WO2023193209A1 - 波束失败检测参考信号的配置方法和装置 - Google Patents

波束失败检测参考信号的配置方法和装置 Download PDF

Info

Publication number
WO2023193209A1
WO2023193209A1 PCT/CN2022/085661 CN2022085661W WO2023193209A1 WO 2023193209 A1 WO2023193209 A1 WO 2023193209A1 CN 2022085661 W CN2022085661 W CN 2022085661W WO 2023193209 A1 WO2023193209 A1 WO 2023193209A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
beam failure
failure detection
group
signal group
Prior art date
Application number
PCT/CN2022/085661
Other languages
English (en)
French (fr)
Inventor
贾美艺
张健
路杨
Original Assignee
富士通株式会社
贾美艺
张健
路杨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 张健, 路杨 filed Critical 富士通株式会社
Priority to PCT/CN2022/085661 priority Critical patent/WO2023193209A1/zh
Publication of WO2023193209A1 publication Critical patent/WO2023193209A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • Rel-15 NR (New Radio Release 15) includes some MIMO (Multiple Input Multiple Output) features that facilitate the use of a large number of antenna elements in the sub-6GHz and above-6GHz frequency bands on the base station side.
  • Rel-16 NR (New Radio Release 16) enhances Rel-15 NR through the following mechanisms, including:
  • TRP Transmission Reception Point
  • eMBB Enhanced Mobile Broadband
  • PDSCH Physical Downlink Shared Channel
  • Enhancements to multi-beam operation including reductions in latency and/or multiple reconfiguration overheads, such as QCL (quasi-co-location) related measurement reconfiguration overhead reductions;
  • QCL quadsi-co-location
  • BFR beam failure recovery
  • L1-SINR layer 1 signal to interference plus noise ratio
  • NR New Radio
  • aspects that need further enhancement can be determined from actual deployment scenarios. Such aspects include:
  • Rel-16 (version 16) manages to reduce overhead and/or latency, and high-speed in-vehicle scenarios on FR2 (frequency range 2) (such as UEs traveling at high speeds on highways) require more aggressive reduction of latency and overhead, not only For intra-cell, inter-cell L1/L2 (layer 1/layer 2) mobility is also included. Additionally, it includes reducing the occurrence of beam failure events;
  • Rel-16 looked at enhancements to ensure panel-specific UL (uplink) beam selection, but there was not enough time to complete the work. This provides some possibilities for increasing uplink coverage, including mitigating UL coverage losses caused by meeting MPE (maximum permissible exposure) rules;
  • Channels other than PDSCH can benefit from multi-TRP transmission (and multi-panel reception), which also includes inter-cell multi-TRP operation.
  • SRS Sounding Reference Signal
  • Rel-16 supports enhanced Type II CSI (Type 2 Channel State Information), some room for further enhancements can be felt.
  • This includes CSI (Channel State Information) and the utilization of partial variability in channel statistics such as angle and delay for multi-TRP/panel design of NC-JT use cases, with the main target being FR1 FDD (Frequency Range 1 Frequency Division Duplex )deploy.
  • Rel-17 (version 17) supports enhancements for multi-TRP deployments targeting FR1 and FR2, including:
  • TRPs and/or multiple panels Use multiple TRPs and/or multiple panels, and use Rel-16 reliability as a baseline (basis) to determine and define improved channels other than PDSCH (i.e., physical downlink control channel PDCCH, physical uplink shared channel PUSCH and physical uplink control channel PUCCH) reliability and robustness characteristics;
  • PDSCH physical downlink control channel PDCCH, physical uplink shared channel PUSCH and physical uplink control channel PUCCH
  • Rel-17 supports TRP-specific beam failure detection and recovery for scenarios where multiple TRPs are deployed.
  • the reference signal for TRP-specific beam failure detection is configured using L3 (Layer 3) signaling, that is, RRC (Radio Resource Control) messages.
  • L3 Layer 3
  • RRC Radio Resource Control
  • the network uses L2 signaling, such as MAC CE (Media Access Control Control Element), or L1 signaling, such as DCI, to activate a new TCI state, in order to update the reference signal for TRP-specific beam failure detection, the network needs to Sending new RRC messages, which causes a delay in beam failure detection, may lead to false triggering of the beam failure recovery process.
  • the network uses L2 signaling or L1 signaling to activate a new TCI state, but the terminal still monitors the reference signal originally used for beam failure detection until it receives the new signal configuration at time t1, during which the configured beam may be reached.
  • the maximum value of failed instances thus triggering the beam failure recovery process. If it is a special cell, the random access process may be triggered, which may cause service interruption.
  • embodiments of the present application provide a method and device for configuring a beam failure detection reference signal to support the use of RRC signaling and MAC CE to configure/update the reference signal for beam failure detection.
  • a beam failure detection reference signal configuration device is adopted, and the device includes:
  • a first configuration unit that uses RRC signaling to configure a first reference signal for beam failure detection
  • the second configuration unit uses MAC CE signaling to configure or update the first reference signal.
  • a device for configuring a beam failure detection reference signal includes:
  • a first configuration unit that uses RRC signaling to configure a reference signal for TRP-specific beam failure detection
  • a second configuration unit uses the RRC signaling to configure a reference signal for failure detection.
  • One of the beneficial effects of the embodiments of the present application is that according to the embodiments of the present application, it is possible to support the use of RRC signaling and MAC CE to configure/update the reference signal for beam failure detection.
  • this application can use the corresponding reference signal to perform beam failure detection faster, thereby avoiding erroneously triggering the beam failure recovery process and the resulting service Interruption; on the other hand, this application can more flexibly configure/update the reference signal used for beam failure detection, thereby reducing signaling overhead and saving air interface resources.
  • Figures 1a to 1c are schematic diagrams of detection of beam failure in a serving cell or triggering of beam failure recovery
  • Figure 2 is a schematic diagram of a multi-TRP operation scenario
  • FIG. 3 is a schematic diagram of beam failure detection (BFD)/beam failure recovery (BFR) of a TRP;
  • Figure 4 is a schematic diagram of a configuration method of a beam failure detection reference signal according to an embodiment of the present application
  • Figures 5 and 6 are schematic diagrams of two examples of format 1 of the first MAC CE
  • Figures 7 and 8 are schematic diagrams of two examples of format 2 of the first MAC CE
  • Figure 9 is another schematic diagram of the configuration method of the beam failure detection reference signal according to the embodiment of the present application.
  • Figure 10 is a schematic diagram of a beam failure detection reference signal configuration device according to an embodiment of the present application.
  • Figure 11 is another schematic diagram of a beam failure detection reference signal configuration device according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in the communication system can be carried out according to any stage of communication protocols, which may include but are not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G. , New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc. In addition, it may also include remote radio head (RRH, Remote Radio Head), remote End wireless unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul) node or IAB-DU or IAB-donor. And the term “base station” may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used. Where there is no confusion, the terms “cell” and “base station” are interchangeable.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), IAB-MT, station (station), etc.
  • Terminal devices may include, but are not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • cordless phone smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • the lower layer refers to the physical layer, RF chain, etc.
  • RadioLinkMonitoringConfig The following is the content of the wireless link monitoring configuration (RadioLinkMonitoringConfig):
  • RadioLinkMonitoringRS The following is the content of the field description of the wireless link monitoring reference signal (RadioLinkMonitoringRS) in the above configuration:
  • the MAC (Media Access Control) entity can be configured by RRC with a beam failure recovery process for each serving cell. This process is used to report beam failure to the serving SSB(s)/CSI-RS(s) when a beam failure is detected.
  • gNB indicates a new SSB (Synchronization Signal Block) or CSI-RS (Channel State Information Reference Signal). Beam failures are detected by counting the number of beam failure instance indications from lower layers to the MAC entity.
  • Figures 1a to 1c are schematic diagrams of detection of beam failure in a serving cell or triggering of beam failure recovery.
  • the Beam Failure Detection (BFD) process uses the UE variable BFI_COUNTER.
  • This variable is a counter indicated by the beam failure instance. It is initially set to 0 and has one for each serving cell.
  • the MAC entity For each serving cell configured with beam failure detection, the MAC entity will:
  • the serving cell is a secondary cell (SCell), trigger a BFR of this serving cell;
  • the MAC entity also:
  • the higher layer reconfigures the beamFailureDetectionTimer, beamFailureInstanceMaxCount or any reference signal used for beam failure detection of this serving cell:
  • This process applies to special cells and secondary cells of Rel-15 and Rel-16.
  • BFD-RS Beam Failure Detection Reference Signal
  • RRC configures some parameters for triggering TRP-specific beam failure recovery, such as:
  • the following UE variables are used in the beam failure detection process:
  • the MAC entity For each serving cell configured with beam failure detection, the MAC entity will:
  • this serving cell is configured with two BFD-RS groups, for each BFD-RS group of this serving cell, the MAC entity will:
  • this serving cell is a special cell and the random access process initiated by the beam failure recovery of the two BFD-RS groups of this special cell is successfully completed:
  • RadioLinkMonitoringConfig The following is the content of the wireless link monitoring configuration (RadioLinkMonitoringConfig):
  • RadioLinkMonitoringConfig for IE:
  • RadioLinkMonitoringRS The following is the content of the field description of the wireless link monitoring reference signal (RadioLinkMonitoringRS) in the above configuration:
  • RadioLinkMonitoringRS-Id RadioLinkMonitoringRS-Id
  • RadioLinkMonitoringRS-Id for IE is the content of the RadioLinkMonitoringRS-Id for IE:
  • FIG. 2 is a schematic diagram of a multi-TRP operation scenario.
  • TRP is a part of the gNB and is used to receive signals from or send signals to terminal UEs.
  • mTRP multi-TRP
  • a serving cell can schedule UEs from two TRPs, providing better PDSCH coverage, reliability and/or data rate.
  • multi-TRP there are two different operating modes, single DCI and multi-DCI.
  • control of uplink and downlink operations is performed by the physical layer and MAC within the configuration provided by the RRC layer.
  • single DCI mode the UE is scheduled by two TRPs through the same DCI; in multi-DCI mode, the UE is scheduled by separate DCI for each TRP.
  • FIG 3 is a schematic diagram of beam failure detection (BFD)/beam failure recovery (BFR) of each TRP.
  • gNB provides services to terminals (UE) through TRP-1 and TRP-2.
  • the UE performs beam failure detection per TRP.
  • link 1 (link-1) between TRP-1 and the UE works normally, that is, the UE does not detect the beam failure on TRP1, or does not trigger the beam failure recovery on TRP1; however, the link between TRP-2 and the UE Link 2 (link-2) is blocked, that is, the UE detects beam failure on TRP-2, or triggers beam failure recovery on TRP-2.
  • the two TRPs may belong to the same cell or different cells.
  • the embodiment of the present application provides a method for configuring a beam failure detection reference signal, which is applicable to network equipment and also to terminal equipment.
  • Figure 4 is a schematic diagram of a method for configuring a beam failure detection reference signal according to an embodiment of the present application. As shown in Figure 4, the method includes:
  • the use of RRC signaling and MAC CE configuration/update is achieved.
  • the reference signal for beam failure detection avoids service interruption and improves network performance.
  • the above-mentioned first reference signal includes a reference signal for TRP-specific beam failure detection (referred to as a second reference signal). That is, the reference signal for TRP-specific beam failure detection may be configured using RRC signaling.
  • the second reference signal is included in 2 beam failure detection reference signal groups, and the 2 beam failure detection reference signal groups have respective group IDs (identifications).
  • RRC signaling is used to configure the reference signal (first reference signal) for beam failure detection, which may include at least one of the following configurations:
  • the RRC signaling includes a reference signal group for the first beam failure detection and a reference signal group for the second beam failure detection. That is, two reference signal groups for beam failure detection are explicitly configured through RRC signaling. When the first beam When the reference signal group for failed detection exists, the reference signal group for failed detection of the second beam is forced to exist;
  • the above-mentioned first beam failure detection reference signal group and the above-mentioned second beam failure detection reference signal group respectively include a group ID, the group ID is mandatory to exist, and the value of the group ID is 1 or 2;
  • the above-mentioned first beam failure detection reference signal group and the above-mentioned second beam failure detection reference signal group respectively include a group of second reference signals, and the second reference signal includes a second reference signal ID and detection resources; wherein, the second reference signal The signal may be an added and/or modified second reference signal, and the second reference signal ID may be an integer from 0 to n-1, where n is the maximum number of failure detection resources for each group of second reference signals, for example, 64; Detection resources such as SSB index or NZP CSI-RS resource ID, etc.;
  • the above-mentioned first beam failure detection reference signal group and the above-mentioned second beam failure detection reference signal group respectively include a set of released second reference signal IDs.
  • the second reference signal is included in 1 beam failure detection reference signal group, and the 1 beam failure detection reference signal group has a group ID.
  • RRC signaling is used to configure the reference signal (first reference signal) for beam failure detection, which may include at least one of the following configurations:
  • the RRC signaling includes a third beam failure detection reference signal group, that is, one reference signal group for beam failure detection is explicitly configured through the RRC signaling.
  • the third beam failure detection reference signal group includes a group ID.
  • the group The ID is mandatory and the value of the group ID is 1 or 2;
  • the above-mentioned third beam failure detection reference signal group includes a set of second reference signals, and the second reference signal includes a second reference signal ID and a detection resource; wherein, the second reference signal may be an added and/or modified second reference signal.
  • the second reference signal ID can be an integer from 0 to n-1, n is the maximum number of failed detection resources for each group of second reference signals, such as 64; the detection resources are, for example, SSB index or NZP CSI-RS resources ID, etc.;
  • the above-mentioned third beam failure detection reference signal group includes a group of released second reference signal IDs.
  • the group ID of the third beam failure detection reference signal group may be related to the coresetpool (called the first coresetpool), or in other words, the third beam failure detection reference signal group corresponds to the first coresetpool.
  • the coresetpool For multi-DCI mode of multi-TRP operation, that is, different TRPs are scheduled through different DCIs. Different DCIs are associated with coresets (control resource collections) in different coresetpools. For example, the DCI of TRP-1 is associated with the coreset in coresetpool 1, and the DCI of TRP-2 is associated with the coreset in coresetpool 2. That is, the associated coresetpool can be used to identify the TRP.
  • the second reference signal in another beam failure detection reference signal group that is different from the third beam failure detection reference signal group may be determined by the TCI status received by the lower layer through the PDCCH.
  • the other beam failure detection reference signal group also corresponds to a coresetpool (control resource set pool).
  • the second reference signal is included in 1 beam failure detection reference signal group, and the 1 beam failure detection reference signal group does not have a group ID.
  • RRC signaling is used to configure the reference signal (first reference signal) for beam failure detection, which may include at least one of the following configurations:
  • the RRC signaling includes a fourth beam failure detection reference signal group, and the fourth beam failure detection reference signal group has no group ID;
  • the above-mentioned fourth beam failure detection reference signal group includes a group of second reference signals.
  • the second reference signal includes a second reference signal ID, coresetpool information associated with the second reference signal, and detection resources; wherein, the second reference signal ID can is an integer from 0 to 2n-1, n is the maximum number of failed detection resources for each group of second reference signals, such as 64; the detection resource is, for example, SSB index or NZP CSI-RS resource ID, etc.;
  • the above-mentioned fourth beam failure detection reference signal group includes a group of released second reference signal IDs.
  • the associated coresetpool information is, for example, the coresetpool index.
  • the terminal device can determine the beam failure detection reference signal group in which the second reference signal is located. For example, a coresetpool index of 1 indicates that the second reference signal belongs to The second beam failure detection reference signal group; an unassociated or associated coresetpool index of 0 indicates that the second reference signal belongs to the first beam failure detection reference signal group.
  • RRC signaling can also be used to configure a reference signal for failure detection (called a third reference signal).
  • the RRC signaling may include an indication field (called a first indication field), which is used to indicate the purpose of the reference signal (third reference signal) for failure detection. ) to indicate whether the terminal equipment monitors the relevant reference signal for cell detection or beam failure detection.
  • a first indication field which is used to indicate the purpose of the reference signal (third reference signal) for failure detection.
  • the value of the above-mentioned first indication field is configured as rlf (radio link failure) , for example, the value of the above-mentioned first indication field is always configured as rlf, or the value of the above-mentioned first indication field is only configured as rlf.
  • RRC signaling may also be used to configure or indicate or associate information on the TCI status received by a PDCCH for the first reference signal or the second reference signal.
  • the TCI status received by the PDCCH can be configured through RRC signaling.
  • the TCI status information may be a TCI status ID.
  • the TCI status information may also include cell information and/or BWP (partial bandwidth) information.
  • the cell information may be, for example, the index of the serving cell or PCI (Physical Cell Identity) index, BWP information such as BWP ID.
  • the first reference signal includes the reference signal (second reference signal) used for TRP-specific beam failure detection as an example.
  • the first reference signal may not include the aforementioned The reference signal (second reference signal) used for TRP-specific beam failure detection.
  • the lower layer can determine the reference signal (second reference signal) used for TRP-specific beam failure detection through the TCI status received by the PDCCH, and determine the second reference signal.
  • the coresetpool associated with the reference signal for example, it is determined that the second reference signal is associated with 1 coresetpool or 2 coresetpools.
  • the RRC signaling includes an RRC message, an information element (IE) in the RRC message, a field in the RRC message, etc.
  • IE information element
  • RRC signaling supports at least one of the following three possibilities:
  • BFD-RS Beam Failure Detection Reference Signal
  • BFD-RS is included in a BFD-RS group, and this group has a group ID;
  • BFD-RS is included in a BFD-RS group, and this group does not have a group ID.
  • RRC signaling supports the above three possibilities, that is, the RRC message may include 1 or 2 BFD-RS groups, and each group may or may not have its own group ID.
  • the description may be supplemented or improved as follows, where the underlined content is the difference between this embodiment and the existing standards, for example, Do not include bolded and underlined parts; for another example, include bolded and underlined content as additional enhancements.
  • RadioLinkMonitoringConfig The following is the content of the wireless link monitoring configuration (RadioLinkMonitoringConfig):
  • RadioLinkMonitoringConfig for IE:
  • RadioLinkMonitoringRS The following is the content of the field description of the wireless link monitoring reference signal (RadioLinkMonitoringRS) in the above configuration:
  • RadioLinkMonitoringRS-Id for IE is the content of the RadioLinkMonitoringRS-Id for IE:
  • RadioLinkMonitoringRS-Id-r17 The following is the content of the newly added R-17 wireless link monitoring reference signal ID (RadioLinkMonitoringRS-Id-r17):
  • RadioLinkMonitoringRS-Id-r17 for IE:
  • RRC signaling can support more BFD-RS configuration possibilities, for example, it can include 1 or 2 BFD-RS groups, and each group can have or not have its own group ID, etc.
  • RRC signaling design is flexible and has forward compatibility.
  • RRC signaling supports the above possibility 1.
  • the RRC signaling includes 2 BFD-RS groups, each group has its own group ID.
  • the underlined content is the difference between this embodiment and the existing standards, for example, Do not include bolded and underlined parts; for another example, include bolded and underlined content as additional enhancements.
  • RadioLinkMonitoringConfig The following is the content of the wireless link monitoring configuration (RadioLinkMonitoringConfig):
  • RadioLinkMonitoringConfig for IE:
  • RadioLinkMonitoringRS The following is the content of the field description of the wireless link monitoring reference signal (RadioLinkMonitoringRS) in the above configuration:
  • RadioLinkMonitoringRS-Id for IE is the content of the RadioLinkMonitoringRS-Id for IE:
  • RadioLinkMonitoringRS-Id-r17 The following is the content of the newly added R-17 wireless link monitoring reference signal ID (RadioLinkMonitoringRS-Id-r17):
  • RadioLinkMonitoringRS-Id-r17 for IE:
  • RRC signaling can support the configuration of explicit BFD-RS groups, that is, including two BFD-RS groups, each group having its own group ID.
  • BFD-RS is configured only through explicit BFD-RS groups, and the terminal can directly determine the group described in BFD-RS through the configuration of RRC signaling without having to infer it by itself, simplifying terminal implementation and reducing costs.
  • RRC signaling supports the above possibility 1 and the above possibility 2.
  • the RRC signaling includes 1 or 2 BFD-RS groups, and each group has its own group ID.
  • the underlined content is the difference between this embodiment and the existing standards, for example, Bold and underlined content is not included; for another example, bolded and underlined content is included as an additional enhancement.
  • RadioLinkMonitoringConfig The following is the content of the wireless link monitoring configuration (RadioLinkMonitoringConfig):
  • RadioLinkMonitoringConfig for IE:
  • RadioLinkMonitoringRS The following is the content of the field description of the wireless link monitoring reference signal (RadioLinkMonitoringRS) in the above configuration:
  • RadioLinkMonitoringRS-Id RadioLinkMonitoringRS-Id
  • RadioLinkMonitoringRS-Id for IE The following is the content of RadioLinkMonitoringRS-Id for IE:
  • RadioLinkMonitoringRS-Id-r17 The following is the content of the newly added R-17 wireless link monitoring reference signal ID (RadioLinkMonitoringRS-Id-r17):
  • RadioLinkMonitoringRS-Id-r17 for IE:
  • RRC signaling can support explicit configuration of BFD-RS groups, for example, it can include 1 or 2 BFD-RS groups, each group has its own group ID, etc. In addition, it can also support delta configuration of BFD-RS groups. As a result, it has both RRC signaling design flexibility and forward compatibility, and at the same time, it can partially simplify the design of the terminal and reduce the cost.
  • the first reference signal can also be configured or updated using MAC CE signaling.
  • the MAC CE signaling may be the MAC CE used by the network device to indicate the TCI status.
  • the TCI status is the TCI status received by the PDCCH of a coreset (control resource set) of a serving cell or a group of serving cells.
  • the MAC CE signaling is a MAC CE used to configure or update the above-mentioned first reference signal for beam failure detection (referred to as the first MAC CE).
  • the first MAC CE is a new MAC CE.
  • the first MAC CE may include at least one of the following information:
  • Information about the beam failure detection reference signal group for example, the ID of the beam failure detection reference signal group (1 bit);
  • Reference signal index for beam failure detection (6 bits);
  • the first MAC CE may also include one or more QCL assumptions of the aforementioned first reference signal used for beam failure detection, such as SSB index or NZP CSI-RS resource ID, etc.
  • the information of the serving cell includes, for example, an index of the serving cell or a bitmap of the serving cell.
  • the serving cell here may be: a serving cell configured for the terminal device, and/or a serving cell configured with two beam failure detection reference signal groups, and/or a serving cell in the same public update cell list, etc.
  • the serving cell list information is, for example, information on a publicly updated cell list, or information on a cell list sharing TCI status, etc.
  • the public update cell list is a list of serving cells that can use one MAC CE to simultaneously update the TCI relationship (relation), such as simultaneousTCI-UpdateList1-r16, simultaneousTCI-UpdateList1-r16, simultaneousU-TCI-UpdateList1-r17, simultaneousU-TCI-UpdateList2- r17,simultaneousU-TCI-UpdateList3-r17,simultaneousU-TCI-UpdateList4-r17.
  • the information of the public update cell list can be information indicating the names of these lists, for example, the information of list 1 is 1, the information of list 2 is 2, or the information indicating the order of appearance of the lists, for example, the information of the first appearing list is 1 , the information of the second appearing list is 2 and so on.
  • the cell list sharing TCI state refers to the list of serving cells configured using the same TCI state (state).
  • the length of the first MAC CE is variable, and its MAC subheader may include an L field used to indicate the length of the first MAC CE and an F field used to indicate the L field.
  • the MAC subheader of the first MAC CE may include LCID and eLCID.
  • the LCID is 34, which is the extended logical channel ID field (1-byte eLCID field); eLCID uses one of the reserved LCID values of the 1-byte eLCID of UL-SCH, such as 239, 238 or others.
  • a TCI received by the PDCCH is associated with the reference signal (first reference signal) for beam failure detection. status information; or, if the RRC signaling associates a reference signal (first reference signal) for beam failure detection for the TCI status received by each PDCCH, the aforementioned MAC CE signaling can be used by the network device to indicate the TCI status. MAC CE.
  • the reference signal (first reference signal) used for beam failure detection is not associated with the TCI status information received by a PDCCH;
  • the aforementioned MAC CE signaling may be the aforementioned first MAC CE.
  • the aforementioned first MAC CE has the following two formats:
  • Figure 5 is a schematic diagram of an example of Format 1 of the first MAC CE, showing a case where a 1-byte Ci field is included;
  • Figure 6 is a schematic diagram of another example of Format 1 of the first MAC CE, showing a case where a 1-byte Ci field is included The case of byte Ci field.
  • format 1 of the first MAC CE at least includes the following fields:
  • Set id field Indicates the BFD-RS group or corresponding coresetpool to which the BFD-RS information included in this byte belongs;
  • BFD-RS information of the same set of serving cells and the same RS information in this case, the next byte uses the R+R byte);
  • RS ID field indicates BFD-RS index, 6 bits
  • R domain Reserved domain.
  • format 1 of the first MAC CE may also include the following fields (not shown in Figures 5 and 6):
  • Ni field indicates the number of BFD-RS groups including the serving cell whose serving cell index is i/the serving cell whose value is 1 in the i-th Ci field.
  • Figure 7 is a schematic diagram of an example of Format 2 of the first MAC CE, showing a case where a 1-byte Ci field is included;
  • Figure 8 is a schematic diagram of another example of Format 2 of the first MAC CE, showing a case of including 4 The case of byte Ci field.
  • the format 2 of the first MAC CE at least also includes the following fields:
  • QCL assumption (QCL assumption) field indicates the QCL assumption of the BFD-RS included in the previous byte;
  • Another QCL assumption information for RS (in this case, the next byte uses the R+R byte).
  • format 2 of the first MAC CE may also include the following fields (not shown in Figures 7 and 8):
  • Ni field indicates the number of BFD-RS groups including the serving cell whose serving cell index is i/the serving cell whose value is 1 in the i-th Ci field.
  • the methods in the foregoing embodiments can be implemented by network equipment.
  • the network equipment performs the above configuration by sending the above RRC signaling and the above MAC CE signaling.
  • It can also be implemented by a terminal device.
  • the terminal device can receive the above RRC signaling and the above.
  • MAC CE signaling completes the above configuration.
  • the MAC entity of the terminal device can also add the beam failure detection reference signal group of the serving cell to the beam failure detection reference signal group of the serving cell when the aforementioned MAC CE signaling is associated with the beam failure detection reference signal group of the serving cell.
  • the counter (BFI_COUNTER) of beam failure instances is set to 0.
  • the terminal device receives a MAC CE signaling that can update or reconfigure any reference signal used for beam failure detection in a beam failure detection reference signal group of a serving cell, the above-mentioned MAC entity will The counter of beam failure instances for this beam failure detection reference signal group is set to 0.
  • the MAC entity sets the counter of the beam failure instance of the beam failure detection reference signal group to 0.
  • the higher layer reconfigures the beamFailureDetectionTimer or beamFailureInstanceMaxCount of a beam failure detection reference signal group of a serving cell, or any reference signal of the beam failure detection reference signal group of the serving cell is reconfigured or updated, then the above MAC The entity sets the counter of beam failure instances for this beam failure detection reference signal group to 0.
  • the serving cell is configured with two beam failure detection reference signal groups (referred to as the first beam failure detection reference signal group and the second beam failure detection reference signal group).
  • RRC signaling configures the reference signal for TRP-specific beam failure detection for the serving cell.
  • the reference signal is included in 2 beam failure detection reference signal groups, and each beam failure detection reference signal group has its own group. ID.
  • RRC signaling configures a reference signal for TRP-specific beam failure detection for the serving cell.
  • the reference signal is included in a beam failure detection reference signal group, and the beam failure detection reference signal group has a group ID.
  • the lower layer determines the beam failure detection parameter signal of another beam failure detection reference signal group through the TCI status received by the PDCCH.
  • the RRC signaling configures the reference signal for TRP-specific beam failure detection for the serving cell.
  • the reference signal is included in a beam failure detection reference signal group.
  • the beam failure detection reference signal group has no group ID.
  • the terminal device determines that the reference signal is associated with 2 coresetpools.
  • the RRC signaling does not configure the reference signal for TRP-specific beam failure detection for the serving cell.
  • the lower layer determines the reference signal for TRP-specific beam failure detection through the TCI status received by the PDCCH, and determines the reference signal association. 2 coresetpools.
  • the first beam failure detection reference signal group is, for example, one of the following situations:
  • Case 1 BFD-RS group with BFD-RS group ID 1;
  • Case 2 A BFD-RS group with a BFD-RS group ID of 1, if configured; or another BFD-RS group determined by the TCI status received by the lower layer through PDCCH (if a BFD-RS group with a BFD-RS group ID of 2 is configured) Group);
  • Case 3 BFD-RS group composed of all reference signals that are not associated with coresetpool or are associated with coresetpool with index 0;
  • Case 4 The lower layer receives a BFD-RS group composed of reference signals that are not associated with the coresetpool or are associated with the coresetpool with index 0, determined by the TCI status, through the PDCCH.
  • the second beam failure detection reference signal group is, for example, one of the following situations:
  • Case 1 BFD-RS group with BFD-RS group ID 2;
  • Case 2 A BFD-RS group with a BFD-RS group ID of 2, if configured; or another BFD-RS group determined by the TCI status received by the lower layer through PDCCH (if a BFD-RS group with a BFD-RS group ID of 1 is configured) Group);
  • Case 3 (all) BFD-RS groups composed of reference signals associated with coresetpool with index 1;
  • Case 4 The lower layer receives the BFD-RS group consisting of (all) reference signals associated with the coresetpool with index 1 determined by the TCI status through the PDCCH.
  • each of the above embodiments can be used alone, or one or more of the above embodiments can be combined.
  • Figure 9 is another schematic diagram of a configuration method of a beam failure detection reference signal according to an embodiment of the present application. As shown in Figure 9, the method includes:
  • RRC signaling is used to configure the reference signal for TRP-specific beam failure detection
  • RRC signaling is used to configure the reference signal for failure detection.
  • the cell of the specific beam failure detection reference signal configures the TRP specific beam failure detection reference signal. On the one hand, it avoids misconfiguration and unnecessary triggering of failure detection or failure recovery, and the resulting service interruption; on the other hand, it reduces Signaling overhead is eliminated, thereby saving air interface resources.
  • the RRC signaling may include an indication field (called a first indication field), which is used to indicate the purpose of the reference signal (third reference signal) for failure detection. ) to indicate whether the terminal equipment monitors the relevant reference signal for cell detection or beam failure detection.
  • a first indication field which is used to indicate the purpose of the reference signal (third reference signal) for failure detection.
  • the value of the above-mentioned first indication field is configured as rlf (radio link failure), for example, the above-mentioned first indication
  • rlf radio link failure
  • the value of the field is always configured as rlf, or the value of the above-mentioned first indication field is only configured as rlf.
  • An embodiment of the present application provides a device for configuring a beam failure detection reference signal.
  • the device may be, for example, a terminal device, or may be some or some components or components configured in the terminal device.
  • the device may be, for example, a network device, or may be some or some components or components configured on the network device.
  • the device of the embodiment of the present application corresponds to the method of the embodiment of the first aspect, and the same content as the embodiment of the first aspect will not be repeatedly described.
  • FIG. 10 is a schematic diagram of an example of a configuration device for a beam failure detection reference signal according to an embodiment of the present application.
  • the beam failure detection reference signal configuration device 1000 includes:
  • the first configuration unit 1001 uses RRC signaling to configure the first reference signal for beam failure detection
  • the second configuration unit 1002 uses MAC CE signaling to configure or update the first reference signal.
  • the above-mentioned first reference signal includes a second reference signal for TRP-specific beam failure detection.
  • the second reference signal is included in 2 beam failure detection reference signal groups, and the 2 beam failure detection reference signal groups have respective group IDs.
  • RRC signaling is used to configure the first reference signal for beam failure detection, including:
  • RRC signaling includes a first beam failure detection reference signal group and a second beam failure detection reference signal group, wherein when the first beam failure detection reference signal group exists, the second beam failure detection reference signal group is forced to exist;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a group ID, the group ID is mandatory, and the value of the group ID is 1 or 2;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a set of second reference signals, and the second reference signal includes a second reference signal ID and detection resources;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a set of released second reference signal IDs.
  • the second reference signal is included in 1 beam failure detection reference signal group, and the 1 beam failure detection reference signal group has a group ID.
  • RRC signaling is used to configure the first reference signal for beam failure detection, including:
  • RRC signaling includes a third beam failure detection reference signal group, and the third beam failure detection reference signal group includes a group ID.
  • the group ID is mandatory and the value of the group ID is 1 or 2;
  • the third beam failure detection reference signal group includes a group of second reference signals, and the second reference signal includes a second reference signal ID and detection resources;
  • the third beam failure detection reference signal group includes a set of released second reference signal IDs.
  • the group ID is related to the first coresetpool or the third beam failure detection reference signal group corresponds to the first coresetpool.
  • the second reference signal in another beam failure detection reference signal group that is different from the third beam failure detection reference signal group is determined by the TCI status received by the lower layer through the PDCCH.
  • the second reference signal is included in 1 beam failure detection reference signal group, and the 1 beam failure detection reference signal group does not have a group ID.
  • RRC signaling is used to configure the first reference signal for beam failure detection, including:
  • RRC signaling includes the fourth beam failure detection reference signal group
  • the fourth beam failure detection reference signal group includes a group of second reference signals, and the second reference signal includes a second reference signal ID, coresetpool information associated with the second reference signal, and detection resources;
  • the fourth beam failure detection reference signal group includes a group of released second reference signal IDs.
  • the second reference signal ID is an integer from 0 to 2n-1, and n is the maximum number of failure detection resources of each of the aforementioned beam failure detection reference signal groups.
  • the beam failure detection reference signal configuration device 1000 further includes:
  • the third configuration unit 1003 uses RRC signaling to configure the third reference signal for failure detection.
  • the RRC signaling includes a first indication field.
  • the first indication field is used to indicate the purpose of the third reference signal. If the RRC signaling configures a reference signal for TRP-specific beam failure detection, , then the value of the first indication field is configured as rlf (radio link failure). For example, the value of the above-mentioned first indication field is always configured as rlf, or the value of the above-mentioned first indication field is only configured as rlf.
  • the beam failure detection reference signal configuration device 1000 further includes:
  • the fourth configuration unit 1004 uses RRC signaling to configure/indicate/associate the information of the TCI status received by a PDCCH for the first reference signal or the second reference signal.
  • the TCI status received by the PDCCH can be configured through RRC signaling.
  • the TCI status information includes the TCI status ID.
  • the TCI status information may also include cell information and/or BWP information.
  • the above-mentioned first reference signal does not include a second reference signal used for TRP-specific beam failure detection.
  • the lower layer determines the second reference signal through the TCI status received by the PDCCH, and determines the second reference signal. 1 coresetpool is associated.
  • the lower layer determines the second reference signal through the TCI status received by the PDCCH, and determines the second reference signal 1 coresetpool is associated.
  • MAC CE signaling may be MAC CE used by the network device to indicate the TCI status, which is the TCI status received by the PDCCH of a coreset of a serving cell or a group of serving cells; or, MAC CE The signaling may be the first MAC CE used to configure or update the first reference signal.
  • the first MAC CE may include at least one of the following information:
  • the first MAC CE may also include:
  • One or more QCL hypotheses of the first reference signal for beam failure detection are One or more QCL hypotheses of the first reference signal for beam failure detection.
  • the information about the serving cell may include an index of the serving cell or a bitmap of the serving cell.
  • the service area is, for example:
  • the serving cell configured for the terminal device.
  • a serving cell configured with two beam failure detection reference signal groups
  • the length of the first MAC CE is variable, and the MAC subheader of the first MAC CE includes an L field used to indicate the length of the first MAC CE and an F field used to indicate the L field.
  • the MAC subheader of the first MAC CE may include LCID and eLCID.
  • the beam failure detection reference signal configuration device 1000 is configured on the terminal equipment. As shown in Figure 10, the beam failure detection reference signal configuration 1000 may also include:
  • the Setting unit 1005 which causes the MAC entity of the terminal device to set the beam failure instance of the beam failure detection reference signal group of the serving cell when the MAC CE signaling is associated with the beam failure detection reference signal group of the serving cell.
  • the counter is set to 0.
  • the setting unit 1005 causes the MAC entity to set the beam failure
  • the counter for instances of beam failure to detect a reference signal group is set to 0.
  • the setting unit 1005 causes the MAC entity to set the counter of the beam failure instance of the beam failure detection reference signal group to 0.
  • the setting unit 1005 causes the MAC entity to set the counter of the beam failure instance of the beam failure detection reference signal group to 0.
  • the serving cell is configured with two beam failure detection reference signal groups.
  • RRC signaling configures a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in two beam failure detection reference signal groups, and each beam failure detection reference signal group has its own group ID.
  • RRC signaling configures a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in a beam failure detection reference signal group.
  • the beam failure detection reference signal group has a group ID and is received by the lower layer through the PDCCH.
  • the TCI status determines the beam failure detection reference signal of another beam failure detection reference signal group.
  • RRC signaling configures a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in a beam failure detection reference signal group.
  • the beam failure detection reference signal group does not have a group ID.
  • the terminal device determines the The reference signal is associated with 2 coresetpools;
  • RRC signaling does not configure a reference signal for TRP-specific beam failure detection.
  • the lower layer determines the reference signal for TRP-specific beam failure detection through the TCI status received on the PDCCH, and determines that the reference signal is associated with 2 coresetpools. .
  • FIG. 11 is a schematic diagram of another example of a configuration device for a beam failure detection reference signal according to an embodiment of the present application.
  • the beam failure detection reference signal configuration device 1100 includes:
  • the first configuration unit 1101 uses RRC signaling to configure reference signals for TRP-specific beam failure detection
  • the second configuration unit 1102 uses the RRC signaling to configure the reference signal for failure detection.
  • the RRC signaling includes a first indication field, which is used to indicate the purpose of the reference signal for failure detection, wherein if the first configuration unit 1101 uses RRC signaling to configure the reference signal for TRP A reference signal for specific beam failure detection, then the value of the first indication field is configured as rlf (radio link failure).
  • the value of the above-mentioned first indication field is always configured as rlf, or, the value of the above-mentioned first indication field is always configured as rlf. The value of is only configured as rlf.
  • the beam failure detection reference signal configuring devices 1000 to 1100 may also include other components or modules.
  • the beam failure detection reference signal configuring devices 1000 to 1100 may also include other components or modules.
  • each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • An embodiment of the present application also provides a communication system, including network equipment and terminal equipment.
  • the terminal device and/or the network device includes the device described in the embodiment of the second aspect and is configured to perform the method described in the embodiment of the first aspect. Since the method has been described in detail in the embodiment of the first aspect, its content is incorporated here and will not be described again.
  • An embodiment of the present application also provides a terminal device.
  • the terminal device may be, for example, a UE, but the present application is not limited thereto and may also be other terminal devices.
  • Figure 12 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1200 may include a processor 1201 and a memory 1202; the memory 1202 stores data and programs and is coupled to the processor 1201. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the functions of the device of the embodiment of the second aspect may be integrated into the processor 1201, wherein the processor 1201 may be configured to execute a program to implement the method described in the embodiment of the first aspect, Its contents are incorporated here and will not be repeated here.
  • the device of the embodiment of the second aspect may be configured separately from the processor 1201.
  • the device of the embodiment of the second aspect may be configured as a chip connected to the processor 1201, and is controlled by the processor 1201. To realize the functions of the device of the embodiment of the second aspect.
  • the terminal device 1200 may also include: a communication module 1203, an input unit 1204, a display 1205, and a power supply 1206.
  • the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the terminal device 1200 does not have to include all the components shown in Figure 12, and the above components are not required; in addition, the terminal device 1200 can also include components not shown in Figure 12, you can refer to the relevant technology.
  • An embodiment of the present application also provides a network device.
  • the network device may be, for example, a base station, but the present application is not limited thereto and may also be other network devices.
  • FIG. 13 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • network device 1300 may include: processor 1301 and memory 1302 ; memory 1302 is coupled to processor 1301 .
  • the memory 1302 can store various data; in addition, it also stores information processing programs, and executes the programs under the control of the processor 1301.
  • the functions of the device of the embodiment of the second aspect may be integrated into the processor 1301, wherein the processor 1301 may be configured to execute a program to implement the method described in the embodiment of the first aspect, Its contents are incorporated here and will not be repeated here.
  • the device of the embodiment of the second aspect may be configured separately from the processor 1301.
  • the device of the embodiment of the second aspect may be configured as a chip connected to the processor 1301, and controlled by the processor 1301. To realize the functions of the device of the embodiment of the second aspect.
  • the network device 1300 may also include: transceivers 1303 and 1304.
  • transceivers 1303 and 1304. The functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the network device 1300 does not necessarily include all components shown in Figure 13; in addition, the network device 1300 may also include components not shown in Figure 13, and reference may be made to the existing technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device or a network device, the program causes the terminal device or network device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a terminal device or a network device to execute the method described in the embodiment of the first aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • Software modules may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a method of configuring a beam failure detection reference signal includes:
  • the first reference signal is configured or updated using MAC CE signaling.
  • the second reference signal is included in two beam failure detection reference signal groups, and the two beam failure detection reference signal groups have respective group IDs.
  • the RRC signaling includes a first beam failure detection reference signal group and a second beam failure detection reference signal group, wherein when the first beam failure detection reference signal group exists, the second beam failure detection reference signal group compulsory existence;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a group ID, the group ID is mandatory to exist, and the value of the group ID is 1 or 2;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a group of the second reference signals, and the second reference signal includes a second reference signal ID and detection resources;
  • the first beam failure detection reference signal group and the second beam failure detection reference signal group respectively include a set of released second reference signal IDs.
  • the second reference signal is included in one beam failure detection reference signal group, and the one beam failure detection reference signal group has a group ID.
  • the RRC signaling includes a third beam failure detection reference signal group, the third beam failure detection reference signal group includes a group ID, the group ID is mandatory, and the value of the group ID is 1 or 2;
  • the third beam failure detection reference signal group includes a group of second reference signals, and the second reference signal includes a second reference signal ID and detection resources;
  • the third beam failure detection reference signal group includes a group of released second reference signal IDs.
  • the second reference signal in another beam failure detection reference signal group that is different from the third beam failure detection reference signal group is determined by the TCI status received by the lower layer through the PDCCH.
  • the second reference signal is included in one beam failure detection reference signal group, and the one beam failure detection reference signal group has no group ID.
  • the RRC signaling includes a fourth beam failure detection reference signal group
  • the fourth beam failure detection reference signal group includes a group of second reference signals, and the second reference signal includes a second reference signal ID, coresetpool information associated with the second reference signal, and detection resources;
  • the fourth beam failure detection reference signal group includes a group of released second reference signal IDs.
  • the second reference signal ID is an integer from 0 to n-1, and n is the maximum number of failure detection resources of the beam failure detection reference signal group.
  • the third reference signal for failure detection is configured using the RRC signaling.
  • the RRC signaling includes a first indication field, the first indication field is used to indicate the purpose of the third reference signal, wherein, if the RRC signaling is configured with a reference signal for TRP-specific beam failure detection , then the value of the first indication field is configured as rlf (radio link failure).
  • the RRC signaling is used to configure/indicate/associate information of a TCI status received by a PDCCH for the first reference signal or the second reference signal.
  • the TCI status received by the PDCCH is configured through the RRC signaling.
  • the TCI status information includes a TCI status ID.
  • TCI status information includes cell information and/or BWP information.
  • the MAC CE used by the network device to indicate the TCI status, which is the TCI status received by the PDCCH of a coreset of a serving cell or a group of serving cells; or,
  • One or more QCL hypotheses of the first reference signal for beam failure detection are One or more QCL hypotheses of the first reference signal for beam failure detection.
  • the service cell configured for the terminal device
  • a serving cell configured with two beam failure detection reference signal groups
  • the MAC entity of the terminal device sets the counter of the beam failure instance of the beam failure detection reference signal group of the serving cell to 0 when the MAC CE signaling is associated with the beam failure detection reference signal group of the serving cell.
  • the MAC CE signaling can update or reconfigure any reference signal used for beam failure detection in a beam failure detection reference signal group of a serving cell
  • the MAC entity will use the beam of the beam failure detection reference signal group to The counter of failed instances is set to 0.
  • the MAC CE signaling updates or reconfigures the serving cell. If any reference signal of the beam failure detection reference signal group is used for beam failure detection, the MAC entity sets the counter of the beam failure instance of the beam failure detection reference signal group to 0.
  • the MAC The entity sets the counter of beam failure instances of the beam failure detection reference signal group to zero.
  • the RRC signaling is configured with a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in 2 beam failure detection reference signal groups, and each beam failure detection reference signal group has its own group ID;
  • the RRC signaling is configured with a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in a beam failure detection reference signal group.
  • the beam failure detection reference signal group has a group ID, and the lower layer passes the PDCCH.
  • the received TCI status determines the beam failure detection reference signal of another beam failure detection reference signal group;
  • the RRC signaling is configured with a reference signal for TRP-specific beam failure detection.
  • the reference signal is included in one beam failure detection reference signal group.
  • the beam failure detection reference signal group does not have a group ID.
  • the terminal device determines The reference signal is associated with 2 coresetpools;
  • the RRC signaling is not configured with a reference signal for TRP-specific beam failure detection.
  • the lower layer determines the reference signal for TRP-specific beam failure detection through the TCI status received by the PDCCH, and determines that the reference signal is associated with 2 coresetpools. .
  • a method of configuring a beam failure detection reference signal includes:
  • the reference signal for failure detection is configured using the RRC signaling.
  • the RRC signaling includes a first indication field, the first indication field is used to indicate the purpose of the reference signal for failure detection,
  • the value of the first indication field is configured as rlf (radio link failure).
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 1 to 33.
  • a network device comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement any one of appendices 1 to 25 and 31 to 33 Methods.
  • a communication system comprising the network device described in Supplementary Note 35 and the terminal device described in Supplementary Note 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种波束失败检测参考信号的配置方法和装置,该波束失败检测参考信号的配置方法包括:使用RRC信令配置用于波束失败检测的第一参考信号,并使用MAC CE信令配置或更新该第一参考信号。

Description

波束失败检测参考信号的配置方法和装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
Rel-15 NR(新无线版本15)包括一些MIMO(多进多出)特性,促进基站侧6GHz以下和6GHz以上频带的大量天线单元的使用。Rel-16 NR(新无线版本16)通过以下机制对Rel-15 NR进行了增强,这些机制包括:
引入增强的基于DFT(离散傅里叶变换)压缩的类型2码本(Type II codebook);
支持多TRP(发送接收点,Transmission Reception Point)传输,尤其对于eMBB(增强移动宽带)和PDSCH(物理下行共享信道);
多波束操作的增强,包括时延和/或多种重配置开销的减小,例如QCL(准共址)相关的测量重配置开销减小;
SCell(辅小区)波束失败恢复(beam failure recovery,BFR);
L1-SINR(层1信号与干扰加噪声比);
低PAPR(峰值平均功率比,Peak to Average Power Ratio)参考信号;
确保上行权功率传输的特性。
目前,NR(新无线)处在商业化过程中,从实际部署场景中可以确定需要进一步增强的各个方面,这样的方面包括:
Rel-16(版本16)设法减小了开销和/或时延,FR2(频率范围2)上的高速车载场景(如在高速路上高速行驶的UE)要求更积极地减少时延和开销,不仅对于小区内,还包括小区间L1/L2(层1/层2)移动性。此外,还包括减少波束失败事件的发生;
Rel-16研究了确保panel(面板)特定的UL(上行链路,简称为上行)波束选择的增强,但没有足够时间完成该工作。这为增加上行覆盖提供了一些可能,包括缓解由于满足MPE(maximum permissible exposure,最大允许暴露)规则造成的UL覆盖损失;
PDSCH之外的信道可以受益于多TRP传输(以及多panel接收),这也包括小区间多TRP的操作。这包括一些新的多TRP的用例,如一个宏小区内的UL密集部署和/或异构网络类型的部署场景;
由于多场景SRS(探测参考信号)的使用,可以且应该进一步增强SRS,至少为了 容量和覆盖;
尽管Rel-16支持增强的Type II CSI(类型2信道状态信息),可以感觉到一些进一步增强的空间。这包括为NC-JT用例的多TRP/panel设计的CSI(信道状态信息)和信道统计上的部分互异性的利用,如角度和时延,主要目标是FR1 FDD(频率范围1频分双工)部署。
此外,Rel-17(版本17)支持多TRP部署的增强,目标是FR1和FR2,包括:
使用多TRP和/或多panel,以Rel-16可靠性作为baseline(基础),确定并定义改善PDSCH之外的信道(即物理下行控制信道PDCCH,物理上行共享信道PUSCH和物理上行控制信道PUCCH)的可靠性和健壮性的特性;
确定并定义QCL/TCI(传输配置指示,Transmission Configuration Indication)相关的增强,以确保小区间多TRP操作,假设基于多DCI(下行链路控制信息,简称为下行控制信息)、基于Rel-15/16 TCI架构的多PDSCH接收;
对于有多panel接收的多TRP同时传输,进行评估并定义,如果需要,对波束管理相关的内容进行增强;
对以下内容进行增强以支持HST-SFN(高速传输单频网络)部署场景:确定并定义DMRS(解调参考信号)的QCL假设的解决方案,如相同DMRS port(s)的多个QCL假设,目标是DL-only传输;如果证实其优于Rel-16 HST(版本16高速传输)增强baseline的好处,评估并通过重用统一的TCI架构定义DL和UL信号间的QCL/QCL-like关系(包括适用类型和相关需求)。
从以上可以看出,为了改善信道的可靠性和健壮性,对于部署了多TRP的场景,Rel-17支持TRP特定的波束失败检测和恢复。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,当前对于TRP特定的波束失败检测的参考信号,使用L3(层3)信令即RRC(无线资源控制)消息进行配置。但是,当网络使用L2信令,例如MAC CE(媒体接入控制控制单元),或L1信令,例如DCI,激活新的TCI状态后,为了更新TRP特定的波束失败检测的参考信号,网络需要发送新的RRC消息,这造成波束失败 检测的延迟,可能导致错误地触发波束失败恢复过程。
例如,在时刻t0,网络使用L2信令或L1信令激活新的TCI状态,但终端仍监听原本用于波束失败检测的参考信号直到t1时收到新的信号配置,期间可能达到配置的波束失败实例的最大值,从而触发波束失败恢复过程。如果是特殊小区,有可能触发随机接入过程,这会发生业务中断。
针对上述问题,本申请实施例提供一种波束失败检测参考信号的配置方法和装置,以支持使用RRC信令和MAC CE配置/更新用于波束失败检测的参考信号。
根据本申请实施例的一方面,通过一种波束失败检测参考信号的配置装置,所述装置包括:
第一配置单元,其使用RRC信令配置用于波束失败检测的第一参考信号;
第二配置单元,其使用MAC CE信令配置或更新所述第一参考信号。
根据本申请实施例的另一方面,提供一种波束失败检测参考信号的配置装置,所述装置包括:
第一配置单元,其使用RRC信令配置用于TRP特定的波束失败检测的参考信号;
第二配置单元,其使用所述RRC信令配置用于失败检测的参考信号。
本申请实施例的有益效果之一在于:根据本申请实施例,能够支持使用RRC信令和MAC CE配置/更新用于波束失败检测的参考信号。相较于现有机制,在PDCCH接收的TCI状态改变后,一方面,本申请能更快地使用相应的参考信号进行波束失败检测,从而避免错误地触发波束失败恢复过程以及由此造成的业务中断;另一方面,本申请能更灵活地配置/更新用于波束失败检测的参考信号,从而减少信令开销,节约空口资源。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更 多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1a~图1c是服务小区波束失败的检测或波束失败恢复的触发的示意图;
图2是多TRP操作的场景的一示意图;
图3是一个TRP的波束失败检测(BFD)/波束失败恢复(BFR)的一示意图;
图4是本申请实施例的波束失败检测参考信号的配置方法的一示意图;
图5和图6是第一MAC CE的格式1的两个示例的示意图;
图7和图8是第一MAC CE的格式2的两个示例的示意图;
图9是本申请实施例的波束失败检测参考信号的配置方法的另一示意图;
图10是本申请实施例的波束失败检测参考信号的配置装置的一示意图;
图11是本申请实施例的波束失败检测参考信号的配置装置的另一示意图;
图12是本申请实施例的终端设备的示意图;
图13是本申请实施例的网络设备的构成示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE- Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、IAB-MT、站(station),等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
在以下的说明中,在不引起混淆的情况下,“失败”可以替换为“需要恢复的”,“如果…”可以替换为“在…情况下”或“当…时”。此外,在以下的说明中,低层是指物理层、RF链等。
针对波束失败检测的参考信号的配置,在当前标准中,有如下关于波束失败检测的配置。
下面是无线链路监测配置(RadioLinkMonitoringConfig)的内容:
Figure PCTCN2022085661-appb-000001
下面是该RadioLinkMonitoringConfig的信息单元(IE,information element)的内容:
Figure PCTCN2022085661-appb-000002
下面是该RadioLinkMonitoringConfig的域描述的内容:
Figure PCTCN2022085661-appb-000003
Figure PCTCN2022085661-appb-000004
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的域描述的内容:
Figure PCTCN2022085661-appb-000005
此外,针对波束失败检测过程,在NR里,支持多个波束以及波束管理。其中,MAC(媒体接入控制)实体可以被RRC配置每服务小区的波束失败恢复过程,这个过程用于当在服务SSB(s)/CSI-RS(s)上检测到波束失败时,向服务gNB指示一个新的SSB(同步信号块)或CSI-RS(信道状态信息参考信号)。通过计算低层到MAC实体的波束失败实例(instance)指示的数量,检测波束失败。
图1a~图1c是服务小区波束失败的检测或波束失败恢复的触发的示意图。
如图1a所示,波束失败检测(Beam Failure Detection,BFD)过程使用UE变量BFI_COUNTER,这个变量是波束失败实例指示的计数器,初始设置为0,每个服务小区有一个。对于每个配置了波束失败检测的服务小区,MAC实体将会:
如果从低层收到了波束失败实例指示:
启动或重启beamFailureDetectionTimer;
BFI_COUNTER加1;
如果BFI_COUNTER大于或等于beamFailureInstanceMaxCount:
如果服务小区是辅小区(SCell),触发这个服务小区的一个BFR;
否则,在这个特殊小区(SpCell)上发起随机接入过程。
如图1b和图1c所示,MAC实体还会:
如果beamFailureDetectionTimer超时;或
如果高层重配了这个服务小区的beamFailureDetectionTimer,beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号:
设置BFI_COUNTER为0。
这个过程适用于Rel-15和Rel-16的特殊小区和辅小区。
发明人发现,在Rel-15和Rel-16中,支持小区级的波束失败检测;在R17多TRP操作下,支持per-TRP的单独的BFD-RS(波束失败检测参考信号)组的波束失败检测,并且支持在不同CC(分量载波)上的小区特定的BFR和TRP特定的BFR的同时配置,但是不支持一个CC上TRP特定的BFR与Rel-15/16 BFR(即BeamFailureRecoveryConfig/BeamFailureRecoverySCellConfig-r16)的同时配置。
此外,针对TRP特定的波束失败恢复的触发,RRC配置了一些参数,例如:
-配置了2个BFD-RS组的服务小区的每BFD-RS组的波束失败检测的beamFailureInstanceMaxCount;
-配置了2个BFD-RS组的服务小区的每BFD-RS组的波束失败检测的beamFailureDetectionTimer。
以下UE变量用于波束失败检测过程:
-BFI_COUNTER(配置了2个BFD-RS组的服务小区的每BFD-RS组):波束失败实施例指示的计数器,其初始设置为0。
对于每个配置了波束失败检测的服务小区,MAC实体将会:
1>如果这个服务小区被配置了两个BFD-RS组,对于这个服务小区的每个BFD-RS组,MAC实体将会:
2>如果从低层收到了一个BFD-RS组的波束失败实例指示:
3>启动或重启beamFailureDetectionTimer;
3>这个BFD-RS组的BFI_COUNTER加1;
3>如果BFI_COUNTER大于或等于beamFailureInstanceMaxCount:
4>触发这个服务小区的这个BFD-RS组的BFR;
2>如果这个特殊小区的两个BFD-RS组都触发了BFR且尚未成功完成:
3>在这个特殊小区上发起随机接入过程;
2>如果这个服务小区是特殊小区且为这个特殊小区的两个BFD-RS组的波束失 败恢复发起的随机接入过程成功完成:
3>设置特殊小区的每个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成。
2>如果这个BFD-RS组的beamFailureDetectionTimer超时;或
2>如果高层重配了这个服务小区这个BFD-RS组的beamFailureDetectionTimer,beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号:
3>设置这个BFD-RS组的BFI_COUNTER为0。
2>如果收到一个C-RNTI寻址的PDCCH,指示用于传输包括这个服务小区的这个BFD-RS组的波束失败恢复信息的Enhanced BFR MAC CE或Truncated Enhanced BFR MAC CE的HARQ进程的一个新传的上行授权:
3>设置这个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成并取消这个服务小区这个BFD-RS组所有触发的BFRs。
2>如果这个服务小区是辅小区,且这个辅小区被去激活:
3>设置辅小区的每个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成并取消这个服务小区所有BFD-RS组所有触发的BFRs。
此外,针对TRP特定的波束失败检测的参考信号的配置,为了支持多TRP的波束失败检测,暂定在当前标准中引入了如下关于TRP特定的波束失败检测的参考信号的配置。
下面是无线链路监测配置(RadioLinkMonitoringConfig)的内容:
Figure PCTCN2022085661-appb-000006
下面是该RadioLinkMonitoringConfig的IE的内容:
Figure PCTCN2022085661-appb-000007
Figure PCTCN2022085661-appb-000008
下面是该RadioLinkMonitoringConfig的域描述的内容:
Figure PCTCN2022085661-appb-000009
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的域描述的内容:
Figure PCTCN2022085661-appb-000010
下面是上述配置中RadioLinkMonitoringRS的ID(RadioLinkMonitoringRS-Id)的内容:
Figure PCTCN2022085661-appb-000011
下面是该RadioLinkMonitoringRS-Id的IE的内容:
Figure PCTCN2022085661-appb-000012
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图2是多TRP操作的场景的一示意图,如图2所示,TRP是gNB的一部分,其用于从终端UE接收信号或者向终端UE发送信号。在多TRP(mTRP)操作里,一个服务小区可以从两个TRPs调度UE,提供更好的PDSCH覆盖、可靠性和/或数据速率。对于多TRP,有两种不同的操作模式,即单DCI和多DCI。对于这两种模式,在RRC层提供的配置内,上行和下行操作的控制由物理层和MAC进行。在单DCI模式下,UE由两个TRPs通过相同DCI调度;在多DCI模式下,UE由每个TRP的单独的DCI调度。
图3是每个TRP的波束失败检测(BFD)/波束失败恢复(BFR)的一示意图,如图3所示,gNB通过TRP-1和TRP-2为终端(UE)提供服务。UE进行每TRP的波束失败检测。其中,TRP-1与UE之间的链路1(link-1)正常工作,即UE未检测到TRP1上的波束失败,或不触发TRP1上的波束失败恢复;但是TRP-2与UE之间的链路2(link-2)受到阻塞,即UE检测到了TRP-2上的波束失败,或触发TRP-2上的波束失败恢复。这两个TRP可能属于相同小区,也可能属于不同小区。
下面结合附图和具体实施方式对本申请实施例进行说明。
第一方面的实施例
本申请实施例提供一种波束失败检测参考信号的配置方法,该方法适用于网络设备,也适用于终端设备。
图4是本申请实施例的波束失败检测参考信号的配置方法的一示意图,如图4所示,该方法包括:
401,使用RRC信令配置用于波束失败检测的参考信号(称为第一参考信号);
402,使用MAC CE信令配置或更新所述第一参考信号。
值得注意的是,以上附图4仅示意性地对本申请实施例进行了说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
在上述实施例中,通过使用RRC信令配置用于波束失败检测的参考信号,并通过使用MAC CE信令对该参考信号进行配置或更新,实现了通过RRC信令和MAC CE配置/更新用于波束失败检测的参考信号,避免了业务中断,提高了网络性能。
在一些实施例中,上述第一参考信号包括用于TRP特定的波束失败检测的参考信号(称为第二参考信号)。也即,可以使用RRC信令配置用于TRP特定的波束失败检测的参考信号。
在一些实施例中,第二参考信号包含在2个波束失败检测参考信号组中,该2个波束失败检测参考信号组有各自的组ID(标识)。
在上述实施例中,使用RRC信令配置用于波束失败检测的参考信号(第一参考信号),可以包括以下配置的至少之一:
该RRC信令包括第一波束失败检测的参考信号组和第二波束失败检测的参考信号组,也即,通过RRC信令显式配置了两个波束失败检测的参考信号组,当第一波束失败检测的参考信号组存在时,第二波束失败检测的参考信号组强制存在;
上述第一波束失败检测的参考信号组和上述第二波束失败检测参考信号组分别包括组ID,该组ID强制存在,该组ID的值为1或者2;
上述第一波束失败检测的参考信号组和上述第二波束失败检测参考信号组分别包括一组第二参考信号,该第二参考信号包括第二参考信号ID和检测资源;其中,该第二参考信号可以是增加和/或修改的第二参考信号,该第二参考信号ID可以是从0到n-1的整数,n是每组第二参考信号最大的失败检测资源数,例如64;该检测资源例如是 SSB索引或者NZP CSI-RS资源ID等;
上述第一波束失败检测的参考信号组和上述第二波束失败检测参考信号组分别包括一组释放的第二参考信号ID。
在另一些实施例中,第二参考信号包含在1个波束失败检测参考信号组中,该1个波束失败检测参考信号组有组ID。
在上述实施例中,使用RRC信令配置用于波束失败检测的参考信号(第一参考信号),可以包括以下配置的至少之一:
该RRC信令包括第三波束失败检测参考信号组,也即,通过RRC信令显式配置了1个波束失败检测的参考信号组,该第三波束失败检测参考信号组包括组ID,该组ID强制存在,该组ID的值为1或2;
上述第三波束失败检测参考信号组包括一组第二参考信号,该第二参考信号包括第二参考信号ID和检测资源;其中,该第二参考信号可以是增加和/或修改的第二参考信号,该第二参考信号ID可以是从0到n-1的整数,n是每组第二参考信号最大的失败检测资源数,例如64;该检测资源例如是SSB索引或者NZP CSI-RS资源ID等;
上述第三波束失败检测参考信号组包括一组释放的第二参考信号ID。
在上述实施例中,上述第三波束失败检测参考信号组的组ID可以与coresetpool(称为第一coresetpool)相关,或者说,上述第三波束失败检测参考信号组对应第一coresetpool。对于多TRP操作的多DCI模式,即不同TRP通过不同DCI调度。不同的DCI关联不同coresetpool中的coreset(控制资源集合)。例如,TRP-1的DCI关联coresetpool 1中的coreset,TRP-2的DCI关联coresetpool 2中的coreset。即关联的coresetpool可用于识别TRP。
在上述实施例中,不同于第三波束失败检测参考信号组的另一个波束失败检测参考信号组中的第二参考信号,可以由低层通过PDCCH接收的TCI状态确定。该另一个波束失败检测参考信号组也对应一个coresetpool(控制资源集合池)。
在又一些实施例中,第二参考信号包含在1个波束失败检测参考信号组中,该1个波束失败检测参考信号组没有组ID。
在上述实施例中,使用RRC信令配置用于波束失败检测的参考信号(第一参考信号),可以包括以下配置的至少之一:
该RRC信令包括第四波束失败检测参考信号组,该第四波束失败检测参考信号组没有组ID;
上述第四波束失败检测参考信号组包括一组第二参考信号,该第二参考信号包括第二参考信号ID、第二参考信号关联的coresetpool信息以及检测资源;其中,该第二参考信号ID可以是从0到2n-1的整数,n是每组第二参考信号最大的失败检测资源数,例如64;该检测资源例如是SSB索引或者NZP CSI-RS资源ID等;
上述第四波束失败检测参考信号组包括一组释放的第二参考信号ID。
在上述实施例中,关联的coresetpool的信息例如是coresetpool索引,基于这个域,终端设备能够确定第二参考信号所在的波束失败检测参考信号组,例如,coresetpool索引为1表示该第二参考信号属于第二波束失败检测参考信号组;未关联或者关联的coresetpool索引为0表示该第二参考信号属于第一波束失败检测参考信号组。
以上各个实施例仅对使用RRC信令配置用于波束失败检测的第一参考信号进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,还可以使用RRC信令配置用于失败检测的参考信号(称为第三参考信号)。
在上述实施例中,该RRC信令可以包括一个指示域(称为第一指示域),该第一指示域用于指示上述用于失败检测的参考信号(第三参考信号)的目的(purpose),以指示终端设备监听相关参考信号的目的是小区检测还是波束失败检测。
在上述实施例中,如果该RRC信令配置了前述用于TRP特定的波束失败检测的参考信号(第二参考信号),则上述第一指示域的值被配置为rlf(无线链路失败),例如上述第一指示域的值总是被配置为rlf,或者,上述第一指示域的值仅被配置为rlf。
在本申请实施例中,还可以使用RRC信令为上述第一参考信号或者上述第二参考信号配置或指示或关联一个PDCCH接收的TCI状态的信息。
在上述实施例中,该PDCCH接收的TCI状态可以通过RRC信令配置。
在上述实施例中,该TCI状态的信息可以是TCI状态ID,可选的,该TCI状态的信息还可以包括小区信息和/或BWP(部分带宽)信息,小区信息例如为服务小区的索引或者PCI(物理小区标识)索引,BWP信息例如为BWP ID。
在前述实施例中,以第一参考信号包括用于TRP特定的波束失败检测的参考信号(第二参考信号)为例进行了说明,在一些实施例中,第一参考信号也可以不包括前述用于TRP特定的波束失败检测的参考信号(第二参考信号),低层可以通过PDCCH接 收的TCI状态确定用于TRP特定的波束失败检测的参考信号(第二参考信号),并且确定该第二参考信号所关联的coresetpool,例如确定该第二参考信号关联了1个coresetpool或者2个coresetpool。
在本申请实施例中,RRC信令包括RRC消息、RRC消息里的信息单元(IE)、RRC消息里的域(field)等,下面通过具体的示例对本申请实施例的上述RRC信令的实施方式进行说明。
在前述实施例中,RRC信令支持以下三种可能性中的至少之一:
可能性1:BFD-RS(波束失败检测参考信号)包括在2个BFD-RS组里,每个组有各自的组ID;
可能性2:BFD-RS包括在1个BFD-RS组里,这组有组ID;
可能性3:BFD-RS包括在1个BFD-RS组里,这组没有组ID。
在一些实施例中,RRC信令支持以上三种可能性,即RRC消息可以包括1个或2个BFD-RS组,每个组可以有或者没有各自的组ID。在标准中,关于无线链路监测配置以及无线链路监测参考信号的内容,描述上可以有如下补充或改进,其中,加下划线的内容是本实施例区别于现有标准不同的地方,例如,不包括加粗加下划线的部分;又例如,包括加粗加下划线的内容,作为额外增强的部分。
下面是无线链路监测配置(RadioLinkMonitoringConfig)的内容:
Figure PCTCN2022085661-appb-000013
下面是该RadioLinkMonitoringConfig的IE的内容:
Figure PCTCN2022085661-appb-000014
Figure PCTCN2022085661-appb-000015
下面是该RadioLinkMonitoringConfig的域描述的内容:
Figure PCTCN2022085661-appb-000016
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的域描述的内容:
Figure PCTCN2022085661-appb-000017
下面是上述配置中无线链路检测参考信号(RadioLinkMonitoringRS)的ID(RadioLinkMonitoringRS-Id)的内容:
Figure PCTCN2022085661-appb-000018
下面是该RadioLinkMonitoringRS-Id的IE的内容:
Figure PCTCN2022085661-appb-000019
下面是新增的R-17的无线链路监测参考信号ID(RadioLinkMonitoringRS-Id-r17)的内容:
Figure PCTCN2022085661-appb-000020
下面是RadioLinkMonitoringRS-Id-r17的IE的内容:
Figure PCTCN2022085661-appb-000021
根据上述实施例,RRC信令能支持更多的BFD-RS配置的可能性,例如可以包括1或2个BFD-RS组,每个组可以有或没有各自的组ID等。由此,RRC信令设计灵活,具有前向兼容性。
在另一些实施例中,RRC信令支持上述可能性1,该RRC信令包括2个BFD-RS组,每个组有各自的组ID。在标准中,关于无线链路监测配置以及无线链路监测参考信号的内容,描述上可以有如下补充或改进,其中,加下划线的内容是本实施例区别于现有标准不同的地方,例如,不包括加粗加下划线的部分;又例如,包括加粗加下划线的内容,作为额外增强的部分。
下面是无线链路监测配置(RadioLinkMonitoringConfig)的内容:
Figure PCTCN2022085661-appb-000022
下面是该RadioLinkMonitoringConfig的IE的内容:
Figure PCTCN2022085661-appb-000023
下面是该RadioLinkMonitoringConfig的域描述的内容:
Figure PCTCN2022085661-appb-000024
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的域描述的内容:
Figure PCTCN2022085661-appb-000025
下面是对一个域新增的存在条件的解释:
Conditional Presence Explanation
CFD-set1 This field is mandatory present if failureDetectionSet1-r17 is included, absent otherwise
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的ID(RadioLinkMonitoringRS-Id)的内容:
Figure PCTCN2022085661-appb-000026
下面是该RadioLinkMonitoringRS-Id的IE的内容:
Figure PCTCN2022085661-appb-000027
下面是新增的R-17的无线链路监测参考信号ID(RadioLinkMonitoringRS-Id-r17)的内容:
Figure PCTCN2022085661-appb-000028
下面是RadioLinkMonitoringRS-Id-r17的IE的内容:
Figure PCTCN2022085661-appb-000029
根据上述实施例,RRC信令能支持显式BFD-RS组的配置,即包括2个BFD-RS组,每个组有各自的组ID。由此,BFD-RS仅通过显式的BFD-RS组进行配置,终端能直接通过RRC信令的配置确定BFD-RS所述的组,不需要自己推断,简化了终端实现,降低了成本。
在又一些实施例中,RRC信令支持上述可能性1和上述可能性2,该RRC信令包括1个或2个BFD-RS组,每个组有各自的组ID。在标准中,关于无线链路监测配置以及无线链路监测参考信号的内容,描述上可以有如下补充或改进,其中,加下划线的内容是本实施例区别于现有标准不同的地方,例如,不包括加粗加下划线的内容;又例如,包括加粗加下划线的内容,作为额外增强的部分。
下面是无线链路监测配置(RadioLinkMonitoringConfig)的内容:
Figure PCTCN2022085661-appb-000030
下面是该RadioLinkMonitoringConfig的IE的内容:
Figure PCTCN2022085661-appb-000031
Figure PCTCN2022085661-appb-000032
下面是该RadioLinkMonitoringConfig的域描述的内容:
Figure PCTCN2022085661-appb-000033
下面是上述配置中无线链路监测参考信号(RadioLinkMonitoringRS)的域描述的内容:
Figure PCTCN2022085661-appb-000034
下面是上述配置中RadioLinkMonitoringRS的ID(RadioLinkMonitoringRS-Id)的内容:
Figure PCTCN2022085661-appb-000035
下面是RadioLinkMonitoringRS-Id的IE的内容:
Figure PCTCN2022085661-appb-000036
下面是新增的R-17的无线链路监测参考信号ID(RadioLinkMonitoringRS-Id-r17)的内容:
Figure PCTCN2022085661-appb-000037
下面是RadioLinkMonitoringRS-Id-r17的IE的内容:
Figure PCTCN2022085661-appb-000038
根据上述实施例中,RRC信令能支持BFD-RS组的显式配置,例如可以包括1或2个BFD-RS组,每个组有各自的组ID等。此外,还能支持BFD-RS组的delta配置。由此,兼具RRC信令设计灵活性,具有前向兼容性,同时可以部分简化终端的设计,降低了成本。
在本申请实施例中,使用RRC信令配置了上述用于波束失败检测的参考信号(第一参考信号)之后,还可以使用MAC CE信令配置或更新该第一参考信号。
在上述实施例中,MAC CE信令可以是网络设备用于指示TCI状态的MAC CE,该TCI状态为一个服务小区或一组服务小区的一个coreset(控制资源集合)的PDCCH接收的TCI状态,或者,该MAC CE信令为用于配置或更新上述用于波束失败检测的第 一参考信号的MAC CE(称为第一MAC CE)。相比于前述网络设备用于指示TCI状态的MAC CE,该第一MAC CE为新的MAC CE。
在上述实施例中,第一MAC CE可以包括以下信息中的至少一个:
波束失败检测参考信号组的信息;例如波束失败检测参考信号组的ID(1比特);
一个波束失败检测参考信号组的用于波束失败检测的参考信号的信息;例如波束失败检测的参考信号索引(6比特);
服务小区的信息;
服务小区列表信息。
可选的,第一MAC CE还可以包括前述用于波束失败检测的第一参考信号的一个或多个QCL假设,例如SSB索引或NZP CSI-RS资源ID等。
在上述实施例中,服务小区的信息例如包括服务小区的索引或服务小区的位图(bitmap)。这里的服务小区可以是:为终端设备配置的服务小区、和/或配置了两个波束失败检测参考信号组的服务小区、和/或在相同的公共更新小区列表里的服务小区等。
在上述实施中,服务小区列表信息例如为:公共更新小区列表的信息、或共享TCI状态的小区列表的信息等。公共更新小区列表是可以使用一个MAC CE同时更新TCI关系(relation)的服务小区的列表,例如simultaneousTCI-UpdateList1-r16,simultaneousTCI-UpdateList1-r16,simultaneousU-TCI-UpdateList1-r17,simultaneousU-TCI-UpdateList2-r17,simultaneousU-TCI-UpdateList3-r17,simultaneousU-TCI-UpdateList4-r17。公共更新小区列表的信息可以是指示这些列表的名字的信息,例如list 1的信息为1,list 2的信息为2,或者指示列表出现顺序的信息,例如第一个出现的列表的信息为1,第二个出现的列表的信息为2等。共享TCI状态的小区列表是指使用相同的TCI状态(state)配置的服务小区的列表。
在上述实施例中,第一MAC CE的长度是可变的,其MAC子头可以包括用于指示该第一MAC CE的长度的L域和用于指示该L域的F域。
在上述实施例中,该第一MAC CE的MAC子头可以包括LCID和eLCID。其中,LCID为34,即扩展的逻辑信道ID域(1字节eLCID域);eLCID使用UL-SCH的1字节eLCID的保留LCID值里的一个,例如239、238或其他。
在前述实施例中,如果使用RRC信令配置用于波束失败检测的参考信号(第一参考信号)时,为用于波束失败检测的参考信号(第一参考信号)关联了一个PDCCH接收的TCI状态信息;或者,如果RRC信令为每个PDCCH接收的TCI状态关联了一个 用于波束失败检测的参考信号(第一参考信号),则前述MAC CE信令可以是网络设备用于指示TCI状态的MAC CE。另一方面,如果使用RRC信令配置用于波束失败检测的参考信号(第一参考信号)时,用于波束失败检测的参考信号(第一参考信号)未关联一个PDCCH接收的TCI状态信息;或者,如果PDCCH接收的TCI状态未关联一个用于波束失败检测的参考信号(第一参考信号),则前述MAC CE信令可以是前述第一MAC CE。
下面通过具体的示例对本申请实施例的MAC CE信令的实施方式进行说明。
在一些实施例中,前述第一MAC CE的格式有以下两种:
格式1:不包括BFD-RS的QCL假设;
格式2:包括BFD-RS的QCL假设。
图5是第一MAC CE的格式1的一个示例的示意图,示出了包含1字节Ci域的情况;图6是第一MAC CE的格式1的另一个示例的示意图,示出了包含4字节Ci域的情况。
如图5和图6所述,第一MAC CE的格式1至少包括以下域:
Ci域:指示是否包括服务小区索引为i的服务小区的BFD-RS信息;Ci=0,表示不包括服务小区索引为i的服务小区的BFD-RS信息;
Set id域:指示这个字节里包括的BFD-RS信息所属的BFD-RS组或相应的coresetpool;
P域:指示接下来的字节是不是与本字节的BFD-RS信息相同服务小区相同set的BFD-RS信息,例如P=0指示接下来的字节不是与本字节的BFD-RS信息相同服务小区相同set的BFD-RS信息(这种情况下,下一个字节使用包括set id+P域的字节),P=1表示接下来的字节是与本字节的BFD-RS信息相同服务小区相同set的BFD-RS信息(这种情况下,下一个字节使用R+R的字节);
RS ID域:指示BFD-RS index,6比特;
R域:保留(Reserved)域。
在上述实施例中,可选的,第一MAC CE的格式1还可以包括以下域(图5和图6中未示出):
Ni域:指示包括服务小区索引为i的服务小区/第i个Ci域中值为1的服务小区的BFD-RS组的个数。
图7是第一MAC CE的格式2的一个示例的示意图,示出了包含1字节Ci域的情 况;图8是第一MAC CE的格式2的另一个示例的示意图,示出了包含4字节Ci域的情况。
如图7和图8所示,相较于第一MAC CE的格式1,第一MAC CE的格式2至少还包括以下域:
QCL assumption(QCL假设)域:指示上一个字节里包括的BFD-RS的QCL假设;
T域:指示接下来的字节是不是与本字节的QCL assumption对应的BFD-RS的另一个QCL assumption信息,例如T=0指示接下来的字节不是与本字节的QCL assumption对应的BFD-RS的另一个QCL assumption信息(这种情况下,下一个字节使用包括另外的BFD-RS信息),T=1表示接下来的字节是与本字节的QCL assumption对应的BFD-RS的另一个QCL assumption信息(这种情况下,下一个字节使用R+R的字节)。
在上述实施例中,可选的,第一MAC CE的格式2还可以包括以下域(图7和图8中未示出):
Ni域:指示包括服务小区索引为i的服务小区/第i个Ci域中值为1的服务小区的BFD-RS组的个数。
以上各个实施例仅对使用MAC信令配置或更新用于波束失败检测的第一参考信号进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
前述各实施例的方法可以由网络设备实施,例如网络设备通过发送上述RRC信令和上述MAC CE信令进行上述配置,也可以由终端设备实施,例如终端设备通过接收上述RRC信令和所述MAC CE信令完成上述配置。
在本申请实施例中,可选的,终端设备的MAC实体还可以在前述MAC CE信令关联了服务小区的波束失败检测参考信号组的情况下,将该服务小区的波束失败检测参考信号组的波束失败实例的计数器(BFI_COUNTER)设置为0。
例如,如果终端设备收到一个MAC CE信令,该MAC CE信令可更新或重配一个服务小区的一个波束失败检测参考信号组中用于波束失败检测的任意参考信号,则上述MAC实体将该波束失败检测参考信号组的波束失败实例的计数器设置为0。
再例如,如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer、beamFailureInstanceMaxCount、或用于波束失败检测的任何参考信号,或者,如果MAC CE信令更新或重配了上述服务小区的上述波束失败检测 参考信号组的用于波束失败检测的任何参考信号,则上述MAC实体将该波束失败检测参考信号组的波束失败实例的计数器设置为0。
再例如,如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer或beamFailureInstanceMaxCount,或者,上述服务小区的上述波束失败检测参考信号组的任何参考信号被重配或更新,则上述MAC实体将该波束失败检测参考信号组的波束失败实例的计数器设置为0。
在上述实施例中,服务小区被配置了两个波束失败检测参考信号组(称为第一波束失败检测参考信号组和第二波束失败检测参考信号组)。
例如,RRC信令为该服务小区配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在2个波束失败检测参考信号组中,每个波束失败检测参考信号组有各自的组ID。
再例如,RRC信令为该服务小区配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在1个波束失败检测参考信号组中,该波束失败检测参考信号组有组ID,低层通过PDCCH接收的TCI状态确定另一个波束失败检测参考信号组的波束失败检测参信号。
再例如,RRC信令为该服务小区配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在1个波束失败检测参考信号组中,该波束失败检测参考信号组没有组ID,终端设备确定该参考信号关联了2个coresetpool。
再例如,RRC信令没有为该服务小区配置用于TRP特定的波束失败检测的参考信号,低层通过PDCCH接收的TCI状态确定用于TRP特定的波束失败检测的参考信号,并且确定该参考信号关联了2个coresetpool。
在上述实施例中,第一波束失败检测参考信号组例如为以下情况之一:
情况1:BFD-RS组ID为1的BFD-RS组;
情况2:BFD-RS组ID为1的BFD-RS组,如果配置了;或低层通过PDCCH接收TCI状态确定的另外一个BFD-RS组(如果配置了BFD-RS组ID为2的BFD-RS组);
情况3:所有未关联coresetpool或关联了索引为0的coresetpool的参考信号组成的BFD-RS组;
情况4:低层通过PDCCH接收TCI状态确定的未关联coresetpool或关联了索引为0的coresetpool的参考信号组成的BFD-RS组。
在上述实施例中,第二波束失败检测参考信号组例如为以下情况之一:
情况1:BFD-RS组ID为2的BFD-RS组;
情况2:BFD-RS组ID为2的BFD-RS组,如果配置了;或低层通过PDCCH接收TCI状态确定的另外一个BFD-RS组(如果配置了BFD-RS组ID为1的BFD-RS组);
情况3:(所有)关联了索引为1的coresetpool的参考信号组成的BFD-RS组;
情况4:低层通过PDCCH接收TCI状态确定的(所有)关联了索引为1的coresetpool的参考信号组成的BFD-RS组。
以上各个实施例仅对服务小区配置的两个波束失败检测参考信号组进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
图9是本申请实施例的波束失败检测参考信号的配置方法的另一示意图,如图9所示,该方法包括:
901:使用RRC信令配置用于TRP特定的波束失败检测的参考信号;以及
902:使用所述RRC信令配置用于失败检测的参考信号。
值得注意的是,以上附图9仅示意性地对本申请实施例进行了说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图9的记载。
在上述实施例中,使用RRC信令配置用于TRP特定的波束失败检测的参考信号,并使用RRC信令配置用于失败检测的参考信号,相较于现有技术,能只为未配置小区特定的波束失败检测参考信号的小区配置TRP特定的波束失败检测参考信号,一方面,避免了错误配置和不必要的失败检测或失败恢复的触发,以及从而造成的业务中断;另一方面,减少了信令开销,从而节约了空口资源。
在上述实施例中,该RRC信令可以包括一个指示域(称为第一指示域),该第一指示域用于指示上述用于失败检测的参考信号(第三参考信号)的目的(purpose),以指示终端设备监听相关参考信号的目的是小区检测还是波束失败检测。
在上述实施例中,由于该RRC信令配置了前述用于TRP特定的波束失败检测的参考信号,因此上述第一指示域的值被配置为rlf(无线链路失败),例如上述第一指示域的值总是被配置为rlf,或者,上述第一指示域的值仅被配置为rlf。
关于该RRC信令的相关内容,已经在前面做了说明,此处不再赘述。
根据本申请实施例的方法,避免了业务中断,提高了网络性能。
第二方面的实施例
本申请实施例提供一种波束失败检测参考信号的配置装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。或者,该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本申请实施例的装置对应第一方面的实施例的方法,其中与第一方面的实施例相同的内容不再重复说明。
图10是本申请实施例的波束失败检测参考信号的配置装置的一个示例的示意图。如图10所示,波束失败检测参考信号的配置装置1000包括:
第一配置单元1001,其使用RRC信令配置用于波束失败检测的第一参考信号;
第二配置单元1002,其使用MAC CE信令配置或更新所述第一参考信号。
在一些实施例中,上述第一参考信号包括用于TRP特定的波束失败检测的第二参考信号。
在一些实施例中,第二参考信号包含在2个波束失败检测参考信号组中,该2个波束失败检测参考信号组有各自的组ID。
在上述实施例中,使用RRC信令配置用于波束失败检测的第一参考信号,包括:
RRC信令包括第一波束失败检测参考信号组和第二波束失败检测参考信号组,其中,当第一波束失败检测参考信号组存在时,第二波束失败检测参考信号组强制存在;
第一波束失败检测参考信号组和第二波束失败检测参考信号组分别包括组ID,组ID强制存在,组ID的值为1或2;
第一波束失败检测参考信号组和第二波束失败检测参考信号组分别包括一组第二参考信号,第二参考信号包括第二参考信号ID以及检测资源;
第一波束失败检测参考信号组和第二波束失败检测参考信号组分别包括一组释放的第二参考信号ID。
在另一些实施例中,第二参考信号包含在1个波束失败检测参考信号组中,该1个波束失败检测参考信号组有组ID。
在上述实施例中,使用RRC信令配置用于波束失败检测的第一参考信号,包括:
RRC信令包括第三波束失败检测参考信号组,第三波束失败检测参考信号组包括组ID,组ID强制存在,组ID的值为1或2;
第三波束失败检测参考信号组包括一组第二参考信号,第二参考信号包括第二参考信号ID以及检测资源;
第三波束失败检测参考信号组包括一组释放的第二参考信号ID。
在上述实施例中,组ID与第一coresetpool相关或第三波束失败检测参考信号组对应第一coresetpool。
在上述实施例中,不同于第三波束失败检测参考信号组的另一个波束失败检测参考信号组中的第二参考信号,由低层通过PDCCH接收的TCI状态确定。
在又一些实施例中,第二参考信号包含在1个波束失败检测参考信号组组中,该1个波束失败检测参考信号组没有组ID。
在上述实施例中,使用RRC信令配置用于波束失败检测的第一参考信号,包括:
RRC信令包括第四波束失败检测参考信号组,
第四波束失败检测参考信号组包括一组第二参考信号,第二参考信号包括第二参考信号ID、第二参考信号关联的coresetpool信息以及检测资源;
第四波束失败检测参考信号组包括一组释放的第二参考信号ID。
在前述各实施例中,第二参考信号ID是从0到2n-1的整数,n是前述各波束失败检测参考信号组最大的失败检测资源数。
在一些实施例中,如图10所示,波束失败检测参考信号的配置装置1000还包括:
第三配置单元1003,其使用RRC信令配置用于失败检测的第三参考信号。
在上述实施例中,RRC信令包括第一指示域,第一指示域用于指示所述第三参考信号的目的,其中,如果RRC信令配置了用于TRP特定的波束失败检测的参考信号,则第一指示域的值被配置为rlf(无线链路失败),例如,上述第一指示域的值总是被配置为rlf,或者,上述第一指示域的值仅被配置为rlf。
在一些实施例中,如图10所示,波束失败检测参考信号的配置装置1000还包括:
第四配置单元1004,其使用RRC信令为第一参考信号或第二参考信号配置/指示/关联一个PDCCH接收的TCI状态的信息。
在上述实施例中,所述PDCCH接收的TCI状态可以通过RRC信令配置。
在上述实施例中,TCI状态的信息包括TCI状态ID。此外,TCI状态的信息还可以包括小区信息和/或BWP信息。
在一些实施例中,上述第一参考信号不包括用于TRP特定的波束失败检测的第二参考信号,低层通过PDCCH接收的TCI状态确定所述第二参考信号,并确定所述第二参考信号关联了1个coresetpool。或者,在上述第一参考信号不包括用于TRP特定的波束失败检测的第二参考信号的情况下,低层通过PDCCH接收的TCI状态确定所述第二 参考信号,并确定所述第二参考信号关联了1个coresetpool。
在一些实施例中,MAC CE信令可以是网络设备用于指示TCI状态的MAC CE,所述TCI状态为一个服务小区或一组服务小区的一个coreset的PDCCH接收的TCI状态;或者,MAC CE信令可以是用于配置或更新所述第一参考信号的第一MAC CE。
在上述实施例中,第一MAC CE可以包括以下信息中的至少一个:
波束失败检测参考信号组的信息;
一个波束失败检测参考信号组的用于波束失败检测的参考信号的信息;
服务小区的信息;
服务小区列表信息。
在上述实施例中,第一MAC CE还可以包括:
所述用于波束失败检测的第一参考信号的一个或多个QCL假设。
在上述实施例中,上述服务小区的信息可以包括服务小区的索引或者服务小区的bitmap(位图)。服务小区例如为:
为终端设备配置的服务小区;或者
配置了两个波束失败检测参考信号组的服务小区;或者
在相同的公共更新小区列表里的服务小区。
在上述实施例中,第一MAC CE的长度是可变的,第一MAC CE的MAC子头包括用于指示第一MAC CE的长度的L域和用于指示L域的F域。
在上述实施例中,第一MAC CE的MAC子头可以包括LCID和eLCID。
在一些实施例中,波束失败检测参考信号的配置装置1000配置于终端设备,则如图10所示,该波束失败检测参考信号的配置1000还可以包括:
设置单元1005,其使终端设备的MAC实体在所述MAC CE信令关联了服务小区的波束失败检测参考信号组的情况下将所述服务小区的所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
例如,如果所述MAC CE信令可更新或重配一个服务小区的一个波束失败检测参考信号组中用于波束失败检测的任意参考信号,则设置单元1005使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
再例如,如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer、beamFailureInstanceMaxCount、或用于波束失败检测的任何参考信号,或者,所述MAC CE信令更新或重配了所述服务小区的所述波束失败检测 参考信号组的用于波束失败检测的任何参考信号,则设置单元1005使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
再例如,如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer或beamFailureInstanceMaxCount,或者,所述服务小区的所述波束失败检测参考信号组的任何参考信号被重配或更新,则设置单元1005使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
在上述实施例中,服务小区配置了两个波束失败检测参考信号组。
例如,RRC信令配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在2个波束失败检测参考信号组中,每个波束失败检测参考信号组有各自的组ID。
再例如,RRC信令配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在1个波束失败检测参考信号组中,该波束失败检测参考信号组有组ID,低层通过PDCCH接收的TCI状态确定另一个波束失败检测参考信号组的波束失败检测参信号。
再例如,RRC信令配置了用于TRP特定的波束失败检测的参考信号,该参考信号包含在1个波束失败检测参考信号组中,该波束失败检测参考信号组没有组ID,终端设备确定该参考信号关联了2个coresetpool;
再例如,RRC信令没有配置用于TRP特定的波束失败检测的参考信号,低层通过PDCCH接收的TCI状态确定用于TRP特定的波束失败检测的参考信号,并且确定该参考信号关联了2个coresetpool。
图11是本申请实施例的波束失败检测参考信号的配置装置的另一个示例的示意图。如图11所示,波束失败检测参考信号的配置装置1100包括:
第一配置单元1101,其使用RRC信令配置用于TRP特定的波束失败检测的参考信号;以及
第二配置单元1102,其使用所述RRC信令配置用于失败检测的参考信号。
在一些实施例中,RRC信令包括第一指示域,该第一指示域用于指示用于失败检测的参考信号的目的,其中,如果第一配置单元1101使用RRC信令配置了用于TRP特定的波束失败检测的参考信号,则该第一指示域的值被配置为rlf(无线链路失败),例如上述第一指示域的值总是被配置为rlf,或者,上述第一指示域的值仅被配置为rlf。
以上对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。波束失败检测参考信号的配置装置1000~1100还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。此外,上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例的装置,避免了业务中断,提高了网络性能。
第三方面的实施例
本申请实施例还提供一种通信系统,包括网络设备和终端设备。
在一些实施例中,终端设备和/或网络设备包括第二方面的实施例所述的装置,被配置为执行第一方面的实施例所述的方法。由于在第一方面的实施例中,已经对该方法进行了详细说明,其内容被合并于此,不再重复说明。
本申请实施例还提供一种终端设备,该终端设备例如可以是UE,但本申请不限于此,还可以是其它的终端设备。
图12是本申请实施例的终端设备的示意图。如图12所示,该终端设备1200可以包括处理器1201和存储器1202;存储器1202存储有数据和程序,并耦合到处理器1201。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一些实施例中,第二方面的实施例的装置的功能可以被集成到处理器1201中,其中,处理器1201可以被配置为执行程序而实现如第一方面的实施例所述的方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第二方面的实施例的装置可以与处理器1201分开配置,例如可以将第二方面的实施例的装置配置为与处理器1201连接的芯片,通过处理器1201的控制来实现第二方面的实施例的装置的功能。
如图12所示,该终端设备1200还可以包括:通信模块1203、输入单元1204、显示器1205、电源1206。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1200也并不是必须要包括图12中所示的所有部件,上述部件并不是必需的;此外,终端设备1200还可以包括图12中没有示出的部件,可以参考相关技术。
本申请实施例还提供一种网络设备,该网络设备例如可以是基站,但本申请不限于 此,还可以是其他的网络设备。
图13是本申请实施例的网络设备的构成示意图。如图13所示,网络设备1300可以包括:处理器1301和存储器1302;存储器1302耦合到处理器1301。其中该存储器1302可存储各种数据;此外还存储信息处理的程序,并且在处理器1301的控制下执行该程序。
在一些实施例中,第二方面的实施例的装置的功能可以被集成到处理器1301中,其中,处理器1301可以被配置为执行程序而实现如第一方面的实施例所述的方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第二方面的实施例的装置可以与处理器1301分开配置,例如可以将第二方面的实施例的装置配置为与处理器1301连接的芯片,通过处理器1301的控制来实现第二方面的实施例的装置的功能。
此外,如图13所示,网络设备1300还可以包括:收发机1303和1304。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1300也并不是必须要包括图13中所示的所有部件;此外,网络设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备或网络设备中执行所述程序时,所述程序使得所述终端设备或网络设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备或网络设备执行第一方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介 质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种波束失败检测参考信号的配置方法,其中,所述方法包括:
使用RRC信令配置用于波束失败检测的第一参考信号;以及
使用MAC CE信令配置或更新所述第一参考信号。
2.根据附记1所述的方法,其中,所述第一参考信号包括用于TRP特定的波束失败检测的第二参考信号。
3.根据附记2所述的方法,其中,
所述第二参考信号包含在2个波束失败检测参考信号组中,所述2个波束失败检测参考信号组有各自的组ID。
4.根据附记2或3所述的方法,其中,所述使用RRC信令配置用于波束失败检测的第一参考信号,包括:
所述RRC信令包括第一波束失败检测参考信号组和第二波束失败检测参考信号组,其中,当所述第一波束失败检测参考信号组存在时,所述第二波束失败检测参考信号组强制存在;
所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括组ID,所述组ID强制存在,所述组ID的值为1或2;
所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括一组所述第二参考信号,所述第二参考信号包括第二参考信号ID以及检测资源;
所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括一组释放的所述第二参考信号ID。
5.根据附记2所述的方法,其中,
所述第二参考信号包含在1个波束失败检测参考信号组中,所述1个波束失败检测参考信号组有组ID。
6.根据附记2或5所述的方法,其中,所述使用RRC信令配置用于波束失败检测的第一参考信号,包括:
所述RRC信令包括第三波束失败检测参考信号组,所述第三波束失败检测参考信号组包括组ID,所述组ID强制存在,所述组ID的值为1或2;
所述第三波束失败检测参考信号组包括一组所述第二参考信号,所述第二参考信号包括第二参考信号ID以及检测资源;
所述第三波束失败检测参考信号组包括一组释放的所述第二参考信号ID。
7.根据附记6所述的方法,其中,所述组ID与第一coresetpool相关或所述第三波束失败检测参考信号组对应第一coresetpool。
8.根据附记6所述的方法,其中,
不同于所述第三波束失败检测参考信号组的另一个波束失败检测参考信号组中的所述第二参考信号,由低层通过PDCCH接收的TCI状态确定。
9.根据附记2所述的方法,其中,
所述第二参考信号包含在1个波束失败检测参考信号组中,所述1个波束失败检测参考信号组没有组ID。
10.根据附记2或9所述的方法,其中,所述使用RRC信令配置用于波束失败检测的第一参考信号,包括:
所述RRC信令包括第四波束失败检测参考信号组,
所述第四波束失败检测参考信号组包括一组所述第二参考信号,所述第二参考信号包括第二参考信号ID、所述第二参考信号关联的coresetpool信息以及检测资源;
所述第四波束失败检测参考信号组包括一组释放的所述第二参考信号ID。
11.根据附记4或6或10所述的方法,其中,
所述第二参考信号ID是从0到n-1的整数,n是所述波束失败检测参考信号组最大的失败检测资源数。
12.根据附记1至11任一项所述的方法,其中,所述方法还包括:
使用所述RRC信令配置用于失败检测的第三参考信号。
13.根据附记12所述的方法,其中,
所述RRC信令包括第一指示域,所述第一指示域用于指示所述第三参考信号的目的,其中,如果所述RRC信令配置了用于TRP特定的波束失败检测的参考信号,则所述第一指示域的值被配置为rlf(无线链路失败)。
14.根据附记2至13任一项所述的方法,其中,所述方法还包括:
使用所述RRC信令为所述第一参考信号或所述第二参考信号配置/指示/关联一个PDCCH接收的TCI状态的信息。
15.根据附记14所述的方法,其中,
所述PDCCH接收的TCI状态通过所述RRC信令配置。
16.根据附记14或15所述的方法,其中,
所述TCI状态的信息包括TCI状态ID。
17.根据附记16所述的方法,其中,所述TCI状态的信息包括小区信息和/或BWP信息。
18.根据附记1所述的方法,其中,所述第一参考信号不包括用于TRP特定的波束失败检测的第二参考信号,低层通过PDCCH接收的TCI状态确定所述第二参考信号,并确定所述第二参考信号关联了coresetpool。
19.根据附记1至18任一项所述的方法,其中,所述MAC CE信令为:
网络设备用于指示TCI状态的MAC CE,所述TCI状态为一个服务小区或一组服务小区的一个coreset的PDCCH接收的TCI状态;或者,
用于配置或更新所述第一参考信号的第一MAC CE。
20.根据附记19所述的方法,其中,所述第一MAC CE包括以下信息中的至少一个:
波束失败检测参考信号组的信息;
一个波束失败检测参考信号组的用于波束失败检测的参考信号的信息;
服务小区的信息;
服务小区列表信息。
21.根据附记20所述的方法,其中,所述第一MAC CE还包括:
所述用于波束失败检测的第一参考信号的一个或多个QCL假设。
22.根据附记20或21所述的方法,其中,所述服务小区的信息包括所述服务小区的索引或者所述服务小区的bitmap(位图)。
23.根据附记19-22任一项所述的方法,其中,所述服务小区为以下至少之一:
为终端设备配置的服务小区;
配置了两个波束失败检测参考信号组的服务小区;
在相同的公共更新小区列表里的服务小区。
24.根据附记19-23任一项所述的方法,其中,所述第一MAC CE的长度是可变的,所述第一MAC CE的MAC子头包括用于指示所述第一MAC CE的长度的L域和用于指示所述L域的F域。
25.根据附记24所述的方法,其中,所述第一MAC CE的MAC子头包括LCID和eLCID。
26.根据附记1-25任一项所述的方法,其中,所述方法包括:
终端设备的MAC实体在所述MAC CE信令关联了服务小区的波束失败检测参考信号组的情况下将所述服务小区的所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
27.根据附记26所述的方法,其中,
如果所述MAC CE信令可更新或重配一个服务小区的一个波束失败检测参考信号组中用于波束失败检测的任意参考信号,则所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
28.根据附记26所述的方法,其中,
如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer、beamFailureInstanceMaxCount、或用于波束失败检测的任何参考信号,或者,所述MAC CE信令更新或重配了所述服务小区的所述波束失败检测参考信号组的用于波束失败检测的任何参考信号,则所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
29.根据附记26所述的方法,其中,
如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer或beamFailureInstanceMaxCount,或者,所述服务小区的所 述波束失败检测参考信号组的任何参考信号被重配或更新,则所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
30.根据附记26-29任一项所述的方法,其中,所述服务小区配置了两个波束失败检测参考信号组。
31.根据附记23或30所述的方法,其中,所述配置了两个波束失败检测参考信号组是指以下情况至少之一:
所述RRC信令配置了用于TRP特定的波束失败检测的参考信号,所述参考信号包含在2个波束失败检测参考信号组中,每个波束失败检测参考信号组有各自的组ID;
所述RRC信令配置了用于TRP特定的波束失败检测的参考信号,所述参考信号包含在1个波束失败检测参考信号组中,所述波束失败检测参考信号组有组ID,低层通过PDCCH接收的TCI状态确定另一个波束失败检测参考信号组的波束失败检测参信号;
所述RRC信令配置了用于TRP特定的波束失败检测的参考信号,所述参考信号包含在1个波束失败检测参考信号组中,所述波束失败检测参考信号组没有组ID,终端设备确定所述参考信号关联了2个coresetpool;
所述RRC信令没有配置用于TRP特定的波束失败检测的参考信号,低层通过PDCCH接收的TCI状态确定用于TRP特定的波束失败检测的参考信号,并且确定所述参考信号关联了2个coresetpool。
32.一种波束失败检测参考信号的配置方法,其中,所述方法包括:
使用RRC信令配置用于TRP特定的波束失败检测的参考信号;以及
使用所述RRC信令配置用于失败检测的参考信号。
33.根据附记32所述的方法,其中,
所述RRC信令包括第一指示域,所述第一指示域用于指示所述用于失败检测的参考信号的目的,
其中,如果所述RRC信令配置了用于TRP特定的波束失败检测的参考信号,则所述第一指示域的值被配置为rlf(无线链路失败)。
34.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至33任一项所述的方法。
35.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至25以及31至33任一项所述的方法。
36.一种通信系统,包括附记35所述的网络设备和附记34所述的终端设备。

Claims (20)

  1. 一种波束失败检测参考信号的配置装置,其中,所述装置包括:
    第一配置单元,其使用无线资源控制信令配置用于波束失败检测的第一参考信号;以及
    第二配置单元,其使用媒体接入控制控制单元信令配置或更新所述第一参考信号。
  2. 根据权利要求1所述的装置,其中,所述第一参考信号包括用于发送接收点特定的波束失败检测的第二参考信号。
  3. 根据权利要求2所述的装置,其中,所述第一配置单元进行以下配置:
    所述无线资源控制信令包括第一波束失败检测参考信号组和第二波束失败检测参考信号组,其中,当所述第一波束失败检测参考信号组存在时,所述第二波束失败检测参考信号组强制存在;
    所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括组标识,所述组标识强制存在,所述组标识的值为1或2;
    所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括一组所述第二参考信号,所述第二参考信号包括第二参考信号标识以及检测资源;
    所述第一波束失败检测参考信号组和所述第二波束失败检测参考信号组分别包括一组释放的所述第二参考信号标识。
  4. 根据权利要求2所述的装置,其中,所述第一配置单元进行以下配置:
    所述无线资源控制信令包括第三波束失败检测参考信号组,所述第三波束失败检测参考信号组包括组标识,所述组标识强制存在,所述组标识的值为1或2;
    所述第三波束失败检测参考信号组包括一组所述第二参考信号,所述第二参考信号包括第二参考信号标识以及检测资源;
    所述第三波束失败检测参考信号组包括一组释放的所述第二参考信号标识。
  5. 根据权利要求4所述的装置,其中,
    不同于所述第三波束失败检测参考信号组的另一个波束失败检测参考信号组中的所述第二参考信号,由低层通过物理下行控制信道接收的传输配置指示状态确定。
  6. 根据权利要求2所述的装置,其中,所述第一配置单元进行以下配置:
    所述无线资源控制信令包括第四波束失败检测参考信号组,
    所述第四波束失败检测参考信号组包括一组所述第二参考信号,所述第二参考信号包括第二参考信号标识、所述第二参考信号关联的控制资源集合池信息以及检测资源;
    所述第四波束失败检测参考信号组包括一组释放的所述第二参考信号标识。
  7. 根据权利要求1所述的装置,其中,所述装置还包括:
    第三配置单元,其使用所述无线资源控制信令配置用于失败检测的第三参考信号。
  8. 根据权利要求7所述的装置,其中,
    所述无线资源控制信令包括第一指示域,所述第一指示域用于指示所述第三参考信号的目的,
    其中,如果所述无线资源控制信令配置了用于发送接收点特定的波束失败检测的参考信号,则所述第一指示域的值被配置为无线链路失败。
  9. 根据权利要求2所述的装置,其中,所述装置还包括:
    第四配置单元,其使用所述无线资源控制信令为所述第一参考信号或所述第二参考信号配置或指示或关联一个物理下行控制信道接收的传输配置指示状态的信息。
  10. 根据权利要求9所述的装置,其中,
    所述传输配置指示状态的信息包括传输配置指示状态标识。
  11. 根据权利要求1所述的装置,其中,所述第一参考信号不包括用于发送接收点特定的波束失败检测的第二参考信号,低层通过物理下行控制信道接收的传输配置指示状态确定所述第二参考信号,并确定所述第二参考信号关联了控制资源集合池。
  12. 根据权利要求1所述的装置,其中,所述媒体接入控制控制单元信令为:
    网络设备用于指示传输配置指示状态的媒体接入控制控制单元,所述传输配置指示状态为一个服务小区或一组服务小区的一个控制资源集合的物理下行控制信道接收的传输配置指示状态;或者,
    用于配置或更新所述第一参考信号的第一媒体接入控制控制单元。
  13. 根据权利要求12所述的装置,其中,所述第一媒体接入控制控制单元包括以下信息中的至少一个:
    波束失败检测参考信号组的信息;
    一个波束失败检测参考信号组的用于波束失败检测的参考信号的信息;
    服务小区的信息;
    服务小区列表信息。
  14. 根据权利要求1所述的装置,其中,所述装置包括:
    设置单元,其使终端设备的媒体接入控制实体在所述媒体接入控制控制单元信令关联了服务小区的波束失败检测参考信号组的情况下将所述服务小区的所述波束失败检 测参考信号组的波束失败实例的计数器设置为0。
  15. 根据权利要求14所述的装置,其中,
    如果所述媒体接入控制控制单元信令可更新或重配一个服务小区的一个波束失败检测参考信号组中用于波束失败检测的任意参考信号,则所述设置单元使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
  16. 根据权利要求14所述的装置,其中,
    如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer、beamFailureInstanceMaxCount、或用于波束失败检测的任何参考信号,或者,所述媒体接入控制控制单元信令更新或重配了所述服务小区的所述波束失败检测参考信号组的用于波束失败检测的任何参考信号,则所述设置单元使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
  17. 根据权利要求14所述的装置,其中,
    如果高层重配了一个服务小区的一个波束失败检测参考信号组的beamFailureDetectionTimer或beamFailureInstanceMaxCount,或者,所述服务小区的所述波束失败检测参考信号组的任何参考信号被重配或更新,则所述设置单元使所述MAC实体将所述波束失败检测参考信号组的波束失败实例的计数器设置为0。
  18. 一种波束失败检测参考信号的配置装置,其中,所述装置包括:
    第一配置单元,其使用无线资源控制信令配置用于发送接收点特定的波束失败检测的参考信号;以及
    第二配置单元,其使用所述无线资源控制信令配置用于失败检测的参考信号。
  19. 根据权利要求18所述的装置,其中,
    所述无线资源控制信令包括第一指示域,所述第一指示域用于指示所述用于失败检测的参考信号的目的,
    其中,如果所述无线资源控制信令配置了用于发送接收点特定的波束失败检测的参考信号,则所述第一指示域的值被配置为无线链路失败。
  20. 一种通信系统,包括网络设备和终端设备,其中,
    所述网络设备和/或所述终端设备被配置为:
    使用无线资源控制信令配置用于波束失败检测的第一参考信号;以及使用媒体接入控制控制单元信令配置或更新所述第一参考信号;或者
    使用无线资源控制信令配置用于发送接收点特定的波束失败检测的参考信号;以及使用所述无线资源控制信令配置用于失败检测的参考信号。
PCT/CN2022/085661 2022-04-07 2022-04-07 波束失败检测参考信号的配置方法和装置 WO2023193209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085661 WO2023193209A1 (zh) 2022-04-07 2022-04-07 波束失败检测参考信号的配置方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085661 WO2023193209A1 (zh) 2022-04-07 2022-04-07 波束失败检测参考信号的配置方法和装置

Publications (1)

Publication Number Publication Date
WO2023193209A1 true WO2023193209A1 (zh) 2023-10-12

Family

ID=88243794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085661 WO2023193209A1 (zh) 2022-04-07 2022-04-07 波束失败检测参考信号的配置方法和装置

Country Status (1)

Country Link
WO (1) WO2023193209A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418357A (zh) * 2018-04-26 2019-11-05 华为技术有限公司 通信方法和装置
CN111629413A (zh) * 2017-05-15 2020-09-04 维沃移动通信有限公司 波束失败处理方法、辅基站失败处理方法及终端
US20210136604A1 (en) * 2019-11-01 2021-05-06 Qualcomm Incorporated Joint beam failure detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629413A (zh) * 2017-05-15 2020-09-04 维沃移动通信有限公司 波束失败处理方法、辅基站失败处理方法及终端
CN110418357A (zh) * 2018-04-26 2019-11-05 华为技术有限公司 通信方法和装置
US20210136604A1 (en) * 2019-11-01 2021-05-06 Qualcomm Incorporated Joint beam failure detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Beam Failure Detection", 3GPP DRAFT; R2-1802142 BEAM FAILURE DETECTION - FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20180226 - 20180302, 14 February 2018 (2018-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051399140 *

Similar Documents

Publication Publication Date Title
US11246068B2 (en) Communication method between a terminal and base stations for cell handover
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
JP6915038B2 (ja) CIoT(cellular internet of things)機能の非互換性による登録拒否
JP7387438B2 (ja) Crs帯域幅シグナリング
US11528626B2 (en) Radio link monitoring (RLM) procedure for a wireless device configured to operate using first and second operational modes within an overlapping time in a first cell
EP2918117B1 (en) Method and apparatus for receiving timing information from a cell or network in a less active mode
KR20200110763A (ko) 유저단말 및 무선 통신 방법
US20210135818A1 (en) Downlink signal monitoring and transmitting method, and parameter configuration method and apparatus
JP2019523594A (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
US11729637B2 (en) Enhancement to expedite secondary cell (SCell) or primary SCell (PSCell) addition or activation
US20230353223A1 (en) Method and apparatus for detecting beam failure
CN116326161A (zh) 信号的接收和发送方法、装置和通信系统
JP7485215B2 (ja) サウンディング参照信号の送受信方法及び装置
EP4098068A1 (en) Early indication for reduced capability devices
US20220248392A1 (en) Corresponding configuration for simultaneous physical uplink control channel pucch and physical uplink shared channel pusch transmission
WO2023193209A1 (zh) 波束失败检测参考信号的配置方法和装置
KR20230029990A (ko) 업링크 데이터 송신 방법 및 장치와 시스템
WO2023150986A1 (zh) 波束失败相关信息的上报方法及装置
WO2023130390A1 (zh) 小区间的波束管理方法及装置
US12022346B2 (en) Terminal with interrupt time during handover
JP7486397B2 (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
WO2024026896A1 (zh) 信息处理方法、信息发送方法和装置
US20230353224A1 (en) Method and apparatus for generating and reporting beam failure information
WO2023206244A1 (zh) 转发器的配置方法及装置
WO2022205408A1 (zh) 上行数据的发送方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936152

Country of ref document: EP

Kind code of ref document: A1