WO2023191164A1 - Conductor for acoustic cable and acoustic cable comprising same - Google Patents

Conductor for acoustic cable and acoustic cable comprising same Download PDF

Info

Publication number
WO2023191164A1
WO2023191164A1 PCT/KR2022/005047 KR2022005047W WO2023191164A1 WO 2023191164 A1 WO2023191164 A1 WO 2023191164A1 KR 2022005047 W KR2022005047 W KR 2022005047W WO 2023191164 A1 WO2023191164 A1 WO 2023191164A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
acoustic cable
acoustic
cable
layer
Prior art date
Application number
PCT/KR2022/005047
Other languages
French (fr)
Korean (ko)
Inventor
최홍석
양훈철
고현진
박경원
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2023191164A1 publication Critical patent/WO2023191164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect

Definitions

  • the present invention relates to a conductor for an acoustic cable and an acoustic cable containing the same. More specifically, the conductor structure is modified to minimize the skin effect that occurs between resistance and frequency, thereby maximizing the acoustic signal transmission effect. It relates to a conductor for an acoustic cable that can simultaneously improve sound quality and an acoustic cable containing the same.
  • a speaker cable is a cable that connects an audio device, such as an audio amplifier, to a speaker, and is characterized by its simple structure, unlike the interconnector cable, which has a somewhat complicated structure.
  • speaker cables are manufactured as a collection or composite structure of small wire diameters of conductors.
  • the conductors that make up speaker cables are known to generate skin effect in the low frequency range due to their small wire diameters and affect signal loss.
  • the conductors that make up speaker cables generally use oxygen-free copper with a low oxygen content.
  • the small wire diameter conductor undergoes process annealing by passing it through a high-temperature pipe in order to reduce the stress caused by work hardening that occurs during wire drawing and assembly during the manufacturing process.
  • process annealing has a short exposure time due to the speed of conductor production, it is only a softening level of the material in which recovery and recrystallization occur during the three stages of annealing, that is, recovery, recrystallization, and grain growth.
  • the sound quality of acoustic products is influenced by the size of the crystal grains, and the larger the grain size, the more advantageous it is for signal transmission.
  • conductors manufactured using existing processes cannot change the grain size, so there is a limit to improving sound quality.
  • Patent Document 1 Korean Registered Utility Model No. 20-0427316 (registered on September 18, 2006)
  • the technical problem to be achieved by the present invention is to provide a conductor for an acoustic cable that can maximize the signal transmission effect and improve sound quality by applying a conductor structure that reduces the skin effect and post-annealing heat treatment.
  • the purpose is to present an acoustic cable including this.
  • the present invention relates to a conductor for an acoustic cable, wherein the conductor includes a central conductor layer formed by twisting one or more plurality of conductor wires; and a plurality of wires are twisted to form a collective conductor, a plurality of the collective conductors are twisted to form a composite conductor, and a peripheral conductor layer surrounding the central conductor layer is provided.
  • the present invention provides a conductor for an acoustic cable, wherein the central conductor layer is formed of 1 to 7 conductor wires.
  • the present invention provides a conductor for an acoustic cable, wherein the conductor has an average grain size of 30 ⁇ m to 150 ⁇ m.
  • the present invention provides a conductor for an acoustic cable, characterized in that the conductor has the highest peak value (Intensity) in the (111) crystal orientation when analyzing X-ray diffraction (XRD). do.
  • the present invention is an acoustic cable, characterized in that the conductor is post-annealed in the range of 500 °C to 650 °C in a vacuum heat treatment furnace after joining the peripheral conductor layer to the central conductor layer. Provides a conductor.
  • the present invention provides a conductor for an acoustic cable, wherein the post-annealing is performed for 2 to 4 hours.
  • the present invention is a conductor for an acoustic cable, characterized in that the conductor is grown from oxygen-free copper having an average grain size of 10 ⁇ m to 20 ⁇ m to an average grain size of 30 ⁇ m to 150 ⁇ m through the post annealing. provides.
  • the present invention provides a conductor for an acoustic cable, wherein the conductor wire has a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2.
  • the present invention provides a conductor for an acoustic cable, wherein the wire is composed of either a Class 5 wire of 0.41 mm or less or a Class 6 wire of 0.21 mm or less.
  • the twist pitch of the plurality of conductor wires of the central conductor layer is 10 to 20 times the layer core diameter of the central conductor layer
  • the twist pitch of the plurality of wires of the aggregate conductor is equal to the outer diameter of the aggregate conductor. 10 to 20 times
  • the twist pitch of the composite conductor is 10 to 20 times the outer diameter of the composite conductor.
  • the present invention includes the above-described conductor; a semiconducting layer surrounding the conductor; and a sheath layer surrounding the semiconducting layer.
  • the present invention provides an acoustic cable, characterized in that the acoustic cable is one selected from the group consisting of speakers, power cords, interconnectors, and speaker jumper cables.
  • the conductor by forming the conductor into a central conductor layer made of thick wire diameters and a peripheral conductor layer made of thin wires, there is an effect of providing a conductor for an acoustic cable that secures conductivity in a low frequency region and an acoustic cable including the same.
  • conductivity in the low-frequency region is secured by the central conductor layer formed by thick wire diameters, and by arranging collective conductors made of thin wires in the outer layer, flexibility can be increased and skin effect can be suppressed, thereby increasing signal
  • FIG. 1 is a cross-sectional view of an acoustic cable according to a preferred embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a conductor applied to an acoustic cable according to a preferred embodiment of the present invention.
  • FIGS. 3A and 3B are diagrams showing the results of measuring the microstructure of the conductor shown in FIG. 2 under various conditions.
  • FIG. 4 is a diagram showing the results of measuring hardness of the conductor shown in FIG. 2 under various conditions.
  • FIG. 5 is a diagram showing the results of measuring wire resistance under various conditions for the conductor shown in FIG. 2.
  • FIG. 6 is a diagram showing the results of XRD analysis measured under various conditions for the conductor shown in FIG. 2.
  • Figure 7 is a diagram showing an example in which an acoustic cable according to a preferred embodiment of the present invention is applied.
  • Figure 8 is a diagram showing an example of the configuration of a measurement system for measuring sound quality characteristics of an acoustic cable according to a preferred embodiment of the present invention.
  • FIG. 9 is a diagram illustrating examples and comparative examples of a measurement system for measuring sound quality characteristics of an acoustic cable according to FIG. 8.
  • any element, component, device, or system is said to contain a component consisting of a program or software, even if explicitly stated, that element, component, device, or system is not intended to allow that program or software to run or operate. It should be understood as including hardware (e.g., memory, CPU, etc.) or other programs or software (e.g., operating system or drivers required to run the hardware) required to run the computer.
  • hardware e.g., memory, CPU, etc.
  • other programs or software e.g., operating system or drivers required to run the hardware
  • FIG. 1 is a cross-sectional view of an acoustic cable according to a preferred embodiment of the present invention.
  • the acoustic cable 10 consists of a conductor 100, a semiconducting layer 200 surrounding the conductor, and a sheath layer 300 surrounding the semiconducting layer 200.
  • the conductor 100 is located at the center of the acoustic cable 10 and includes a central conductor layer and a peripheral conductor layer. The structure of the conductor 100 will be described in more detail in FIG. 2 described later.
  • conductors used in acoustic cables were manufactured as a collection of small wire diameters or as a composite structure.
  • signal loss occurred along with skin effect occurring in the low frequency region.
  • FIG. 2 which will be described later, problems caused by the existing conductor formed as a set of small wire diameters or a complex structure are solved.
  • the semiconducting layer 200 is formed between the conductor 100 and the sheath layer 300. Since the semiconducting layer 200 is formed from a resin containing some carbon-containing compounds, when applied to the acoustic cable 10, problems such as poor sound quality due to signal distortion that may occur in a fine signal band or low signal area can be solved. It can supplement the shielding function and supplement the signal transmission amount of the conductor 100 in the core portion.
  • the semiconducting layer 200 is not particularly limited, but may be formed, for example, from a semiconducting layer composition containing polyethylene-based resin or polyolefin-based resin as a base resin. Additionally, if necessary, the semiconducting layer composition may include various additional components, for example, additives such as antioxidants, UV stabilizers, crosslinking agents, and crosslinking aids.
  • the sheath layer 300 is intended to protect the semiconducting layer 200, and may be formed of a cable sheath composition.
  • the composition for the cable sheath is not particularly limited, but must be able to satisfy the physical properties required for the layer forming the outermost layer of the acoustic cable 10, so, for example, the base resin and other additional resins can be used alone. Or, it may be a polymer resin composition that is a mixture of two or more types.
  • the volume cable 10 according to the present invention may further include other additives in addition to the components described above.
  • Other additives include high molecular weight wax, low molecular weight wax, polyolefin wax, paraffin wax, paraffin oil, metallic soap, organic silicone, fatty acid ester, fatty acid amide, fatty alcohol, strengthening agent, mold release agent, UV absorber, stabilizer, colorant, dye, It may be one or more selected from the group consisting of colorants, antistatic agents, foaming agents, and metal deactivators.
  • Figure 2 is a cross-sectional view of a conductor applied to an acoustic cable according to a preferred embodiment of the present invention.
  • the conductor 100 shown in FIG. 2 specifically shows the conductor 100 located at the center of the acoustic cable 10 shown in FIG. 1.
  • the conductor 100 consists of a central conductor layer 110 and a peripheral conductor layer 120 surrounding the central conductor layer 110.
  • the central conductor layer 110 consists of a plurality of conductor lines 112.
  • the central conductor layer 110 may be formed by twisting one or more conductor wires 112.
  • the central conductor layer 110 consisting of four conductor wires 112 is shown, but this This is only an example, and the central conductor layer 110 may be composed of 1 to 7 conductor lines 112.
  • the conductor line 112 may have an average grain size of 30 ⁇ m to 150 ⁇ m. Additionally, the conductor wire 112 can be used by growing oxygen-free copper having an average grain size of 10 ⁇ m to 20 ⁇ m to an average grain size of 30 ⁇ m to 150 ⁇ m through a post annealing process.
  • the conductor wire 112 may have a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2. That is, a thick small-diameter conductor having a nominal cross-sectional area in the above-mentioned range is used as the conductor wire 112. Thereby, conductivity in the low-frequency region for the present acoustic cable 10 is ensured.
  • the peripheral conductor layer 120 is arranged to surround the central conductor layer 110.
  • a plurality of wires are twisted to form a collective conductor 122, and then the plurality of collective conductors are twisted to form a composite conductor 124. It is achieved by forming.
  • the wire constituting the collective conductor 122 may be composed of either a Class 5 wire of 0.41 mm or less or a Class 6 wire of 0.21 mm or less.
  • a thick small-wire diameter conductor with a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2 is applied to the central conductor layer 110, and a thin conductor of Class 5 or lower is applied to the peripheral conductor layer 120.
  • conductivity in the low frequency range can be secured.
  • the conductor 100 which is composed of the central conductor layer 110 and the peripheral conductor layer 120, is heated in a vacuum heat treatment furnace in the range of 500 °C to 650 °C after combining the peripheral conductor layer with the central conductor layer.
  • the post-annealing process is preferably performed for 2 to 4 hours.
  • FIGS. 3A and 3B are diagrams showing the results of measuring the microstructure of the conductor shown in FIG. 2 under various conditions.
  • Figure 3a is for comparing the results of measuring the microstructure by changing various environments, and (a) shows the microstructure of OFC (Oxygen-Free Copper) wire drawn. At this time, the grain size of the OFC drawn material was about 10 ⁇ m to 20 ⁇ m, and after post-annealing, it grew to about 30 ⁇ m to 150 ⁇ m.
  • OFC Oxygen-Free Copper
  • results of measuring the microstructure of the OFC drawn material in (a) under various conditions are shown in (b) to (d).
  • (b) is a measurement of the microstructure after annealing the OFC wire
  • (c) is a measurement of the microstructure of the OFC wire after both annealing and cryogenic treatment.
  • (d) is a measurement of the microstructure of OFC drawn material after cryogenic treatment.
  • the microstructure results after cryogenic treatment in (c) showed that no structural changes occurred.
  • the metal In the case of cryogenic treatment, the metal is cooled by immersing it in dry ice or liquid nitrogen, and then rapidly raised to room temperature or around 100°C, and the stress generated inside the metal is converted into stress in the opposite direction (for example, compressive residual stress when the temperature is raised). This is a process that reduces residual stress by changing the generated thermal stress into tensile stress. This is a stress relief technology that is different from grain growth. In other words, although some residual stress has been removed, there is no significant effect because there is no change in the number of grain boundaries that cause loss in signal transmission.
  • FIG. 4 is a diagram showing the results of measuring hardness of the conductor shown in FIG. 2 under various conditions.
  • the hardness after annealing in (b) was found to decrease by 45%.
  • Hardness is unrelated to the performance of the acoustic cable 10. In other words, even if the hardness is lowered, problems with the acoustic cable 10 do not occur. Rather, as hardness decreases, there is an advantage in that flexibility and workability improve.
  • FIG. 5 is a diagram showing the results of measuring wire resistance under various conditions for the conductor shown in FIG. 2.
  • (a) is the wire resistance of OFC wire, measured at 18.21m ⁇ /m.
  • (b) is the wire resistance after annealing, measured at 18.043m ⁇ /m.
  • (c) is the wire resistance after annealing and cryogenic treatment and was measured at 18.041m ⁇ /m.
  • (d) is the wire resistance after cryogenic treatment and was measured at 18.14m ⁇ /m.
  • the wire resistance after annealing in (b) was found to decrease by 0.92%. In other words, it can be seen that the conductivity has improved by about 1%.
  • FIG. 6 is a diagram showing the results of XRD analysis measured under various conditions for the conductor shown in FIG. 2.
  • the acoustic cable according to the present invention is an acoustic cable that has undergone the above-described post-annealing process, and when analyzing X-ray diffraction (XRD), the peak position 2 ⁇ value is 40° to 50°. ° range, and the peak position 2 ⁇ value within the range of 40° to 50° may be the (111) peak, which will be described later.
  • XRD X-ray diffraction
  • results of XRD (X-ray diffraction) analysis of OFC fresh material and after annealing are shown in a graph.
  • B is the result for OFC fresh material
  • A is the result after post-annealing.
  • Figure 7 is a diagram showing an example in which an acoustic cable according to a preferred embodiment of the present invention is applied.
  • the acoustic cable (10a, 10b) is composed of a conductor (100) consisting of a central conductor layer (110) and a peripheral conductor layer (120), and a semiconducting layer (200) surrounding the conductor, and is connected to the speakers (20a, 20b). ) is a cable that connects the audio device 30.
  • the audio device 30 may include a power amplifier 32 and a pre-amplifier 34 therein, and the power amplifier 32 and the pre-amplifier 34 are connected by an interconnector cable 36. However, when connecting to the external speakers 20a and 20b of the audio device 30, audio cables 10a and 10b are used.
  • the acoustic cable 10a and 10b can be used for one purpose selected from the group consisting of speakers, power cords, interconnectors, and speaker jumper cables, but is not particularly limited thereto.
  • Figure 8 is a diagram showing an example of the configuration of a measurement system for measuring sound quality characteristics of an acoustic cable according to a preferred embodiment of the present invention.
  • a measurement system as shown was designed to evaluate sound quality characteristics for each sound range.
  • an amplifier and sound source LP, CDP, etc.
  • FIG. 9 is a diagram illustrating examples and comparative examples of a measurement system for measuring sound quality characteristics of an acoustic cable according to FIG. 8.
  • (a) is an example of quality evaluation analysis by sound range of a silver-plated conductor 8AWG
  • (b) is an example of quality evaluation analysis by sound range of the acoustic cable 10 according to the present invention (sound source used: Beethoven Destiny).
  • the results according to the evaluation of (a) and (b) are shown in Table 1 below.
  • the silver-plated speaker cable had a relatively large conductor size and used silver plating with high conductivity, so the signal in the mid-range was excellent, but the signal in the high-pitched range was not detected well, and in the structure according to the present invention, the mid-range signal was excellent.
  • the signal tends to be slightly lower than that of silver-plated products, but the signal is evenly distributed in the low and high registers, and it was confirmed that not only the volume but also the expressiveness is excellent.
  • the present invention compares to the conventional speaker cable (a) using a silver-plated conductor.
  • the intensity (sound pressure level) in low sounds increased as the dark shaded area (high dB area) was distributed more widely and strongly.
  • the conventional silver-plated speaker cable (a) has relatively low signal compared to the speaker cable (b) according to the embodiment of the present invention.
  • the signal width tended to be wide along the axis, it was confirmed that the speaker cable (b) according to the embodiment of the present invention also had good mid-tone signal sensitivity and expressiveness.
  • the signal width of the speaker cable (b) according to the embodiment of the present invention is wider and stronger than that of the conventional silver-plated speaker cable (a). It was confirmed that the speaker cable (b) according to the embodiment of the present invention had a very excellent signal strength even in the high-pitched sound range.

Landscapes

  • Communication Cables (AREA)

Abstract

The present invention relates to a conductor for an acoustic cable and an acoustic cable including same and, more specifically, to: a conductor for an acoustic cable, by which the effect of transmitting an acoustic signal is maximized and sound quality may be improved, by minimizing occurrence of a skin effect between resistance and frequency by modifying the structure of the conductor; and an acoustic cable including the conductor. In the acoustic cable according to the present invention, the conductor is formed of a central conductor layer with a thick wire diameter and a peripheral conductor layer formed of thin wires, to thereby ensure conductivity in a low-frequency range, and simultaneously with conductivity in a low-frequency range ensured by the central conductor layer formed with a thick wire diameter, the arrangement of an aggregate conductor formed of thin wires on the outer layer enables an increase in flexibility and also suppression of the skin effect. Thus, the present invention has an effect of providing a conductor for an acoustic cable and an acoustic cable including same, which can maximize a signal transmission effect and also improve sound quality.

Description

음향 케이블용 도체 및 이를 포함하는 음향 케이블Conductors for acoustic cables and acoustic cables containing the same
본 발명은 음향 케이블용 도체 및 이를 포함하는 음향 케이블에 관한 것으로서, 보다 상세하게는, 도체 구조를 변형하여, 저항 및 주파수 사이에서 발생하는 표피효과의 발생을 최소화함으로써, 음향 신호 전송 효과를 극대화함과 동시에 음질을 향상시킬 수 있는 음향 케이블용 도체 및 이를 포함하는 음향 케이블에 관한 것이다.The present invention relates to a conductor for an acoustic cable and an acoustic cable containing the same. More specifically, the conductor structure is modified to minimize the skin effect that occurs between resistance and frequency, thereby maximizing the acoustic signal transmission effect. It relates to a conductor for an acoustic cable that can simultaneously improve sound quality and an acoustic cable containing the same.
스피커 케이블(Speaker cable)은, 오디오 앰프 등의 음향 기기와 스피커를 연결하는 케이블로, 다소 복잡한 구조의 인터커넥터 케이블(Interconnector cable)과는 달리 그 구조가 단순한 것이 특징이다.A speaker cable is a cable that connects an audio device, such as an audio amplifier, to a speaker, and is characterized by its simple structure, unlike the interconnector cable, which has a somewhat complicated structure.
일반적으로, 스피커 케이블은 도체의 작은 소선경의 집합 혹은 집복합 구조로 제작된다. 스피커 케이블을 구성하는 도체는 작은 소선경으로 인해 낮은 주파수 영역에서 표피 효과를 발생시키고, 신호 손실에 영향을 미치는 것으로 알려져 있다.Generally, speaker cables are manufactured as a collection or composite structure of small wire diameters of conductors. The conductors that make up speaker cables are known to generate skin effect in the low frequency range due to their small wire diameters and affect signal loss.
스피커 케이블을 구성하는 도체는, 산소 함량이 낮은 무산소동을 사용하는 것이 일반적이다. 이때, 작은 소선경의 도체는 제조 공정 상, 신선과 집합시 발생하는 가공경화에 의한 스트레스를 감소시키기 위해 고온의 파이프 내를 통과시키는 공정 어닐링(Process annealing)을 거치게 된다.The conductors that make up speaker cables generally use oxygen-free copper with a low oxygen content. At this time, the small wire diameter conductor undergoes process annealing by passing it through a high-temperature pipe in order to reduce the stress caused by work hardening that occurs during wire drawing and assembly during the manufacturing process.
그러나, 공정 어닐링은 도체 생산속도 상 노출되는 시간이 짧은 관계로, 어닐링의 3단계 즉, 회복, 재결정, 및 결정립 성장 중 회복, 재결정이 일어나는 재료의 연화 수준에 불과하다.However, because process annealing has a short exposure time due to the speed of conductor production, it is only a softening level of the material in which recovery and recrystallization occur during the three stages of annealing, that is, recovery, recrystallization, and grain growth.
음향용 제품의 음질은 결정립의 사이즈가 영향을 미치는데, 결정립 사이즈가 클수록 신호 전송에 유리하다. 하지만, 기존 프로세스에 의해 제조되는 도체는 결정립 사이즈에 변화를 줄 수 없으므로, 음질 향상에 한계가 있다.The sound quality of acoustic products is influenced by the size of the crystal grains, and the larger the grain size, the more advantageous it is for signal transmission. However, conductors manufactured using existing processes cannot change the grain size, so there is a limit to improving sound quality.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
특허문헌 1: 한국 등록실용신안 제20-0427316호(2006. 09. 18. 등록)Patent Document 1: Korean Registered Utility Model No. 20-0427316 (registered on September 18, 2006)
전술한 문제점을 해결하기 위하여 본 발명이 이루고자 하는 기술적 과제는, 표피 효과를 저감시키는 도체 구조 및 포스트 어닐링 열처리를 적용함으로써, 신호 전송 효과를 극대화시킴은 물론 음질도 향상시킬 수 있는 음향 케이블용 도체 및 이를 포함하는 음향 케이블을 제시하는 데 있다.In order to solve the above-mentioned problems, the technical problem to be achieved by the present invention is to provide a conductor for an acoustic cable that can maximize the signal transmission effect and improve sound quality by applying a conductor structure that reduces the skin effect and post-annealing heat treatment. The purpose is to present an acoustic cable including this.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
전술한 기술적 과제를 해결하기 위한 수단으로서, As a means to solve the aforementioned technical challenges,
본 발명은, 음향케이블용 도체로서, 상기 도체는, 1개 이상의 복수의 도체선이 꼬여서 형성되는 중심 도체층; 및 복수의 소선이 꼬여서 집합도체를 형성하고, 상기 집합도체 복수 개가 꼬여서 복합도체를 이루어 형성되며, 상기 중심 도체층을 둘러싸는 주변 도체층을 포함하는, 음향 케이블용 도체를 제공한다.The present invention relates to a conductor for an acoustic cable, wherein the conductor includes a central conductor layer formed by twisting one or more plurality of conductor wires; and a plurality of wires are twisted to form a collective conductor, a plurality of the collective conductors are twisted to form a composite conductor, and a peripheral conductor layer surrounding the central conductor layer is provided.
또한, 본 발명은, 상기 중심 도체층은, 1개 내지 7개의 도체선으로 형성되는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.Additionally, the present invention provides a conductor for an acoustic cable, wherein the central conductor layer is formed of 1 to 7 conductor wires.
또한, 본 발명은, 상기 도체는, 30㎛ 내지 150㎛의 평균 결정립 크기를 갖는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention provides a conductor for an acoustic cable, wherein the conductor has an average grain size of 30 μm to 150 μm.
또한, 본 발명은, 상기 도체는, X선 회절(X-ray diffraction, XRD) 분석 시, (111) 결정방위에서 가장 큰 피크값(Intensity)을 갖는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention provides a conductor for an acoustic cable, characterized in that the conductor has the highest peak value (Intensity) in the (111) crystal orientation when analyzing X-ray diffraction (XRD). do.
또한, 본 발명은, 상기 도체는, 상기 중심 도체층에 상기 주변 도체층을 연합한 후 진공 열처리로에서 500℃내지 650℃의 범위에서 포스트 어닐링(post annealing)된 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention is an acoustic cable, characterized in that the conductor is post-annealed in the range of 500 ℃ to 650 ℃ in a vacuum heat treatment furnace after joining the peripheral conductor layer to the central conductor layer. Provides a conductor.
또한, 본 발명은, 상기 포스트 어닐링은, 2시간 내지 4시간 동안 수행되는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention provides a conductor for an acoustic cable, wherein the post-annealing is performed for 2 to 4 hours.
또한, 본 발명은, 상기 도체는, 10㎛ 내지 20㎛의 평균 결정립 크기를 갖는 무산소동을 상기 포스트 어닐링을 통해 30㎛ 내지 150㎛의 평균 결정립 크기로 성장시킨 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention is a conductor for an acoustic cable, characterized in that the conductor is grown from oxygen-free copper having an average grain size of 10 ㎛ to 20 ㎛ to an average grain size of 30 ㎛ to 150 ㎛ through the post annealing. provides.
또한, 본 발명은, 상기 도체선은, 0.5㎟ 내지 4.0㎟의 공칭 단면적을 갖는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.Additionally, the present invention provides a conductor for an acoustic cable, wherein the conductor wire has a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2.
또한, 본 발명은, 상기 소선은, 0.41㎜ 이하의 Class 5의 선재 또는 0.21㎜ 이하의 Class 6 선재 중 어느 하나로 구성되는 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, the present invention provides a conductor for an acoustic cable, wherein the wire is composed of either a Class 5 wire of 0.41 mm or less or a Class 6 wire of 0.21 mm or less.
또한, 본 발명은, 상기 중심 도체층의 복수의 도체선의 꼬임 피치는, 상기 중심 도체층의 층심경의 10배 내지 20배이고, 상기 집합 도체의 복수의 소선의 꼬임 피치는, 상기 집합 도체 외경의 10배 내지 20배이며, 상기 복합 도체의 꼬임 피치는, 상기 복합 도체 외경의 10배 내지 20배인 것을 특징으로 하는, 음향 케이블용 도체를 제공한다.In addition, according to the present invention, the twist pitch of the plurality of conductor wires of the central conductor layer is 10 to 20 times the layer core diameter of the central conductor layer, and the twist pitch of the plurality of wires of the aggregate conductor is equal to the outer diameter of the aggregate conductor. 10 to 20 times, and the twist pitch of the composite conductor is 10 to 20 times the outer diameter of the composite conductor.
또한, 본 발명은, 전술한 도체; 상기 도체를 감싸는 반도전층; 및 상기 반도전층을 감싸는 시스층;을 포함하는, 음향 케이블을 제공한다.In addition, the present invention includes the above-described conductor; a semiconducting layer surrounding the conductor; and a sheath layer surrounding the semiconducting layer.
또한, 본 발명은, 상기 음향 케이블은, 스피커용, 파워코드용, 인터커넥터용 및 스피커 점퍼 케이블용으로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는, 음향 케이블을 제공한다.In addition, the present invention provides an acoustic cable, characterized in that the acoustic cable is one selected from the group consisting of speakers, power cords, interconnectors, and speaker jumper cables.
본 발명에 따르면, 도체를 굵은 소선경에 의한 중심 도체층과 얇은 소선에 의한 주변 도체층으로 형성함으로써, 저주파 영역에서 도전성을 확보한 음향 케이블용 도체 및 이를 포함하는 음향 케이블을 제공하는 효과가 있다.According to the present invention, by forming the conductor into a central conductor layer made of thick wire diameters and a peripheral conductor layer made of thin wires, there is an effect of providing a conductor for an acoustic cable that secures conductivity in a low frequency region and an acoustic cable including the same. .
또한, 굵은 소선경에 의해 형성된 중심 도체층에 의해 저주파 영역에서의 도전성을 확보함과 동시에, 외곽층에 얇은 소선으로 형성된 집합도체가 배치됨으로써, 유연성을 높인 동시에 표피 효과를 억제할 수 있어, 신호 전송 효과를 극대화시킴은 물론 음질도 향상시킬 수 있는 음향 케이블용 도체 및 이를 포함하는 음향 케이블을 제공하는 효과가 있다.In addition, conductivity in the low-frequency region is secured by the central conductor layer formed by thick wire diameters, and by arranging collective conductors made of thin wires in the outer layer, flexibility can be increased and skin effect can be suppressed, thereby increasing signal There is an effect of providing a conductor for an acoustic cable and an acoustic cable including the same, which can maximize the transmission effect and improve sound quality.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
첨부된 도면은 해당 기술 분야의 통상의 기술자에게 본 발명의 내용을 보다 상세하게 설명하기 위한 것으로 본 발명의 기술적 사상이 이에 한정되는 것은 아니다.The attached drawings are intended to explain the present invention in more detail to those skilled in the art, and the technical idea of the present invention is not limited thereto.
도 1은, 본 발명의 바람직한 실시예에 따른 음향 케이블의 단면도이다.1 is a cross-sectional view of an acoustic cable according to a preferred embodiment of the present invention.
도 2는, 본 발명의 바람직한 실시예에 따른 음향 케이블에 적용되는 도체의 단면도이다.Figure 2 is a cross-sectional view of a conductor applied to an acoustic cable according to a preferred embodiment of the present invention.
도 3a 및 도 3b는, 도 2에 도시한 도체에 대하여 다양한 조건에서 미세 조직을 측정한 결과를 나타낸 도면이다.FIGS. 3A and 3B are diagrams showing the results of measuring the microstructure of the conductor shown in FIG. 2 under various conditions.
도 4는, 도 2에 도시한 도체에 대하여 다양한 조건에서 경도를 측정한 결과를 나타낸 도면이다.FIG. 4 is a diagram showing the results of measuring hardness of the conductor shown in FIG. 2 under various conditions.
도 5는, 도 2에 도시한 도체에 대하여 다양한 조건에서 선재 저항을 측정한 결과를 나타낸 도면이다.FIG. 5 is a diagram showing the results of measuring wire resistance under various conditions for the conductor shown in FIG. 2.
도 6은, 도 2에 도시한 도체에 대하여 다양한 조건에서 측정한 XRD 분석 결과를 나타낸 도면이다.FIG. 6 is a diagram showing the results of XRD analysis measured under various conditions for the conductor shown in FIG. 2.
도 7은, 본 발명의 바람직한 실시예에 따른 음향 케이블이 적용된 예를 나타낸 도면이다.Figure 7 is a diagram showing an example in which an acoustic cable according to a preferred embodiment of the present invention is applied.
도 8은, 본 발명의 바람직한 실시예에 따른 음향 케이블의 음질 특성 측정을 위한 측정 시스템의 구성 예를 도시한 도면이다.Figure 8 is a diagram showing an example of the configuration of a measurement system for measuring sound quality characteristics of an acoustic cable according to a preferred embodiment of the present invention.
도 9는, 도 8에 의한 음향 케이블의 음질 특성 측정을 위한 측정 시스템의 실시예 및 비교예를 도시한 도면이다.FIG. 9 is a diagram illustrating examples and comparative examples of a measurement system for measuring sound quality characteristics of an acoustic cable according to FIG. 8.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시 예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be easily understood through the following preferred embodiments related to the attached drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content will be thorough and complete and so that the spirit of the present invention can be sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In this specification, when an element is referred to as being on another element, it means that it may be formed directly on the other element or that a third element may be interposed between them. Additionally, in the drawings, the thickness of components is exaggerated for effective explanation of technical content.
어떤 엘리먼트, 구성요소, 장치, 또는 시스템이 프로그램 또는 소프트웨어로 이루어진 구성요소를 포함한다고 언급되는 경우, 명시적인 언급이 없더라도, 그 엘리먼트, 구성요소, 장치, 또는 시스템은 그 프로그램 또는 소프트웨어가 실행 또는 동작하는데 필요한 하드웨어(예를 들면, 메모리, CPU 등)나 다른 프로그램 또는 소프트웨어(예를 들면 운영체제나 하드웨어를 구동하는데 필요한 드라이버 등)를 포함하는 것으로 이해되어야 할 것이다.If any element, component, device, or system is said to contain a component consisting of a program or software, even if explicitly stated, that element, component, device, or system is not intended to allow that program or software to run or operate. It should be understood as including hardware (e.g., memory, CPU, etc.) or other programs or software (e.g., operating system or drivers required to run the hardware) required to run the computer.
또한, 어떤 엘리먼트(또는 구성요소)가 구현됨에 있어서 특별한 언급이 없다면, 그 엘리먼트(또는 구성요소)는 소프트웨어, 하드웨어, 또는 소프트웨어 및 하드웨어 어떤 형태로도 구현될 수 있는 것으로 이해되어야 할 것이다.In addition, unless specifically stated in the implementation of an element (or component), it should be understood that the element (or component) may be implemented in any form of software, hardware, or software and hardware.
또한, 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.Additionally, the terms used in this specification are for describing embodiments and are not intended to limit the present invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context. As used in the specification, 'comprises' and/or 'comprising' does not exclude the presence or addition of one or more other elements.
본 명세서상의 용어, "케이블"은, 일반적으로 통용되는 "전선"의 의미와 동일하여, 상기 용어 "케이블" 및 "전선"은 동일한 의미를 나타낼 수 있고, 따라서 이를 혼용하여 사용할 수 있다. The term “cable” in this specification has the same meaning as the commonly used term “wire,” and the terms “cable” and “wire” may have the same meaning, and therefore, may be used interchangeably.
도 1은, 본 발명의 바람직한 실시예에 따른 음향 케이블의 단면도이다.1 is a cross-sectional view of an acoustic cable according to a preferred embodiment of the present invention.
도시한 바와 같이, 음향 케이블(10)은 도체(100), 도체를 감싸는 반도전층(200), 및 반도전층(200)을 감싸는 시스층(300)으로 이루어진다.As shown, the acoustic cable 10 consists of a conductor 100, a semiconducting layer 200 surrounding the conductor, and a sheath layer 300 surrounding the semiconducting layer 200.
도체(100)는 음향 케이블(10)의 중심에 위치하는 것으로, 중심 도체층과 주변 도체층을 포함한다. 도체(100)의 구조에 관하여는 후술하는 도 2에서 보다 상세히 설명한다.The conductor 100 is located at the center of the acoustic cable 10 and includes a central conductor layer and a peripheral conductor layer. The structure of the conductor 100 will be described in more detail in FIG. 2 described later.
일반적으로, 음향 케이블에 사용되던 도체는 작은 소선경의 집합 혹은 집복합 구조로 제작되었다. 작은 소선경에 의해 형성된 도체를 사용한 종래의 음향 케이블에서는 낮은 주파수 영역에서 발생하는 표피 효과와 함께 신호 손실이 발생하였다. 본 실시예에서는 후술하는 도 2에서와 같이 도체(100)의 구조를 변경함으로써, 기존 소선경의 집합 혹은 집복합 구조로 형성되던 도체에 의한 문제점을 해소한다.In general, conductors used in acoustic cables were manufactured as a collection of small wire diameters or as a composite structure. In conventional acoustic cables using conductors formed with small wire diameters, signal loss occurred along with skin effect occurring in the low frequency region. In this embodiment, by changing the structure of the conductor 100 as shown in FIG. 2, which will be described later, problems caused by the existing conductor formed as a set of small wire diameters or a complex structure are solved.
반도전층(200)은 도체(100)와 시스층(300)의 사이에 형성된다. 반도전층(200)은 탄소 함유 화합물이 일부 포함된 수지로부터 형성하기 때문에, 음향 케이블(10)에 적용시 미세한 신호 대역이나 저신호 영역에서 발생할 수 있는 신호 왜곡에 따른 음질 불량과 같은 문제를 해소할 수 있으며, 차폐 기능을 보완하고, 코어 부분에서 도체(100)의 신호 전송량을 보완하는 기능을 한다.The semiconducting layer 200 is formed between the conductor 100 and the sheath layer 300. Since the semiconducting layer 200 is formed from a resin containing some carbon-containing compounds, when applied to the acoustic cable 10, problems such as poor sound quality due to signal distortion that may occur in a fine signal band or low signal area can be solved. It can supplement the shielding function and supplement the signal transmission amount of the conductor 100 in the core portion.
반도전층(200)은 특별히 제한되지는 않으나, 예를 들어, 폴리에틸렌계 수지 또는 폴리올레핀계 수지를 기본 수지로 포함하는 반도전층 조성물로부터 형성될 수 있다. 또한, 필요에 따라서 반도전층 조성물에는 다양한 추가적인 구성이 포함될 수 있으며, 예를 들어 산화방지제, UV 안정제, 가교제 및 가교조제 등의 첨가제가 포함될 수 있다.The semiconducting layer 200 is not particularly limited, but may be formed, for example, from a semiconducting layer composition containing polyethylene-based resin or polyolefin-based resin as a base resin. Additionally, if necessary, the semiconducting layer composition may include various additional components, for example, additives such as antioxidants, UV stabilizers, crosslinking agents, and crosslinking aids.
시스층(300)은 반도전층(200)을 보호하기 위한 것으로, 케이블 시스용 조성물에 의해 형성될 수 있다. 여기서, 케이블 시스용 조성물은, 특별히 제한되지는 않으나, 음향 케이블(10)의 최외곽을 형성하는 층에 요구되는 물성을 충족시킬 수 있어야 하므로, 예를 들어, 베이스 수지, 및 기타 추가적인 수지들을 단독 혹은 2가지 이상 혼합한 고분자 수지 조성물 일 수 있다.The sheath layer 300 is intended to protect the semiconducting layer 200, and may be formed of a cable sheath composition. Here, the composition for the cable sheath is not particularly limited, but must be able to satisfy the physical properties required for the layer forming the outermost layer of the acoustic cable 10, so, for example, the base resin and other additional resins can be used alone. Or, it may be a polymer resin composition that is a mixture of two or more types.
필요한 경우, 본 발명에 따른 음량 케이블(10)은 전술한 성분 이외에도, 기타 첨가제를 추가로 포함할 수 있다. 기타 첨가제로는 고분자량 왁스, 저분자량 왁스, 폴리올레핀 왁스, 파라핀 왁스, 파라핀 오일, 금속 비누, 유기 실리콘, 지방산 에스테르, 지방산 아마이드, 지방 알콜, 강화제, 이형제, UV 흡수제, 안정화제, 색소, 염료, 착색제, 대전방지제, 발포제 및 금속 불활성화제로 이루어진 군으로부터 선택된 1종 이상일 수 있다.If necessary, the volume cable 10 according to the present invention may further include other additives in addition to the components described above. Other additives include high molecular weight wax, low molecular weight wax, polyolefin wax, paraffin wax, paraffin oil, metallic soap, organic silicone, fatty acid ester, fatty acid amide, fatty alcohol, strengthening agent, mold release agent, UV absorber, stabilizer, colorant, dye, It may be one or more selected from the group consisting of colorants, antistatic agents, foaming agents, and metal deactivators.
도 2는, 본 발명의 바람직한 실시예에 따른 음향 케이블에 적용되는 도체의 단면도이다.Figure 2 is a cross-sectional view of a conductor applied to an acoustic cable according to a preferred embodiment of the present invention.
도 2에 도시한 도체(100)는 도 1에서 도시한 음향 케이블(10)의 중심에 위치하는 도체(100)를 구체적으로 도시한 것이다. 도체(100)는 중심 도체층(110)와 중심 도체층(110)을 둘러싸는 주변 도체층(120)으로 이루어진다.The conductor 100 shown in FIG. 2 specifically shows the conductor 100 located at the center of the acoustic cable 10 shown in FIG. 1. The conductor 100 consists of a central conductor layer 110 and a peripheral conductor layer 120 surrounding the central conductor layer 110.
중심 도체층(110)은 복수의 도체선(112)으로 이루어진다. 여기서, 중심 도체층(110)은 1개 이상의 복수의 도체선(112)이 꼬여서 형성될 수 있다 본 실시예에서는, 4개의 도체선(112)으로 이루어지는 중심 도체층(110)을 도시하였으나, 이는 일 실시예에 불과하며, 중심 도체층(110)은 1개 내지 7개의 도체선(112)으로 이루어질 수 있다.The central conductor layer 110 consists of a plurality of conductor lines 112. Here, the central conductor layer 110 may be formed by twisting one or more conductor wires 112. In this embodiment, the central conductor layer 110 consisting of four conductor wires 112 is shown, but this This is only an example, and the central conductor layer 110 may be composed of 1 to 7 conductor lines 112.
도체선(112)은 30㎛ 내지 150㎛의 평균 결정립 크기를 갖을 수 있다. 또한, 도체선(112)은 10㎛ 내지 20㎛의 평균 결정립 크기를 갖는 무산소동을 포스트 어닐링(post annealing) 공정을 통해 30㎛ 내지 150㎛의 평균 결정립 크기로 성장시켜 사용할 수 있다.The conductor line 112 may have an average grain size of 30 μm to 150 μm. Additionally, the conductor wire 112 can be used by growing oxygen-free copper having an average grain size of 10 μm to 20 μm to an average grain size of 30 μm to 150 μm through a post annealing process.
또한, 상기 도체선(112)은, 0.5㎟ 내지 4.0㎟의 공칭 단면적을 갖을 수 있다. 즉, 상기 도체선(112)으로 전술한 범위의 공칭 단면적을 갖는 굵은 소선경의 도체를 사용하도록 한다. 이에 의해, 본 음향 케이블(10)에 대한 저주파 영역에서의 도전성을 확보한다.Additionally, the conductor wire 112 may have a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2. That is, a thick small-diameter conductor having a nominal cross-sectional area in the above-mentioned range is used as the conductor wire 112. Thereby, conductivity in the low-frequency region for the present acoustic cable 10 is ensured.
주변 도체층(120)은 중심 도체층(110)을 둘러싸는 형태로 배치되는 것으로, 복수의 소선을 꼬아서 집합도체(122)를 형성한 후, 이 집합도체 복수개를 꼬아서 복합도체(124)를 형성하여 이루어진다. The peripheral conductor layer 120 is arranged to surround the central conductor layer 110. A plurality of wires are twisted to form a collective conductor 122, and then the plurality of collective conductors are twisted to form a composite conductor 124. It is achieved by forming.
집합도체(122)를 구성하는 소선은, 0.41㎜ 이하의 Class 5의 선재 또는 0.21㎜ 이하의 Class 6 선재 중 어느 하나로 구성될 수 있다. 앞에서도 언급한 바와 같이, 본 실시예에서는 중심 도체층(110)에는 0.5㎟ 내지 4.0㎟의 공칭 단면적을 갖는 굵은 소선경의 도체를 적용하고, 주변 도체층(120)에는 Class 5급 이하의 얇은 소선의 도체를 적용함으로써, 저주파 영역에서의 도전성을 확보할 수 있다.The wire constituting the collective conductor 122 may be composed of either a Class 5 wire of 0.41 mm or less or a Class 6 wire of 0.21 mm or less. As mentioned before, in this embodiment, a thick small-wire diameter conductor with a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2 is applied to the central conductor layer 110, and a thin conductor of Class 5 or lower is applied to the peripheral conductor layer 120. By applying a bare wire conductor, conductivity in the low frequency range can be secured.
이와 같이, 중심 도체층(110)과 주변 도체층(120)으로 구성되는 도체(100)는, 상기 중심 도체층에 상기 주변 도체층을 연합한 후 진공 열처리로에서 500℃ 내지 650℃의 범위에서 포스트 어닐링(post annealing)을 한다. 여기서, 포스트 어닐링 공정은 2시간 내지 4시간 동안 수행되는 것이 바람직하다.In this way, the conductor 100, which is composed of the central conductor layer 110 and the peripheral conductor layer 120, is heated in a vacuum heat treatment furnace in the range of 500 ℃ to 650 ℃ after combining the peripheral conductor layer with the central conductor layer. Perform post annealing. Here, the post-annealing process is preferably performed for 2 to 4 hours.
도 3a 및 도 3b는, 도 2에 도시한 도체에 대하여 다양한 조건에서 미세 조직을 측정한 결과를 나타낸 도면이다.FIGS. 3A and 3B are diagrams showing the results of measuring the microstructure of the conductor shown in FIG. 2 under various conditions.
도 3a는 다양하게 환경에 변화를 주어 미세 조직을 측정한 결과를 비교하기 위한 것으로, (a)는 OFC(Oxygen-Free Copper) 신선재의 미세조직을 측정한 것이다. 이때, OFC 신선재의 결정립 사이즈는 약 10㎛ 내지 20㎛이며, 포스트 어닐링 후 30㎛ 내지 150㎛ 수준으로 성장하였다.Figure 3a is for comparing the results of measuring the microstructure by changing various environments, and (a) shows the microstructure of OFC (Oxygen-Free Copper) wire drawn. At this time, the grain size of the OFC drawn material was about 10㎛ to 20㎛, and after post-annealing, it grew to about 30㎛ to 150㎛.
(a)의 OFC 신선재를 다양한 조건에서 미세 조직을 측정한 결과를 (b) 내지 (d)에 도시하였다. (b)는 OFC 신선재를 어닐링 한 후의 미세조직을 측정한 것이고, (c)는 OFC 신선재를 어닐링과 극저온 처리를 모두 한 후의 미세조직을 측정한 것이다. 또한, (d)는 OFC 신선재를 극저온 처리한 후의 미세조직을 측정한 것이다. 여기서, (c)의 극저온 처리후의 미세조직 결과에서는 조직적인 변화가 발생하지 않은 것으로 나타났다.The results of measuring the microstructure of the OFC drawn material in (a) under various conditions are shown in (b) to (d). (b) is a measurement of the microstructure after annealing the OFC wire, and (c) is a measurement of the microstructure of the OFC wire after both annealing and cryogenic treatment. In addition, (d) is a measurement of the microstructure of OFC drawn material after cryogenic treatment. Here, the microstructure results after cryogenic treatment in (c) showed that no structural changes occurred.
극저온 처리의 경우, 금속을 드라이아이스 또는 액화질소에 침지하여 냉각한 후, 급격히 상온 또는 100℃ 정도로 승온하여, 금속 내부에 생성된 응력을 반대방향의 응력(예를 들면, 압축잔류응력을 승온 시 발생하는 열응력으로 인장방향 응력으로 변경)으로 변경시킴으로서, 잔류응력을 저감시키는 공정이다. 이는 결정립 성장과는 다른 방식의 응력제거 기술이다. 즉, 잔류응력은 일부 제거되었다고 하나, 신호전송에 손실을 주는 결정립계(Grain size)의 개수 변화는 없기 때문에 큰 효과는 없다고 할 수 있다. In the case of cryogenic treatment, the metal is cooled by immersing it in dry ice or liquid nitrogen, and then rapidly raised to room temperature or around 100°C, and the stress generated inside the metal is converted into stress in the opposite direction (for example, compressive residual stress when the temperature is raised). This is a process that reduces residual stress by changing the generated thermal stress into tensile stress. This is a stress relief technology that is different from grain growth. In other words, although some residual stress has been removed, there is no significant effect because there is no change in the number of grain boundaries that cause loss in signal transmission.
도 3b에서, (a)는 일반 무산소동 도체의 미세조직을 나타낸 것이고, (b)는 본 발명에 따른 도체(100)의 미세조직을 관찰한 결과를 나타낸 것이다.In Figure 3b, (a) shows the microstructure of a general oxygen-free copper conductor, and (b) shows the results of observing the microstructure of the conductor 100 according to the present invention.
도 4는, 도 2에 도시한 도체에 대하여 다양한 조건에서 경도를 측정한 결과를 나타낸 도면이다.FIG. 4 is a diagram showing the results of measuring hardness of the conductor shown in FIG. 2 under various conditions.
본 실시예에서는 도 3에서 언급한 5가지 조건에서와 동일한 조건에서 각각의 경도를 측정한 결과를 그래프로 나타내었다. (a)는 OFC 신선재의 경도로 82.4Hmv로 측정되었다. (b)는 어닐링 후의 경도로 44.9Hmv로 측정되었다. (c)는 어닐링 및 극저온 처리 후의 경도로 49.0Hmv으로 측정되었다. (d)는 극저온 처리 후의 경도로 61.6Hmv으로 측정되었다In this example, the results of measuring each hardness under the same conditions as the five conditions mentioned in FIG. 3 are shown in a graph. (a) is the hardness of OFC wire material, measured at 82.4Hmv. (b) is the hardness after annealing and was measured at 44.9Hmv. (c) is the hardness after annealing and cryogenic treatment, measured at 49.0Hmv. (d) was measured as 61.6Hmv as the hardness after cryogenic treatment.
위 수치를 참조하면, (a)의 OFC 신선재의 경도 대비 (b)의 어닐링 후 경도는 45% 감소한 것으로 나타났다. 경도는 음향 케이블(10)의 성능과는 무관하다. 즉, 경도가 낮아져도 음향 케이블(10)로서의 문제는 발생하지 않는다. 오히려, 경도가 낮아짐에 따라, 유연성 및 작업성이 향상되는 이점이 있다.Referring to the above figures, compared to the hardness of the OFC drawn material in (a), the hardness after annealing in (b) was found to decrease by 45%. Hardness is unrelated to the performance of the acoustic cable 10. In other words, even if the hardness is lowered, problems with the acoustic cable 10 do not occur. Rather, as hardness decreases, there is an advantage in that flexibility and workability improve.
도 5는, 도 2에 도시한 도체에 대하여 다양한 조건에서 선재 저항을 측정한 결과를 나타낸 도면이다.FIG. 5 is a diagram showing the results of measuring wire resistance under various conditions for the conductor shown in FIG. 2.
본 실시예에서는 도 3에서 언급한 5가지 조건에서와 동일한 조건에서 각각의 선재 저항을 측정한 결과를 그래프로 나타내었다. 선재 저항의 측정은 (a) 내지 (d) 모두 1SQ 도체 기준이다.In this example, the results of measuring each wire resistance under the same conditions as the five conditions mentioned in FIG. 3 are shown in a graph. Measurements of wire resistance (a) to (d) are all based on 1SQ conductor.
(a)는 OFC 신선재의 선재 저항으로 18.21mΩ/m으로 측정되었다. (b)는 어닐링 후의 선재 저항으로 18.043mΩ/m으로 측정되었다. (c)는 어닐링 및 극저온 처리 후의 선재 저항으로 18.041mΩ/m으로 측정되었다. (d)는 극저온 처리 후의 선재 저항으로 18.14mΩ/m으로 측정되었다. (a) is the wire resistance of OFC wire, measured at 18.21mΩ/m. (b) is the wire resistance after annealing, measured at 18.043mΩ/m. (c) is the wire resistance after annealing and cryogenic treatment and was measured at 18.041mΩ/m. (d) is the wire resistance after cryogenic treatment and was measured at 18.14mΩ/m.
(a)의 OFC 신선재의 선재 저항 대비 (b)의 어닐링 후의 선재 저항은 0.92% 감소한 것으로 나타났다. 즉, 도전율이 1% 정도 향상되었음을 알 수 있다.Compared to the wire resistance of the OFC fresh rod in (a), the wire resistance after annealing in (b) was found to decrease by 0.92%. In other words, it can be seen that the conductivity has improved by about 1%.
도 6은, 도 2에 도시한 도체에 대하여 다양한 조건에서 측정한 XRD 분석 결과를 나타낸 도면이다.FIG. 6 is a diagram showing the results of XRD analysis measured under various conditions for the conductor shown in FIG. 2.
이와 관련하여, 본 발명에 따른 음향 케이블은, 전술한 포스트 어닐링 공정을 거친 음향 케이블로서, X선 회절(X-ray diffraction, XRD) 분석 시, 피크 위치(peak position) 2θ값이 40° 내지 50° 범위일 수 있고, 상기 피크 위치 2θ값이 40° 내지 50° 범위 내인 피크는 후술하는 (111) 피크일 수 있다.In this regard, the acoustic cable according to the present invention is an acoustic cable that has undergone the above-described post-annealing process, and when analyzing X-ray diffraction (XRD), the peak position 2θ value is 40° to 50°. ° range, and the peak position 2θ value within the range of 40° to 50° may be the (111) peak, which will be described later.
본 실시예에서는 OFC 신선재 및 어닐링 후의 XRD(X-ray diffraction) 분석 결과를 그래프로 나타내었다. XRD 분석 그래프에서, B는 OFC 신선재에 대한 결과이고, A는 포스트 어닐링을 진행한 후의 결과이다.In this example, the results of XRD (X-ray diffraction) analysis of OFC fresh material and after annealing are shown in a graph. In the XRD analysis graph, B is the result for OFC fresh material, and A is the result after post-annealing.
도 6을 참조하면, 잔류응력(가공경화)이 클수록 (200) 피크(peak)와 (220) 피크가 높은 경향이 있다. 여기서, OFC 신선재에서 높은 220 피크가 확인되었다. 반면, 포스트 어닐링을 진행한 후, (200) 및 (220) 피크가 제거되고, (111) 피크가 강하게 나타나는 것을 확인할 수 있다. Referring to Figure 6, the larger the residual stress (work hardening), the higher the (200) peak and (220) peak tend to be. Here, a high 220 peak was confirmed in OFC fresh material. On the other hand, after post-annealing, it can be seen that the (200) and (220) peaks are removed and the (111) peak appears strongly.
도 7은, 본 발명의 바람직한 실시예에 따른 음향 케이블이 적용된 예를 나타낸 도면이다.Figure 7 is a diagram showing an example in which an acoustic cable according to a preferred embodiment of the present invention is applied.
본 발명에 따른 음향 케이블(10a, 10b)은 중심 도체층(110)과 주변 도체층(120)으로 구성된 도체(100)와, 도체를 감싸는 반도전층(200)으로 이루어진 것으로, 스피커(20a, 20b)와 음향 기기(30)를 연결하는 케이블이다.The acoustic cable (10a, 10b) according to the present invention is composed of a conductor (100) consisting of a central conductor layer (110) and a peripheral conductor layer (120), and a semiconducting layer (200) surrounding the conductor, and is connected to the speakers (20a, 20b). ) is a cable that connects the audio device 30.
음향 기기(30)는 내부에 파워 앰프(32) 및 프리 앰프(34)를 포함할 수 있으며, 파워 앰프(32) 및 프리 앰프(34)는 인터커넥터 케이블(36)에 의해 연결된다. 하지만, 음향 기기(30)의 외부의 스피커(20a, 20b)와 연결시에는 음향 케이블(10a, 10b)을 사용한다.The audio device 30 may include a power amplifier 32 and a pre-amplifier 34 therein, and the power amplifier 32 and the pre-amplifier 34 are connected by an interconnector cable 36. However, when connecting to the external speakers 20a and 20b of the audio device 30, audio cables 10a and 10b are used.
앞에서도 설명한 바와 같이, 본 발명에 따른 도체(100)를 적용한 음향 케이블(10a, 10b)을 사용하면, 종래에 기공지된 OCC(Ohno Continuous Casting) 프로세스나 극처온 처리 대비 우수한 음질을 구현할 수 있다. 따라서, 본 발명에 따른 음향 케이블은, 스피커용, 파워코드용, 인터커넥터용 및 스피커 점퍼 케이블용으로 이루어진 군으로부터 선택된 하나의 용도로 사용될 수 있으나, 특별히 이에 제한되는 것은 아니다.As previously described, by using the acoustic cables 10a and 10b using the conductor 100 according to the present invention, superior sound quality can be achieved compared to the conventional Ohno Continuous Casting (OCC) process or the extreme heat treatment. . Accordingly, the acoustic cable according to the present invention can be used for one purpose selected from the group consisting of speakers, power cords, interconnectors, and speaker jumper cables, but is not particularly limited thereto.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention may be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of this specification are provided to more completely explain the present invention to those skilled in the art.
[실험예] 음역대별 음질 평가[Experimental example] Sound quality evaluation by sound range
도 8은, 본 발명의 바람직한 실시예에 따른 음향 케이블의 음질 특성 측정을 위한 측정 시스템의 구성 예를 도시한 도면이다.Figure 8 is a diagram showing an example of the configuration of a measurement system for measuring sound quality characteristics of an acoustic cable according to a preferred embodiment of the present invention.
도 8을 참조하면, 도시한 바와 같은 측정 시스템을 설계하여 음역대별 음질 특성을 평가하였다. 실제로는, 앰프 및 음원(LP, CDP 등)이 포함되어야 하나, 이에 대해서는 도시하지 않았다.Referring to Figure 8, a measurement system as shown was designed to evaluate sound quality characteristics for each sound range. In reality, an amplifier and sound source (LP, CDP, etc.) should be included, but this is not shown.
먼저 음원이 재생되면, 인터커넥터 케이블을 통해 앰프 신호 전송이 되며, 해당 신호는 Passive 스피커(40)를 통해 가청음으로 나타난다. 본 실험은 이 가청영역의 주파수를 마이크(50)를 통해 취득하고, 오디오 분석기(60)를 통해 분석하는 시스템을 구현하여 이에 의해 음질 특성을 측정하도록 하였다. 또한, 본 평가는 주파수 대역을 나타내는 음을 재생한 후, 저음 영역 및 고음 영역에서의 잡음 여부를 평가하였다.First, when a sound source is played, an amplifier signal is transmitted through the interconnector cable, and the signal appears as an audible sound through the passive speaker (40). In this experiment, a system was implemented to acquire frequencies in the audible range through a microphone 50 and analyze them through an audio analyzer 60, thereby measuring sound quality characteristics. In addition, this evaluation evaluated the presence of noise in the low-pitched and high-pitched regions after reproducing sounds representing the frequency band.
도 9는, 도 8에 의한 음향 케이블의 음질 특성 측정을 위한 측정 시스템의 실시예 및 비교예를 도시한 도면이다. FIG. 9 is a diagram illustrating examples and comparative examples of a measurement system for measuring sound quality characteristics of an acoustic cable according to FIG. 8.
(a)는 은도금 도체 8AWG의 음역대별 품질 평가 분석을 실시한 예이고, (b)는 본 발명에 따른 음향 케이블(10)의 음역대별 품질 평가 분석을 실시한 예이다(사용 음원: 베토벤 운명). (a)와 (b)의 평가에 따른 결과를 하기의 표 1에 나타내었다. (a) is an example of quality evaluation analysis by sound range of a silver-plated conductor 8AWG, and (b) is an example of quality evaluation analysis by sound range of the acoustic cable 10 according to the present invention (sound source used: Beethoven Destiny). The results according to the evaluation of (a) and (b) are shown in Table 1 below.
스피커케이블 중 Hi-End 도체 제품인 8AWG 집복합 은도금도체 (구조: 7/65/0.15㎜)(a)와 본 발명에 따른 음향 케이블(b)의 음역대별 품질 평가 결과는 아래 [표 1]에 나타내었다.The quality evaluation results for each sound range of the 8AWG composite silver-plated conductor (structure: 7/65/0.15 mm) (a), a Hi-End conductor product among speaker cables, and the acoustic cable (b) according to the present invention are shown in [Table 1] below. It was.
음역대vocal range 비교예Comparative example 실시예Example
저음역대low range 양호Good 우수Great
중음역대mid range 우수Great 양호Good
고음역대treble range 열위inferior 우수Great
상기 [표 1]에서와 같이, 은도금 스피커케이블은 도체사이즈가 비교적 증가하고, 도전율이 높은 은도금을 사용하여 중음역대의 신호가 우수하였으나 고음역대는 신호 검출이 잘 되지 않았으며, 본 발명에 의한 구조에서는 중음역의 신호는 은도금 제품 대비 약간 낮은 경향이 있으나 저음역과 고음역에 고르게 신호가 분포하고 있으며, 음량뿐만 아니라 표현력 또한 우수한 것을 확인할 수 있었다. As shown in [Table 1], the silver-plated speaker cable had a relatively large conductor size and used silver plating with high conductivity, so the signal in the mid-range was excellent, but the signal in the high-pitched range was not detected well, and in the structure according to the present invention, the mid-range signal was excellent. The signal tends to be slightly lower than that of silver-plated products, but the signal is evenly distributed in the low and high registers, and it was confirmed that not only the volume but also the expressiveness is excellent.
보다 구체적으로, 도 9에서 위 확인 사항에 대하여 설명하면, 도 9에서 표시된 저음역대(Ⅰ), 즉 주파수 2,5kHz 이하의 영역대에서는 은도금 도체를 적용한 종래의 스피커케이블(a) 대비 본 발명의 실시예에 따른 스피커케이블(b)에서 짙은 음영 영역(dB가 높은 영역)이 보다 넓고 강하게 분포한 것으로 보아 저음에서의 강도(Sound Pressure Level)가 증가한 것을 확인할 수 있었다. More specifically, explaining the above confirmation in FIG. 9, in the low-pitched range (Ⅰ) shown in FIG. 9, that is, the region below the frequency of 2.5 kHz, the present invention compares to the conventional speaker cable (a) using a silver-plated conductor. In the speaker cable (b) according to the embodiment, it was confirmed that the intensity (sound pressure level) in low sounds increased as the dark shaded area (high dB area) was distributed more widely and strongly.
또한, 도 9에서 표시된 중음역대(Ⅱ), 즉 주파수 약 2.5 kHz 이상 10 kHz 이하의 영역대에서는 본 발명의 실시예에 따른 스피커케이블(b) 대비 종래의 은도금 스피커케이블(a)가 상대적으로 신호축으로 신호폭이 넓은 경향을 보이긴 하였으나, 본 발명의 실시예에 따른 스피커케이블(b)도 중음의 신호 감도와 표현력이 양호한 수준인 것을 확인할 수 있었다.In addition, in the mid-range (II) shown in Figure 9, that is, the frequency range of about 2.5 kHz to 10 kHz, the conventional silver-plated speaker cable (a) has relatively low signal compared to the speaker cable (b) according to the embodiment of the present invention. Although the signal width tended to be wide along the axis, it was confirmed that the speaker cable (b) according to the embodiment of the present invention also had good mid-tone signal sensitivity and expressiveness.
추가적으로, 도 9에서 표시된 고음역대(Ⅲ), 즉 주파수 약 10kHz 이상의 영역대에서는 종래의 은도금 스피커케이블(a) 대비 본 발명의 실시예에 따른 스피커케이블(b)의 신호폭이 넓고 강도가 세게 형성되어 있는 것으로 보아 본 발명의 실시예에 따른 스피커케이블(b)은 고음영역대에서도 신호 강도가 매우 우수한 수준인 것을 확인할 수 있었다.Additionally, in the high-pitched range (III) shown in Figure 9, that is, the frequency range of about 10 kHz or higher, the signal width of the speaker cable (b) according to the embodiment of the present invention is wider and stronger than that of the conventional silver-plated speaker cable (a). It was confirmed that the speaker cable (b) according to the embodiment of the present invention had a very excellent signal strength even in the high-pitched sound range.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. do.
[부호의 설명][Explanation of symbols]
10: 음향 케이블10: acoustic cable
100: 도체100: conductor
110: 중심 도체층110: Center conductor layer
112: 도체선112: conductor wire
120: 주변 도체층120: Peripheral conductor layer
122: 집합도체122: collective conductor
124: 복합도체124: Composite conductor
200: 반도전층200: Semiconducting layer
300: 시스층300: sheath layer

Claims (12)

  1. 음향케이블용 도체로서,As a conductor for an acoustic cable,
    상기 도체는,The conductor is:
    1개 이상의 복수의 도체선이 꼬여서 형성되는 중심 도체층; 및A central conductor layer formed by twisting one or more conductor wires; and
    복수의 소선이 꼬여서 집합도체를 형성하고, 상기 집합도체 복수 개가 꼬여서 복합도체를 이루어 형성되며, 상기 중심 도체층을 둘러싸는 주변 도체층을 포함하는, 음향 케이블용 도체.A conductor for an acoustic cable including a plurality of wires twisted to form a collective conductor, a plurality of wires twisted to form a composite conductor, and a peripheral conductor layer surrounding the central conductor layer.
  2. 제 1 항에 있어서,According to claim 1,
    상기 중심 도체층은, 1개 내지 7개의 도체선으로 형성되는 것을 특징으로 하는, 음향 케이블용 도체.A conductor for an acoustic cable, characterized in that the central conductor layer is formed of 1 to 7 conductor wires.
  3. 제 1 항에 있어서,According to claim 1,
    상기 도체는, 30㎛ 내지 150㎛의 평균 결정립 크기를 갖는 것을 특징으로 하는, 음향 케이블용 도체.The conductor is a conductor for an acoustic cable, characterized in that the conductor has an average grain size of 30㎛ to 150㎛.
  4. 제 1 항에 있어서,According to claim 1,
    상기 도체는, X선 회절(X-ray diffraction, XRD) 분석 시, (111) 결정방위에서 가장 큰 피크값(Intensity)을 갖는 것을 특징으로 하는, 음향 케이블용 도체.The conductor is a conductor for an acoustic cable, characterized in that it has the highest peak value (Intensity) at the (111) crystal orientation when analyzing X-ray diffraction (XRD).
  5. 제 1 항에 있어서,According to claim 1,
    상기 도체는, 상기 중심 도체층에 상기 주변 도체층을 연합한 후 진공 열처리로에서 500℃ 내지 650℃의 범위에서 포스트 어닐링(post annealing)된 것을 특징으로 하는, 음향 케이블용 도체.The conductor is a conductor for an acoustic cable, characterized in that the peripheral conductor layer is joined to the central conductor layer and then post-annealed in a vacuum heat treatment furnace at a temperature of 500°C to 650°C.
  6. 제 5 항에 있어서,According to claim 5,
    상기 포스트 어닐링은, 2시간 내지 4시간 동안 수행되는 것을 특징으로 하는, 음향 케이블용 도체.A conductor for an acoustic cable, characterized in that the post-annealing is performed for 2 to 4 hours.
  7. 제 5 항에 있어서,According to claim 5,
    상기 도체는, 10㎛ 내지 20㎛의 평균 결정립 크기를 갖는 무산소동을 상기 포스트 어닐링을 통해 30㎛ 내지 150㎛의 평균 결정립 크기로 성장시킨 것을 특징으로 하는, 음향 케이블용 도체.The conductor is a conductor for an acoustic cable, characterized in that oxygen-free copper having an average grain size of 10 μm to 20 μm is grown to an average grain size of 30 μm to 150 μm through the post annealing.
  8. 제 1 항에 있어서,According to claim 1,
    상기 도체선은, 0.5㎟ 내지 4.0㎟의 공칭 단면적을 갖는 것을 특징으로 하는, 음향 케이블용 도체.A conductor for an acoustic cable, characterized in that the conductor wire has a nominal cross-sectional area of 0.5 mm2 to 4.0 mm2.
  9. 제 1 항에 있어서,According to claim 1,
    상기 소선은, 0.41㎜ 이하의 Class 5의 선재 또는 0.21㎜ 이하의 Class 6 선재 중 어느 하나로 구성되는 것을 특징으로 하는, 음향 케이블용 도체.A conductor for an acoustic cable, characterized in that the wire is composed of either a Class 5 wire of 0.41 mm or less or a Class 6 wire of 0.21 mm or less.
  10. 제 1 항에 있어서,According to claim 1,
    상기 중심 도체층의 복수의 도체선의 꼬임 피치는, 상기 중심 도체층의 층심경의 10배 내지 20배이고, 상기 집합 도체의 복수의 소선의 꼬임 피치는, 상기 집합 도체 외경의 10배 내지 20배이며, 상기 복합 도체의 꼬임 피치는, 상기 복합 도체 외경의 10배 내지 20배인 것을 특징으로 하는, 음향 케이블용 도체.The twist pitch of the plurality of conductor wires of the central conductor layer is 10 to 20 times the core diameter of the central conductor layer, and the twist pitch of the plurality of wires of the aggregate conductor is 10 to 20 times the outer diameter of the aggregate conductor. , A conductor for an acoustic cable, characterized in that the twist pitch of the composite conductor is 10 to 20 times the outer diameter of the composite conductor.
  11. 제 1 항 내지 제10항 중 어느 한 항에 따른 도체;A conductor according to any one of claims 1 to 10;
    상기 도체를 감싸는 반도전층; 및a semiconducting layer surrounding the conductor; and
    상기 반도전층을 감싸는 시스층;을 포함하는, 음향 케이블.An acoustic cable comprising a sheath layer surrounding the semiconducting layer.
  12. 제 11 항에 있어서, 상기 음향 케이블은, 스피커용, 파워코드용, 인터커넥터용 및 스피커 점퍼 케이블용으로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는, 음향 케이블.The acoustic cable according to claim 11, wherein the acoustic cable is one selected from the group consisting of speakers, power cords, interconnectors, and speaker jumper cables.
PCT/KR2022/005047 2022-03-30 2022-04-07 Conductor for acoustic cable and acoustic cable comprising same WO2023191164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220039611A KR20230140848A (en) 2022-03-30 2022-03-30 Conductor for acoustic cable and acoustic cable including thereof
KR10-2022-0039611 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023191164A1 true WO2023191164A1 (en) 2023-10-05

Family

ID=88202944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005047 WO2023191164A1 (en) 2022-03-30 2022-04-07 Conductor for acoustic cable and acoustic cable comprising same

Country Status (2)

Country Link
KR (1) KR20230140848A (en)
WO (1) WO2023191164A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011667A1 (en) * 2003-07-16 2005-01-20 Chang-Chi Lee Structure of audio signal cable
KR20070090342A (en) * 2006-03-02 2007-09-06 주식회사 엠에이씨티 Electrode wire for high speed working and fabrication method of the same
JP2008066108A (en) * 2006-09-07 2008-03-21 Mitsubishi Cable Ind Ltd Copper conductor for audio/video signal
KR20080096445A (en) * 2007-04-26 2008-10-30 넥쌍 A method of fabricating a class 5 insulated electrical conductor
KR20180131219A (en) * 2017-05-31 2018-12-10 엘에스전선 주식회사 Movable Robot Cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200427316Y1 (en) 2006-07-13 2006-09-25 율삼엔지니어링(주) The cable of a speker removing noises

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011667A1 (en) * 2003-07-16 2005-01-20 Chang-Chi Lee Structure of audio signal cable
KR20070090342A (en) * 2006-03-02 2007-09-06 주식회사 엠에이씨티 Electrode wire for high speed working and fabrication method of the same
JP2008066108A (en) * 2006-09-07 2008-03-21 Mitsubishi Cable Ind Ltd Copper conductor for audio/video signal
KR20080096445A (en) * 2007-04-26 2008-10-30 넥쌍 A method of fabricating a class 5 insulated electrical conductor
KR20180131219A (en) * 2017-05-31 2018-12-10 엘에스전선 주식회사 Movable Robot Cable

Also Published As

Publication number Publication date
KR20230140848A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2012057554A1 (en) Field assembled optical connector
WO2012060662A2 (en) Insulating composition and electric cable comprising same
WO2011142642A2 (en) Optical and power composite cable
WO2015026067A1 (en) Hdmi cable comprising optical fiber unit
WO2023191164A1 (en) Conductor for acoustic cable and acoustic cable comprising same
WO2022102904A1 (en) Electromagnetic interference-shielding composite resin composition and high-voltage shielded wire comprising same
WO2023224230A1 (en) Terminal for av device harness and method for manufacturing same
WO2023090503A1 (en) Speaker cable conductor and speaker cable comprising same
Adams Steel supported aluminum conductors (SSAC) for overhead transmission lines
WO2023090504A1 (en) Speaker cable
WO2020222409A1 (en) Optical fiber composite ground wire using composite material
WO2015026029A1 (en) Communication cable including non-continuous shielding tape, and non-continuous shielding tape
WO2024025065A1 (en) Heating cable
KR20240018753A (en) Conductor for acoustic cable and acoustic cable including thereof
WO2020145738A1 (en) Highly flame retardant cable
WO2020022698A1 (en) Transmission line having improved bending durability
WO2013033880A1 (en) High-speed signal transmission cable
WO2020138956A1 (en) Resin composition for cable sheath and electric wire comprising same
CN111599539A (en) Non-shielding twisted pair cable and preparation method thereof
WO2018221793A1 (en) Cable for robot
WO2021210940A1 (en) Conductor for cable, method for manufacturing same, and cable comprising conductor manufactured thereby
WO2022270821A1 (en) Highly bend-resistant cable harness
WO2021137613A1 (en) Communication cable
WO2024101548A1 (en) Heated seat for vehicle and method for manufacturing same
KR20230161870A (en) Terminal for av device harness, and method for manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935839

Country of ref document: EP

Kind code of ref document: A1