WO2023193367A1 - 一种原位测试装置及超声波测试设备 - Google Patents

一种原位测试装置及超声波测试设备 Download PDF

Info

Publication number
WO2023193367A1
WO2023193367A1 PCT/CN2022/106553 CN2022106553W WO2023193367A1 WO 2023193367 A1 WO2023193367 A1 WO 2023193367A1 CN 2022106553 W CN2022106553 W CN 2022106553W WO 2023193367 A1 WO2023193367 A1 WO 2023193367A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sleeve
temperature
testing device
ultrasonic
Prior art date
Application number
PCT/CN2022/106553
Other languages
English (en)
French (fr)
Inventor
王善民
顾超
赵磊
周程
马德江
赵予生
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2023193367A1 publication Critical patent/WO2023193367A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise

Definitions

  • the present application relates to the technical field of sample in-situ measurement, and in particular to an in-situ testing device and ultrasonic testing equipment.
  • Ultrasonic testing technology can be used in fields such as flaw detection and imaging. Combined with high-temperature and high-pressure equipment, such as large-cavity presses, the mechanical properties of samples under high temperature and high pressure can be studied by testing ultrasonic signals.
  • a sample test component is usually set up to accommodate the sample.
  • the temperature of the heating chip can be calculated by measuring the internal resistance value of the heating chip of the sample test component. , to estimate the temperature of the sample.
  • due to a certain temperature gradient between the heating plate and the sample there may be a certain deviation between the experimental temperature and the expected temperature, which limits the accuracy of the test process.
  • the embodiment of the present application provides an in-situ testing device to solve the problem that in the prior art, there is a certain temperature gradient between the heating plate of the sample testing assembly and the sample, which may cause a certain deviation between the experimental temperature and the expected temperature. This further limits the accuracy of the testing process.
  • an in-situ testing device including:
  • the sample test assembly includes a polyhedral block, a temperature insulation sleeve, a first temperature insulation plug, a second temperature insulation plug and a sample sleeve.
  • the polyhedron block is provided with the temperature insulation sleeve, and the temperature insulation sleeve has a Channel, in which the first temperature insulation plug, the sample sleeve and the second temperature insulation plug are arranged in sequence along the direction from the first end to the second end of the temperature insulation sleeve, and the
  • the sample sleeve is provided with a holding groove configured to accommodate the sample, the opening of the holding groove faces the first temperature isolation plug, and a heating chip configured to heat the sample sleeve is provided in the channel;
  • a temperature collector, the temperature measurement probe of the temperature collector is inserted through the second temperature isolation plug and contacts the sample sleeve;
  • An ultrasonic transceiver transmits ultrasonic signals toward the first end and receives ultrasonic reflection signals reflected by the sample sleeve.
  • the sample testing assembly further includes a protective block, the protective block penetrates the second temperature isolation plug, and the temperature measurement probe penetrates the protective block and the sample.
  • the sets are in contact with each other.
  • a plurality of pipes are opened on the protective block, and the temperature measurement probe includes a first wire and a second wire forming a thermocouple, and the first wire and the second wire respectively Passed through different pipelines and connected to the side of the protective block close to the sample cover, the connection point of the first wire and the second wire abuts the sample cover.
  • a groove is formed on a side of the sample cover close to the temperature measurement probe, and the temperature measurement probe is in contact with the groove.
  • the sample testing assembly further includes a pressure-resistant piece, and the pressure-resistant piece is in contact with a side of the accommodating groove away from the opening.
  • the accommodating groove is cylindrical, and the pressure-resistant piece is in contact with an end surface of the accommodating groove away from the opening.
  • the sample testing assembly further includes a filling layer that abuts on a side of the first temperature isolation plug facing the sample sleeve.
  • the heating piece is attached between the inner wall surface of the channel and the sample sleeve along the circumferential direction of the thermal insulation sleeve.
  • This application also provides an ultrasonic testing equipment, including the in-situ testing device provided in any of the above embodiments.
  • this application proposes an in-situ testing device.
  • the large-cavity press can apply uniform pressure on multiple faces of the polyhedral block, so that the pressure can be transferred to the sample from the outside inward.
  • the heating plate is energized so that the sample is heated, and the temperature measurement probe of the temperature collector contacts the sample sleeve to detect the temperature of the sample sleeve in real time.
  • the ultrasonic transceiver can emit an ultrasonic signal toward the first end and receive an ultrasonic reflection signal reflected by the sample sleeve, so as to reflect changes in the mechanical properties of the sample under different pressures and different temperatures through the ultrasonic reflection signal.
  • the temperature probe Since the temperature probe is directly in contact with the sample sleeve, the temperature gradient between the sample sleeve and the sample is small, which can avoid the large temperature gradient between the sample sleeve and the heating piece, which makes it impossible to control the sample temperature more accurately through the heating piece. The problem.
  • Figure 1 shows a schematic structural diagram of an in-situ testing device provided by an embodiment of the present application
  • Figure 2 shows a schematic cross-sectional structural diagram of an in-situ testing device provided by an embodiment of the present application
  • Figure 3 shows a partial enlarged structural schematic diagram of position A in Figure 2;
  • Figure 4 shows a schematic structural diagram of the protective parts and temperature measurement probe of the in-situ testing device provided by the embodiment of the present application
  • Figure 5 shows a schematic diagram of the ultrasonic reflection signal of the sample obtained during the experiment by the in-situ testing device provided by the embodiment of the present application.
  • Figure 6 shows a schematic diagram of the elastic modulus of the sample changing with temperature during the experiment using the in-situ testing device provided by the embodiment of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood broadly.
  • it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the sample test assembly includes a polyhedral block 500, a temperature insulation sleeve 400, a first temperature insulation plug 100, a second temperature insulation plug 200, and a sample sleeve 300.
  • the polyhedral block 500 is provided with a temperature insulation sleeve 400 and a temperature insulation sleeve 400.
  • the sample sleeve 300 is provided with The accommodating groove 310 is configured to accommodate the sample 320 .
  • the opening of the accommodating groove 310 faces the first temperature isolation plug 100 .
  • a heating piece 420 configured to heat the sample sleeve 300 is disposed in the channel 410 .
  • the temperature measuring probe 600 of the temperature collector is inserted through the second temperature isolation plug 200 and contacts the sample sleeve 300 .
  • the ultrasonic transceiver emits ultrasonic signals toward the first end and receives ultrasonic reflection signals reflected by the sample sleeve 300 .
  • the large-cavity press can uniformly apply pressure on multiple faces of the polyhedral block 500 of the sample testing assembly, so that the pressure can be transferred from outside to inside to the sample test.
  • Sample 320 within assembly the heating plate 420 is energized so that the sample 320 is heated, and the temperature measurement probe 600 of the temperature collector contacts the sample sleeve 300 to detect the temperature of the sample sleeve 300 in real time.
  • the ultrasonic transceiver can emit ultrasonic signals toward the first end and receive ultrasonic reflection signals reflected by the sample sleeve 300 to reflect changes in the mechanical properties of the sample 320 under different pressures and temperatures through the ultrasonic reflection signals. Since the temperature measurement probe 600 is directly in contact with the sample sleeve 300, the temperature gradient between the sample sleeve 300 and the sample 320 is small, which can avoid the inability to be more accurate due to the large temperature gradient between the sample sleeve 300 and the heating plate 420. The problem of controlling the temperature of the sample 320 through the heating plate 420 is achieved.
  • the ultrasonic transceiver observes the ultrasonic reflection signal of the sample 320 and simulates the changing trend of the sound speed, and then explores the transformation mechanism of the sample 320 near the phase change point.
  • the polyhedral block 500 can be made of magnesium oxide material through sintering and carving. Since magnesium oxide has excellent pressure transmission properties, the pressure application process can uniformly pressurize the sample 320 from multiple surfaces. Polyhedral block 500 may be an octahedral block.
  • the temperature insulation sleeve 400 and the second temperature insulation plug 200 can be made of zirconium oxide material, and the zirconium oxide material can isolate the heat emitted from the inside of the sample test component.
  • the first temperature isolation plug 100 can be made of alumina material.
  • the alumina material can isolate the heat emitted from the inside of the sample testing component and serve as an intermediate medium for ultrasonic signal transmission.
  • the sample cover 300 can be made of materials such as sodium chloride, boron nitride or magnesium oxide according to the experimental temperature.
  • the heating plate 420 can be made of tantalum, rhenium, graphite and other materials according to the experimental temperature requirements.
  • this embodiment proposes an arrangement method of the protective block 700 based on Embodiment 1.
  • the sample testing assembly also includes a protective block 700.
  • the protective block 700 is penetrated through the second temperature isolation plug 200.
  • the temperature measurement probe 600 is penetrated through the protective block 700 and contacts the sample sleeve 300.
  • the temperature measurement probe 600 is inserted into the protection block 700 so that the temperature measurement probe 600 can perform normal operation under the protection of the protection block 700 Temperature measurement work, therefore, the setting of the protective block 700 enables the sample test component to maintain the stability of temperature measurement under high pressure, which is conducive to the sample test component to withstand greater pressure and provide better experiments for the sample 320 environmental conditions.
  • a plurality of pipes 710 are opened on the protective block 700.
  • the temperature measurement probe 600 includes a first wire 610 and a second wire 620 forming a thermocouple.
  • the first wire 610 The first conductor 610 and the second conductor 620 are respectively passed through different pipes 710 and connected to the side of the protective block 700 close to the sample cover 300.
  • the connection point of the first conductor 610 and the second conductor 620 is in contact with the sample cover 300.
  • thermocouple since the first wire 610 and the second wire 620 are respectively passed through different pipes 710 and connected on the side of the protective block 700 close to the sample cover 300 to form a thermocouple, this arrangement makes the first wire 610 and the second wire 620 The connection point of the two wires 620 can fully contact the sample cover 300 under the extrusion of the protective block 700 during the experiment, thereby improving the heat transfer efficiency between the connection point and the sample cover 300, thereby improving the accuracy of temperature measurement. Spend.
  • the protective block 700 may be made of alumina material, which is ceramic and has insulating properties.
  • the first conductor 610 and the second conductor 620 can be made of tungsten and rhenium respectively.
  • four pipes 710 are provided.
  • the four pipes 710 are spaced apart along the circumference of the protective block 700, and the first wires 610 are sequentially passed through the two opposite pipes. 710, the second wire 620 is passed through the remaining two opposite pipes 710 in sequence, and the first wire 610 and the second wire 620 are cross-connected on the side of the protective block 700 close to the sample cover 300.
  • first wire 610 and the second wire 620 are cross-connected on the side of the protective block 700 close to the sample cover 300 , and the cross-connection is squeezed through the protective block 700 during the experiment, so that the cross-connection is connected to the sample cover 300 In contact with each other, this arrangement can increase the force-bearing area of the protective block 700 and the first conductor 610 and the second conductor 620, and facilitate experimental operations.
  • this embodiment proposes an arrangement method of the sample cover 300 based on the first or second embodiment.
  • a groove 330 is provided on the side of the sample cover 300 close to the temperature measurement probe 600, and the temperature measurement probe 600 is in contact with the groove 330.
  • the groove 330 also provides space for accommodating the temperature measurement probe 600, which improves space utilization during assembly of the sample testing assembly.
  • a thermal conductive paste layer can be disposed between the temperature measuring probe 600 and the groove 330, and the thermal conductive paste layer can improve the heat transfer efficiency between the temperature measuring probe 600 and the sample cover 300.
  • the sample testing assembly further includes a pressure-resistant piece 340 , and the pressure-resistant piece 340 is in contact with the side of the accommodating groove 310 away from the opening.
  • the anti-pressure piece 340 is in a sheet shape and has a certain strength, the anti-pressure piece 340 is disposed on a side of the accommodation groove 310 away from the opening, so that the sample 320 can be used under the action of the anti-pressure piece 340 during the experiment. Deform uniformly under pressure, thereby improving the shape of the sample 320 so that the ultrasonic signal can be better reflected when it comes into contact with the contact surface between the pressure-resistant sheet 340 and the sample 320, thereby improving the quality of the ultrasonic reflection signal and ensuring ultrasonic reflection. Signals are collected stably.
  • the pressure-resistant piece 340 can be made of carbide. As a superhard material, carbide can reduce the non-uniform deformation of the sample 320 during experiments.
  • the accommodating groove 310 is in the shape of a cylinder, and the pressure-resistant piece 340 is in contact with an end surface of the accommodating groove 310 away from the opening.
  • the cylindrical receiving groove 310 can make the sample 320 have a more regular shape, so that the ultrasonic signal can be better reflected and avoid excessive ultrasonic reflection signals formed by ultrasonic scattering.
  • the sample testing assembly also includes a filling layer 110, which is in contact with the first
  • the temperature isolation plug 100 is on the side facing the sample sleeve 300 .
  • the filling layer 110 can better fill the gap between the first temperature isolation plug 100 and the sample sleeve 300, providing a medium for ultrasonic signal propagation, thereby reducing the attenuation of ultrasonic waves when passing through the gap.
  • the filling layer 110 may also be disposed on the side of the first temperature isolation plug 100 away from the sample sleeve 300 .
  • the filling layer 110 may be gold foil, which is relatively soft and can fill gaps better.
  • the heating sheet 420 is attached between the inner wall surface of the channel 410 and the sample sleeve 300 along the circumferential direction of the thermal insulation sleeve 400 .
  • the heating piece 420 is attached between the inner wall of the channel 410 and the sample sleeve 300 along the circumferential direction of the insulating sleeve 400, so that the contact area between the heating piece 420 and the sample sleeve 300 is increased, and the sample sleeve is 300 can be heated evenly, ensuring the high temperature environment required for sample 320 and improving experimental results.
  • the ultrasonic reflection signal of the sample 320 obtained during the experiment by the in-situ testing device of the present application is shown in Figure 5, in which ultrasonic reflection signals of different wavelengths are generated after the ultrasonic signal is reflected by different materials.
  • the elastic modulus of the sample changes with temperature during the experiment of the in-situ testing device of the present application, as shown in Figure 6.
  • the elastic modulus of the sample 320 at different temperatures is calculated.
  • the figure shows that the elastic modulus of sample 320 changes between 50GPA and 80GPA in the temperature range of 0 degrees to 1200 degrees.
  • Another embodiment of the present application provides an ultrasonic testing equipment, including the in-situ testing device in any of the above embodiments.
  • the ultrasonic testing equipment provided by the embodiments of the present application has the in-situ testing device provided by any of the above-mentioned embodiments. Therefore, it has all the beneficial effects of the in-situ testing device provided by any of the above-mentioned embodiments, which are not listed here. Repeat.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种原位测试装置及超声波测试设备,原位测试装置包括样品测试组件、温度采集器及超声收发器。样品测试组件包括多面体块(500)、隔温套管(400)、第一隔温塞(100)、第二隔温塞(200)及样品套(300),多面体块(500)内穿设有隔温套管(400),隔温套管(400)具有通道,通道内沿隔温套管(400)的第一端至第二端的方向上依次设有第一隔温塞(100)、样品套(300)及第二隔温塞(200),样品套(300)开设有被构造成容纳样品的容置槽(310),容置槽(310)的开口朝向第一隔温塞(100),通道内设有被构造成加热样品套(300)的加热片(420)。温度采集器的测温探头(600)穿设于第二隔温塞(200)与样品套(300)相抵接。超声收发器朝第一端发射超声波信号并接收样品套(300)反射的超声波反射信号。原位测试装置由于测温探头(600)直接与样品套(300)相抵接,能够保证样品温度的精确控制。

Description

一种原位测试装置及超声波测试设备
相关申请的交叉引用
本申请要求于2022年04月08日提交中国专利局的申请号为202220794445.1、名称为“一种原位测试装置及超声波测试设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及样品原位测量技术领域,尤其涉及一种原位测试装置及超声波测试设备。
背景技术
超声测试技术可用于探伤、成像等领域,结合高温高压设备,如大腔体压机,可通过测试超声信号实现样品在高温高压下的力学性能研究,而为了研究材料在高温高压极端条件下的力学性质变化,通常会设置容纳样品的样品测试组件,在使用时,在样品测试组件受压的实验过程中,可通过测量样品测试组件的加热片的内阻值从而计算得出加热片的温度,以此推测出样品的温度。但由于加热片与样品之间存在一定的温度梯度,导致实验温度与预期温度可能存在一定的偏差,进而限制了测试过程的精准性。
发明内容
本申请的实施方式提供了一种原位测试装置,用以解决现有技术中的样品测试组件的加热片与样品之间存在一定的温度梯度,导致实验温度与预期温度可能存在一定的偏差,进而限制了测试过程的精准性的问题。
为解决上述问题,本申请的实施方式提供了:一种原位测试装置,包括:
样品测试组件,包括多面体块、隔温套管、第一隔温塞、第二隔温塞及样品套,所述多面体块内穿设有所述隔温套管,所述隔温套管具有通道,所述通道内沿所述隔温套管的第一端至其第二端的方向上依次设有所述第一隔温塞、所述样品套及所述第二隔温塞,所述样品套开设有被构造成容纳样品的容置槽,所述容置槽的开口朝向所述第一隔温塞,所述通道内设有被构造成加热所述样品套的加热片;
温度采集器,所述温度采集器的测温探头穿设于所述第二隔温塞与所述样品套相抵接;以及
超声收发器,朝所述第一端发射超声波信号并接收所述样品套反射的超声波反射信号。
在一种可能的实施方式中,所述样品测试组件还包括防护块,所述防护块穿设于所述第二隔温塞,所述测温探头穿设于所述防护块与所述样品套相抵接。
在一种可能的实施方式中,所述防护块上开设有多个管道,所述测温探头包括形成热电偶的第一导线和第二导线,所述第一导线和所述第二导线分别穿设于不同的所述管道并 连接于所述防护块靠近所述样品套的一侧,所述第一导线和所述第二导线的连接处与所述样品套相抵接。
在一种可能的实施方式中,所述管道设有四个,四个所述管道沿所述防护块的周向间隔设置,所述第一导线依次穿设于相对的两个所述管道,所述第二导线依次穿设于相对的剩余两个所述管道,所述第一导线与所述第二导线在所述防护块靠近所述样品套的一侧交叉连接。
在一种可能的实施方式中,所述样品套靠近所述测温探头的一侧开设有凹槽,所述测温探头抵接于所述凹槽内。
在一种可能的实施方式中,所述样品测试组件还包括抗压片,所述抗压片抵接于所述容置槽内远离所述开口的一面。
在一种可能的实施方式中,所述容置槽呈柱体形,所述抗压片抵接于所述容置槽远离所述开口的一端面。
在一种可能的实施方式中,所述样品测试组件还包括填充层,所述填充层抵接于所述第一隔温塞朝向所述样品套的一面上。
在一种可能的实施方式中,所述加热片沿所述隔温套管的周向贴设于所述通道的内壁面和所述样品套之间。
本申请还提供了一种超声波测试设备,包括上述任一实施方式提供的原位测试装置。
本申请的有益效果是:本申请提出一种原位测试装置,在实验时,大腔体压机能够对多面体块的多个面分别进行均匀施压,使得压力能够由外向内传递至样品。同时,加热片通电使得样品被加热,温度采集器的测温探头与样品套抵接从而实时检测样品套的温度。在此过程中,超声收发器能够朝第一端发射超声波信号并接收样品套反射的超声波反射信号,以通过超声波反射信号反映样品在不同压力和不同温度下的力学性质变化。由于温度探头直接与样品套相抵接,样品套与样品之间的温度梯度小,能够避免样品套与加热片之间由于存在较大的温度梯度,而导致无法更精确地通过加热片控制样品温度的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请的实施例提供的原位测试装置的结构示意图;
图2示出了本申请的实施例提供的原位测试装置的剖视结构示意图;
图3示出了图2中A处的局部放大结构示意图;
图4示出了本申请的实施例提供的原位测试装置的防护件与测温探头的结构示意图;
图5示出了本申请的实施例提供的原位测试装置在实验时获取的样品的超声波反射信号示意图;以及
图6示出了本申请的实施例提供的原位测试装置在实验时样品的弹性模量随温度变化的示意图。
主要元件符号说明:
100-第一隔温塞;110-填充层;200-第二隔温塞;300-样品套;310-容置槽;320-样品;330-凹槽;340-抗压片;400-隔温套管;410-通道;420-加热片;500-多面体块;600-测温探头;610-第一导线;620-第二导线;700-防护块;710-管道。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”和“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”和“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”和“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅 仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例一
请参阅图1、图2和图3,本实施例提供了一种原位测试装置,包括样品测试组件、温度采集器和超声收发器。样品测试组件包括多面体块500、隔温套管400、第一隔温塞100、第二隔温塞200及样品套300,多面体块500内穿设有隔温套管400,隔温套管400具有通道410,通道410内沿隔温套管400的第一端至其第二端的方向上依次设有第一隔温塞100、样品套300及第二隔温塞200,样品套300开设有被构造成容纳样品320的容置槽310,容置槽310的开口朝向第一隔温塞100,通道410内设有被构造成加热样品套300的加热片420。温度采集器的测温探头600穿设于第二隔温塞200与样品套300相抵接。超声收发器朝第一端发射超声波信号并接收样品套300反射的超声波反射信号。
本申请的实施例提供的原位测试装置,在实验时,大腔体压机能够对样品测试组件的多面体块500的多个面分别进行均匀施压,使得压力能够由外向内传递至样品测试组件内的样品320。同时,加热片420通电使得样品320被加热,温度采集器的测温探头600与样品套300抵接从而实时检测样品套300的温度。在此过程中,超声收发器能够朝第一端发射超声波信号并接收样品套300反射的超声波反射信号,以通过超声波反射信号反映样品320在不同压力和不同温度下的力学性质变化。由于测温探头600直接与样品套300相抵接,样品套300与样品320之间的温度梯度小,能够避免样品套300与加热片420之间由于存在较大的温度梯度,而导致无法更精确地通过加热片420控制样品320温度的问题。
其中,超声收发器通过对样品320的超声波反射信号的观察,并模拟声速的变化趋势,继而探索样品320在相变点附近的转变机理。
其中,多面体块500可由氧化镁材料通过烧结雕刻而成,由于氧化镁具有优异的传压性,施压过程可以从多个面上对样品320进行均匀施压。多面体块500可为八面体块。
其中,隔温套管400和第二隔温塞200可为氧化锆材料制成,氧化锆材料能够隔绝样品测试组件内部对外发出的热量。
其中,第一隔温塞100可为氧化铝材料制成,氧化铝材料能够隔绝样品测试组件内部对外发出的热量并作为超声波信号传导的中间介质。
其中,样品套300可根据实验温度选用氯化钠、氮化硼或氧化镁等材料。
其中,加热片420可根据实验温度的需求选用钽、铼及石墨等材料。
实施例二
如图2和图3所示,本实施例在实施例一的基础上,提出了防护块700的一种设置方式。样品测试组件还包括防护块700,防护块700穿设于第二隔温塞200,测温探头600穿 设于防护块700与样品套300相抵接。
具体的,当第二隔温塞200受到大腔体压机的挤压时,通过将测温探头600穿设于防护块700内,使得测温探头600能够在防护块700的保护下进行正常测温工作,因此,防护块700的设置,使得该样品测试组件在高压的情况下能够保持测温的稳定性,有利于该样品测试组件承受更大的压力,为样品320提供更好的实验环境条件。
如图3所示,在上述实施例中,可选的,防护块700上开设有多个管道710,测温探头600包括形成热电偶的第一导线610和第二导线620,第一导线610和第二导线620分别穿设于不同的管道710并连接于防护块700靠近样品套300的一侧,第一导线610和第二导线620的连接处与样品套300相抵接。
具体的,由于第一导线610和第二导线620分别穿设于不同的管道710并在防护块700靠近样品套300的一侧连接,从而形成热电偶,该设置方式使得第一导线610和第二导线620的连接处能够在实验时、在防护块700的挤压下充分地抵接在样品套300上,从而提高该连接处与样品套300之间的传热效率,进而提高测温精确度。
其中,防护块700可为氧化铝材料制成,氧化铝材料为陶瓷,具备绝缘性。
其中,第一导线610和第二导线620可分别选用钨、铼两种材料。
如图4所示,在上述实施例中,可选的,管道710设有四个,四个管道710沿防护块700的周向间隔设置,第一导线610依次穿设于相对的两个管道710,第二导线620依次穿设于相对的剩余两个管道710,第一导线610与第二导线620在防护块700靠近样品套300的一侧交叉连接。
具体的,通过在防护块700靠近样品套300的一侧将第一导线610和第二导线620交叉连接,并在实验时通过防护块700挤压交叉连接处,使得交叉连接处与样品套300相抵接,该设置方式能够提高防护块700与第一导线610和第二导线620的受力面积,且方便实验操作。
实施例三
如图2和图3所示,本实施例在实施例一或实施例二的基础上,提出了样品套300的一种设置方式。样品套300靠近测温探头600的一侧开设有凹槽330,测温探头600抵接于凹槽330内。
具体的,通过将测温探头600抵接于凹槽330内,从而提高测温探头600与样品套300的接触面积,进而提高测温探头600与样品套300之间的传热效率,最终提高测温精确度。同时,凹槽330也提供了容纳测温探头600的空间,提高了样品测试组件装配时的空间利用率。
其中,测温探头600与凹槽330之间可设置导热膏层,通过导热膏层提高测温探头600 与样品套300之间的传热效率。
如图2所示,在上述实施例中,可选的,样品测试组件还包括抗压片340,抗压片340抵接于容置槽310内远离开口的一面。
具体的,由于抗压片340呈片状且具备一定的强度,通过设置抗压片340在容置槽310内远离开口的一面上,从而使样品320在实验时能够在抗压片340的作用力下进行均匀地形变,进而通过改善样品320的形状,使得超声波信号在接触抗压片340与样品320之间的接触面时能够进行更好地反射,提高超声波反射信号的质量,保证超声波反射信号稳定地采集。
其中,抗压片340可为碳化物,碳化物作为超硬材料能够减小样品320在实验时的非均匀形变。
如图2和图3所示,在上述实施例中,可选的,容置槽310呈柱体形,抗压片340抵接于容置槽310远离开口的一端面。
具体的,呈柱形的容置槽310能够使样品320呈较为规则的形状,从而使超声波信号能够更好地反射,避免产生过多的由超声波散射形成的超声波反射信号。
实施例四
如图2和图3所示,本实施例在实施例一或实施例二的基础上,对技术方案进行了进一步的限定,样品测试组件还包括填充层110,填充层110抵接于第一隔温塞100朝向样品套300的一面上。
具体的,填充层110能够较好地填充第一隔温塞100和样品套300之间的间隙,为超声波信号传播提供介质,从而降低超声波在经过该间隙时的衰减现象。
其中,填充层110也可设置于第一隔温塞100远离样品套300的一面。
其中,填充层110可为金箔,其材质较软,能够较好地填充间隙。
如图2所示,在上述实施例中,可选的,加热片420沿隔温套管400的周向贴设于通道410的内壁面和样品套300之间。
具体的,加热片420沿隔温套管400的周向贴设于通道410的内壁面和样品套300之间,使得加热片420与样品套300之间的接触面积增大,并使得样品套300能够均匀地受热,保证样品320所需的高温环境,提高实验效果。
其中,本申请的原位测试装置在实验时获得的样品320的超声波反射信号如图5所示,其中,超声波信号经过不同材料反射之后会所产生的不同波长的超声波反射信号。
其中,本申请的原位测试装置在实验时样品的弹性模量随温度变化的情况如图6所示,通过对超声波反射信号进行采集,并计算样品320在不同温度下的弹性模量,从而观察样品320模量在随着相转变时的变化情况。其中,图中示意出了样品320在0度至1200度的 温度范围内,其弹性模量在50GPA至80GPA之间进行变化。
实施例五
本申请的另一个实施例提供了一种超声波测试设备,包括上述任一实施例中的原位测试装置。
本申请的实施例提供的超声波测试设备,具有上述任一实施例提供的原位测试装置,因此,具有上述任一实施例中提供的原位测试装置的全部有益效果,在此就不一一赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种原位测试装置,其特征在于,包括:
    样品测试组件,包括多面体块、隔温套管、第一隔温塞、第二隔温塞以及样品套,所述多面体块内穿设有所述隔温套管,所述隔温套管具有通道,所述通道内沿所述隔温套管的第一端至其第二端的方向上依次设有所述第一隔温塞、所述样品套及所述第二隔温塞,所述样品套开设有被构造成容纳样品的容置槽,所述容置槽的开口朝向所述第一隔温塞,所述通道内设有被构造成加热所述样品套的加热片;
    温度采集器,所述温度采集器的测温探头穿设于所述第二隔温塞与所述样品套相抵接;以及
    超声收发器,朝所述第一端发射超声波信号并接收所述样品套反射的超声波反射信号。
  2. 根据权利要求1所述的原位测试装置,其特征在于,所述样品测试组件还包括防护块,所述防护块穿设于所述第二隔温塞,所述测温探头穿设于所述防护块与所述样品套相抵接。
  3. 根据权利要求2所述的原位测试装置,其特征在于,所述防护块上开设有多个管道,所述测温探头包括形成热电偶的第一导线和第二导线,所述第一导线和所述第二导线分别穿设于不同的所述管道并连接于所述防护块靠近所述样品套的一侧,所述第一导线和所述第二导线的连接处与所述样品套相抵接。
  4. 根据权利要求3所述的原位测试装置,其特征在于,所述管道设有四个,四个所述管道沿所述防护块的周向间隔设置,所述第一导线依次穿设于相对的两个所述管道,所述第二导线依次穿设于相对的剩余两个所述管道,所述第一导线与所述第二导线在所述防护块靠近所述样品套的一侧交叉连接。
  5. 根据权利要求1所述的原位测试装置,其特征在于,所述样品套靠近所述测温探头的一侧开设有凹槽,所述测温探头抵接于所述凹槽内。
  6. 根据权利要求1所述的原位测试装置,其特征在于,所述样品测试组件还包括抗压片,所述抗压片抵接于所述容置槽内远离所述开口的一面。
  7. 根据权利要求6所述的原位测试装置,其特征在于,所述容置槽呈柱体形,所述抗压片抵接于所述容置槽远离所述开口的一端面。
  8. 根据权利要求1所述的原位测试装置,其特征在于,所述样品测试组件还包括填充层,所述填充层抵接于所述第一隔温塞朝向所述样品套的一面上。
  9. 根据权利要求1所述的原位测试装置,其特征在于,所述加热片沿所述隔温套 管的周向贴设于所述通道的内壁面和所述样品套之间。
  10. 一种超声波测试设备,其特征在于,包括权利要求1至9中任一项所述的原位测试装置。
PCT/CN2022/106553 2022-04-08 2022-07-19 一种原位测试装置及超声波测试设备 WO2023193367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220794445.1 2022-04-08
CN202220794445.1U CN216449489U (zh) 2022-04-08 2022-04-08 一种原位测试装置及超声波测试设备

Publications (1)

Publication Number Publication Date
WO2023193367A1 true WO2023193367A1 (zh) 2023-10-12

Family

ID=81378203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106553 WO2023193367A1 (zh) 2022-04-08 2022-07-19 一种原位测试装置及超声波测试设备

Country Status (2)

Country Link
CN (1) CN216449489U (zh)
WO (1) WO2023193367A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216449489U (zh) * 2022-04-08 2022-05-06 南方科技大学 一种原位测试装置及超声波测试设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001299A1 (en) * 2001-06-29 2003-01-02 Nachappa Gopalsami Method and apparatus for ultrasonic temperature monitoring
CN201909775U (zh) * 2010-03-22 2011-07-27 北京化工大学 用超声信号表征物质压力-比容-温度关系的装置
CN103499642A (zh) * 2013-09-25 2014-01-08 北京化工大学 一种在线测试材料压缩系数和膨胀系数的方法和装置
CN103512831A (zh) * 2013-07-18 2014-01-15 北京化工大学 一种在线测试熔融指数的方法和装置
CN108169448A (zh) * 2017-12-06 2018-06-15 中国科学院广州能源研究所 一种水合物原位合成及其综合物性测试装置
CN210071521U (zh) * 2019-02-20 2020-02-14 中国地质大学(武汉) 带超声扫描的天然气水合物沉积物动三轴实验装置
CN112642363A (zh) * 2020-12-17 2021-04-13 吉林大学 一种大体积耐高温原位光学观测反应釜腔体
CN216449489U (zh) * 2022-04-08 2022-05-06 南方科技大学 一种原位测试装置及超声波测试设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001299A1 (en) * 2001-06-29 2003-01-02 Nachappa Gopalsami Method and apparatus for ultrasonic temperature monitoring
CN201909775U (zh) * 2010-03-22 2011-07-27 北京化工大学 用超声信号表征物质压力-比容-温度关系的装置
CN103512831A (zh) * 2013-07-18 2014-01-15 北京化工大学 一种在线测试熔融指数的方法和装置
CN103499642A (zh) * 2013-09-25 2014-01-08 北京化工大学 一种在线测试材料压缩系数和膨胀系数的方法和装置
CN108169448A (zh) * 2017-12-06 2018-06-15 中国科学院广州能源研究所 一种水合物原位合成及其综合物性测试装置
CN210071521U (zh) * 2019-02-20 2020-02-14 中国地质大学(武汉) 带超声扫描的天然气水合物沉积物动三轴实验装置
CN112642363A (zh) * 2020-12-17 2021-04-13 吉林大学 一种大体积耐高温原位光学观测反应釜腔体
CN216449489U (zh) * 2022-04-08 2022-05-06 南方科技大学 一种原位测试装置及超声波测试设备

Also Published As

Publication number Publication date
CN216449489U (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023193367A1 (zh) 一种原位测试装置及超声波测试设备
US10794870B2 (en) Waveguide technique for the simultaneous measurement of temperature dependent properties of materials
CN110220940A (zh) 一种不规则样品导热性能测试方法
CN106248496B (zh) 基于Hopkinson压杆的往复式双同步组装系统
Ghaffari et al. An ultrasound probe array for a high-pressure, high-temperature solid medium deformation apparatus
CN215340064U (zh) 可控温的真三轴电阻率测试系统
CN109324079A (zh) 一种基于超声的材料热膨胀系数的测量方法
CN109581069A (zh) 高温宽频下微波材料的复介电常数计算方法
EP4145122A1 (en) Non-destructive testing device and non-destructive testing method
CN107966472B (zh) 一种高温接触热阻的无损快速测量方法
CN115047077A (zh) 一种适用于变温、变磁场下的超声共振谱测量装置
Guo et al. Properties of Ceramic Substrate Materials for High‐Temperature Pressure Sensors for Operation above 1000° C
CN215731615U (zh) 一种用于真空环境的小直径加热装置
CN213355518U (zh) 一种血样存放用温控装置
CN109959676A (zh) 一种石墨与石墨薄膜材料接触热阻测试方法
CN110132724B (zh) 可控制均温区长度的Gleeble热拉伸系统
CN206583867U (zh) 一种用于高温斜探头的楔块
CN113267683A (zh) 一种高温高压下金属电阻率的原位测量方法
CN221037753U (zh) 一种快速响应热容式热流密度传感器
CN208075804U (zh) 一种超声波测厚仪
CN216594932U (zh) 一种超声波测试组装器件
CN216899351U (zh) 一种适用于金属外壳阵列式多点测温设备
CN108955919A (zh) 一种新型耐高温铠装热电偶
CN218330315U (zh) 一种涂层隔热测温装置
KR101782832B1 (ko) 온도 측정 시스템 및 온도 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936297

Country of ref document: EP

Kind code of ref document: A1