WO2023193383A1 - 一种燃料电池用氢气引射器 - Google Patents

一种燃料电池用氢气引射器 Download PDF

Info

Publication number
WO2023193383A1
WO2023193383A1 PCT/CN2022/112623 CN2022112623W WO2023193383A1 WO 2023193383 A1 WO2023193383 A1 WO 2023193383A1 CN 2022112623 W CN2022112623 W CN 2022112623W WO 2023193383 A1 WO2023193383 A1 WO 2023193383A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure nozzle
sealing structure
expansion chamber
chamber
Prior art date
Application number
PCT/CN2022/112623
Other languages
English (en)
French (fr)
Inventor
李飞强
周百慧
李冯利
方川
赵兴旺
Original Assignee
北京亿华通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京亿华通科技股份有限公司 filed Critical 北京亿华通科技股份有限公司
Publication of WO2023193383A1 publication Critical patent/WO2023193383A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants

Definitions

  • the invention relates to the technical field of fuel cells, and in particular to a hydrogen ejector for fuel cells.
  • the metering ratio requirements for hydrogen are different.
  • the hydrogen supply volume is required to be greater than the hydrogen consumption volume.
  • a hydrogen circulation pump or ejector is generally designed in a hydrogen circulation system to allow hydrogen gas to flow in the fuel cell.
  • Hydrogen circulation pumps require additional control, consume additional power, and are prone to failure.
  • the ejector is a mechanical structure. After the size design is finalized, it cannot meet all stack operating points and cannot maximize the efficiency of the fuel cell system. Moreover, due to the small molecular weight of hydrogen, hydrogen under a certain pressure in the ejector can easily leak.
  • embodiments of the present invention aim to provide a hydrogen ejector for fuel cells to solve the problems in the prior art that the hydrogen circulation pump is prone to failure and the ejector has poor versatility and sealing properties.
  • embodiments of the present invention provide a hydrogen injector for fuel cells, including a high-pressure nozzle 1, a double sealing structure 2 and a diffusion chamber 3; wherein,
  • the top of the shell of the high-pressure nozzle 1 is provided with an installation groove for placing the double sealing structure 2. Its interior includes a uniform inner diameter channel 7 that is connected in sequence and smoothly transitions, a cone channel 6 with a set cone angle, and a lead with a uniform inner diameter. Perforation channel 5;
  • a gas sensor for monitoring hydrogen is provided on the side of each sealing structure away from the nozzle of the high-pressure nozzle 1;
  • One side of the shell of the diffuser chamber 3 is provided with a main gas path installation site where the high-pressure nozzle 1 is half-embedded and the shape of the insertion end matches the shape of the insertion part of the high-pressure nozzle 1; its interior includes sequentially connected and smoothly transitioning mixing chamber and diffusion chamber; the mixing chamber has a main air path inlet and a circulating air path inlet.
  • the hydrogen ejector can be equipped with high-pressure nozzles 1 of different ejector sizes for each expansion chamber 3, which solves the problem of poor versatility of the existing ejector.
  • the fuel cell power changes only the high-pressure nozzle 1 needs to be replaced, saving workload and working time.
  • the double sealing structure 2 By arranging the double sealing structure 2, the problem of frequent sealing problems in the existing ejector is solved, and the sealing effect between the ejector and the expansion chamber is improved. If one of the sealing structures fails, the other sealing structure can also perform the sealing function, effectively improving the user experience. For ejector with different power, replacing the high-pressure nozzle 1 with different caliber can realize quick adjustment of the stack power.
  • the ejector also includes a controller; wherein,
  • the controller is used to obtain the data collected by each gas sensor; and identify whether the double sealing structure 2 has failed based on the data collected by each gas sensor, and further identify the sealing structure that plays a sealing role if it does not fail. ; and, when the double sealing structure 2 fails, an early warning of failure of the main air path seal is issued.
  • each sealing structure of the double sealing structure 2 is vacuum sealed at the connection between the high-pressure nozzle 1 and the diffusion chamber 3;
  • One side of the shell of the high-pressure nozzle 1 is provided with an air inlet port, and the other side is provided with a tapered structure with an ejection hole at the end.
  • the top of the middle part is provided with an independent installation groove for placing each sealing structure and a diffuser.
  • the mounting slot is fixed in the cavity 3; a locking mechanism is provided between the mounting slot and the hanging slot;
  • the top of the shell of the expansion chamber 3 is provided with a mounting bump used in conjunction with the above-mentioned hanging groove; the inner diameter of the expansion chamber gradually increases from the inlet to the outlet.
  • the interior of the expansion chamber 3 also includes a main air path and a circulating air path, both of which have smooth inner walls; wherein,
  • the inlet of the main gas path is sealingly connected to the nozzle end of the high-pressure nozzle 1, and is used to transport hydrogen from the main path of the fuel cell to the mixing chamber;
  • the inner diameter of the main gas path is a constant value;
  • the circulating gas path is provided at the bottom of the shell of the expansion chamber 3 and is used to transport the circulating gas of the fuel cell to the mixing chamber; the inner diameter of the circulating gas path gradually decreases from bottom to top.
  • the double sealing structure 2 includes two independent sealing rings; and,
  • Each sealing ring is connected with an interference fit to the high-pressure nozzle 1 and the expansion chamber 3 respectively.
  • the housing of the high-pressure nozzle 1 is also provided with a limiting protrusion for limiting the extending position of the conical structure;
  • the uniform inner diameter channel 7, the cone channel 6, the ejection hole channel 5 of the high-pressure nozzle 1 and the central axes of the mixing chamber and the diffusion chamber of the diffusion chamber 3 are all on the same straight line;
  • the high-pressure nozzle 1, the double sealing structure 2, and the expansion chamber 3 are all connected with an interference fit, and the inner wall surfaces of all channels are coated with the same thickness of high-temperature-resistant and waterproof materials.
  • each expansion chamber 3 is equipped with high-pressure nozzles 1 of different injection sizes; and,
  • each high-pressure nozzle 1 The external shape and size of each high-pressure nozzle 1 are consistent, and the length and inner diameter of its uniform inner diameter channel 7 and the cone angle of the cone channel 6 are all the same. Only the inner diameter and length of the ejection hole channel 5 are different.
  • the ejector also includes a control device; wherein,
  • the control device is used to respectively control the ventilation volume of the main air path inlet and the circulating air path inlet, as well as the temperature and humidity status, and its control end is connected to the output end of the controller.
  • controller executes the following procedures:
  • the preset ventilation volume of the hydrogen ejector and the ventilation speed, gas temperature, and gas humidity information at the entrance of the circulating gas path are input into the pre-trained neural network to obtain the optimal ventilation speed, optimal ventilation speed at the entrance of the main gas path, and the gas humidity information.
  • Optimal gas temperature and optimal gas humidity information are input into the pre-trained neural network to obtain the optimal ventilation speed, optimal ventilation speed at the entrance of the main gas path, and the gas humidity information.
  • the airflow entering the high-pressure nozzle 1 is adjusted according to the optimal ventilation speed, optimal gas temperature, and optimal gas humidity information, and during the adjustment process, the data collected by each gas sensor is obtained; according to the data collected by each gas sensor
  • the data identifies whether the double sealing structure 2 has failed. If it has not failed, identify and display the sealing structure that plays a sealing role in the non-failed state, and perform the next step; if it fails, issue an early warning of main air circuit seal failure;
  • the above-mentioned gas ventilation speed is compared with the preset ventilation speed threshold range.
  • the ventilation speed of the circulating gas path inlet and the main path gas path inlet is controlled to increase according to the preset proportion.
  • the ventilation speed at the inlet of the circulating air path and the main air path is controlled to decrease according to the preset proportion until the ventilation speed at the current moment is within the preset ventilation speed threshold range, and the next step is executed;
  • the gas humidity at the outlet of the mixing chamber compare the gas humidity at the outlet of the mixing chamber with the preset humidity threshold range, and when the detected humidity information is lower than the lower limit of the humidity threshold range, control the circulation gas path inlet and outlet of the expansion chamber 3
  • the gas humidity at the main air path inlet increases according to the preset proportion.
  • the gas humidity at the circulating air path inlet and the main air path inlet of the expansion chamber 3 is controlled according to the preset proportion. The proportion is reduced until the gas humidity at the current moment is within the preset humidity threshold range, and the next step is executed;
  • the gas temperature at the outlet of the mixing chamber compare the gas temperature at the outlet of the mixing chamber with the preset temperature threshold range, and when the detected temperature information is lower than the lower limit of the temperature threshold range, control the circulation gas path inlet and outlet of the expansion chamber 3
  • the gas temperature at the main air path inlet increases according to a preset proportion respectively.
  • the gas temperatures at the circulation air path inlet and the main air path inlet of the expansion chamber 3 are controlled according to the preset proportion. The proportion is reduced until the gas temperature at the current moment is within the preset temperature threshold range, and the adjustment ends.
  • the hydrogen ejector provided by this embodiment has at least one of the following beneficial effects:
  • the speed, temperature and humidity of the output gas can be accurately controlled through the controller
  • the structure is stable and less affected by the external environment.
  • Figure 1 shows a schematic diagram of the composition of the hydrogen ejector in Embodiment 1;
  • Figure 2 shows a schematic structural diagram of the high-pressure nozzle of Embodiment 2.
  • 1-High-pressure nozzle 2-Double sealing structure; 3-Diffusion chamber; 4-circulation gas path; 5-injection hole channel; 6-cone channel; 7-uniform inner diameter channel.
  • the term “include” and its variations mean an open inclusion, ie, "including but not limited to.” Unless otherwise stated, the term “or” means “and/or”. The term “based on” means “based at least in part on.” The terms “one example embodiment” and “an embodiment” mean “at least one example embodiment.” The term “another embodiment” means “at least one additional embodiment”. The terms “first,” “second,” etc. may refer to different or the same object. Other explicit and implicit definitions may be included below.
  • One embodiment of the present invention discloses a hydrogen injector for fuel cells, as shown in Figure 1 , including a high-pressure nozzle 1, a double sealing structure 2 and a diffusion chamber 3.
  • the top of the shell of the high-pressure nozzle 1 is provided with an installation groove for placing the double sealing structure 2. Its interior includes a uniform inner diameter channel 7 that is connected in sequence and smoothly transitions, a cone channel 6 with a set cone angle, and a lead with a uniform inner diameter. Perforation channel 5.
  • a gas sensor for monitoring hydrogen is provided on the side of each sealing structure away from the nozzle of the high-pressure nozzle 1.
  • One end of the upper and lower ends of the double sealing structure 2 is fixed in the above-mentioned installation groove, and the other end is connected with the shell of the expansion chamber 3 with an interference fit.
  • One side of the shell of the diffuser chamber 3 is provided with a main gas path installation site where the high-pressure nozzle 1 is half-embedded and the shape of the insertion end matches the shape of the insertion part of the high-pressure nozzle 1; its interior includes sequentially connected and smoothly transitioning mixing chamber, diffusion chamber; the mixing chamber has a main air path inlet and an inlet of the circulating air path 4 (circulating air path inlet).
  • the high-pressure nozzle 1 with the selected injection size is connected to the expansion chamber 3 with an interference fit.
  • the high-pressure nozzle 1 is the key component of the ejector.
  • High-pressure nozzles 1 with different injection sizes can be directly mounted on the outside of the diffusion chamber 3 for easy storage.
  • the hydrogen ejector provided in this embodiment can be equipped with high-pressure nozzles 1 of different injection sizes for each expansion chamber 3, which solves the problem of poor versatility of the existing ejector.
  • the fuel cell power is changed, only the high-pressure nozzle 1 needs to be replaced, saving workload and working time.
  • the double sealing structure 2 By arranging the double sealing structure 2, the problem of frequent sealing problems in the existing ejector is solved, and the sealing effect between the ejector and the expansion chamber is improved. If one of the sealing structures fails, the other sealing structure can also perform the sealing function, effectively improving the user experience. For ejector with different power, replacing the high-pressure nozzle 1 with different caliber can realize quick adjustment of the stack power.
  • the hydrogen ejector further includes a controller.
  • a controller used to obtain the data collected by each gas sensor; and, identify whether the double sealing structure 2 has failed based on the data collected by each gas sensor (both gas sensors collect values indicating failure, otherwise it has not failed) ), and further identify the sealing structure that plays a sealing role when it does not fail (specifically, the value collected by the gas sensor close to the injection hole side of the high-pressure nozzle 1 indicates that the sealing structure has failed, and another sealing structure plays a sealing role, otherwise the sealing structure (plays a sealing role); and, when the double sealing structure 2 fails, an early warning of failure of the main air path seal is issued.
  • each sealing structure of the double sealing structure 2 is vacuum sealed at the connection between the high-pressure nozzle 1 and the diffusion chamber 3 .
  • one side of the shell of the high-pressure nozzle 1 is provided with an air inlet port, the other side is provided with a tapered structure with an injection hole at the end, and the top of the middle is provided with an independent installation groove for placing each sealing structure and a pressure expansion
  • the cavity 3 is fixed with a hanging slot; a locking mechanism is provided between the mounting slot and the hanging slot.
  • the top of the shell of the expansion chamber 3 is provided with a mounting bump used in conjunction with the above-mentioned hanging groove; the inner diameter of the expansion chamber gradually increases from the inlet to the outlet.
  • the interior of the expansion chamber 3 also includes a main air path and a circulating air path 4, both of which have smooth inner walls, as shown in Figure 2.
  • the inlet of the main path gas path is sealingly connected to the nozzle end of the high-pressure nozzle 1, and its outlet is connected to the main path air inlet of the mixing chamber, which is used to transport hydrogen from the main path of the fuel cell to the mixing chamber; its inlet It is connected to the exhaust gas output end of the hydrogen side of the fuel cell, and its outlet is connected to the slave air inlet of the mixing chamber.
  • the inner diameter of the main air path is a constant value.
  • the circulating gas path 4 is provided at the bottom of the housing of the diffusion chamber 3 and is used to transport the circulating gas of the fuel cell to the mixing chamber; the inner diameter of the circulating gas path 4 gradually decreases from bottom to top.
  • the output end of the mixing chamber is connected to the input end of the diffusion chamber and is used to mix the main hydrogen gas and the circulating gas; the diffusion chamber is used to expand the mixed gas.
  • the double sealing structure 2 includes two independent sealing rings; and each sealing ring is connected with the high-pressure nozzle 1 and the expansion chamber 3 with an interference fit respectively.
  • the sealing ring can be made of rubber material.
  • the housing of the high-pressure nozzle 1 is also provided with limiting protrusions for limiting the extending position of the conical structure; wherein, the centers of all limiting protrusions are located in the same plane.
  • the central axes of the uniform inner diameter channel 7, the cone channel 6, the ejection hole channel 5 of the high-pressure nozzle 1 and the mixing chamber and the diffusion chamber of the diffusion chamber 3 are all on the same straight line.
  • the high-pressure nozzle 1, the double sealing structure 2, and the expansion chamber 3 are all connected with an interference fit, and the inner wall surfaces of all channels are coated with the same thickness of high-temperature-resistant and waterproof materials.
  • each expansion chamber 3 is equipped with high-pressure nozzles 1 of different injection sizes; and,
  • each high-pressure nozzle 1 The external shape and size of each high-pressure nozzle 1 are consistent, and the length and inner diameter of its uniform inner diameter channel 7 and the cone angle of the cone channel 6 are all the same. Only the inner diameter and length of the ejection hole channel 5 are different.
  • the hydrogen ejector further includes a control device.
  • the control device is used to respectively control the ventilation volume of the main air path inlet and the circulating air path inlet, as well as the temperature and humidity status. Its control end is connected to the output end of the controller.
  • the controller executes the following procedures:
  • control sequence of steps S1 to S7 can make the reaction efficiency of the hydrogen gas entering the stack higher.
  • the controller is also used to output the selected injection size of the high-pressure nozzle 1 according to the input stack power (which can be the inner diameter of the injection hole channel 5, or the inner diameter of the injection hole); and, receive user feedback for installation After the instruction, the high-pressure nozzle 1 with the selected injection size at the designated position and the diffusion chamber 3 are connected by press-fitting and interference fit.
  • the input stack power which can be the inner diameter of the injection hole channel 5, or the inner diameter of the injection hole
  • the controller has a built-in trained mathematical model or deep network model. After inputting the stack power data, it can output the selected injection size of the high-pressure nozzle 1. It also includes an automatic buckling mechanism that can be placed in the specified size. Interference fit connection.
  • the outer sides of the casings of all high-pressure nozzles 1 have the same shape and size, and the outer end surfaces of the casings adopt an integrated cone-shaped structure.
  • the inner diameter of the injection hole channel 5 of each high-pressure nozzle 1 is 0.5 to 3 mm.
  • a plurality of mounting bumps are evenly arranged on the outer surface of the high-pressure nozzle 1, and the centers of all the mounting bumps are located on the same plane.
  • each of the uniform inner diameter channel 7, the cone channel 6, and the injection hole channel 5 of the high-pressure nozzle 1 are coated with the same thickness of high-temperature-resistant and waterproof material.
  • the interior of the expansion chamber 3 also includes a detection channel; the detection channel is located at the outlet of the expansion chamber of the expansion chamber 3 and communicates with the inside of the expansion chamber, and a detection unit of the controller is provided on the inner wall of the channel. .
  • the detection unit further includes a gas flow sensor, a temperature sensor, a humidity sensor and a fixed base; one end of the gas flow sensor, temperature sensor and humidity sensor extends into the detection channel, and passes through the connection between the fixed base and the diffusion chamber.
  • the side walls are sealed and connected, and the other end serves as a lead-out end and extends out of the expansion chamber 3 .
  • the high-pressure nozzle 1 provided in this embodiment has the following beneficial effects:
  • the controller can accurately control the speed, temperature and humidity of the output gas.
  • the high-pressure nozzle 1 and the expansion chamber 3 can be automatically connected through the controller, which improves convenience. At the same time, the structure is stable and is less affected by the external environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种燃料电池用氢气引射器,属于燃料电池技术领域,解决了现有技术氢气循环泵容易故障且引射器通用性和密封性较差的问题。该氢气引射器包括高压喷头、双密封结构和扩压腔体。高压喷头的壳体顶端设有放置双密封结构的安装槽,其内部包括依次连通且平滑过渡的均匀内径通道、具有设定锥体角度的锥体通道,以及具有均匀内径的引射孔通道;双密封结构中,每一密封结构的远离高压喷头喷嘴的一侧均设有用于监测氢气的气体传感器。扩压腔体的壳体一侧设有半置入高压喷头且置入端形状与高压喷头置入部分形状匹配的主路气路安装部位;其内部包括依次连通且平滑过渡的具有主路气路入口和循环气路入口的混合室,以及扩压室。

Description

一种燃料电池用氢气引射器 技术领域
本发明涉及燃料电池技术领域,尤其涉及一种燃料电池用氢气引射器。
背景技术
在燃料电池系统设计中,氢气供给系统中,因电堆工作工况的不同,对氢气的计量比要求不同。为了保证高效率,要求氢气供给量要大于氢气消耗量。电堆工作过程中必然有未参与消耗的过剩氢气,直接排放污染环境且易爆不安全,需要将过剩氢气重新利用。
目前,氢循环系统中一般会设计一个氢循环泵或引射器,使氢气在燃料电池中流动起来。氢循环泵需要额外控制,还消耗额外的功耗,并且容易故障。而引射器是一个机械结构,在尺寸设计定型后,无法满足所有电堆工作点,不能发挥燃料电池系统的最高工作效率。并且,由于氢气的分子量较小,引射器内一定压力的氢气很容易发生泄漏。
发明内容
鉴于上述的分析,本发明实施例旨在提供一种燃料电池用氢气引射器,用以解决现有技术氢气循环泵容易故障且引射器通用性和密封性较差的问题。
一方面,本发明实施例提供了一种燃料电池用氢气引射器,包括高压喷头1、双密封结构2和扩压腔体3;其中,
高压喷头1的壳体顶端设有放置双密封结构2的安装槽,其内部包括依次连通且平滑过渡的均匀内径通道7、具有设定锥体角度的锥体通道6,以及具有均匀内径的引射孔通道5;
双密封结构2中,每一密封结构的远离高压喷头1喷嘴的一侧均设有用于监测氢气的气体传感器;
扩压腔体3的壳体一侧设有半置入高压喷头1且置入端形状与高压喷头1置入部分形状匹配的主路气路安装部位;其内部包括依次连通且平滑过渡的混合室、扩压室;该混合室具有主路气路入口和循环气路入口。
上述技术方案的有益效果如下:氢气引射器可对每一扩压腔体3配备不同引射尺寸的高压喷头1,解决了现有引射器通用性较差的问题,在燃料电池功率变更时,仅需更换高压喷头1,节省了工作量和工作时间。通过设置双密封结构2,解决现有引射器密封问题频发的问题,并提高了引射器与扩压腔体的密封作用。如果其中一个密封结构失效,另一个密封结构也能起到密封功能,有效提高了用户体验。对不同功率的引射器,更换不同口径的高压喷头1,可实现快速调整电堆功率。
基于上述引射器的进一步改进,该引射器还包括控制器;其中,
所述控制器,用于获取每一所述气体传感器采集的数据;以及,根据每一所述气体传感器采集的数据识别双密封结构2是否失效,在未失效时进一步识别起密封作用的密封结构;以及,在双密封结构2失效时,发出主路气路密封失效的预警。
进一步,所述双密封结构2的每一密封结构均通过真空密封于高压喷头1与扩压腔 体3的连接部位;并且,
所述高压喷头1的壳体一侧设有进气端口,另一侧设有端部具有引射孔的锥形结构,中部的顶端设有放置每一密封结构的独立安装槽和与扩压腔体3固定的挂槽;该安装槽与挂槽之间设有锁死机构;
所述扩压腔体3的壳体的顶部设有与上述挂槽配合使用的安装凸块;其扩压室的内径从入口到出口逐渐增大。
进一步,所述扩压腔体3的内部还包括均具有光滑内壁的主路气路、循环气路;其中,
所述主路气路的入口与高压喷头1的喷头端部密封连接,用于将燃料电池主路的氢气输送至混合室;主路气路的内径为恒定值;
所述循环气路设于扩压腔体3的壳体底部,用于将燃料电池的循环气体输送至混合室;循环气路的内径从下至上逐渐减小。
进一步,所述双密封结构2包括两个独立的密封圈;并且,
每一密封圈分别与高压喷头1和扩压腔体3进行过盈配合连接。
进一步,所述高压喷头1的壳体上还设有用于限制所述锥形结构伸入位置的限位凸点;其中,
所有限位凸点的中心均位于同一平面内。
进一步,所述高压喷头1的均匀内径通道7、锥体通道6、引射孔通道5与所述扩压腔体3的混合室、扩压室各自的中心轴线均处于同一直线上;并且,
所述高压喷头1、双密封结构2、扩压腔体3任意二者间均进行过盈配合连接,所有通道的内壁表面均涂覆有相同厚度的耐高温防水材料。
进一步,每一扩压腔体3配备不同引射尺寸的高压喷头1;并且,
每一高压喷头1的外部形状、大小均一致,其均匀内径通道7的长度、内径和锥体通道6的锥体角度均一致,仅引射孔通道5的内径和长度不同。
进一步,该引射器还包括调控设备;其中,
所述调控设备,用于分别控制主路气路入口、循环气路入口的通气量,以及温度、湿度状态,其控制端与控制器的输出端连接。
进一步,所述控制器执行如下程序:
通气后分别检测扩压腔体3的循环气路入口处的通气速度、气体温度、气体湿度信息;
将氢气引射器的预设通气量和所述循环气路入口处的通气速度、气体温度、气体湿度信息输入事先训练好的神经网络,得到主路气路入口处的最优通气速度、最优气体温度、最优气体湿度信息;
根据所述最优通气速度、最优气体温度、最优气体湿度信息对进入高压喷头1的气流进行调整,并在调整过程中,获取每一气体传感器采集的数据;根据每一气体传感器采集的数据识别双密封结构2是否失效,若未失效,识别并显示未失效状态下中起密封作用的密封结构,并执行下一步;若失效,发出主路气路密封失效的预警;
检测调整后预设时刻的扩压室出口的气体通气速度、温度、湿度;
将上述气体通气速度和预设的通气速度阈值范围对比,当其低于阈值范围下限 时,控制循环气路入口和主路气路入口的通气速度分别按预设比例增大,当其高于阈值范围上限时,控制循环气路入口和主路气路入口的通气速度分别按预设比例减小,直到当前时刻的通气速度处于预设的通气速度阈值范围内,执行下一步;
获取混合室出口的气体湿度,将混合室出口的气体湿度和预设的湿度阈值范围对比,当检测到的湿度信息低于湿度阈值范围下限时,控制扩压腔体3的循环气路入口和主路气路入口的气体湿度分别按预设比例升高,当其高于湿度阈值范围上限时,控制扩压腔体3的循环气路入口和主路气路入口的气体湿度分别按预设比例减小,直到当前时刻的气体湿度处于预设的湿度阈值范围内,执行下一步;
获取混合室出口的气体温度,将混合室出口的气体温度和预设的温度阈值范围对比,当检测到的温度信息低于温度阈值范围下限时,控制扩压腔体3的循环气路入口和主路气路入口的气体温度分别按预设比例升高,当其高于温度阈值范围上限时,控制扩压腔体3的循环气路入口和主路气路入口的气体温度分别按预设比例减小,直到当前时刻的气体温度处于预设的温度阈值范围内,结束调整。
与现有技术相比,本实施例提供的氢气引射器至少如下之一的有益效果:
1、能够根据电堆功率,选择合适尺寸的高压喷头1;
2、通过控制器可能够精准地控制输出气体的速度、温度、湿度;
3、结构稳固,受外界环境影响较小。
提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的重要特征或必要特征,也无意限制本公开的范围。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了实施例1氢气引射器组成示意图;
图2示出了实施例2高压喷头结构示意图。
附图标记:
1-高压喷头;2-双密封结构;3-扩压腔体;4-循环气路;5-引射孔通道;6-锥体通道;7-均匀内径通道。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的 实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
实施例1
本发明的一个实施例,公开了一种燃料电池用氢气引射器,如图1所示,包括高压喷头1、双密封结构2和扩压腔体3。
高压喷头1的壳体顶端设有放置双密封结构2的安装槽,其内部包括依次连通且平滑过渡的均匀内径通道7、具有设定锥体角度的锥体通道6,以及具有均匀内径的引射孔通道5。
双密封结构2中,每一密封结构的远离高压喷头1喷嘴的一侧均设有用于监测氢气的气体传感器。双密封结构2的上下两端中一端固定于上述安装槽内,另一端与扩压腔体3的壳体过盈配合连接。
扩压腔体3的壳体一侧设有半置入高压喷头1且置入端形状与高压喷头1置入部分形状匹配的主路气路安装部位;其内部包括依次连通且平滑过渡的混合室、扩压室;该混合室具有主路气路入口和循环气路4的入口(循环气路入口)。
选定引射尺寸的高压喷头1与扩压腔体3进行过盈配合连接。高压喷头1是引射器的重点零部件。各不同引射尺寸的高压喷头1可直接挂接在扩压腔体3的外部,便于存储。
与现有技术相比,本实施例提供的氢气引射器可对每一扩压腔体3配备不同引射尺寸的高压喷头1,解决了现有引射器通用性较差的问题,在燃料电池功率变更时,仅需更换高压喷头1,节省了工作量和工作时间。通过设置双密封结构2,解决现有引射器密封问题频发的问题,并提高了引射器与扩压腔体的密封作用。如果其中一个密封结构失效,另一个密封结构也能起到密封功能,有效提高了用户体验。对不同功率的引射器,更换不同口径的高压喷头1,可实现快速调整电堆功率。
实施例2
在实施例1的基础上进行改进,该氢气引射器还包括控制器。
控制器,用于获取每一所述气体传感器采集的数据;以及,根据每一所述气体传感器采集的数据识别双密封结构2是否失效(两个气体传感器均采集到数值表示失效,否则未失效),在未失效时进一步识别起密封作用的密封结构(具体地,靠近高压喷头1引射孔侧的气体传感器采集到数值表示该密封结构失效,另一个密封结构起密封作用,否则该密封结构起密封作用);以及,在双密封结构2失效时,发出主路气路密封失效的预警。
优选地,双密封结构2的每一密封结构均通过真空密封于高压喷头1与扩压腔体3的连接部位。并且,高压喷头1的壳体一侧设有进气端口,另一侧设有端部具有引射孔的锥形结构,中部的顶端设有放置每一密封结构的独立安装槽和与扩压腔体3固定的挂槽;该安装槽与挂槽之间设有锁死机构。
优选地,扩压腔体3的壳体的顶部设有与上述挂槽配合使用的安装凸块;其扩压室的内径从入口到出口逐渐增大。
优选地,扩压腔体3的内部还包括均具有光滑内壁的主路气路、循环气路4,如图2所示。其中,所述主路气路的入口与高压喷头1的喷头端部密封连接,其出口与混合室的主路进气口连接,用于将燃料电池主路的氢气输送至混合室;其入口与燃料电池的氢气侧尾气输出端连接,其出口与混合室的从路进气口连接,主路气路的内径为恒定值。循环气路4 设于扩压腔体3的壳体底部,用于将燃料电池的循环气体输送至混合室;循环气路4的内径从下至上逐渐减小。混合室的输出端与扩压室的输入端连接,用于将主路氢气和循环气体混合;扩压室用于将混合后气体进行扩压。
优选地,双密封结构2包括两个独立的密封圈;并且,每一密封圈分别与高压喷头1和扩压腔体3进行过盈配合连接。密封圈可采用橡胶类材料制备。
优选地,高压喷头1的壳体上还设有用于限制锥形结构伸入位置的限位凸点;其中,所有限位凸点的中心均位于同一平面内。
优选地,高压喷头1的均匀内径通道7、锥体通道6、引射孔通道5与扩压腔体3的混合室、扩压室各自的中心轴线均处于同一直线上。高压喷头1、双密封结构2、扩压腔体3任意二者间均进行过盈配合连接,所有通道的内壁表面均涂覆有相同厚度的耐高温防水材料。
优选地,每一扩压腔体3配备不同引射尺寸的高压喷头1;并且,
每一高压喷头1的外部形状、大小均一致,其均匀内径通道7的长度、内径和锥体通道6的锥体角度均一致,仅引射孔通道5的内径和长度不同。
优选地,该氢气引射器还包括调控设备。调控设备,用于分别控制主路气路入口、循环气路入口的通气量,以及温度、湿度状态,其控制端与控制器的输出端连接。
优选地,控制器执行如下程序:
S1.通气后分别检测扩压腔体3的循环气路入口处的通气速度、气体温度、气体湿度信息;
S2.将氢气引射器的预设通气量和循环气路入口处的通气速度、气体温度、气体湿度信息输入事先训练好的神经网络,得到主路气路入口处的最优通气速度、最优气体温度、最优气体湿度信息;
S3.根据最优通气速度、最优气体温度、最优气体湿度信息对进入高压喷头1的气流进行调整,并在调整过程中,获取每一气体传感器采集的数据;根据每一气体传感器采集的数据识别双密封结构2是否失效,若未失效,识别并显示未失效状态下中起密封作用的密封结构,并执行下一步;若失效,发出主路气路密封失效的预警;
S4.检测调整后预设时刻的扩压室出口的气体通气速度、温度、湿度;
S5.将上述气体通气速度和预设的通气速度阈值范围对比,当其低于阈值范围下限时,控制循环气路入口和主路气路入口的通气速度分别按预设比例增大,当其高于阈值范围上限时,控制循环气路入口和主路气路入口的通气速度分别按预设比例减小,直到当前时刻的通气速度处于预设的通气速度阈值范围内,执行下一步;
S6.获取混合室出口的气体湿度,将混合室出口的气体湿度和预设的湿度阈值范围对比,当检测到的湿度信息低于湿度阈值范围下限时,控制扩压腔体3的循环气路入口和主路气路入口的气体湿度分别按预设比例升高,当其高于湿度阈值范围上限时,控制扩压腔体3的循环气路入口和主路气路入口的气体湿度分别按预设比例减小,直到当前时刻的气体湿度处于预设的湿度阈值范围内,执行下一步;
S7.获取混合室出口的气体温度,将混合室出口的气体温度和预设的温度阈值范围对比,当检测到的温度信息低于温度阈值范围下限时,控制扩压腔体3的循环气路入口和主路气路入口的气体温度分别按预设比例升高,当其高于温度阈值范围上限时,控制扩压腔体3的循环气路入口和主路气路入口的气体温度分别按预设比例减小,直到当前时刻的 气体温度处于预设的温度阈值范围内,结束调整。
步骤S1~S7的调控顺序能使得进入电堆的氢气的反应效率较高。
优选地,控制器,还用于根据输入的电堆功率输出高压喷头1的选定引射尺寸(可以是引射孔通道5内径,或者引射孔内径);以及,接收到用户反馈的安装指令后,将指定位置的选定引射尺寸的高压喷头1与扩压腔体3通过压装进行过盈配合连接。
具体地,控制器内置训练好的数学模型或深度网络模型,输入电堆功率数据后,可输出高压喷头1的选定引射尺寸,其还包括自动扣接机构,放到指定尺寸后可进行过盈配合连接。
优选地,所有高压喷头1的壳体外侧形状、大小均一致,并且,其壳体的外端面均采用一体式设计的锥形结构。
优选地,每一高压喷头1的引射孔通道5的内径为0.5~3mm。并且,高压喷头1的外表面上均匀布设多个安装凸点,所有安装凸点的中心均位于同一平面内。
优选地,高压喷头1的均匀内径通道7、锥体通道6和引射孔通道5各自的通道内壁表面均涂覆有相同厚度的耐高温防水材料。
优选地,扩压腔体3的内部还包括检测通道;检测通道设于扩压腔体3的扩压室出气口处,与扩压腔体内部连通,通道内壁上设有控制器的探测单元。
优选地,探测单元进一步包括气体流量传感器、温度传感器、湿度传感器和固定基座;气体流量传感器、温度传感器、湿度传感器的一端伸入至检测通道内部,均通过固定基座与扩压腔体的侧壁密封连接,另一端作为引出端伸出扩压腔体3的外部。
与现有技术相比,本实施例提供的高压喷头1具有如下有益效果:
1、能够根据电堆功率,选择合适尺寸的高压喷头1;
2、通过控制器可能够精准地控制输出气体的速度、温度、湿度。
3、通过控制器可自动连接高压喷头1与扩压腔体3,提高了便捷性,同时,结构稳固、受外界环境影响较小。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对现有技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (8)

  1. 一种燃料电池用氢气引射器,其特征在于,包括高压喷头(1)、双密封结构(2)、扩压腔体(3)和控制器;其中,
    高压喷头(1)的壳体顶端设有放置双密封结构(2)的安装槽,高压喷头(1)的壳体内部包括依次连通且平滑过渡的均匀内径通道(7)、具有设定锥体角度的锥体通道(6),以及具有均匀内径的引射孔通道(5);
    双密封结构(2)中,每一密封结构的远离高压喷头(1)喷嘴的一侧均设有用于监测氢气的气体传感器;
    扩压腔体(3)的壳体一侧设有半置入高压喷头(1)且置入端形状与高压喷头(1)置入部分形状匹配的主路气路安装部位;扩压腔体(3)的壳体内部包括依次连通且平滑过渡的混合室、扩压室;该混合室具有主路气路入口和循环气路入口;
    所述控制器执行如下控制功能:
    通气后分别检测扩压腔体(3)的循环气路入口处的通气速度、气体温度、气体湿度信息;
    将氢气引射器的预设通气量和所述循环气路入口处的通气速度、气体温度、气体湿度信息输入事先训练好的神经网络,得到主路气路入口处的最优通气速度、最优气体温度、最优气体湿度信息;
    根据所述最优通气速度、最优气体温度、最优气体湿度信息对进入高压喷头(1)的气流进行调整,并在调整过程中,获取每一气体传感器采集的数据;根据每一气体传感器采集的数据识别双密封结构(2)是否失效,若未失效,识别并显示未失效状态下中起密封作用的密封结构,并执行下一步;若失效,发出主路气路密封失效的预警;
    检测调整后预设时刻的扩压室出口的气体通气速度、气体温度、气体湿度;
    将上述扩压室出口的气体通气速度和预设的通气速度阈值范围对比,当其低于阈值范围下限时,控制循环气路入口和主路气路入口的通气速度分别按预设比例增大,当其高于阈值范围上限时,控制循环气路入口和主路气路入口的通气速度分别按预设比例减小,直到当前时刻的扩压室出口的气体通气速度处于预设的通气速度阈值范围内,执行下一步;
    获取混合室出口的气体湿度,将混合室出口的气体湿度和预设的湿度阈值范围对比,当检测到的湿度信息低于湿度阈值范围下限时,控制扩压腔体(3)的循环气路入口和主路气路入口的气体湿度分别按预设比例升高,当其高于湿度阈值范围上限时,控制扩压腔体(3)的循环气路入口和主路气路入口的气体湿度分别按预设比例减小,直到当前时刻的混合室出口的气体湿度处于预设的湿度阈值范围内,执行下一步;
    获取混合室出口的气体温度,将混合室出口的气体温度和预设的温度阈值范围对比,当检测到的温度信息低于温度阈值范围下限时,控制扩压腔体(3)的循环气路入口和主路气路入口的气体温度分别按预设比例升高,当其高于温度阈值范围上限时,控制扩压腔体(3)的循环气路入口和主路气路入口的气体温度分别按预设比例减小,直到当前时刻的混合室出口的气体温度处于预设的温度阈值范围内,结束调整。
  2. 根据权利要求1所述的燃料电池用氢气引射器,其特征在于,所述双密封结构(2)的每一密封结构均密封于高压喷头(1)与扩压腔体(3)的连接部位;并且,
    所述高压喷头(1)的壳体一侧设有进气端口,另一侧设有端部具有引射孔的锥形结构,中部的顶端设有放置每一密封结构的独立安装槽和与扩压腔体(3)固定的挂槽;该安装槽 与挂槽之间设有锁死机构;
    所述扩压腔体(3)的壳体的顶部设有与上述挂槽配合使用的安装凸块;其扩压室的内径从其入口到其出口逐渐增大。
  3. 根据权利要求2所述的燃料电池用氢气引射器,其特征在于,所述扩压腔体(3)的内部还包括均具有光滑内壁的主路气路、循环气路;其中,
    所述主路气路的入口与高压喷头(1)的喷头端部密封连接,用于将燃料电池主路的氢气输送至混合室;主路气路的内径为恒定值;
    所述循环气路设于扩压腔体(3)的壳体底部,用于将燃料电池的循环气体输送至混合室;循环气路的内径从下至上逐渐减小。
  4. 根据权利要求3所述的燃料电池用氢气引射器,其特征在于,所述双密封结构(2)包括两个独立的密封圈;并且,
    每一密封圈分别与高压喷头(1)和扩压腔体(3)进行过盈配合连接。
  5. 根据权利要求3或4所述的燃料电池用氢气引射器,其特征在于,所述高压喷头(1)的壳体上还设有用于限制所述锥形结构伸入位置的限位凸点;其中,
    所有限位凸点的中心均位于同一平面内。
  6. 根据权利要求5所述的燃料电池用氢气引射器,其特征在于,所述高压喷头(1)的均匀内径通道(7)、锥体通道(6)、引射孔通道(5)与所述扩压腔体(3)的混合室、扩压室各自的中心轴线均处于同一直线上;并且,
    所述高压喷头(1)、双密封结构(2)、扩压腔体(3)任意二者间均进行过盈配合连接,所有通道的内壁表面均涂覆有相同厚度的耐高温防水材料。
  7. 根据权利要求6所述的燃料电池用氢气引射器,其特征在于,每一扩压腔体(3)配备不同引射尺寸的高压喷头(1);并且,
    每一高压喷头(1)的外部形状、大小均一致,其均匀内径通道(7)的长度、内径和锥体通道(6)的锥体角度均一致,仅引射孔通道(5)的内径和长度不同。
  8. 根据权利要求6或7所述的燃料电池用氢气引射器,其特征在于,还包括调控设备;其中,
    所述调控设备,用于分别控制主路气路入口、循环气路入口的通气量,以及温度、湿度状态,其控制端与控制器的输出端连接。
PCT/CN2022/112623 2022-04-07 2022-08-15 一种燃料电池用氢气引射器 WO2023193383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210361688.0A CN114439782B (zh) 2022-04-07 2022-04-07 一种燃料电池用氢气引射器
CN202210361688.0 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193383A1 true WO2023193383A1 (zh) 2023-10-12

Family

ID=81360206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112623 WO2023193383A1 (zh) 2022-04-07 2022-08-15 一种燃料电池用氢气引射器

Country Status (2)

Country Link
CN (1) CN114439782B (zh)
WO (1) WO2023193383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439782B (zh) * 2022-04-07 2022-06-17 北京亿华通科技股份有限公司 一种燃料电池用氢气引射器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002797A1 (en) * 2003-01-15 2005-01-06 Denso Corporation Structure of ejector pump
US20100150742A1 (en) * 2008-12-16 2010-06-17 Jan Vetrovec Reconfigurable jet pump
CN106678087A (zh) * 2017-03-08 2017-05-17 华北电力大学(保定) 一种用于调节工质基本状态参数的装置
CN108400354A (zh) * 2018-01-17 2018-08-14 安徽明天氢能科技股份有限公司 一种用于燃料电池系统的可变喉口引射器
CN110224156A (zh) * 2019-07-18 2019-09-10 中山大洋电机股份有限公司 一种引射器及其应用的燃料电池进氢调节回氢装置
CN112901566A (zh) * 2021-03-30 2021-06-04 上海羿沣氢能科技有限公司 一种可调式工作喷嘴的燃料电池引射器
CN114439782A (zh) * 2022-04-07 2022-05-06 北京亿华通科技股份有限公司 一种燃料电池用氢气引射器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882453A (zh) * 2019-03-01 2019-06-14 一汽解放汽车有限公司 可变截面的引射器
CN113823814A (zh) * 2020-06-19 2021-12-21 北京亿华通科技股份有限公司 集成温控功能的引射器以及燃料电池氢气侧系统架构
CN215834559U (zh) * 2021-08-18 2022-02-15 南京氢创能源科技有限公司 引射器及燃料电池系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002797A1 (en) * 2003-01-15 2005-01-06 Denso Corporation Structure of ejector pump
US20100150742A1 (en) * 2008-12-16 2010-06-17 Jan Vetrovec Reconfigurable jet pump
CN106678087A (zh) * 2017-03-08 2017-05-17 华北电力大学(保定) 一种用于调节工质基本状态参数的装置
CN108400354A (zh) * 2018-01-17 2018-08-14 安徽明天氢能科技股份有限公司 一种用于燃料电池系统的可变喉口引射器
CN110224156A (zh) * 2019-07-18 2019-09-10 中山大洋电机股份有限公司 一种引射器及其应用的燃料电池进氢调节回氢装置
CN112901566A (zh) * 2021-03-30 2021-06-04 上海羿沣氢能科技有限公司 一种可调式工作喷嘴的燃料电池引射器
CN114439782A (zh) * 2022-04-07 2022-05-06 北京亿华通科技股份有限公司 一种燃料电池用氢气引射器

Also Published As

Publication number Publication date
CN114439782B (zh) 2022-06-17
CN114439782A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023193383A1 (zh) 一种燃料电池用氢气引射器
CN1758168B (zh) 控制制冷剂液位的装置
KR101592656B1 (ko) 연료전지용 공기공급 장치 및 방법
CN109449495A (zh) 锂电池腔体负压化成方法及装置
CN113823814A (zh) 集成温控功能的引射器以及燃料电池氢气侧系统架构
KR20130071731A (ko) 연료전지 스택 내 연료극의 압력 요동 제어방법
CN108808102A (zh) 用于锂离子电池化成过程的间歇式负压调节系统和负压调节方法
CN106121984A (zh) 基于压力开关传感器的水泵低启停频率控制方法及水泵
CN206115313U (zh) 一种快速调节燃料电池测试台气体温湿度的系统
CN209487635U (zh) 锂电池腔体负压化成装置
CN220382170U (zh) 电池充放电化成一体机
CN212230534U (zh) 集成温控功能的引射器
CN216922651U (zh) 一种用于燃料电池的氢气引射器
CN115064728B (zh) 一种燃料电池用氢气循环装置
CN101696660A (zh) 燃气发电机组空燃比控制方法
CN210624924U (zh) 一种负压燃气炉系统
WO2021248721A1 (zh) 一种混氧系统
CN107768753A (zh) 一种锂电池智能测漏机
CN216951039U (zh) 具有防结冰可调式工作喷嘴的氢气引射器
CN114483670B (zh) 用于燃料电池的引射器高压喷头及氢气引射器
CN206736255U (zh) 一种沼气发酵装置虹吸式进料系统
CN114458640B (zh) 具有防结冰可调式工作喷嘴的燃料电池引射器
CN206145878U (zh) 加湿设备及其补水系统
CN218039314U (zh) 超声波雾化增湿器及燃料电池系统
CN217030052U (zh) 一种智能控温阀门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936312

Country of ref document: EP

Kind code of ref document: A1