WO2023191318A1 - 카메라용 액추에이터 - Google Patents

카메라용 액추에이터 Download PDF

Info

Publication number
WO2023191318A1
WO2023191318A1 PCT/KR2023/002739 KR2023002739W WO2023191318A1 WO 2023191318 A1 WO2023191318 A1 WO 2023191318A1 KR 2023002739 W KR2023002739 W KR 2023002739W WO 2023191318 A1 WO2023191318 A1 WO 2023191318A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
magnet
optical axis
actuator
magnetic pole
Prior art date
Application number
PCT/KR2023/002739
Other languages
English (en)
French (fr)
Inventor
박철순
연제승
Original Assignee
자화전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자 주식회사 filed Critical 자화전자 주식회사
Priority to CN202380013232.8A priority Critical patent/CN118355321A/zh
Publication of WO2023191318A1 publication Critical patent/WO2023191318A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to an actuator for a camera, and more specifically, to an actuator for a camera that improves driving performance by using the positional relationship between a magnet and a hall sensor.
  • AF autofocus
  • camera modules mounted on mobile terminals such as mobile phones and smartphones, as well as independent camera devices, prevent camera shake.
  • Functions such as OIS (Optical Image Stabilization) are being implemented.
  • actuators for zoom lenses that can vary the size of the subject through zoom-in and zoom-out functions have been disclosed, and depending on the embodiment, a plurality of lenses (lens assemblies) are used.
  • An actuator that implements more diverse AF and/or zoom functions by applying the mutual positional relationship in combination has also been disclosed.
  • the moving distance (also referred to as stroke) of the zoom lens moving in the direction of the optical axis is longer or longer than that of a general lens, so it must be designed to secure the driving force accordingly, and furthermore, the corresponding position of the zoom lens in the entire stroke section must be designed to be accurately detected and feedback controlled.
  • the shape or structure of the moving carrier (mounted with a lens or lens module) is simply physically changed to suit the extended moving distance, or a relatively large magnet is installed to enhance the driving force. Only changes are being applied.
  • the Hall sensor must be designed to linearly detect the polarity of the magnetic field generated by the facing magnet (mounted on the carrier) and the increase or decrease in its size in order to precisely implement position detection and feedback control using it. there is.
  • the present invention was created to solve the above-mentioned problems against the above background. By precisely applying the mutual positional relationship between the magnet, Hall sensor (detection sensor), and coil, the driving efficiency and precision are improved over the entire extended stroke range.
  • the purpose is to provide actuators for cameras that can be improved.
  • An actuator for a camera of the present invention for achieving the above object includes a carrier on which one or more lenses are mounted and moves in the direction of the optical axis; A magnet provided on the carrier; a housing accommodating the carrier; a plurality of coils facing the magnet and arranged along the optical axis; And it may include a plurality of detection sensors that sense the position of the magnet and are arranged to be spaced apart from each other based on the optical axis direction, and all of the plurality of detection sensors detect the position of the magnet when the carrier is located at the reference position. It can be configured to oppose the same single magnetic pole.
  • the plurality of detection sensors of the present invention are all provided inside one of the plurality of coils.
  • the reference position of the present invention may be a position where the carrier is located at one end of a movable area, which is a movable area of the carrier.
  • all of the plurality of detection sensors of the present invention oppose the same magnetic pole among the magnetic poles of the magnet when the carrier is located at the other end of the movable region, and the magnetic pole is at one end of the movable region when the carrier is located at the other end of the movable region.
  • all of the plurality of detection sensors may be configured to have different polarities from the opposing magnetic poles.
  • the magnet of the present invention includes a middle magnetic pole located in the center and consisting of either an N pole or an S pole; And it may include an upper and lower magnetic poles that have opposite polarity to the middle magnetic pole and are respectively located above and below the middle magnetic pole based on the optical axis direction.
  • the lower part of the upper coil located above the optical axis among the plurality of coils and the upper part of the lower coil located below the optical axis face the middle magnetic pole. It can be configured.
  • a plurality of detection sensors are arranged to detect the position of the driving magnet, and the stimulation of the magnet is performed based on the positional characteristics of the moving section or operating area of the magnet.
  • the linear characteristic section of each signal output by the plurality of detection sensors can be accurately reflected in time series, and furthermore, the calculation processing results of these signals are also It can be induced to have clearer linearity, enabling more sophisticated feedback control over the entire expanded operating range.
  • a driving force can be accurately generated throughout the movement section of the carrier, thereby allowing the carrier to move.
  • the operating characteristics as well as driving precision can be effectively improved.
  • FIG. 1 is a diagram showing the overall configuration of an actuator and a camera module according to a preferred embodiment of the present invention
  • Figure 2 is a diagram showing the overall configuration of an actuator according to a preferred embodiment of the present invention.
  • Figure 3 is a diagram showing a carrier and its related configuration according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the detailed configuration of a carrier according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the structural interrelationship of a coil, magnet, and Hall sensor (detection sensor);
  • Figure 6 is a diagram showing the interrelationship between the coil, magnet, and Hall sensor based on the start position
  • Figure 7 is a diagram showing the interrelationship between the coil, magnet, and Hall sensor based on the end position.
  • Figure 1 is a diagram showing the overall configuration of a camera actuator (hereinafter referred to as 'actuator') 100 and a camera module 1000 according to a preferred embodiment of the present invention.
  • the actuator 100 of the present invention can be implemented as a single device itself, and can also be implemented as a camera module 1000 that includes a reflectometer module 200, etc., as shown in FIG. 1.
  • the actuator 100 of the present invention linearly moves the carrier on which the lens (lens assembly) is mounted in the optical axis direction (Z-axis direction based on the drawing) to perform functions such as auto focus (AF) or zoom. It corresponds to an actuator that implements a function.
  • the reflectometer module 200 which can be provided on the upper part of the actuator 100 according to the present invention (based on the optical axis direction in FIG. 1), divides the light path (Z1) of the subject into a lens direction path (Z, optical axis direction). ) performs the function of reflection or refraction. In this way, the light reflected or refracted in the optical axis direction flows into the image sensor 30, such as CMOS or CCD, through the lenses (lens assemblies) 50, 55, 60, and 70 provided on the carrier 120.
  • the image sensor 30 such as CMOS or CCD
  • the reflectometer module 200 that changes the path of light may include a reflectometer 210 that may be made of one selected from a mirror or a prism or a combination thereof.
  • This reflection system 210 can be implemented by various members that can change the direction of the optical axis of light coming from the outside world, but it is preferable to implement it with a glass material to improve optical performance.
  • the camera module 1000 of the present invention which includes the reflectometer module 200, etc., is configured to refract the light path and allow light to flow in the direction of the lens, so the device itself can be installed in the thickness direction of the portable terminal (smartphone, etc.) Since it can be installed in the longitudinal direction without increasing the thickness of the mobile terminal, it can be optimized for miniaturization or slimming of the mobile terminal.
  • the reflectometer 210 may be configured to rotate and move by a driving means that generates magnetic force, such as a magnet or the third coil (C3).
  • a driving means that generates magnetic force
  • C3 the third coil
  • the reflector 210 moves or rotates in this way, the light of the subject that is reflected (refracted) through the reflector 210 moves in the ⁇ Y direction and/or ⁇ X direction, so that the Alternatively, Y-axis direction correction may be implemented.
  • the light of the subject reflected through the reflectometer module 200 is incident on the first lens 60 and the second lens 70 provided inside the actuator 100, and is transmitted by the actuator 100 of the present invention.
  • Functions such as zoom or AF are implemented by adjusting the positions (based on the optical axis direction) within the housing 110 of the first lens 60 and the second lens 70 in combination.
  • fixed or movable additional lenses 50 and 55 may be disposed on the light path from the reflectometer module 200 to the image sensor 30 in order to improve optical performance.
  • additional lenses 50 and 55 may be applied differently from the embodiment shown in the drawing in terms of number and location of the additional lenses 50 and 55 depending on optical specifications and performance.
  • the drawing shows an embodiment in which the reflectometer module 200 is provided together in one housing 110, but depending on the embodiment, the reflectometer module 200 and the actuator 100 according to the present invention are physically dualized. Of course, it can be implemented in a form where they are combined.
  • the drawing shows a carrier 120 on which two lenses are mounted, but this is only an example. Of course, a different number of lenses may be mounted. Depending on the embodiment, a plurality of carriers may be provided. .
  • the direction axis corresponding to the path through which light flows into the first lens 60, etc. is defined as the optical axis (Z-axis), and the two axes perpendicular to this optical axis (Z-axis) are the X-axis and Y-axis. Defined as an axis.
  • Figure 2 is a diagram showing the overall configuration of the actuator 100 according to a preferred embodiment of the present invention.
  • the actuator 100 of the present invention corresponds to the basic frame structure of the actuator 100 and includes a housing 110 that accommodates the internal structure, a carrier 120, and a magnet provided in the carrier 120. It may include a plurality of detection sensors (H) and a plurality of coils (C11, C12) that sense the position of (M1).
  • H detection sensors
  • C11, C12 coils
  • the carrier 120 is equipped with one or more lenses 60 and 70 as illustrated in the drawing, and corresponds to a moving body that moves linearly based on the optical axis direction (Z-axis direction), and the housing 110 from a corresponding relative perspective ) corresponds to the fixture.
  • the carrier 120 is provided with a magnet (M1)
  • the housing 110 is provided with coils (C11, C12) that face the magnet (M1) and provide driving force to the magnet (M1).
  • the coil (C1) is implemented as a plurality of coils (C11, C12) arranged up and down along the optical axis as illustrated in the drawing to correspond to the expanded movable area (stroke) of the carrier 120. It is desirable.
  • magnets M1 and M2 may be provided on each side of the carrier 120, and a coil may be configured to face each of these magnets.
  • the coil facing the second magnet (M2) is the second coil (C21, C22), and the second coil may also be composed of a plurality of coils (C21, C22).
  • the magnet (M1) and the coil (C1) are the magnet facing the second magnet (M2)
  • the second coil may also be composed of a plurality of coils (C21, C22).
  • an embodiment of the present invention will be described focusing on the magnet (M1) and the coil (C1), but of course, it can also be applied correspondingly to the embodiment having a dual structure (M1, M2, C1, C2). .
  • the lenses 60 and 70 mounted on the carrier also move linearly in the optical axis direction, so that the relative positional relationship of these lenses 50, 55, 60, and 70 AF or zoom function is implemented.
  • a yoke plate (not shown) made of metal is installed in the opposite direction of the coil (C1) facing the magnet (M1). It can be provided.
  • the detection sensor (H) is implemented as a Hall sensor that detects the size and direction of the magnetic field generated from the magnet (M1) in the opposite direction using the Hall effect and outputs a corresponding signal. It is desirable.
  • the resolution of the Hall sensor, the linear section characteristics of the signal output by the Hall sensor, and the size (length) of the entire movable area of the carrier 120 are taken into consideration. It is preferable that a plurality of Hall sensors (H) are provided and arranged to be spaced apart from each other based on the optical axis direction. In the drawing, seven Hall sensors (H1 to H7) are shown as an example.
  • the driving driver calculates and processes the output signals input from each of the plurality of Hall sensors (H) and controls the results to be applied to the coils (C11, C12) with a corresponding size and direction.
  • the detection of the Hall sensor (H) and the control processing of the driving driver are preferably configured to be applied cyclically through feedback control so that driving precision can be further improved through time-series and continuous control.
  • the driving driver may be implemented as an independent electronic component or device, but may also be implemented as a single electronic component (chip) integrated with the Hall sensor (H) through SOC (System On Chip). .
  • coils (C11, C12), Hall sensors (H1 ⁇ H7), etc. can of course be mounted on a circuit board (FPCB) (not shown) that is electrically interfaced with external modules, power supplies, external devices, etc. am.
  • FPCB circuit board
  • FIGS 3 and 4 are diagrams showing the carrier 120 and its related configuration according to an embodiment of the present invention.
  • the carrier 120 of the present invention is a moving body that moves linearly along the optical axis with respect to the housing 110, and as illustrated in FIG. 3, the first lens 60 or the second lens 70 is a detachable A sliding groove portion may be provided to enable coupling.
  • a ball B is placed between the carrier 120 and the housing 110 so that the carrier 120 can move linearly more flexibly with minimized friction.
  • the ball B may be placed between the guide rail 121 provided on the lower part of the carrier 120 and the groove rail 111 provided on the bottom of the housing 110, and the ball B may be moved linearly.
  • the ball B is preferably configured so that a portion thereof is accommodated in one or more of the guide rail 121 and/or the groove rail 111.
  • the carrier 120 becomes more flexible due to minimized friction due to rolling, moving, rotation, and point-contact with the facing object. It can move linearly and has the advantage of reducing noise and minimizing driving force, as well as improving driving precision.
  • a metal yoke plate (not shown) provided in the housing 110 and one or more suction magnets (Ma) that generate attractive force may be provided at the lower part of the carrier 120.
  • Figure 5 is a diagram showing the structural relationship between the coil (C1), the magnet (M1), and the hall sensor (H).
  • the magnet (M1) is preferably configured to have a shape extending in the direction of the optical axis as illustrated in the drawing, and the coil (C1 (C11, C12)) facing it faces the coil (C11, C12) so that the area where the driving force is generated can be expanded. It is preferable that the stimulation part facing C1) is comprised of a plurality.
  • the drawing shows three stimulus parts (Part1, Part2, Part3) as an example.
  • the magnet (M1) when the magnet (M1) is composed of three magnetic pole parts, three magnetic poles are exposed in the direction facing the coil (C1), and the magnet (M1) may be composed of a 6-pole magnetizer as a whole.
  • the Hall sensor (H) of the present invention which is provided in n pieces (n is a natural number of 2 or more), has a magnet (H) exposed in the direction of the coil (C1) when the carrier 120 is located in the reference position.
  • the stimuli of M1) it is preferable that they are all provided in positions opposite to the same one stimulus (hereinafter referred to as 'first reference stimulus') (based on FIG. 5, Part 1).
  • the carrier 120 may be positioned at a specific default position and then a zoom function, etc. may be initiated or activated.
  • the carrier 120 may be configured to be restored to a specific position (default position) when the zoom function, etc. is terminated, using a restoring force such as an elastic means or a magnetic force.
  • the carrier 120 can be configured to move to the default position when the zoom function is terminated, when a self-check algorithm is executed, or when a drive start signal is input. there is.
  • the reference position of the present invention can be determined in various ways, including the default position where the zoom function starts when the zoom function is activated or started.
  • the reference position is one of the end portions on both sides of the movable area (movable area) of the carrier 120. It is desirable to set it to a position located in .
  • the signal systems of each n Hall sensors are calculated (e.g., summed) to generate an integrated signal system and applied to feedback control, the integrated signal system is
  • the displacement due to the movement of the carrier 120 is used as an independent variable and can be effectively induced to substantially correspond to a linear function (linear graph) with a slope of increase or decrease.
  • the plurality of Hall sensors (H) are all coils that provide driving force to the magnet (M1). It is preferable that all of the coils (C1, C2) are provided inside (C11 in the drawing) (inside the winding).
  • Figure 6 is a diagram showing the specific interrelationship between the coil (C1), the magnet (M1), and the hall sensor (H) based on the start position. As described above, the positional relationship of each component shown in FIG. 6 corresponds to the positional relationship when the reference position is the starting point where zoom operation begins.
  • the coils (C11, C12) are mainly wound, their shape has a track shape, and the driving force is generated in the area having a direction perpendicular to the optical axis direction (Z-axis direction) in relationship with the facing magnet (M1). .
  • the upper part (based on the optical axis direction) of the two areas forming a direction perpendicular to the optical axis direction among the track shapes of each of the coils C11 and C12 is referred to as the upper part (U), and the lower area is referred to as the lower part (D). It is referred to as
  • the coil located above or above the optical axis direction is referred to as the upper coil (C11), and the coil located below is referred to as the lower coil (C22).
  • the coil located above becomes the upper coil
  • the coil located below the upper coil becomes the lower coil.
  • the zoom function can be implemented if there are two or more magnetic poles (polar surfaces facing the coil) of the magnet (M1), but the area (U, D) where the driving force is generated among the upper coil (C11) as well as the lower coil (C12)
  • the magnetic poles of the magnet (M1) must be at least three so that the driving force can be generated in all four regions (U, D) where the driving force is generated (based on the embodiment illustrated in the drawing). It is desirable to be configured.
  • the magnet (M1) is located in the middle and has a middle magnetic pole (part 2) consisting of either the N or S pole, and the upper magnetic pole (part 2) has an opposite polarity to the middle magnetic pole (part 2) and is located at the top based on the optical axis direction. It may be configured to have a lower magnetic pole (part 3) that has an opposite polarity to the part 1) and the middle magnetic pole (part 2) and is located below the optical axis direction.
  • the lower part (D(C11)) of the upper coil (C11) and the upper part (U (C12)) of the lower coil (C12) are configured to simultaneously face the middle magnetic pole (part2) at the reference position. It is desirable to be
  • All of the plurality of Hall sensors (H, H1 to H7) according to the present invention described above are all connected to the first reference stimulus, which is the highest pole (based on the optical axis) (part 1, N pole based on the drawing) among the poles of the magnet (M1). As an opposing position, it is placed in the inner space of the winding of the upper coil (C11).
  • the plurality of Hall sensors (H, H1 to H7) may be formed according to the embodiment described above. Of course, it can be placed in a position that faces both the middle stimulus (part 2, S pole based on the drawing), rather than the top stimulus (part 1), as shown.
  • a plurality of Hall sensors may be disposed in the inner space of the lower coil (C12) or in an area adjacent to the lower coil (C12).
  • Figure 7 is a diagram showing the specific interrelationship between the coil (C1), magnet (M1), and Hall sensor (H) based on the end position.
  • the start position illustrated in FIG. 6 is a position in which the carrier 120 is located at one end of the movable area (movable area) of the carrier 120
  • the end position in FIG. 7 is a position in which the carrier 120 is located at the other end of the movable area. It corresponds to the position in which it is located.
  • all of the plurality of detection sensors (Hall sensors) (H, H1 to H7) are the same as the first reference stimulus among the magnetic poles of the magnet (M1).
  • the hyperpolarization is configured to oppose the other stimulus.
  • the carrier 120 is located at the end position.
  • all of the plurality of detection sensors (H, H1 to H7) are configured to face the S pole, which is the middle magnetic pole (part 2) of the magnetic poles of the magnet (M1).
  • the average length (based on the optical axis direction) of one magnetic pole (part1, part2, part3) of the magnet M1 is designed to correspond to the size or length of the movable area of the carrier 120. It is preferable that the total length (based on the optical axis direction) where the plurality of Hall sensors (H1 to H7) are arranged, that is, the distance from H1 to H7, is designed to be smaller than the length of one magnetic pole of the magnet (M1).
  • first and second are merely instrumental terms used to relatively distinguish components from each other, and are therefore used to indicate a specific order, priority, etc. It should be interpreted that it is not a valid term.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명에 카메라용 액추에이터는 의한 하나 이상의 렌즈가 탑재되며 광축 방향으로 이동하는 캐리어; 상기 캐리어에 구비되는 마그네트; 상기 캐리어를 수용하는 하우징; 상기 마그네트와 대면하며 광축을 따라 배치되는 복수 개 코일; 및 상기 마그네트의 위치를 센싱하며 광축 방향을 기준으로 서로 이격되어 배치되는 복수 개 감지센서를 포함하며, 상기 복수 개 감지센서 모두는 상기 캐리어가 기준포지션에 위치하는 경우, 상기 마그네트의 자극 중 동일한 하나의 자극에 대향하는 것을 특징으로 한다.

Description

카메라용 액추에이터
본 발명은 카메라용 액추에이터에 관한 것으로서, 더욱 구체적으로는 마그네트와 홀센서 등의 위치 관계를 이용하여 구동 성능을 개선시키는 카메라용 액추에이터에 대한 관한 것이다.
영상 처리에 대한 하드웨어 기술이 발전하고 영상 촬영 등에 대한 사용자 니즈가 높아짐에 따라, 독립된 카메라 장치는 물론, 휴대폰, 스마트폰 등과 같은 모바일 단말에 장착된 카메라 모듈 등에 오토포커스(AF, Auto Focus), 손떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현되고 있다.
또한 최근에는 줌인(Zoom-in) 및 줌아웃(Zoom-out) 기능 등을 통하여 피사체의 크기 등을 다양하게 가변시킬 수 있는 줌렌즈용 액추에이터도 개시되고 있으며, 실시형태에 따라서 복수 개 렌즈(렌즈조립체)의 상호 위치 관계를 조합적으로 적용함으로써 AF 또는/및 줌 기능을 더욱 다양하게 구현하는 액추에이터도 개시되고 있다.
이러한 줌렌즈용 액추에이터의 경우 광축 방향으로 이동하는 줌렌즈의 이동거리(스트로크(stroke)라고도 지칭된다)가 일반 렌즈보다 연장 내지 확장되므로 그 만큼 구동력이 확보되도록 설계되어야 하며 나아가 전체 스트로크 구간에서 줌렌즈의 해당 위치가 정확하게 감지 및 피드백 제어 되도록 설계되어야 한다.
그러나 종래 액추에이터의 경우, 확장된 이동거리에 적합하도록 이동체인 캐리어(렌즈 또는 렌즈 모듈 장착)의 형상이나 구조만을 단순히 물리적으로 변경하거나 구동력의 증강을 위하여 상대적으로 큰 크기의 마그네트가 장착되는 정도의 설계 변경만 적용되고 있다.
한편, 홀센서는 대면(대향)하는 마그네트(캐리어에 장착됨)가 발생하는 자기장의 극성 및 그 크기의 증가 또는 감소가 선형적으로 감지하도록 설계되어야 위치 감지 및 이를 이용한 피드백 제어를 정밀하게 구현할 수 있다.
그러나 종래 액추에이터의 경우, 감지센서(홀센서, hall sensor)를 적당한 위치에 배치시키는 일반화된 방식만이 적용되고 있어 확장된 이동범위의 전체 구간에서 해당 캐리어(렌즈)의 위치를 정확하게 감지하고 이를 피드백 제어에 활용함으로써 줌 구동 액추에이터의 구동 성능을 정밀하게 구현하는데 한계가 있다고 할 수 있다.
이러한 관점에서 볼 때, 위치 감지 등에 작은 오차가 발생하는 경우, 미시적 움직임만이 이루어지는 액추에이터에서는 그 파급력이 크지 않을 수 있으나, 줌 구동 액추에이터에서는 마그네트의 이동 거리가 확장됨에 따라 작은 오차가 전체 기능의 구동 성능을 현저히 저하시킬 수 있어 이에 대한 더욱 정밀하고 정교한 설계가 필요하다고 할 수 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 마그네트, 홀센서(감지센서) 그리고 코일의 상호 위치 관계를 정밀하게 적용함으로써 확장된 스트로크 전체 범위에서 구동 효율성과 정밀성을 더욱 향상시킬 수 있는 카메라용 액추에이터를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 카메라용 액추에이터는 하나 이상의 렌즈가 탑재되며 광축 방향으로 이동하는 캐리어; 상기 캐리어에 구비되는 마그네트; 상기 캐리어를 수용하는 하우징; 상기 마그네트와 대면하며 광축을 따라 배치되는 복수 개 코일; 및 상기 마그네트의 위치를 센싱하며 광축 방향을 기준으로 서로 이격되어 배치되는 복수 개 감지센서를 포함할 수 있으며, 상기 복수 개 감지센서 모두는 상기 캐리어가 기준포지션에 위치하는 경우, 상기 마그네트의 자극 중 동일한 하나의 자극에 대향하도록 구성될 수 있다.
또한, 본 발명의 상기 복수 개 감지센서는 상기 복수 개 코일 중 하나의 코일 내부에 전부 구비되도록 구성되는 것이 바람직하다.
여기에서, 본 발명의 상기 기준포지션은 상기 캐리어가, 상기 캐리어의 이동가능 영역인 가동영역의 일단에 위치하는 포지션일 수 있다.
바람직하게, 본 발명의 상기 복수 개 감지센서 모두는 상기 캐리어가 상기 가동영역의 타단에 위치하는 경우, 상기 마그네트의 자극 중 동일한 하나의 자극에 대향하되, 그 자극은 상기 캐리어가 상기 가동영역의 일단에 위치하는 경우 상기 복수 개 감지센서 모두가 대향하는 자극과 극성이 다르도록 구성될 수 있다.
구체적으로 본 발명의 상기 마그네트는 가운데 부분에 위치하며 N극 또는 S극 중 하나로 이루어지는 미들자극; 및 상기 미들자극과 반대 극성을 가지며 광축 방향을 기준으로 상기 미들자극의 상부 및 하부에 각각 위치하는 상부자극 및 하부자극을 포함할 수 있다.
더욱 바람직하게, 상기 캐리어가 상기 기준포지션에 위치하는 경우, 상기 복수 개 코일 중 광축을 기준으로 상부에 위치한 상부코일의 하부 및 광축을 기준으로 하부에 위치한 하부코일의 상부는 상기 미들자극에 대면하도록 구성될 수 있다.
본 발명의 바람직한 일 실시예에 의할 때, 구동용 마그네트의 위치를 감지하는 감지센서(홀센서)가 복수 개로 배치되되, 마그네트의 가동구간 내지 가동영역의 위치적 특성에 기초하여, 마그네트의 자극 중 동일한 하나의 자극에 모두 대향하는 위치에 복수 개 감지센서가 배치됨으로써 복수 개 감지센서가 출력하는 각 신호의 선형적 특성 구간을 정확히 시계열적으로 반영할 수 있고 나아가 이들 신호의 연산 처리 결과 또한, 더욱 명확한 선형성을 가지도록 유도할 수 있어 확장된 가동영역 전체에 대한 더욱 정교한 피드백 제어를 구현할 수 있다.
본 발명의 바람직한 일 실시예에 의할 때, 캐리어에 구비되는 마그네트와 이 마그네트와 대면하도록 배치되는 코일 사이의 상호 위치 관계를 개선시킴으로써 캐리어의 이동구간 전체에 걸쳐 구동력을 정확하게 발생시킬 수 있어 캐리어 이동에 대한 동작 특성은 물론, 구동 정밀성을 효과적으로 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 바람직한 일 실시예에 의한 액추에이터 및 카메라 모듈의 전체적인 구성을 도시한 도면,
도 2는 본 발명의 바람직한 일 실시예에 의한 액추에이터의 전체적인 구성을 도시한 도면,
도 3은 본 발명의 일 실시예에 의한 캐리어 및 이와 관련된 구성을 도시한 도면,
도 4는 본 발명의 일 실시예에 의한 캐리어의 상세 구성을 도시한 도면,
도 5는 코일, 마그네트 및 홀센서(감지센서)의 구조적 상호 관계를 도시한 도면,
도 6은 스타트 포지션을 기준으로 코일, 마그네트 및 홀센서 사이의 상호 관계를 도시한 도면,
도 7은 엔드 포지션을 기준으로 코일, 마그네트 및 홀센서 사이의 상호 관계를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 일 실시예에 의한 카메라용 액추에이터(이하 '액추에이터'라 지칭한다)(100) 및 카메라 모듈(1000)의 전체적인 구성을 도시한 도면이다.
본 발명의 액추에이터(100)는 자체로서 단일의 장치로 구현될 수 있음은 물론이며, 도 1에 도시된 바와 같이 반사계 모듈(200) 등이 포함되는 카메라 모듈(1000)로도 구현될 수 있다.
본 발명의 액추에이터(100)는 후술되는 바와 같이 렌즈(렌즈조립체)가 탑재된 캐리어를 광축 방향(도면 기준 Z축 방향)으로 선형 이동시켜 자동초점(AF, Auto Focus) 또는 줌(Zoom) 등의 기능을 구현하는 액추에이터에 해당한다.
본 발명에 의한 액추에이터(100)의 상부(도 1의 광축 방향 기준)에 구비될 수 있는 반사계 모듈(200)은 피사체의 빛(light) 경로(Z1)를 렌즈 방향의 경로(Z, 광축방향)로 반사 내지 굴절시키는 기능을 수행한다. 이와 같이 광축 방향으로 반사 내지 굴절된 빛은 캐리어(120)에 구비되는 렌즈(렌즈조립체)(50, 55, 60, 70)를 거쳐 CMOS, CCD 등과 같은 이미지센서(30)로 유입된다.
빛의 경로를 변경시키는 반사계 모듈(200)은 미러(mirror) 또는 프리즘(prism) 중 선택된 하나 또는 이들의 조합으로 이루어질 수 있는 반사계(210)를 포함할 수 있다. 이 반사계(210)는 외계에서 유입되는 빛을 광축 방향으로 변경시킬 수 있는 다양한 부재에 의하여 구현될 수 있으나, 광학적 성능을 향상시키기 위하여 유리(glass) 재질로 구현하는 것이 바람직하다.
반사계 모듈(200) 등이 함께 포함되는 본 발명의 카메라 모듈(1000)은 빛의 경로를 굴절시켜 빛이 렌즈 방향으로 유입되도록 구성되므로 장치 자체를 휴대 단말(스마트폰 등)의 두께 방향으로 설치하지 않고 길이 방향으로 설치할 수 있어 휴대 단말의 두께를 증가시키지 않아 휴대 단말의 소형화 내지 슬림화 등에 최적화될 수 있다.
실시형태에 따라서, 반사계(210)는 마그네트 및 제3코일(C3)과 같은 자기력을 발생시키는 구동수단 등에 의하여 회전 이동되도록 구성될 수 있다. 이와 같이 반사계(210)가 이동 또는 회전 이동하면, 반사계(210)를 통하여 반사(굴절)되는 피사체의 빛이 ±Y 방향 및/또는 ±X 방향으로 이동하게 되므로 손떨림에 의한 X축 및/또는 Y축 방향 보정이 구현될 수 있다.
반사계 모듈(200)을 통하여 반사된 피사체의 빛은 액추에이터(100) 내부에 구비되는 제1렌즈(60) 및 제2렌즈(70) 등으로 입사되며, 본 발명의 액추에이터(100)에 의하여 제1렌즈(60)와 제2렌즈(70)의 하우징(110) 내 위치(광축 방향 기준)가 조합적으로 조정됨으로써 줌 또는 AF 등의 기능이 구현된다.
실시형태에 따라서 광학적 성능 등을 높이기 위하여 반사계 모듈(200)에서 이미지센서(30)로 향하는 광경로(light path) 상에 고정식 또는 이동식 방식의 추가 렌즈(50, 55)가 배치될 수 있다.
상술한 추가 렌즈(50, 55)는 광학적 스펙과 성능 등에 따라 도면에 도시된 실시예와 그 구비 개수가 구비 위치 등이 다르게 적용될 수 있음은 물론이다.
또한, 도면에는 하나의 하우징(110)에 반사계 모듈(200)이 함께 구비되는 실시예가 도시되어 있으나, 실시형태에 따라서 반사계 모듈(200)은 본 발명에 의한 액추에이터(100)와 물리적으로 이원화되고 이들이 결합하는 형태로 구현될 수 있음은 물론이다.
나아가 도면에는 두 개의 렌즈가 탑재되는 캐리어(120)가 도시되어 있으나 이는 하나의 예시로서, 이와는 다른 개수의 렌즈가 탑재될 수 있음은 물론이며, 실시형태에 따라서 캐리어 또한, 복수 개로 구비될 수 있다.
이하 본 발명의 설명에 있어, 제1렌즈(60) 등으로 빛이 유입되는 경로에 대응되는 방향축을 광축(Z축)으로 정의하며, 이 광축(Z축)과 수직한 두 축을 X축 및 Y축으로 정의한다.
도 2는 본 발명의 바람직한 일 실시예에 의한 액추에이터(100)의 전체적인 구성을 도시한 도면이다.
도 2에 도시된 바와 같이 본 발명의 액추에이터(100)는, 액추에이터(100)의 기본적인 프레임 구조에 해당하며 내부 구성을 수용하는 하우징(110), 캐리어(120), 캐리어(120)에 구비된 마그네트(M1)의 위치를 센싱하는 복수 개 감지센서(H) 및 복수 개 코일(C11, C12) 등을 포함할 수 있다.
캐리어(120)는 도면에 예시된 바와 같이 하나 이상의 렌즈(60, 70)가 탑재되며, 광축 방향(Z축 방향)을 기준으로 선형 이동하는 이동체에 해당하며, 이에 상응하는 상대적 관점에서 하우징(110)은 고정체에 해당한다.
후술되는 바와 같이 캐리어(120)에는 마그네트(M1)가 구비되며 하우징(110)에는 상기 마그네트(M1)와 대면하며 마그네트(M1)에 구동력을 제공하는 코일(C11, C12)이 구비된다.
캐리어(120)의 확장된 가동영역(스트로크, stroke)에 상응할 수 있도록 상기 코일(C1)은 도면에 예시된 바와 같이 광축 방향을 따라 상하로 배치되는 복수 개의 코일(C11, C12)로 구현되는 것이 바람직하다.
또한, 직진성 향상, 틸팅 억제, 구동 효율성 등을 향상시키기 위하여 캐리어(120)의 양측 각각에 마그네트(M1, M2)가 구비되도록 하고, 이들 마그네트 각각에 코일이 대면하도록 구성될 수 있다.
도면을 기준으로 할 때, 제2마그네트(M2)에 대면하는 코일이 제2코일(C21, C22)이며 이 제2코일 또한, 복수 개 코일(C21, C22)로 이루어질 수 있다. 이하 설명에서는 마그네트(M1)와 코일(C1)을 중심으로 본 발명의 실시예를 설명하나, 이원화된 구조(M1, M2, C1, C2)를 가지는 실시예에서도 이와 상응하게 적용될 수 있음은 물론이다.
구동드라이버(미도시)의 제어에 의하여 적절한 크기와 방향의 전원이 코일(C1)로 인가되면 코일(C1)과 마그네트(M1) 사이에 전자기력이 발생하고 이 발생된 전자기력에 의하여 캐리어(120)가 광축 방향으로 진퇴(forward and backward) 이동한다.
이와 같이 캐리어(120)가 광축 방향으로 선형 이동하면, 캐리어에 탑재된 렌즈(60, 70) 또한, 광축 방향으로 선형 이동하게 되므로 이들 렌즈(50, 55, 60, 70)의 상대적인 위치 관계에 의하여 AF 또는 줌 기능이 구현된다.
코일(C1)에서 발생된 전자기력이 외부로 누설되는 것을 방지하고 마그네트(M1) 방향으로 더욱 집중되도록 마그네트(M1)와 대면하는 코일(C1)의 반대 반향에는 금속재질의 요크플레이트(미도시)가 구비될 수 있다.
감지센서(H)는 홀효과(hall effect)를 이용하여 대향하는 방향의 마그네트(M1)에서 발생되는 자기장의 크기와 방향을 감지하고 이에 대응되는 신호를 출력하는 홀센서(Hall sensor)로 구현되는 것이 바람직하다.
캐리어(120)의 광축 방향 이동에 대한 정밀한 위치 감지가 가능하도록 홀센서의 분해능, 홀센서가 출력하는 신호의 선형 구간 특성, 캐리어(120)의 전체 가동영역의 크기(길이) 등을 고려하여 상기 홀센서(H)는 광축 방향을 기준으로 서로 이격되어 배치되는 복수 개로 구비되는 것이 바람직하다. 도면에는 이에 대한 예시로 7개의 홀센서(H1 내지 H7)가 도시되어 있다.
이 경우 구동드라이버는 복수 개 홀센서(H) 각각으로부터 입력된 출력신호를 연산 처리하고 그 결과에 대응하는 크기와 방향의 전원이 코일( C11, C12)로 인가되도록 제어한다.
홀센서(H)의 감지 및 구동드라이버의 제어 프로세싱은, 시계열적이며 연속적인 제어를 통하여 구동 정밀성이 더욱 향상될 수 있도록 피드백 제어를 통하여 순환적으로 적용되도록 구성되는 것이 바람직하다.
구동드라이버는 독립된 전자 부품, 소자 등으로 구현될 수도 있음은 물론이나 SOC(System On Chip) 등을 통하여 홀센서(H)와 통합된 단일 전자부품(chip)의 형태로 구현될 수 있음은 물론이다.
또한, 코일(C11, C12), 홀센서(H1~H7) 등은 외부 모듈, 전원부, 외부 장치 등과 전기적으로 인터페이싱(interfacing)되는 회로기판(FPCB)(미도시) 상에 실장될 수 있음은 물론이다.
도 3 및 도 4는 본 발명의 일 실시예에 의한 캐리어(120) 및 이와 관련된 구성을 도시한 도면이다.
앞서 기술된 바와 같이 본 발명의 캐리어(120)는 하우징(110)을 기준으로 광축으로 선형 이동하는 이동체로서 도 3에 예시된 바와 같이, 제1렌즈(60) 또는 제2렌즈(70)가 착탈식으로 결합되도록 하는 슬라이딩 홈부가 구비될 수 있다.
캐리어(120)가 최소화된 마찰력으로 더욱 유연하게 선형 이동할 수 있도록 캐리어(120)와 하우징(110) 사이에는 볼(B)이 배치되는 것이 바람직하다.
실시형태에 따라서 캐리어(120)의 하부에 구비된 가이드레일(121)과 하우징(110)의 바닥면에 구비된 홈부레일(111) 사이에 볼(B)이 배치될 수 있는데, 선형적 이동에 대한 효과적인 가이딩이 구현되도록 볼(B)은 가이드레일(121) 또는/및 홈부레일(111) 중 하나 이상에 그 일부가 수용되는 형태가 되도록 구성되는 것이 바람직하다.
이와 같이 볼이 개재되는 경우, 볼의 구름(rolling), 이동(moving), 회전(rotation), 대면 객체와의 점접촉(point-contact) 등에 의한 최소화된 마찰력으로 캐리어(120)가 더욱 유연하게 선형 이동할 수 있고 소음 감소 및 구동력 최소화는 물론, 구동 정밀성 등이 향상되는 장점을 가질 수 있다.
또한, 실시형태에 따라서 캐리어(120)의 하부에는 하우징(110)에 구비되는 금속재질의 요크플레이트(미도시)와 인력을 발생시키는 하나 이상의 흡입마그네트(Ma)가 구비될 수 있다.
이와 같이 요크플레이트와 흡입마그네트(Ma) 사이에 인력이 발생하면 볼(B)이 매기된 캐리어(이동체)(120)가 하우징(고정체)(110) 방향으로 밀착하게 되므로 볼(B)과 캐리어(120) 사이 그리고 볼(B)과 하우징(110) 사이의 물리적 접촉이 효과적으로 지속될 수 있다.
도 5는 코일(C1), 마그네트(M1) 및 홀센서(H)의 구조적 상호 관계를 도시한 도면이다.
마그네트(M1)는 도면에 예시된 바와 같이 광축 방향으로 연장된 형상을 가지도록 구성되는 것이 바람직하며, 대면하는 코일(C1(C11, C12))과 구동력이 발생되는 영역이 확장될 수 있도록 코일(C1)과 대면하는 자극 파트가 복수 개로 구성되는 것이 바람직하다. 도면에는 이에 대한 예시로 3개의 자극 파트(Part1, Part2, Part3)가 예시되어 있다.
이와 같이 3개의 자극 파트로 마그네트(M1)가 구성되는 경우, 코일(C1)과 대면하는 방향으로 3개의 자극이 노출되며 마그네트(M1)는 전체적으로 6극 착자로 이루어질 수 있다.
도면에 도시된 바와 같이, n(n은 2이상의 자연수)개로 구비되는 본 발명의 홀센서(H)는, 캐리어(120)가 기준포지션에 위치하는 경우, 코일(C1) 방향으로 노출되는 마그네트(M1)의 자극 중 동일한 하나의 자극(이하 '제1기준자극'이라 지칭한다)(도 5 기준, Part1)에 모두 대향하는 위치에 구비되는 것이 바람직하다.
캐리어(120)의 이동을 더욱 정밀하게 제어하기 위하여 캐리어(120)가 특정 디폴트 포지션(default position)에 위치하도록 한 후, 줌 기능 등이 개시되거나 활성화되도록 구성될 수 있다.
예를 들어, 탄성 수단 또는 자력 수단 등에 의한 복원력을 이용하여 캐리어(120)가 줌 기능 등이 종료되는 경우 특정 위치(디폴트 포지션)로 복원되도록 구성될 수 있다.
또한, 코일과 마그네트 사이의 전자기력 제어를 통하여, 줌 기능이 종료되는 경우, 자체 점검 알고리즘이 실행되는 경우 또는 구동개시신호가 입력되는 등의 경우에 캐리어(120)가 디폴트포지션으로 이동하도록 구성될 수 있다.
본 발명의 기준포지션은 이와 같이 줌 기능 등이 활성화 내지 개시되는 경우 그 시작이 이루어지는 디폴트 포지션 등을 포함하여 다양하게 정해질 수 있다.
다만, 구동 관계를 명확하게 하고, 선형적 제어에 대한 효율성 등을 더욱 극대화하기 위하여 상기 기준포지션은 캐리어(120)가, 캐리어(120)의 이동 가능한 영역(가동영역) 중 양측의 끝부분 중 하나에 위치하는 포지션으로 설정되는 것이 바람직하다.
이와 같이 모든 홀센서(H1~H7)가 디폴트 포지션 등의 기준포지션에서 하나의 동일한 자극(예를 들어, N극)에 대향하는 경우, 코일(C1)과 마그네트(M1) 사이의 구동력에 의하여 캐리어(120) 즉, 마그네트(M1)가 광축 방향으로 이동하는 경우, 마그네트(M1)의 이동 변위에 따라 각 홀센서(H)가 출력하는 신호 체계 중 선형(예를 들어, 증가 또는 감소하는 1차 함수)을 이루는 신호 구간이 더욱 뚜렷하게 구분될 수 있어 구동 제어의 정밀성을 높일 수 있다.
또한 이와 같이 구성되면, n개 홀센서(예를 들어, H1~H7) 각각의 신호체계를 연산(예를 들어, 합산)하여 통합 신호체계를 생성하고 이를 피드백 제어에 적용하는 경우, 통합 신호체계가, 캐리어(120)의 이동에 따른 변위를 독립변수로 하며 증가 또는 감소의 기울기를 가지는 1차 함수(선형 그래프)에 실질적으로 대응되도록 효과적으로 유도할 수 있다.
이러한 복수 개 홀센서(H)와 마그네트(M1) 자극 사이의 관계를 더욱 효과적으로 구현하기 위하여 도면에 도시된 바와 같이 복수 개 홀센서(H) 모두는 마그네트(M1)에 구동력을 제공하는 복수 개 코일(C1, C2) 중 하나의 코일(도면 기준, C11) 내부(권선 내부)에 전부 구비되는 것이 바람직하다.
도 6은 스타트 포지션(start position)을 기준으로 코일(C1), 마그네트(M1) 및 홀센서(H)의 구체적인 상호 관계를 도시한 도면이다. 도 6에 도시된 각 구성의 위치 관계는 앞서 설명된 바와 같이 기준포지션이 줌 구동이 개시되는 시작 지점인 경우의 위치 관계에 해당한다.
코일(C11, C12)은 주로 권선되는 형태로 이루어지므로 그 형상이 트랙 형상을 가지며, 대면하는 마그네트(M1)와의 관계에서 광축 방향(Z축 방향)과 수직한 방향을 가지는 영역에서 구동력이 발생한다.
이하 설명에서 코일(C11, C12) 각각의 트랙 형상 중 광축 방향과 수직한 방향을 이루는 두 영역 중 상부(광축 방향 기준) 영역을 상부 파트(U)라 지칭하며, 하부 영역을 하부 파트(D)라 지칭한다.
또한, 코일(C11, C12) 중 광축 방향을 기준으로 상부 내지 상위에 위치한 코일을 상부코일(C11), 하부에 위치한 코일을 하부코일(C22)로 지칭한다. 환언하면, m(m은 2이상의 자연수)개 코일에서 서로 인접한 2개의 코일 중 상부에 위치한 코일이 상부코일, 상부코일보다 하부에 위치하는 코일이 하부코일이 된다.
마그네트(M1)의 자극(코일과 대면하는 자극)은 2개 이상이면 줌 기능을 구현할 수 있으나, 상위코일(C11) 중 구동력이 발생되는 영역(U, D)은 물론, 하위코일(C12) 중 구동력이 발생되는 영역(U, D) 즉, 4영역(도면에 예시된 실시예 기준)에서 구동력이 모두 발생될 수 있도록 마그네트(M1)의 자극(코일과 대면하는 자극)은 3개 이상이 되도록 구성되는 것이 바람직하다.
구체적으로 마그네트(M1)는 가운데 부분에 위치하며 N극 또는 S극 중 하나로 이루어지는 미들자극(part 2), 미들자극(part 2)과 반대 극성을 가지며 광축 방향을 기준으로 상부에 위치하는 상부자극(part 1) 및 미들자극(part 2)과 반대 극성을 가지며 광축 방향을 기준으로 하부에 위치하는 하부자극(part 3)을 가지도록 구성될 수 있다.
이 경우 복수 개 코일(C1) 중 상부코일(C11)의 하부(D(C11)) 및 하부코일(C12)의 상부(U(C12))는 기준포지션에서 미들자극(part2)에 동시에 대면하도록 구성되는 것이 바람직하다.
상술된 본 발명에 의한 복수 개 홀센서(H, H1~H7) 모두는 마그네트(M1)의 자극 중 최상위(광축 기준)에 해당하는 자극(part1, 도면 기준 N극)인 제1기준자극에 모두 대향하는 위치로서, 상부코일(C11)의 권선 내부공간에 배치된다.
복수 개 홀센서(H, H1~H7)는 마그네트(M1)의 자극 중 동일한 하나의 자극에 모두 대향하면 되므로 실시형태에 따라서, 복수 개 홀센서(H, H1~H7)는 앞서 설명된 실시예와 같이 최상위자극(part1)이 아닌, 미들자극(part 2, 도면 기준 S극)과 모두 대향할 수 있는 위치에 배치될 수도 있음은 물론이다.
이 경우 복수 개 홀센서(H, H1~H7))는 하부코일(C12)의 내부공간 또는 하부코일(C12)의 인접 영역에 배치될 수 있다.
도 7은 엔드 포지션(end position)을 기준으로 코일(C1), 마그네트(M1) 및 홀센서(H)의 구체적인 상호 관계를 도시한 도면이다.
도 6에 예시된 스타트 포지션이 캐리어(120)가, 캐리어(120)의 이동가능 영역(가동영역)의 일단에 위치하는 포지션이라면, 도 7의 엔드 포지션은 캐리어(120)가 가동영역의 타단에 위치하는 포지션에 해당한다.
이와 같이 캐리어(120)가 가동영역의 타단에 위치하는 경우, 복수 개 감지센서(홀센서)(H, H1~H7) 모두는 마그네트(M1)의 자극 중 동일한 하나의 자극으로서 상기 제1기준자극과 극성이 다른 자극에 대향하도록 구성된다.
복수 개 감지센서(H, H1~H7) 모두가 스타트 포지션에서 상부코일(C11) 내부 등에 위치하고 마그네트(M1)의 자극 중 최상위 자극(N극)에 대향하였다면, 엔드 포지션에 캐리어(120)가 위치하는 경우, 복수 개 감지센서((H, H1~H7) 모두는 마그네트(M1)의 자극 중 미들자극(part2)인 S극에 대향하도록 구성된다.
도면에 도시된 실시예를 기준으로 할 때, 마그네트(M1)의 일 자극(part1, part2, part3)의 평균 길이(광축 방향 기준)는 캐리어(120)의 가동영역의 크기 내지 길이와 대응되도록 설계되고, 복수 개 홀센서(H1~H7)가 배치되는 전체 길이(광축 방향 기준) 즉, H1에서 H7까지의 거리는 마그네트(M1)의 일 자극의 길이보다 작게 설계되는 것이 바람직하다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1 및 제2 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.

Claims (6)

  1. 하나 이상의 렌즈가 탑재되며 광축 방향으로 이동하는 캐리어;
    상기 캐리어에 구비되는 마그네트;
    상기 캐리어를 수용하는 하우징;
    상기 마그네트와 대면하며 광축을 따라 배치되는 복수 개 코일; 및
    상기 마그네트의 위치를 센싱하며 광축 방향을 기준으로 서로 이격되어 배치되는 복수 개 감지센서를 포함하고,
    상기 복수 개 감지센서 모두는,
    상기 캐리어가 기준포지션에 위치하는 경우, 상기 마그네트의 자극 중 동일한 하나의 자극에 대향하는 것을 특징으로 하는 카메라용 액추에이터.
  2. 제1항에 있어서, 상기 복수 개 감지센서는,
    상기 복수 개 코일 중 하나의 코일 내부에 전부 구비되는 것을 특징으로 하는 카메라용 액추에이터.
  3. 제1항에 있어서, 상기 기준포지션은,
    상기 캐리어가, 상기 캐리어의 이동가능 영역인 가동영역의 일단에 위치하는 포지션인 것을 특징으로 하는 카메라용 액추에이터.
  4. 제3항에 있어서, 상기 복수 개 감지센서 모두는,
    상기 캐리어가 상기 가동영역의 타단에 위치하는 경우, 상기 마그네트의 자극 중 동일한 하나의 자극에 대향하되, 그 자극은 상기 캐리어가 상기 가동영역의 일단에 위치하는 경우 상기 복수 개 감지센서 모두가 대향하는 자극과 극성이 다른 것을 특징으로 하는 카메라용 액추에이터.
  5. 제1항에 있어서, 상기 마그네트는,
    가운데 부분에 위치하며 N극 또는 S극 중 하나로 이루어지는 미들자극; 및
    상기 미들자극과 반대 극성을 가지며 광축 방향을 기준으로 상기 미들자극의 상부 및 하부에 각각 위치하는 상부자극 및 하부자극을 포함하는 것을 특징으로 하는 카메라용 액추에이터.
  6. 제5항에 있어서,
    상기 캐리어가 상기 기준포지션에 위치하는 경우, 상기 복수 개 코일 중 광축을 기준으로 상부에 위치한 상부코일의 하부 및 광축을 기준으로 하부에 위치한 하부코일의 상부는 상기 미들자극에 대면하는 것을 특징으로 하는 카메라용 액추에이터.
PCT/KR2023/002739 2022-03-29 2023-02-27 카메라용 액추에이터 WO2023191318A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013232.8A CN118355321A (zh) 2022-03-29 2023-02-27 相机用致动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220038632A KR20230140031A (ko) 2022-03-29 2022-03-29 카메라용 액추에이터
KR10-2022-0038632 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023191318A1 true WO2023191318A1 (ko) 2023-10-05

Family

ID=88203111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002739 WO2023191318A1 (ko) 2022-03-29 2023-02-27 카메라용 액추에이터

Country Status (3)

Country Link
KR (1) KR20230140031A (ko)
CN (1) CN118355321A (ko)
WO (1) WO2023191318A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001836A1 (en) * 2009-07-06 2011-01-06 Hon Hai Precision Industry Co., Ltd. Actuator and anti-vibration camera module using same
KR101343197B1 (ko) * 2012-09-07 2013-12-19 삼성전기주식회사 카메라 모듈
US20160202494A1 (en) * 2013-09-30 2016-07-14 Hysonic Co., Ltd Camera actuator for portable terminal having autofocusing and image stabilization functions
KR101709833B1 (ko) * 2014-03-12 2017-02-23 삼성전기주식회사 카메라 모듈 및 카메라 모듈의 자동초점조정 방법
KR20210026212A (ko) * 2019-08-29 2021-03-10 자화전자(주) 카메라 액추에이터 및 이를 포함하는 소형 카메라

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001836A1 (en) * 2009-07-06 2011-01-06 Hon Hai Precision Industry Co., Ltd. Actuator and anti-vibration camera module using same
KR101343197B1 (ko) * 2012-09-07 2013-12-19 삼성전기주식회사 카메라 모듈
US20160202494A1 (en) * 2013-09-30 2016-07-14 Hysonic Co., Ltd Camera actuator for portable terminal having autofocusing and image stabilization functions
KR101709833B1 (ko) * 2014-03-12 2017-02-23 삼성전기주식회사 카메라 모듈 및 카메라 모듈의 자동초점조정 방법
KR20210026212A (ko) * 2019-08-29 2021-03-10 자화전자(주) 카메라 액추에이터 및 이를 포함하는 소형 카메라

Also Published As

Publication number Publication date
KR20230140031A (ko) 2023-10-06
CN118355321A (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
WO2018066775A2 (ko) Ois를 위한 반사계 구동장치
WO2018117414A1 (ko) 비대칭 지지 구조의 자동초점 조절장치
WO2019177206A1 (en) Image acquisition device
WO2015060637A1 (ko) 카메라 렌즈 모듈
WO2015133725A1 (ko) 카메라 렌즈 모듈
WO2017105010A1 (ko) 광학용 액추에이터
WO2017155214A1 (ko) 3위치 지지구조의 자동초점 조절장치
WO2020101135A1 (ko) 광학계 구동장치, 광학계 위치제어장치 및 위치제어방법
WO2018135732A1 (ko) 와이어를 이용한 ois용 반사계 구동장치
WO2019151772A1 (ko) 카메라 모듈
KR20110080590A (ko) 흔들림 보정 모듈 및 이를 구비하는 카메라 모듈
WO2021206469A1 (ko) 반사계 액추에이터 및 이를 포함하는 카메라 모듈
KR20200012421A (ko) 모듈 결합형 카메라용 액추에이터
WO2018147534A1 (ko) 반사계 지지장치
WO2022102934A1 (ko) 줌 구동 액추에이터
CN117616764A (zh) 转动机构及其摄像模组、驱动装置及其电子设备
WO2022154243A1 (ko) 줌 구동 액추에이터
KR20240125534A (ko) 줌 구동 액추에이터
WO2021040232A1 (ko) 카메라 액추에이터 및 이를 포함하는 소형 카메라
WO2023027313A1 (ko) 카메라용 액추에이터
WO2021158033A1 (ko) 프리즘 액츄에이터
WO2020251203A1 (ko) 렌즈 어셈블리 구동 장치 및 이를 포함하는 카메라 모듈
WO2023191318A1 (ko) 카메라용 액추에이터
WO2022191521A1 (ko) 센서 구동 액추에이터 및 이를 포함하는 카메라 모듈
WO2022197056A1 (ko) 슬림형 액추에이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18294624

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202380013232.8

Country of ref document: CN