WO2023191577A1 - 다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법 - Google Patents

다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법 Download PDF

Info

Publication number
WO2023191577A1
WO2023191577A1 PCT/KR2023/004344 KR2023004344W WO2023191577A1 WO 2023191577 A1 WO2023191577 A1 WO 2023191577A1 KR 2023004344 W KR2023004344 W KR 2023004344W WO 2023191577 A1 WO2023191577 A1 WO 2023191577A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
aligner
orthodontic
design
clear
Prior art date
Application number
PCT/KR2023/004344
Other languages
English (en)
French (fr)
Inventor
이상철
이형지
장성호
허성근
변창환
Original Assignee
주식회사 레이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이 filed Critical 주식회사 레이
Publication of WO2023191577A1 publication Critical patent/WO2023191577A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0019Production methods using three dimensional printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/08Mouthpiece-type retainers or positioners, e.g. for both the lower and upper arch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention generally relates to shell design processing technology for producing clear orthodontic devices through direct 3D printing.
  • the present invention specifies a specific shell area and a specific structure (e.g., attachment) area for the standard aligner design in the process of designing a transparent orthodontic device for direct 3D printing using computer software and adjusts the thickness or gap of the shell.
  • This relates to shell design processing technology that can personalize transparent aligner devices and improve the orthodontic effect.
  • Orthodontic treatment refers to the process of treating malocclusion or protruding mouth by straightening the alignment of teeth.
  • a method of installing brackets and wires on the outer or inner surface of the teeth and controlling the direction of tooth growth or moving the tooth position by adjusting the tension of the wire over a period of 18 to 30 months was used.
  • the transparent orthodontic device is manufactured by creating a model of the patient's teeth and printing out a sheet using thermoforming or vacuum forming. At this time, since the thickness of the transparent sheet is constant throughout, it is impossible to adjust the thickness of a specific area in the transparent orthodontic device.
  • attachments are often used to rotate the teeth or increase the orthodontic effect such as elongation or compression. Attachments must be precisely attached to the teeth, reflecting the orthodontic status of the patient's teeth and future orthodontic plan. In general, attachments are made of opaque resin material, but there is a problem in that attaching an attachment made of this material deteriorates the aesthetics, which is an advantage of transparent braces technology.
  • thermoforming or vacuum forming methods a method of manufacturing a transparent aligner device through direct 3D printing has been proposed. After designing the shells of the clear aligner device on a computer using clear aligner design software, the clear aligner device is manufactured through 3D printing.
  • Patent Document 0001 Republic of Korea Patent No. 10-2281789 (2021.07.20) “Patient-customized orthodontic device using 3D printing and method of orthodontic treatment using the same”
  • Patent Document 0002 Republic of Korea Patent No. 10-2244439 (2021.04.20) “Transparent orthodontic device with increased orthodontic power”
  • Patent Document 0003 Republic of Korea Patent Publication No. 10-2017-0090035 (2017.08.07) “Correction data management system for manufacturing transparent braces”
  • Patent Document 0004 US registered patent US 10,179,035 B2 (2019.01.15) “Direct 3D printed orthodontic aligners with torque, rotation, and full control anchors”
  • the purpose of the present invention is to provide a shell design processing technology for producing a general clear orthodontic device through direct 3D printing.
  • the object of the present invention is to designate a specific shell area and a specific structure (e.g., attachment) area for a standard aligner design in the process of designing a transparent orthodontic device for direct 3D printing using computer software and to specify the thickness or gap of the shell. It provides shell design processing technology that can personalize the transparent aligner device and improve the orthodontic effect by adjusting the.
  • the present invention discloses a method for processing the shell design of a clear aligner device for manufacturing a clear aligner device for direct 3D printing.
  • a method for processing the shell design of a transparent aligner device includes the steps of acquiring initial tooth 3D data, which is a three-dimensional tooth model regarding the initial tooth condition of a specific patient; Generating orthodontic tooth 3D data, which is a three-dimensional tooth model of the tooth state after the tooth position has been virtually changed as desired from the initial tooth state through orthodontic treatment for the patient; Generating first design data of a transparent aligner device applying a global shell thickness and a global shell gap based on the initial teeth 3D data and the orthodontic teeth 3D data; providing a 3D rendering of the aligner according to the first design data through a user interface unit; Specifying one or more specific shell regions on the aligner 3D rendering in response to user manipulation through the user interface unit and individually setting a local shell thickness therefor, and on the aligner 3D rendering and performing at least one of designating one or more specific structure areas and individually setting a local shell gap therefor.
  • individually setting the local shell thickness is one of setting the shape area through the user interface unit, touching the brush tool, specifying a segmented tooth, or specifying a tooth based on dental formula.
  • one or more specific shell regions are designated on the three-dimensional rendering of the aligner and the local shell thickness for each is individually set.
  • individually setting the local shell thickness includes designating a plurality of specific shell regions on the aligner 3D rendering in response to user manipulation through the user interface unit; and setting the local shell thickness of the plurality of designated specific shell regions to a value different from the global shell thickness in response to a user operation through the user interface unit.
  • individually setting the local shell thickness specifies a shell region comprising a posterior occlusal region on the aligner three-dimensional rendering in response to user manipulation through the user interface portion. and setting the local shell thickness thereto to a value different from the global shell thickness.
  • individually setting the local shell gap means individually designating one or more specific structure areas on the aligner 3D rendering in response to user manipulation through the user interface unit. ; individually designating a coverage area for the designated structure area in response to user manipulation through the user interface unit; Characterized in that it includes; setting a local shell gap corresponding to the designated application range for the designated structure area.
  • the above-described method includes generating second design data of a clear aligner device applying at least one of the local shell thickness and the local shell gap; providing a 3D rendering of the aligner according to the second design data through a user interface unit; And it further includes generating aligner 3D data for a clear aligner device based on the second design data and providing the aligner 3D data to a 3D printer.
  • the color of one shell side of the aligner indicates the thickness value of the shell and the color of the other shell side of the aligner represents the gap value of the shell using a color bar, according to the second design data.
  • the method further includes providing a 3D rendering of the aligner through the user interface unit.
  • the computer program according to the present invention is stored in a non-volatile storage medium in order to execute the shell design processing method for the transparent orthodontic device described above on the computer.
  • the present invention there is an advantage of manufacturing a transparent aligner device in which the shell thickness or gap of a specific shell area and a specific structure area is different from other parts of the aligner.
  • a transparent aligner that is suitable for the patient's tooth structure.
  • the orthodontic effect can be increased by adjusting the force applied to a specific part of the teeth or the tooth mounting force by a structure (e.g., an attachment), and furthermore, the aesthetics can be improved by reducing the use of attachments compared to before.
  • FIG. 1 is a diagram showing an example of a transparent aligner manufacturing system to which the present invention is applied.
  • FIG. 2 is a flowchart showing a shell design processing method for a transparent orthodontic device for direct 3D printing according to the present invention.
  • FIG. 3 is an exemplary diagram showing the user interface of the clear orthodontic design software in the present invention.
  • Figure 4 is an example of designating the shell area of a clear orthodontic device in the clear orthodontic design software.
  • Figure 5 is an example of designating a structure area in clear orthodontic design software.
  • FIG. 6 is an example diagram showing a color bar suitable for displaying the shell thickness and shell gap of an aligner.
  • FIG. 7 is an example diagram showing various methods of designating the shell area of the clear aligner device in the present invention.
  • FIG. 1 is a diagram showing an example of a clear aligner manufacturing system for manufacturing a clear aligner device by direct 3D printing by applying the present invention.
  • the clear aligner manufacturing system consists of a tooth model creation device 100, a clear aligner design computer 200, and a 3D printer 300. These devices 100, 200, and 300 may be integrated into one device or may be implemented as individual devices.
  • the tooth model generating device 100 is a device that generates a three-dimensional tooth model for a patient subject to orthodontic treatment.
  • the 3D tooth model created by the tooth model creation device 100 by scanning the initial state of the patient to be treated is called 'initial tooth 3D data (A)'. Since the technology for creating a 3D tooth model for an individual patient is already known, a detailed description thereof will be omitted.
  • the clear orthodontic design computer 200 designs the shells of the clear orthodontic device for the patient through transparent orthodontic design software installed on devices such as personal computers and laptop computers, and then performs direct 3D printing to produce the clear orthodontic device. It is a device that generates 3D data of a dragon.
  • the clear orthodontic design computer 200 uses the clear orthodontic design software to create an aligner basic design unit 210, an aligner shell design unit 220, a user interface unit 230, and aligner data. It is provided with a generating unit 240. These components will be described later with reference to [FIGS. 2] to [FIG. 7].
  • the transparent orthodontic design computer 200 generates a three-dimensional tooth model regarding the state of the teeth after the position of the teeth is virtually changed through orthodontic treatment for the patient through transparent orthodontic design software by a doctor performing orthodontic treatment.
  • it is a virtual representation of the treatment success state that patients and doctors want to achieve through orthodontic treatment, and for convenience, it is called 'orthodontic tooth 3D data (B)'.
  • B 'orthodontic tooth 3D data
  • the clear orthodontic design software of the clear orthodontic design computer 200 designs the shells of the clear orthodontic device for the patient based on the initial tooth 3D data (A) and the orthodontic tooth 3D data (B), Based on the design results, 3D data for direct 3D printing to manufacture transparent orthodontic devices is generated.
  • the 3D printing data generated by the transparent orthodontic design software is called ‘aligner 3D data (C).’
  • the 3D printer 300 is a device that receives aligner 3D data (C) from the clear orthodontic design computer 200 and produces a clear orthodontic device (D) for the patient through 3D printing.
  • 3D printer technology suitable for manufacturing transparent aligners is already known, so detailed description thereof will be omitted.
  • FIG. 2 is a flowchart showing the overall process of the shell design processing method for a transparent orthodontic device for direct 3D printing according to the present invention.
  • this initial tooth 3D data (A) can be acquired using a 3D intraoral scanner. Since clear aligners must be designed to be optimized for each individual patient, 3D data (A) of the patient's initial teeth is required.
  • ‘3D data (B)’ can be generated.
  • the patient's teeth are segmented using the initial tooth 3D data (A) obtained in (S100), and then the status after the tooth position is changed by orthodontic treatment, for example, through a consultation process between the doctor and the patient, is displayed on the display screen.
  • a 3D rendering is displayed, and in response, the aligner basic design unit 210 generates a 3D tooth model.
  • the shell used in the clear aligners is designed directly in the clear aligner design software and made through 3D printing, so the shell thickness and the gap between the tooth model and the shell can be adjusted by the user in the software. It can be adjusted to the desired value.
  • the thickness and gap values applied to the entire clear aligner device are called 'global shell thickness' and 'global shell gap', respectively, for convenience.
  • the thickness or gap (i.e., local shell thickness or gap) value of a specific area is adjusted in the transparent aligner shell design produced through direct 3D printing. .
  • the aligner basic design unit 210 creates the basic design data of the transparent aligner device (for convenience, 'first design' for distinction) based on the initial teeth 3D data (A) and the corrected teeth 3D data (B). (referred to as ‘data’) is created. At least one of global shell thickness and global shell gap is applied to this first design data. In other words, the same thickness and gap dimensions are applied throughout the aligner for transparent teeth correction.
  • the aligner basic design unit 210 provides a 3D rendering of the aligner according to the first design data through the user interface unit 230.
  • Clear orthodontic design software for direct 3D printing allows you to design and create the shell used for orthodontic appliances using a digital tooth model (A).
  • the aligner basic design unit 210 automatically creates an aligner design by defining the global thickness value of the shell and the global gap value between the tooth model and the shell.
  • FIG. 3 is an exemplary diagram showing the user interface of the clear orthodontic design software in the present invention.
  • the patient's digital tooth model (A) and a transparent aligner covered thereon are displayed.
  • an image with attachments attached to all teeth was presented.
  • the thickness of the clear aligner device is constant.
  • a specific area in the shell representing the aligner i.e., 'specific shell area'
  • the shell thickness can be set to be different from the global shell thickness limited to the specified specific shell area.
  • the shell thickness applied only to a specific shell area is called 'local shell thickness' in this specification.
  • the designer of a clear aligner device can use clear aligner design software to designate a specific area for the aligner currently being designed, and adjust the shell thickness of the designated area to be different from the global shell thickness.
  • the orthodontic effect can be improved by adjusting the force applied to a specific part of the tooth or the tooth mounting force.
  • FIG. 4 is an example of designating a specific area (hereinafter referred to as 'shell area') for the shell constituting the clear orthodontic device in the user interface of the clear orthodontic design software in the present invention.
  • the correction effect such as rotation, eruption, and compression of the teeth can be increased by applying more or weaker force to specific areas of the teeth. This can minimize the use of existing attachments.
  • the shell thickness value can be defined to be large in order to apply stronger force to a specific area or increase fixation force.
  • a specific area of the occlusal surface of the posterior teeth can be designated and the thickness of that area can be defined to be larger than the overall shell thickness value.
  • the process of specifying a shell zone by user manipulation on the aligner 3D rendering and setting the local shell thickness for the shell zone may be implemented to repeat the process for each shell zone. If you want to designate two shell zones as shown in [ Figure 4], repeat the process of specifying the shell zones and setting the local shell thickness twice.
  • it may be implemented to sequentially designate a plurality of shell regions by user manipulation on the aligner 3D rendering, and then set the local shell thickness of the designated plurality of shell regions at once. If you want to designate two shell zones as shown in [ Figure 4], designate the two shell zones sequentially and then set the local shell thickness through one user operation.
  • the aligner shell design unit 220 can provide various embodiments of designating a specific shell area on the aligner 3D rendering. For example, aligner shell design in response to user operations such as setting the shape area on the three-dimensional rendering of the aligner displayed on the user interface, touch operation of the brush tool, designation of segmented teeth, and designation of teeth based on dental formula. Sub 220 may designate a specific shell zone.
  • FIG. 7 is an exemplary diagram showing various methods of designating the shell area of the clear aligner device in the present invention.
  • the orthodontic device designer selects shapes such as triangles, squares, circles, and freeforms at specific locations on the user interface that displays the digital tooth model (A) and the three-dimensional rendering of the aligners, and defines a specific area with the desired shape. You can adjust the size of the area.
  • orthodontic appliance designers can use a brush tool on the user interface to specify specific positions and areas of the tooth model.
  • a brush tool on the user interface to specify specific positions and areas of the tooth model.
  • a smoothing function can be provided by manipulating the brush.
  • orthodontic appliance designers can specify segmented teeth on the user interface.
  • an orthodontic appliance designer can designate a shell region by selecting a tooth region based on a specific dental formula.
  • the dental system can utilize the F.D.I (Federation Dentalaire Internationale) system, Palmer system, ADM system (Universal system), etc.
  • F.D.I Federation Dentalaire Internationale
  • Palmer system a system that is, 10 each of the upper and lower jaws of deciduous teeth, and 16 each of the upper and lower jaws of permanent teeth, so they are useful as a tool for selecting tooth areas.
  • the posterior teeth are divided into mesial, distal, buccal, labial, and occlusal surfaces, or the anterior teeth (central incisors, lateral incisors, and canines) are divided into mesial, distal, lingual, labial, and incisal surfaces.
  • the anterior teeth central incisors, lateral incisors, and canines are divided into mesial, distal, lingual, labial, and incisal surfaces.
  • the aligner shell design unit 220 creates one image on the aligner 3D rendering in response to a user operation through the user interface unit 230 (referred to as 'third user operation' for convenience of distinction).
  • this step may be omitted.
  • the designer of a clear orthodontic device can use clear orthodontic design software to designate a specific structure area for the aligner currently being designed, and adjust the gap of the designated structure area to be different from the global shell gap. .
  • the orthodontic effect can be improved by adjusting the force applied to a specific part of the teeth or the tooth mounting force.
  • [Figure 5] is an example of designating a structure area in the clear orthodontic design software in the present invention.
  • the aligner shell design unit 220 designates a specific structure area on the aligner 3D rendering in response to user manipulation through the user interface.
  • an attachment is designated.
  • the aligner shell design unit 220 designates the coverage area for the designated structure area in response to the user's manipulation.
  • an operation e.g., mouse drag operation
  • the aligner shell design unit 220 sets the gap value of the local shell corresponding to the designated coverage area for the designated structure area.
  • orthodontic device designers can use transparent orthodontic design software to set local gap values for specific structural areas such as attachments that are different from the global gap values set overall between the digital tooth model (A) and the aligner shell.
  • the coverage area for the area can also be adjusted.
  • the shell can be designed and created by defining the gap value of a specific structure area to be larger than the global gap value.
  • the orthodontic device designer can automatically select a specific structural area, such as an attachment, or manually designate it to define a specific desired location and area. Therefore, the shell of the clear aligner device can be designed by defining the gap at a specific defined position differently from the global gap value.
  • the user can adjust the thickness or gap value of a specific area by enlarging or reducing the range of the specific area outward to a specific value.
  • the effect of orthodontic treatment can be improved by adjusting the force applied to a specific part of the teeth by an attachment or the tooth mounting force through gap adjustment.
  • Generate data (referred to as ‘second design data’ for convenience of distinction).
  • the aligner shell design unit 220 provides a 3D rendering of the aligner according to the second design data through the user interface unit 230.
  • the user can check the shape, thickness, gap, etc. of the designed aligner through 3D rendering and, if necessary, redesign the shell of the aligner through the clear orthodontic design computer 200.
  • the aligner data generator 240 of the clear aligner design computer 200 generates aligner 3D data (C) for the clear aligner device based on the second design data.
  • the technology for generating 3D data for manufacturing aligners from design data in clear orthodontic design software is already known, so detailed description thereof will be omitted.
  • the aligner data generator 240 provides the generated aligner 3D data (C) to the 3D printer 300, and the 3D printer 300 prints the aligner 3D data (C) to the corresponding patient. Produce a transparent aligner device (D) for.
  • FIG. 6 is an example diagram showing a color bar suitable for displaying the shell thickness and shell gap of the aligner in such 3D rendering of the aligner. Designers can use these color bars to intuitively check the thickness of the previously designed shell or the shell gap value.
  • an orthodontic device designer designs a shell for direct 3D printing
  • he or she specifies a specific area (shell area, structure area) in (S150) and (S160) and then determines the shell thickness or gap (local shell thickness, local shell) in the designated area. gap) can be set to be different from the overall shell thickness or gap (global shell thickness, global shell gap).
  • the shell area where the local shell thickness or local shell gap is set can be displayed as shown in [ Figure 6] corresponding to the numerical value, and through this, the designer can color the thickness and gap of the shell to be 3D printed according to his or her design. It can be confirmed based on .
  • the color of the outer surface of the aligner shell indicates the thickness value of the shell
  • the color of the inner surface of the aligner shell indicates the gap value of the shell, allowing the thickness and gap to be identified at the same time. It is desirable to configure it so that That is, based on the color bar in [Figure 6], the shell thickness value is displayed in color on the outside of the shell, and the gap value of the shell is displayed in color on the inside of the shell.
  • the color bar can be configured to set the color and numerical range through user settings.
  • the present invention can be implemented in the form of computer-readable code on a computer-readable non-volatile recording medium.
  • non-volatile recording media include various types of storage devices, such as hard disks, SSDs, CDROMs, NAS, magnetic tapes, web disks, and cloud disks. Codes are distributed and stored and executed on multiple storage devices connected to a network. Forms that can be implemented can also be implemented. Additionally, the present invention may be implemented in the form of a computer program stored in a storage medium in order to execute a specific procedure in combination with hardware.

Abstract

본 발명은 투명교정 장치를 다이렉트 3D 프린팅으로 제작하기 위한 쉘 디자인 처리 기술에 관한 것이다. 특히, 본 발명은 다이렉트 3D 프린팅용의 투명교정 장치를 컴퓨터 소프트웨어에 의해 디자인하는 과정에서 표준 얼라이너 설계에 대해 특정 쉘 구역과 특정 구조물(예: 어태치먼트) 영역을 지정하고 쉘의 두께나 갭을 조절하여 투명교정 장치를 개인화하고 치아교정 효과를 개선할 수 있는 쉘 디자인 처리 기술에 관한 것이다. 본 발명에 따르면 특정 쉘 구역과 특정 구조물 영역의 쉘 두께나 갭이 얼라이너의 다른 부분과 상이한 투명교정 장치를 제작할 수 있는 장점이 있다. 이를 통해 환자의 치아 구조에 적합한 투명교정 장치를 제작할 수 있다. 또한, 구조물(예: 어태치먼트)에 의해 치아의 특정 부위에 가해지는 힘이나 치아 장착력을 조정함으로써 치아교정 효과를 높일 수 있고, 나아가 기존에 비해 어태치먼트 사용을 감소시켜 심미성도 개선할 수 있다.

Description

다이렉트 3D 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법
본 발명은 일반적으로 투명교정 장치를 다이렉트 3D 프린팅으로 제작하기 위한 쉘 디자인 처리 기술에 관한 것이다.
특히, 본 발명은 다이렉트 3D 프린팅용의 투명교정 장치를 컴퓨터 소프트웨어에 의해 디자인하는 과정에서 표준 얼라이너 설계에 대해 특정 쉘 구역과 특정 구조물(예: 어태치먼트) 영역을 지정하고 쉘의 두께나 갭을 조절하여 투명교정 장치를 개인화하고 치아교정 효과를 개선할 수 있는 쉘 디자인 처리 기술에 관한 것이다.
치아 교정(orthodontic treatment)은 치아 배열을 가지런하게 만들어주어 부정교합이나 돌출입을 치료하는 과정을 말한다. 이를 위해서는 전통적으로 치아의 외주면 혹은 내주면에 브라켓과 와이어를 설치하고 18개월 내지 30개월 정도의 기간 동안에 와이어의 장력을 조절하면서 치아 성장 방향을 조절하거나 치아 위치를 이동시키는 방식이 사용되었다.
이러한 전통적인 치아 교정 방식에서는 브라켓과 와이어를 입 안에 고정 설치한 상태로 생활해야 하는데, 이들 장치가 외부에 노출되기에 외관상 좋지 못하고 표정이 어눌하게 보이는 단점이 있어 환자들이 시도를 꺼리는 문제가 있었다. 또한, 식사 중에 브라켓과 와이어 사이에 이물질이 쉽게 끼일 뿐만 아니라 양치질을 하더라도 이물질이 깨끗하게 청소되지도 않기 때문에 구강내 청결을 유지하는 것에도 많은 어려움이 있었다.
이 문제를 개선하기 위하여 일련의 투명정렬기(aligners, 얼라이너)를 일정 기간마다 바꾸어가며 치아에 끼워 교정이 이루어지도록 하는 투명교정 기술이 제안되었다. 미국의 얼라인테크놀러지(Align Technology, Inc.)는 투명교정 기술(clear orthodontic treatment)을 최초로 상용화하였는데, 1998년에 FDA 승인을 획득하고 2000년에 '인비절라인(Invisalign)'이라는 브랜드로 투명교정 제품을 출시하였다.
종래의 투명교정 기술에서는 환자의 치아 모델을 만들고 열성형(thermoforming) 또는 진공성형(vacuum-forming)에 의해 시트지를 찍어내는 방식으로 투명교정 장치를 제작한다. 이때, 투명 시트지의 두께는 전체적으로 일정하므로 투명교정 장치에서 특정 영역의 두께를 조절하는 것은 불가능하다.
또한, 치아를 회전시키거나 정출, 압하 등의 치아 교정 효과를 높이기 위해서 어태치먼트(attachments)를 사용하는 경우가 많다. 어태치먼트는 환자 치아의 교정 상태와 향후 교정계획을 반영하여 치아에 정밀하게 부착해야 한다. 일반적으로 불투명 재질의 레진 소재로 어태치먼트를 제작하는데, 이러한 소재로 만들어진 어태치먼트를 부착하면 투명교정 기술의 장점인 심미성이 저하되는 문제점이 있다.
이러한 열성형 또는 진공성형 방식의 단점을 개선하기 위해 다이렉트 3D 프린팅(direct 3D printing)에 의해 투명교정 장치를 제작하는 방식이 제안되었다. 컴퓨터에서 투명교정 디자인 소프트웨어를 통해 투명교정 장치의 쉘(shells)을 디자인한 후에 3D 프린팅을 통해 투명교정 장치를 제작한다.
(특허문헌 0001) 대한민국 등록특허 10-2281789호(2021.07.20) "3D 프린팅을 이용한 환자 맞춤형 치아교정장치 및 이를 이용한 치아 교정 방법"
(특허문헌 0002) 대한민국 등록특허 10-2244439호(2021.04.20) "교정력을 높인 투명 치아 교정 장치"
(특허문헌 0003) 대한민국 공개특허 10-2017-0090035호(2017.08.07) "투명 교정기 제작용 교정 데이터 관리 시스템"
(특허문헌 0004) 미국 등록특허 US 10,179,035 B2 (2019.01.15) "Direct 3Dprinted orthodontic aligners with torque, rotation, and full control anchors"
본 발명의 목적은 일반적으로 투명교정 장치를 다이렉트 3D 프린팅으로 제작하기 위한 쉘 디자인 처리 기술을 제공하는 것이다.
특히, 본 발명의 목적은 다이렉트 3D 프린팅용의 투명교정 장치를 컴퓨터 소프트웨어에 의해 디자인하는 과정에서 표준 얼라이너 설계에 대해 특정 쉘 구역과 특정 구조물(예: 어태치먼트) 영역을 지정하고 쉘의 두께나 갭을 조절하여 투명교정 장치를 개인화하고 치아교정 효과를 개선할 수 있는 쉘 디자인 처리 기술을 제공하는 것이다.
한편, 본 발명의 해결 과제는 이들 사항에 제한되지 않으며 본 명세서의 기재로부터 다른 해결 과제가 이해될 수 있다.
상기의 목적을 달성하기 위하여 본 발명은 다이렉트 3D 프린팅용 투명교정 장치를 제작하기 위한 투명교정 장치의 쉘 디자인을 처리하기 위한 방법을 개시한다.
본 발명에 따른 투명교정 장치의 쉘 디자인을 처리하기 위한 방법은, 특정 환자의최초 치아 상태에 관한 3차원 치아모델인 초기치아 3D 데이터를 획득하는 단계; 해당 환자에 대한 치아교정을 통해 최초 치아 상태로부터 치아 위치가 소망하는 바에 따라 가상 변경된 이후의 치아 상태에 관한 3차원 치아모델인 교정치아 3D 데이터를 생성하는 단계; 상기 초기치아 3D 데이터 및 상기 교정치아 3D 데이터에 기초하여 글로벌 쉘 두께 및 글로벌 쉘 갭을 적용한 투명교정 장치의 제 1 디자인 데이터를 생성하는 단계; 상기 제 1 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부를 통해 제공하는 단계; 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것, 및 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 구조물 영역을 지정하고 그에 대한 로컬 쉘 갭(local shell gap)을 개별적으로 설정하는 것 중 적어도 하나를 수행하는 단계;를 포함한다.
전술한 방법에 있어서, 상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은, 상기 사용자 인터페이스부를 통한 도형영역 설정, 브러시 툴의 터치 조작, 세그먼테이션된 치아의 지정, 치식 기준의 치아 지정 중 하나 이상의 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께를 개별적으로 설정하는 것을 특징으로 한다.
전술한 방법에 있어서, 상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은, 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 복수 개의 특정 쉘 구역을 지정하는 것; 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 지정된 복수 개의 특정 쉘 구역의 로컬 쉘 두께를 상기 글로벌 쉘 두께와 상이한 값으로 설정하는 것;을 포함한다.
전술한 방법에 있어서, 상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은, 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 구치부 교합면 구역을 포함하는 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께를 상기 글로벌 쉘 두께와 상이한 값으로 설정하는 것을 특징으로 한다.
전술한 방법에 있어서, 상기 로컬 쉘 갭(local shell gap)을 개별적으로 설정하는 것은, 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 구조물 영역을 개별적으로 지정하는 것; 상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 지정된 구조물 영역에 대한 적용범위를 개별적으로 지정하는 것; 상기 지정된 구조물 영역에 대하여 상기지정된 적용범위에 대응하여 로컬 쉘 갭을 설정하는 것;을 포함하는 것을 특징으로 한다.
전술한 방법은, 상기 로컬 쉘 두께 및 상기 로컬 쉘 갭 중 적어도 하나를 적용한 투명교정 장치의 제 2 디자인 데이터를 생성하는 단계; 상기 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부를 통해 제공하는 단계; 및 상기 제 2 디자인 데이터에 기초하여 투명교정 장치를 위한 얼라이너 3D 데이터를 생성하여 3D 프린터에 제공하는 단계;를 더 포함한다.
전술한 방법은, 컬러 바(color bar)에 의해 얼라이너의 일방 쉘 면의 색깔은 쉘의 두께 수치를 표시하고 얼라이너의 타방 쉘 면의 색깔은 쉘의 갭 수치를 표시하면서 상기 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 상기 사용자 인터페이스부를 통해 제공하는 단계;를 더 포함하는 것을 특징으로 한다.
한편, 본 발명에 따른 컴퓨터프로그램은 컴퓨터에 이상과 같은 투명교정 장치를 위한 쉘 디자인 처리 방법을 실행시키기 위하여 비휘발성 저장매체에 저장된 것이다.
본 발명에 따르면 특정 쉘 구역과 특정 구조물 영역의 쉘 두께나 갭이 얼라이너의 다른 부분과 상이한 투명교정 장치를 제작할 수 있는 장점이 있다. 이를 통해 환자의 치아 구조에 적합한 투명교정 장치를 제작할 수 있다. 또한, 구조물(예: 어태치먼트)에 의해 치아의 특정 부위에 가해지는 힘이나 치아 장착력을 조정함으로써 치아교정 효과를 높일 수 있고, 나아가 기존에 비해 어태치먼트 사용을 감소시켜 심미성도 개선할 수 있다.
[도 1]은 본 발명을 적용한 투명교정 장치 제작 시스템의 일 예를 나타내는 도면.
[도 2]는 본 발명에 따른 다이렉트 3D 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법을 나타내는 순서도.
[도 3]은 본 발명에서 투명교정 디자인 소프트웨어의 사용자 인터페이스를 나타내는 예시도.
[도 4]는 투명교정 디자인 소프트웨어에서 투명교정 장치의 쉘 구역을 지정하는 예시도.
[도 5]는 투명교정 디자인 소프트웨어에서 구조물 영역을 지정하는 예시도.
[도 6]은 얼라이너의 쉘 두께 및 쉘 갭을 표시하기에 적합한 컬러 바를 나타내는 예시도.
[도 7]은 본 발명에서 투명교정 장치의 쉘 구역을 지정하는 다양한 방식을 나타내는 예시도.
이하에서는 도면을 참조하여 본 발명을 상세하게 설명한다.
[도 1]은 본 발명을 적용하여 다이렉트 3D 프린팅(direct 3D printing)에 의해 투명교정 장치를 제작하는 투명교정 장치 제작 시스템의 일 예를 나타내는 도면이다.
[도 1]을 참조하면, 투명교정 장치 제작 시스템은 치아모델 생성장치(100), 투명교정 설계 컴퓨터(200), 3D 프린터(300)로 이루어진다. 이들 장치(100, 200, 300)는 하나의 장치에 일체로 구현될 수도 있고, 개별 장치로 구현될 수도 있다.
치아모델 생성장치(100)는 교정치료 대상 환자에 대해 3차원 치아모델을 생성하는 장치이다. 치아모델 생성장치(100)가 치료대상 환자의 최초 상태를 스캐닝하여 만들어내는 3차원 치아모델을 편의상 '초기치아 3D 데이터(A)'라고 부른다. 개별 환자에 대한 3차원 치아모델을 생성하는 기술은 이미 공지되어 있으므로 이에 대한 자세한 설명은 생략한다.
투명교정 설계 컴퓨터(200)는 개인용 컴퓨터, 랩톱 컴퓨터 등의 장치에 설치된 투명교정 디자인 소프트웨어를 통해 해당 환자에 대한 투명교정 장치의 쉘(shells)을 디자인한 후에 투명교정 장치를 제작하기 위한 다이렉트 3D 프린팅용의 3차원 데이터를 생성하는 장치이다. [도 1]을 참고하면, 투명교정 디자인 소프트웨어에 의해 투명교정 설계 컴퓨터(200)는 얼라이너 기본 디자인부(210), 얼라이너 쉘 디자인부(220), 사용자 인터페이스부(230), 얼라이너 데이터 생성부(240)를 구비한다. 이들 구성요소에 대해서는 [도 2] 내지 [도 7]을 참조하여 후술한다.
투명교정 설계 컴퓨터(200)는 교정 치료를 수행하는 의사에 의해 투명교정 디자인 소프트웨어를 통해 해당 환자에 대해 교정치료를 통해 치아 위치가 가상 변경된 이후의 치아 상태에 관한 3차원 치아모델을 생성한다. 일반적으로 교정치료를 통해 환자와 의사가 달성하고자 하는 치료 성공 상태를 가상적으로 나타낸 것인데, 이를 편의상 '교정치아 3D 데이터(B)'라고 부른다. 환자상담 등의 과정에서 그래픽 툴을 이용하여 치아 교정 이후의 상태를 디스플레이하고 이를 이용하여 3차원 치아 모델을 생성하는 기술은 이미 공지되어 있으므로 이에 대한 자세한 설명은 생략한다.
그리고 나서, 투명교정 설계 컴퓨터(200)의 투명교정 디자인 소프트웨어는 초기치아 3D 데이터(A)와 교정치아 3D 데이터(B)에 기초하여 그 환자를 위한 투명교정 장치의 쉘(shells)을 디자인하고, 그 디자인 결과에 따라 투명교정 장치를 제작하기 위한 다이렉트 3D 프린팅용의 3차원 데이터를 생성한다. 투명교정 디자인 소프트웨어가 만들어내는 3D 프린팅용 데이터를 편의상 '얼라이너 3D 데이터(C)'라고 부른다.
3D 프린터(300)는 투명교정 설계 컴퓨터(200)로부터 얼라이너 3D 데이터(C)를 제공받아 3D 프린팅을 통해 해당 환자를 위한 투명교정 장치(D)를 제작해내는 장치이다. 투명교정 장치를 제작하기에 적합한 3D 프린터 기술은 이미 공지되어 있으므로 이에 대한 자세한 설명은 생략한다.
[도 2]는 본 발명에 따른 다이렉트 3D 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법의 전체 프로세스를 나타내는 순서도이다.
단계 (S100) : 먼저, 투명교정 설계 컴퓨터(200)의 얼라이너 기본디자인부(210)는 치아모델 생성장치(100)로부터 특정 환자의 최초 치아 상태에 관한 3차원 치아모델, 즉 '초기치아 3D 데이터(A)'를 획득한다. 예를 들어, 이러한 초기 치아 3D 데이터(A)는 3D 구강 스캐너를 이용하여 획득될 수 있다. 투명교정 장치는 개별 환자에 최적화되어 설계해야 하기 때문에 해당 환자의 초기치아 3D 데이터(A)가 필요하다.
단계 (S110) : 얼라이너 기본 디자인부(210)는 그 환자에 대한 치아 교정을 통해 최초 치아 상태로부터 치아 위치가 소망하는 바에 따라 가상 변경된 이후의 치아 상태에 관한 3차원 치아모델, 즉 '교정치아 3D 데이터(B)'를 생성할 수 있다. 일반적으로는 (S100)에서 얻어진 초기치아 3D 데이터(A)를 이용하여 환자의 치아를 세그먼테이션한 후, 예컨대 의사와 환자 간의 상담 과정을 통해 치아 교정에 의해 치아 위치를 변경한 이후의 상태를 디스플레이 화면에 3차원 렌더링 표시하고, 그에 대응하여 얼라이너 기본 디자인부(210)는 3차원 치아모델을 생성한다.
단계 (S120) : 얼라이너 쉘 디자인부(220)가 사용자 인터페이스부(230)를 통한 사용자 조작(구별을 위해 편의상 '제 1 사용자 조작'이라 함)에 대응하여 투명교정 장치에 대한 글로벌 쉘 두께(thickness) 및 갭(gap) 중 적어도 하나를 설정하거나 사전에 디폴트로 설정된 글로벌 두께 및 글로벌 쉘 갭 중 적어도 하나를 적용할 수 있다. 다이렉트 3D 프린팅을 통한 투명교정 장치 제작은 투명교정 장치에 사용되는 쉘을 투명교정 디자인 소프트웨어에서 직접 디자인하고 3D 프린팅을 통해 만들어지기 때문에 쉘 두께 및 치아 모델과 쉘 간의 갭 수치 등을 소프트웨어 상의 사용자 조작을 통해 소망하는 값으로 조절할 수 있다.
본 개시에서는 투명교정 장치 전체에 대해 적용되는 두께 및 갭 수치를 편의상 각각 '글로벌 쉘 두께(global shell thickness)' 및 '글로벌 쉘 갭(global shell gap)'이라고 부른다. 구별을 위해 미리 언급하면, 이하의 (S150)과 (S160) 과정에서는 다이렉트 3D 프린팅을 통해 제작되는 투명교정 장치 쉘 디자인에서 특정 구역의 두께 또는 갭(즉, 로컬 쉘 두께 또는 갭) 수치를 조절한다.
단계 (S130, S140) : 얼라이너 기본 디자인부(210)는 초기치아 3D 데이터(A)와 교정치아 3D 데이터(B)에 기초하여 투명교정 장치의 기본 디자인 데이터(구별을 위해 편의상 '제 1 디자인 데이터'라 함)를 생성한다. 이 제 1 디자인 데이터에는 글로벌 쉘 두께와 글로벌 쉘 갭 중 적어도 하나가 적용되어 있다. 즉, 투명 치아교정을 위한 얼라이너 전체에 걸쳐 동일한 두께와 갭 치수가 적용되어 있는 것이다.
그리고 나서, 얼라이너 기본 디자인부(210)는 제 1 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부(230)를 통해 제공한다. 다이렉트 3D 프린팅용 투명교정 디자인 소프트웨어를 사용하면 디지털 치아 모델(A)을 사용하여 교정장치에 사용되는 쉘을 디자인하고 생성할 수 있다. 얼라이너 기본 디자인부(210)는 쉘의 글로벌 두께 수치 및 치아모델과 쉘 간의 글로벌 갭 수치를 정의하여 얼라이너 디자인을 자동으로 생성한다.
[도 3]은 본 발명에서 투명교정 디자인 소프트웨어의 사용자 인터페이스를 나타내는 예시도이다. [도 3]의 좌측을 참조하면 해당 환자의 디지털 치아 모델(A) 및 그 위에 투명 얼라이너가 씌워져있는 모습이 표시되어 있다. 일 예로서 모든 치아에 어태치먼트가 부착되어 있는 모습이 제시되었다. [도 3]의 우측을 참조하면 투명교정 장치의 두께가 일정하다.
단계 (S150) : 다음으로, 얼라이너 쉘 디자인부(220)가 사용자 인터페이스부(230)를 통한 사용자 조작(구별을 위해 편의상 '제 2 사용자 조작'이라 함)에 대응하여 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께(local shell thickness)를 개별적으로 설정한다.
투명교정 디자인 소프트웨어의 사용자 인터페이스를 예시하는 [도 3]을 참조하면, 얼라이너 3차원 렌더링이 표시되어 있는 사용자 인터페이스 상에서 얼라이너를 나타내는 쉘에서의 특정 구역(즉, '특정 쉘 구역')을 지정할 수 있으며, 그 지정된 특정 쉘 구역에 한정하여 쉘 두께를 글로벌 쉘 두께와 상이하게 설정할 수 있다. 구분의 편의를 위해, 이처럼 특정 쉘 구역에 대해서만 적용되는 쉘 두께를 본 명세서에서는 '로컬 쉘 두께'라고 부른다.
본 발명에서 투명교정 장치의 설계자(디자이너)는 투명교정 디자인 소프트웨어를 사용하여 현재 설계 중인 얼라이너에 대해 특정 구역을 지정하고, 그 지정된 영역의 쉘 두께를 글로벌 쉘 두께와는 상이하게 조절할 수 있다. 쉘 두께 조절을 통해서 치아의 특정 부위에 가해지는 힘이나 치아 장착력을 조정함으로써 교정 효과를 높일 수 있다.
[도 4]는 본 발명에서 투명교정 디자인 소프트웨어의 사용자 인터페이스에서 투명교정 장치를 구성하는 쉘(shell)에 대해 특정 구역(이하, '쉘 구역'이라 함)을 지정하는 예시도이다. 쉘의 두께 조절을 통해 치아의 특정 부위에 힘을 더 가하거나 약하게 함으로써 치아의 회전, 정출, 압하 등의 교정효과를 높일 수 있는데, 이는 기존 어태치먼트 사용을 최소화시킬 수 있다. 예를 들면, [도 4]에서 볼 수 있듯이 특정 영역에 대해 더 강한 힘을 인가하거나 고정력을 높이기 위해서 쉘 두께 수치를 크게 정의할 수 있다. 또한, 교합 영역의 3D 프린팅 제작물 강도를 높이기 위해서 구치부 교합면의 특정 영역을 지정하고, 그 영역의 두께를 전체 쉘 두께 수치보다 크게 정의할 수 있다.
이러한 로컬 쉘 두께의 설정은 다양하게 구현될 수 있다. 예를 들어, 얼라이너 3차원 렌더링 상에서 사용자 조작에 의해 쉘 구역을 지정하고 그 쉘 구역에 대한 로컬 쉘 두께를 설정하는 과정을 쉘 구역 하나마다 반복 수행하도록 구현될 수 있다. [도 4]와 같이 2개의 쉘 구역을 지정하려는 경우에는 쉘 구역을 지정하고 로컬 쉘 두께를 설정하는 과정을 2번 반복한다.
다른 예로는, 얼라이너 3차원 렌더링 상에서 사용자 조작에 의해 복수의 쉘 구역을 순차적으로 지정한 후에, 그 지정된 복수의 쉘 구역의 로컬 쉘 두께를 한꺼번에 설정하도록 구현될 수도 있다. [도 4]와 같이 2개의 쉘 구역을 지정하려는 경우에는 2개의 쉘 구역을 순차적으로 지정한 후에 한번의 사용자 조작을 통해 로컬 쉘 두께를 설정한다.
본 발명에서 얼라이너 쉘 디자인부(220)는 얼라이너 3차원 렌더링 상에서 특정 쉘 구역을 지정하는 다양한 실시예를 제공할 수 있다. 예를 들어, 사용자 인터페이스에 표시된 얼라이너 3차원 렌더링 상에서 이루어지는 도형 영역 설정, 브러시 툴의 터치 조작, 세그먼테이션된(segmented) 치아의 지정, 치식 기준의 치아 지정 등의 사용자 조작에 대응하여 얼라이너 쉘 디자인부(220)는 특정 쉘 구역을 지정할 수 있다.
[도 7]은 본 발명에서 투명교정 장치의 쉘 구역을 지정하는 다양한 방식을 나타내는 예시도이다. 먼저, 교정장치 설계자는 디지털 치아모델(A)과 얼라이너 3차원 렌더링이 표시된 사용자 인터페이스 상에서 특정 위치에 삼각형, 사각형, 원형 및 자유형과 같은 도형을 선택하고 자신이 소망하는 모양으로 특정 영역을 정의하며 그 영역의 크기를 조절할 수 있다.
또한, 교정장치 설계자는 사용자 인터페이스 상에서 브러시 툴(brush tool)을 사용하여 치아 모델의 특정 위치 및 영역을 지정할 수 있다. 즉, 브러시의 크기(픽셀단위 또는 길이단위 사용)와 강도(특정 수치 또는 길이단위 사용)에 따라서 브러시가 미치는 영역의 셀 두께 수치를 빠르게 더하거나 뺄 수 있는 기능을 제공할 수 있다. 또한, 브러시를 조작하여 평탄화(smoothing) 조작하는 기능도 제공할 수 있다.
또한, 교정장치 설계자는 사용자 인터페이스 상에서 세그먼테이션된(segmented) 치아를 지정할 수 있다.
또한, 교정장치 설계자는 특정의 치식(dental formula)을 기준으로 치아 영역을 선택하여 쉘 구역을 지정할 수 있다. 이때, 치식은 F.D.I (Federation Dentalaire Internationale) system, Palmer system, ADM system (Universal system) 등을 활용할 수 있다. 이들 치식에서는 사람의 치아 전체, 즉 유치의 상악 및 하악 각각 10 개, 영구치의 상악 및 하악 각각 16 개를 모두 포함하므로 치아 영역을 선택하는 도구로서 유용하다.
이때, 치식을 기준으로 좀더 세부적으로 쉘 구역을 구분 지정하도록 구현될 수 있다. 구치부(소구치 및 대구치 포함)를 근심면, 원심면, 협면, 순면 및 교합면으로 구분하거나 전치부(중절치, 측절치 및 견치)는 근심면, 원심면, 설면, 순면, 절단면으로 구분하고, 이 중에서 사용자가 특정 구분영역을 선택하도록 구성될 수 있다.
단계 (S160) : 또한, 얼라이너 쉘 디자인부(220)는 사용자 인터페이스부(230)를 통한 사용자 조작(구별을 위해 편의상 '제 3 사용자 조작'이라 함)에 대응하여 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 구조물 영역(예: 어태치먼트)을 지정하고 그에 대한 로컬 쉘 갭(local shell gap)을 개별적으로 설정한다. 다만, 어태치먼트와 같은 특정 구조물이 이용되지 않는 경우에는 이 단계는 생략될 수 있다.
본 발명에서 투명교정 장치의 설계자(디자이너)는 투명교정 디자인 소프트웨어를 사용하여 현재 설계 중인 얼라이너에 대해 특정 구조물 영역을 지정하고, 그 지정된 구조물 영역의 갭을 글로벌 쉘 갭과는 상이하게 조절할 수 있다. 이러한 갭 조절을 통해 치아의 특정 부위에 가해지는 힘이나 치아 장착력을 조정함으로써 교정 효과를 높일 수 있다.
[도 5]는 본 발명에서 투명교정 디자인 소프트웨어에서 구조물 영역을 지정하는 예시도이다. [도 5]를 참조하면, 얼라이너 쉘 디자인부(220)는 사용자 인터페이스를 통한 사용자 조작에 대응하여 얼라이너 3차원 렌더링 상에서 특정 구조물 영역을 지정한다. [도 5]에서는 어태치먼트(attachment)가 지정되었다. 그리고 나서, 얼라이너 쉘 디자인부(220)는 사용자 조작에 대응하여 그 지정된 구조물 영역에 대한 적용범위를 지정한다. [도 5]에서는 어태치먼트를 둘러싸는 범위를 넓히거나 좁히는 조작(예: 마우스 드래그 조작)이 이루어진다. 그리고 나서, 얼라이너 쉘 디자인부(220)는 그 지정된 구조물 영역에 대하여 그 지정된 적용범위에 대응하는 로컬 쉘의 갭 수치를 설정한다.
이처럼 교정장치 설계자는 투명교정 디자인 소프트웨어를 사용하여 어태치먼트와 같은 특정 구조물 영역에 대해서 디지털 치아 모델(A)과 얼라이너 쉘 간에 전체적으로 설정되어 있는 글로벌 갭 수치와는 상이하게 로컬 갭 수치를 설정할 수 있으며 그 영역에 대한 적용 범위도 함께 조절할 수 있다. 예를 들면 투명교정 장치의 어태치먼트 부분의 적합도 향상 및 특정 힘을 가하기 위해서 특정 구조물 영역의 갭 수치를 글로벌 갭 수치보다 크게 정의하여 쉘을 디자인하고 생성할 수 있다.
이때, 교정장치 설계자는 어태치먼트와 같은 특정 구조물 영역을 자동으로 선택되게 하거나 수동으로 지정하여 원하는 특정 위치 및 영역을 정의할 수 있다. 따라서 정의된 특정 위치의 갭을 글로벌 갭 수치와 상이하게 정의하여 투명교정 장치의 쉘을 디자인할 수 있다. 특히, [도 5]와 같이 사용자는 특정 영역의 범위를 외부방향으로 특정 수치까지 확대 및 축소하여 특정 영역의 두께 또는 갭 수치를 조절할 수 있다. 어태치먼트에 의해 치아의 특정 부위에 가해지는 힘이나 치아 장착력을 갭 조절을 통해 조정함으로써 치아교정 효과를 높일 수 있다.
단계 (S170 ~ S190) : 그리고 나서, 얼라이너 쉘 디자인부(220)는 로컬 쉘 두께 및 로컬 쉘 갭을 적용하여 투명교정 장치의 제 1 디자인 데이터로부터 투명교정 장치에 대해 설계상의 미세 조정을 적용한 디자인 데이터(구별을 위해 편의상 '제 2 디자인 데이터'라 함)를 생성한다.
이때, 얼라이너 쉘 디자인부(220)는 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부(230)를 통해 제공한다. 사용자는 3차원 렌더링을 통해 디자인된 얼라이너의 모양, 두께, 갭 등을 확인하고, 필요할 경우에는 투명교정 설계 컴퓨터(200)를 통해서 얼라이너의 쉘을 재디자인할 수 있다.
그리고, 투명교정 설계 컴퓨터(200)의 얼라이너 데이터 생성부(240)는 제 2 디자인 데이터에 기초하여 투명교정 장치를 위한 얼라이너 3D 데이터(C)를 생성한다. 투명교정 디자인 소프트웨어에서 디자인 데이터로부터 얼라이너 제작을 위한 3D 데이터를 생성하는 기술은 이미 공지되어 있으므로 이에 대한 자세한 설명은 생략한다.
얼라이너 데이터 생성부(240)는 그 생성한 얼라이너 3D 데이터(C)를 3D 프린터(300)에 제공하며, 3D 프린터(300)는 얼라이너 3D 데이터(C)에 따른 3D 프린팅을 통해 해당 환자를 위한 투명교정 장치(D)를 제작한다.
한편, [도 2]에서 (S140)과 (S180)에서는 제 1 디자인 데이터 및 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부(230)를 통해 제공한다. [도 6]은 이와 같은 얼라이너 3차원 렌더링에서 얼라이너의 쉘 두께 및 쉘 갭을 표시하기에 적합한 컬러 바(color bar)를 나타내는 예시도이다. 설계자는 이러한 컬러 바를 활용하여 앞서 디자인한 쉘의 두께 또는 쉘의 갭 수치를 직관적으로 확인할 수 있다.
교정장치 설계자가 다이렉트3D 프린팅용 쉘을 디자인할 때, (S150)과 (S160)에서 특정 영역(쉘 구역, 구조물 영역)을 지정한 후, 그 지정된 영역의 쉘 두께나 갭(로컬 쉘 두께, 로컬 쉘 갭)을 전체 쉘 두께나 갭(글로벌 쉘 두께, 글로벌 쉘 갭)과는 상이하게 설정할 수 있다. 이렇게 로컬 쉘 두께나 로컬 쉘 갭이 설정된 쉘 영역은 그 수치에 대응하여 [도 6]과 같이 표시할 수 있으며, 이를 통해 설계자는 자신의 설계에 따라 3D 인쇄되어 만들어질 쉘의 두께 및 갭을 색상에 기초하여 확인할 수 있다.
이때, 얼라이너의 쉘 바깥쪽 면(입술 방향)의 색깔은 쉘의 두께 수치를 표시하고 얼라이너의 쉘 안쪽 면(치아 모델 방향)의 색깔은 쉘의 갭 수치를 표시함으로써 두께와 갭을 한꺼번에 식별할 수 있도록 구성하는 것이 바람직하다. 즉, [도 6]의 컬러 바를 기준으로 쉘 바깥쪽은 쉘 두께의 수치가 색으로 표시되고 쉘 안쪽은 쉘의 갭 수치가 색으로 표시되는 것이다. 컬러 바는 사용자 설정을 통해서 색깔 및 수치의 범위를 설정하도록 구성될 수 있다.
한편, 본 발명은 컴퓨터가 읽을 수 있는 비휘발성 기록매체에 컴퓨터가 읽을 수 있는 코드의 형태로 구현되는 것이 가능하다. 이러한 비휘발성 기록매체로는 다양한 형태의 스토리지 장치가 존재하는데 예컨대 하드디스크, SSD, CDROM, NAS, 자기테이프, 웹디스크, 클라우드 디스크 등이 있고 네트워크로 연결된 다수의 스토리지 장치에 코드가 분산 저장되고 실행되는 형태도 구현될 수 있다. 또한, 본 발명은 하드웨어와 결합되어 특정의 절차를 실행시키기 위하여 저장매체에 저장된 컴퓨터프로그램의 형태로 구현될 수도 있다.

Claims (8)

  1. 투명교정 장치의 쉘 디자인을 처리하기 위한 방법으로서,
    특정 환자의최초 치아 상태에 관한 3차원 치아모델인 초기치아 3D 데이터를 획득하는 단계;
    해당 환자에 대한 치아교정을 통해 최초 치아 상태로부터 치아 위치가 소망하는 바에 따라 가상 변경된 이후의 치아 상태에 관한 3차원 치아모델인 교정치아 3D 데이터를 생성하는 단계;
    상기 초기치아 3D 데이터 및 상기 교정치아 3D 데이터에 기초하여 글로벌 쉘 두께 및 글로벌 쉘 갭을 적용한 투명교정 장치의 제 1 디자인 데이터를 생성하는 단계;
    상기 제 1 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부를 통해 제공하는 단계;
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것, 및 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 구조물 영역을 지정하고 그에 대한 로컬 쉘 갭(local shell gap)을 개별적으로 설정하는 것 중 적어도 하나를 수행하는 단계;
    를 포함하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  2. 청구항 1에 있어서,
    상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은,
    상기 사용자 인터페이스부를 통한 도형영역 설정, 브러시 툴의 터치 조작, 세그먼테이션된 치아의 지정, 치식 기준의 치아 지정 중 하나 이상의 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께를 개별적으로 설정하는 것을 특징으로 하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  3. 청구항 1에 있어서,
    상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은,
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 복수 개의 특정 쉘 구역을 지정하는 것;
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 지정된 복수 개의 특정 쉘 구역의 로컬 쉘 두께를 상기 글로벌 쉘 두께와 상이한 값으로 설정하는 것;
    을 포함하는 것을 특징으로 하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  4. 청구항 1에 있어서,
    상기 로컬 쉘 두께(local shell thickness)를 개별적으로 설정하는 것은,
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 구치부 교합면 구역을 포함하는 쉘 구역을 지정하고 그에 대한 로컬 쉘 두께를 상기 글로벌 쉘 두께와 상이한 값으로 설정하는 것을 특징으로 하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  5. 청구항 1에 있어서,
    상기 로컬 쉘 갭(local shell gap)을 개별적으로 설정하는 것은,
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 얼라이너 3차원 렌더링 상에서 하나 이상의 특정 구조물 영역을 개별적으로 지정하는 것;
    상기 사용자 인터페이스부를 통한 사용자 조작에 대응하여 상기 지정된 구조물 영역에 대한 적용범위를 개별적으로 지정하는 것;
    상기 지정된 구조물 영역에 대하여 상기지정된 적용범위에 대응하여 로컬 쉘 갭을 설정하는 것;
    을 포함하는 것을 특징으로 하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  6. 청구항 1에 있어서,
    상기 방법은,
    상기 로컬 쉘 두께 및 상기 로컬 쉘 갭 중 적어도 하나를 적용한 투명교정 장치의 제 2 디자인 데이터를 생성하는 단계;
    상기 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 사용자 인터페이스부를 통해 제공하는 단계; 및
    상기 제 2 디자인 데이터에 기초하여 투명교정 장치를 위한 얼라이너 3D 데이터를 생성하여 3D 프린터에 제공하는 단계;
    를 더 포함하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  7. 청구항 6에 있어서,
    상기 방법은,
    컬러 바(color bar)에 의해 얼라이너의 일방 쉘 면의 색깔은 쉘의 두께 수치를 표시하고 얼라이너의 타방 쉘 면의 색깔은 쉘의 갭 수치를 표시하면서 상기 제 2 디자인 데이터에 따른 얼라이너 3차원 렌더링을 상기 사용자 인터페이스부를 통해 제공하는 단계;
    를 더 포함하는 것을 특징으로 하는 투명교정 장치를 위한 쉘 디자인 처리 방법.
  8. 컴퓨터에 의해 청구항 1 내지 7 중 어느 하나의 항에 따른 투명교정 장치를 위한 쉘 디자인 처리 방법을 실행시키기 위하여 저장매체에 저장된 컴퓨터프로그램.
PCT/KR2023/004344 2022-04-01 2023-03-31 다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법 WO2023191577A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220040949A KR20230142123A (ko) 2022-04-01 2022-04-01 다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법
KR10-2022-0040949 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023191577A1 true WO2023191577A1 (ko) 2023-10-05

Family

ID=88203167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004344 WO2023191577A1 (ko) 2022-04-01 2023-03-31 다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법

Country Status (2)

Country Link
KR (1) KR20230142123A (ko)
WO (1) WO2023191577A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806889B1 (ko) * 2016-12-22 2017-12-08 오스템임플란트 주식회사 치아 수복물 설계를 위한 그래픽 제공 방법, 이를 위한 장치 및 이를 기록한 기록매체
KR101891289B1 (ko) * 2017-11-03 2018-08-24 비즈텍코리아 주식회사 투명 교정기 데이터 생성 장치
KR20190077849A (ko) * 2017-12-26 2019-07-04 오스템임플란트 주식회사 투명 교정기 디자인을 위한 치아배열 데이터 생성방법, 이를 위한 장치, 이를 기록한 기록매체
KR102138919B1 (ko) * 2019-04-05 2020-07-30 오스템임플란트 주식회사 보철물 파라미터 조정방법 및 이를 수행하는 보철 캐드 장치
KR20210047487A (ko) * 2019-10-22 2021-04-30 오스템임플란트 주식회사 투명 교정기 설계 방법 및 투명 교정장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170090035A (ko) 2016-01-28 2017-08-07 주식회사 형상소프트 투명 교정기 제작용 교정 데이터 관리 시스템
KR102281789B1 (ko) 2020-03-18 2021-07-26 주식회사 그래피 3d 프린팅을 이용한 환자 맞춤형 치아교정장치 및 이를 이용한 치아 교정 방법
KR102244439B1 (ko) 2020-12-10 2021-04-29 주식회사 그래피 교정력을 높인 투명 치아 교정 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806889B1 (ko) * 2016-12-22 2017-12-08 오스템임플란트 주식회사 치아 수복물 설계를 위한 그래픽 제공 방법, 이를 위한 장치 및 이를 기록한 기록매체
KR101891289B1 (ko) * 2017-11-03 2018-08-24 비즈텍코리아 주식회사 투명 교정기 데이터 생성 장치
KR20190077849A (ko) * 2017-12-26 2019-07-04 오스템임플란트 주식회사 투명 교정기 디자인을 위한 치아배열 데이터 생성방법, 이를 위한 장치, 이를 기록한 기록매체
KR102138919B1 (ko) * 2019-04-05 2020-07-30 오스템임플란트 주식회사 보철물 파라미터 조정방법 및 이를 수행하는 보철 캐드 장치
KR20210047487A (ko) * 2019-10-22 2021-04-30 오스템임플란트 주식회사 투명 교정기 설계 방법 및 투명 교정장치

Also Published As

Publication number Publication date
KR20230142123A (ko) 2023-10-11

Similar Documents

Publication Publication Date Title
CN111631831B (zh) 生成牙科矫正器的方法
JP4327593B2 (ja) 歯科矯正用ブレースの処方を選択する方法および装置
US8296952B2 (en) Orthodontic treatment aligners based on CT data
KR101547112B1 (ko) 투명 교정기 데이터 생성 장치
US6971873B2 (en) Virtual bracket library and uses thereof in orthodontic treatment planning
JP5586590B2 (ja) 患者のデジタル画像を用いて特別仕様の歯科補綴装置を設計する方法
US20220387138A1 (en) Systems and methods for determining an orthodontic treatment
CA3134239A1 (en) Dental aligners and procedures for aligning teeth
CN103784203A (zh) 自动构造牙轴的系统和方法
Ackerman et al. The decision-making process in orthodontics
JP2019528997A (ja) 人工歯用の共通配置支持体
WO2019027108A1 (ko) 무치악 환자를 대상으로 한 완전틀니의 제조 방법
US20140120488A1 (en) Orthodontic Treatment Aligners Based on CT Data
Bouchez Clinical success in Invisalign orthodontic treatment
Graf et al. Direct printed removable appliances: A new approach for the Twin-block appliance
US11564776B2 (en) Orthodontic attachment systems and methods
WO2018186590A1 (ko) 치아 교정용 와이어 벤딩 경로 생성 방법
Moya et al. Aligner Techniques in Orthodontics
WO2023191577A1 (ko) 다이렉트 3d 프린팅용 투명교정 장치를 위한 쉘 디자인 처리 방법
WO2010013986A2 (ko) 연조직배열 변환방법 및 이를 이용하여 제작된 치과용기구
Marchand et al. Latest advances in augmented reality technology and its integration into the digital workflow.
CN109674545A (zh) 生物友好型口腔正畸矫治器
DuVall Fabricating a chairside CAD-CAM radiographic and surgical guide for dental implants: A dental technique
Abdulhadi et al. Footprints to achieve digital smile design and esthetic: Narrative review
WO2022177147A1 (ko) 치열 교정 데이터 생성시스템 및 생성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781427

Country of ref document: EP

Kind code of ref document: A1