WO2023193455A1 - 驱动电路、发光电路及显示设备 - Google Patents

驱动电路、发光电路及显示设备 Download PDF

Info

Publication number
WO2023193455A1
WO2023193455A1 PCT/CN2022/135757 CN2022135757W WO2023193455A1 WO 2023193455 A1 WO2023193455 A1 WO 2023193455A1 CN 2022135757 W CN2022135757 W CN 2022135757W WO 2023193455 A1 WO2023193455 A1 WO 2023193455A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
switching
load element
control
Prior art date
Application number
PCT/CN2022/135757
Other languages
English (en)
French (fr)
Inventor
周仁杰
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2023193455A1 publication Critical patent/WO2023193455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/34Voltage stabilisation; Maintaining constant voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present application relates to the field of display technology, and in particular, to a driving circuit, a light-emitting circuit and a display device.
  • the stability of the voltage or current of the load is extremely important.
  • the stability of voltage or current can make the light-emitting components emit uniform light.
  • the backlight voltage or current of the mini LED is prone to fluctuations, resulting in uneven brightness of the mini LED. Therefore, how to provide stable voltage or current to the load is an urgent technical problem that needs to be solved.
  • the driving circuit is connected to the load element.
  • the driving circuit includes:
  • a switching power supply circuit used to step up or step down the connected first voltage to obtain a second voltage, and provide the second voltage to the load element;
  • a feedback circuit connected to the load element, is used to receive the feedback voltage of the load element and generate a control signal when the feedback voltage is not within the preset voltage range;
  • Pulse circuit used to generate switching signals with set frequency
  • the switching circuit is respectively connected to the control end of the switch tube in the feedback circuit, the pulse circuit and the switching power supply circuit, and is used to transmit the control signal to the control end of the switch tube when the control signal is received.
  • the control signal is not received, , transmit the switching signal to the control end of the switching tube; the control signal is used to control the switching tube to be in the on state or off state; the switching signal is used to control the switching tube to switch between the on state or the off state according to the set frequency .
  • the light-emitting circuit includes a mini-LED unit and a driving circuit as described above.
  • the output end of the driving circuit is connected to the input end of the mini-LED unit.
  • the mini-LED unit serves as a load element of the driving circuit. Circuit to provide driving voltage to the mini-LED unit.
  • This application also proposes a display device, which includes the above-mentioned light-emitting circuit.
  • the driving circuit includes a switching power supply circuit, a feedback circuit, a pulse circuit and a switching circuit; the switching power supply circuit is used to step up or step down the connected first voltage, obtain a second voltage, and convert the second The voltage is provided to the load element; the feedback circuit is connected to the load element and is used to receive the feedback voltage of the load element and generate a control signal when the feedback voltage is not within the preset voltage range. The control signal is used to control the switching tube to be turned on.
  • the pulse circuit is used to generate a switching signal with a set frequency, and the switching signal is used to control the switching tube to switch between the on state or the off state according to the set frequency; the switching circuit is respectively connected with the feedback circuit, The pulse circuit is connected to the control end of the switch tube, and is used to transmit the control signal to the control end of the switch tube when the control signal is received, and to transmit the switching signal to the control end of the switch tube when the control signal is not received.
  • This application detects the feedback voltage of the load element to adjust the switching frequency of the switching power supply circuit, thereby adjusting the output voltage of the switching power supply circuit to ensure the stability of the voltage or current of the load element and make the brightness of the light-emitting components more uniform.
  • Figure 1 is a structural block diagram of an embodiment of the driving circuit of the present application.
  • Figure 2 is a circuit schematic diagram of an embodiment of the driving circuit of the present application.
  • Figure 3 is an equivalent circuit diagram when the switch tube in the switching power supply circuit of this application is turned on
  • FIG. 4 is an equivalent circuit diagram when the switch tube in the switching power supply circuit of this application is turned off
  • Figure 5 is a circuit schematic diagram of an embodiment of the driving circuit of the present application.
  • FIG. 6 is a circuit schematic diagram of an embodiment of the light-emitting circuit of the present application.
  • Figure 1 is a structural block diagram of the first embodiment of the driving circuit of the present application. This application proposes a first embodiment of a driving circuit.
  • the driving circuit 10 is connected to the load element 20 , and the driving circuit 10 includes a switching power supply circuit 30 , a feedback circuit 40 , a pulse circuit 50 and a switching circuit 60 .
  • the switching power supply circuit 30 is used to step up or step down the input first voltage, obtain a second voltage, and provide the second voltage to the load element.
  • the feedback circuit 40 is connected to the load element 20 and is used to receive the feedback voltage of the load element 20 and generate a control signal when the feedback voltage 20 is not within a preset voltage range.
  • the pulse circuit 50 is used to generate a switching signal with a set frequency.
  • the switch circuit 60 is respectively connected to the control end of the switch tube K in the feedback circuit 40, the pulse circuit 50 and the switching power supply circuit 30, and is used to transmit the control signal to the control end of the switch tube K when receiving the control signal.
  • the switching signal is transmitted to the control end of the switching tube K; the control signal is used to control the switching tube K to be in the on state or off state; the switching signal is used to control the switching tube K to conduct according to the set frequency. Switch between on state or off state.
  • the load element 20 may be a light-emitting diode or a mini-LED component, and the mini-LED component may be composed of multiple light-emitting diodes.
  • the output terminal of the driving circuit 10 is connected to the input terminal of the load element 20 to provide an operating voltage for the load element 20 .
  • light-emitting components such as light-emitting diodes or mini-LED components are usually used in display circuits, such as to provide backlight sources. Therefore, these components require specific adjustable inputs to operate. Therefore, when this type of load element 20 is working, a corresponding voltage can be provided according to actual needs.
  • the purpose of this embodiment is to ensure that the input voltage of the load element 20 is stable at the operating voltage under the premise that the operating voltage of the load element 20 has been determined.
  • the driving circuit 10 mainly adopts the switching power supply circuit 30 .
  • the switching power supply circuit 30 may have a voltage regulation function, and includes a switching tube K and an energy storage element inside. By turning on and off within a certain period, the switching tube K can play the role of boosting or reducing the voltage in conjunction with the energy storage element.
  • the switching power supply circuit 30 works in the boosting region, and the second voltage is greater than the first voltage at this time; the longer the on-time of the switch K, the greater the boost effect. big.
  • the switching power supply circuit 30 When the on-time duration of the switch tube K is less than the off-time period, the switching power supply circuit 30 operates in the voltage-reducing region, and at this time the second voltage is smaller than the first voltage; and, the shorter the on-time duration of the switch tube K, the greater the voltage-reducing effect. big.
  • the feedback voltage may be the input terminal voltage and/or the output terminal voltage of the load element 20 . If the feedback voltage is within the preset voltage range, it means that the voltage or current of the load element 20 is relatively stable and does not need to be adjusted. If the feedback voltage is not within the preset voltage range, it means that the voltage or current of the load element 20 fluctuates.
  • the switch tube K can be controlled to remain in the on state to increase the ratio of the on time and the off time of the switch tube K to increase the voltage boosting effect or Reduce the antihypertensive effect.
  • the switch tube K can be controlled to remain in the off state, so as to reduce the ratio of the on time and the off time of the switch tube K, so as to reduce the voltage boosting effect. Or increase the antihypertensive effect.
  • control signal can be high level or low level. If the control terminal of the switch K is turned on when it is at a high level, then if it is necessary to increase the second voltage, the control signal is at a high level; if it is necessary to decrease the second voltage, the control signal is at a low level. If the control terminal of the switch K is turned on when it is at a low level, then if it is necessary to increase the second voltage, the control signal is at a low level; if it is necessary to decrease the second voltage, the control signal is at a high level.
  • the switching signal has a high level stage and a low level stage, and the switching signal switches between the high level stage and the low level stage according to the set frequency.
  • the set frequency is theoretically calculated based on the required operating voltage of the load element.
  • the switch circuit 60 is used to control the voltage connected to the control terminal of the switch tube K. Because the feedback circuit 40 only generates the control signal when the feedback voltage 20 is not within the preset voltage range. Therefore, the control of the switch circuit 60 can be linked with the output of the feedback circuit 40 .
  • the feedback voltage 20 is within the preset voltage range, it means that the second voltage connected to the load element 20 is within the normal range.
  • the switching power supply circuit 30 can operate according to the set frequency, that is, the control end of the switching tube K receives the switching signal.
  • the control terminal of the switch tube K is connected to the control signal to adjust the second voltage.
  • the switching power supply circuit 30 may include a switching tube K, a first inductor L1 , a second inductor L2 , a first capacitor C1 , a second capacitor C2 and a diode D.
  • the first end of the first inductor L1 is respectively connected to the first end of the switch K and the first end of the first capacitor C1.
  • the second end of the first capacitor C1 is respectively connected to the anode of the diode D and the first end of the second inductor L2.
  • the cathode of the diode D is connected to the first terminal of the second capacitor C2
  • the second terminal of the switch tube K, the second terminal of the second inductor L2 and the second terminal of the second capacitor C2 are all grounded
  • the switch tube K The control end is connected to the switch circuit 60
  • the second end of the first inductor L1 is used to connect the first voltage
  • the cathode of the diode D is also used to provide the second voltage to the load element 20 .
  • Figure 3 is an equivalent circuit diagram of the switching power supply circuit in this application when the switch tube is turned on
  • Figure 4 is an equivalent circuit diagram of the switching power supply in this application. The equivalent circuit diagram of the circuit when the switch tube is turned off.
  • R is the resistance of the load element 20
  • V 0 is the voltage value of the second voltage
  • V g is the voltage value of the first voltage.
  • D is the proportion of the conduction time of switch K in one cycle to the total time of the cycle.
  • V C1 V g (3)
  • V 0 (D/1-D)V g (4)
  • the circuit when D is greater than 1/2, the circuit is a boost circuit, and when D is less than 1/2, the circuit is a buck circuit.
  • the driving circuit 10 further includes a third capacitor C3.
  • the first terminal of the third capacitor C3 is connected to the second terminal of the first inductor L1.
  • the second terminal of the third capacitor C3 is connected to ground.
  • the third capacitor C3 can play a voltage stabilizing role and can eliminate the fluctuation of the connected first voltage, further ensuring the stability of the working voltage of the load element 20.
  • the first capacitor C1 can play an isolation role, and the first inductor can also play a role in absorbing current, thereby preventing excessive DC damage current.
  • the driving circuit 10 includes a switching power supply circuit 30 , a feedback circuit 40 , a pulse circuit 50 and a switching circuit 60 .
  • the feedback circuit 40 is connected to the load element 20 and is used to receive the feedback voltage of the load element 20 and generate a control signal when the feedback voltage is not within the preset voltage range;
  • the pulse circuit 50 is used to generate a switching signal with a set frequency;
  • the switch The circuit 60 is respectively connected to the feedback circuit 40, the pulse circuit 50 and the control end of the switch tube K, and is used to transmit the control signal to the control end of the switch tube K when the control signal is received. When the control signal is not received, The switching signal is transmitted to the control end of the switching tube K.
  • the feedback voltage of the load element 20 is detected, thereby adjusting the switching frequency of the switching power supply circuit 30, thereby adjusting the output voltage of the switching power supply circuit 30, ensuring the stability of the voltage or current of the load element 20, and improving the brightness of the light-emitting element. More uniform.
  • FIG. 5 is a circuit schematic diagram of an embodiment of the driving circuit of the present application. Based on the above embodiments, this application proposes a second embodiment of a driving circuit.
  • the pulse circuit 50 may include a D flip-flop U, an inverter N, and a pulse generating unit 70 .
  • the output terminal of the D flip-flop U is connected to the switch circuit 60;
  • the input terminal of the inverter N is connected to the output terminal of the D flip-flop U, and the output terminal of the inverter N is connected to the input terminal of the D flip-flop U;
  • the pulse The generating unit 70 is connected to the clock input end of the D flip-flop U and is used to generate a pulse signal of a set frequency.
  • the D flip-flop U is an edge-triggered type. Because the output terminal of the D flip-flop U is connected to the input terminal through the inverter N. Therefore, when the clock input terminal receives a rising edge signal, the output terminal of the D flip-flop U performs an inversion. Therefore, the frequency correlation of the pulse signal generated by the pulse generating unit 70 is adjusted. There is a mature technology for adjusting the pulse generating unit 70, and the details will not be described again in this embodiment.
  • the feedback circuit 40 may include a comparison circuit 80 and an AND gate A.
  • the comparison circuit 80 is connected to the load element 20 for receiving the feedback voltage and generating a control signal when the feedback voltage is not within the preset voltage range; the output end of the AND gate A is connected to the switch circuit 60, and the first terminal of the AND gate A is The input terminal is connected to the output terminal of the comparison circuit 80.
  • the first input terminal of the AND gate A is used to access the control signal.
  • the second input terminal of the AND gate A is connected to a setting signal.
  • the setting signal is high level or low level. .
  • the output of the comparison circuit 80 can be limited by adjusting the level of the setting signal.
  • the output of the comparison circuit 80 is not limited; when the setting signal is high level (that is, 0), the output of the comparison circuit 80 is limited. In this way, the switching control of the voltage stabilizing function required in this embodiment can be realized.
  • the voltage stabilizing function refers to the function of adjusting the second voltage when the voltage of the load element 20 fluctuates.
  • the feedback voltage may include a first feedback voltage and a second feedback voltage.
  • the comparison circuit 80 may include a first comparator B1 and a second comparator B2.
  • the reverse input terminal of the first comparator B1 is connected to the input terminal of the load element 20 for connecting to the first feedback voltage, and the forward input terminal of the first comparator B1 is connected to the first reference voltage;
  • the second comparator B2 The reverse input end of the second comparator B2 is connected to the output end of the load element 20 for accessing the second feedback voltage, and the forward input end of the second comparator B2 is connected to the second reference voltage;
  • the OR gate O the first input end of the OR gate O
  • the input terminal is connected to the output terminal of the first comparator B1, the second input terminal of the OR gate O is connected to the output terminal of the second comparator B2, and the output terminal of the OR gate O is connected to the first input terminal of the AND gate.
  • the specific values of the first reference voltage and the second reference voltage can be set according to requirements.
  • the output of the OR gate O is 1.
  • the setting signal is high level
  • the output of AND gate A is 1.
  • the switch circuit 60 receives the control signal.
  • the switching circuit 60 includes a P-type MOS transistor Q.
  • the gate and drain of the P-type MOS transistor Q are connected to the output terminal of the AND gate A.
  • the drain of the P-type MOS transistor Q is connected to the output terminal of the AND gate A. It is connected to the control terminal of the switch tube K, and the source of the P-type MOS tube Q is connected to the output terminal of the pulse circuit 50 .
  • the feedback circuit 40 generates a control signal when the feedback voltage is not within the preset voltage range; the pulse circuit 50 generates a switching signal with a set frequency; the switching circuit 60 transmits the control signal when receiving the control signal. to the control end of the switch tube K. When no control signal is received, the switching signal is transmitted to the control end of the switch tube K to realize voltage compensation and ensure the voltage stability of the load element 20 .
  • FIG. 6 is a circuit schematic diagram of an embodiment of the light-emitting circuit of the present application.
  • the light-emitting circuit includes a mini-LED unit 90 and the above-mentioned driving circuit 10.
  • the output end of the driving circuit 10 is connected to the input end of the mini-LED unit 90.
  • the mini-LED unit 90 serves as the load element 20 of the driving circuit.
  • the driving circuit 10 uses To provide driving voltage for the mini-LED unit 90 .
  • the mini-LED unit 90 is composed of multiple diodes.
  • the anode of the first-stage diode serves as the input terminal of the mini-LED unit 90
  • the cathode of the last-stage diode serves as the output terminal of the mini-LED unit 90
  • the output terminal of the mini-LED unit 90 can be connected to ground through the resistor R.
  • the first comparator B1 in the feedback circuit 40 may be connected to the input terminal of the mini-LED unit 90
  • the second comparator B2 may be connected to the output terminal of the mini-LED unit 90 .
  • the feedback circuit 40 can adjust the voltage output by the driving circuit 10 when detecting voltage fluctuations at the input terminal and the output terminal of the mini-LED unit 90 . Since this light-emitting circuit can adopt the technical solutions of all the above embodiments, it has at least the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again here.
  • this application also proposes a display device, which includes the above-mentioned light-emitting circuit.
  • the specific structure of the light-emitting circuit refers to the above-mentioned embodiments. Since this display device can adopt the technical solutions of all the above-mentioned embodiments, it at least has the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请公开了一种驱动电路(10)、发光电路及显示设备。驱动电路(10)与负载元件(20)连接,驱动电路(10)包括:开关电源电路(30);反馈电路(40),用于接收负载元件(20)的反馈电压,并在反馈电压不处于预设电压范围内时,生成控制信号;脉冲电路(50),用于生成设定频率的开关信号;开关电路(60),用于在接收到控制信号时,将控制信号传输至开关管的控制端,在未接收到控制信号时,将开关信号传输至开关管的控制端。

Description

驱动电路、发光电路及显示设备
优先权信息
本申请要求于2022年4月8日申请的、申请号为202210363851.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种驱动电路、发光电路及显示设备。
背景技术
在电子回路中,负载的电压或者电流稳定是极为重要的一点。例如,对于发光类元件来说,电压或者电流的稳定能够使发光类元件的发光均匀。在一些显示设备中,mini LED的背光电压或者电流容易发生波动,导致mini LED的亮度不均匀。因此,如何为负载提供稳定的电压或者电流,是亟待解决的技术问题。
发明内容
本申请提出一种驱动电路,驱动电路与负载元件连接,驱动电路包括:
开关电源电路,用于对接入的第一电压进行升压或降压处理,获得第二电压,并将第二电压提供给负载元件;
反馈电路,与负载元件连接,用于接收负载元件的反馈电压,并在反馈电压不处于预设电压范围内时,生成控制信号;
脉冲电路,用于生成设定频率的开关信号;
开关电路,分别与反馈电路、脉冲电路和开关电源电路中的开关管的控制端连接,用于在接收到控制信号时,将控制信号传输至开关管的控制端,在未接收到控制信号时,将开关信号传输至开关管的控制端;控制信号用于控制开关管处于导通状态或关断状态;开关信号用于控制开关管按照设定频率在导通状态或关断状态之间切换。
本申请还提出一种发光电路,发光电路包括mini-LED单元和如上述的驱动电路,驱动电路的输出端与mini-LED单元的输入端连接,mini-LED单元作为驱动电路的负载元件,驱动电路,用于为mini-LED单元提供驱动电压。
本申请还提出一种显示设备,显示设备包括如上述的发光电路。
本申请中,驱动电路包括开关电源电路、反馈电路、脉冲电路和开关电路;开关电源电路,用于对接入的第一电压进行升压或降压处理,获得第二电压,并将第二电压提供给负载元件;反馈电路,与负载元件连接,用于接收负载元件的反馈电压,并在反馈电压不处于预设电压范围内时,生成控制信号,控制信号用于控制开关管处于导通状态或关断状态;脉冲电路,用于生成设定频率的开关信号,开关信号用于控制开关管按照设定频率在导通状态或关断状态之间切换;开关电路,分别与反馈电路、脉冲电路和开关管的控制端连接,用于在接收到控制信号时,将控制信号传输至开关管的控制端,在未接收到控制信号时,将开关信号传输至开关管的控制端。本申请通过对负载元件的反馈电压进行检测,从而调整开关电源电路的开关频率,从而调整开关电源电路的输出电压,保证负载元件的电压或电流稳定,使得发光类元件的亮度更均匀。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请驱动电路一实施方式的结构框图;
图2为本申请驱动电路一实施方式的电路原理图;
图3为本申请中开关电源电路中开关管导通下的等效电路图;
图4为本申请中开关电源电路中开关管关断下的等效电路图;
图5为本申请驱动电路一实施方式的电路原理图;
图6为本申请发光电路一实施方式的电路原理图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
实施例一
参照图1,图1为本申请驱动电路第一实施例的结构框图。本申请提出驱动电路的第一实施例。
如图1所示,在本实施例中,驱动电路10与负载元件20连接,驱动电路10包括开关电源电路30、反馈电路40、脉冲电路50和开关电路60。其中,开关电源电路30用于对接入的第一电压进行升压或降压处理,获得第二电压,并将第二电压提供给负载元件。反馈电路40与负载元件20连接,用于接收负载元件20的反馈电压,并在反馈电压20不处于预设电压范围内时,生成控制信号。脉冲电路50用于生成设定频率的开关信号。开关电路60,分别与反馈电路40、脉冲电路50和开关电源电路30中的开关管K的控制端连接,用于在接收到控制信号时,将控制信号传输至开关管K的控制端,在未接收 到控制信号时,将开关信号传输至开关管K的控制端;控制信号用于控制开关管K处于导通状态或关断状态;开关信号用于控制开关管K按照设定频率在导通状态或关断状态之间切换。
在本实施方式中,负载元件20可以为发光二极管或者mini-LED组件,mini-LED组件可以由多个发光二极管组成。驱动电路10的输出端与负载元件20的输入端连接,为负载元件20提供工作电压。
需要说明的是,发光二极管或者mini-LED组件等发光元件通常用于显示电路中,如用于提供背光光源。因此,该类元件在工作时需要具体可调节的输入。由此,可以在此类负载元件20工作时,根据实际需求提供相应的电压。而本实施方式的目的则在于:在已确定负载元件20的工作电压的前提下,保证负载元件20的输入电压稳定在该工作电压。
在本实施方式,为满足负载元件20的驱动要求,驱动电路10主要采用开关电源电路30。开关电源电路30可以具有电压调节功能,其内部包含有开关管K以及储能元件。开关管K通过在一定周期内导通和关闭,在配合储能元件能够起到升压或者降压的作用。通常,开关管K的导通时长在大于关断时长时,开关电源电路30工作在升压区,此时第二电压大于第一电压;开关管K的导通时长越长,升压作用越大。开关管K的导通时长在小于关断时长时,开关电源电路30工作在降压区,此时第二电压小于第一电压;并且,开关管K的导通时长越短,降压作用越大。
反馈电压可以为负载元件20的输入端电压和/或输出端电压。若反馈电压处于预设电压范围内,则说明负载元件20的电压或电流较为稳定,不需要进行调节。若反馈电压不处于预设电压范围内,则说明负载元件20的电压或电流较为发生了波动。在检测到该反馈电压小于设定电压时,为提高第二电压,可以通过控制开关管K保持导通状态,以提高开关管K导通时长与关断时长的比值,以提高升压作用或者降低降压作用。或者在检测到该反馈电压大于设定电压时,为降低第二电压,可以通过控制开关管K保持关断状态,以降低开关管K导通时长与关断时长的比值,以降低升压作用或增大降压作用。
需要说明的是,控制信号可以为高电平或者低电平。若开关管K的控制端为高电平时导通,则若需要增大第二电压时,控制信号为高电平;若需要降低第二电压时,控制信号为低电平。若开关管K的控制端为低电平时导通, 则若需要增大第二电压时,控制信号为低电平;若需要降低第二电压时,控制信号为高电平。
开关信号具有高电平阶段和低电平阶段,且开关信号按照设定频率在高电平阶段和低电平阶段之间进行切换。该设定频率按照负载元件所需工作电压进行理论计算而得。
开关电路60用于控制开关管K的控制端所接入的电压。由于反馈电路40仅在反馈电压20不处于预设电压范围内时,生成控制信号。因此,开关电路60的控制可以与反馈电路40的输出进行联动。在反馈电压20处于预设电压范围内时,说明负载元件20所接入的第二电压处于正常范围内。此时,可以开关电源电路30按照设定频率运行,即开关管K的控制端接收该开关信号。在反馈电压20不处于预设电压范围内时,说明负载元件20所接入的第二电压不处于正常范围内,需要进行修正。故使开关管K的控制端接入控制信号,以调整第二电压。
作为一种示例,参照图2,图2为本申请驱动电路一实施方式的电路原理图。如图2所示,开关电源电路30可以包括开关管K、第一电感L1、第二电感L2、第一电容C1、第二电容C2和二极管D。第一电感L1的第一端分别与开关管K的第一端和第一电容C1的第一端连接,第一电容C1的第二端分别与二极管D的阳极和第二电感L2的第一端连接,二极管D的阴极与第二电容C2的第一端连接,开关管K的第二端、第二电感L2的第二端和第二电容C2的第二端均接地,开关管K的控制端与开关电路60连接,第一电感L1的第二端用于接入第一电压,二极管D的阴极还用于向负载元件20提供第二电压。
为说明本实施方式中开关电源电路30的工作原理,可以参考图3和图4,图3为本申请中开关电源电路中开关管导通下的等效电路图,图4为本申请中开关电源电路中开关管关断下的等效电路图。
图3所示电路对应的回路方程为:
Figure PCTCN2022135757-appb-000001
图4所示电路对应的回路方程为:
Figure PCTCN2022135757-appb-000002
其中,R为负载元件20的电阻,V 0为第二电压的电压值,V g为第一电压的电压值。然后,根据电感的伏秒平衡原理可得:
D*V g+(1-D)*(V g-V 0-V C1)=0   (1)
D*V C1+(1-D)*(-V 0)=0   (2)
其中,D为一周期内开关管K导通时间占周期总时间的占比。由以上两式可得:
V C1=V g  (3)
将式(3)带入式(1),可得:
V 0=(D/1-D)V g  (4)
由此可知,当D都大于1/2的时候,电路为升压电路,D小于1/2的时候,电路为降压电路。
在本实施方式中,驱动电路10还包括第三电容C3,第三电容C3的第一端与第一电感L1的第二端连接,第三电容C3的第二端接地。
可以理解的是,第三电容C3可以起到稳压作用,可消除接入的第一电压 的波动,进一步保证了负载元件20的工作电压的稳定。此外,第一电容C1可以起到隔离作用,第一电感也可以起到吸收电流的作用,由此可以防止过大的直流损坏电流。
在本实施方式中,驱动电路10包括开关电源电路30、反馈电路40、脉冲电路50和开关电路60。反馈电路40与负载元件20连接,用于接收负载元件20的反馈电压,并在反馈电压不处于预设电压范围内时,生成控制信号;脉冲电路50用于生成设定频率的开关信号;开关电路60,分别与反馈电路40、脉冲电路50和开关管K的控制端连接,用于在接收到控制信号时,将控制信号传输至开关管K的控制端,在未接收到控制信号时,将开关信号传输至开关管K的控制端。本实施方式通过对负载元件20的反馈电压进行检测,从而调整开关电源电路30的开关频率,从而调整开关电源电路30的输出电压,保证负载元件20的电压或电流稳定,使得发光类元件的亮度更均匀。
实施例二
参照图5,图5为本申请驱动电路一实施方式的电路原理图。基于上述实施例,本申请提出驱动电路的第二实施例。
在本实施方式中,脉冲电路50可以包括D触发器U、反相器N和脉冲产生单元70。其中,D触发器U的输出端与开关电路60连接;反相器N的输入端与D触发器U的输出端连接,反相器N的输出端与D触发器U的输入端连接;脉冲产生单元70与D触发器U的时钟输入端连接,用于生成设定频率的脉冲信号。
需要说明的是,D触发器U为边沿触发型。由于D触发器U的输出端经过反相器N连接至输入端。因此,在时钟输入端接收一个上升沿信号时,D触发器U的输出端进行一次反转。因此,通过调整脉冲产生单元70所产生的脉冲信号的频率相关。调整脉冲产生单元70已有成熟的技术,本实施方式在此不再赘述。
反馈电路40可以包括比较电路80和与门A。比较电路80与负载元件20连接,用于接收反馈电压,并在反馈电压不处于预设电压范围内时,生成控制信号;与门A的输出端与开关电路60连接,与门A的第一输入端与比较电路80的输出端连接,与门A的第一输入端用于接入控制信号,与门A的 第二输入端接入有设置信号,设置信号为高电平或低电平。
可以理解的是,在设置信号为低电平(即0)时,无论比较电路80的输出为1还是0,与门A的输出都为0。在设置信号为高电平(即0)时,比较电路80的输出也为1时,与门A的输出为1。因此,通过对设置信号的电平进行调整可以对比较电路80的输出进行限制。在设置信号为高电平(即0)时,对比较电路80的输出不进行限制;在设置信号为高电平(即0)时,对比较电路80的输出进行限制。由此,可以实现对本实施方式所需要实现的稳压功能进行开关控制,该稳压功能是指,在负载元件20的电压出现波动时,对第二电压进行调整的功能。
在本实施方式中,为更准确地对负载元件20的电压进行调整。反馈电压可以包括第一反馈电压和第二反馈电压。比较电路80可以包括第一比较器B1和第二比较器B2。第一比较器B1的反向输入端与负载元件20的输入端连接,用于接入第一反馈电压,第一比较器B1的正向输入端接入第一参考电压;第二比较器B2的反向输入端与负载元件20的输出端连接,用于接入第二反馈电压,第二比较器B2的正向输入端接入第二参考电压;或门O,或门O的第一输入端与第一比较器B1的输出端连接,或门O的第二输入端与第二比较器B2的输出端连接,或门O的输出端与与门的第一输入端连接。
需要说明的是,第一参考电压和第二参考电压的具体值可以根据需求设置。在第一反馈电压小于第一参考电压和/或第二反馈电压小于第二参考电压时,或门O的输出为1。此时,若设置信号为高电平,则与门A的输出为1。此时,可以认为开关电路60接收到了控制信号。尽管本实施方式仅给出在负载元件20的电压小于参考电压的情况下输出控制信号,但对于负载元件20的电压大于参考电压的情况下输出控制信号的电路图可以根据上电路进行调整即可。
为便于对控制信号和开关信号进行控制,开关电路60包括P型MOS管Q,P型MOS管Q的栅极和漏极均与与门A的输出端连接,P型MOS管Q的漏极与开关管K的控制端连接,P型MOS管Q的源极与脉冲电路50的输出端连接。
可以理解的是,在与门A输出为1时,P型MOS管Q的栅极为高电平,则P型MOS管关断,则D触发器的输出无法达到开关管K的控制端,而与 门A的输出直接施加在开关管K的控制端。此时开关管K的控制端为高电平,开关管K保持为导通状态。
在本实施方式中,反馈电路40在反馈电压不处于预设电压范围内时,生成控制信号;脉冲电路50生成设定频率的开关信号;开关电路60在接收到控制信号时,将控制信号传输至开关管K的控制端,在未接收到控制信号时,将开关信号传输至开关管K的控制端,实现电压补偿,保证负载元件20的电压稳定。
为实现上述目的,基于上述实施例,本申请还提出一种发光电路。参照图6,图6为本申请发光电路一实施方式的电路原理图。发光电路包括mini-LED单元90和如上述的驱动电路10,驱动电路10的输出端与mini-LED单元90的输入端连接,mini-LED单元90作为驱动电路的负载元件20,驱动电路10用于为mini-LED单元90提供驱动电压。mini-LED单元90由多个二极管组成,第一级二极管的阳极作为mini-LED单元90的输入端,最后一级二极管的阴极作为mini-LED单元90的输出端。mini-LED单元90的输出端可以通过电阻R接地。反馈电路40中的第一比较器B1可以与mini-LED单元90的输入端连接,第二比较器B2可以与mini-LED单元90的输出端连接。反馈电路40可以在检测到mini-LED单元90的输入端和输出端的电压出现波动时,调整驱动电路10输出的电压。由于本发光电路可以采用上述所有实施例的技术方案,因此至少具有上述实施例的技术方案所带来的有益效果,在此不再一一赘述。
为实现上述目的,本申请还提出一种显示设备,显示设备包括如上述的发光电路。该发光电路的具体结构参照上述实施例,由于本显示设备可以采用上述所有实施例的技术方案,因此至少具有上述实施例的技术方案所带来的有益效果,在此不再一一赘述。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种驱动电路(10),所述驱动电路(10)与负载元件(20)连接,其中,所述驱动电路(10)包括:
    开关电源电路(30),用于对接入的第一电压进行升压或降压处理,获得第二电压,并将所述第二电压提供给所述负载元件(20);
    反馈电路(40),与所述负载元件(20)连接,用于接收所述负载元件(20)的反馈电压,并在所述反馈电压不处于预设电压范围内时,生成控制信号;
    脉冲电路(50),用于生成设定频率的开关信号;
    开关电路(60),分别与所述反馈电路(40)、脉冲电路(50)和所述开关电源电路(30)中的开关管(K)的控制端连接,用于在接收到所述控制信号时,将所述控制信号传输至所述开关管(K)的控制端,在未接收到所述控制信号时,将所述开关信号传输至所述开关管(K)的控制端;所述控制信号用于控制所述开关管(K)处于导通状态或关断状态;所述开关信号用于控制所述开关管(K)按照设定频率在导通状态或关断状态之间切换。
  2. 如权利要求1所述的驱动电路(10),其中,所述负载元件(20)为发光二极管或者mini-LED组件。
  3. 如权利要求1所述的驱动电路(10),其中,所述驱动电路(10)的输出端与所述负载元件(20)的输入端连接,为所述负载元件(20)提供工作电压。
  4. 如权利要求1所述的驱动电路(10),其中,所述脉冲电路(50)包括:
    D触发器(U),所述D触发器(U)的输出端与所述开关电路(60)连接;
    反相器(N),所述反相器(N)的输入端与所述D触发器(U)的输出端连接,所述反相器(N)的输出端与所述D触发器(U)的输入端连接;
    脉冲产生单元(70),与所述D触发器(U)的时钟输入端连接,用于生成设定频率的脉冲信号。
  5. 如权利要求1所述的驱动电路(10),其中,所述反馈电路(40)包括:
    比较电路(80),所述比较电路(80)与所述负载元件(20)连接,用于接收所述反馈电压,并在所述反馈电压不处于所述预设电压范围内时,生成所述控制信号;
    与门(A),所述与门(A)的输出端与所述开关电路(60)连接,所述与门(A)的第一输入端与所述比较电路(80)的输出端连接,所述与门(A)的第一输入端用于接入所述控制信号,所述与门(A)的第二输入端接入有设置信号,所述设置信号为高电平或低电平。
  6. 如权利要求5所述的驱动电路(10),其中,在所述设置信号为低电平时,所述与门(A)的输出为0;在所述设置信号为高电平时,所述与门(A)的输出为1。
  7. 如权利要求5所述的驱动电路(10),其中,所述反馈电压包括第一反馈电压和第二反馈电压,所述比较电路(80)包括:
    第一比较器(B1),所述第一比较器(B1)的反向输入端与所述负载元件(20)的输入端连接,用于接入第一反馈电压,所述第一比较器(B1)的正向输入端接入第一参考电压;
    第二比较器(B2),所述第二比较器(B2)的反向输入端与所述负载元件(20)的输出端连接,用于接入第二反馈电压,所述第二比较器(B2)的正向输入端接入第二参考电压;
    或门(O),所述或门(O)的第一输入端与所述第一比较器(B1)的输出端连接,所述或门(O)的第二输入端与所述第二比较器(B2)的输出端连接,所述或门(O)的输出端与所述与门(A)的第一输入端连接。
  8. 如权利要求7所述的驱动电路(10),其中,在所述第一反馈电压小 于所述第一参考电压和/或所述第二反馈电压小于所述第二参考电压时,所述或门(O)的输出为1。
  9. 如权利要求5所述的驱动电路(10),其中,所述开关电路(60)包括P型MOS管(Q),所述P型MOS管(Q)的栅极和漏极均与所述与门(A)的输出端连接,所述P型MOS管(Q)的漏极与所述开关管(K)的控制端连接,所述P型MOS管(Q)的源极与所述脉冲电路(50)的输出端连接。
  10. 如权利要求1所述的驱动电路(10),其中,所述开关电源电路(30)包括开关管(K)、第一电感(L1)、第二电感(L2)、第一电容(C1)、第二电容(C2)和二极管(D);
    所述第一电感(L1)的第一端分别与所述开关管(K)的第一端和所述第一电容(C1)的第一端连接,所述第一电容(C1)的第二端分别与所述二极管(D)的阳极和所述第二电感(L2)的第一端连接,所述二极管(D)的阴极与所述第二电容(C2)的第一端连接,所述开关管(K)的第二端、所述第二电感(L2)的第二端和所述第二电容(C2)的第二端均接地,所述开关管(K)的控制端与所述开关电路(60)连接,所述第一电感(L1)的第二端用于接入所述第一电压,所述二极管(D)的阴极还用于向所述负载元件(20)提供所述第二电压。
  11. 如权利要求10所述的驱动电路(10),其中,所述驱动电路(10)还包括第三电容(C3),所述第三电容(C3)的第一端与所述第一电感(L1)的第二端连接,所述第三电容(C3)的第二端接地。
  12. 一种发光电路,其中,所述发光电路包括mini-LED单元(90)和驱动电路(10),所述驱动电路(10)与负载元件(20)连接,其中,所述驱动电路(10)包括:
    开关电源电路(30),用于对接入的第一电压进行升压或降压处理,获得第二电压,并将所述第二电压提供给所述负载元件(20);
    反馈电路(40),与所述负载元件(20)连接,用于接收所述负载元件(20)的反馈电压,并在所述反馈电压不处于预设电压范围内时,生成控制信号;
    脉冲电路(50),用于生成设定频率的开关信号;
    开关电路(60),分别与所述反馈电路(40)、脉冲电路(50)和所述开关电源电路(30)中的开关管(K)的控制端连接,用于在接收到所述控制信号时,将所述控制信号传输至所述开关管(K)的控制端,在未接收到所述控制信号时,将所述开关信号传输至所述开关管(K)的控制端;所述控制信号用于控制所述开关管(K)处于导通状态或关断状态;所述开关信号用于控制所述开关管(K)按照设定频率在导通状态或关断状态之间切换;
    所述驱动电路(10)的输出端与所述mini-LED单元(90)的输入端连接,所述mini-LED单元(90)作为所述驱动电路(10)的负载元件(20),所述驱动电路(10)用于为所述mini-LED单元(90)提供驱动电压。
  13. 如权利要求12所述的发光电路,其中,所述mini-LED单元(90)由多个二极管组成,第一级二极管的阳极作为mini-LED单元(90)的输入端,最后一级二极管的阴极作为mini-LED单元(90)的输出端。
  14. 如权利要求12所述的发光电路,其中,所述反馈电路(40)中的所述第一比较器(B1)与所述mini-LED单元(90)的输入端连接,所述第二比较器(B2)与所述mini-LED单元(90)的输出端连接。
  15. 一种显示设备,其中,所述显示设备包括发光电路,所述发光电路包括mini-LED单元(90)和驱动电路(10),所述驱动电路(10)与负载元件(20)连接,其中,所述驱动电路(10)包括:
    开关电源电路(30),用于对接入的第一电压进行升压或降压处理,获得第二电压,并将所述第二电压提供给所述负载元件(20);
    反馈电路(40),与所述负载元件(20)连接,用于接收所述负载元件(20)的反馈电压,并在所述反馈电压不处于预设电压范围内时,生成控制信号;
    脉冲电路(50),用于生成设定频率的开关信号;
    开关电路(60),分别与所述反馈电路(40)、脉冲电路(50)和所述开关电源电路(30)中的开关管(K)的控制端连接,用于在接收到所述控制信号时,将所述控制信号传输至所述开关管(K)的控制端,在未接收到所述控制信号时,将所述开关信号传输至所述开关管(K)的控制端;所述控制信号用于控制所述开关管(K)处于导通状态或关断状态;所述开关信号用于控制所述开关管(K)按照设定频率在导通状态或关断状态之间切换;
    所述驱动电路(10)的输出端与所述mini-LED单元(90)的输入端连接,所述mini-LED单元(90)作为所述驱动电路(10)的负载元件(20),所述驱动电路(10)用于为所述mini-LED单元(90)提供驱动电压。
PCT/CN2022/135757 2022-04-08 2022-12-01 驱动电路、发光电路及显示设备 WO2023193455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210363851.7A CN114499181B (zh) 2022-04-08 2022-04-08 驱动电路、发光电路及显示设备
CN202210363851.7 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023193455A1 true WO2023193455A1 (zh) 2023-10-12

Family

ID=81488630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135757 WO2023193455A1 (zh) 2022-04-08 2022-12-01 驱动电路、发光电路及显示设备

Country Status (3)

Country Link
US (1) US20230328858A1 (zh)
CN (1) CN114499181B (zh)
WO (1) WO2023193455A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499181B (zh) * 2022-04-08 2022-07-22 惠科股份有限公司 驱动电路、发光电路及显示设备
CN116073655A (zh) * 2023-01-28 2023-05-05 深圳通锐微电子技术有限公司 升压转换电路
CN116665574B (zh) * 2023-04-19 2024-07-05 惠科股份有限公司 驱动电路及显示面板
CN116915053B (zh) * 2023-09-12 2024-02-02 西安麦格米特电气有限公司 一种负载开关电路、电能调节方法及电能调节设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286127A (ja) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd 電源回路
JP2005045850A (ja) * 2003-07-22 2005-02-17 Toko Inc スイッチング定電流電源装置
JP2005051883A (ja) * 2003-07-31 2005-02-24 Toko Inc スイッチング定電流電源装置
CN207545070U (zh) * 2017-03-16 2018-06-29 江苏盖睿健康科技有限公司 一种动态心电信号快速恢复电路
CN114115807A (zh) * 2020-08-31 2022-03-01 京东方科技集团股份有限公司 随机数生成器及随机数生成方法
CN114499181A (zh) * 2022-04-08 2022-05-13 惠科股份有限公司 驱动电路、发光电路及显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109902A (ja) * 2003-09-30 2005-04-21 Ricoh Co Ltd パルス発生回路
CN114079377B (zh) * 2020-08-19 2024-02-06 圣邦微电子(北京)股份有限公司 功率变换器及其控制电路和控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286127A (ja) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd 電源回路
JP2005045850A (ja) * 2003-07-22 2005-02-17 Toko Inc スイッチング定電流電源装置
JP2005051883A (ja) * 2003-07-31 2005-02-24 Toko Inc スイッチング定電流電源装置
CN207545070U (zh) * 2017-03-16 2018-06-29 江苏盖睿健康科技有限公司 一种动态心电信号快速恢复电路
CN114115807A (zh) * 2020-08-31 2022-03-01 京东方科技集团股份有限公司 随机数生成器及随机数生成方法
CN114499181A (zh) * 2022-04-08 2022-05-13 惠科股份有限公司 驱动电路、发光电路及显示设备

Also Published As

Publication number Publication date
CN114499181B (zh) 2022-07-22
CN114499181A (zh) 2022-05-13
US20230328858A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2023193455A1 (zh) 驱动电路、发光电路及显示设备
TWI735865B (zh) 發光二極體驅動系統及發光二極體驅動裝置
US10140931B2 (en) Shadow mask assemblies and reusing methods of shadow mask assemblies thereof
US9055637B2 (en) Light emitting diode load driving apparatus
US10638580B2 (en) Multi-mode dimming control method and dimming circuit
CN104900190A (zh) 电源电路、有机发光二极管显示装置
CN202135363U (zh) 发光二极管恒流驱动器
US20240235371A1 (en) Boost-type converter and driving circuit for driving high-side switching transistor thereof
CN214544872U (zh) Led驱动保护电路及装置
US9084321B2 (en) LED backlight system and display device
CN112383220B (zh) 控制电路以及应用其的开关变换器
CN112087135B (zh) 一种应用于llc变换器的多模式调制芯片
WO2019136783A1 (zh) 用于液晶显示器的放大电路及液晶显示器
TW202207595A (zh) 低雜訊之升壓轉換器
US20230328854A1 (en) Dimming method and dimming circuit
US20240235366A1 (en) Switching converter and control circuit thereof
CN102843808A (zh) 发光二极管恒流驱动器
CN211506286U (zh) 宽输入电压范围的辅助电源供应电路
CN112542818B (zh) 一种输入欠压保护电路及包括该电路的电源板
CN219555194U (zh) 一种智能led驱动电路
TWI838141B (zh) 高功率因數之升壓轉換器
TWI826135B (zh) 高轉換效率之升壓轉換器
CN219554828U (zh) 一种宽范围可调节输出电压的反激开关电源电路
CN216600143U (zh) 开关电源电路及电视机
CN219286876U (zh) 一种数字激光驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936381

Country of ref document: EP

Kind code of ref document: A1