WO2023191107A1 - がんの治療薬、検査支援方法及び治療薬のスクリーニング方法 - Google Patents

がんの治療薬、検査支援方法及び治療薬のスクリーニング方法 Download PDF

Info

Publication number
WO2023191107A1
WO2023191107A1 PCT/JP2023/013723 JP2023013723W WO2023191107A1 WO 2023191107 A1 WO2023191107 A1 WO 2023191107A1 JP 2023013723 W JP2023013723 W JP 2023013723W WO 2023191107 A1 WO2023191107 A1 WO 2023191107A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
hsatii
cells
rna
cancer
Prior art date
Application number
PCT/JP2023/013723
Other languages
English (en)
French (fr)
Inventor
憲一 宮田
暁子 高橋
Original Assignee
公益財団法人がん研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人がん研究会 filed Critical 公益財団法人がん研究会
Publication of WO2023191107A1 publication Critical patent/WO2023191107A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Abstract

hSATII RNAが、染色体構造を維持するために重要なCTCFと結合することによって、その機能を阻害し、染色体相互作用を変化させ、炎症関連遺伝子群の転写を誘導することを明らかにした。また、hSATII RNA発現の抑制により、老化細胞とがん細胞に選択的に細胞死を誘導できることを明らかにした。得られた結果から、hSATII RNAを抑制する物質、あるいはCTCF発現を増加させる物質により、老化間質細胞とがん細胞を標的とするがんの治療を行うことができることを見いだした。また、hSATII RNAやCTCFの発現や活性、hSATII DNA領域のエピゲノム変化を測定することによって、がんを早期に検出することができる。したがって、細胞老化に伴うがんの治療薬及びそのスクリーニング方法、さらに検査支援方法を提供することができる。

Description

がんの治療薬、検査支援方法及び治療薬のスクリーニング方法
 老化した細胞で発現する非翻訳RNAを標的とする炎症関連遺伝子発現の抑制や細胞生存制御を介してがんを治療する薬剤、がんを検査する方法、及び治療薬のスクリーニング方法に関する。
 がんは種々の要因によって発生することが知られている。その一つとして「細胞老化」がある。細胞老化は、細胞に、活性酸素種などによる酸化ストレス、放射線・抗がん剤等によるDNA損傷、がん遺伝子の活性化など種々のストレスが加わり、不可逆的に細胞周期が停止する状態である。細胞老化は、DNA修復機構やアポトーシスと並び、DNA損傷やミトコンドリア障害による遺伝子変異の蓄積から生じるがん抑制機構として機能している。しかし、体内に蓄積した老化細胞は、様々な炎症性タンパク質を高発現し、周囲の組織に分泌するSASP(Senescence-associated secretory phenotype)によって慢性炎症を誘発し、がんをはじめとする加齢に伴う多くの疾患および病態を引き起こすことが知られている。したがって、体内の老化細胞もしくはSASPを制御することは、がん発症の抑制、あるいは治療に繋がる可能性がある。
 細胞老化の誘導や制御機構の全貌は未だ明らかになっていないものの、老化細胞に選択的に細胞死を誘導するセノリティックドラッグ(Senolytic drugs)や、老化細胞の分泌するSASPを抑制するセノモルフィックドラッグ(Senomorphic drugs)は、加齢に伴うがんの発症の予防効果や、治療効果を有することが期待される。
 そのため、セノリティックドラッグやセノモルフィックドラッグは、新たながん予防薬や治療薬として研究が行われている。特許文献1には、機能不全ミトコンドリアを除去して、SASPを抑制するためのミトコンドリア膜電位低下剤とp53阻害剤を対象細胞に共送達するための細胞老化を抑制する複合体が開示されている。特許文献2には、幹細胞の細胞老化を抑制可能な細胞老化抑制剤が開示されている。
 しかしながら、特許文献1に記載の複合体は、細胞老化に伴う機能不全ミトコンドリアの除去を目的としていることから、老化細胞の完全な除去にはつながらない。また、特許文献2に記載の細胞老化抑制剤は、抗酸化作用は認められるものの、細胞老化を排除することまではできないと考えられている。
特開2021-24852号公報 特開2018-52879号公報
CasellaG et al. Nucleic Acids Res 2019, Vol47(14), pp.7294-7305. Ting T et al, Science,2011, Vol.6017, pp.593-596. doi:10.1126/science.1200801. Epub 2011 Jan 13. Kishikawa T et al,  JCI Insight. 2016,Jun 2;1(8):e86646. doi: 10.1172/jci.insight.86646. Solovyov A  Cell Rep, 2018, Vol.23(2),pp.512-521. doi: 10.1016/j.celrep.2018.03.042. Franses J W et al, Oncologist. 2018, Vol. 23(1):pp. 121-127, Published online 2017 Aug 31, doi:10.1634/theoncologist.2017-0234. Billingsley K J,Scientific Reports 2019, volume 9,Article number: 4369. Oezguer E et al. Clin Chim Acta. 2021, Vol.514,pp.74-79. doi: 10.1016/j.cca.2020.12.008. Epub 2020 Dec 31. Cambier L et al,Scientific Reports, 2021, vol. 11, Article number: 94. Nogalski,M T et al, Nature Communications. 2019,vol. 10, Article number: 90. Bersani F et al, PNAS, 2015, 112(49),pp.11548-15153. https://doi.org/10.1073/pnas.1518008112. Nogalski,M T et al, PNAS, 2020,Vol. 117 (50),pp. 31891-31901, https://doi.org/10.1073/pnas.2017734117. KojimaR et al., Nature Communications, 2018, vol.9,Article number: 1305(2018), DOI:10.1038/s41467-018-03733-8.
 以下に詳述するように、本発明者らは、正常細胞では発現が見られない非翻訳RNAが老化細胞とがん細胞で高発現しており、炎症性遺伝子群の発現を制御していることを見いだした。さらに、非翻訳RNAの発現が高い老化細胞とがん細胞では、発現抑制で細胞死を誘導することを見出した。そこで、この非翻訳RNAを標的とし、有害なSASPを抑制し、さらにがん微小環境の老化細胞を排除することによるがんの治療薬を提供することを課題とする。また、標的である非翻訳RNAやそれに伴って発現が変化する分子や当該遺伝子領域のエピゲノムを検査することにより、がんを診断するための検査方法、検査薬を提供することを課題とする。また、がん治療の新たな標的分子を見出したことから、これを用いた治療薬のスクリーニング方法を提供することを課題とする。
 本発明は以下の治療薬、検査支援方法、及び治療薬のスクリーニング方法に関する。
(1)老化細胞に起因するがんの治療薬及び/又は予防薬であって、hSATII RNAの発現抑制もしくは活性阻害、及び/又はCTCF発現を増加させることを特徴とする医薬組成物。
 hSATII RNA発現の増加もしくは活性阻害、CTCF発現の減少ががんの悪性化に深く関連していることを見出した。したがって、これらを調節可能な物質は老化細胞が関与するがんを治療することができる。
(2)前記医薬組成物がhSATII RNAの発現抑制もしくは活性阻害及び/又はCTCF発現を増加させる核酸医薬であることを特徴とする(1)記載の医薬組成物。
 特に、本明細書で例示したように、hSATII RNAやCTCFの発現や活性を調節する核酸もしくは化合物は医薬として有効である。
(3)がん細胞と間質細胞を標的とすることを特徴とする(1)又は(2)記載の医薬組成物。
 hSATIIを標的とすることによる医薬組成物は、がんの微小環境を形成するがん細胞と間質細胞の両方に効果を及ぼす。したがって、効果的な治療を行うことができる。
(4)化学療法剤、又は放射線治療と併用することを特徴とする(3)記載の医薬組成物
 化学療法剤や放射線治療によって細胞老化が誘導されると、がん細胞だけではなく間質細胞も本医薬組成物によって細胞死が誘導される。したがって、既存の化学療法や放射線治療等によって細胞死が誘導されず残存したがん細胞及びがんの微小環境を形成する間質細胞にも細胞死が誘導される。したがって、本医薬組成物は、がんを効果的に治療するだけではなく、再発予防にも寄与することとなる。
(5)がんの検査を支援する方法であって、試料中のhSATII RNA及び/又はCTCF発現を検出することを特徴とする検査支援方法。
 SASP因子など、細胞老化に伴って発現が誘導される炎症性遺伝子群等は、細胞老化に依らない炎症等によっても発現し得る。しかし、hSATII RNAやCTCF発現の変化は細胞老化に特異的な現象であり、がん発症とも関連することを明らかにした。したがって、これらの発現変化を捉えることによって、細胞老化に起因するがんを検出することが可能である。
(6)hSATII RNA発現が増加している場合及び/又はCTCF発現が減少している場合には、がんを生じていると判断することを特徴とする(5)記載の検査支援方法。
 細胞老化が深く関わっているがんは、(1)~(4)に記載の医薬組成物が高い効果を奏することが期待できる。がんが細胞老化に起因するものであるかを検査することにより、最適な治療薬を提供することが可能となる。
(7)がんの検査を支援する方法であって、試料中のhSATII DNA領域のエピゲノム変化を検出することを特徴とする検査支援方法。
 がん細胞に細胞老化様の表現型が誘導される過程でhSATII RNA発現増加及び/又はCTCF発現の減少に先立って、ゲノムDNAのhSATII領域の膨潤化とアクセシビリティ上昇などのエピゲノム変化がおこる。したがって、それを検出する方法は、がんを検出する有効な検査方法となり得る。
(8)細胞老化に起因するがんの検査を支援することを特徴とする(7)記載の検査支援方法。
 ゲノムDNAのhSATII領域の膨潤化とアクセシビリティ上昇などのエピゲノム変化は、がん発症の極初期に起こる変化と考えられるから、これを検出することにより、がんを早期に検出できる可能性がある。
(9)細胞老化に起因するがんの治療薬及び/又は予防薬をスクリーニングする方法であって、老化細胞の培地に候補化合物を添加し、hSATII RNA発現減少、hSATII RNA活性抑制、CTCF発現の増加、SASP因子の発現減少、hSATII DNA領域の収縮、クロマチンアアクセシビリティの低下の少なくともいずれか1つを指標として、候補化合物を選択することを特徴とするがんの治療薬及び/又は予防薬をスクリーニングする方法。
 細胞老化に特異的な変化を指標とすることにより、新規のがん治療薬をスクリーニングすることができる。特に、hSATII RNA発現上昇と活性化、CTCF発現の低下や、ゲノムDNAのhSATII領域の膨潤化、アクセシビリティの上昇などのエピゲノム変化は老化細胞に特異的な現象であることから、その変化を検出することで、がんの治療薬に繋がるセノリティックドラッグ、セノモルフィックドラッグをスクリーニングすることができる。
(10)細胞老化が関与するがんの治療法であって、がんの発症もしくは進展に老化細胞が関与するものであるか、(5)~(8)いずれか1つに記載の検査支援方法でがんもしくは間質細胞を検出し、(1)~(4)記載の治療薬を投与することにより疾患を治療する方法。
(11)細胞老化が関与するがんの治療法であって、hSATII RNAの発現抑制もしくは活性阻害及び/又はCTCF発現を増加させる化合物を投与することを特徴とするがんの治療方法。
クロマチンのアクセシビリティの増加に関連した転写産物のスクリーニングのスキーム(a)、増殖期及びX線により細胞老化を誘導したIMR-90細胞におけるATAC-seqピークの変化を示すボルケーノプロット(b)、RNA-seqデータ(GSE130727)のボルケーノプロットにおいて(b)に示したクロマチンのアクセシビリティが変化している652の転写産物(c)を示す。(b)、(c)において、横軸FCは倍率変化(fold chnage)、縦軸はFDRを示す。 増殖期とX線により細胞老化を誘導したIMR-90細胞のhSATII遺伝子座におけるATAC-seq及びRNA-seq(GSE130727)データのピークを示す。2つの生物学的反復による結果を示している。ATAC-Seq、RNA-Seqにおいて、上2列は増殖期、下2列は細胞老化誘導後のIMR-90細胞での結果を示す。 種々のがん細胞におけるhSATII RNAの発現を解析した結果を示す図。 セントロメア由来の非翻訳RNA(hSATα)又はペリセントロメア由来の非翻訳RNA(hSATII)を過剰発現させたSVts8細胞およびX線誘導老化SVts8細胞におけるSASP関連遺伝子発現のヒートマップ。 hSATα(x軸)またはhSATII(y軸)RNA過剰発現SVts8細胞において、ベクター発現細胞と比較したクロマチンのアクセシビリティの変化を示す散布図。 hSATα又はhSATII RNAを過剰発現させたSVts8細胞における細胞老化(上)および炎症反応(下)に関連する遺伝子セットのエンリッチメント解析。 増殖中又はX線により細胞老化を誘導したSVts8細胞におけるSASP遺伝子発現に対するhSATII RNAノックダウンの影響をRT-qPCRで解析した結果を示す図。***P<0.001。 質量分析により同定された280個のhSATII RNA結合タンパク質の遺伝子オントロジー解析結果(左)。このうち26のタンパク質がクロマチン結合(GO:0003682)に分類された。上位10位の遺伝子とユニークペプチド数を右側にまとめている。 SVts8細胞溶解物を用いてhSATα又はhSATII RNAプルダウンアッセイを行い、ウェスタンブロッティングによりCTCFとの結合を解析した結果を示す図。 HEK-293T細胞において、FLAGタグを付加したCTCF(野生型)、CTCF ΔZF1-11(変異型)、CTCF ΔZF3-6(変異型)を発現させ、各分子の発現をウェスタンブロットにより解析した結果を示す図。 HEK-293T細胞で発現させたFLAGタグ付きCTCF WT、CTCF ΔZF1-11、又はΔZF3-6のhSATII RNAへの結合をRIP-qPCRにより解析した結果を示す図。NS:Not significant、***P<0.001。 CTCF強制発現SVts8細胞において、hSATII RNA発現がSASP様炎症関連遺伝子の発現へ及ぼす効果をRT-qPCR解析した結果を示す図。相対発現量は、ベクター発現細胞の値から正規化した値を示す。*P<0.05、**P<0.01、***P<0.001。 CTCFをsiRNAにより発現抑制したSVts8細胞におけるSASP様炎症関連遺伝子の発現をRT-qPCRにより解析した結果を示す図。相対発現量は、コントロールsiRNAで処理した細胞の数値から正規化している。*P<0.05、**P<0.01、***P<0.001。 継代培養で細胞老化を誘導したTIG-3細胞におけるhSATII RNA、CTCF、細胞老化と炎症関連遺伝子群の発現をRT-qPCRで解析した結果を示す図。各遺伝子の発現量は、継代初期の発現量に対して正規化した値を示す。***P<0.001。 継代培養で細胞老化を誘導したTIG-3細胞におけるCTCFタンパク質の減少及び細胞老化マーカータンパク質の発現をウェスタンブロッティングにより解析した結果を示す図。 ChIP-seq解析により、CTCF結合ピークの変化を示すベン図。 ChIP-seq解析で得られたピークのうち、中心±2kb領域のシグナルのプロファイルプロット(左)及びk-meansアルゴリズムを用いて2つのクラスタに分割したヒートマップ(右)。ウィルコクソンの順位和検定のP値を示す。 IGF2とH19の間に位置するICRに結合するCTCFへのhSATII RNAの影響をChIP-qPCRで解析した結果を示す図。 ゲノムDNAへのCTCFの結合に及ぼすhSATαまたはhSATII RNAの影響をEMSAによって解析した結果を示す図。 代表的なSASP因子であるCXCL10及びCXCL11の遺伝子座のRNA-seq、CTCF ChIP-seq及びATAC-seqプロファイルを示す図。 3C-qPCRアッセイでhSATII RNAがクロマチン相互作用を減弱させたことを示す図。コンスタント領域(C)と各ターゲット領域(T)の相対相互作用が示されている。NS:Not significant、*P<0.05。 SVts8細胞にレトロウイルスにより導入されたhSATII RNAの発現をRT-PCRによって確認した結果を示す図。 左:hSATII RNAの発現により、多極化した細胞が増加していることを示す図。顕微鏡像及び多極細胞の割合を示す。**P<0.01。右:hSATII RNAの発現により、染色体ブリッジが生じる細胞が増加していることを示す図。顕微鏡像及び多極細胞の割合を示す。***P<0.001。 hSATII RNAを過剰発現させたSVts8細胞の核型分析(n=20)の結果を示す図。***P<0.001。 hSATII RNAを過剰発現させたSVts8細胞の足場非依存性増殖能を示す図。*P<0.05。 左:CTCFを過剰発現させたSVts8細胞におけるhSATII RNA発現の多極化に対する効果を示す免疫染色像。右:CTCFを過剰発現させたSVts8細胞において、hSATII RNA発現によって生じた多極細胞の割合を示す図。*P<0.05、**P<0.01。 マウス胎児線維芽細胞MEFsにレトロウイルスにより導入されたMajSAT RNAの発現をRT-PCRによって検証した結果を示す図。 左:MajSAT RNAの発現により、多極化した細胞が増加していることを示す図。顕微鏡像及び多極細胞の割合を示す。*P<0.05。右:MajSAT RNAの発現により、染色体ブリッジが生じる細胞が増加していることを示す図。顕微鏡像及び染色体架橋が生じた細胞の割合を示す。*P<0.05。 MajSAT RNAを過剰発現させたMEFsの足場非依存性増殖能を示す図。***P<0.001。 MajSAT RNAを過剰発現させたMEFsの核型分析(n=20)の結果を示す図。***P<0.001。 MajSAT RNAを過剰発現させたMEFsをヌードマウスの皮下に移植し、20日目(MEF/MajSAT RNA #2)、あるいは30日目(MEF/Vector、MEF/MajSAT RNA #1、MEF/MajSAT RNA #3)の腫瘍の重量(左)及び写真(右)を示す。**P<0.01。 RPE-1/hTERT細胞由来の細胞外小胞に含まれているhSATIIとhSATα RNAのRT-qPCRによる解析結果。*P<0.05、***P<0.001。 EXOticデバイスで生成されたデザイナーエクソソームによるSASP様炎症関連遺伝子の発現をRT-qPCRにより評価した。各値はEXOtic-Nluc処理した細胞により正規化した。 大腸がん検体におけるhSATII RNAプローブを用いたRNA-ISHの結果を定量化したボックスプロット。正常上皮細胞と腫瘍細胞(左)、及び正常線維芽細胞とがん関連線維芽細胞(右)におけるhSATII RNA陽性細胞率が示されている。上下のヒンジはそれぞれ第3、又は第1四分位、上下のひげは、四分位範囲の1.5倍以内の最高値と最低値を、ボックス内の水平線は中央値を示す。ボックス内の水平線は中央値。**P<0.01、***P<0.001。 細胞老化に伴うペリセントロメア由来hSATII RNAの発現増加が、SASP関連性炎症遺伝子の発現を誘発する機構を模式的に示す図。 膵がん細胞、細胞老化を誘導した膵間質細胞で、siRNAによりhSATII発現を抑制し、効果を解析した結果を示す図。 乳がん患者検体におけるhSATII発現をRNA-ISHにより解析した結果を示す図。がん細胞だけではなく間質細胞でもhSATII RNA発現が認められる。 免疫不全マウスに膵がん細胞を移植後にsiRNAによりhSATII RNAの発現を抑制し、抗腫瘍効果を解析した結果を示す図。 膵がん細胞と細胞老化を誘導した間質細胞を免疫不全マウスに共移植する系において、間質細胞におけるsiRNAによりhSATII RNAの発現を抑制し、抗腫瘍効果を解析した結果を示す図。 TIG-3細胞に継代培養により細胞老化を誘導する際の、各継代数でのhSATII DNA領域の開き具合と遺伝子発現をDNA-FISHで解析した結果、及びRT-qPCRで細胞老化に関連する遺伝子群の発現変動を解析した結果。NS:Not significant、***P<0.001。 各種がん細胞株のDNaseIシーケンスデータからhSATII DNA領域のクロマチンアクセシビリティをプロットした散布図。 乳がん患者検体におけるhSATII DNA領域の開き具合の解析をscATAC-seqで行った結果を示す。 乳がん患者検体におけるhSATII DNA領域の開き具合の解析をDNA-FISHで解析した結果を示す。 乳がん患者検体におけるhSAT DNA領域の開き具合の解析結果を示す。 スクリーニングの一態様を模式的に示す図。 hSATII RNAの機能と、hSATII RNAを標的とするSeno-cancer therapyの概念を模式的に示す図。
 以下にデータを示しながら具体的に説明するが、本発明はこれらに限定されるものではない。
 以下に示す治療薬は、加齢によって発症するがんの治療薬として有効である。特に、加齢によって患者数が増加する乳がん、大腸がん、膵臓がんをはじめ、炎症が発症に強く関与しているがんが挙げられる。
 以下に示す治療薬は、老化細胞で発現している非翻訳RNAを標的としていることから、すでに発症している疾患だけではなく、細胞老化によるがんの発症を抑制することができる。したがって、がん発症の予防、再発防止等においても効果を奏する。投与法については、通常用いられている投与法に準じて投与を行うことができる。
 本明細書で、「細胞老化(cellular senescence、あるいは単にsenescenceと言う。)」とは、正常な細胞が継続的なDNA損傷応答により不可逆的に増殖を停止した状態である。細胞老化が生じている細胞を老化細胞といい、炎症性タンパク質や細胞外小胞などのSASP因子を分泌する。また、「細胞老化様」とは、正常細胞もしくはがん細胞において炎症性遺伝子群の発現が上昇し、炎症性タンパク質群や細胞外小胞などを分泌する状態である。細胞老化とヒトや動物の個体の老化(aging)は、異なる概念である。個体の老化は物理学的な年齢であるが、細胞老化は生物学的加齢であり、細胞がどれだけストレスを受けたかによって老化細胞が増加するものである。また、「がん」とは、悪性、良性に関わらず、あらゆる新生物の状態を含む広義の定義である。固形がんと非固形がん(血液がん)の両方が含まれる。「がん細胞」は「腫瘍細胞」と同義語である。また、「間質細胞」とは、上皮細胞の支持組織を構成する細胞の総称であり、線維芽細胞、リンパ球やマクロファージなどの免疫細胞、血管内皮細胞、平滑筋細胞などが含まれる。「がん関連線維芽細胞」(cancer-associated fibroblasts:CAFs)は、がん間質を構成する間質細胞であり、がん細胞の増殖促進に働く様々な増殖因子を産生することが知られている。
 SASP因子として分泌される物質には、炎症性サイトカイン、ケモカイン、マトリッククス分解酵素、増殖因子などの炎症性タンパク質やエクソソームなどの細胞外小胞が含まれる。炎症性タンパク質としては、具体的には、TNF-α、IL-1、IL-6などの炎症性サイトカイン、CCL1~CCL28まで同定されているCCケモカイン、CXCL1~CXCL17まで同定されているCXCケモカイン、XCL1、XCL2のCケモカイン、CX3CL1のCX3Cケモカイン、MMP1~MMP28まで同定されているマトリックス分解酵素、TGF-β、BMP、FGF、PDGF、HGFなどの増殖因子が含まれる。また、これ以外にも、炎症に伴って分泌される種々の物質が含まれ得る。
 また、本発明の治療薬が効果を奏する疾患あるいは病態であるかは、以下で詳細に示す検査によって判断することができる。予め検査を行い、本治療薬が効果を奏するかを判断することは、患者に対して適切な治療法を選択するだけではなく、医療経済上も重要なこととなる。
[老化細胞において発現が変化している転写産物の解析]
 以下にデータを示しながら、細胞老化によって生じるがんの治療標的について説明する。なお、以下で用いているアッセイ法等の実験手法は、特に断らない限り当分野で通常行われている方法に拠っている。
 細胞老化をおこした細胞は異常な核形態を示し、炎症性遺伝子の発現が細胞質核酸認識機構の活性化を介して誘導されることが報告されている。さらに、細胞老化によりクロマチン構造に劇的な変化が誘導され、遺伝子発現が変化することが知られている。そこで、細胞老化の過程におけるクロマチン構造と遺伝子発現の変化の機構を明らかにする目的で、老化細胞と正常細胞におけるクロマチンのアクセシビリティとRNAの発現変化を比較した。
 ヒト正常二倍体線維芽細胞IMR-90(ATCCより入手)の増殖期及びX線によって細胞老化を誘導した細胞を用い、ATAC-seq(assay for transposase-accesible chromatin sequencing)を行った。細胞老化の過程で、16325の領域(false discovery rate<0.05)が変化していることが明らかとなった(図1A、(a))。
 ATAC-seqの結果、X線により細胞老化を誘導したIMR-90において、クロマチンのアクセシビリティが増加した14356のピークと、減少した1969のピークがあった(図1A、(b)。クロマチンのアクセシビリティに変化のあった16325領域に関し、GRCh37/hg19及びRepeatMaskerを含むデータベースを使用して652の転写産物についてアノテーションを行った。
 この652の転写産物について、その発現レベルを公開されているデータ(GSE130727、非特許文献1)を用いて再解析を行った(図1A(c))。増殖期及びX線により細胞老化を誘導したIMR-90細胞のRNA-seqデータ(GSE130727)を用いて、発現レベルを解析した。その結果、ペリセントロメア領域に存在する反復配列であるhSATII(human satellite II)遺伝子座は、X線で細胞老化が誘導されたIMR-90細胞では、アクセシビリティが高く(図1A、(b))、また、その発現が増殖期の細胞に比べて著しく増加していることが明らかとなった(log10 fold change=2.8、図1A、(c))。
 増殖期及びX線により細胞老化を誘導したIMR-90細胞のATAC-seqデータとRNA-seq データ(GSE130727)とを統合すると老化細胞では増殖細胞に対して hSATII遺伝子座でのクロマチンアクセシビリティが高く、転写も増加していた(図1B)。ここではデータを示さないが、継代培養による細胞老化誘導や、がん遺伝子H-RasV12を発現させたIMR-90細胞、長期にわたって継代培養を続けた正常二倍体線維芽細胞TIG-3においても、細胞老化に伴ってhSATII RNAの発現が検出された。
 hSATII RNAについては、膵臓がん細胞では、RNA転写の亢進が認められることをはじめとして(非特許文献2)、大腸がんやパーキンソン病、ウイルス感染症においても高発現していることが報告され、がんの診断マーカーの候補となり得ることも開示されている(非特許文献3~9)。さらに、hSATII RNAを標的としたLNAを用いて、がん細胞や腫瘍の増殖が抑制されることも示されている(非特許文献10~11)。
 そこで、肺がん、大腸がん、胃がん、乳がん、膵がん由来の細胞株、及び正常細胞2種(RPE-1、TIG-3)におけるhSATII RNAの発現量をRT-qPCRにより解析を行った(図2)。なお、細胞は以下より入手した。A549、BSY1、HBC4、HCC2998、HCT15、HCT116、MKN1、MKN74、NCI-H460、ST4、DMS273、HT29、NCI-H226、NCI-H23(ヒトがん細胞株パネルJFCR39)、MDA-MB-468、SW620、MDA-MB-231(ECACC)、RPE-1、MCF7(JCRB細胞バンク)RPE-1、T47D(ATCC)、MiaPaCa(Riken Cell Bank)。また、正常細胞については、抗がん剤のドキソルビシンによって細胞老化を誘導した細胞と、通常培養を行った細胞を用い、hSATII RNAの発現量の解析を行った。がん細胞では発現量に差はあるものの、いずれの細胞でも、通常培養の正常細胞と比較して、hSATII RNAが高発現していることが認められた。また、正常細胞でも細胞老化を誘導すると、著しく発現が増加することが明らかとなった。
[hSATII RNA発現が与える変化]
 hSATII RNA発現が生物学的にどのような影響を与えるか解析を行った。不死化ヒト繊維芽細胞株であるSVts8細胞(TIG-3細胞に温度感受性SV40-Large T抗原を遺伝子導入した細胞株)を用い、hSATII RNAを過剰発現させた。RNA-Seqの結果、hSATII RNAの過剰発現は、SASP様の炎症性遺伝子群の発現を誘導した。一方、セントロメア領域に位置するヒトサテライトα RNA(hSATα)の過剰発現では、炎症性遺伝子群の発現は見られなかった(図3A)。また、hSATII RNAの過剰発現により炎症性遺伝子群の領域がオープンになることが示されたが、hSATα RNAではおこらなかった(図3B)。炎症反応とSASPに関連する遺伝子群の発現解析においても、hSATII RNAの過剰発現が、SASP様の炎症性遺伝子発現を増加させていることが示唆された(図3C)。本発明者らは、hSATII RNAが老化細胞で発現し、炎症性遺伝子群の発現を制御していることを初めて見出した。
 さらに、増殖期及びX線で細胞老化を誘導したSVts8細胞において、siRNAを用いてhSATII RNAをノックダウンし、SASP関連遺伝子であるCXCL10、IL1A、IFNB1の発現を解析した。hSATII RNAのノックダウンは、siRNAをLipofectamine RNAiMAX Transfection Reagent(Thermo Fisher Scientific)によりSVts8細胞に導入して行った。以下のsiRNA配列を用い、20nM濃度でトランスフェクションし、2日後に各遺伝子の発現をRT-qPCRにより解析した。
hSATII siRNA
#1:5’-UUUCCAUUCC AUUCCAUUC-3’(配列番号1)
#2:5’-AAUCAUCGAA UGGUCUCGA-3’(配列番号2)
コントロール
5’-AUGAACGUGA AUUGCUCAA-3’(配列番号3)
 また、hSATII、CXCL10、IL1A、IFNB1の発現量は、RT-qPCRによって解析した。Total RNAは、TRIzol Reagent(Thermo Fisher Scientific)により抽出し、TURBO DNA-freeキット(Applied Biosystems)によって、夾雑するDNAを除去した後、PrimeScript RT Master Mix(TaKaRa)によって逆転写を行い、RT-qPCRはSYBR Premix Ex TaqII(TaKaRa)を用いて、StepOne Plus PCR system(Thermo Fisher Scientific)で実施した。プライマーは以下の配列を用いた。
hSATII
Forward:5’-AATCATCGAA TGGTCTCGAT-3’(配列番号4)
Reverse:5’-ATAATTCCAT TCGATTCCAC-3’(配列番号5)
CXCL10
Forward:5’-CCAGAATCGAAGGCCATCAA-3’(配列番号6)
Reverse:5’-CATTTCCTTGCTAACTGCTTTCAG-3’(配列番号7)
IL1A
Forward:5’-AACCAGTGCTGCTGAAGGA-3’(配列番号8)
Reverse:5’-TTCTTAGTGCCGTGAGTTTCC-3’(配列番号9)
IFNB1
Forward:5’-AAACTCATGAGCAGTCTGCA-3’(配列番号10)
Reverse:5’-AGGAGATCTTCAGTTTCGGAGG-3’(配列番号11)
 hSATII RNAをノックダウンすると、老化細胞において、CXCL10、IL1A、INFB1の発現が低下した。図3Dは、コントロールsiRNAで処理した増殖細胞での発現を1として相対発現量を倍率変化(FC)で示している。また、ここでは示さないが、IMR-90細胞の継代培養による老化細胞でも同様の結果が示された。これらのデータは、細胞老化に伴ってhSATII RNAがクロマチンアクセシビリティを変化させることにより、SASP様炎症関連遺伝子の発現を制御していることを示唆している。
[hSATII RNAによる炎症関連遺伝子の制御機構]
 hSATII RNAによるSASP様炎症関連遺伝子の発現促進機構を解析するために、hSATII RNA結合タンパク質の同定を試みた。セントロメア領域に位置するhSATα RNAと特定のタンパク質との関連については報告されているが、ペリセントロメア領域に位置するhSATII RNAについては報告されていない。そこで、RNAプルダウンと質量分析を行い、280種のhSATII RNA結合タンパク質を同定した。
 これらのタンパク質の中から、遺伝子オントロジー解析により26のクロマチン結合タンパク質(GO:0003682)を同定したが、質量分析による強度スコアの高さ、及びクロマチン立体構造の維持に寄与している多数の報告からCTCFに焦点を当てて解析することとした(図4A)。RNAプルダウンアッセイによりhSATII RNAとCTCFが結合しているか確認を行った。SVts8細胞溶解物をRNAプルダウンアッセイの後、ウェスタンブロッティングにより解析した。hSATII RNAはCTCFに結合しているが、hSATα RNAは結合していないことが確認された(図4B)。
 CTCFのゲノムDNAへの結合はゲノムの適切な立体構造の維持に重要であることが知られている。CTCFはRNA結合タンパク質でもあることから、RNA免疫沈降(RIP)を行った。HEK293T細胞に野生型CTCF(WT)、CTCFのZF(Zinc Finger)を欠損させた変異体ΔZF1-11、及びΔZF3-6を発現させた(図4C)。hSATII RNAは、野生型CTCFとの結合は認められるものの、CTCF変異体ΔZF1-11、及びΔZF3-6との結合は認められなかった(図4D)。CTCFにはZFドメインが11あるが、ZF1またはZF10とRNAとの結合が、クロマチンループを形成して遺伝子発現を制御するために重要であると言われている。しかし、ここではデータを示さないが、hSATII RNAはZF1にもZF10にも結合しないことがわかった。DNA結合ドメインとして知られるCTCFのZF3-ZF6欠損変異体(CTCF ΔZF3-6)はhSATII RNAと結合できないことから、ZF3-ZF6がhSATII RNAとの結合に重要であることが明らかとなった。
 CTCFを強制発現させ、さらにhSATII RNAを過剰発現させたSVts8細胞において、炎症関連遺伝子群の発現をRT-qPCRで解析した(図5A)。CTCFが過剰に発現している状況では、hSATII RNAが発現していてもその効果が失われ、炎症関連遺伝子の発現の増強が見られなかった。さらに、増殖細胞においてCTCF siRNA(Thermo Fisher Scientific、#HSS116455、#HSS116456、Negative Control(Duplex High GC Duplex)siRNA、#46-2000)を用いて、CTCFをノックダウンし、炎症関連遺伝子群の発現を解析した(図5B)。CTCFをノックダウンすると、炎症関連遺伝子の発現が増強した。予期せぬことに、CTCFのノックダウンによって、hSATII RNAの発現も上昇することが明らかとなった。これらの結果から、hSATII RNAによって誘導される炎症関連遺伝子群の発現は、CTCFの機能阻害に依存している可能性が高く、CTCFは細胞老化の過程でhSATII RNAの発現を制御していることが示唆された。そこで、継代培養により老化を誘導したTIG-3細胞でCTCF発現量をRT-qPCR及びウェスタンブロッティングで解析した(図5C、D)。継代培養が進むとCTCFの発現量は低下し(図5C、D)、hSATII RNAや炎症関連遺伝子の発現量は増加していた(図5C)。したがって、CTCFは細胞老化の過程で、hSATII RNAの発現を制御していることが示唆された。
 さらに、ここではデータを示さないが、ヒトhSATII RNAと同様に、マウスのペリセントロメア領域に位置するmajor satellite (MajSAT)RNAの発現を解析した。マウス胎児線維芽細胞(MEF)にドキソルビシンによりDNA損傷を生じさせ、細胞老化を誘導したところ、SASP関連炎症遺伝子群とともにMajSAT RNAの発現増加が見られた。すなわち、マウスでもMajSAT RNAの誘導はCTCFの発現と負の相関があることが示された。さらに、CTCFはマウスのセントロメアに存在するマイナーサテライト(MinSAT)RNAではなく、ペリセントロメアに存在するMajSAT RNAに結合し、SASP関連炎症遺伝子群の発現を上昇させた。これらの知見から、CTCFは細胞老化の際に、ペリセントロメアのサテライトRNAとSASP関連炎症遺伝子群の発現制御に重要であることが示された。
[hSATII RNAの作用機序]
 CTCFのZF3-ZF6 DNA結合ドメインが、hSATII RNAとの結合に関連していたことから、hSATII RNAがCTCFのZFドメインへ直接結合することによって、DNA結合能を変化させるのではないかと仮定し、以下の検討を行った。hSATII RNAを発現させ、ChIP-Seqアッセイを行った(図6A、B)。予想通り、hSATII RNAの過剰発現により、CTCFの結合ピークに変化が見られた。そこで、CTCFの代表的な結合部位であるIGF2とH19の間に位置するICR(imprinting control region)へのCTCFの結合能をChIP-qPCR及びEMSA(Electrophoretic Mobility Shift Assay)で解析した(図6C、D)。hSATII RNA発現により、CTCFのDNA結合能の低下が認められ、また、hSATIIのRNAの濃度依存的にその結合が阻害されることが明らかとなった。
 hSATII RNAは、CTCFとDNAの結合を介したクロマチンとの相互作用を変化させる。したがって、ゲノムの適切な立体構造の維持に重要である可能性が示唆される。そこで、hSATII RNAを発現させ、SASP遺伝子であるCXCL10/CXCL11遺伝子座近傍の染色体コンフォメーションキャプチャー(3C)アッセイを行った。その結果、hSATII RNAの過剰発現により、T2及びT22領域での相互作用が著しく減弱することが明らかとなった。さらに、ATAC-seq解析によって、遺伝子座内のクロマチンアクセシビリティが増大し、SASP関連炎症遺伝子群の発現上昇が認められた。また、X線により誘導した老化細胞でも同様の現象が認められた(図6E、F)。これらの結果から、老化細胞におけるhSATII RNAの発現上昇は、SASP遺伝子座においてクロマチン構造のコンフォメーション変化を引き起こすことが示唆された。これまで細胞老化におけるCTCFの制御とSASP遺伝子発現との関連性の分子機構は解明されていなかったが、ペリセントロメアのサテライトRNAがCTCFの機能を阻害することでクロマチン相互作用に影響を与え、SASP関連炎症関連遺伝子の発現に変化をもたらすことが明らかになった。
[hSATII RNAの腫瘍に対する効果]
 ヒトやマウスのサテライトRNAは、染色体不安定性を誘導し、腫瘍形成につながる可能性が報告されている。そこで、SVts8細胞にSATII RNAを強制発現させ(図7A)、染色体不安定性の典型的な特徴である多極化と染色体ブリッジの形成を免疫染色により解析した(図7B)。抗α-チューブリン抗体(Sigma-Aldrich)により微小管を、ペリセントリン(Abcam)により中心体を、DAPI(Thermo Fisher Scientific)によりDNAの染色を行った。多極化した細胞の割合は、hSATII RNAを強制発現させた細胞で有意に増加していた(図7B左)。また、染色体ブリッジを生じている細胞もhSATII RNAを強制発現させた細胞で有意に増加していた(図7B右)。
 さらに、hSATII RNAを強制発現させた細胞は、染色体数の異常や足場非依存性増殖など、腫瘍細胞に見られる表現型を示していた。核型解析を行ったところ、hSATII RNAを強制発現させた細胞では、異常な染色体数を示す細胞が有意に増加していた(図7C)。また、軟寒天コロニー形成アッセイにより、hSATII RNA発現により、足場非依存性増殖が生じるか解析した。hSATII RNA発現によって、足場非依存性増殖を示すコロニーが有意に増加していた(図7D)。
 次に、hSATII RNAとCTCFを同時に過剰に発現させて、hSATII RNAによって誘導される染色体不安定性に影響が生じるか検討した。SVts8細胞にhSATII RNAとCTCFを強制発現させ、多極化した細胞の割合を図7Bと同様にして解析した。その結果、CTCFを発現させると、hSATII RNAによって誘導される染色体不安定性が消失することが明らかとなった(図7E)。したがって、CTCFがhSATII RNAによって誘導される染色体不安定性に関与しており、腫瘍発生の危険因子であることが示唆された。
 マウス胎児線維芽細胞(MEFs)を用いてMajSAT RNAを異所性に発現させた結果を示す(図8)。図7と同様にして、MEFsにMajSAT RNAを強制発現させ(図8A)、多極化及び染色体ブリッジ形成を顕微鏡により観察した(図8B)。いずれも、MajSAT RNAを強制的に発現させることによって、有意に増加していた。さらに、足場非依存性増殖(図8C)、核型(図8D)についても解析を行ったところ、MajSAT RNA発現により、足場非依存性増殖を示す形質転換細胞や染色体の数の異常が有意に増加していた。さらに、これらの細胞をヌードマウスの皮下に移植したところ、腫瘍形成能を示した(図8E)。したがって、ペリセントロメアのサテライトRNAは、発がんを促進する可能性があると結論づけられる。
 次に、腫瘍の微小環境におけるhSATII RNAの機能に着目し解析した。がん細胞や老化した間質細胞から分泌される細胞外小胞が、がん微小環境において、腫瘍の発生や進行に関与していることが知られている。RPE-1/hTERT細胞(ATCCより入手)に、ドキソルビシン(DXR)、又は40-grayのX線照射(XRA)を行い、細胞老化を誘導した。これら細胞から細胞外小胞を回収してRT-qPCRを行ったところ、老化細胞由来の細胞外小胞には、hSATII RNA量が、増殖細胞由来の細胞外小胞よりも有意に多く含まれていた。しかし、hSATα RNA量は増加が認められなかった(図9A)。
 RNA-seqデータの解析から、複数のヒト大腸がん細胞株から分泌される細胞外小胞(エクソソーム)から、hSATII RNAが検出されることが報告されている。これらのことから、老化した間質細胞由来のhSATII RNAは、細胞外小胞を介して周囲の細胞に移行し、SASP様炎症因子として機能することが推論される。ここではデータを示さないが、本発明者らは、老化細胞由来の細胞外小胞が、正常細胞の足場非依存性増殖と染色体不安定性を誘導することを確認している。そこで、細胞外小胞に含まれるhSATII RNAの関与を評価するために、EXOticデバイス(EXOsomal transfer into cells)を用いた合成生物学的手法(非特許文献12)によって、hSATII RNAを含むデザイナーエクソソームを樹立した。作製したデザイナーエクソソームを、SVts8細胞に取り込ませ、炎症関連遺伝子の発現をRT-qPCRにより解析した。hSATII RNAを含むデザイナーエクソソームによって、SASP様の炎症関連遺伝子の発現の促進が認められた(図9B)。すなわち、作製したデザイナーエクソソームは、老化細胞由来の細胞外小胞と同様の腫瘍形成活性を有することを見出した。したがって、老化細胞から分泌されるエクソソームに含まれるhSATII RNAは、腫瘍微小環境中の間質細胞においてSASP様炎症関連遺伝子発現及び染色体不安定性を促進することを示している。
 腫瘍の微小環境におけるhSATII RNAの発現を原発性大腸癌患者の外科切除標本を用い、RNA in situ hybridization(RNA-ISH)法により解析した。その結果、hSATII RNAを発現している大腸がん細胞が、正常上皮細胞に比べ、有意に多く存在していた(図9C左)。また、がん関連線維芽細胞では、正常間質組織の線維芽細胞よりもhSATII RNA陽性細胞の割合が有意に高かった(図9C右)。したがって、hSATII RNAを発現する細胞老化した間質細胞は、SASP様炎症因子とhSATII RNAを含む細胞外小胞の分泌を介して、腫瘍微小環境において腫瘍形成を促進していることが示唆される(図9D)。
 上述のとおり、hSATII RNAを発現する老化した間質細胞は、がん微小環境を形成し、腫瘍形成を促進しているものと考えられる。そこで、hSATII RNAの発現を抑制することが、がん細胞及び間質細胞の増殖抑制に影響を与えるか解析を行った。膵がん細胞PANC-1と正常膵間質細胞hPSC(ScienCellより入手)に、hSATIIのsiRNAを導入し、発現をRT―qPCRによって解析した(図10A上段)。培養液にゲムシタビンを添加し細胞老化を誘導すると、いずれの細胞でも、hSATII RNAの発現が増加した。同時に細胞生存アッセイCellTiter-Glo(プロメガ)を行うと、膵がん細胞では、hSATII RNAの発現をsiRNAによって抑制した場合には、有意に細胞生存率の低下が認められた(図10A下段)。一方、正常膵間質細胞では、hSATII RNAの発現をsiRNAによって抑制しても、細胞死は誘導されないが、ゲムシタビンで細胞老化を誘導した場合には、膵間質細胞でも細胞死が誘導される(図10A下段)。この結果は、抗がん剤を投与し間質の細胞に細胞老化が誘導され、hSATII RNAの発現を抑制した場合には、がん細胞だけではなく、がん微小環境を形成していた間質細胞も細胞死が誘導されることを意味する。したがって、hSATII RNAの抑制により、より有効ながん治療を行うことができる。
 ここではすい臓がん細胞を用いていることから、すい臓がん治療に通常用いられているゲムシタビンを使用したが、どのような抗がん剤でも細胞老化を誘導することができる。また、抗がん剤だけではなく、放射線照射によっても細胞老化を誘導することができる。これは、がんの治療において、抗がん剤や放射線治療を行う際に、hSATII RNAの発現を低下させる治療を併用することにより、より高い効果が得られることを示唆している。さらに、抗がん剤等の治療によって、生き残ったがん細胞や間質細胞は、治療によって細胞老化をおこしていると考えられることから、hSATII RNAの発現を低下させる医薬組成物を同時に投与することにより、これら細胞も死滅させることが可能となる。したがって、がんの種類に合わせて抗がん剤を選択し、あるいは放射線治療を行う際に、hSATII RNAの発現抑制剤を併用する治療により、がんの再発を抑制することが可能となる。
 乳がん患者検体を用いてhSATII RNAの発現を解析した。RNA-ISHの結果、がん細胞だけではなく、間質のCAFsにおいてもhSATII RNAの発現が認められた(図10B)。したがって、hSATII RNA発現を抑制させる医薬組成物は、がん細胞だけではなく、がん微小環境を形成している間質細胞も標的とする治療薬となると考えられる。
 hSATII RNA発現の抑制により、がんに対し治療効果を奏するか解析を行った。膵がん細胞PANC-1を免疫不全マウスに移植後に、hSATIIのsiRNAを導入し、腫瘍の大きさを計測した(図11A)。その結果、膵がんでhSATII発現をsiRNAにより抑制した場合には、コントロールsiRNAを投与した場合に比べ、有意にがん細胞の増殖が抑制されていた。すなわち、hSATII RNAの発現を抑制する医薬組成物はがんの増殖を抑制することが示された。
 次にがん細胞と、間質細胞を共移植する系におけるhSATII RNA発現抑制効果の解析を行った。正常膵間質細胞hPSCはX線照射によって細胞老化を誘導した(Day0)。その後、hSATIIを標的としたsiRNA、あるいはコントロールsiRNAをトランスフェクションし(Day10、Day12)、膵がん細胞MIAPaCa2とhPSCを1:2の割合で混合してマウスに移植し、週1回腫瘍の大きさを測定した(図11B、上段参照)。移植後35日目(Day48)において、腫瘍体積、腫瘍重量ともに、hSATII RNA発現を阻害した群はコントロールに比べて有意に腫瘍の増殖抑制が認められた。細胞老化を誘導した間質細胞のhSATII RNA発現の抑制によって、腫瘍の増殖抑制が起こることが示された。
 本発明者らは、TIG-3細胞に継代培養により細胞老化を誘導する過程でhSATII DNA領域をDNA―FISHで検出することで、hSATII RNAの発現に先立ってhSATII DNA領域が膨潤化することを見出した(図12A)。なお、DNA-FISHは、配列番号12のプローブを用いて行っているが、hSATII DNA領域を検出することができるプローブであれば、どのような配列を用いてもよい。さらに、複数のがん細胞株のDNaseIシーケンスデータからhSATII DNA領域のクロマチンアクセシビリティを解析したところ、正常な線維芽細胞に比べてがん細胞で明らかにクロマチンアクセシビリティが上昇していた(図12B)。
 次に、腫瘍組織においても、hSAT DNA領域が開いているか解析を行った。乳がん患者検体を用いて、scATAC-seq(図12C)、DNA FISH(図12D)により、hSAT DNA領域の解析を行った。乳がんのタイプ(トリプルネガティブ乳がん;TNBC、ルミナールタイプ乳がん:Luminal)についてscATAC-seq解析を行ったところ、hSAT DNA領域が開いている、すなわち活発に転写が行われている可能性が示唆された。さらに、ルミナールタイプ乳がんでは、hSAT DNA領域の膨潤化と年齢に相関があることが示され、細胞老化との関連が示唆された(図12C)。さらに、DNA-FISH解析から、乳がんの患者組織において、正常乳腺上皮に比べて乳がん細胞ではhSAT DNA領域が膨潤化していること、正常線維芽細胞に比べてCAFsでもhSAT DNA領域が膨潤化していることが明らかとなった(図12D)。さらに、細胞の種類ごとにクラスタリングを行って解析したところ、乳がん細胞でhSATII領域が比較的閉じている患者においても、間質の血管内皮細胞とCAFsではhSATII DNA領域が開いていることが示された。これらの結果から、間質細胞においてもhSATII DNAを標的として治療を行えば、効果を奏する可能性があることを示唆している(図12E)。
 以上の結果から、ペリセントロメアの非翻訳RNAであるhSATII RNA発現を減少させることにより、細胞老化、及びこれに伴うがんを治療し、さらに再発を予防することができる。上記で示してきたように、hSATII RNA発現を標的として、その発現を抑制する物質は新しいがん治療薬となり得る。すなわち、hSATII RNA発現を抑制する薬剤を投与することによって、がん細胞やSASP因子を分泌する老化した間質細胞を排除することができる。具体的には、上記で示したようにsiRNA、LNAなどの核酸医薬によって、hSATII RNAを減少させることができる。例えば、配列番号1及び2で表すsiRNAは、効率よく、hSATII RNAを枯渇させることができるため有用である。また、これに限らず、LNAやsiRNAを新たにデザインして使用してもよい。さらに、hSATII RNA発現や安定性、また活性(具体的にはCTCFとの結合阻害など)を標的とする化合物をスクリーニングして用いることもできる。
 疾患が細胞老化に起因しているかは、hSATII RNA発現を検査することによって、確認することができる。例えば、配列番号4及び5で示すプライマーセットを使用すれば、hSATII RNA発現をqPCRで確認することができる。RNA-ISHによってもhSATII RNA発現を評価可能である。hSATII RNAはエクソソームなどの細胞外小胞にも含まれることから、血液・尿・腹水などの体液を用いて細胞外小胞内のhSATII RNAの量を検出することも可能である。また、hSATII RNA発現によって、発現が促進されるSASP因子を測定しても構わない。SASP因子は、RNA発現を測定してもよいし、タンパク質量や分泌された量をELISAで測定してもよい。用いる試料は、疾患部位の組織、例えば、生検によって採取したがんが疑われる組織であってもよいし、体液由来の細胞外小胞を用いてもよい。また、CTCF発現の低下を検査してもよい。hSATII RNAの発現、SASP因子の発現、CTCFの発現減少が認められた場合には、上述のhSATII RNA発現を抑制する医薬組成物を用いて治療を行うことができる。hSATII RNAの発現に先立ってhSATII DNA領域が膨潤化しクロマチンアクセシビリティが増すことから、DNA―FISH解析やATACシーケンス解析のようなエピゲノム解析や、体液中のゲノムDNA断片や細胞外小胞を用いた解析から、がんを早期に診断できる可能性がある。
 さらに、hSATII RNA発現や活性抑制、SASP因子の発現抑制、あるいはCTCF発現増加、hSATII DNA領域の収縮やクロマチンアクセシビリティ低下などのエピゲノム変化を指標として、化合物をスクリーニングすることもできる。例えば、FRETアッセイを用いた系を構築することにより、感度良く低分子化合物をスクリーニングすることができる。具体的には、hSATII RNAには、ドナーとなる蛍光物質で標識されたビーズを、CTCFに抗体などの特異的結合物質によりアクセプターとなる蛍光物質で標識されたビーズを結合させた系を構築することができる(図13)。ライブラリー化合物を添加し、特定の蛍光波長で励起すれば、hSATII RNAとCTCFが近接した状態にあるかを判定することができる。あるいは、老化細胞を候補化合物とともに培養し、候補化合物によって、hSATII RNA発現が抑制、あるいはCTCF発現増加、hSATII DNA領域の収縮やクロマチンアクセシビリティ低下がおこれば、細胞老化に起因する疾患の治療薬として機能し得る。hSATII RNA発現もしくは活性の抑制、CTCF発現増加、ゲノムDNAのhSATII領域の縮小やアクセシビリティ低下は本分野で通常用いられている手法を使用することができる。老化細胞は上記で用いたように、継代培養、X線照射、ドキソルビシン暴露等、通常この分野で用いられている細胞老化誘導法を用いることができる。hSATII RNA、CTCF発現は、RT-qPCR等、これも周知の方法で解析することができる。また、SASP因子群の遺伝子発現解析や分泌によってもモニターすることができる。
 以上、示したように、hSATII RNAによるSASP誘導機序と老化細胞とがん細胞の生存への関与を明らかにした。老化細胞とがん細胞では染色体のペリセントロメア領域が開いて、この領域から非翻訳RNAであるhSATII RNAがさかんに転写されている。hSATII RNAが染色体構造を維持するために重要な機能を担っているCTCFと結合し、その機能を阻害することにより染色体相互作用を変化させ、炎症性遺伝子群の転写を誘導することを明らかにした。また、がん細胞や間質の老化細胞でhSATII RNA発現を抑制することにより細胞死や増殖停止が誘導されがんの増殖が抑制されたことから、hSATII RNAはがん治療の新たな標的分子となることが示された。細胞老化が誘導された間質細胞やがん細胞で発現されるhSATII RNAを標的とすることで、炎症性SASP関連遺伝子群の発現を抑制するSenomorphic機能と老化細胞に選択的に細胞死を誘導するSenolytic機能を併せ持つSeno-cancer therapyは新たな治療法を創出する可能性がある(図14)。

Claims (9)

  1.  細胞老化に起因するがんの治療薬及び/又は予防薬であって、
     hSATII RNAの発現抑制もしくは活性阻害、及び/又はCTCF発現を増加させることを特徴とする医薬組成物。
  2.  前記医薬組成物がhSATII RNAの発現抑制もしくは活性阻害、及び/又はCTCF発現を増加させる核酸医薬であることを特徴とする請求項1記載の医薬組成物。
  3.  がん細胞と間質細胞を標的とすることを特徴とする請求項1又は2記載の医薬組成物。
  4.  化学療法剤、又は放射線治療と併用することを特徴とする請求項3記載の医薬組成物。
  5.  がんの検査を支援する方法であって、
     試料中のhSATII RNA及び/又はCTCF発現を検出することを特徴とする検査支援方法。
  6.  hSATII RNA発現が増加している場合及び/又はCTCF発現が減少している場合には、がんを生じていると判断することを特徴とする請求項5記載の検査支援方法。
  7.  がんの検査を支援する方法であって、
     試料中のhSATII DNA領域のエピゲノム変化を検出することを特徴とする検査支援方法。
  8.  細胞老化に起因するがんの検査を支援することを特徴とする請求項7記載の検査支援方法。
  9.  細胞老化に起因するがんの治療薬及び/又は予防薬をスクリーニングする方法であって、
     老化細胞の培地に候補化合物を添加し、
     hSATII RNA発現、hSATII RNA活性抑制、CTCF発現の増加、SASP因子の発現減少、hSATII DNA領域の収縮、クロマチンアクセシビリティの低下の少なくともいずれか1つを指標として、
     候補化合物を選択することを特徴とするがんの治療薬及び/又は予防薬をスクリーニングする方法。
     
PCT/JP2023/013723 2022-04-01 2023-03-31 がんの治療薬、検査支援方法及び治療薬のスクリーニング方法 WO2023191107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062157 2022-04-01
JP2022-062157 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023191107A1 true WO2023191107A1 (ja) 2023-10-05

Family

ID=88202403

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/013722 WO2023191106A1 (ja) 2022-04-01 2023-03-31 老化細胞もしくはsaspを標的とした治療薬/予防薬、老化細胞を検出するデータの取得方法及び治療薬/予防薬のスクリーニング方法
PCT/JP2023/013723 WO2023191107A1 (ja) 2022-04-01 2023-03-31 がんの治療薬、検査支援方法及び治療薬のスクリーニング方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013722 WO2023191106A1 (ja) 2022-04-01 2023-03-31 老化細胞もしくはsaspを標的とした治療薬/予防薬、老化細胞を検出するデータの取得方法及び治療薬/予防薬のスクリーニング方法

Country Status (1)

Country Link
WO (2) WO2023191106A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010181A2 (en) * 2011-07-14 2013-01-17 University Of Massachusetts Methods of diagnosing cancer using epigenetic biomarkers
WO2015200697A1 (en) * 2014-06-25 2015-12-30 The General Hospital Corporation Targeting human satellite ii (hsatii)
KR101750994B1 (ko) * 2016-02-02 2017-06-26 강원대학교산학협력단 황금 추출물을 유효성분으로 함유하는 sasp 억제를 통한 노화관련 만성질환 치료 및 예방제
WO2020252005A1 (en) * 2019-06-10 2020-12-17 Buck Institute For Research On Aging Methods and compositions for altering senescence associated secretory phenotype

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010181A2 (en) * 2011-07-14 2013-01-17 University Of Massachusetts Methods of diagnosing cancer using epigenetic biomarkers
WO2015200697A1 (en) * 2014-06-25 2015-12-30 The General Hospital Corporation Targeting human satellite ii (hsatii)
KR101750994B1 (ko) * 2016-02-02 2017-06-26 강원대학교산학협력단 황금 추출물을 유효성분으로 함유하는 sasp 억제를 통한 노화관련 만성질환 치료 및 예방제
WO2020252005A1 (en) * 2019-06-10 2020-12-17 Buck Institute For Research On Aging Methods and compositions for altering senescence associated secretory phenotype

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Abstract 4434: CTCF acts as a master regulator to direct epigenetic events important for tumor development and progression | ", CANCER RESEARCH, POSTER PRESENTATIONS - PROFFERED ABSTRACTS, vol. 76, no. 14_Suppl., 15 July 2016 (2016-07-15), XP093095270 *
HARA, EIJI: "New aspects of cellular aging", EXPERIMENTAL MEDICINE, YODOSHA CO., LTD., JP, vol. 37, no. 11, 1 January 2019 (2019-01-01), JP , pages 1728 - 1734, XP009549302, ISSN: 0288-5514 *
MIYATA KENICHI, IMAI YOSHINORI, HORI SATOSHI, NISHIO MIKA, LOO TZE MUN, OKADA RYO, YANG LIYING, NAKADAI TOMOYOSHI, MARUYAMA REO, F: "Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 118, no. 35, 31 August 2021 (2021-08-31), XP093095293, ISSN: 0027-8424, DOI: 10.1073/pnas.2025647118 *
MIYATA, KENICHI ET AL.: "1AW-02-4: Analysis of non-coding RNA and chromatin structure in senescent cells", PROGRAMS AND ABSTRACTS OF THE 43RD ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN; DECEMBER 2ND – 4TH, 2020, MOLECULAR BIOLOGY SOCIETY OF JAPAN, JP, vol. 43, 1 January 2020 (2020-01-01) - 4 December 2020 (2020-12-04), JP, pages 11, XP009550049 *
MIYATAM KENICHI EL AL.: "Role of SASP in aging and cancer", RINSHO MENEKI ARERUGIKA = CLINICAL IMMUNOLOGY & ALLERGOLOGY, JP, vol. 72, no. 2, 1 January 2019 (2019-01-01), JP , pages 214 - 219, XP009549672, ISSN: 1881-1930 *
NAKAO, MITSUYOSHI: "S12-2 Analysis of epigenetic factors involved in cellular senescence", THE 43RD ANNUAL MEETING OF THE JAPANESE SOCIETY OF TOXICOLOGY, vol. 43, 1 January 2016 (2016-01-01), pages S12 - 2, XP009549673, DOI: 10.14869/toxpt.43.1.0_S12-2 *
SAUL DOMINIK, KOSINSKY ROBYN LAURA: "Epigenetics of Aging and Aging-Associated Diseases", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 1, pages 401, XP093095276, DOI: 10.3390/ijms22010401 *
TAKAHASHI, AKIKO; MIYATA, KENICHI; LOO, TZE MUN; SUGAWARA, SHO: "S3-1 The Analysis of Epigenetic alteration in cellular senescence and cancer", CANCER SCIENCE, WILEY JAPAN, JP, vol. 112, no. S1, 1 January 2020 (2020-01-01) - 3 October 2020 (2020-10-03), JP , pages 195, XP009549685, ISSN: 1349-7006 *

Also Published As

Publication number Publication date
WO2023191106A1 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
Triana-Martínez et al. Identification and characterization of Cardiac Glycosides as senolytic compounds
Tzouvelekis et al. Common pathogenic mechanisms between idiopathic pulmonary fibrosis and lung cancer
Long et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma
Gong et al. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage
He et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers
Cortes-Sempere et al. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer
Liu et al. Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury
Jamshidi et al. The genomic landscape of epithelioid sarcoma cell lines and tumours
Douchi et al. Silencing of LRRFIP1 reverses the epithelial–mesenchymal transition via inhibition of the Wnt/β-catenin signaling pathway
US11344601B2 (en) Tumor microenvironment-related target TAK1 and application thereof in inhibition of tumor
Qian et al. Inhibition of Polo-like kinase 1 prevents the growth of metastatic breast cancer cells in the brain
Zhang et al. Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair
Feng et al. Structural maintenance of chromosomes 4 is a predictor of survival and a novel therapeutic target in colorectal cancer
Thewes et al. Interference with activator protein-2 transcription factors leads to induction of apoptosis and an increase in chemo-and radiation-sensitivity in breast cancer cells
Sakamoto et al. EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression
Grasso et al. The SRCIN1/p140Cap adaptor protein negatively regulates the aggressiveness of neuroblastoma
Matsushita et al. TAZ activation by Hippo pathway dysregulation induces cytokine gene expression and promotes mesothelial cell transformation
Peng et al. Retracted-MiR-592 functions as a tumor suppressor in glioma by targeting IGFBP2
Pang et al. TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1
Wang et al. Effects of LncRNA MEG3 on immunity and autophagy of non-small cell lung carcinoma through IDO signaling pathway
Dong et al. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance
Sun et al. Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR‐D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer
Wang et al. Epigenetic silencing of ASPP1 confers 5‐FU resistance in clear cell renal cell carcinoma by preventing p53 activation
Nandi et al. Coordinated activation of c-Src and FOXM1 drives tumor cell proliferation and breast cancer progression
Lou et al. The centromere-associated protein CENPU promotes cell proliferation, migration, and invasiveness in lung adenocarcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781115

Country of ref document: EP

Kind code of ref document: A1