WO2024025065A1 - Heating cable - Google Patents

Heating cable Download PDF

Info

Publication number
WO2024025065A1
WO2024025065A1 PCT/KR2023/003938 KR2023003938W WO2024025065A1 WO 2024025065 A1 WO2024025065 A1 WO 2024025065A1 KR 2023003938 W KR2023003938 W KR 2023003938W WO 2024025065 A1 WO2024025065 A1 WO 2024025065A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating cable
metal
carbon fiber
clause
coated carbon
Prior art date
Application number
PCT/KR2023/003938
Other languages
French (fr)
Korean (ko)
Inventor
이종길
허수형
정용희
김원정
Original Assignee
주식회사 비에스엠신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비에스엠신소재 filed Critical 주식회사 비에스엠신소재
Publication of WO2024025065A1 publication Critical patent/WO2024025065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables

Definitions

  • the present invention relates to a heating cable.
  • metal heating wires used in various household products such as electronic products, heating products, household items, medical supplies, beauty products, and functional clothing that require quick temperature response along with heating function can be replaced.
  • industrial temperature maintenance devices at relatively low temperatures below 300°C.
  • high-efficiency heating cable products is emerging to increase the efficiency of heating for eco-friendly vehicles such as electric vehicles and various batteries such as fuel cells and hydrogen electricity.
  • carbon fiber cables can manufacture high-strength cables using the high tensile strength of carbon fiber, and are manufactured as heat-resistant cables of the same volume compared to existing metal cables, making it possible to manufacture lightweight and highly flexible cables, unlike metal wires.
  • Carbon fiber wires have been developed and are being applied to industrial fields as heating cables due to their advantage in that they can be used as heating cables.
  • heat-generating products have been manufactured using copper wire, nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc., to produce a suspension to maintain a constant electrical resistance through appropriate mixing and dispersion, and then coating it on polymer fiber or carbon fiber.
  • a common method is to manufacture heat-generating products by molding mixed powder materials.
  • heating cables are manufactured and used using carbon fiber as a heating conductor, but due to the high resistance of carbon fiber, it is difficult to maintain a constant temperature below 200°C due to the high heating temperature in a short period of time, and it is difficult to maintain a constant temperature below 200°C due to the high resistance of carbon fiber.
  • this product has a very high risk of disconnection and fire due to a rapid increase in the resistance of the conductor and grounding part of the wire, and long-term durability issues are becoming a serious issue.
  • Republic of Korea Patent Publication No. 10-2017-0030126 is presented as a similar prior document regarding this.
  • the purpose of the present invention is to provide a heating cable that has a faster response speed compared to existing metal heating cables, can be driven with low power, and has low power consumption.
  • the purpose is to provide a heating cable that can maintain a constant temperature below 200°C, is highly durable, and has a very low risk of safety accidents such as fire, wire shorting, and short circuit.
  • One aspect of the present invention for achieving the above object is a heating cable sequentially including a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braided layer, and a second heat-resistant resin layer from the inside, wherein the heating cable is mono. It relates to a heating cable, characterized in that the density is 1.8 to 3.5 g/cm3 based on a metal-coated carbon fiber bundle of 12,000 filaments.
  • the heating cable may have an electrical resistance of 0.5 to 5 ⁇ /m.
  • the heating cable may have an electrical conductivity of 0.1 ⁇ 10 4 to 5.0 ⁇ 10 4 S/cm.
  • the heating cable may have a heat capacity of 1 to 3 J/°C.
  • the heating cable may have a specific heat of 1 J/g ⁇ °C or less.
  • the heating cable may have a tensile strength of 100 N or more.
  • the metal-coated carbon fiber bundle may have 100 to 12,000 monofilament strands.
  • the metal-coated carbon fiber bundle may be carbon fiber coated with a first metal and a second metal, the first metal may be nickel or copper, and the second metal may be nickel.
  • the first heat-resistant resin layer and the second heat-resistant resin layer are independently made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), and polycarbonate.
  • PA polyamide
  • PE polyethylene
  • PP polypropylene
  • ABS acrylonitrile butadiene styrene
  • PC polyvinyl chloride
  • PVC polyvinyl chloride
  • PVA polyvinyl alcohol
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • SAN acrylic Nitrile-styrene copolymer resin
  • ASA acrylonitrile-styrene-acrylate copolymer resin
  • PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • thermoplastic resin and rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate.
  • EPDM ethylene-propylene-diene monomer
  • styrene butadiene ethylene propylene
  • chloroprene hypalon
  • silicone ethylene vinyl acetate
  • the metal-coated carbon fiber bundle may further include glass fibers surrounding the metal-coated carbon fiber bundle at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle.
  • the angle may be 30 to 60° based on the longitudinal axis of the metal-coated carbon fiber bundle.
  • the heating cable may satisfy the following relational expression 1.
  • D 0 and D 90 are the cross-sectional diameters of the heating cable, respectively, D 0 is the cross-sectional diameter in one direction ( ⁇ m), and D 90 is the cross-sectional diameter in the vertical direction in one direction ( ⁇ m).
  • the heating cable according to the present invention has the advantage of having a faster response speed compared to existing metal heating cables, being able to operate at low power, and having low power consumption. In addition, it can maintain a constant temperature below 200°C, has high durability, and the risk of safety accidents such as fire, wire shorting, and short circuit can be very low.
  • FIG. 1 is an exemplary diagram of a heating cable according to an example of the present invention.
  • Figure 2 is an actual photograph of a heating cable manufactured with 3,000 strands of metal-coated carbon fiber (3K MCF) and 12K MCF, respectively, according to an example of the present invention.
  • Figure 3 is an exemplary diagram of a metal-coated carbon fiber wrapped with glass fiber according to the present invention.
  • Figure 4 is an optical microscope image of a cross section of a heating cable manufactured according to Example 5.
  • One aspect of the present invention relates to a heating cable sequentially including a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braid layer, and a second heat-resistant resin layer from the inside, wherein the heating cable consists of 12,000 strands of monofilament.
  • the heating cable Based on the metal-coated carbon fiber bundle, it can be characterized as having a density of 1.8 to 3.5 g/cm3, an electrical resistance of 0.5 to 5 ⁇ /m, and an electrical conductivity of 0.1 ⁇ 10 4 to 5.0 ⁇ 10 4 S/cm. there is.
  • the heating cable has a density of 2.0 to 3.0 g/cm3, an electrical resistance of 0.8 to 3 ⁇ /m, and an electrical conductivity of 0.5 It may be 4.0 ⁇ 10 4 S/cm, and more preferably, the density is 2.2 to 2.8 g/cm3, the electrical resistance is 0.8 to 2 ⁇ /m, and the electrical conductivity is 1.0 ⁇ 10 4 to 3.0 ⁇ 10 4 S/. It may be cm.
  • the heating cable may have a heat capacity of 1 to 3 J/°C, a specific heat of 1 J/g ⁇ °C or less, and more preferably, a heat capacity of 1.3 to 1.3 J/°C. 2.7 J/°C, the specific heat may be 0.6 to 1 J/g ⁇ °C, and more preferably, the heat capacity may be 1.5 to 2.3 J/°C and the specific heat may be 0.7 to 0.85 J/g ⁇ °C.
  • the specific heat may be a value measured through DSC (differential scanning calorimetry) and may mean a value at 50°C.
  • the heating cable according to an example of the present invention may have excellent mechanical properties.
  • the tensile strength may be 100 N or more, and there may be no breakage or change in resistance even after repeated bending tests of more than 100,000 times. there is. More preferably, the heating cable has a tensile strength of 130 N or more, and can be subjected to repeated bending tests of more than 150,000 times without disconnection or change in resistance. Even better, the tensile strength of the cable is more than 150 N, and can be subjected to repeated bending tests of more than 180,000 times. Even if you do this, there may be no disconnection or change in resistance.
  • the upper limit of the tensile strength is not particularly limited, but may be, for example, 250 N.
  • the number of repeated bending tests is also not particularly limited, but may be, for example, 500,000 times.
  • the heating cable according to the present invention has excellent electrical and mechanical properties, so it has the advantage of having a faster response speed compared to existing metal heating cables, being able to be driven with low power, and having low power consumption.
  • it can maintain a constant temperature below 200°C, has high durability, and the risk of safety accidents such as fire, wire shorting, and short circuit can be very low.
  • the heating cable according to the present invention may sequentially include a metal-coated carbon fiber bundle (MCF), a first heat-resistant resin layer, a metal braided layer, and a second heat-resistant resin layer from the inside.
  • MCF metal-coated carbon fiber bundle
  • the metal-coated carbon fiber bundle may have 100 to 12,000 monofilament strands, preferably 1K (1,000 monofilament strands), 3K (3,000 monofilament strands), or 6K (6,000 monofilament strands). It may be a bundle of metal-coated carbon fibers of 12K (12,000 strands of monofilament), and more preferably, a bundle of metal-coated carbon fibers of 3K (3,000 strands of monofilament) to 12K (12,000 strands of monofilament).
  • Metal-coated carbon fiber can be used without limitation as long as it is carbon fiber coated with metal on the outer diameter of the carbon fiber through a plating process. However, in order to satisfy the heat generation characteristics and mechanical strength to be manufactured in the present invention, electroless plating and electrolytic plating are used. It is desirable to use carbon fiber double coated with metal. Specifically, for example, the metal-coated carbon fiber bundle may be carbon fiber coated with a first metal and a second metal. More specifically, the metal-coated carbon is electroless plated with nickel or copper and then electrolytically plated with nickel. It may be a fiber, but is not necessarily limited thereto. In addition, the thickness of the metal coating produced by the plating may be 50 to 500 nm, and more preferably 100 to 300 nm. The electrical resistance of the metal-coated carbon fiber may vary depending on the thickness of the metal coating, and a desirable electrical resistance may be 0.1 to 10 ⁇ /m, but is not limited thereto.
  • the metal-coated carbon fiber bundle may further include glass fibers surrounding the metal-coated carbon fiber bundle at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle, as shown in FIG. 2.
  • the angle may be 30 to 60°, more preferably 40 to 60°, and even more preferably 50 to 60° with respect to the longitudinal axis of the metal-coated carbon fiber bundle. In this range, it is good to keep the diameter and center point of the metal-coated carbon fiber bundle more constant when manufacturing a heating cable.
  • the heating cable using a bundle of metal-coated carbon fibers wrapped with glass fibers may satisfy the following relational expression 1.
  • D 0 and D 90 are the cross-sectional diameters of the heating cable, respectively, D 0 is the cross-sectional diameter in one direction ( ⁇ m), and D 90 is the cross-sectional diameter in the vertical direction in one direction ( ⁇ m).
  • the heating cable according to the present invention may have a concentric structure in which the metal-coated carbon fiber bundle is not oriented in a specific direction and the diameter and center point are kept constant, and through this, heat generation at the target level can be precisely controlled.
  • ⁇ D 0 -D 90 ⁇ /D 0 ⁇ 100 may be 5 or less, more preferably 3 or less, and in this case, the lower limit may be 0.
  • the degree of heat generation may vary in each section of the heating cable, which is not good.
  • the glass fiber is literally a material made by pulling glass thin and long like a fiber, and the diameter of the glass fiber may be 1 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, but is not necessarily limited thereto.
  • the glass fiber may be one strand or a plurality of two or more strands, and preferably 3 to 20 strands of glass fiber are used to maintain the diameter and center point of the metal-coated carbon fiber bundle more consistently when manufacturing the heating cable. It's nice to be able to do it.
  • Such a metal-coated carbon fiber bundle wrapped with glass fibers includes the following steps: a) preparing a metal-coated carbon fiber bundle; and b) wrapping glass fibers at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle.
  • step a) preparing a metal-coated carbon fiber bundle can be performed.
  • the metal-coated carbon fiber bundle according to an example of the present invention can be used without limitation as long as it is a carbon fiber coated with metal on the outer diameter of the carbon fiber through a plating process, but the heat generating properties to be manufactured in the present invention In order to satisfy the mechanical strength, it is preferable to use carbon fiber double coated with metal through electroless plating and electrolytic plating.
  • step a) includes a-1) electroless plating carbon fiber with a first metal; and a-2) electroplating the electroless plated carbon fiber with a second metal.
  • the types of the first metal and the second metal may be the same or different, and preferably the first metal may be nickel or copper, and the second metal may be nickel.
  • the electroless and electrolytic process of the present invention can be performed through the method presented in Domestic Patent No. 10-1427309, but is not limited thereto.
  • the step a-1) may be performed by passing the carbon fiber through an electroless plating solution containing pure water, a first metal salt, a complexing agent, a reducing agent, a stabilizer, and a pH adjuster, and the step a-2) may be It can be performed continuously following step a-1) by applying a constant voltage (CV) of 5 to 15 V using a second metal salt and a pH buffer, but is not limited to the above method.
  • CV constant voltage
  • steps a-1) and a-2 Before steps a-1) and a-2), (i) degreasing and softening the carbon fibers by passing them through an aqueous solution containing a surfactant, an organic solvent, and a non-ionic surfactant; (ii) The carbon fiber resulting from step (i) is dissolved in an aqueous solution containing sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), and pure water.
  • NaHSO 3 sodium bisulfite
  • sulfuric acid H 2 SO 4
  • ammonium persulfate (NH 4 ) 2 S 2 O 8 )
  • the pre-treated carbon fiber can be used through a pre-treatment process including. However, it is not limited to this.
  • the thickness of the metal coating produced by the plating may be 50 to 500 nm, and more preferably 100 to 300 nm.
  • the electrical resistance of the metal-coated carbon fiber may vary depending on the thickness of the metal coating, and a desirable electrical resistance may be 0.1 to 10 ⁇ /m, but is not limited thereto.
  • step b) wrapping the glass fiber at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle can be performed.
  • the angle of step b) may be 30 to 60°, more preferably 40 to 60°, and even more preferably 50 to 60° with respect to the longitudinal axis of the metal-coated carbon fiber bundle.
  • the distance may be the distance between the centers of the glass fibers spaced apart from the glass fibers, and may be specifically, for example, 50 to 300 ⁇ m. In this range, it is good to keep the diameter and center point of the metal-coated carbon fiber bundle more constant when manufacturing a heating cable.
  • step b) can be performed by applying a tension of 5 to 10 N/tex to the metal-coated carbon fiber bundle.
  • a tension of 5 to 10 N/tex In this range, when performing step b), no bending strain is applied to the metal-coated carbon fiber bundle, preventing damage to the conductor, and the diameter and center point of the metal-coated carbon fiber bundle can be kept more constant.
  • the tension is less than 5 N/tex, the center point of the heating wire may deviate excessively from the concentric point, and if it exceeds 10 N/tex, the fibers of the metal-coated carbon fiber bundle may be broken due to friction between the metal-coated carbon fiber bundle and the glass fiber. This is not good because the conductor resistance may increase due to (micro-disconnection) or damage to the metal coating layer.
  • step b) may wrap the glass fiber at a rotation speed of 50 to 300 cycles/min, and more preferably, the glass fiber may be wrapped at a rotation speed of 100 to 200 cycles/min. In this range, damage may not occur to the metal-coated carbon fiber bundle.
  • the first heat-resistant resin layer and the second heat-resistant resin layer according to an example of the present invention can be used without particular limitations as long as they are materials having insulation and heat resistance.
  • the first heat-resistant resin layer and The second heat-resistant resin layer is independently made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), and polyvinyl.
  • PA polyamide
  • PE polyethylene
  • PP polypropylene
  • ABS acrylonitrile butadiene styrene
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PVA polystyrene
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • PMMA acrylonitrile-styrene copolymer resin
  • ASA styrene-acrylate copolymer resin
  • PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate.
  • the metal braided layer according to an example of the present invention is intended to reinforce the shear force of the metal-coated carbon fiber bundle and protect the conductor from external shock, and may be braided with metal wires such as copper, stainless steel, or tin-plated wire.
  • Such a heating cable includes the following steps: A) manufacturing a metal-coated carbon fiber bundle; B) manufacturing a cable wire by coating the metal-coated carbon fiber bundle with a first heat-resistant resin through a first sheath process; C) braiding the cable wire into a metal wire through a braiding process; and D) manufacturing a heating cable by coating the braided cable wire with a second heat-resistant resin through a secondary sheath process.
  • a twisting process can be performed in which insulated cable conductors are twisted into two or more strands to manufacture a cable bundle.
  • a nickel-coated carbon fiber bundle (nickel coating layer thickness 300 nm, MCF) was manufactured using the metal-plated carbon fiber manufacturing method according to Patent No. 10-1427309.
  • PA6 resin (density 1.14 g/cm3, melting point 220°C, tensile strength 83 MPa, Izod impact strength 7.5 Kgf ⁇ cm/cm, heat distortion temperature 65°C) was extruded onto the metal-coated carbon fiber bundle. After covering it, copper wire was braided around the outer diameter, and the PA6 resin was extruded and covered again to produce a heating cable about 1.8 m long.
  • a heating cable was manufactured by performing all processes in the same manner as in Example 1 except that the angle of the glass fiber was adjusted differently.
  • a heating cable was manufactured by performing all processes in the same manner as in Example 5, except that the tension applied to the nickel-coated carbon fiber substrate was adjusted differently.
  • a heating cable was manufactured by performing all processes in the same manner as in Example 5, except for using a bundle of carbon fiber (12K, CF) that was not coated with metal.
  • a heating cable was manufactured by performing all processes in the same manner as in Example 12, except that copper alloy wire was used instead of MCF.
  • Example 11 12K 57 15 Example 12 12K - - Comparative Example 1 12K(CF) 57 5 Comparative Example 2 Cu alloy fiber - -
  • Example 1 Heating cable diameter difference rate (%) electrical resistance ( ⁇ /m) D 0 (mm) D 90 (mm)
  • Example 1 2.112 1.906 9.75 1.53
  • Example 2 2.105 1.936 8.03 1.50
  • Example 3 1.96 1.864 4.90 1.58
  • Example 4 2.078 2.002 3.66 1.57
  • Example 5 1.932 1.905 1.40 1.55
  • Example 6 1.934 1.859 3.88 1.58
  • Example 7 2.115 1.896 10.35 1.62
  • Example 8 2.006 1.854 7.58 1.61
  • Example 9 1.991 1.881 5.52 1.59
  • Example 10 2.013 1.978 1.74 1.56
  • Example 11 1.985 1.902 4.18 1.65
  • Example 12 2.043 1.807 11.55 1.66 Comparative Example 1 - - - 35 Comparative Example 2 - - - 0.347
  • Example 5 2.50 1.3 0.786 1.975 Comparative Example 1 1.77 0.063 1.11 1.998 Comparative Example 2 8.96 5.524 0.57 5.107
  • Example 5 Durability and safety tests were conducted using the heating cables of Example 5 and Comparative Example 2 prepared above.
  • the tensile strength was tested based on the MS912-02 automotive hot wire measurement standard, and the repeated bending test was tested based on KS C IEC 60068-2-1: 2010 Environmental Testing - Part 2-1: Test A: Cold Resistance Test.
  • the heating cable of Example 5 showed excellent strength of 199 N, and there was no breakage or change in resistance even after 180,000 evaluations during repeated bending tests.
  • the MCF heating cable according to the present invention is not only more resistant to heat, but is manufactured in a bundle of about 12,000 strands, so even if a portion of the cable is disconnected, a fire may occur. It has the advantage of being safer as it does not connect.
  • the MCF heating cable according to the present invention has a time to reach the target temperature of 90°C in 284 seconds, while the copper alloy heating cable takes 780 seconds, confirming that the MCF heating cable of the present invention has a response speed that is more than twice as fast. I was able to.
  • Example 5 is about 64.4 W
  • Comparative Example 2 is about 74.6 W, confirming that power consumption can be reduced.

Abstract

The present invention relates to a heating cable comprising a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braided layer, and a second heat-resistant resin layer, which are disposed sequentially from the inside, wherein the heating cable has a density of 1.8 to 3.0 g/㎤ on the basis of the metal-coated carbon fiber bundle of 12,000 monofilaments.

Description

발열케이블heating cable
본 발명은 발열케이블에 관한 것이다.The present invention relates to a heating cable.
환경오염과 스마트 시대로 변화함에 따라 온열기능과 함께 빠른 온도 응답성이 필요한 전자제품, 난방용품, 생활용품, 의료용품, 미용용품, 기능성 의류 등 다양한 생활용품에 사용되는 금속 발열전선을 대체할 수 있고, 비교적 저온인 300℃ 이하의 산업용 항온유지 장치에 환경오염 방지와 고효율 제품의 개발이 필요한 시점이다. 특히, 전기자동차 등의 친환경 자동차의 난방이나 연료전지, 수소전기 등 다양한 배터리의 효율을 높이기 위해 고효율 발열케이블 제품의 필요성이 대두되고 있다.As environmental pollution and the smart era change, metal heating wires used in various household products such as electronic products, heating products, household items, medical supplies, beauty products, and functional clothing that require quick temperature response along with heating function can be replaced. There is a need to prevent environmental pollution and develop highly efficient products for industrial temperature maintenance devices at relatively low temperatures below 300℃. In particular, the need for high-efficiency heating cable products is emerging to increase the efficiency of heating for eco-friendly vehicles such as electric vehicles and various batteries such as fuel cells and hydrogen electricity.
일반적인 금속케이블 이외에 탄소섬유 케이블은 탄소섬유의 높은 인장력을 이용해 고강도 케이블을 제조할 수 있으며, 기존 금속케이블과 비교해 같은 부피의 내열케이블로 제조되어 금속전선과 달리 경량화, 고유연성을 갖는 케이블을 제조할 수 있다는 장점이 있어 탄소섬유 전선을 개발하여 발열케이블로 산업분야에 적용하고 있다.In addition to general metal cables, carbon fiber cables can manufacture high-strength cables using the high tensile strength of carbon fiber, and are manufactured as heat-resistant cables of the same volume compared to existing metal cables, making it possible to manufacture lightweight and highly flexible cables, unlike metal wires. Carbon fiber wires have been developed and are being applied to industrial fields as heating cables due to their advantage in that they can be used as heating cables.
이러한 발열제품은 현재까지 구리선, 니크롬선, 탄소섬유, 탄소나노튜브(CNT), 세라믹 분말 등을 이용해 적당한 혼합과 분산으로 일정한 전기저항을 유지할 수 있도록 현탁액을 제작해 고분자 섬유나 탄소섬유에 코팅하거나 배합된 분말형 소재를 성형하여 발열제품을 제작하는 게 일반적인 방법이다. To date, these heat-generating products have been manufactured using copper wire, nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc., to produce a suspension to maintain a constant electrical resistance through appropriate mixing and dispersion, and then coating it on polymer fiber or carbon fiber. A common method is to manufacture heat-generating products by molding mixed powder materials.
상기 제품들은 소비전력이 높고, 원료의 혼합과 분산이 균일하게 제작하기 어렵기 때문에 국부적인 과열현상이 발생할 수 있고 단락, 화재의 위험성이 내재되어 있다.Since the above products have high power consumption and are difficult to manufacture evenly by mixing and dispersing raw materials, local overheating may occur and there is an inherent risk of short circuit and fire.
이에, 상기 발열제품과는 달리 탄소섬유를 발열도체로 사용하여 발열케이블을 제조해 사용하고 있으나 탄소섬유의 높은 저항에 의해 짧은 구간 높은 발열온도로 200℃ 이하로 항온을 유지하기가 어렵고 기존 제품과 같이 도체부와 전선의 접지부 저항의 급격한 상승으로 단선 및 화재 발생 위험이 매우 높은 제품으로 장기 내구성 문제가 심각히 대두되고 있는 상황이다.Accordingly, unlike the above-mentioned heating products, heating cables are manufactured and used using carbon fiber as a heating conductor, but due to the high resistance of carbon fiber, it is difficult to maintain a constant temperature below 200℃ due to the high heating temperature in a short period of time, and it is difficult to maintain a constant temperature below 200℃ due to the high resistance of carbon fiber. Likewise, this product has a very high risk of disconnection and fire due to a rapid increase in the resistance of the conductor and grounding part of the wire, and long-term durability issues are becoming a serious issue.
한편, 이에 대한 유사 선행문헌으로는 대한민국 공개특허 제10-2017-0030126호가 제시되어 있다.Meanwhile, Republic of Korea Patent Publication No. 10-2017-0030126 is presented as a similar prior document regarding this.
상기와 같은 문제점을 해결하기 위하여 본 발명은 기존 금속발열케이블 대비 응답속도가 빠르면서도, 저전력으로 구동이 가능하며, 소비전력이 낮은 발열케이블을 제공하는 것을 목적으로 한다.In order to solve the above problems, the purpose of the present invention is to provide a heating cable that has a faster response speed compared to existing metal heating cables, can be driven with low power, and has low power consumption.
또한, 200℃ 이하로 항온 유지가 가능하고, 내구성이 높으며, 화재, 전선단락, 합선 등 안전사고의 위험성이 매우 낮은 발열케이블을 제공하는 것을 목적으로 한다.In addition, the purpose is to provide a heating cable that can maintain a constant temperature below 200℃, is highly durable, and has a very low risk of safety accidents such as fire, wire shorting, and short circuit.
다만 상기 목적은 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.However, the above object is illustrative, and the technical idea of the present invention is not limited thereto.
상기 목적을 달성하기 위한 본 발명의 일 양태는 내부로부터 순차적으로, 금속코팅 탄소섬유 다발, 제1내열수지층, 금속편조층 및 제2내열수지층을 포함하는 발열케이블로, 상기 발열케이블은 모노필라멘트 12,000 가닥인 금속코팅 탄소섬유 다발을 기준으로 밀도가 1.8 내지 3.5 g/㎤인 것을 특징으로 하는, 발열케이블에 관한 것이다.One aspect of the present invention for achieving the above object is a heating cable sequentially including a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braided layer, and a second heat-resistant resin layer from the inside, wherein the heating cable is mono. It relates to a heating cable, characterized in that the density is 1.8 to 3.5 g/cm3 based on a metal-coated carbon fiber bundle of 12,000 filaments.
상기 일 양태에 있어, 상기 발열케이블은 전기저항이 0.5 내지 5 Ω/m일 수 있다.In the above aspect, the heating cable may have an electrical resistance of 0.5 to 5 Ω/m.
상기 일 양태에 있어, 상기 발열케이블은 전기전도도가 0.1×104 내지 5.0×104 S/㎝일 수 있다.In one aspect, the heating cable may have an electrical conductivity of 0.1×10 4 to 5.0×10 4 S/cm.
상기 일 양태에 있어, 상기 발열케이블은 열용량이 1 내지 3 J/℃일 수 있다.In the above aspect, the heating cable may have a heat capacity of 1 to 3 J/°C.
상기 일 양태에 있어, 상기 발열케이블은 비열이 1 J/g·℃ 이하일 수 있다.In the above aspect, the heating cable may have a specific heat of 1 J/g·°C or less.
상기 일 양태에 있어, 상기 발열케이블은 인장강도가 100 N 이상일 수 있다.In the above aspect, the heating cable may have a tensile strength of 100 N or more.
상기 일 양태에 있어, 상기 금속코팅 탄소섬유 다발은 모노필라멘트가 100 내지 12,000 가닥일 수 있다.In one aspect, the metal-coated carbon fiber bundle may have 100 to 12,000 monofilament strands.
상기 일 양태에 있어, 상기 금속코팅 탄소섬유 다발은 제1금속 및 제2금속으로 탄소섬유를 코팅한 것일 수 있으며, 상기 제1금속은 니켈 또는 구리이며, 제2금속은 니켈일 수 있다.In the above aspect, the metal-coated carbon fiber bundle may be carbon fiber coated with a first metal and a second metal, the first metal may be nickel or copper, and the second metal may be nickel.
상기 일 양태에 있어, 상기 제1내열수지층 및 제2내열수지층은 서로 독립적으로 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK)인 열가소성 수지; 및 천연고무, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌부타디엔, 에틸렌프로필렌, 클로로프렌, 하이파론, 실리콘 및 에틸렌 비닐 아세테이트인 고무류 수지;에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.In the above aspect, the first heat-resistant resin layer and the second heat-resistant resin layer are independently made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), and polycarbonate. (PC), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylic Nitrile-styrene copolymer resin (SAN), acrylonitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK). thermoplastic resin; and rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate.
상기 일 양태에 있어, 상기 금속코팅 탄소섬유 다발은 금속코팅 탄소섬유 다발의 외주면을 따라 소정 틀어진 각도로 금속코팅 탄소섬유 다발을 감싸는 유리섬유를 더 포함하는 것일 수 있다.In the above aspect, the metal-coated carbon fiber bundle may further include glass fibers surrounding the metal-coated carbon fiber bundle at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle.
상기 일 양태에 있어, 상기 각도는 금속코팅 탄소섬유 다발의 장방향축을 기준으로 30 내지 60°일 수 있다.In the above aspect, the angle may be 30 to 60° based on the longitudinal axis of the metal-coated carbon fiber bundle.
상기 일 양태에 있어, 상기 발열케이블은 하기 관계식 1을 만족하는 것일 수 있다.In the above aspect, the heating cable may satisfy the following relational expression 1.
[관계식 1][Relationship 1]
│D0-D90│/D0 × 100 ≤ 10│D 0 -D 90 │/D 0 × 100 ≤ 10
(상기 관계식 1에서 D0 및 D90은 각각 발열케이블의 단면 직경으로, D0는 일방향의 단면 직경(㎛)이며, D90은 상기 일방향의 수직방향의 단면 직경(㎛)이다.)(In the above equation 1, D 0 and D 90 are the cross-sectional diameters of the heating cable, respectively, D 0 is the cross-sectional diameter in one direction (μm), and D 90 is the cross-sectional diameter in the vertical direction in one direction (μm).)
본 발명에 따른 발열케이블은 기존 금속발열케이블 대비 응답속도가 빠르면서도, 저전력으로 구동이 가능하며, 소비전력이 낮다는 장점이 있다. 또한, 200℃ 이하로 항온 유지가 가능하고, 내구성이 높으며, 화재, 전선단락, 합선 등 안전사고의 위험성이 매우 낮을 수 있다.The heating cable according to the present invention has the advantage of having a faster response speed compared to existing metal heating cables, being able to operate at low power, and having low power consumption. In addition, it can maintain a constant temperature below 200℃, has high durability, and the risk of safety accidents such as fire, wire shorting, and short circuit can be very low.
도 1은 본 발명의 일 예에 따른 발열케이블의 일 예시도이다.1 is an exemplary diagram of a heating cable according to an example of the present invention.
도 2는 본 발명의 일 예에 따라 3,000 가닥 금속코팅 탄소섬유(3K MCF)와 12K MCF로 각각 제조된 발열케이블의 실사진이다.Figure 2 is an actual photograph of a heating cable manufactured with 3,000 strands of metal-coated carbon fiber (3K MCF) and 12K MCF, respectively, according to an example of the present invention.
도 3은 본 발명에 따른 유리섬유로 감싸인 금속코팅 탄소섬유의 일 예시도이다.Figure 3 is an exemplary diagram of a metal-coated carbon fiber wrapped with glass fiber according to the present invention.
도 4는 실시예 5에 따라 제조된 발열케이블 단면의 광학현미경 이미지이다.Figure 4 is an optical microscope image of a cross section of a heating cable manufactured according to Example 5.
이하 본 발명에 따른 발열케이블에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the heating cable according to the present invention will be described in detail. The drawings introduced below are provided as examples so that the idea of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. At this time, if there is no other definition in the technical and scientific terms used, they have the meaning commonly understood by those skilled in the art to which this invention pertains, and the gist of the present invention is summarized in the following description and attached drawings. Descriptions of known functions and configurations that may be unnecessarily obscure are omitted.
본 발명의 일 양태는 내부로부터 순차적으로, 금속코팅 탄소섬유 다발, 제1내열수지층, 금속편조층 및 제2내열수지층을 포함하는 발열케이블에 관한 것으로, 상기 발열케이블은 모노필라멘트 12,000 가닥인 금속코팅 탄소섬유 다발을 기준으로 밀도가 1.8 내지 3.5 g/㎤이며, 전기저항이 0.5 내지 5 Ω/m이고, 전기전도도가 0.1×104 내지 5.0×104 S/㎝인 것을 특징으로 할 수 있다.One aspect of the present invention relates to a heating cable sequentially including a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braid layer, and a second heat-resistant resin layer from the inside, wherein the heating cable consists of 12,000 strands of monofilament. Based on the metal-coated carbon fiber bundle, it can be characterized as having a density of 1.8 to 3.5 g/cm3, an electrical resistance of 0.5 to 5 Ω/m, and an electrical conductivity of 0.1×10 4 to 5.0×10 4 S/cm. there is.
보다 바람직하게, 상기 발열케이블은 모노필라멘트 12,000 가닥인 금속코팅 탄소섬유 다발을 기준으로 밀도가 2.0 내지 3.0 g/㎤이며, 전기저항이 0.8 내지 3 Ω/m이고, 전기전도도가 0.5×104 내지 4.0×104 S/㎝일 수 있으며, 더욱 바람직하게는 밀도가 2.2 내지 2.8 g/㎤이며, 전기저항이 0.8 내지 2 Ω/m이고, 전기전도도가 1.0×104 내지 3.0×104 S/㎝일 수 있다.More preferably, the heating cable has a density of 2.0 to 3.0 g/cm3, an electrical resistance of 0.8 to 3 Ω/m, and an electrical conductivity of 0.5 It may be 4.0×10 4 S/cm, and more preferably, the density is 2.2 to 2.8 g/cm3, the electrical resistance is 0.8 to 2 Ω/m, and the electrical conductivity is 1.0×10 4 to 3.0×10 4 S/. It may be ㎝.
아울러, 보다 우수한 응답속도 및 낮은 소비전력을 확보하기 위한 측면에서, 상기 발열케이블은 열용량이 1 내지 3 J/℃이고, 비열이 1 J/g·℃ 이하일 수 있으며, 보다 좋게는 열용량이 1.3 내지 2.7 J/℃이고, 비열이 0.6 내지 1 J/g·℃일 수 있고, 더욱 좋게는 열용량이 1.5 내지 2.3 J/℃이고, 비열이 0.7 내지 0.85 J/g·℃일 수 있다. 이때 상기 비열은 DSC(differential scanning calorimetry)을 통해 측정된 값일 수 있으며, 50℃에서의 값을 의미할 수 있다.In addition, in order to secure better response speed and lower power consumption, the heating cable may have a heat capacity of 1 to 3 J/°C, a specific heat of 1 J/g·°C or less, and more preferably, a heat capacity of 1.3 to 1.3 J/°C. 2.7 J/°C, the specific heat may be 0.6 to 1 J/g·°C, and more preferably, the heat capacity may be 1.5 to 2.3 J/°C and the specific heat may be 0.7 to 0.85 J/g·°C. At this time, the specific heat may be a value measured through DSC (differential scanning calorimetry) and may mean a value at 50°C.
나아가, 본 발명의 일 예에 따른 발열케이블은 우수한 기계적 물성을 가진 것일 수 있으며, 구체적으로 예를 들면 인장강도가 100 N 이상이며, 10만회 이상 반복 굽힘 실험을 하여도 단선 및 저항 변화가 없을 수 있다. 보다 좋게는 상기 발열케이블은 인장강도가 130 N 이상이며, 15만회 이상 반복 굽힘 실험을 하여도 단선 및 저항 변화가 없을 수 있고, 더욱 좋게는 인장강도가 150 N 이상이며, 18만회 이상 반복 굽힘 실험을 하여도 단선 및 저항 변화가 없을 수 있다. 이때, 상기 인장강도의 상한은 특별히 한정하지 않으나, 예를 들면 250 N일 수 있고, 반복 굽힘 실험 횟수 또한 특별히 상한을 한정하지 않으나, 예를 들면 50만회일 수 있다.Furthermore, the heating cable according to an example of the present invention may have excellent mechanical properties. Specifically, for example, the tensile strength may be 100 N or more, and there may be no breakage or change in resistance even after repeated bending tests of more than 100,000 times. there is. More preferably, the heating cable has a tensile strength of 130 N or more, and can be subjected to repeated bending tests of more than 150,000 times without disconnection or change in resistance. Even better, the tensile strength of the cable is more than 150 N, and can be subjected to repeated bending tests of more than 180,000 times. Even if you do this, there may be no disconnection or change in resistance. At this time, the upper limit of the tensile strength is not particularly limited, but may be, for example, 250 N. The number of repeated bending tests is also not particularly limited, but may be, for example, 500,000 times.
이처럼, 본 발명에 따른 발열케이블은 우수한 전기적 특성 및 기계적 특성을 가짐에 따라 기존 금속발열케이블 대비 응답속도가 빠르면서도, 저전력으로 구동이 가능하며, 소비전력이 낮다는 장점이 있다. 또한, 200℃ 이하로 항온 유지가 가능하고, 내구성이 높으며, 화재, 전선단락, 합선 등 안전사고의 위험성이 매우 낮을 수 있다.As such, the heating cable according to the present invention has excellent electrical and mechanical properties, so it has the advantage of having a faster response speed compared to existing metal heating cables, being able to be driven with low power, and having low power consumption. In addition, it can maintain a constant temperature below 200℃, has high durability, and the risk of safety accidents such as fire, wire shorting, and short circuit can be very low.
이하, 본 발명의 일 예에 따른 발열케이블에 대하여 보다 상세히 설명한다.Hereinafter, a heating cable according to an example of the present invention will be described in more detail.
도 1을 참조하면, 본 발명에 따른 발열케이블은 내부로부터 순차적으로, 금속코팅 탄소섬유 다발(MCF), 제1내열수지층, 금속편조층 및 제2내열수지층의 구성을 포함할 수 있다.Referring to Figure 1, the heating cable according to the present invention may sequentially include a metal-coated carbon fiber bundle (MCF), a first heat-resistant resin layer, a metal braided layer, and a second heat-resistant resin layer from the inside.
본 발명의 일 예에 있어, 상기 금속코팅 탄소섬유 다발은 모노필라멘트가 100 내지 12,000 가닥일 수 있으며, 바람직하게는 1K(모노필라멘트 1,000 가닥), 3K(모노필라멘트 3,000 가닥), 6K(모노필라멘트 6,000 가닥), 12K(모노필라멘트 12,000 가닥)인 금속코팅 탄소섬유 다발일 수 있고, 보다 바람직하게는 3K(모노필라멘트 3,000 가닥) 내지 12K(모노필라멘트 12,000 가닥)인 금속코팅 탄소섬유 다발일 수 있다.In one example of the present invention, the metal-coated carbon fiber bundle may have 100 to 12,000 monofilament strands, preferably 1K (1,000 monofilament strands), 3K (3,000 monofilament strands), or 6K (6,000 monofilament strands). It may be a bundle of metal-coated carbon fibers of 12K (12,000 strands of monofilament), and more preferably, a bundle of metal-coated carbon fibers of 3K (3,000 strands of monofilament) to 12K (12,000 strands of monofilament).
금속코팅 탄소섬유는 탄소섬유의 외경에 도금 공정을 통해 금속이 코팅된 탄소섬유라면 제한 없이 이용이 가능하나, 본 발명에서 제조하고자 하는 발열 특성 및 기계적 강도를 만족하기 위해서는, 무전해 도금 및 전해 도금을 통해 금속이 이중으로 코팅된 탄소섬유를 사용하는 것이 바람직하다. 구체적으로 예를 들면 상기 금속코팅 탄소섬유 다발은 제1금속 및 제2금속으로 탄소섬유를 코팅한 것일 수 있으며, 보다 상세하게, 니켈 또는 구리로 무전해 도금한 후 니켈을 전해 도금한 금속코팅 탄소섬유일 수 있으나, 반드시 이에 제한되는 것은 아니다. 아울러, 상기 도금에 의해 생성된 금속코팅의 두께는 50 내지 500 ㎚일 수 있으며, 보다 좋게는 100 내지 300 ㎚일 수 있다. 상기 금속코팅의 두께에 따라 금속코팅 탄소섬유의 전기저항이 상이하게 나타날 수 있고, 바람직한 전기저항은 0.1 내지 10 Ω/m일 수 있으나, 이에 제한되는 것은 아니다.Metal-coated carbon fiber can be used without limitation as long as it is carbon fiber coated with metal on the outer diameter of the carbon fiber through a plating process. However, in order to satisfy the heat generation characteristics and mechanical strength to be manufactured in the present invention, electroless plating and electrolytic plating are used. It is desirable to use carbon fiber double coated with metal. Specifically, for example, the metal-coated carbon fiber bundle may be carbon fiber coated with a first metal and a second metal. More specifically, the metal-coated carbon is electroless plated with nickel or copper and then electrolytically plated with nickel. It may be a fiber, but is not necessarily limited thereto. In addition, the thickness of the metal coating produced by the plating may be 50 to 500 nm, and more preferably 100 to 300 nm. The electrical resistance of the metal-coated carbon fiber may vary depending on the thickness of the metal coating, and a desirable electrical resistance may be 0.1 to 10 Ω/m, but is not limited thereto.
바람직하게, 상기 금속코팅 탄소섬유 다발은, 도 2에 도시된 것과 같이, 금속코팅 탄소섬유 다발의 외주면을 따라 소정 틀어진 각도로 금속코팅 탄소섬유 다발을 감싸는 유리섬유를 더 포함하는 것일 수 있다.Preferably, the metal-coated carbon fiber bundle may further include glass fibers surrounding the metal-coated carbon fiber bundle at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle, as shown in FIG. 2.
구체적인 일 예시로, 상기 각도는 금속코팅 탄소섬유 다발의 장방향축을 기준으로 30 내지 60°일 수 있으며, 보다 좋게는 40 내지 60°, 더욱 좋게는 50 내지 60°일 수 있다. 이와 같은 범위에서 발열케이블 제조 시 금속코팅 탄소섬유 다발의 직경과 중심점을 보다 일정하게 유지할 수 있어 좋다.As a specific example, the angle may be 30 to 60°, more preferably 40 to 60°, and even more preferably 50 to 60° with respect to the longitudinal axis of the metal-coated carbon fiber bundle. In this range, it is good to keep the diameter and center point of the metal-coated carbon fiber bundle more constant when manufacturing a heating cable.
바람직하게, 유리섬유로 감싸진 금속코팅 탄소섬유 다발을 사용한 상기 발열케이블은 하기 관계식 1을 만족하는 것일 수 있다.Preferably, the heating cable using a bundle of metal-coated carbon fibers wrapped with glass fibers may satisfy the following relational expression 1.
[관계식 1][Relationship 1]
│D0-D90│/D0 × 100 ≤ 10│D 0 -D 90 │/D 0 × 100 ≤ 10
(상기 관계식 1에서 D0 및 D90은 각각 발열케이블의 단면 직경으로, D0는 일방향의 단면 직경(㎛)이며, D90은 상기 일방향의 수직방향의 단면 직경(㎛)이다.)(In the above relational equation 1, D 0 and D 90 are the cross-sectional diameters of the heating cable, respectively, D 0 is the cross-sectional diameter in one direction (μm), and D 90 is the cross-sectional diameter in the vertical direction in one direction (μm).)
즉, 본 발명에 따른 발열케이블은 금속코팅 탄소섬유 다발이 특정 방향으로 쏠리지 않고 직경과 중심점이 일정하게 유지된 동심원 구조를 가진 것일 수 있으며, 이를 통해 목표하는 수준의 발열을 정밀하게 제어할 수 있다. 보다 바람직하게, │D0-D90│/D0 × 100은 5 이하, 더욱 좋게는 3 이하일 수 있으며, 이때 하한은 0일 수 있다. 반면, 금속코팅 탄소섬유 다발의 형태가 동심원 구조를 가지지 못 하고 심하게 찌그러질 경우 발열케이블의 구역 마다 발열 정도가 다를 수 있어 좋지 않다.In other words, the heating cable according to the present invention may have a concentric structure in which the metal-coated carbon fiber bundle is not oriented in a specific direction and the diameter and center point are kept constant, and through this, heat generation at the target level can be precisely controlled. . More preferably, │D 0 -D 90 │/D 0 × 100 may be 5 or less, more preferably 3 or less, and in this case, the lower limit may be 0. On the other hand, if the shape of the metal-coated carbon fiber bundle does not have a concentric structure and is severely distorted, the degree of heat generation may vary in each section of the heating cable, which is not good.
이때, 상기 유리섬유는 말 그대로 유리를 섬유처럼 가늘고 길게 뽑은 소재로, 상기 유리섬유의 직경은 1 내지 20 ㎛일 수 있으며, 보다 좋게는 3 내지 15 ㎛일 수 있으나, 반드시 이에 한정되는 것은 아니다.At this time, the glass fiber is literally a material made by pulling glass thin and long like a fiber, and the diameter of the glass fiber may be 1 to 20 ㎛, more preferably 3 to 15 ㎛, but is not necessarily limited thereto.
아울러, 상기 유리섬유는 한 가닥 또는 둘 이상의 복수의 가닥일 수 있으며, 바람직하게는 3 내지 20 가닥의 유리섬유를 사용하는 것이 발열케이블 제조 시 금속코팅 탄소섬유 다발의 직경과 중심점을 보다 일정하게 유지할 수 있어 좋다.In addition, the glass fiber may be one strand or a plurality of two or more strands, and preferably 3 to 20 strands of glass fiber are used to maintain the diameter and center point of the metal-coated carbon fiber bundle more consistently when manufacturing the heating cable. It's nice to be able to do it.
이와 같은 유리섬유로 감싸진 금속코팅 탄소섬유 다발은 a) 금속코팅 탄소섬유 다발을 준비하는 단계; 및 b) 상기 금속코팅 탄소섬유 다발의 외주면을 따라 소정 틀어진 각도로 유리섬유를 감싸는 단계;를 통해 제조된 것일 수 있다.Such a metal-coated carbon fiber bundle wrapped with glass fibers includes the following steps: a) preparing a metal-coated carbon fiber bundle; and b) wrapping glass fibers at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle.
먼저, a) 금속코팅 탄소섬유 다발을 준비하는 단계를 수행할 수 있다.First, step a) preparing a metal-coated carbon fiber bundle can be performed.
전술한 바와 같이, 본 발명에 일 예에 따른 금속코팅 탄소섬유 다발은, 탄소섬유의 외경에 도금 공정을 통해 금속이 코팅된 탄소섬유라면 제한 없이 이용이 가능하나, 본 발명에서 제조하고자 하는 발열 특성 및 기계적 강도를 만족하기 위해서는, 무전해 도금 및 전해 도금을 통해 금속이 이중으로 코팅된 탄소섬유를 사용하는 것이 바람직하다.As described above, the metal-coated carbon fiber bundle according to an example of the present invention can be used without limitation as long as it is a carbon fiber coated with metal on the outer diameter of the carbon fiber through a plating process, but the heat generating properties to be manufactured in the present invention In order to satisfy the mechanical strength, it is preferable to use carbon fiber double coated with metal through electroless plating and electrolytic plating.
구체적인 일 예시로, 상기 a)단계는, a-1) 탄소섬유를 제1금속으로 무전해도금하는 단계; 및 a-2) 상기 무전해도금된 탄소섬유를 제2금속으로 전해도금하는 단계;를 포함할 수 있다.As a specific example, step a) includes a-1) electroless plating carbon fiber with a first metal; and a-2) electroplating the electroless plated carbon fiber with a second metal.
상기 제1금속 및 제2금속의 종류는 서로 같거나 또는 다를 수 있고, 바람직하게는 제1금속은 니켈 또는 구리, 제2금속은 니켈일 수 있다. 본 발명의 무전해 및 전해 공정은 국내 등록특허 제10-1427309호에 제시된 방법을 통해 수행될 수 있으나, 이에 제한되는 것은 아니다.The types of the first metal and the second metal may be the same or different, and preferably the first metal may be nickel or copper, and the second metal may be nickel. The electroless and electrolytic process of the present invention can be performed through the method presented in Domestic Patent No. 10-1427309, but is not limited thereto.
상기 a-1)단계는 순수(pure water), 제1금속염, 착화제, 환원제, 안정제 및 pH 조절제를 포함하는 무전해 도금액에 탄소섬유를 통과시켜 수행될 수 있고, 상기 a-2)단계는 a-1)단계에 이어 연속적으로 수행되는 것으로 제2금속염 및 pH 완충제를 이용하여 정전압(CV, constant voltage) 5 내지 15 V를 가하여 수행될 수 있으나, 상기 방법에 제한되는 것은 아니다.The step a-1) may be performed by passing the carbon fiber through an electroless plating solution containing pure water, a first metal salt, a complexing agent, a reducing agent, a stabilizer, and a pH adjuster, and the step a-2) may be It can be performed continuously following step a-1) by applying a constant voltage (CV) of 5 to 15 V using a second metal salt and a pH buffer, but is not limited to the above method.
상기 a-1)단계 및 a-2)단계 이전에, (ⅰ) 탄소섬유를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 탄소섬유를 탈지 및 연화시키는 단계; (ⅱ) 상기 단계 (ⅰ)의 결과물인 탄소섬유를 아황산수소나트륨(NaHSO3), 황산(H2SO4), 과황산 암모늄((NH4)2S2O8) 및 순수를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning) 작용을 하는 에칭 공정을 실시하는 단계; (ⅲ) 상기 단계 (ⅱ)의 결과물인 탄소섬유를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (ⅳ) 상기 단계 (ⅲ)의 결과물인 탄소섬유를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계;를 포함하는 전처리 공정을 통해 전처리된 탄소섬유를 사용할 수 있으나, 역시 이에 제한되는 것은 아니다.Before steps a-1) and a-2), (i) degreasing and softening the carbon fibers by passing them through an aqueous solution containing a surfactant, an organic solvent, and a non-ionic surfactant; (ii) The carbon fiber resulting from step (i) is dissolved in an aqueous solution containing sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), and pure water. performing an etching process to neutralize, clean, and condition the skin; (iii) passing the carbon fiber resulting from step (ii) through a PdCl 2 aqueous solution to perform a sensitizing process; and (iv) performing an activating process by passing the carbon fiber resulting from step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ). The pre-treated carbon fiber can be used through a pre-treatment process including. However, it is not limited to this.
상기 도금에 의해 생성된 금속코팅의 두께는 50 내지 500 ㎚일 수 있으며, 보다 좋게는 100 내지 300 ㎚일 수 있다. 상기 금속코팅의 두께에 따라 금속코팅 탄소섬유의 전기저항이 상이하게 나타날 수 있고, 바람직한 전기저항은 0.1 내지 10 Ω/m일 수 있으나, 이에 제한되는 것은 아니다.The thickness of the metal coating produced by the plating may be 50 to 500 nm, and more preferably 100 to 300 nm. The electrical resistance of the metal-coated carbon fiber may vary depending on the thickness of the metal coating, and a desirable electrical resistance may be 0.1 to 10 Ω/m, but is not limited thereto.
이와 같이, 금속코팅 탄소섬유 다발이 준비되면, b) 상기 금속코팅 탄소섬유 다발의 외주면을 따라 소정 틀어진 각도로 유리섬유를 감싸는 단계를 수행할 수 있다.In this way, when the metal-coated carbon fiber bundle is prepared, step b) wrapping the glass fiber at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle can be performed.
이때, 상기 b)단계의 각도는 금속코팅 탄소섬유 다발의 장방향축을 기준으로 30 내지 60°일 수 있으며, 보다 좋게는 40 내지 60°, 더욱 좋게는 50 내지 60°일 수 있다. 또한, 상기 간격은 유리섬유와 이격 배치된 유리섬유의 중심간 거리일 수 있으며, 구체적으로 예를 들면 50 내지 300 ㎛일 수 있다. 이와 같은 범위에서 발열케이블 제조 시 금속코팅 탄소섬유 다발의 직경과 중심점을 보다 일정하게 유지할 수 있어 좋다.At this time, the angle of step b) may be 30 to 60°, more preferably 40 to 60°, and even more preferably 50 to 60° with respect to the longitudinal axis of the metal-coated carbon fiber bundle. Additionally, the distance may be the distance between the centers of the glass fibers spaced apart from the glass fibers, and may be specifically, for example, 50 to 300 ㎛. In this range, it is good to keep the diameter and center point of the metal-coated carbon fiber bundle more constant when manufacturing a heating cable.
아울러, 상기 b)단계는 금속코팅 탄소섬유 다발에 5 내지 10 N/tex의 장력을 인가하여 수행될 수 있다. 이와 같은 범위에서 b)단계 수행 시 금속코팅 탄소섬유 다발에 휨 변형이 가해지지 않아 도체가 손상되는 것을 방지할 수 있으며, 금속코팅 탄소섬유 다발의 직경과 중심점을 보다 일정하게 유지할 수 있다. 반면, 장력이 5 N/tex 미만이면 발열선의 중심점이 동심점으로부터 과하게 벗어날 수 있으며, 10 N/tex를 초과할 경우 금속코팅 탄소섬유 다발과 유리섬유 간의 마찰로 인해 금속코팅 탄소섬유 다발의 섬유 끊김(미세 단선)이나 금속코팅층이 손상되는 현상으로 인해 도체 저항이 높아지는 현상이 발생할 수 있어 좋지 않다.In addition, step b) can be performed by applying a tension of 5 to 10 N/tex to the metal-coated carbon fiber bundle. In this range, when performing step b), no bending strain is applied to the metal-coated carbon fiber bundle, preventing damage to the conductor, and the diameter and center point of the metal-coated carbon fiber bundle can be kept more constant. On the other hand, if the tension is less than 5 N/tex, the center point of the heating wire may deviate excessively from the concentric point, and if it exceeds 10 N/tex, the fibers of the metal-coated carbon fiber bundle may be broken due to friction between the metal-coated carbon fiber bundle and the glass fiber. This is not good because the conductor resistance may increase due to (micro-disconnection) or damage to the metal coating layer.
또한, 상기 b)단계는 50 내지 300 사이클/분의 회전속도로 유리섬유를 감쌀 수 있으며, 보다 좋게는 100 내지 200 사이클/분의 회전속도로 유리섬유를 감쌀 수 있다. 이와 같은 범위에서 금속코팅 탄소섬유 다발에 손상이 발생하지 않을 수 있다.In addition, step b) may wrap the glass fiber at a rotation speed of 50 to 300 cycles/min, and more preferably, the glass fiber may be wrapped at a rotation speed of 100 to 200 cycles/min. In this range, damage may not occur to the metal-coated carbon fiber bundle.
다음으로, 본 발명의 일 예에 따른 상기 제1내열수지층 및 제2내열수지층은 절연성 및 내열성을 가지는 소재라면 특별히 한정하지 않고 사용할 수 있으며, 구체적으로 예를 들면 상기 제1내열수지층 및 제2내열수지층은 서로 독립적으로 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK) 등인 열가소성 수지; 및 천연고무, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌부타디엔, 에틸렌프로필렌, 클로로프렌, 하이파론, 실리콘 및 에틸렌 비닐 아세테이트 등인 고무류 수지;에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.Next, the first heat-resistant resin layer and the second heat-resistant resin layer according to an example of the present invention can be used without particular limitations as long as they are materials having insulation and heat resistance. Specifically, for example, the first heat-resistant resin layer and The second heat-resistant resin layer is independently made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), and polyvinyl. Alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylonitrile -Thermoplastic resins such as styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK); and rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate.
본 발명의 일 예에 따른 금속편조층은 금속코팅 탄소섬유 다발의 전단력을 보강하고, 도체를 외부 충격으로부터 보호하기 위한 것으로, 구리, 스테인리스 또는 주석도금선 등의 금속선으로 편조된 것일 수 있다.The metal braided layer according to an example of the present invention is intended to reinforce the shear force of the metal-coated carbon fiber bundle and protect the conductor from external shock, and may be braided with metal wires such as copper, stainless steel, or tin-plated wire.
이와 같은 발열케이블은 A) 금속코팅 탄소섬유 다발을 제조하는 단계; B) 1차 시스(sheath) 공정을 통해 상기 금속코팅 탄소섬유 다발에 제1내열수지를 피복시켜 케이블 선재를 제조하는 단계; C) 편조 공정을 통해 상기 케이블 선재를 금속선으로 편조하는 단계; 및 D) 2차 시스 공정을 통해 상기 편조된 케이블 선재에 제2내열수지를 피복시켜 발열케이블을 제조하는 단계;를 포함할 수 있다.Such a heating cable includes the following steps: A) manufacturing a metal-coated carbon fiber bundle; B) manufacturing a cable wire by coating the metal-coated carbon fiber bundle with a first heat-resistant resin through a first sheath process; C) braiding the cable wire into a metal wire through a braiding process; and D) manufacturing a heating cable by coating the braided cable wire with a second heat-resistant resin through a secondary sheath process.
필요에 따라서는 원하는 단위 길이 당 저항을 제조할 수 없을 경우, 절연된 케이블 도체를 2 가닥 이상으로 꼬아 케이블 다발로 제조하는 대연 공정을 수행할 수 있다.If necessary, if the desired resistance per unit length cannot be manufactured, a twisting process can be performed in which insulated cable conductors are twisted into two or more strands to manufacture a cable bundle.
이하, 실시예를 통해 본 발명에 따른 발열케이블에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, the heating cable according to the present invention will be described in more detail through examples. However, the following examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.Additionally, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention pertains. The terminology used in the description herein is merely to effectively describe particular embodiments and is not intended to limit the invention. Additionally, the unit of additives not specifically described in the specification may be weight percent.
[실시예 1][Example 1]
12,000(12K) 가닥의 탄소섬유를 이용해, 등록특허 제10-1427309호에 따른 금속도금 탄소섬유 제조방법으로 니켈코팅 탄소섬유 다발(니켈코팅층 두께 300 ㎚, MCF)을 제조하였다.Using 12,000 (12K) strands of carbon fiber, a nickel-coated carbon fiber bundle (nickel coating layer thickness 300 nm, MCF) was manufactured using the metal-plated carbon fiber manufacturing method according to Patent No. 10-1427309.
상기 니켈코팅 탄소섬유 다발에 1 N/tex의 장력을 인가하면서 100 사이클/분의 회전속도로 MCF1의 외주면에 유리섬유(20 가닥, 직경 5 ㎛)를 감았으며, 이때 금속코팅 탄소섬유 다발의 장방향축을 기준으로 30°가 틀어지도록 조절하여 금속코팅 탄소섬유를 제조하였다.While applying a tension of 1 N/tex to the nickel-coated carbon fiber bundle, glass fibers (20 strands, diameter 5 ㎛) were wound around the outer circumferential surface of MCF1 at a rotation speed of 100 cycles/min. At this time, the length of the metal-coated carbon fiber bundle was Metal-coated carbon fiber was manufactured by adjusting the angle to be 30° relative to the direction axis.
이후, 금속코팅 탄소섬유 다발에 폴리아마이드 6(PA6) 수지(밀도 1.14 g/㎤, 융점 220℃, 인장강도 83 ㎫, Izod 충격강도 7.5 Kgf·㎝/㎝, 열변형온도 65℃)를 압출 성형하여 피복한 다음 그 외경에 구리선을 편조하고, 다시 한 번 상기 PA6 수지를 압출 성형하여 피복함으로써 약 1.8 m 길이의 발열케이블을 제조하였다.Afterwards, polyamide 6 (PA6) resin (density 1.14 g/cm3, melting point 220℃, tensile strength 83 MPa, Izod impact strength 7.5 Kgf·cm/cm, heat distortion temperature 65℃) was extruded onto the metal-coated carbon fiber bundle. After covering it, copper wire was braided around the outer diameter, and the PA6 resin was extruded and covered again to produce a heating cable about 1.8 m long.
[실시예 2 내지 7][Examples 2 to 7]
하기 표 1에 나타낸 바와 같이, 유리섬유의 각도를 달리 조절한 것 외 모든 공정을 실시예 1과 동일하게 수행하여 발열케이블을 제조하였다.As shown in Table 1 below, a heating cable was manufactured by performing all processes in the same manner as in Example 1 except that the angle of the glass fiber was adjusted differently.
[실시예 8 내지 11][Examples 8 to 11]
하기 표 1에 나타낸 바와 같이, 니켈코팅 탄소섬유 기재에 가해지는 장력을 달리 조절한 것 외 모든 공정을 실시예 5와 동일하게 수행하여 발열케이블을 제조하였다.As shown in Table 1 below, a heating cable was manufactured by performing all processes in the same manner as in Example 5, except that the tension applied to the nickel-coated carbon fiber substrate was adjusted differently.
[실시예 12][Example 12]
실시예 1과 동일한 방법으로 니켈코팅 탄소섬유 기재(니켈코팅층 두께 300 ㎚)를 준비한 후, 유리섬유를 감지 않고 발열케이블을 제조하였다.After preparing a nickel-coated carbon fiber base (nickel coating layer thickness 300 nm) in the same manner as in Example 1, a heating cable was manufactured without winding glass fiber.
[비교예 1][Comparative Example 1]
금속이 코팅되지 않은 탄소섬유(12K, CF) 다발을 이용한 것 외 모든 공정을 실시예 5와 동일하게 수행하여 발열케이블을 제조하였다.A heating cable was manufactured by performing all processes in the same manner as in Example 5, except for using a bundle of carbon fiber (12K, CF) that was not coated with metal.
[비교예 2][Comparative Example 2]
MCF 대신 구리합금선을 사용한 것 외 모든 공정을 실시예 12와 동일하게 수행하여 발열케이블을 제조하였다.A heating cable was manufactured by performing all processes in the same manner as in Example 12, except that copper alloy wire was used instead of MCF.
모노필라멘트
가닥 수
monofilament
strand count
각도
(°)
Angle
(°)
장력
(N/tex)
tension
(N/tex)
실시예 1Example 1 12K12K 3030 55
실시예 2Example 2 12K12K 4040 55
실시예 3Example 3 12K12K 5050 55
실시예 4Example 4 12K12K 5353 55
실시예 5Example 5 12K12K 5757 55
실시예 6Example 6 12K12K 6060 55
실시예 7Example 7 12K12K 6565 55
실시예 8Example 8 12K12K 5757 1One
실시예 9Example 9 12K12K 5757 33
실시예 10Example 10 12K12K 5757 1010
실시예 11Example 11 12K12K 5757 1515
실시예 12Example 12 12K12K -- --
비교예 1Comparative Example 1 12K(CF)12K(CF) 5757 55
비교예 2Comparative Example 2 Cu alloy fiberCu alloy fiber -- --
[특성 평가][Characteristics Evaluation]
1) 상기 제조된 실시예 1 내지 12의 발열케이블의 일방향의 직경(D0, ㎛)과 일방향의 수직방향의 섬유 직경(D90, ㎛)을 각각 측정하고, 관계식 1에 따라 차이율(%)을 계산하였으며, 각 발열케이블의 전기저항(Ω/m) 측정하여 하기 표 2에 나타내었다.1) Measure the diameter in one direction (D 0, ㎛) and the fiber diameter (D 90 , ㎛) in the vertical direction in one direction of the heating cables of Examples 1 to 12 manufactured above, respectively, and calculate the difference ratio (%) according to equation 1 ) was calculated, and the electrical resistance (Ω/m) of each heating cable was measured and shown in Table 2 below.
발열케이블 직경Heating cable diameter 차이율
(%)
difference rate
(%)
전기저항
(Ω/m)
electrical resistance
(Ω/m)
D0 (㎜)D 0 (㎜) D90 (㎜)D 90 (㎜)
실시예 1Example 1 2.1122.112 1.9061.906 9.759.75 1.531.53
실시예 2Example 2 2.1052.105 1.9361.936 8.038.03 1.501.50
실시예 3Example 3 1.961.96 1.8641.864 4.904.90 1.581.58
실시예 4Example 4 2.0782.078 2.0022.002 3.663.66 1.571.57
실시예 5Example 5 1.9321.932 1.9051.905 1.401.40 1.551.55
실시예 6Example 6 1.9341.934 1.8591.859 3.883.88 1.581.58
실시예 7Example 7 2.1152.115 1.8961.896 10.3510.35 1.621.62
실시예 8Example 8 2.0062.006 1.8541.854 7.587.58 1.611.61
실시예 9Example 9 1.9911.991 1.8811.881 5.525.52 1.591.59
실시예 10Example 10 2.0132.013 1.9781.978 1.741.74 1.561.56
실시예 11Example 11 1.9851.985 1.9021.902 4.184.18 1.651.65
실시예 12Example 12 2.0432.043 1.8071.807 11.5511.55 1.661.66
비교예 1Comparative Example 1 -- -- -- 3535
비교예 2Comparative Example 2 -- -- -- 0.3470.347
2) 실시예 5, 비교예 1 및 비교예 2에서 각각 제조된 발열케이블의 밀도(g/㎤), 비열(J/g·℃), 전기전도도(S/㎝)를 각각 측정하였으며, 열용량(J/℃)은 시편의 부피×비열×밀도로 산출하여 하기 표 3에 나타내었다. 이때, 비열은 DSC 데이터 중 50℃에서의 비열로 나타내었다.2) The density (g/cm3), specific heat (J/g·°C), and electrical conductivity (S/cm) of the heating cables manufactured in Example 5, Comparative Example 1, and Comparative Example 2 were measured, respectively, and the heat capacity ( J/°C) was calculated as the volume × specific heat × density of the specimen and is shown in Table 3 below. At this time, the specific heat was expressed as the specific heat at 50°C in the DSC data.
밀도
(g/㎤)
density
(g/㎤)
전기전도도
(×104 S/㎝)
electrical conductivity
(×10 4 S/cm)
비열
(J/g·℃)
specific heat
(J/g·℃)
열용량
(J/℃)
heat capacity
(J/℃)
실시예 5Example 5 2.502.50 1.31.3 0.7860.786 1.9751.975
비교예 1Comparative Example 1 1.771.77 0.0630.063 1.111.11 1.9981.998
비교예 2Comparative Example 2 8.968.96 5.524 5.524 0.570.57 5.1075.107
3) 상기 제조된 실시예 5 및 비교예 2의 발열케이블을 이용하여 내구성 및 안전성 시험을 진행하였다. 인장강도는 MS912-02 차량용 열선 측정 규격에 의거하여 실험하였으며, 반복 굽힘 실험은 KS C IEC 60068-2-1 : 2010 환경시험-제2-1부 : 시험 A : 내한성 시험에 의거하여 실험하였다.그 결과, 실시예 5의 발열케이블은 199 N의 우수한 강도를 보였으며, 반복 굽힘 실험 시 18만회 평가를 진행한 후에도 단선 및 저항 변화가 없었다.3) Durability and safety tests were conducted using the heating cables of Example 5 and Comparative Example 2 prepared above. The tensile strength was tested based on the MS912-02 automotive hot wire measurement standard, and the repeated bending test was tested based on KS C IEC 60068-2-1: 2010 Environmental Testing - Part 2-1: Test A: Cold Resistance Test. As a result, the heating cable of Example 5 showed excellent strength of 199 N, and there was no breakage or change in resistance even after 180,000 evaluations during repeated bending tests.
반면, 비교예 2의 구리 발열케이블의 경우 인장강도는 93 N으로 본원발명 대비 현저하게 낮았으며, 굽힘 실험 시 9만회에서 단선이 발생하는 문제가 있었다. On the other hand, in the case of the copper heating cable of Comparative Example 2, the tensile strength was 93 N, which was significantly lower than that of the present invention, and there was a problem of wire breakage occurring after 90,000 bending tests.
이와 같은 단선 발생 시 금속 발열케이블은 병목현상으로 인해 단선된 부분에서 화재가 발생할 수 있으나, 본 발명에 따른 MCF 발열케이블은 열에 보다 강할 뿐만 아니라 약 12,000 가닥의 다발 형식으로 제조되어 일부분 단선되어도 화재로 이어지지 않아 안전성이 더욱 우수하다는 장점이 있다.When such a disconnection occurs, a fire may occur in the disconnected part of the metal heating cable due to the bottleneck phenomenon. However, the MCF heating cable according to the present invention is not only more resistant to heat, but is manufactured in a bundle of about 12,000 strands, so even if a portion of the cable is disconnected, a fire may occur. It has the advantage of being safer as it does not connect.
4) 상기 제조된 실시예 5 및 비교예 2의 발열케이블을 이용하여 소비전력을 비교하였다.4) Power consumption was compared using the heating cables of Example 5 and Comparative Example 2 manufactured above.
그 결과, 본 발명에 따른 MCF 발열케이블은 목표 온도인 90℃까지의 도달 시간이 284 초인 반면, 구리합금 발열케이블은 780 초로, 본 발명의 MCF 발열케이블이 2배 이상 빠른 응답속도를 가짐을 확인할 수 있었다.As a result, the MCF heating cable according to the present invention has a time to reach the target temperature of 90°C in 284 seconds, while the copper alloy heating cable takes 780 seconds, confirming that the MCF heating cable of the present invention has a response speed that is more than twice as fast. I was able to.
또한, 목표설정온도 90℃로 NTC(Negative Temperature Coefficient thermistor) 제어하여 히터 운영 시, MCF의 빠른 응답속도에 의해 전력의 오프(off) 시간이 많음에 따라, 실시예 5는 약 64.4 W, 비교예 2는 약 74.6 W로, 소비전력을 절감할 수 있음을 확인할 수 있었다.In addition, when the heater is operated by NTC (Negative Temperature Coefficient thermistor) control at a target set temperature of 90°C, the power off time is long due to the fast response speed of the MCF, so Example 5 is about 64.4 W, Comparative Example 2 is about 74.6 W, confirming that power consumption can be reduced.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. Although the present invention has been described through specific details and limited examples as described above, these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above-mentioned examples, and the present invention belongs to Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (14)

  1. 내부로부터 순차적으로, 금속코팅 탄소섬유 다발, 제1내열수지층, 금속편조층 및 제2내열수지층을 포함하는 발열케이블로,A heating cable sequentially including a metal-coated carbon fiber bundle, a first heat-resistant resin layer, a metal braid layer, and a second heat-resistant resin layer from the inside,
    상기 발열케이블은 밀도가 1.8 내지 3.5 g/㎤인 것을 특징으로 하는, 발열케이블.The heating cable is characterized in that the heating cable has a density of 1.8 to 3.5 g/cm3.
  2. 제 1항에 있어서,According to clause 1,
    상기 발열케이블은 전기저항이 0.5 내지 5 Ω/m인, 발열케이블.The heating cable is a heating cable with an electrical resistance of 0.5 to 5 Ω/m.
  3. 제 1항에 있어서,According to clause 1,
    상기 발열케이블은 전기전도도가 0.1×104 내지 5.0×104 S/㎝인, 발열케이블.The heating cable has an electrical conductivity of 0.1×10 4 to 5.0×10 4 S/cm.
  4. 제 1항에 있어서,According to clause 1,
    상기 발열케이블은 열용량이 1 내지 3 J/℃인, 발열케이블.The heating cable is a heating cable having a heat capacity of 1 to 3 J/℃.
  5. 제 1항에 있어서,According to clause 1,
    상기 발열케이블은 비열이 1 J/g·℃ 이하인, 발열케이블.The heating cable is a heating cable with a specific heat of 1 J/g·°C or less.
  6. 제 1항에 있어서,According to clause 1,
    상기 발열케이블은 인장강도가 100 N 이상인, 발열케이블.The heating cable is a heating cable having a tensile strength of 100 N or more.
  7. 제 1항에 있어서,According to clause 1,
    상기 금속코팅 탄소섬유 다발은 모노필라멘트가 100 내지 12,000 가닥인, 발열케이블.The metal-coated carbon fiber bundle is a heating cable containing 100 to 12,000 monofilament strands.
  8. 제 1항에 있어서,According to clause 1,
    상기 금속코팅 탄소섬유 다발은 제1금속 및 제2금속으로 탄소섬유를 코팅한 것인, 발열케이블.The metal-coated carbon fiber bundle is a heating cable in which carbon fibers are coated with a first metal and a second metal.
  9. 제 8항에 있어서,According to clause 8,
    상기 제1금속은 니켈 또는 구리이며, 제2금속은 니켈인, 발열케이블.A heating cable wherein the first metal is nickel or copper, and the second metal is nickel.
  10. 제 1항에 있어서,According to clause 1,
    상기 제1내열수지층은 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK)인 열가소성 수지; 및 천연고무, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌부타디엔, 에틸렌프로필렌, 클로로프렌, 하이파론, 실리콘 및 에틸렌 비닐 아세테이트인 고무류 수지;에서 선택되는 어느 하나 또는 둘 이상을 포함하는, 발열케이블.The first heat-resistant resin layer is made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), and polyvinyl alcohol ( PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylonitrile-styrene -Thermoplastic resins such as acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK); and rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate. A heating cable comprising any one or two or more selected from the group consisting of:
  11. 제 1항에 있어서,According to clause 1,
    상기 제2내열수지층은 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK)인 열가소성 수지; 및 천연고무, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌부타디엔, 에틸렌프로필렌, 클로로프렌, 하이파론, 실리콘 및 에틸렌 비닐 아세테이트인 고무류 수지;에서 선택되는 어느 하나 또는 둘 이상을 포함하는, 발열케이블.The second heat-resistant resin layer is made of polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), and polyvinyl alcohol ( PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylonitrile-styrene -Thermoplastic resins such as acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK); and rubber resins such as natural rubber, ethylene-propylene-diene monomer (EPDM), styrene butadiene, ethylene propylene, chloroprene, hypalon, silicone, and ethylene vinyl acetate. A heating cable comprising any one or two or more selected from the group consisting of:
  12. 제 1항에 있어서,According to clause 1,
    상기 금속코팅 탄소섬유 다발은 금속코팅 탄소섬유 다발의 외주면을 따라 소정 틀어진 각도로 금속코팅 탄소섬유 다발을 감싸는 유리섬유를 더 포함하는 것인, 발열케이블.A heating cable wherein the metal-coated carbon fiber bundle further includes glass fibers surrounding the metal-coated carbon fiber bundle at a predetermined angle along the outer peripheral surface of the metal-coated carbon fiber bundle.
  13. 제 12항에 있어서,According to clause 12,
    상기 각도는 금속코팅 탄소섬유 다발의 장방향축을 기준으로 30 내지 60°인, 발열케이블.The angle is 30 to 60° based on the longitudinal axis of the metal-coated carbon fiber bundle.
  14. 제 12항에 있어서,According to clause 12,
    상기 발열케이블은 하기 관계식 1을 만족하는 것인, 발열케이블.The heating cable satisfies the following relational expression 1.
    [관계식 1][Relational Expression 1]
    │D0-D90│/D0 × 100 ≤ 10│D 0 -D 90 │/D 0 × 100 ≤ 10
    (상기 관계식 1에서 D0 및 D90은 각각 발열케이블의 단면 직경으로, D0는 일방향의 단면 직경(㎛)이며, D90은 상기 일방향의 수직방향의 단면 직경(㎛)이다.)(In the above relational equation 1, D 0 and D 90 are the cross-sectional diameters of the heating cable, respectively, D 0 is the cross-sectional diameter in one direction (μm), and D 90 is the cross-sectional diameter in the vertical direction in one direction (μm).)
PCT/KR2023/003938 2022-07-25 2023-03-24 Heating cable WO2024025065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0091574 2022-07-25
KR1020220091574A KR102481070B1 (en) 2022-07-25 2022-07-25 heating cable

Publications (1)

Publication Number Publication Date
WO2024025065A1 true WO2024025065A1 (en) 2024-02-01

Family

ID=84547586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003938 WO2024025065A1 (en) 2022-07-25 2023-03-24 Heating cable

Country Status (2)

Country Link
KR (1) KR102481070B1 (en)
WO (1) WO2024025065A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481070B1 (en) * 2022-07-25 2022-12-26 주식회사 비에스엠신소재 heating cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267048A (en) * 2000-01-11 2001-09-28 Tsuneji Sasaki Insulation method of carbon filament and coaxial treatment of carbon filament and conductive wire
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
US9958419B2 (en) * 2012-09-03 2018-05-01 Fujifilm Corporation Light source unit and photoacoustic measurement apparatus using the same
KR102045302B1 (en) * 2019-07-04 2019-12-02 주식회사 피치케이블 Road heating cable using carbon fiber
KR102186877B1 (en) * 2019-08-21 2020-12-07 한국생산기술연구원 Method for manufacturing heat resistant carbon fiber heating cable having uniform outer diameter and heat resistant carbon fiber heating cable
KR102481070B1 (en) * 2022-07-25 2022-12-26 주식회사 비에스엠신소재 heating cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771119B1 (en) 2015-09-08 2017-08-25 씨이에스 주식회사 Apparatus for manufacturing heating cable having a uniform caloric value

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267048A (en) * 2000-01-11 2001-09-28 Tsuneji Sasaki Insulation method of carbon filament and coaxial treatment of carbon filament and conductive wire
US9958419B2 (en) * 2012-09-03 2018-05-01 Fujifilm Corporation Light source unit and photoacoustic measurement apparatus using the same
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
KR102045302B1 (en) * 2019-07-04 2019-12-02 주식회사 피치케이블 Road heating cable using carbon fiber
KR102186877B1 (en) * 2019-08-21 2020-12-07 한국생산기술연구원 Method for manufacturing heat resistant carbon fiber heating cable having uniform outer diameter and heat resistant carbon fiber heating cable
KR102481070B1 (en) * 2022-07-25 2022-12-26 주식회사 비에스엠신소재 heating cable

Also Published As

Publication number Publication date
KR102481070B1 (en) 2022-12-26

Similar Documents

Publication Publication Date Title
WO2011142642A2 (en) Optical and power composite cable
WO2014175503A1 (en) Method for manufacturing conductive metal complex fiber having increased yield strength, conductive metal complex fiber manufactured thereby, and embroidered circuit product manufactured by using conductive metal complex fiber
WO2024025065A1 (en) Heating cable
CN111710468B (en) Flame-retardant photoelectric hybrid cable of coaxial electric unit and manufacturing method thereof
CN102486949B (en) High temperature resistant flexible deintercalating/removing and signal transmission long line cable used for aerospace
CN112599292A (en) Composite cable and preparation process thereof
CN108648849A (en) High flexibility cross-linked polyolefin high-tension cable and preparation method thereof
CN108597661A (en) Anti-fracture detection cable of one kind and preparation method thereof
CN107887060A (en) The data center power sources light-duty fire-resisting flexible cable of graphene copper composite core
CN103680693B (en) Tensile Christmas light wire and method for manufacturing same
KR102476834B1 (en) Metal-coated carbon fiber for heating cable, manufacturing method thereof, and heating cable manufactured using the same
CN109509578A (en) A kind of distributed photovoltaic cable and production method
CN109671523A (en) A kind of heat resistant and wear resistant flexible cable
CN211128258U (en) Ultra-long far infrared carbon fiber heating cable
CN114141423A (en) Intelligent charging cable and preparation process and application thereof
CN209056300U (en) A kind of distributed photovoltaic cable
CN110580977B (en) High-strength impact-resistant flame-retardant insulated cable and production process thereof
CN207704935U (en) A kind of signal transmission environment-friendly cable
CN106297984A (en) Long-life cable and manufacture method thereof
CN110982163A (en) Wear-resistant cable and preparation method thereof
CN213716575U (en) Low-loss fireproof cable
CN215342056U (en) Low-voltage power cable based on water blocking
CN218038659U (en) Cable conductor convenient to fast assembly automatic equipment
CN217880891U (en) Ageing-resistant flexible cable for travelling crane
CN220085683U (en) Coaxial cable with high bending strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846726

Country of ref document: EP

Kind code of ref document: A1