对电池本体1a中的第一裸电芯13及第二裸电芯14充放电过程的独立控制。可以理解,由于电池10a仅包括一个第三保护板33。因此,电池控制电路2a的电路结构亦与电池本体1中的电池控制电路2的电路结构不同。具体地,电池控制电路2a对应第三保护板33设置有连接器25。连接器25一端电连接至第三保护板33,另一端电连接至第一充电管理芯片222及第二充电管理芯片225。
电池控制电路2a与电池本体1中电池控制电路2的区别还在于,电池控制电路2a仅设置一个电量计,例如电量计240。处理器21可通过电量计240同时分别测量第一裸电芯13及第二裸电芯14的电压、电流及电量,并根据检测到的数据随时调整电池10a充电过程中的各项参数。如此,电子设备100a可进一步减少电子元件数量,缩减电子设备100a的体积,降低制造成本。
请继续参阅图9,本申请实施例还提供一种电池本体1b。电池本体1b与电池本体1a的结构大致相同,区别在于,电池本体1b包括层叠设置的若干极片组合,且若干极片组合中处于任意位置的至少一个极片组合可形成一裸电芯。其中,每一极片组合包括依次堆叠的第一极性极片、隔膜S及第二极性极片。第一极性极片与第二极性极片的极性相反。
可以理解,形成同一裸电芯的若干极片组合的第一极性子极耳互相电连接以形成第一极性极耳,形成同一裸电芯的若干极片组合的第二极性子极耳互相电连接以形成第二极性极耳,以使得第一极性极耳及第二极性极耳形成对应裸电芯的充放电接触点。
可以理解,本申请实施例提供的电池本体1b,相较于前两种电池本体(例如电池本体1及电池本体1a),可实现电池本体中的若干裸电芯的灵活设置。
示例的,如图9所示,电池本体1b包括若干第一极片组合C1及若干第二极片组合C2。其中,电池本体1b以第一极片组合C1及若干第二极片组合C2的顺序依次堆叠。且相邻的第一极片组合C1与第二极片组合C2之间还设置有隔膜S。若干第一极片组合C1形成第一裸电芯13b。若干第二极片组合C2形成第二裸电芯14b。
其中,第一极片组合C1包括第一极片P1、隔膜S及第二极片P2。第二极片组合C2包括第三极片P3、隔膜S及第四极片P4。第一极片P1及第三极片P3均为第一极性极片,例如正极极片。第二极片P2及第四极片P4均为第二极性极片,例如负极极片。如此,在本申请实施例中,若干间隔设置的第一极片组合C1形成第一裸电芯13b,若干间隔设置的第二极片组合C2形成第二裸电芯14b。
在本申请实施例中,电池本体1b亦形成有如图7所示的第一极耳134a、第二极耳135a及第三极耳144a。其中,请参阅图9,分别形成于若干第二极片P2上的若干第二子极耳132互相电连接,以共同形成电池本体1b的第一极耳134a。分别形成于若干第一极片P1上的若干第一子极耳131,与分别形成于若干第三极片P3上的若干第三子极耳141互相电连接,以共同形成电池本体1b的第二极耳135a。分别形成于若干第四极片P4上的第四子极耳142互相电连接,以共同形成电池本体1b的第三极耳144a。即在本申请实施例中,第一裸电芯13b与第二裸电芯14b共享正极极耳。
在本申请实施例中,第一子极耳131、第二子极耳132、第三子极耳141及第四子极耳142均设置于若干极片组合的同一侧。其中,若干第一子极耳131及若干第三子极耳141在电池本体1b的厚度方向上的投影互相重叠,若干第二子极耳132在电池本体1b的厚度方向上的投影互相重叠,若干第四子极耳142在电池本体1b的厚度方向上的投影互相重叠。且第一子极耳131及第三子极耳141设置于第二子极耳132与第四子极耳142之间。
可以理解,在如图9所示的电池本体1a中,当第一裸电芯13b与第二裸电芯14b的裸电芯类型不同时,第一极片P1与第三极片P3上涂覆的电极材料不同,第二极片P2与第四极片P4上涂覆的电极材料不同。当第一裸电芯13b与第二裸电芯14b的裸电芯类型相同时,第一极片P1与第三极片P3上涂覆的电极材料相同,第二极片P2与第四极片P4上涂覆的电极材料相同。
可以理解,本申请提供的电池本体1b可替换图8所示的电池本体1a,从而形成另一电子设备(图未示)。
本申请实施例还提供一种充电控制方法,可应用于上述3个实施例提及的电子设备的充电控制电路中,用于控制电池充电。在本申请实施例中,为描述方便,以充电控制方法应用于电子设备100中的电池10为例加以说明。
充电控制方法由处理器21执行,该充电控制方法可实现在电子设备100电连接至供电单元200时,确认电池10中的各裸电芯的类型,并根据确认的裸电芯的类型执行对应的充电策略。相较于现有的充电控制方法,本申请提供的控制方法适用于本申请提供的具有不同类型裸电芯的电池10,可实现对电池10中的若干裸电芯的独立充电控制,有效提高充电速度,且在保障电池10的充电安全的同时,还可充分发挥电池10的性能。可以理解,当电池10中包括N种不同类型的裸电芯时,本申请实施例提供的充电控制方法可对应N种不同类型的裸电芯,分别执行对应的N种充电策略。
示例的,请参阅图10,在本申请实施例中,为描述方便,继续以电子设备100包括第一裸电芯13及第二裸电芯14,且第一裸电芯13及第二裸电芯14分别执行第一充电策略及第二充电策略为例说明该充电控制方法的具体流程。
如图10所示,示例的,在本申请实施例中,充电控制方法包括:
步骤S1:确定电池10电连接至供电单元200。
与步骤S110相同,处理器21可通过分别检测第一充电端口223及第二充电端口226的电压来判断或确认电池10是否电连接至供电单元200。例如,当处理器21检测到第一充电端口223及/或第二充电端口226处的电压大于预设的电压值时,确定电池10电连接至供电单元200。
步骤S2:判断电池10中的裸电芯是否为第一类裸电芯。
在本实施例中,以第一类裸电芯是快充电芯为例进行说明。
步骤S110中,处理器21可分别通过对应的充电管理芯片(例如第一充电管理芯片222、第二充电管理芯片225)与保护板(例如第一保护板31及第二保护板32)确定对应的裸电芯的类型,具体内容请参电池本体1的相关描述,在此不再赘述。
在步骤S2中,当处理器21确定电池10中的裸电芯为第一类裸电芯时,例如当处理器21确定电池10中的第一裸电芯13为第一类裸电芯时,跳转至步骤S3。
在步骤S2中,当处理器21确定电池10中的裸电芯不是第一类裸电芯时,例如当处理器21确定电池10中的第一裸电芯13不是第一类裸电芯时,跳转至步骤S4。
步骤S3:执行第一充电策略。
步骤S4:判断电池10中的裸电芯是否为第二类裸电芯。
在本实施例中,以第二类裸电芯是高能量密度耐高温电芯为例进行说明。
在步骤S4中,当处理器21确定电池10中的裸电芯不是第一类裸电芯时,会继续判断其是否为第二类裸电芯。例如,当处理器21判断第一裸电芯13不是第一类裸电芯时,处理器21会继续判断第一裸电芯13是否为第二类裸电芯。当处理器21确定裸电芯为第二类裸电芯时,跳转至步骤S5;当处理器21确定裸电芯不是第二类裸电芯时,跳转至步骤S6。
步骤S5:执行第二充电策略。
步骤S6:恒流充电。
在本申请实施例中,当处理器21判断电池10中包括的裸电芯(例如第一裸电芯13及第二裸电芯14)既不是第一类裸电芯,也不是第二类裸电芯时,处理器21控制裸电芯(例如第一裸电芯13及第二裸电芯14)进行恒流恒压充电。
恒流恒压充电指的是第一阶段以恒定电流分别对第一裸电芯13及第二裸电芯14充电;当电压达到预定值时转入第二阶段进行恒压充电,此时电流逐渐减小;当充电电流达到下降到零时,表示电池10完全充满。
请继续参阅图11,图11为图10所示步骤S3的具体流程示意图。如图11所示,在本申请实施例中,步骤S3中的执行第一充电策略具体包括步骤S31-S35。为描述方便,在本申请实施例中,以对第一裸电芯13执行第一充电策略为例加以说明。
步骤S31:对第一裸电芯13充电,直到第一裸电芯13的电量为100%,跳转至步骤S32。
步骤S32:停止充电。
在步骤S32的执行过程中,处理器21通过第一电量计241检测第一裸电芯13的电量,并在第一裸电芯13的电量为100%时,停止对第一裸电芯13充电。
步骤S33:确定供电单元200是否电连接至电池10。
其中,当步骤S33中的判断结果为是时,跳转至步骤S34。当步骤S33中的判断结果为否时,跳转至步骤S35,即结束。
在步骤S33中,处理器21通过确定供电单元200电连接至电池10,以决定继续对第一裸电芯13继续充电,以维持第一裸电芯13的高电量。
在一些实施例中,处理器21可以通过输出检测信号至相应的第一充电端口223,以确定供电单元200是否在位。其中,当处理器21输出检测信号,并接收到相应的反馈信号时,处理器21确定供电单元200与电池10保持电连接状态。当处理器21检测到充电端口的电压小于预设的电压时,处理器21判断供电单元200与电池10断开。如此,处理器21进而跳转至步骤S35,结束充电。步骤S34:执行复充策略。
复充策略是指当供电单元200电连接至电池10且第一裸电芯13的电量第一次充满后,第一裸电芯13再次充电时执行的充电控制方法。
步骤S35:结束。
在整个充电过程中,处理器21还可定时检测供电单元200与电池10的电连接状态,并 在检测到供电单元200与电池10断开时,跳转至步骤S35,结束充电。
请一并参阅图12,图12示出图11所示的步骤S31的具体流程。在本申请实施例中,步骤S31还包括步骤S311至步骤S314。
步骤S311:判断第一裸电芯13的电量是否小于第一电量预设阈值,第一电量预设阈值例如为第一裸电芯13充满电时的电量的80%。
电量预设阈值是描述裸电芯电量的一个预设值。本申请提供的充电控制方法,通过设置多个电量预设阈值,以在充电过程中裸电芯的电量达到对应的电量预设阈值时,控制对应的裸电芯切换至不同的充电阶段。例如,在本申请实施例中,第一电量预设阈值为电池10连接至供电单元200后,第一裸电芯13首次充电的过程中,第一裸电芯13从快速充电模式切换至常规充电模式的电量门限值。
在步骤S311中,处理器21通过对应的第一电量计241检测第一裸电芯13的电量。其中,当第一裸电芯13的电量小于第一电量预设阈值时,跳转至步骤S312。当第一裸电芯13的电量大于或等于第一电量预设阈值时,跳转至步骤S313。
步骤S312:控制第一充电管理芯片222以快速充电模式为第一裸电芯13充电,并通过第一电量计241检测第一裸电芯13的电量。
在本申请实施例中,快速充电模式是指以充电倍率在0.7C及以上的电流进行充电的充电模式。如此,步骤S312可实现第一裸电芯13的快速充电。
可以理解,充电倍率是充电快慢的一种量度,指电池在规定的时间充电至其额定容量时所需要的电流值,充电倍率在数值上等于电池额定容量的倍数,即充电倍率=充电电流/额定容量,通常以字母C表示,这里的“/”表示除法符号。例如,在本申请实施例中,以第一裸电芯13的额定电量为1安培小时(ampere hour,Ah)为例,则第一裸电芯13以0.7C的充电倍率的电流进行充电时,则说明第一裸电芯13的充电电流为0.7安培(ampere,A)。当步骤S312中的第一裸电芯13的电量等于或大于第一电量预设阈值时,处理器21跳转至步骤S313。
步骤S313:控制第一充电管理芯片222以常规充电模式为第一裸电芯13充电,并通过第一电量计241检测第一裸电芯13的电量。
在本申请实施例中,常规充电模式是指充电倍率在0.7C以下的电流进行充电的充电模式。常规充电模式可以减小裸电芯损伤,降低析锂、过充等风险,保持裸电芯健康状态,延长裸电芯的使用寿命,甚至可降低裸电芯充电过程中的短路起火风险,提升裸电芯安全性。
以常规充电方式对第一裸电芯13进行充电,可通过降低充电速度以保证充电安全。
步骤S314:判断第一裸电芯13的电量是否小于第一裸电芯13充满电时的电量。
即步骤S314用于判断第一裸电芯13是否充满。
其中,当处理器21在步骤S314中确定第一裸电芯13的电量小于第一裸电芯13充满电时的电量,即第一裸电芯13未充满时,处理器21跳转至步骤S313,即以常规充电模式对第一裸电芯13充电。直至处理器21通过第一电量计241检测到第一裸电芯13的电量充满电,即电量达到100%时,处理器21跳转至步骤S32。
当处理器21检测到第一裸电芯13的电量为100%,即第一裸电芯13充满时,处理器21控制第一充电管理芯片222停止为第一裸电芯13充电,以保证电子设备100的安全性。
步骤S311至步骤S313通过在裸电芯的电量小于第一电量预设阈值时,触发快速充电模式,提升第一裸电芯13初次充电时的速度,以使裸电芯的电量快速达到充满状态;还通过在 裸电芯的电量大于或等于第一电量预设阈值时,触发常规充电模式,以使裸电芯的电量达到充满状态。如此,步骤S311至步骤S314通过设计快速充电模式与常规充电模式的切换,可在实现快速充电的同时,降低裸电芯的高压快充次数,延长裸电芯的使用寿命。
停止充电后,处理器21还通过电源管理模块26,控制第一裸电芯13放电至电子设备100的其他耗电元件,以为各耗电元件供电。因此,停止充电后,第一裸电芯13的电量将下降。然而,在实际中的一些场景下,可能存在电子设备100长时间充电的情况。一种情况,为了在高功耗场景下保证电子设备100的续航能力,可能会将电子设备100长时间插电。例如,边使用手机玩游戏边给手机充电。另一种情况是为了减少充电插拔操作带来的不便。因此,每当电池10充电至满充截止电量时则停止充电,以及每当电池10电量下降到复充电量时则继续充电。
然而,如果复充电量接近于完全充电容量,那么可能会导致电池电量快速到达复充门限并频繁复充,造成电池10依然长时间处于高电量或者高电压的状态。同时,由于复充中的充电转化效率会产生发热,进而会造成电池10的温度上升,加速电池老化失效,出现膨胀等安全风险。因此,本申请实施例提供的充电控制方法还包括第一裸电芯13的复充策略。
示例的,请再次参阅图12,在本申请实施例中,步骤S34的复充策略包括步骤S341至步骤S345。
步骤S341:判断供电单元200电连接至电池10的时长是否大于或等于时长预设阈值。
在本申请实施例中,当处理器21确定电池10电连接至供电单元200时,处理器21即开始计时直至供电单元200与电池10断开,结束计时。
时长预设阈值为一表示供电单元200电连接至电池10的时长的数值。在本申请实施例中,时长预设阈值用于判断供电单元200处于短期在位状态还是长期在位状态。例如,当供电单元200电连接至电池10的时长小于或等于时长预设阈值时,处理器21判断供电单元200处于短期在位状态;当供电单元200电连接至电池10的时长大于时长预设阈值时,处理器21判断供电单元200处于长期在位状态。
在本申请实施例中,为了尽量延长电池10的使用寿命及平衡充电安全及快速充电的需求,根据供电单元200的短期在位状态及长期在位状态,对应第一裸电芯13设置有不同的复充电量门限值及不同的复充策略。
示例的,当处理器21判断供电单元200电连接至电池10的时长小于或等于时长预设阈值(例如72小时)时,处理器21跳转至步骤S342;当处理器21判断供电单元200电连接至电池10的时长大于时长预设阈值时,处理器21跳转至步骤S343。如此,以为第一裸电芯13根据供电单元200不同的在位状态,提供不同的复充策略。
步骤S342:判断第一裸电芯13的电量是否小于第二电量预设阈值,例如第二电量预设阈值为第一裸电芯13充满时的电量的90%。
第二电量预设阈值为当供电单元200处于短期在位状态时,第一裸电芯13的复充电量门限值。即当处理器21判断供电单元200目前处于短期在位状态,且第一裸电芯13的电量小于第二电量预设阈值时,再次为第一裸电芯13充电;当处理器21判断供电单元200目前处于短期在位状态,且第一裸电芯13的电量大于或等于第二电量预设阈值时,继续检测第一裸电芯13的电量,直到第一裸电芯13的电量小于第二电量预设阈值才为第一裸电芯13充电。
示例的,在步骤S342中,当处理器21判断第一裸电芯13的电量小于第二电量预设阈值 时,跳转至步骤S313,以常规充电模式对第一裸电芯13充电,并检测电量;当判断第一裸电芯13的电量大于或等于第二电量预设阈值时,返回至步骤S341。
步骤S341至步骤S342实现在供电单元200处于短期在位状态,且第一裸电芯13的电量小于第二电量预设阈值时,以常规充电模式对第一裸电芯13进行复充直至第一裸电芯13充满。如此,一方面无需在第一裸电芯13充电时预留余量,可充分发挥第一裸电芯13的性能,另一方面通过常规充电模式可以减小第一裸电芯13损伤,降低析锂、过充等风险,保持第一裸电芯13健康状态,延长第一裸电芯13的使用寿命,甚至降低第一裸电芯13的短路起火风险。
在本实施例中,第二电量预设阈值大于第一电量预设阈值。
步骤S343:判断第一裸电芯13的电量是否小于第三电量预设阈值,例如第三电量预设阈值为第一裸电芯13充满时的电量的60%。
第三电量预设阈值为当供电单元200处于长期在位状态时,第一裸电芯13的复充电量门限值。即当处理器21判断供电单元200目前处于长期在位状态(即供电单元200电连接至电池10的时长大于时长预设阈值),且第一裸电芯13的电量小于第三电量预设阈值时,再次为第一裸电芯13充电;当处理器21判断供电单元200目前处于长期在位状态,且第一裸电芯13的电量大于或等于第三电量预设阈值时,继续检测第一裸电芯13的电量,直到第一裸电芯13的电量小于第三电量预设阈值才为第一裸电芯13充电。
示例的,在步骤S343中,当第一裸电芯13的电量小于第三电量预设阈值时,处理器21跳转至步骤S344。当第一裸电芯13的电量大于或等于第三电量预设阈值时,处理器21返回至步骤S341。
步骤S344:以快速充电模式对第一裸电芯13进行充电,并检测第一裸电芯13的电量。
在本申请实施例中,步骤S344的快速充电模式与步骤S312中提到的快速充电模式相同,再此不再赘述。
在本申请实施例中,第三电量预设阈值小于第二电量预设阈值。
为了降低第一裸电芯13高压复充的次数,还需要监测步骤S344中第一裸电芯13的电量。示例的,在本申请实施例中,充电控制方法还包括步骤S345。
步骤S345:判断第一裸电芯13的电量是否小于第四电量预设阈值,第四电量预设阈值例如为第一裸电芯13充满时的电量的95%。
第四电量预设阈值为第一裸电芯13处于长期在位状态,且经由快速充电模式的复充阶段后,停止充电的电量门限值。示例的,在步骤S345中,当处理器21通过第一电量计241确认第一裸电芯13的电量小于第四电量预设阈值时,返回至步骤S344,继续以快速充电模式充电,使第一裸电芯13维持在高电量状态。
在步骤S345中,当处理器21通过第一电量计241确认第一裸电芯13的电量大于或等于第四电量预设阈值时,返回至步骤S32,停止充电,以预留第一裸电芯13的电量余量,保证电池10的使用安全。
上述步骤S343至步骤S345实现供电单元200处于长期在位状态,且第一裸电芯13的电量小于第三电量预设阈值时,以快速充电模式对第一裸电芯13进行复充,并复充至第一裸电芯13的电量达到第四电量预设阈值时,停止充电。如此,一方面通过在第一裸电芯13的电量小于第三电量预设阈值时,以快速充电模式充电,从而提高充电速度;另一方面通过严格 限制复充的电量门限,减少第一裸电芯13的长期高压场景,延长裸电芯的使用寿命。
在本申请实施例中,第四电量预设阈值大于第二电量预设阈值,且小于100%。
在其他实施例中,步骤S344中亦可以采用其他充电模式对第一裸电芯13进行复充。
当处理器21确认第二裸电芯14为第二类裸电芯时,处理器21对第二裸电芯14执行第二充电策略。第二类裸电芯例如是高能量密度耐高温电芯。
在本申请实施例中,第二充电策略与图12所示的第一充电策略的流程大致相同。区别在于,第二充电策略的中步骤S31及步骤S34,与第一充电策略中步骤S31及步骤S34的步骤不同。
在本申请实施例中,由于第二裸电芯14为高能量密度耐高温电芯,因此第二裸电芯14采用的第二充电策略,仅采用常规充电模式进行充电。其中,第二充电策略中的常规充电模式与第二充电策略中的常规充电模式相同,在此不再赘述。
具体地,在第二充电策略中,步骤S31中以常规充电模式对第二裸电芯14进行充电,直至第二裸电芯14充满。
在第二充电策略的步骤S344中,当供电单元200处于长期在位状态时,以常规充电模式对第二裸电芯14进行复充,并当第二裸电芯14的电量复充到一电量门限值(例如第五电量预设阈值)时,停止对第二裸电芯14充电。
可以理解,第二充电策略中,对应于第二裸电芯14的特性及实际需求,可调整图12所示的充电控制方法中的第二电量预设阈值、第三电量预设阈值、第四电量预设阈值及时长预设阈值的具体数值。示例的,在第二充电策略中,第二电量预设阈值例如为第二裸电芯14充满时的电量的95%;第三电量预设阈值例如为第二裸电芯14充满时的电量的90%;步骤S344中的第四电量预设阈值替换为第五电量预设阈值,且第五电量预设阈值例如为第二裸电芯14充满时的电量的97%。
上述实施例提及的各电量阈值,仅用于举例说明具体的充电策略,而非对本申请实施例提供的控制方法进行限制。在其他实施例中,本领域技术人员可根据具体需求,更改上述提及的各电量阈值的具体数值。
上述实施例仅说明处理器21分别控制第一裸电芯13及第二裸电芯14以不同的充电策略进行充电的过程。在其他实施例中,处理器21亦可分别控制第一裸电芯13及第二裸电芯14分别放电,或控制第一裸电芯13与第二裸电芯14中的一者进行充电,第一裸电芯13与第二裸电芯14中的另一者通过电源管理芯片为电子设备100供电。
在其他实施例中,处理器21可控制第一裸电芯13及第二裸电芯14中的任一者先放电直至该裸电芯的电量用尽,再控制第一裸电芯13及第二裸电芯14中的另一者放电;或者,处理器21亦可控制第一裸电芯13及第二裸电芯14轮流放电;或者,处理器21还可控制第一裸电芯13及第二裸电芯14同时放电。
上述实施例提供的两种充电策略,亦可分别单独实施于仅具有一裸电芯的电池中。
本申请实施例提供的电子设备100、100a及充电控制方法,通过在同一电池10、10a内设置不同类型的裸电芯,并将裸电芯电连接至不同的充电管理芯片,以在处理器21的控制下,采用不同的充电控制方法进行充电,实现对电池10/10a内的不同裸电芯的分立控制,从而为每一裸电芯匹配最合理的充放电管理策略。如此,安装有电池10/10a的电子设备相较于现有 的电子设备,充电速度快,可充分释放电池性能,且可满足用户在不同场景下的电池使用需求,例如可在高温场景下对电池进行快充。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (17)

  1. 一种电池控制电路,用于控制电池充放电,其特征在于,所述电池控制电路包括处理器及一条或多条充电链路,所述电池包括一个或多个裸电芯,所述充电链路与所述裸电芯和所述处理器分别电连接,所述处理器根据所述裸电芯的类型确定所述充电链路执行的充电策略。
  2. 根据权利要求1所述的电池控制电路,其特征在于,所述充电链路包括充电管理芯片,所述充电管理芯片电连接至所述处理器和所述裸电芯,所述处理器控制所述充电管理芯片处理所述充电链路的输入电流及输入电压,向所述裸电芯输出充电电流及充电电压。
  3. 根据权利要求2所述的电池控制电路,其特征在于,所述电池控制电路还包括充电端口,所述充电端口一端用于电连接至供电单元,以接收所述供电单元输出的所述输入电流及所述输入电压,所述充电端口另一端电连接至所述充电管理芯片,以将所述输入电流及所述输入电压输出至所述充电管理芯片;所述处理器电连接至所述充电端口,检测所述充电端口的电压变化,以确定所述电池控制电路与所述供电单元的电连接状态。
  4. 根据权利要求1所述的电池控制电路,其特征在于:所述充电链路与所述裸电芯的数量相同,所述充电链路与所述裸电芯一一对应电连接。
  5. 根据权利要求1所述的电池控制电路,其特征在于,所述电池控制电路还包括电量计,所述电量计电连接于所述裸电芯与所述处理器之间,所述处理器通过所述电量计监测对应的裸电芯的电压、电流及/或电量,并根据监测结果控制对应的充电链路的充电过程。
  6. 根据权利要求2所述的电池控制电路,其特征在于,所述电池还包括若干保护板,所述保护板电连接至所述裸电芯,所述保护板包括存储单元,用于存储对应连接的所述裸电芯的类型的信息,所述充电管理芯片通过所述保护板电连接至对应的所述裸电芯,所述处理器通过所述充电管理芯片与所述保护板之间的通信,以接收包括所述信息的反馈信号,从而确认每一所述裸电芯的类型。
  7. 根据权利要求6所述的电池控制电路,其特征在于,所述保护板设置有射频芯片,所述射频芯片与所述存储单元电连接,所述充电管理芯片设置有射频识别电路,所述处理器通过所述射频识别电路与所述射频芯片之间的通信,以接收所述反馈信号。
  8. 根据权利要求1所述的电池控制电路,其特征在于,所述电池控制电路还包括电源管理模块,所述电源管理模块电连接于各所述裸电芯与所述处理器之间,所述处理器通过所述电源管理模块控制所述裸电芯放电。
  9. 一种电子设备,其特征在于,所述电子设备包括电池,所述电池包括若干裸电芯,所述电子设备还包括如权利要求1-8任一项所述的电池控制电路,用于控制所述电池充放电。
  10. 一种充电控制方法,用于控制电池充电,其特征在于,所述充电控制方法应用于电池控制电路,所述电池包括若干裸电芯,所述充电控制方法包括:
    当确定所述电池电连接至供电单元时,确认所述电池中的若干裸电芯的类型;
    根据确认的若干所述裸电芯的类型分别执行对应的充电策略。
  11. 根据权利要求10所述的充电控制方法,其特征在于,所述充电策略包括:
    对所述裸电芯充电,直到所述裸电芯充满;
    停止对所述裸电芯充电;
    确定所述供电单元电连接至所述电池;
    对所述裸电芯执行复充策略。
  12. 根据权利要求11所述的充电控制方法,其特征在于,当确认所述裸电芯为第一类裸电芯时,所述对所述裸电芯充电,直到所述裸电芯充满包括:
    当所述裸电芯的电量小于第一电量预设阈值时,以快速充电模式为所述裸电芯充电,直至所述裸电芯充满;
    当所述裸电芯的电量大于或等于所述第一电量预设阈值时,以常规充电模式为所述裸电芯充电,直至所述裸电芯充满。
  13. 根据权利要求11所述的充电控制方法,其特征在于,当确认所述裸电芯为第二类裸电芯时,所述对所述裸电芯充电,直到所述裸电芯充满包括,
    以常规充电模式对所述裸电芯进行充电,直至所述裸电芯充满。
  14. 根据权利要求11所述的充电控制方法,其特征在于,所述对所述裸电芯执行复充策略包括:
    当所述供电单元电连接至所述裸电芯的时长小于或等于时长预设阈值时,判断所述裸电芯的电量是否小于第二电量预设阈值;其中,
    当所述裸电芯的电量大于或等于所述第二电量预设阈值时,继续判断所述供电单元电连接至所述裸电芯的时长是否大于所述时长预设阈值,直至所述供电单元电连接至所述裸电芯的时长大于所述时长预设阈值;
    当所述裸电芯的电量小于所述第二电量预设阈值时,以常规充电模式为所述裸电芯充电,直至所述裸电芯充满,执行所述复充策略;或直至所述供电单元与所述电池断开,结束充电流程。
  15. 根据权利要求14所述的充电控制方法,其特征在于,当确认所述裸电芯为第一类裸电芯时,所述对所述裸电芯执行复充策略还包括:
    当所述供电单元电连接至所述裸电芯的时长大于所述时长预设阈值,判断所述裸电芯的电量是否小于第三电量预设阈值;
    当所述裸电芯的电量小于所述第三电量预设阈值时,以快速充电模式对所述裸电芯进行充电,并检测电量;
    当所述裸电芯的电量小于第四电量预设阈值时,继续以所述快速充电模式对所述裸电芯充电,直至所述裸电芯的电量大于或等于所述第四电量预设阈值;
    当所述裸电芯的电量大于或等于所述第四电量预设阈值时,停止对所述裸电芯充电,执行所述复充策略,或直至所述供电单元与所述电池断开,结束充电流程。
  16. 根据权利要求14所述的充电控制方法,其特征在于,当确认所述裸电芯为第二类裸电芯时,所述对所述裸电芯执行复充策略还包括:
    当所述供电单元电连接至所述裸电芯的时长大于所述时长预设阈值时,判断所述裸电芯的电量是否小于第三电量预设阈值;
    当所述裸电芯的电量小于所述第三电量预设阈值时,以所述常规充电模式对所述裸电芯进行充电;
    当所述裸电芯的电量小于第五电量预设阈值时,继续以常规充电模式对所述裸电芯进行充电,直至所述裸电芯的电量大于或等于所述第五电量预设阈值;
    当所述裸电芯的电量大于或等于所述第五电量预设阈值时,停止对所述裸电芯充电,并执行所述复充策略,或直至所述供电单元与所述电池断开,结束充电流程。
  17. 根据权利要求15或16所述的充电控制方法,其特征在于,所述对所述裸电芯执行复充策略还包括:
    当所述裸电芯的电量大于或等于所述第三电量预设阈值时,继续判断所述供电单元电连接至所述裸电芯的时长是否大于所述时长预设阈值,直至所述裸电芯的电量小于所述第三电量预设阈值。
PCT/CN2022/137646 2022-04-08 2022-12-08 电池控制电路、电子设备及充电控制方法 WO2023193460A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22888636.2A EP4287450A1 (en) 2022-04-08 2022-12-08 Battery control circuit, electronic device, and charging control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210369450.2A CN116937723B (zh) 2022-04-08 2022-04-08 电池控制电路、电子设备及充电控制方法
CN202210369450.2 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023193460A1 true WO2023193460A1 (zh) 2023-10-12

Family

ID=87060345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137646 WO2023193460A1 (zh) 2022-04-08 2022-12-08 电池控制电路、电子设备及充电控制方法

Country Status (3)

Country Link
EP (1) EP4287450A1 (zh)
CN (1) CN116937723B (zh)
WO (1) WO2023193460A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526524B (zh) * 2023-12-29 2024-03-22 深圳市芯科云科技有限公司 一种智能手表电池零伏自动充电方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060936A1 (de) * 2008-12-06 2010-06-10 Daimler Ag Vorrichtung und Verfahren zum Betreiben einer Batterieeinheit eines Kraftfahrzeugs
CN110244229A (zh) * 2019-07-30 2019-09-17 联想(北京)有限公司 电池控制方法及电子设备
CN112542863A (zh) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 充电方法及装置、可读存储介质
CN113364089A (zh) * 2021-06-03 2021-09-07 珠海市魅族科技有限公司 充电方法、装置、电子设备、存储介质以及充电电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317003A (zh) * 2017-06-16 2017-11-03 尚圣杰 钛酸锂和三元锂复合电池
CN110336353A (zh) * 2019-07-09 2019-10-15 Oppo广东移动通信有限公司 电池、电路系统及其控制方法、电子设备
CN111293754B (zh) * 2020-03-20 2021-11-09 Oppo广东移动通信有限公司 充电系统、方法、电子设备和计算机可读存储介质
CN113540652A (zh) * 2020-03-30 2021-10-22 北京小米移动软件有限公司 电池及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060936A1 (de) * 2008-12-06 2010-06-10 Daimler Ag Vorrichtung und Verfahren zum Betreiben einer Batterieeinheit eines Kraftfahrzeugs
CN110244229A (zh) * 2019-07-30 2019-09-17 联想(北京)有限公司 电池控制方法及电子设备
CN112542863A (zh) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 充电方法及装置、可读存储介质
CN113364089A (zh) * 2021-06-03 2021-09-07 珠海市魅族科技有限公司 充电方法、装置、电子设备、存储介质以及充电电路

Also Published As

Publication number Publication date
CN116937723A (zh) 2023-10-24
CN116937723B (zh) 2024-07-02
EP4287450A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
CN101171704B (zh) 二次电池的保护电路以及包含该保护电路的二次电池
CN101315995B (zh) 电池组、设备以及充电控制方法
US20090184685A1 (en) Battery pack and method of charging the same
JP4194399B2 (ja) 組電池、並びに、その充電装置およびその方法
KR100809453B1 (ko) 다병렬 및 다직렬 리튬 2차전지 팩의 충방전 모니터링시스템
JP2002315215A (ja) 充電装置、電池パック及びそれらを用いた充電システム
TW201401626A (zh) 新結構之電池包
TW200941895A (en) Battery pack and secondary battery system
CN106159356B (zh) 一种电池及电子设备
WO2023193460A1 (zh) 电池控制电路、电子设备及充电控制方法
EP3751659A1 (en) Battery pack
JP2008072842A (ja) 充電式組電池システム及び組電池充電制御方法
US11114703B2 (en) Battery pack
WO2017219359A1 (zh) 多极耳电池
CN204316079U (zh) 一种锂电池保护电路
CN211530813U (zh) 一种基于电池保护电路的锂电池超低功耗保护装置
CN215378497U (zh) 充放电电路
KR100677386B1 (ko) 이동통신 단말기의 배터리 팩 가열장치
KR20190032092A (ko) Esd 대응이 가능한 저저항 배터리 보호 회로
JP2011070675A (ja) バッテリーパック、及びデータフラッシュの動作の制御方法
JPH0568348A (ja) 中間電極付二次電池の充電器
KR200374547Y1 (ko) 휴대용 충전 장치
CN117674355A (zh) 多功能移动电源锂电池升压装置
JP2000082448A (ja) パック電池
CN109149671A (zh) 一种电池包装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18037619

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022888636

Country of ref document: EP

Effective date: 20230512