WO2023190997A1 - Outer package material for power storage devices, method for producing same and power storage device - Google Patents

Outer package material for power storage devices, method for producing same and power storage device Download PDF

Info

Publication number
WO2023190997A1
WO2023190997A1 PCT/JP2023/013407 JP2023013407W WO2023190997A1 WO 2023190997 A1 WO2023190997 A1 WO 2023190997A1 JP 2023013407 W JP2023013407 W JP 2023013407W WO 2023190997 A1 WO2023190997 A1 WO 2023190997A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
storage device
fusible resin
power storage
Prior art date
Application number
PCT/JP2023/013407
Other languages
French (fr)
Japanese (ja)
Inventor
真 天野
孝典 山下
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023190997A1 publication Critical patent/WO2023190997A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an exterior material for a power storage device, a method for manufacturing the same, and a power storage device.
  • base material layer/barrier layer/adhesive layer/thermal adhesive resin layer were sequentially laminated as exterior materials for power storage devices that can be easily processed into various shapes and can be made thinner and lighter.
  • a film-like laminate has been proposed (see, for example, Patent Document 1).
  • a recess is formed by cold forming, power storage device elements such as electrodes and electrolyte are arranged in the space formed by the recess, and heat-sealable resin is placed in the space formed by the recess.
  • heat-sealing the layers a power storage device in which power storage device elements are housed inside the power storage device exterior material is obtained.
  • Power storage devices are used for a variety of purposes, and the needs for power storage devices are diverse.
  • the inventors of the present disclosure believe that if a power storage device is provided that has the function of thermally bonding to an adherend, for example, the power storage device can be fixed in a product by thermal bonding, or multiple power storage devices can be stacked together. By heat-sealing and fixing them in a stacked state, even if multiple power storage devices are built into a product in a stacked state, each power storage device is fixed, so there is no risk of power storage due to product vibration, etc. We believe that this has the advantage of suppressing device misalignment and damage caused by shocks transmitted to each energy storage device when external force is applied to the product.
  • the present disclosure addresses these new challenges and provides a new method for use in power storage devices that can be used as an exterior material for power storage devices by heat-sealing the outer surface of the power storage device to an adherend. Its main purpose is to provide exterior materials.
  • the laminate structure of the exterior material for a power storage device is a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer;
  • the heat-fusible resin layer and the second heat-fusible resin layer are each made of a resin whose main component is polyethylene, instead of polypropylene, which is generally used as a heat-fusible resin layer for exterior materials for power storage devices.
  • the present disclosure has been completed through further studies based on these findings. That is, the present disclosure provides inventions of the following aspects. Consisting of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
  • the first heat-fusible resin layer contains polyethylene as a main component
  • the second heat-fusible resin layer is an exterior material for a power storage device, which contains polyethylene as a main component.
  • a novel exterior material for an electricity storage device which can be used as an exterior material for an electricity storage device by heat-sealing the outer surface of the energy storage device to an adherend.
  • a method for manufacturing an exterior material for a power storage device and a power storage device it is possible to provide a novel exterior material for an electricity storage device, which can be used as an exterior material for an electricity storage device by heat-sealing the outer surface of the energy storage device to an adherend.
  • FIG. 3 is a schematic diagram for explaining a method of measuring seal strength.
  • FIG. 3 is a schematic diagram for explaining a method of measuring seal strength.
  • FIG. 3 is a schematic diagram for explaining an insulation evaluation method.
  • the exterior material for a power storage device is composed of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer;
  • the heat-fusible resin layer contains polyethylene as a main component, and the second heat-fusible resin layer contains polyethylene as a main component.
  • the numerical range indicated by " ⁇ " means “more than” or “less than”.
  • the expression 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit value and the upper limit value, the upper limit value and the lower limit value, or the lower limit value and the lower limit value, which are described separately, may be combined to form a numerical range.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
  • the barrier layer 5 described below in the exterior material for a power storage device it is usually possible to distinguish between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process.
  • MD Machine Direction
  • TD Transverse Direction
  • the barrier layer 5 is made of metal foil such as aluminum alloy foil or stainless steel foil
  • the MD of the laminate and the RD of the metal foil usually match, so the surface of the metal foil of the laminate is observed and the rolling direction (RD) of the metal foil is identified. By doing so, the MD of the laminate can be specified. Further, since the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be specified.
  • the MD of the exterior material for a power storage device cannot be identified due to rolling marks on metal foil such as aluminum alloy foil or stainless steel foil, it can be identified by the following method.
  • a method for confirming the MD of the exterior material for power storage devices there is a method of observing a cross section of the heat-fusible resin layer of the exterior material for power storage devices with an electron microscope to confirm the sea-island structure.
  • the MD can be determined as the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-fusible resin layer is maximum.
  • the angle is changed by 10 degrees from the longitudinal cross section of the heat-fusible resin layer and the direction parallel to the longitudinal cross section, until the angle is perpendicular to the longitudinal cross section.
  • Each cross section (10 cross sections in total) is observed using an electron microscope to confirm the sea-island structure.
  • the shape of each individual island is observed.
  • the straight line distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-fusible resin layer and the rightmost end in the perpendicular direction is defined as the diameter y.
  • the average of the top 20 diameters y of the island shape is calculated in descending order of diameter y.
  • the direction parallel to the cross section where the average diameter y of the island shape is the largest is determined to be the MD.
  • the exterior material 10 for power storage devices of the present disclosure includes, for example, as shown in FIG. It is composed of a laminate including a heat-fusible resin layer 2.
  • the first heat-fusible resin layer 1 is the outermost layer
  • the second heat-fusible resin layer 2 is the innermost layer.
  • the power storage device using the exterior material for power storage device of the present disclosure can be used by heat-sealing the surface of the first heat-fusible resin layer 1 side that constitutes the outer surface of the power storage device to an adherend. I can do it.
  • a power storage device in a product is fixed by heat fusion, or if multiple power storage devices are stacked and fixed by heat fusion, multiple power storage devices can be stacked and incorporated into the product.
  • Even in cases where the individual power storage devices are fixed there are advantages such as being able to prevent the power storage devices from shifting due to product vibration or damage caused by shocks transmitted to each power storage device when external force is applied to the product. be.
  • the second heat-fusible resin layer 2 side is on the inner side than the barrier layer 5
  • the first heat-sealing resin layer 2 side is on the inner side than the barrier layer 5
  • the fusible resin layer 1 side is the outside.
  • the exterior material 10 for an electricity storage device is made of materials that are necessary for the purpose of increasing the adhesiveness between the first heat-fusible resin layer 1 and a layer adjacent thereto.
  • the first adhesive layer 12 may be provided depending on the situation.
  • a second adhesive layer may be used as necessary for the purpose of increasing the adhesiveness between the second heat-fusible resin layer 2 and a layer adjacent thereto. It may have a layer 22.
  • the exterior material 10 for power storage devices includes a layer between the first heat-fusible resin layer 1 and the barrier layer 5 to increase the heat resistance of the exterior material 10 for power storage devices.
  • the first heat-resistant layer 3 may be included if necessary.
  • the exterior material 10 for a power storage device has a structure in which the first heat resistant layer 3 and the barrier layer 5 are bonded together for the purpose of increasing the adhesiveness between the first heat resistant layer 3 and the barrier layer 5.
  • a third adhesive layer 32 may be provided between the two.
  • a fourth adhesive layer 42 may be included.
  • the thickness of the laminate constituting the exterior material 10 for power storage devices is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., it is, for example, 300 ⁇ m or less, preferably about 250 ⁇ m or less, about 230 ⁇ m or less, about 210 ⁇ m or less can be mentioned.
  • the thickness of the laminate constituting the power storage device exterior material 10 is preferably approximately 60 ⁇ m or more, approximately 80 ⁇ m or more, or approximately Examples include 100 ⁇ m or more.
  • preferred ranges of the laminate constituting the exterior material 10 for power storage devices include, for example, about 60 to 300 ⁇ m, about 60 to 250 ⁇ m, about 60 to 230 ⁇ m, about 60 to 210 ⁇ m, about 80 to 300 ⁇ m, and about 80 to 250 ⁇ m. , about 80 to 230 ⁇ m, about 80 to 210 ⁇ m, about 100 to 300 ⁇ m, about 100 to 250 ⁇ m, about 100 to 230 ⁇ m, and about 100 to 210 ⁇ m, and in particular, about 100 to 230 ⁇ m when making the electricity storage device lightweight and thin.
  • the thickness is preferably about 230 to 300 ⁇ m.
  • the first heat-fusible resin layer 1, the first adhesive layer 12 provided as needed, and the necessary A first heat-resistant layer 3 provided as necessary, a third adhesive layer 32 provided as necessary, a barrier layer 5, a fourth adhesive layer 42 provided as necessary, a second heat-resistant layer 4 provided as necessary.
  • the ratio of the total thickness of the second adhesive layer 22 and the second heat-fusible resin layer 2, which are provided as necessary, is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. % or more.
  • the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1, a first adhesive layer 12, a first heat-resistant layer 3, a third adhesive layer 32, a barrier layer 5, a fourth
  • first heat-fusible resin layer 1 a first heat-fusible resin layer 1
  • first adhesive layer 12 a first adhesive layer 12
  • first heat-resistant layer 3 a third adhesive layer 32
  • barrier layer 5 a fourth
  • the ratio of the total thickness of each layer is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1 , a first adhesive layer 12 , a first heat-resistant layer 3 , a third adhesive layer 32 , a barrier layer 5 , a second heat-resistant layer 4 , the second adhesive layer 22, and the second heat-fusible resin layer 2, the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for power storage device is , for example, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more.
  • the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1 , a first adhesive layer 12 , a first heat-resistant layer 3 , a barrier layer 5 , a second heat-resistant layer 4 , a second adhesive layer 22 , and the second heat-fusible resin layer 2, the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for power storage device is, for example, 80% or more, It is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the exterior material for a power storage device of the present disclosure is produced using the first heat-fusible resin of the exterior material for a power storage device 10 under the conditions of each temperature (° C.), surface pressure (MPa), and time (seconds) listed in Table 1.
  • the seal strength (25°C environment) of the test sample obtained by heat-sealing the layers 1 to each other is preferably about 30 N/15 mm or more, more preferably about 35 N, as measured in accordance with the provisions of JIS K7127:1999. /15mm or more, more preferably about 40N/15mm or more, and the upper limit is, for example, about 150N/15mm or less, and preferable ranges are about 30 to 150N/15mm, about 35 to 150N/15mm, and 40 to 150N/15mm. That's about it.
  • a specific method for measuring the seal strength in a 25°C environment is as follows.
  • the seal strength of the exterior material for a power storage device at a measurement temperature of 25° C. environment is measured as follows.
  • an exterior material for a power storage device cut into strips having a width in the TD direction of 15 mm is prepared. Specifically, as shown in FIG. 6, first, each exterior material for an electricity storage device is cut into 60 mm (TD direction) x 200 mm (MD direction) (FIG. 6a). Next, the exterior material for a power storage device is folded in half in the MD direction at a crease P (middle in the MD direction) so that the first heat-fusible resin layers on the outside face each other (FIG. 6b).
  • the first heat-fusible resin layer of the heat-sealed portion of the test sample 13 is peeled off at a rate of 300 mm/min using a tensile testing machine (FIG. 7).
  • the maximum strength at the time of peeling is defined as the seal strength (N/15 mm).
  • the distance between chucks is 50 mm.
  • the average value of three measurements is taken.
  • the test sample 13 is peeled off (destroyed) at the heat seal interface A shown in FIG. In some cases, the test sample 13 may break. When the test sample 13 breaks, the breaking strength is taken as the sealing strength.
  • the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is measured for the exterior material for an energy storage device before and after the heat sealing, and the total thickness of the exterior material for the energy storage device before and after the heat sealing is measured.
  • the ratio (%) of the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 after heat sealing to the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is preferably about 60% or more, more preferably is about 70% or more, more preferably about 80% or more, and the upper limit is, for example, 95% or less, and the preferable range is about 60 to 95%, about 70 to 95%, and 80 to 95%. The degree is mentioned.
  • the sample used in [Measurement of thickness residual rate] uses the exterior material for the electricity storage device before and after heat sealing, and the first heat-resistant layer and the second heat-resistant layer are Measure the total thickness of the layers and calculate the ratio (%) of the total thickness of the first heat-resistant layer and second heat-resistant layer after heat-sealing to the total thickness of the first heat-resistant layer and second heat-resistant layer before heat-sealing. do.
  • the residual rate of total thickness is the average value for two measurement samples.
  • a microtome to cut the measurement sample in the thickness direction, aiming at the middle of the 7 mm head width of the heat seal seal bar and the middle of the sample width of 60 mm, and observe the obtained cross section with a laser microscope. and do it.
  • the exterior material for a power storage device of the present disclosure has a time until a short circuit occurs, which is measured in the following insulation evaluation, preferably about 20 seconds or more, more preferably about 30 seconds or more, and still more preferably about 40 seconds.
  • the upper limit is, for example, about 180 seconds or less, and preferable ranges include about 20 to 180 seconds, about 30 to 180 seconds, and about 40 to 180 seconds.
  • the exterior material 10 for a power storage device is cut to produce a strip with a width of 40 mm and a length of 100 mm, which is used as a test sample.
  • the width refers to the TD direction
  • the length refers to the MD direction.
  • the center of the strip in the width direction is made to coincide with the center of the aluminum plate 30 in the width direction.
  • the positive electrode of the tester is connected to the aluminum plate 30, and the negative electrode is connected to the exterior material for the power storage device.
  • the negative electrode of the tester insert an alligator clip so that it reaches the barrier layer from the first heat-fusible resin layer side of the exterior material for the power storage device, and electrically connect the negative electrode of the tester and the barrier layer.
  • the tester is prepared to issue a continuity (short circuit) signal when the applied voltage is 100 V and the resistance is less than 200 M ⁇ .
  • the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the third adhesive layer 32, the barrier layer 5, the fourth adhesive layer 42, the second heat-resistant layer 4, the second It is composed of a laminate including an adhesive layer 22 and a second heat-fusible resin layer 2 (9-layer composition).
  • the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 ⁇ m (more preferably about 40 to 60 ⁇ m), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer
  • the thickness of the heat-resistant layer 4 is about 15 to 50 ⁇ m (more preferably about 20 to 40 ⁇ m), and the thickness of the first adhesive layer 12 , the second adhesive layer 22 , the third adhesive layer 32 , and the fourth adhesive layer 42
  • the thickness of each layer is approximately 1 to 7 ⁇ m (and further approximately 2 to 5 ⁇ m).
  • the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 80% by mass or more (furthermore, 90% by mass or more, even 95% by mass or more), and the first heat-resistant layer 3 and the second heat-resistant layer 4 are each made of polypropylene resin (preferably polypropylene and acid-modified polypropylene).
  • polyethylene preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C
  • the first heat-resistant layer 3 and the second heat-resistant layer 4 are each made of polypropylene resin (preferably polypropylene and acid-modified polypropylene).
  • the content of at least one of them is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more (even more preferably 90% by mass or more, even more preferably 95% by mass or more). ). It is preferable that the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 each contain acid-modified polyolefin. In the laminated configuration A, the first heat-resistant layer 3 is particularly preferably formed of unstretched polypropylene or maleic anhydride-modified polypropylene.
  • the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the third adhesive layer 32, the barrier layer 5, the second heat-resistant layer 4, the second adhesive layer 22, and the It is composed of a laminate including two heat-fusible resin layers 2 (8-layer composition).
  • the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 ⁇ m (more preferably about 40 to 60 ⁇ m), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer
  • the thickness of the heat-resistant layer 4 is about 15 to 50 ⁇ m (more preferably about 20 to 40 ⁇ m)
  • the thickness of the first adhesive layer 12, the second adhesive layer 22, and the third adhesive layer 32 is about 15 to 50 ⁇ m, respectively. , about 1 to 7 ⁇ m (even about 2 to 5 ⁇ m).
  • the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 80% by mass or more (further, 90% by mass or more, even 95% by mass or more), and the first heat-resistant layer 3 has a content of polypropylene resin (preferably polypropylene) of 50% by mass or more, preferably 60% by mass or more.
  • the second heat-resistant layer 4 is composed of polypropylene resin ( Preferably, the content of acid-modified polypropylene is 80% by mass or more (more preferably 90% by mass or more, further still 95% by mass or more).
  • the first adhesive layer 12, the second adhesive layer 22, and the third adhesive layer 32 each contain acid-modified polyolefin.
  • the first heat-resistant layer 3 is particularly preferably formed of unstretched polypropylene or maleic anhydride-modified polypropylene
  • the second heat-resistant layer 4 is preferably formed of maleic anhydride-modified polypropylene. Particularly preferred.
  • the first heat-fusible resin layer 1 In order from the outside, the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the barrier layer 5, the second heat-resistant layer 4, the second adhesive layer 22, and the second heat-fusible resin. It is constructed from a laminate including layer 2 (seven-layer construction).
  • the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 ⁇ m (more preferably about 40 to 60 ⁇ m), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer
  • the thickness of the heat-resistant layer 4 is about 15 to 50 ⁇ m (more preferably about 20 to 40 ⁇ m)
  • the thickness of the first adhesive layer 12 and the second adhesive layer 22 is about 1 to 7 ⁇ m (more preferably about 20 to 40 ⁇ m). is approximately 2 to 5 ⁇ m).
  • the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more (even more preferably 90% by mass or more, still more preferably 95% by mass or more), and the first The heat-resistant layer 3 and the second heat-resistant layer 4 each have a polypropylene resin (preferably acid-modified polypropylene) content of 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably It is 80% by mass or more (more preferably 90% by mass or more, even more preferably 95% by mass or more).
  • polyethylene preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C.
  • first adhesive layer 12 and the second adhesive layer 22 each contain acid-modified polyolefin.
  • first heat-resistant layer 3 and the second heat-resistant layer 4 are each formed of maleic anhydride-modified polypropylene.
  • first heat-fusible resin layer 1 is a layer that constitutes the outer surface of an exterior material for an electricity storage device, and when applied to an electricity storage device, the outer surface of the electricity storage device is heated to an adherend. This is a layer that performs the function of fusing.
  • the second heat-fusible resin layer 2 corresponds to the innermost layer, and the second heat-fusible resin layers 2 are heat-fused to each other during assembly of the power storage device. This is a layer (sealant layer) that functions to seal the electricity storage device element.
  • the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each contain polyethylene as a main component.
  • containing polyethylene as a main component means that the content of polyethylene is, for example, 50% by mass among the resin components contained in the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2.
  • the above is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, still more preferably 98% by mass or more, and This means that it is preferably 99% by mass or more, and the polyethylene content may be 100% by mass.
  • the resin component other than polyethylene is not particularly limited as long as it does not impede the effects of the present disclosure, and examples thereof include polypropylene.
  • the water vapor permeability of the polyethylene of the first heat-fusible resin layer 1 in an environment of 40°C and 90% RH is preferably 0.50 g ⁇ mm/m 2 ⁇ 24 h or less, more preferably 0.40 g ⁇ mm/m 2 - 24 hours or less, more preferably 0.30 g ⁇ mm/m 2 ⁇ 24 hours or less.
  • the method for measuring water vapor permeability is as follows. The unit of water vapor permeability is g/( m2 ⁇ 24h), but in order to make it easier to compare the numerical values of test samples with different thicknesses, the numerical value obtained by measurement is calculated using a thickness of 1.0 mm. The unit g ⁇ mm/m 2 ⁇ 24h was used.
  • Water vapor permeability is measured in accordance with JIS K 7129-2 "Plastics - Films and sheets - How to determine water vapor permeability - Part 2: Infrared sensor method". After cutting a film-like sample into 100 mm x 100 mm, it was measured at 40° C. and 90% RH to determine the water vapor permeability.
  • polyethylene examples include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene.
  • polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene.
  • high-density polyethylene is preferred from the viewpoint of more suitably exhibiting the effects of the present disclosure.
  • These polyethylenes may be used alone or in combination of two or more.
  • High-density polyethylene has low water vapor permeability and is particularly preferred as a layer included in the exterior material for power storage devices.
  • acid-modified polyethylene may be sufficient as polyethylene.
  • Acid-modified polyethylene is a polymer modified by block polymerization or graft polymerization of polyethylene with an acid component.
  • the acid-modified polyethylene the above-mentioned polyethylene, a copolymer obtained by copolymerizing the above-mentioned polyethylene with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can also be used.
  • examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or their anhydrides.
  • Preferred acid-modified polyethylenes include polyethylenes modified with carboxylic acids or their anhydrides.
  • first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 are each analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • maleic anhydride-modified polyethylene is measured by infrared spectroscopy, peaks derived from maleic anhydride are detected at wave numbers around 1760 cm -1 and around 1780 cm -1 wave numbers.
  • first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each contain maleic anhydride-modified polyethylene
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. Ru.
  • the degree of acid modification is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 may each be formed from one type of resin alone, or may be formed from a blended polymer that is a combination of two or more types of resin. Good too. Further, each of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 may be formed of only one layer, but may be formed of two or more layers of the same or different resins. Good too.
  • the melting peak temperatures of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 are preferably about 130°C or less, more preferably The temperature is about 110 to 130°C, more preferably about 120 to 130°C.
  • the melting peak temperature is 110°C or higher, blocking occurs easily during winding during heating in the aging process when manufacturing the exterior material for power storage devices, and the melting peak temperature is 130°C.
  • At least one of the surface and inside of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 includes a lubricant, a flame retardant, an anti-blocking agent, an antioxidant, a light stabilizer, Additives such as tackifiers and antistatic agents may also be present. Only one type of additive may be used, or a mixture of two or more types may be used.
  • a lubricant may be present on the surfaces of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2, respectively.
  • the lubricant is not particularly limited, but preferably includes an amide lubricant.
  • Specific examples of amide lubricants include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylolamides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, aromatic bisamides, and the like.
  • saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, and the like.
  • unsaturated fatty acid amides include oleic acid amide and erucic acid amide.
  • substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, and the like.
  • methylolamide include methylolstearamide and the like.
  • saturated fatty acid bisamides include methylene bisstearamide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, and hexamethylene bis stearic acid amide.
  • saturated fatty acid bisamides include methylene bisstearamide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, and hexamethylene bis stearic acid amide.
  • Examples include acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, and the like.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleyl sebacic acid amide.
  • fatty acid ester amides include stearamide ethyl stearate.
  • aromatic bisamides include m-xylylene bisstearamide, m-xylylene bishydroxystearamide, and N,N'-distearylisophthalic acid amide.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount thereof is not particularly limited, but is preferably about 3 mg/m 2 or more, for example. Examples include about 4 mg/m 2 or more, about 5 mg/m 2 or more. Further, the amount of lubricant present on the surface of the first heat-fusible resin layer 1 is, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, and about 10 mg/m 2 or less.
  • the preferable range of the amount of lubricant present on the surface of the first heat-fusible resin layer 1 is about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , and about 4 to 15 mg/m 2 .
  • Examples include about 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , and about 5 to 10 mg/m 2 .
  • the lubricants present on the surfaces of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 constitute the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2, respectively.
  • the lubricant contained in the resin may be exuded, or the lubricant may be applied to the surface of the first heat-fusible resin layer 1.
  • the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is preferably about 20 ⁇ m or more, and more preferably about 20 ⁇ m or more.
  • the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 20 ⁇ m or more, the sealing strength is easily increased, and when the thickness is about 100 ⁇ m or less, the Energy density becomes easier to improve.
  • the first heat-fusible resin layer 1 is formed using a pre-formed resin film (i.e., a resin film containing polyethylene as a main component (polyethylene film)).
  • a resin film containing polyethylene as a main component polyethylene film
  • the resin forming the first heat-fusible resin layer 1 i.e., polyethylene
  • the first heat-fusible resin layer 1 may be formed by forming a resin (main component) into a film (that is, a resin film (polyethylene film)) by extrusion molding, coating, or the like.
  • a pre-formed resin film i.e., a resin film containing polyethylene as a main component (polyethylene film)
  • a second heat-fusible resin When layer 2 is laminated with barrier layer 5, second heat-resistant layer 4, etc., which will be described later, the resin that forms the second heat-fusible resin layer 2 (i.e., the resin whose main component is polyethylene) is extruded or coated.
  • the second heat-fusible resin layer 2 may be formed into a film (ie, as a resin film (polyethylene film)) by a method such as the following.
  • the resin film may be an unstretched film or a stretched film.
  • Examples of the stretched film include uniaxially stretched film and biaxially stretched film, with biaxially stretched film being preferred.
  • Examples of the stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • Examples of methods for applying the resin include roll coating, gravure coating, and extrusion coating.
  • the first heat-resistant layer 3 is a layer provided between the first heat-fusible resin layer 1 and the barrier layer 5 as necessary for the purpose of increasing the heat resistance of the exterior material 10 for an electricity storage device. be. Further, the second heat-resistant layer 4 is provided between the second heat-fusible resin layer 2 and the barrier layer 5 as necessary for the purpose of increasing the heat resistance of the exterior material 10 for an electricity storage device. It is a layer.
  • the first heat-resistant layer 3 and the second heat-resistant layer 4 can each be formed of resin or the like with excellent heat resistance.
  • the melting peak temperatures of the first heat-resistant layer 3 and the second heat-resistant layer 4 are preferably about 130° C. or higher, more preferably about 140 to 300° C., and even more preferably about 140 to 300° C. is about 150 to 250°C. Since the melting peak temperature of the first heat-resistant layer 3 and the second heat-resistant layer 4 is 130°C or higher, high heat resistance can be exhibited, and since the melting peak temperature is 250°C or lower, costs can be reduced. advantageous in terms of
  • Examples of the resin forming the first heat-resistant layer 3 and the second heat-resistant layer 4 include resins such as polyolefin, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, and phenol resin, respectively. Examples include modified resins. Further, the resin forming the first heat-resistant layer 3 and the second heat-resistant layer 4 may be a copolymer of these resins, or may be a modified product of the copolymer. Furthermore, a mixture of these resins may be used.
  • the resins forming the first heat-resistant layer 3 and the second heat-resistant layer 4 are preferably polyolefin or polyester.
  • the polyolefin includes polypropylene such as homopolypropylene, a block copolymer of polypropylene (for example, a block copolymer of propylene and ethylene), and a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); Polymer; terpolymer of ethylene-butene-propylene and the like.
  • polypropylene is preferred.
  • the polyolefin resin in the case of a copolymer may be a block copolymer or a random copolymer. These polyolefin resins may be used alone or in combination of two or more.
  • the polyolefin may be a cyclic polyolefin.
  • a cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. It will be done.
  • the polyolefin may be an acid-modified polyolefin.
  • Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component.
  • the acid-modified polyolefin the aforementioned polyolefins, copolymers obtained by copolymerizing the aforementioned polyolefins with polar molecules such as acrylic acid or methacrylic acid, or polymers such as crosslinked polyolefins can also be used.
  • examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or their anhydrides.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing some of the monomers constituting the cyclic polyolefin in place of the acid component, or by block polymerizing or graft polymerizing the acid component to the cyclic polyolefin. be.
  • the cyclic polyolefin to be acid-modified is the same as described above. Further, the acid component used for acid modification is the same as the acid component used for modifying the polyolefin described above.
  • Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, copolymerized polyester, and the like.
  • copolyester examples include copolyesters containing ethylene terephthalate as a main repeating unit. Specifically, copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/adipate), polyethylene (terephthalate/adipate), etc.
  • polyesters examples include sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate). These polyesters may be used alone or in combination of two or more.
  • the first heat-resistant layer 3 and the second heat-resistant layer 4 may each be formed from one type of resin alone, or may be formed from a blended polymer that is a combination of two or more types of resin. Further, each of the first heat-resistant layer 3 and the second heat-resistant layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
  • a pre-formed resin film may be used to form the first heat-resistant layer 3, or the first heat-resistant layer 3 may be replaced by a barrier layer 5 or a first heat-melting layer 5, which will be described later.
  • the first heat-resistant layer 3 may be formed by forming the resin forming the first heat-resistant layer 3 into a film (ie, a resin film) by extrusion molding, coating, or the like.
  • a pre-formed resin film may be used, or when the second heat-resistant layer 4 is laminated with a barrier layer 5, a second heat-fusible resin layer 2, etc., which will be described later.
  • the second heat-resistant layer 4 may be formed by forming the resin forming the second heat-resistant layer 4 into a film (ie, a resin film) by extrusion molding, coating, or the like.
  • the resin film may be an unstretched film or a stretched film.
  • the stretched film include uniaxially stretched film and biaxially stretched film, with biaxially stretched film being preferred.
  • Examples of the stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • methods for applying the resin include roll coating, gravure coating, and extrusion coating.
  • the thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is preferably about 5 ⁇ m or more, more preferably about 10 ⁇ m or more, and even more preferably about 20 ⁇ m or more. , and is preferably about 50 ⁇ m or less, more preferably about 40 ⁇ m or less, even more preferably about 30 ⁇ m or less, and the preferable range is about 5 to 50 ⁇ m, about 5 to 40 ⁇ m, about 5 to 30 ⁇ m, and 10 to Examples include about 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 20 to 50 ⁇ m, about 20 to 40 ⁇ m, and about 20 to 30 ⁇ m.
  • the thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is about 5 ⁇ m or more, resistance to physical contact is increased, and when the thickness is about 50 ⁇ m or less, the energy density of the electricity storage device can be improved. .
  • the first adhesive layer 12 is a layer provided as necessary for the purpose of increasing the adhesiveness between the first heat-fusible resin layer 1 and a layer adjacent thereto. Therefore, the first adhesive layer 12 is adjacent to the first heat-fusible resin layer 1 .
  • the second adhesive layer 22 is a layer provided as necessary for the purpose of increasing the adhesiveness between the second heat-fusible resin layer 2 and a layer adjacent thereto. Therefore, the second adhesive layer 22 is adjacent to the second heat-fusible resin layer 2.
  • the third adhesive layer 32 is provided between the first heat resistant layer 3 and the barrier layer 5 as necessary for the purpose of increasing the adhesiveness between the first heat resistant layer 3 and the barrier layer 5.
  • the fourth adhesive layer 42 is provided between the second heat resistant layer 4 and the barrier layer 5 as necessary for the purpose of increasing the adhesiveness between the second heat resistant layer 4 and the barrier layer 5. It is a layer.
  • the fourth adhesive layer 42 is adjacent to the second heat-resistant layer 4 .
  • the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are each formed of a resin (adhesive) having adhesive properties.
  • the adhesives used for forming the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are not particularly limited, and are chemical reaction type, solvent volatilization type, thermal adhesive, etc. Any type of adhesive, such as a melt type adhesive or a hot pressure type adhesive, may be used. Further, the adhesive may be a two-component curing adhesive (two-component adhesive) or a one-component curing adhesive (one-component adhesive), which does not involve a curing reaction. It may also be made of resin.
  • the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 may each be a single layer or a multilayer.
  • the adhesive components contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenol resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; Examples include polyimide; polycarbonate; amino resins such as urea resin and melamine resin; rubbers such as chloroprene rubber, nitrile rubber, and styrene-butadiene rubber; and silicone resins.
  • polyesters such as polyethylene terephthalate, polybuty
  • adhesive components may be used alone or in combination of two or more.
  • polyurethane polyurethane adhesive
  • the adhesive strength of these adhesive component resins can be increased by using an appropriate curing agent in combination.
  • the curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
  • polyurethane adhesive examples include a polyurethane adhesive that includes a first part containing a polyol compound and a second part containing an isocyanate compound.
  • Preferred examples include two-component curing polyurethane adhesives in which a polyol such as a polyester polyol, a polyether polyol, or an acrylic polyol is used as a first part and an aromatic or aliphatic polyisocyanate is used as a second part.
  • examples of the polyurethane adhesive include a polyurethane adhesive containing a polyurethane compound prepared by reacting a polyol compound and an isocyanate compound in advance, and an isocyanate compound.
  • examples of the polyurethane adhesive include a polyurethane adhesive containing a polyurethane compound prepared by reacting a polyol compound and an isocyanate compound in advance, and a polyol compound.
  • examples of the polyurethane adhesive include, for example, a polyurethane adhesive obtained by curing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air or the like.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • Examples of the second agent include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds.
  • isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like. Also included are polyfunctional isocyanate modified products of one or more of these diisocyanates.
  • the polyisocyanate compound It is also possible to use multimers (for example trimers) as the polyisocyanate compound. Such multimers include adducts, biurets, nurates, and the like. Since the adhesive layer is formed of a polyurethane adhesive, the exterior material for the power storage device has excellent electrolyte resistance, and even if the electrolyte adheres to the side surface, the first heat-fusible resin layer 1 will not peel off. suppressed.
  • multimers for example trimers
  • Such multimers include adducts, biurets, nurates, and the like. Since the adhesive layer is formed of a polyurethane adhesive, the exterior material for the power storage device has excellent electrolyte resistance, and even if the electrolyte adheres to the side surface, the first heat-fusible resin layer 1 will not peel off. suppressed.
  • first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are allowed to contain other components as long as they do not impede the adhesive properties, such as colorants and thermoplastic elastomers. , a tackifier, a filler, etc.
  • the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 each contain a coloring agent, so that the exterior material for the electricity storage device can be colored.
  • the colorant known colorants such as pigments and dyes can be used.
  • only one type of coloring agent may be used, or two or more types of coloring agents may be used in combination.
  • the type of pigment is not particularly limited as long as it does not impair the adhesive properties of the first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, and fourth adhesive layer 42.
  • organic pigments include azo pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, dioxazine pigments, indigothioindigo pigments, perinone-perylene pigments, isoindolenine pigments, and benzimidazolone pigments.
  • the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and in addition, mica (mica) fine powder, fish scale foil, and the like.
  • carbon black is preferable, for example, in order to make the exterior of the power storage device exterior black.
  • the average particle diameter of the pigment is not particularly limited, and may be, for example, about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m. Note that the average particle diameter of the pigment is the median diameter measured by a laser diffraction/scattering particle diameter distribution measuring device.
  • the pigment content in the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 is not particularly limited as long as the exterior material for the electricity storage device is colored, for example.
  • the amount may be about 5 to 60% by weight, preferably 10 to 40% by weight.
  • the thicknesses of the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are not particularly limited, but are, for example, about 1 ⁇ m or more, about 2 ⁇ m or more, and, for example, , about 10 ⁇ m or less, about 7 ⁇ m or less, about 5 ⁇ m or less, and preferred ranges are about 1 to 10 ⁇ m, about 1 to 7 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, about 2 to 7 ⁇ m, and about 2 to 5 ⁇ m. Can be mentioned.
  • the colored layer is a layer provided as necessary between the first heat-fusible resin layer 1 and the barrier layer 5 (not shown).
  • a colored layer may be provided between the first heat-fusible resin layer 1 and the first adhesive layer 12 and between the first adhesive layer 12 and the barrier layer 5. .
  • the colored layer can be formed, for example, by applying ink containing a coloring agent to the surface of the first heat-fusible resin layer 1 or the surface of the barrier layer 5.
  • a coloring agent known colorants such as pigments and dyes can be used.
  • only one type of coloring agent may be used, or two or more types of coloring agents may be used in combination.
  • coloring agent contained in the colored layer As specific examples of the coloring agent contained in the colored layer, the same ones as those exemplified in the column [first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, fourth adhesive layer 42] are exemplified. Ru.
  • the barrier layer 5 is a layer that prevents at least moisture from entering.
  • Examples of the barrier layer 5 include metal foil, vapor deposited film, and resin layer having barrier properties.
  • Examples of the vapor-deposited film include a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, etc.
  • resin layers include polyvinylidene chloride, polymers mainly composed of chlorotrifluoroethylene (CTFE), and tetrafluoroethylene.
  • Examples include fluorine-containing resins such as polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, and polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers.
  • examples of the barrier layer 5 include a resin film provided with at least one of these vapor-deposited films and a resin layer.
  • a plurality of barrier layers 5 may be provided. It is preferable that the barrier layer 5 includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 5 include aluminum alloy, stainless steel, titanium steel, steel plate, etc. When used as metal foil, it includes at least one of aluminum alloy foil and stainless steel foil. It is preferable.
  • the aluminum alloy foil When the aluminum alloy foil is required to have formability as an exterior material for a power storage device, it is more preferable to use a soft aluminum alloy foil made of annealed aluminum alloy, for example, and when higher formability is required. In such cases, it is preferable to use an aluminum alloy foil containing iron.
  • the iron content In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for a power storage device that has better formability. By having an iron content of 9.0% by mass or less, it is possible to obtain an exterior material for a power storage device that has more excellent flexibility.
  • soft aluminum alloy foil examples include JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, or JIS H4000:2014 A8079P- Aluminum alloy with a composition specified by O
  • One example is foil.
  • silicon, magnesium, copper, manganese, etc. may be added as necessary.
  • softening can be performed by annealing treatment or the like.
  • the stainless steel foil examples include austenitic, ferritic, austenite-ferritic, martensitic, and precipitation hardening stainless steel foils. If further formability is required, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel constituting the stainless steel foil examples include SUS304, SUS301, SUS316L, etc. Among these, SUS304 is particularly preferred.
  • the thickness of the barrier layer 5 may be about 9 to 200 ⁇ m, as long as it can at least function as a barrier layer to prevent moisture from entering.
  • the thickness of the barrier layer 5 is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, even more preferably about 40 ⁇ m or less, particularly preferably about 35 ⁇ m or less. Further, the thickness of the barrier layer 5 is preferably about 10 ⁇ m or more, more preferably about 20 ⁇ m or more, and even more preferably about 25 ⁇ m or more.
  • the preferable range of the thickness of the barrier layer 5 is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, about 20 to 85 ⁇ m, about 20 to 50 ⁇ m, about 20 to 40 ⁇ m, and about 20 to 40 ⁇ m. Examples include about 35 ⁇ m, about 25 to 85 ⁇ m, about 25 to 50 ⁇ m, about 25 to 40 ⁇ m, and about 25 to 35 ⁇ m.
  • the barrier layer 5 is made of aluminum alloy foil, the above-mentioned range is particularly preferable.
  • the thickness of the barrier layer 3 is preferably about 35 ⁇ m or more, more preferably about 45 ⁇ m or more, still more preferably about 50 ⁇ m or more, and It is preferably about 55 ⁇ m or more, and preferably about 200 ⁇ m or less, more preferably about 85 ⁇ m or less, even more preferably about 75 ⁇ m or less, even more preferably about 70 ⁇ m or less, and the preferable range is about 35 to 200 ⁇ m, 35 ⁇ m or less.
  • the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, and even more preferably about 30 ⁇ m. It is particularly preferably about 25 ⁇ m or less. Further, the thickness of the stainless steel foil is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more. Further, the preferable range of the thickness of the stainless steel foil is about 10 to 60 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, and about 15 to 50 ⁇ m. Examples include about 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m.
  • the barrier layer 5 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the first heat-fusible resin layer in order to prevent dissolution and corrosion.
  • the barrier layer 5 may be provided with a corrosion-resistant coating on both sides.
  • the corrosion-resistant film refers to, for example, hydrothermal conversion treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment with nickel or chromium, or corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer.
  • the corrosion-resistant film refers to a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like.
  • the treatment for forming a corrosion-resistant film one type of treatment may be performed or a combination of two or more types may be performed. Furthermore, it is possible to have not only one layer but also multiple layers.
  • hydrothermal conversion treatment and anodization treatment are treatments in which the surface of the metal foil is dissolved with a treatment agent to form a metal compound with excellent corrosion resistance. Note that these treatments may be included in the definition of chemical conversion treatment.
  • the barrier layer 5 includes a corrosion-resistant film
  • the barrier layer 5 includes the corrosion-resistant film.
  • the corrosion-resistant film is produced by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the first heat-fusible resin layer, and by a reaction between electrolyte and moisture during molding of the exterior material for power storage devices.
  • Hydrogen fluoride prevents the surface of the barrier layer from dissolving and corroding, especially when the barrier layer is made of aluminum alloy foil, the aluminum oxide present on the surface of the barrier layer is prevented from dissolving and corroding, and also prevents the adhesion of the surface of the barrier layer.
  • corrosion-resistant coatings are known that are formed by chemical conversion treatment, and mainly include at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides. Examples include corrosion-resistant coatings containing. Examples of chemical conversion treatments using phosphates and chromates include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment.
  • Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium diphosphate, chromic acid acetylacetate, chromium chloride, potassium chromium sulfate, and the like.
  • examples of phosphorus compounds used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid.
  • Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating type chromate treatment, and coating type chromate treatment is preferred.
  • the inner layer side of the barrier layer (for example, aluminum alloy foil) is first coated using a well-known method such as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, etc.
  • Degrease treatment is performed using a treatment method, and then metal phosphates such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, and Zn (zinc) phosphate are applied to the degreased surface.
  • Treatment liquids whose main components are salts and mixtures of these metal salts, treatment liquids whose main components are nonmetallic phosphoric acid salts and mixtures of these nonmetallic salts, or combinations of these with synthetic resins, etc.
  • This is a process in which a treatment liquid consisting of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and then dried.
  • Various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used as the treatment liquid, and water is preferable.
  • the resin component used at this time includes polymers such as phenolic resins and acrylic resins, and aminated phenol polymers having repeating units represented by the following general formulas (1) to (4) are used. Examples include chromate treatment.
  • the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. Good too.
  • the acrylic resin must be polyacrylic acid, acrylic acid methacrylate copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salt, ammonium salt, or amine salt. is preferred.
  • polyacrylic acid derivatives such as ammonium salts, sodium salts, or amine salts of polyacrylic acid.
  • polyacrylic acid refers to a polymer of acrylic acid.
  • the acrylic resin is also preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, such as ammonium salt, sodium salt, Or it is also preferable that it is an amine salt. Only one type of acrylic resin may be used, or a mixture of two or more types may be used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are each the same or different and represent a hydroxy group, an alkyl group, or a hydroxyalkyl group.
  • the alkyl group represented by Examples include straight chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl group.
  • examples of the hydroxyalkyl group represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, Straight chain or branched chain with 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group Examples include alkyl groups. In the general formulas (1) to (4), the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having repeating units represented by general formulas (1) to (4) is preferably about 500 to 1,000,000, and preferably about 1,000 to 20,000, for example. More preferred.
  • Aminated phenol polymers can be produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer consisting of repeating units represented by the above general formula (1) or general formula (3), and then adding formaldehyde to the polymer. and amine (R 1 R 2 NH) to introduce a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above.
  • Aminated phenol polymers may be used alone or in combination of two or more.
  • a corrosion-resistant film is a film formed by a coating-type corrosion-preventing treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied.
  • a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied.
  • the coating agent may further contain phosphoric acid or a phosphate salt, a crosslinking agent for crosslinking the polymer.
  • the rare earth element oxide sol includes rare earth element oxide fine particles (for example, particles with an average particle size of 100 nm or less) dispersed in a liquid dispersion medium.
  • rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, with cerium oxide being preferred from the viewpoint of further improving adhesion.
  • the rare earth element oxides contained in the corrosion-resistant film can be used alone or in combination of two or more.
  • various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred.
  • the cationic polymer examples include polyethyleneimine, an ionic polymer complex consisting of a polymer containing polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is graft-polymerized onto an acrylic main skeleton, polyallylamine or its derivatives. , aminated phenol, etc. are preferred.
  • the anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component.
  • the crosslinking agent is at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or phosphate is a condensed phosphoric acid or a condensed phosphate.
  • An example of a corrosion-resistant film is to coat fine particles of barium sulfate or metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide in phosphoric acid on the surface of the barrier layer. Examples include those formed by performing baking treatment at temperatures above .degree.
  • the corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary.
  • a cationic polymer and anionic polymer include those mentioned above.
  • composition of the corrosion-resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 5 in the chemical conversion treatment is not particularly limited. is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of chromium, the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of phosphorus, and the aminated phenol polymer. It is desirable that the content is, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant film is not particularly limited, but from the viewpoint of the cohesive force of the film and the adhesion with the barrier layer and the heat-fusible resin layer, it is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm. More preferably, it is about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation using a transmission electron microscope, or by a combination of observation using a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy.
  • composition of the corrosion-resistant film using time-of-flight secondary ion mass spectrometry reveals that, for example, secondary ions consisting of Ce, P, and O (for example, at least one of Ce 2 PO 4 + , CePO 4 - , etc.) peaks derived from secondary ions (for example, at least one of CrPO 2 + and CrPO 4 - ) made of Cr, P, and O are detected.
  • secondary ions consisting of Ce, P, and O for example, at least one of Ce 2 PO 4 + , CePO 4 - , etc.
  • Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer using a bar coating method, roll coating method, gravure coating method, dipping method, etc., and then changing the temperature of the barrier layer. This is done by heating to a temperature of about 70 to 200°C.
  • the barrier layer may be previously subjected to a degreasing treatment using an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this manner, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently.
  • Method for manufacturing an exterior material for an energy storage device is not particularly limited as long as a laminate in which each layer of the exterior material for an energy storage device of the present disclosure is laminated can be obtained.
  • a method including a step of laminating the heat-fusible resin layer 1, the barrier layer 5, and the second heat-fusible resin layer 2 in this order can be mentioned.
  • the first heat-fusible resin layer 1 contains polyethylene as a main component
  • the second heat-fusible resin layer 2 contains polyethylene as a main component. There is.
  • An example of the method for manufacturing the exterior material for a power storage device of the present disclosure is as follows.
  • a laminate is formed in which the first heat-fusible resin layer 1, the first adhesive layer 12, and the barrier layer 5 are laminated in this order.
  • the formation of the laminate is performed by applying an adhesive used to form the first adhesive layer 12 on the first heat-fusible resin layer 1 or on the barrier layer 5 whose surface has been subjected to chemical conversion treatment if necessary. is coated and dried by a coating method such as a gravure coating method or a roll coating method, and then the barrier layer 5 or the first heat-fusible resin layer 1 is laminated and the first adhesive layer 12 is cured by a dry lamination method. It can be carried out.
  • a laminate is formed in which the first heat-fusible resin layer 1, the first adhesive layer 12, and the first heat-resistant layer 3 are laminated in this order.
  • the formation of the laminate is performed by applying the adhesive used for forming the first adhesive layer 12 on the first heat-fusible resin layer 1 or the first heat-resistant layer 3 using a gravure coating method, a roll coating method, etc. It can be performed by a dry lamination method in which the first heat-resistant layer 3 or the first heat-fusible resin layer 1 is laminated and the first adhesive layer 12 is cured after coating and drying by a coating method such as a coating method.
  • a coating method such as a coating method.
  • the adhesive used to form the third adhesive layer 32 is applied to the first heat-resistant layer 3 or to the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, by a coating method such as a gravure coating method or a roll coating method.
  • a coating method such as a gravure coating method or a roll coating method.
  • This can be carried out by a dry lamination method in which after coating and drying, the barrier layer 5 or the first heat-resistant layer 3 is laminated and the third adhesive layer 32 is cured.
  • extrusion molding or thermal fusion of the first heat-resistant layer 3 can be used.
  • the second heat-fusible resin layer 2 is laminated on the barrier layer 5 of the obtained laminate.
  • the adhesive used to form the second adhesive layer 22 is coated on the second heat-fusible resin layer 2 or on the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, using a gravure coating method or a roll coating method. It can be performed by a dry lamination method in which the barrier layer 5 or the second heat-fusible resin layer 2 is laminated and the second adhesive layer 22 is cured after coating and drying by a coating method such as a coating method.
  • a laminate is formed in which the second heat-fusible resin layer 2, the second adhesive layer 22, and the second heat-resistant layer 4 are laminated in this order.
  • the formation of the laminate is performed by applying the adhesive used for forming the second adhesive layer 22 on the second heat-fusible resin layer 2 or the second heat-resistant layer 4 using a gravure coating method or a roll method. It can be performed by a dry lamination method in which the second heat-resistant layer 4 or the second heat-fusible resin layer 2 is laminated and the second adhesive layer 22 is cured after coating and drying by a coating method such as a coating method.
  • a coating method such as a coating method.
  • the adhesive used to form the fourth adhesive layer 42 may be applied on the second heat-resistant layer 4 or on the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, by a coating method such as a gravure coating method or a roll coating method. This can be carried out by a dry lamination method in which the barrier layer 5 or the second heat-resistant layer 4 is laminated after coating and drying, and the fourth adhesive layer 42 is cured. Furthermore, when the second heat-resistant layer 4 and the barrier layer 5 are laminated without interposing the fourth adhesive layer 42, extrusion molding or thermal fusion of the second heat-resistant layer 4 can be used.
  • first heat-fusible resin layer 1 / first adhesive layer 12 provided as necessary / first heat-resistant layer 3 provided as necessary / third adhesive layer provided as necessary 32/Barrier layer 5/Fourth adhesive layer 42 provided as necessary/Second heat-resistant layer 4 provided as necessary/Second adhesive layer 22 provided as necessary/Second heat-fusible resin layer 2 is formed in this order, and the adhesiveness of the first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, and fourth adhesive layer 42 provided as necessary is strengthened. For this reason, it may be further subjected to heat treatment.
  • the exterior packaging material for power storage devices of the present disclosure is used for a package for sealing and accommodating power storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device according to the present disclosure to form a power storage device.
  • an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte is prepared using the exterior material for an electricity storage device of the present disclosure, with metal terminals connected to each of the positive electrode and the negative electrode protruding outward. , Covering the electricity storage device element so that a flange portion (an area where the heat-fusible resin layers contact each other) is formed around the periphery of the power storage device element, and sealing the heat-fusible resin layers of the flange portion by heat-sealing each other. provides an electricity storage device using an exterior material for an electricity storage device.
  • the heat-fusible resin portion of the power storage device exterior material of the present disclosure is placed on the inside (the surface in contact with the power storage device element). ) to form a package.
  • the heat-fusible resin layers of two exterior materials for power storage devices may be stacked facing each other, and the peripheral edges of the stacked exterior materials for power storage devices may be heat-sealed to form a package; As in the example shown in FIG. 5, a package may be formed by folding and overlapping one exterior material for a power storage device and heat-sealing the peripheral edge portions.
  • the package When folded and stacked, the package may be formed by heat-sealing the sides other than the folded edges and sealing on three sides, as shown in the example shown in Fig. 5, or the package may be folded back so that a flange can be formed. It may be sealed on all sides, or the exterior material for the power storage device is wrapped around the power storage device element and the heat-sealable resin layers are sealed to form a heat-sealed part and the openings at both ends are closed. A lid body or the like may be arranged in this manner and sealed by heat-sealing with the exterior material for the power storage device wrapped around the power storage device element.
  • the lid body can be formed of, for example, a resin molded product, a metal molded product, an exterior material for a power storage device, or the like. Further, a recessed portion for accommodating the power storage device element may be formed in the exterior material for the power storage device by deep drawing or stretch molding. As in the example shown in FIG. 5, one exterior material for an energy storage device may have a recess and the other exterior material for an energy storage device may not have a recess, or the other exterior material for an energy storage device may also have a recess. may be provided.
  • the exterior material for power storage devices of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.). Further, the exterior material for a power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery.
  • the types of secondary batteries to which the exterior material for power storage devices of the present disclosure is applied are not particularly limited, and include, for example, lithium-ion batteries, lithium-ion polymer batteries, all-solid-state batteries, semi-solid-state batteries, pseudo-solid-state batteries, and polymer batteries.
  • lithium ion batteries and lithium ion polymer batteries are suitable for application of the exterior material for power storage devices of the present disclosure.
  • power storage devices are used for various purposes, and the needs for power storage devices are also diverse. Since the exterior material 10 for a power storage device of the present disclosure has a function of thermally fusing an adherend, it can also provide a power storage device with a function of thermally fusing an adherend. . If the power storage device of the present disclosure is fixed in a product by heat fusion, or if a plurality of power storage devices are stacked and fixed by heat fusion, the plurality of power storage devices can be incorporated into the product in a stacked state. Even in cases where the power storage devices are fixed, each power storage device is fixed, which has the advantage of suppressing misalignment of the power storage devices due to product vibration or damage caused by shocks transmitted to each power storage device when external force is applied to the product. There is.
  • Example 1 As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 ⁇ m, melting peak temperature 130°C, water vapor permeability 0.28 g ⁇ mm/m 2 ⁇ 24h) was prepared. Unstretched polypropylene (CPP) films (thickness: 30 ⁇ m, melting peak temperature: 161° C., water vapor permeability: 0.40 g ⁇ mm/m 2 ⁇ 24 h) were prepared as the first heat-resistant layer and the second heat-resistant layer, respectively.
  • HDPE high-density polyethylene
  • CPP Unstretched polypropylene
  • aluminum alloy foil As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 ⁇ m) was prepared. Both sides of the aluminum alloy foil were chemically treated. The chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
  • the first A laminate 1 was obtained in which a heat-fusible resin layer (thickness: 50 ⁇ m)/first adhesive layer (thickness after curing: 1.5 ⁇ m)/first heat-resistant layer (thickness: 30 ⁇ m) were laminated in this order from the outside. .
  • first heat-fusible resin layer (thickness: 50 ⁇ m) / first adhesive layer (thickness after curing is 1.5 ⁇ m) / first heat-resistant layer (thickness: 30 ⁇ m) / third adhesive layer (after curing)
  • first heat-fusible resin layer (thickness: 50 ⁇ m) / first adhesive layer (thickness after curing is 1.5 ⁇ m) / first heat-resistant layer (thickness: 30 ⁇ m) / third adhesive layer (after curing)
  • a laminate 3 of 1.5 ⁇ m thick/barrier layer (40 ⁇ m thick) was prepared.
  • the surface of the laminate 3 on the barrier layer side and the surface of the laminate 2 on the second heat-resistant layer side are bonded together using a polyolefin adhesive (acid-modified polyolefin compound) that forms a fourth adhesive layer.
  • a polyolefin adhesive acid-modified polyolefin compound
  • Example 2 As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 ⁇ m, melting peak temperature 130°C, water vapor permeability 0.28 g ⁇ mm/m 2 ⁇ 24h) was prepared. As the first heat-resistant layer, an unstretched polypropylene (CPP) film (thickness: 30 ⁇ m, melting peak temperature: 161° C., water vapor permeability: 0.40 g ⁇ mm/m 2 ⁇ 24 h) was prepared.
  • HDPE high-density polyethylene
  • CPP unstretched polypropylene
  • maleic anhydride-modified polypropylene (PPa) (thickness: 30 ⁇ m, melting peak temperature: 160° C., water vapor permeability: 0.45 g ⁇ mm/m 2 ⁇ 24 h) was prepared.
  • PPa polypropylene
  • aluminum alloy foil JIS H4160:1994 A8021H-O (thickness 40 ⁇ m) was prepared. Both sides of the aluminum alloy foil were chemically treated.
  • the chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
  • the first heat-fusible resin layer and the first heat-resistant layer were adhered using a polyolefin adhesive (acid-modified polyolefin compound) forming the first adhesive layer, and then subjected to aging treatment.
  • a polyolefin adhesive acid-modified polyolefin compound
  • the first heat-fusible resin layer (thickness: 50 ⁇ m)/first adhesive layer (thickness after curing is 1.5 ⁇ m)/first heat-resistant layer (thickness: 30 ⁇ m) are laminated in order from the outside.
  • a laminate 1 was obtained.
  • the surface of the laminate 1 on the first heat-resistant layer side and the barrier layer were bonded using a polyolefin adhesive (acid-modified polyolefin compound) that forms the third adhesive layer.
  • a polyolefin adhesive acid-modified polyolefin compound
  • a laminate 3 of /third adhesive layer (thickness after curing is 1.5 ⁇ m)/barrier layer (thickness 40 ⁇ m) was produced.
  • a second heat-resistant layer was laminated on the barrier layer side surface of the laminate 3 by melt-extruding the resin forming the second heat-resistant layer. Furthermore, the surface of the second heat-resistant layer side of the obtained laminate and the second heat-fusible resin layer are adhered using a polyolefin adhesive (acid-modified polyolefin compound) that forms the second adhesive layer, and aging is performed.
  • a polyolefin adhesive acid-modified polyolefin compound
  • the treatment is carried out to laminate the second heat-fusible resin layer, and the first heat-fusible resin layer (thickness: 50 ⁇ m)/first adhesive layer (thickness after curing is 1.5 ⁇ m)/first Heat-resistant layer (30 ⁇ m thick) / 3rd adhesive layer (1.5 ⁇ m thick after curing) / Barrier layer (40 ⁇ m thick) / 2nd heat-resistant layer (30 ⁇ m thick) / 2nd adhesive layer (1.5 ⁇ m thick after curing)
  • a laminate of 1.5 ⁇ m thick/2nd heat-fusible resin layer (50 ⁇ m thick) was produced, and used as an exterior material for a power storage device.
  • Example 3 As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 ⁇ m, melting peak temperature 130°C, water vapor permeability 0.28 g ⁇ mm/m 2 ⁇ 24h) was prepared. In addition, maleic anhydride-modified polypropylene (PPa) (thickness 30 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h) was used as the first heat-resistant layer and the second heat-resistant layer, respectively. . As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 ⁇ m) was prepared.
  • JIS H4160:1994 A8021H-O thickness 40 ⁇ m
  • Both sides of the aluminum alloy foil were chemically treated.
  • the chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
  • a resin forming a first heat-resistant layer is melt-extruded on one surface of the barrier layer to form a first heat-resistant layer, and a resin forming a second heat-resistant layer is further formed on the other surface of the barrier layer.
  • a second heat-resistant layer was formed by melt-extruding to obtain a laminate of first heat-resistant layer (thickness: 30 ⁇ m)/barrier layer (thickness: 40 ⁇ m)/second heat-resistant layer (thickness: 30 ⁇ m).
  • the first heat-resistant layer (thickness: 30 ⁇ m) side surface of the obtained laminate and the first heat-fusible resin layer are bonded together using a polyolefin adhesive (acid-modified polyolefin compound) that forms the first adhesive layer. ), and by performing aging treatment, the first heat-fusible resin layer (thickness: 50 ⁇ m)/first adhesive layer (thickness after curing: 1.5 ⁇ m)/first heat-resistant layer ( A laminate was obtained in which layers (thickness: 30 ⁇ m)/barrier layer (thickness: 40 ⁇ m)/second heat-resistant layer (thickness: 30 ⁇ m) were laminated in this order from the outside.
  • a polyolefin adhesive acid-modified polyolefin compound
  • the second heat-resistant layer (thickness: 30 ⁇ m) side surface of the obtained laminate and the second heat-fusible resin layer are bonded using a polyolefin adhesive (acid-modified polyolefin compound) that forms the second adhesive layer.
  • a polyolefin adhesive acid-modified polyolefin compound
  • Example 4 As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 ⁇ m, melting peak temperature 130°C, water vapor permeability 0.28 g ⁇ mm/m 2 ⁇ Example 3 except that a maleic anhydride-modified polyethylene (PEa) film (thickness 50 ⁇ m, melting peak temperature 128°C, water vapor permeability 0.46 g mm/m 2 ⁇ 24 h) was used instead of 24 h).
  • HDPE high-density polyethylene
  • PEa maleic anhydride-modified polyethylene
  • Example 5 As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h).
  • PPa maleic anhydride-modified polypropylene
  • the first heat-fusible resin layer (thickness 50 ⁇ m) was prepared in the same manner as in Example 3, except that a laminate (formed by melt extrusion of PPa and PP ) of ) / first adhesive layer (thickness after curing is 1.5 ⁇ m) / first heat-resistant layer (thickness 30 ⁇ m) / barrier layer (thickness 40 ⁇ m) / second heat-resistant layer (thickness 30 ⁇ m) / second adhesive layer (Thickness after curing: 1.5 ⁇ m)/Second heat-fusible resin layer (thickness: 50 ⁇ m) A laminate was produced and used as an exterior material for a power storage device
  • Example 6 As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h).
  • PPa maleic anhydride-modified polypropylene
  • the first heat-fusible resin layer (thickness 50 ⁇ m) was prepared in the same manner as in Example 4, except that a laminate (formed by melt extrusion of PPa and PP) of ) / first adhesive layer (thickness after curing is 1.5 ⁇ m) / first heat-resistant layer (thickness 30 ⁇ m) / barrier layer (thickness 40 ⁇ m) / second heat-resistant layer (thickness 30 ⁇ m) / second adhesive layer (Thickness after curing: 1.5 ⁇ m)/Second heat-fusible resin layer (thickness: 50 ⁇ m) A laminate was produced and used as an exterior material for a power storage device.
  • Comparative example 1 Polypropylene (PP) (thickness 50 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.40 g ⁇ mm/m 2 ⁇ 24 h) was used as the first heat-fusible resin layer and the second heat-fusible resin layer, respectively. Prepared. In addition, maleic anhydride-modified polypropylene (PPa) (thickness 30 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h) was used as the first heat-resistant layer and the second heat-resistant layer, respectively. . As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 ⁇ m) was prepared.
  • Both sides of the aluminum alloy foil were chemically treated.
  • the chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
  • a resin forming a first heat-resistant layer is melt-extruded on one surface of the barrier layer to form a first heat-resistant layer, and a resin forming a second heat-resistant layer is further formed on the other surface of the barrier layer.
  • a second heat-resistant layer was formed by melt-extruding to obtain a laminate of first heat-resistant layer (thickness: 30 ⁇ m)/barrier layer (thickness: 40 ⁇ m)/second heat-resistant layer (thickness: 30 ⁇ m).
  • first heat-resistant layer (thickness: 30 ⁇ m) side surface of the obtained laminate
  • first heat-fusible resin layer (thickness: A laminate was obtained in which the following layers were sequentially laminated from the outside: first heat-resistant layer (thickness: 50 ⁇ m)/first heat-resistant layer (thickness: 30 ⁇ m)/barrier layer (thickness: 40 ⁇ m)/second heat-resistant layer (thickness: 30 ⁇ m).
  • a resin forming a second heat-fusible resin layer is melt-extruded on the second heat-resistant layer (thickness: 30 ⁇ m) side surface of the obtained laminate, and a first heat-fusible resin layer (thickness: 50 ⁇ m) is melt-extruded.
  • first heat-resistant layer (thickness: 30 ⁇ m)/barrier layer (thickness: 40 ⁇ m)/second heat-resistant layer (thickness: 30 ⁇ m)/second heat-fusible resin layer (thickness: 50 ⁇ m).
  • Comparative example 2 As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h).
  • PPa maleic anhydride-modified polypropylene
  • PPa Maleic acid-modified polypropylene (PPa) (thickness 15 ⁇ m, melting peak temperature 160°C, water vapor permeability 0.45 g ⁇ mm/m 2 ⁇ 24 h) and polypropylene (PP) (thickness 15 ⁇ m, melting peak temperature 160°C, water vapor permeability 0)
  • the unit of water vapor permeability is g/( m2 ⁇ 24h), but in order to make it easier to compare the numerical values of test samples with different thicknesses, the numerical value obtained by measurement is calculated using a thickness of 1.0 mm.
  • the unit g ⁇ mm/m 2 ⁇ 24h was used.
  • test sample 13 was left for 2 minutes at each measurement temperature, and in each measurement temperature environment, a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) was used to test the first thermal bonding property of the thermally bonded part.
  • the resin layer was peeled off at a speed of 300 mm/min (FIG. 7).
  • the maximum strength at the time of peeling was defined as the seal strength (N/15 mm).
  • the distance between chucks is 50 mm.
  • the average value of three measurements was taken. Seal strength was evaluated based on the following criteria. The results are shown in Table 1. In the measurement of seal strength, the test sample 13 is peeled off (destroyed) at the heat seal interface A shown in FIG.
  • the test sample 13 may break.
  • the breaking strength is taken as the sealing strength.
  • the sample used in [Measurement of thickness residual rate] uses the exterior material for a power storage device before and after heat sealing, and the first heat-resistant layer and the second heat-resistant layer. Measure the total thickness of the layer, and calculate the ratio (%) of the total thickness of the first heat-resistant layer and second heat-resistant layer after heat-sealing to the total thickness of the first heat-resistant layer and second heat-resistant layer before heat-sealing. did.
  • the residual rate of total thickness was the average value of the two measurement samples.
  • the thickness was measured by cutting the measurement sample in the thickness direction using a microtome (REM-710 litratome manufactured by Daiwa Koki Industries), and observing the obtained cross section with a laser microscope (VK-9700 manufactured by Keyence). went.
  • the thickness residual rate was evaluated based on the following criteria. The results are shown in Table 1.
  • C Thickness remaining rate is less than 70%.
  • the exterior material 10 for a power storage device was cut to produce a strip with a width of 40 mm and a length of 100 mm, which was used as a test sample.
  • the width refers to the TD direction
  • the length refers to the MD direction.
  • the center of the strip in the width direction was made to coincide with the center of the aluminum plate 30 in the width direction.
  • the positive electrode of the tester was connected to the aluminum plate 30, and the negative electrode was connected to the exterior material for the power storage device.
  • the negative terminal of the tester insert an alligator clip so that it reaches the barrier layer from the first heat-fusible resin layer side of the exterior material for the power storage device, and electrically connect the negative terminal of the tester and the barrier layer.
  • the tester was prepared to issue a continuity (short circuit) signal when the applied voltage was 100 V and the resistance was 200 M ⁇ or less.
  • the first heat-fusible resin layers were heat-sealed to each other under the conditions of each temperature (° C.) and surface pressure (MPa) described in Section 1, and the time until a short circuit signal was generated was measured. The measurement was performed five times, and the longest and shortest points were excluded to take the average value of the three points. The insulation was evaluated based on the following criteria. The results are shown in Table 1.
  • C The time until short circuit occurs is less than 20 seconds.
  • the exterior materials for power storage devices of Examples 1 to 6 are composed of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
  • the first heat-fusible resin layer contains polyethylene as a main component
  • the second heat-fusible resin layer contains polyethylene as a main component.
  • the sealing strength of the first heat-fusible resin layer located on the outside was high, and collapse after sealing was suppressed, and the insulation properties were excellent. From these results, it is evaluated that the exterior materials for power storage devices of Examples 1 to 6 can be used by heat-sealing the outer surface of the power storage device to the adherend by applying it to the power storage device. Ru.
  • Item 1 Consisting of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
  • the first heat-fusible resin layer contains polyethylene as a main component
  • the second heat-fusible resin layer is an exterior material for a power storage device, which contains polyethylene as a main component.
  • Item 2. Item 2. The exterior material for an electricity storage device according to Item 1, wherein the first heat-fusible resin layer has a thickness of 30 ⁇ m or more.
  • Item 3. Item 3.
  • the exterior material for an electricity storage device according to Item 1 or 2, wherein the polyethylene of the first heat-fusible resin layer is high-density polyethylene.
  • the exterior material for a power storage device according to any one of Items 1 to 4, wherein the polyethylene of the second heat-fusible resin layer is high-density polyethylene.
  • the exterior material for a power storage device according to any one of Items 1 to 5, wherein the first heat-fusible resin layer has a melting peak temperature of 130° C. or less. Section 7. Item 7. The exterior material for a power storage device according to any one of Items 1 to 6, wherein the second heat-fusible resin layer has a melting peak temperature of 130° C. or less. Section 8. Item 8. The exterior material for a power storage device according to any one of Items 1 to 7, further comprising a first heat-resistant layer between the first heat-fusible resin layer and the barrier layer. Item 9. Item 9. The exterior material for a power storage device according to Item 8, wherein the first heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component. Item 10.
  • Item 9 The exterior material for an electricity storage device according to Item 8 or 9, wherein the first heat-resistant layer has a thickness of 15 ⁇ m or more.
  • Item 11. The exterior material for an electricity storage device according to any one of Items 1 to 10, further comprising a second heat-resistant layer between the barrier layer and the second heat-fusible resin layer.
  • Item 12. The exterior material for a power storage device according to Item 11, wherein the second heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component.
  • Item 13 Item 13.
  • the exterior packaging material for a power storage device according to any one of Items 1 to 16, wherein the barrier layer is made of aluminum alloy foil or stainless steel foil.
  • Section 18 A step of obtaining a laminate including at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer in order from the outside, The first heat-fusible resin layer contains polyethylene as a main component, The method for manufacturing an exterior material for a power storage device, wherein the second heat-fusible resin layer contains polyethylene as a main component.
  • An electricity storage device wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for an electricity storage device according to any one of Items 1 to 17.
  • Section 20. Item 20. The electricity storage device according to Item 19, wherein the first heat-fusible resin layer constituting the outer surface of the electricity storage device is used so as to be heat-sealed to an adherend.
  • Section 21. Item 19 or 20 The power storage device according to item 19 or 20, wherein the first heat-fusible resin layers constituting the outer surface of the power storage device are thermally fused to each other so that a plurality of power storage devices are stacked. device.
  • First heat-fusible resin layer Second heat-fusible resin layer 3 First heat-resistant layer 4 Second heat-resistant layer 5 Barrier layer 10 Exterior material for power storage device 12 First adhesive layer 13 Test sample 22 Second adhesive layer 20 wire 30 aluminum plate 32 third adhesive layer 42 fourth adhesive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a novel outer package material for power storage devices, the outer package material enabling the outer surface of a power storage device to be thermally fused to an adherend by being utilized as an outer package material for the power storage device. The present invention provides an outer package material for power storage devices, the outer package material being configured from a multilayer body that sequentially comprises, from the outer side, at least a first thermally fusible resin layer, a barrier layer and a second thermally fusible resin layer, wherein: the first thermally fusible resin layer contains a polyethylene as a main component; and the second thermally fusible resin layer contains a polyethylene as a main component.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior material for power storage device, manufacturing method thereof, and power storage device
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 The present disclosure relates to an exterior material for a power storage device, a method for manufacturing the same, and a power storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Conventionally, various types of electricity storage devices have been developed, and in all electricity storage devices, an exterior material has become an essential component to seal electricity storage device elements such as electrodes and electrolytes. Conventionally, metal exterior materials have been frequently used as exterior materials for power storage devices.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., power storage devices are required to have a variety of shapes, as well as to be thinner and lighter. However, metal exterior materials for power storage devices, which have been widely used in the past, have the disadvantage that it is difficult to keep up with the diversification of shapes, and there is also a limit to the reduction in weight.
 そこで、従来、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/接着層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in the past, base material layer/barrier layer/adhesive layer/thermal adhesive resin layer were sequentially laminated as exterior materials for power storage devices that can be easily processed into various shapes and can be made thinner and lighter. A film-like laminate has been proposed (see, for example, Patent Document 1).
 このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such exterior materials for power storage devices, generally, a recess is formed by cold forming, power storage device elements such as electrodes and electrolyte are arranged in the space formed by the recess, and heat-sealable resin is placed in the space formed by the recess. By heat-sealing the layers, a power storage device in which power storage device elements are housed inside the power storage device exterior material is obtained.
特開2008-287971号公報JP2008-287971A
 蓄電デバイスは、様々な用途に使用されており、蓄電デバイスに求められるニーズも多種多様である。本開示の発明者らは、被着体に対して熱融着する機能を有する蓄電デバイスが提供されれば、例えば製品中において蓄電デバイスを熱融着によって固定したり、複数の蓄電デバイスを重ねた状態で熱融着して固定すれば、複数の蓄電デバイスが積層された状態で製品中に組み込まれた場合にも、個々の蓄電デバイスが固定されていることから、製品の振動などによる蓄電デバイスの位置ずれや製品に外力が加わったときに各蓄電デバイスに伝わる衝撃による破損などが抑制できるといった利点があると考えた。 Power storage devices are used for a variety of purposes, and the needs for power storage devices are diverse. The inventors of the present disclosure believe that if a power storage device is provided that has the function of thermally bonding to an adherend, for example, the power storage device can be fixed in a product by thermal bonding, or multiple power storage devices can be stacked together. By heat-sealing and fixing them in a stacked state, even if multiple power storage devices are built into a product in a stacked state, each power storage device is fixed, so there is no risk of power storage due to product vibration, etc. We believe that this has the advantage of suppressing device misalignment and damage caused by shocks transmitted to each energy storage device when external force is applied to the product.
 本開示は、このような新たな課題を設定し、蓄電デバイスの外装材として利用することで、蓄電デバイスの外側表面を被着体に熱融着させて用いることができる、新規な蓄電デバイス用外装材を提供することを主な目的とする。 The present disclosure addresses these new challenges and provides a new method for use in power storage devices that can be used as an exterior material for power storage devices by heat-sealing the outer surface of the power storage device to an adherend. Its main purpose is to provide exterior materials.
 本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、蓄電デバイス用外装材の積層構成を、外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体とし、さらに、第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、蓄電デバイス用外装材の熱融着性樹脂層として一般的に用いられているポリプロピレンではなく、ポリエチレンを主成分とする樹脂を用いることで、蓄電デバイスの外側表面を被着体に熱融着させることができるという、新規な知見を取得した。 The inventors of the present disclosure have conducted extensive studies to solve the above problems. As a result, the laminate structure of the exterior material for a power storage device is a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer; The heat-fusible resin layer and the second heat-fusible resin layer are each made of a resin whose main component is polyethylene, instead of polypropylene, which is generally used as a heat-fusible resin layer for exterior materials for power storage devices. We have obtained a new finding that the outer surface of a power storage device can be thermally fused to an adherend by using .
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体から構成されており、
 前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、
 前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる、蓄電デバイス用外装材。
The present disclosure has been completed through further studies based on these findings. That is, the present disclosure provides inventions of the following aspects.
Consisting of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
The first heat-fusible resin layer contains polyethylene as a main component,
The second heat-fusible resin layer is an exterior material for a power storage device, which contains polyethylene as a main component.
 本開示によれば、蓄電デバイスの外装材として利用することで、蓄電デバイスの外側表面を被着体に熱融着させて用いることができる、新規な蓄電デバイス用外装材を提供することができる。また、本開示によれば、蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。 According to the present disclosure, it is possible to provide a novel exterior material for an electricity storage device, which can be used as an exterior material for an electricity storage device by heat-sealing the outer surface of the energy storage device to an adherend. . Further, according to the present disclosure, it is also possible to provide a method for manufacturing an exterior material for a power storage device and a power storage device.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram showing an example of the cross-sectional structure of the exterior material for electricity storage devices of this indication. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram showing an example of the cross-sectional structure of the exterior material for electricity storage devices of this indication. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram showing an example of the cross-sectional structure of the exterior material for electricity storage devices of this indication. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram showing an example of the cross-sectional structure of the exterior material for electricity storage devices of this indication. 本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of accommodating an electrical storage device element in the package formed of the exterior material for electrical storage devices of this indication. シール強度の測定方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method of measuring seal strength. シール強度の測定方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method of measuring seal strength. 絶縁性の評価方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an insulation evaluation method.
 本開示の蓄電デバイス用外装材は、外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体から構成されており、前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいることを特徴とする。本開示の蓄電デバイス用外装材は、このような構成を備えることにより、蓄電デバイスの外装材として利用することで、蓄電デバイスの外側表面を被着体に熱融着可能とすることができる。 The exterior material for a power storage device according to the present disclosure is composed of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer; The heat-fusible resin layer contains polyethylene as a main component, and the second heat-fusible resin layer contains polyethylene as a main component. By having such a configuration, the exterior material for an electricity storage device of the present disclosure can be used as an exterior material for an electricity storage device, thereby allowing the outer surface of the electricity storage device to be thermally fused to an adherend.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本開示において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 Hereinafter, the exterior material for a power storage device of the present disclosure will be described in detail. In the present disclosure, the numerical range indicated by "~" means "more than" or "less than". For example, the expression 2 to 15 mm means 2 mm or more and 15 mm or less. In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. Further, the upper limit value and the upper limit value, the upper limit value and the lower limit value, or the lower limit value and the lower limit value, which are described separately, may be combined to form a numerical range. Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
 蓄電デバイス用外装材において、後述のバリア層5については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層5がアルミニウム合金箔やステンレス鋼箔等の金属箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。 Regarding the barrier layer 5 described below in the exterior material for a power storage device, it is usually possible to distinguish between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process. For example, when the barrier layer 5 is made of metal foil such as aluminum alloy foil or stainless steel foil, there are lines called so-called rolling marks on the surface of the metal foil in the rolling direction (RD) of the metal foil. Lines are formed. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be determined by observing the surface of the metal foil. In addition, in the process of manufacturing a laminate, the MD of the laminate and the RD of the metal foil usually match, so the surface of the metal foil of the laminate is observed and the rolling direction (RD) of the metal foil is identified. By doing so, the MD of the laminate can be specified. Further, since the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be specified.
 また、アルミニウム合金箔やステンレス鋼箔等の金属箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。 Furthermore, if the MD of the exterior material for a power storage device cannot be identified due to rolling marks on metal foil such as aluminum alloy foil or stainless steel foil, it can be identified by the following method. As a method for confirming the MD of the exterior material for power storage devices, there is a method of observing a cross section of the heat-fusible resin layer of the exterior material for power storage devices with an electron microscope to confirm the sea-island structure. In this method, the MD can be determined as the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-fusible resin layer is maximum. Specifically, the angle is changed by 10 degrees from the longitudinal cross section of the heat-fusible resin layer and the direction parallel to the longitudinal cross section, until the angle is perpendicular to the longitudinal cross section. Each cross section (10 cross sections in total) is observed using an electron microscope to confirm the sea-island structure. Next, in each cross section, the shape of each individual island is observed. Regarding the shape of each island, the straight line distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-fusible resin layer and the rightmost end in the perpendicular direction is defined as the diameter y. In each cross section, the average of the top 20 diameters y of the island shape is calculated in descending order of diameter y. The direction parallel to the cross section where the average diameter y of the island shape is the largest is determined to be the MD.
1.蓄電デバイス用外装材の積層構造と物性
 本開示の蓄電デバイス用外装材10は、例えば図1に示すように、外側から順に、第1熱融着性樹脂層1、バリア層5、及び第2熱融着性樹脂層2を備える積層体から構成されている。蓄電デバイス用外装材10において、第1熱融着性樹脂層1が最外層側になり、第2熱融着性樹脂層2は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の第2熱融着性樹脂層2同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。また、本開示の蓄電デバイス用外装材を用いた蓄電デバイスは、蓄電デバイスの外側表面を構成する第1熱融着性樹脂層1側の表面を、被着体に熱融着させて用いることができる。例えば、製品中の蓄電デバイスを熱融着によって固定したり、複数の蓄電デバイスを重ねた状態で熱融着して固定すれば、複数の蓄電デバイスが積層された状態で製品中に組み込まれた場合にも、個々の蓄電デバイスが固定されていることから、製品の振動などによる蓄電デバイスの位置ずれや製品に外力が加わったときに各蓄電デバイスに伝わる衝撃による破損などが抑制できるといった利点がある。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層5を基準とし、バリア層5よりも第2熱融着性樹脂層2側が内側であり、バリア層5よりも第1熱融着性樹脂層1側が外側である。
1. Laminated structure and physical properties of exterior material for power storage devices The exterior material 10 for power storage devices of the present disclosure includes, for example, as shown in FIG. It is composed of a laminate including a heat-fusible resin layer 2. In the exterior material 10 for a power storage device, the first heat-fusible resin layer 1 is the outermost layer, and the second heat-fusible resin layer 2 is the innermost layer. When assembling a power storage device using the power storage device exterior material 10 and power storage device elements, the peripheral edges are heat fused with the second heat-fusible resin layers 2 of the power storage device exterior material 10 facing each other. The electricity storage device element is accommodated in the space formed by the above-described process. Further, the power storage device using the exterior material for power storage device of the present disclosure can be used by heat-sealing the surface of the first heat-fusible resin layer 1 side that constitutes the outer surface of the power storage device to an adherend. I can do it. For example, if a power storage device in a product is fixed by heat fusion, or if multiple power storage devices are stacked and fixed by heat fusion, multiple power storage devices can be stacked and incorporated into the product. Even in cases where the individual power storage devices are fixed, there are advantages such as being able to prevent the power storage devices from shifting due to product vibration or damage caused by shocks transmitted to each power storage device when external force is applied to the product. be. In the laminate that constitutes the exterior material 10 for a power storage device of the present disclosure, the second heat-fusible resin layer 2 side is on the inner side than the barrier layer 5, and the first heat-sealing resin layer 2 side is on the inner side than the barrier layer 5, The fusible resin layer 1 side is the outside.
 蓄電デバイス用外装材10は、例えば図2から図4に示すように、第1熱融着性樹脂層1と、これに隣接する層との間の接着性を高めることなどを目的として、必要に応じて第1接着層12を有していてもよい。また、例えば図3から図4に示すように、第2熱融着性樹脂層2と、これに隣接する層との間の接着性を高めることなどを目的として、必要に応じて第2接着層22を有していてもよい。 For example, as shown in FIGS. 2 to 4, the exterior material 10 for an electricity storage device is made of materials that are necessary for the purpose of increasing the adhesiveness between the first heat-fusible resin layer 1 and a layer adjacent thereto. The first adhesive layer 12 may be provided depending on the situation. In addition, as shown in FIGS. 3 to 4, for example, a second adhesive layer may be used as necessary for the purpose of increasing the adhesiveness between the second heat-fusible resin layer 2 and a layer adjacent thereto. It may have a layer 22.
 また、蓄電デバイス用外装材10は、例えば図4に示すように、第1熱融着性樹脂層1とバリア層5との間に、蓄電デバイス用外装材10の耐熱性を高めることなどを目的として、必要に応じて、第1耐熱層3を有していてもよい。また、例えば図4に示すように、第2熱融着性樹脂層2とバリア層5との間に、蓄電デバイス用外装材10の耐熱性を高めることなどを目的として、必要に応じて、第2耐熱層4を有していてもよい。 Furthermore, as shown in FIG. 4, for example, the exterior material 10 for power storage devices includes a layer between the first heat-fusible resin layer 1 and the barrier layer 5 to increase the heat resistance of the exterior material 10 for power storage devices. For this purpose, the first heat-resistant layer 3 may be included if necessary. For example, as shown in FIG. 4, between the second heat-fusible resin layer 2 and the barrier layer 5, for the purpose of increasing the heat resistance of the exterior material 10 for an electricity storage device, if necessary, It may also have a second heat-resistant layer 4.
 さらに、蓄電デバイス用外装材10は、例えば図4に示すように、第1耐熱層3とバリア層5との間の接着性を高めることなどを目的として、第1耐熱層3とバリア層5との間に、必要に応じて、第3接着層32を有していてもよい。また、例えば図4に示すように、第2耐熱層4とバリア層5との間の接着性を高めることなどを目的として、第2耐熱層4とバリア層5との間に、必要に応じて、第4接着層42を有していてもよい。 Furthermore, as shown in FIG. 4, for example, the exterior material 10 for a power storage device has a structure in which the first heat resistant layer 3 and the barrier layer 5 are bonded together for the purpose of increasing the adhesiveness between the first heat resistant layer 3 and the barrier layer 5. If necessary, a third adhesive layer 32 may be provided between the two. For example, as shown in FIG. 4, for the purpose of increasing the adhesion between the second heat-resistant layer 4 and the barrier layer 5, if necessary, In addition, a fourth adhesive layer 42 may be included.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば300μm以下、好ましくは約250μm以下、約230μm以下、約210μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約60μm以上、約80μm以上、約100μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、60~300μm程度、60~250μm程度、60~230μm程度、60~210μm程度、80~300μm程度、80~250μm程度、80~230μm程度、80~210μm程度、100~300μm程度、100~250μm程度、100~230μm程度、100~210μm程度が挙げられ、特に蓄電デバイスを軽量薄膜化する場合には100~230μm程度が好ましく、成形性や耐衝撃性を求められる場合には230~300μm程度が好ましい。 The thickness of the laminate constituting the exterior material 10 for power storage devices is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., it is, for example, 300 μm or less, preferably about 250 μm or less, about 230 μm or less, about 210 μm or less can be mentioned. In addition, from the viewpoint of maintaining the function of the power storage device exterior material to protect the power storage device elements, the thickness of the laminate constituting the power storage device exterior material 10 is preferably approximately 60 μm or more, approximately 80 μm or more, or approximately Examples include 100 μm or more. Further, preferred ranges of the laminate constituting the exterior material 10 for power storage devices include, for example, about 60 to 300 μm, about 60 to 250 μm, about 60 to 230 μm, about 60 to 210 μm, about 80 to 300 μm, and about 80 to 250 μm. , about 80 to 230 μm, about 80 to 210 μm, about 100 to 300 μm, about 100 to 250 μm, about 100 to 230 μm, and about 100 to 210 μm, and in particular, about 100 to 230 μm when making the electricity storage device lightweight and thin. Preferably, when moldability and impact resistance are required, the thickness is preferably about 230 to 300 μm.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、第1熱融着性樹脂層1、必要に応じて設けられる第1接着層12、必要に応じて設けられる第1耐熱層3、必要に応じて設けられる第3接着層32、バリア層5、必要に応じて設けられる第4接着層42、必要に応じて設けられる第2耐熱層4、必要に応じて設けられる第2接着層22、第2熱融着性樹脂層2の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、第3接着層32、バリア層5、第4接着層42、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、第3接着層32、バリア層5、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を含む場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。また、本開示の蓄電デバイス用外装材10が、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、バリア層5、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を含む場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。 In the exterior material 10 for power storage devices, the first heat-fusible resin layer 1, the first adhesive layer 12 provided as needed, and the necessary A first heat-resistant layer 3 provided as necessary, a third adhesive layer 32 provided as necessary, a barrier layer 5, a fourth adhesive layer 42 provided as necessary, a second heat-resistant layer 4 provided as necessary. The ratio of the total thickness of the second adhesive layer 22 and the second heat-fusible resin layer 2, which are provided as necessary, is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. % or more. As a specific example, the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1, a first adhesive layer 12, a first heat-resistant layer 3, a third adhesive layer 32, a barrier layer 5, a fourth When the adhesive layer 42, the second heat-resistant layer 4, the second adhesive layer 22, and the second heat-fusible resin layer 2 are included, these are relative to the thickness (total thickness) of the laminate constituting the exterior material 10 for an electricity storage device. The ratio of the total thickness of each layer is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. Moreover, the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1 , a first adhesive layer 12 , a first heat-resistant layer 3 , a third adhesive layer 32 , a barrier layer 5 , a second heat-resistant layer 4 , the second adhesive layer 22, and the second heat-fusible resin layer 2, the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for power storage device is , for example, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more. Moreover, the exterior material 10 for a power storage device of the present disclosure includes a first heat-fusible resin layer 1 , a first adhesive layer 12 , a first heat-resistant layer 3 , a barrier layer 5 , a second heat-resistant layer 4 , a second adhesive layer 22 , and the second heat-fusible resin layer 2, the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for power storage device is, for example, 80% or more, It is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
 本開示の蓄電デバイス用外装材は、表1に記載の各温度(℃)、面圧(MPa)、及び時間(秒間)の条件で、蓄電デバイス用外装材10の第1熱融着性樹脂層1同士を熱融着させて得られる試験サンプルについて、JIS K7127:1999の規定に準拠して測定されるシール強度(25℃環境)が、好ましくは約30N/15mm以上、より好ましくは約35N/15mm以上、さらに好ましくは約40N/15mm以上であり、上限については例えば約150N/15mm以下であり、好ましい範囲は、30~150N/15mm程度、35~150N/15mm程度、40~150N/15mm程度である。25℃環境での当該シール強度の具体的な測定方法は、以下の通りである。 The exterior material for a power storage device of the present disclosure is produced using the first heat-fusible resin of the exterior material for a power storage device 10 under the conditions of each temperature (° C.), surface pressure (MPa), and time (seconds) listed in Table 1. The seal strength (25°C environment) of the test sample obtained by heat-sealing the layers 1 to each other is preferably about 30 N/15 mm or more, more preferably about 35 N, as measured in accordance with the provisions of JIS K7127:1999. /15mm or more, more preferably about 40N/15mm or more, and the upper limit is, for example, about 150N/15mm or less, and preferable ranges are about 30 to 150N/15mm, about 35 to 150N/15mm, and 40 to 150N/15mm. That's about it. A specific method for measuring the seal strength in a 25°C environment is as follows.
[シール強度の測定]
 JIS K7127:1999の規定に準拠して、25℃環境の測定温度における蓄電デバイス用外装材のシール強度を次のようにして測定する。試験サンプルとして、TD方向の幅が15mmの短冊状に裁断した蓄電デバイス用外装材を準備する。具体的には、図6に示すように、まず、各蓄電デバイス用外装材を60mm(TD方向)×200mm(MD方向)に裁断する(図6a)。次に、外側の第1熱融着性樹脂層同士が対向するようにして、蓄電デバイス用外装材を折り目P(MD方向の中間)の位置でMD方向に2つ折りにする(図6b)。折り目Pから10mm程度MD方向の内側において、シール幅7mm、表1に記載の各温度(℃)、面圧(MPa)、及び時間(秒間)の条件で第1熱融着性樹脂層同士をヒートシールする(図6c)。図6cにおいて、斜線部Sがヒートシールされている部分である。次に、TD方向の幅が15mmとなるようにして、MD方向に裁断(図6dの二点鎖線の位置で裁断)して試験サンプル13を得る(図6e)。次に、試験サンプル13を引張り試験機で熱融着部の第1熱融着性樹脂層を300mm/分の速度で剥離させる(図7)。剥離時の最大強度をシール強度(N/15mm)とする。チャック間距離は、50mmである。3回測定した平均値とする。なお、シール強度の測定においては、図7に示されるヒートシール界面Aで試験サンプル13が剥離(破壊)される場合と、ヒートシール界面Aとは異なる部分(例えば、図7のBの位置)で試験サンプル13が破断する場合とがある。試験サンプル13が破断した場合には、破断強度をシール強度とする。
[Measurement of seal strength]
In accordance with the regulations of JIS K7127:1999, the seal strength of the exterior material for a power storage device at a measurement temperature of 25° C. environment is measured as follows. As a test sample, an exterior material for a power storage device cut into strips having a width in the TD direction of 15 mm is prepared. Specifically, as shown in FIG. 6, first, each exterior material for an electricity storage device is cut into 60 mm (TD direction) x 200 mm (MD direction) (FIG. 6a). Next, the exterior material for a power storage device is folded in half in the MD direction at a crease P (middle in the MD direction) so that the first heat-fusible resin layers on the outside face each other (FIG. 6b). About 10 mm inside from the crease P in the MD direction, the first heat-fusible resin layers were bonded together under the conditions of a seal width of 7 mm, each temperature (°C), surface pressure (MPa), and time (seconds) listed in Table 1. Heat seal (Figure 6c). In FIG. 6c, the shaded area S is the heat-sealed area. Next, the test sample 13 is obtained by cutting in the MD direction (cutting at the position of the two-dot chain line in FIG. 6d) so that the width in the TD direction is 15 mm (FIG. 6e). Next, the first heat-fusible resin layer of the heat-sealed portion of the test sample 13 is peeled off at a rate of 300 mm/min using a tensile testing machine (FIG. 7). The maximum strength at the time of peeling is defined as the seal strength (N/15 mm). The distance between chucks is 50 mm. The average value of three measurements is taken. In the measurement of seal strength, the test sample 13 is peeled off (destroyed) at the heat seal interface A shown in FIG. In some cases, the test sample 13 may break. When the test sample 13 breaks, the breaking strength is taken as the sealing strength.
 また、本開示の蓄電デバイス用外装材は、前記ヒートシールを行う前後の蓄電デバイス用外装材について、第1耐熱層3と第2耐熱層4の合計厚みを測定し、ヒートシールする前の第1耐熱層3と第2耐熱層4の合計厚みに対する、ヒートシールした後の第1耐熱層3と第2耐熱層4の合計厚みの割合(%)は、好ましくは約60%以上、より好ましくは約70%以上、さらに好ましくは約80%以上であり、また、上限については、例えば95%以下であり、好ましい範囲としては、60~95%程度、70~95%程度、80~95%程度が挙げられる。 Furthermore, in the exterior material for an energy storage device of the present disclosure, the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is measured for the exterior material for an energy storage device before and after the heat sealing, and the total thickness of the exterior material for the energy storage device before and after the heat sealing is measured. The ratio (%) of the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 after heat sealing to the total thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is preferably about 60% or more, more preferably is about 70% or more, more preferably about 80% or more, and the upper limit is, for example, 95% or less, and the preferable range is about 60 to 95%, about 70 to 95%, and 80 to 95%. The degree is mentioned.
[厚み残存率の測定]
 前記[シール強度の測定]に用いるサンプルと同様に、[厚み残存率の測定]に使用するサンプルは、ヒートシールを行う前後の蓄電デバイス用外装材を用いて、第1耐熱層と第2耐熱層の合計厚みを測定し、ヒートシールする前の第1耐熱層と第2耐熱層の合計厚みに対する、ヒートシール後の第1耐熱層と第2耐熱層の合計厚みの割合(%)を算出する。合計厚みの残存率は、2枚の測定サンプルについての平均値とする。厚みの測定は、ミクロトームを用いて、測定サンプルをヒートシールのシールバーのヘッド幅7mmの中間、かつ、サンプル幅60mmの中間を狙って厚み方向に裁断し、得られた断面をレーザー顕微鏡で観察して行う。
[Measurement of thickness remaining rate]
Similar to the sample used in the above-mentioned [Measurement of seal strength], the sample used in [Measurement of thickness residual rate] uses the exterior material for the electricity storage device before and after heat sealing, and the first heat-resistant layer and the second heat-resistant layer are Measure the total thickness of the layers and calculate the ratio (%) of the total thickness of the first heat-resistant layer and second heat-resistant layer after heat-sealing to the total thickness of the first heat-resistant layer and second heat-resistant layer before heat-sealing. do. The residual rate of total thickness is the average value for two measurement samples. To measure the thickness, use a microtome to cut the measurement sample in the thickness direction, aiming at the middle of the 7 mm head width of the heat seal seal bar and the middle of the sample width of 60 mm, and observe the obtained cross section with a laser microscope. and do it.
 また、本開示の蓄電デバイス用外装材は、以下の絶縁性の評価において測定される短絡するまでの時間が、好ましくは約20秒間以上、より好ましくは約30秒間以上、さらに好ましくは約40秒間以上であり、上限については、例えば約180秒間以下であり、好ましい範囲としては、20~180秒間程度、30~180秒間程度、40~180秒間程度が挙げられる。 In addition, the exterior material for a power storage device of the present disclosure has a time until a short circuit occurs, which is measured in the following insulation evaluation, preferably about 20 seconds or more, more preferably about 30 seconds or more, and still more preferably about 40 seconds. The upper limit is, for example, about 180 seconds or less, and preferable ranges include about 20 to 180 seconds, about 30 to 180 seconds, and about 40 to 180 seconds.
[絶縁性の評価]
 蓄電デバイス用外装材10を裁断し、幅40mm長さ100mmの短冊片を作製して、これを試験サンプルとする。なお、幅とはTD方向、長さとはMD方向である。前記短冊片の第2熱融着性樹脂層側に、幅方向の中央に直径25μm長さ70mmのステンレス製ワイヤー20を配置した後に、幅30mm長さ100mm厚み100μmのアルミニウム板30を各試験サンプルの第2熱融着性樹脂層側と対向するように配置する。このとき、短冊片の幅方向の中央とアルミニウム板30の幅方向の中央が一致するようにする。次に、テスターのプラス極をアルミニウム板30に、マイナス極を蓄電デバイス用外装材にそれぞれ接続する。テスターのマイナス極については、ワニ口クリップを蓄電デバイス用外装材の第1熱融着性樹脂層側からバリア層に到達するように挟み込み、テスターのマイナス極とバリア層とを電気的に接続させる。テスターは印加電圧100V、抵抗200MΩ以下となったとき導通(短絡)信号が発するよう準備する。次にテスター間に100Vの電圧をかけ、この状態でステンレス製ワイヤー20がアルミニウム板30と蓄電デバイス用外装材との間に介在した状態で、ワイヤー20に直交するように190℃、1MPa、幅7mmでヒートシールし、短絡信号が発するまでの時間を計測する。5回測定し、最長、最短の1点ずつを排除した3点の平均値とする。
[Evaluation of insulation]
The exterior material 10 for a power storage device is cut to produce a strip with a width of 40 mm and a length of 100 mm, which is used as a test sample. Note that the width refers to the TD direction, and the length refers to the MD direction. After placing a stainless steel wire 20 with a diameter of 25 μm and a length of 70 mm in the widthwise center of the strip on the second heat-fusible resin layer side, an aluminum plate 30 with a width of 30 mm, a length of 100 mm, and a thickness of 100 μm was placed on each test sample. It is arranged so as to face the second heat-fusible resin layer side. At this time, the center of the strip in the width direction is made to coincide with the center of the aluminum plate 30 in the width direction. Next, the positive electrode of the tester is connected to the aluminum plate 30, and the negative electrode is connected to the exterior material for the power storage device. For the negative electrode of the tester, insert an alligator clip so that it reaches the barrier layer from the first heat-fusible resin layer side of the exterior material for the power storage device, and electrically connect the negative electrode of the tester and the barrier layer. . The tester is prepared to issue a continuity (short circuit) signal when the applied voltage is 100 V and the resistance is less than 200 MΩ. Next, a voltage of 100V was applied between the testers, and in this state, with the stainless steel wire 20 interposed between the aluminum plate 30 and the exterior material for the power storage device, the wire was heated at 190°C, 1MPa, and the width was perpendicular to the wire 20. Heat seal with 7mm and measure the time until a short circuit signal is generated. Measure 5 times, remove the longest and shortest points, and use the average value of the three points.
 本開示の効果を特に好適に奏する観点から、本開示の蓄電デバイス用外装材10好ましい積層構成を以下に例示する。 From the viewpoint of particularly suitably achieving the effects of the present disclosure, a preferable laminated structure of the exterior material 10 for an electricity storage device of the present disclosure is illustrated below.
(積層構成A)
 外側から順に、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、第3接着層32、バリア層5、第4接着層42、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を備える積層体から構成(9層構成)されている。第1熱融着性樹脂層1及び第2熱融着性樹脂層2の厚さは、それぞれ、30~80μm程度(さらに好ましくは40~60μm程度)であり、第1耐熱層3及び第2耐熱層4の厚さは、それぞれ、15~50μm程度(さらに好ましくは20~40μm程度)であり、第1接着層12、第2接着層22、第3接着層32、及び第4接着層42の厚さは、それぞれ、1~7μm程度(さらには2~5μm程度)である。第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、ポリエチレン(好ましくは高密度ポリエチレン、酸変性ポリエチレン、又は融解ピーク温度が110~135℃のポリエチレン)の含有量が80質量%以上(さらには90質量%以上、さらには95質量%以上)であり、第1耐熱層3及び第2耐熱層4は、それぞれ、ポリプロピレン系樹脂(好ましくはポリプロピレン及び酸変性ポリプロピレンの少なくとも一方)の含有量が50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上(さらに好ましくは90質量%以上、さらに好ましくは95質量%以上)である。第1接着層12、第2接着層22、第3接着層32、及び第4接着層42は、それぞれ、酸変性ポリオレフィンを含むことが好ましい。積層構成Aにおいて、第1耐熱層3は、未延伸ポリプロピレン又は無水マレイン酸変性ポリプロピレンにより形成されていることが特に好ましい。
(Lamination configuration A)
In order from the outside, the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the third adhesive layer 32, the barrier layer 5, the fourth adhesive layer 42, the second heat-resistant layer 4, the second It is composed of a laminate including an adhesive layer 22 and a second heat-fusible resin layer 2 (9-layer composition). The thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 μm (more preferably about 40 to 60 μm), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer The thickness of the heat-resistant layer 4 is about 15 to 50 μm (more preferably about 20 to 40 μm), and the thickness of the first adhesive layer 12 , the second adhesive layer 22 , the third adhesive layer 32 , and the fourth adhesive layer 42 The thickness of each layer is approximately 1 to 7 μm (and further approximately 2 to 5 μm). The first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 80% by mass or more (furthermore, 90% by mass or more, even 95% by mass or more), and the first heat-resistant layer 3 and the second heat-resistant layer 4 are each made of polypropylene resin (preferably polypropylene and acid-modified polypropylene). The content of at least one of them is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more (even more preferably 90% by mass or more, even more preferably 95% by mass or more). ). It is preferable that the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 each contain acid-modified polyolefin. In the laminated configuration A, the first heat-resistant layer 3 is particularly preferably formed of unstretched polypropylene or maleic anhydride-modified polypropylene.
(積層構成B)
 外側から順に、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、第3接着層32、バリア層5、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を備える積層体から構成(8層構成)されている。第1熱融着性樹脂層1及び第2熱融着性樹脂層2の厚さは、それぞれ、30~80μm程度(さらに好ましくは40~60μm程度)であり、第1耐熱層3及び第2耐熱層4の厚さは、それぞれ、15~50μm程度(さらに好ましくは20~40μm程度)であり、第1接着層12、第2接着層22、及び第3接着層32の厚さは、それぞれ、1~7μm程度(さらには2~5μm程度)である。第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、ポリエチレン(好ましくは高密度ポリエチレン、酸変性ポリエチレン、又は融解ピーク温度が110~135℃のポリエチレン)の含有量が80質量%以上(さらには90質量%以上、さらには95質量%以上)であり、第1耐熱層3は、ポリプロピレン系樹脂(好ましくはポリプロピレン)の含有量が50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上(さらに好ましくは90質量%以上、さらに好ましくは95質量%以上)であり、第2耐熱層4は、ポリプロピレン系樹脂(好ましくは酸変性ポリプロピレン)の含有量が80質量%以上(さらには90質量%以上、さらには95質量%以上)である。第1接着層12、第2接着層22、及び第3接着層32は、それぞれ、酸変性ポリオレフィンを含むことが好ましい。積層構成Bにおいて、第1耐熱層3は、未延伸ポリプロピレン又は無水マレイン酸変性ポリプロピレンにより形成されていることが特に好ましく、第2耐熱層4は、無水マレイン酸変性ポリプロピレンにより形成されていることが特に好ましい。
(Lamination configuration B)
In order from the outside, the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the third adhesive layer 32, the barrier layer 5, the second heat-resistant layer 4, the second adhesive layer 22, and the It is composed of a laminate including two heat-fusible resin layers 2 (8-layer composition). The thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 μm (more preferably about 40 to 60 μm), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer The thickness of the heat-resistant layer 4 is about 15 to 50 μm (more preferably about 20 to 40 μm), and the thickness of the first adhesive layer 12, the second adhesive layer 22, and the third adhesive layer 32 is about 15 to 50 μm, respectively. , about 1 to 7 μm (even about 2 to 5 μm). The first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 80% by mass or more (further, 90% by mass or more, even 95% by mass or more), and the first heat-resistant layer 3 has a content of polypropylene resin (preferably polypropylene) of 50% by mass or more, preferably 60% by mass or more. The second heat-resistant layer 4 is composed of polypropylene resin ( Preferably, the content of acid-modified polypropylene is 80% by mass or more (more preferably 90% by mass or more, further still 95% by mass or more). It is preferable that the first adhesive layer 12, the second adhesive layer 22, and the third adhesive layer 32 each contain acid-modified polyolefin. In the laminated structure B, the first heat-resistant layer 3 is particularly preferably formed of unstretched polypropylene or maleic anhydride-modified polypropylene, and the second heat-resistant layer 4 is preferably formed of maleic anhydride-modified polypropylene. Particularly preferred.
(積層構成C)
 外側から順に、第1熱融着性樹脂層1、第1接着層12、第1耐熱層3、バリア層5、第2耐熱層4、第2接着層22、及び第2熱融着性樹脂層2を備える積層体から構成(7層構成)されている。第1熱融着性樹脂層1及び第2熱融着性樹脂層2の厚さは、それぞれ、30~80μm程度(さらに好ましくは40~60μm程度)であり、第1耐熱層3及び第2耐熱層4の厚さは、それぞれ、15~50μm程度(さらに好ましくは20~40μm程度)であり、第1接着層12及び第2接着層22の厚さは、それぞれ、1~7μm程度(さらには2~5μm程度)である。第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、ポリエチレン(好ましくは高密度ポリエチレン、酸変性ポリエチレン、又は融解ピーク温度が110~135℃のポリエチレン)の含有量が50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上(さらに好ましくは90質量%以上、さらに好ましくは95質量%以上)であり、第1耐熱層3及び第2耐熱層4は、それぞれ、ポリプロピレン系樹脂(好ましくは酸変性ポリプロピレン)の含有量が50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上(さらに好ましくは90質量%以上、さらに好ましくは95質量%以上)である。第1接着層12及び第2接着層22は、それぞれ、酸変性ポリオレフィンを含むことが好ましい。積層構成Cにおいて、第1耐熱層3及び第2耐熱層4は、それぞれ、無水マレイン酸変性ポリプロピレンにより形成されていることが特に好ましい。
(Lamination configuration C)
In order from the outside, the first heat-fusible resin layer 1, the first adhesive layer 12, the first heat-resistant layer 3, the barrier layer 5, the second heat-resistant layer 4, the second adhesive layer 22, and the second heat-fusible resin. It is constructed from a laminate including layer 2 (seven-layer construction). The thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 30 to 80 μm (more preferably about 40 to 60 μm), and the thickness of the first heat-resistant layer 3 and the second heat-fusible resin layer The thickness of the heat-resistant layer 4 is about 15 to 50 μm (more preferably about 20 to 40 μm), and the thickness of the first adhesive layer 12 and the second adhesive layer 22 is about 1 to 7 μm (more preferably about 20 to 40 μm). is approximately 2 to 5 μm). The first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each have a content of polyethylene (preferably high-density polyethylene, acid-modified polyethylene, or polyethylene with a melting peak temperature of 110 to 135°C). is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more (even more preferably 90% by mass or more, still more preferably 95% by mass or more), and the first The heat-resistant layer 3 and the second heat-resistant layer 4 each have a polypropylene resin (preferably acid-modified polypropylene) content of 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably It is 80% by mass or more (more preferably 90% by mass or more, even more preferably 95% by mass or more). It is preferable that the first adhesive layer 12 and the second adhesive layer 22 each contain acid-modified polyolefin. In the laminated structure C, it is particularly preferable that the first heat-resistant layer 3 and the second heat-resistant layer 4 are each formed of maleic anhydride-modified polypropylene.
2.蓄電デバイス用外装材を形成する各層
[第1熱融着性樹脂層1及び第2熱融着性樹脂層2]
 本開示において、第1熱融着性樹脂層1は、蓄電デバイス用外装材の外側表面を構成する層であり、蓄電デバイスに適用された場合に、蓄電デバイスの外側表面を被着体に熱融着させる機能を発揮する層である。また、本開示の蓄電デバイス用外装材において、第2熱融着性樹脂層2は、最内層に該当し、蓄電デバイスの組み立て時に第2熱融着性樹脂層2同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
2. Each layer forming the exterior material for power storage device [first heat-fusible resin layer 1 and second heat-fusible resin layer 2]
In the present disclosure, the first heat-fusible resin layer 1 is a layer that constitutes the outer surface of an exterior material for an electricity storage device, and when applied to an electricity storage device, the outer surface of the electricity storage device is heated to an adherend. This is a layer that performs the function of fusing. In addition, in the exterior material for a power storage device of the present disclosure, the second heat-fusible resin layer 2 corresponds to the innermost layer, and the second heat-fusible resin layers 2 are heat-fused to each other during assembly of the power storage device. This is a layer (sealant layer) that functions to seal the electricity storage device element.
 第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、ポリエチレンを主成分として含んでいる。本開示において、ポリエチレンを主成分として含むとは、第1熱融着性樹脂層1及び第2熱融着性樹脂層2に含まれる樹脂成分のうち、ポリエチレンの含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味しており、ポリエチレンが100質量%であってもよい。ポリエチレン以外の樹脂成分としては、本開示の効果を阻害しないことを限度として特に制限されず、例えばポリプロピレンなどが挙げられる。 The first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each contain polyethylene as a main component. In the present disclosure, containing polyethylene as a main component means that the content of polyethylene is, for example, 50% by mass among the resin components contained in the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2. The above is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, still more preferably 98% by mass or more, and This means that it is preferably 99% by mass or more, and the polyethylene content may be 100% by mass. The resin component other than polyethylene is not particularly limited as long as it does not impede the effects of the present disclosure, and examples thereof include polypropylene.
 第1熱融着性樹脂層1のポリエチレンの40℃90%RH環境下における水蒸気透過度は、好ましくは0.50g・mm/m2・24h以下、より好ましくは0.40g・mm/m2・24h以下、さらに好ましくは0.30g・mm/m2・24h以下である。水蒸気透過度の測定方法は、以下の通りである。なお、水蒸気透過性の単位は、g/(m2・24h)が広く使用されるが、厚みが異なる各試験サンプルの数値比較を容易にするため、測定により求められた数値を厚み1.0mmとして換算した単位g・mm/m2・24hを用いた。 The water vapor permeability of the polyethylene of the first heat-fusible resin layer 1 in an environment of 40°C and 90% RH is preferably 0.50 g·mm/m 2 ·24 h or less, more preferably 0.40 g·mm/m 2 - 24 hours or less, more preferably 0.30 g·mm/m 2 ·24 hours or less. The method for measuring water vapor permeability is as follows. The unit of water vapor permeability is g/( m2・24h), but in order to make it easier to compare the numerical values of test samples with different thicknesses, the numerical value obtained by measurement is calculated using a thickness of 1.0 mm. The unit g·mm/m 2 ·24h was used.
〈水蒸気透過度の測定方法〉
 水蒸気透過度の測定は、JIS K 7129-2 「プラスチック-フィルム及びシート-水蒸気透過度の求め方-第2部:赤外線センサ法」に準拠し測定する。フィルム状のサンプルを100mm×100mmに裁断した後、40℃90%RH条件下にて測定し、水蒸気透過度を求める。
<Measurement method of water vapor permeability>
Water vapor permeability is measured in accordance with JIS K 7129-2 "Plastics - Films and sheets - How to determine water vapor permeability - Part 2: Infrared sensor method". After cutting a film-like sample into 100 mm x 100 mm, it was measured at 40° C. and 90% RH to determine the water vapor permeability.
 ポリエチレンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレンが挙げられる。本開示の効果をより好適に発揮する観点から、これらの中でも、高密度ポリエチレンが好ましい。これらポリエチレンは、1種を単独で使用してもよく、2種以上を併用してもよい。高密度ポリエチレンは、水蒸気透過性が低く、蓄電デバイス用外装材に含まれる層として特に好ましい。 Specific examples of polyethylene include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene. Among these, high-density polyethylene is preferred from the viewpoint of more suitably exhibiting the effects of the present disclosure. These polyethylenes may be used alone or in combination of two or more. High-density polyethylene has low water vapor permeability and is particularly preferred as a layer included in the exterior material for power storage devices.
 また、ポリエチレンは、酸変性ポリエチレンであってもよい。酸変性ポリエチレンとは、ポリエチレンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリエチレンとしては、前記のポリエチレンや、前記のポリエチレンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。好ましい酸変性ポリエチレンとしては、カルボン酸またはその無水物で変性されたポリエチレンが挙げられる。第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリエチレンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、無水マレイン酸変性ポリエチレンを含む場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 Moreover, acid-modified polyethylene may be sufficient as polyethylene. Acid-modified polyethylene is a polymer modified by block polymerization or graft polymerization of polyethylene with an acid component. As the acid-modified polyethylene, the above-mentioned polyethylene, a copolymer obtained by copolymerizing the above-mentioned polyethylene with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can also be used. Further, examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or their anhydrides. Preferred acid-modified polyethylenes include polyethylenes modified with carboxylic acids or their anhydrides. When the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 are each analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when maleic anhydride-modified polyethylene is measured by infrared spectroscopy, peaks derived from maleic anhydride are detected at wave numbers around 1760 cm -1 and around 1780 cm -1 wave numbers. When the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 each contain maleic anhydride-modified polyethylene, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. Ru. However, if the degree of acid modification is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、第1熱融着性樹脂層1及び第2熱融着性樹脂層2は、それぞれ、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 may each be formed from one type of resin alone, or may be formed from a blended polymer that is a combination of two or more types of resin. Good too. Further, each of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 may be formed of only one layer, but may be formed of two or more layers of the same or different resins. Good too.
 本開示の効果をより好適に発揮する観点から、第1熱融着性樹脂層1及び第2熱融着性樹脂層2の融解ピーク温度は、それぞれ、好ましくは約130℃以下、より好ましくは110~130℃程度、さらに好ましくは120~130℃程度である。また、融解ピーク温度が110℃以上であることにより、蓄電デバイス用外装材を製造する際のエージング工程等において、加温中の巻取りでブロッキングが生じ安くなり、また、融解ピーク温度が130℃以下であることにより、第1耐熱層2及び第2耐熱層4による耐熱性向上効果による恩恵が高められる。 From the viewpoint of more preferably exhibiting the effects of the present disclosure, the melting peak temperatures of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 are preferably about 130°C or less, more preferably The temperature is about 110 to 130°C, more preferably about 120 to 130°C. In addition, since the melting peak temperature is 110°C or higher, blocking occurs easily during winding during heating in the aging process when manufacturing the exterior material for power storage devices, and the melting peak temperature is 130°C. By being below, the benefit of the heat resistance improvement effect of the first heat resistant layer 2 and the second heat resistant layer 4 is enhanced.
 また、第1熱融着性樹脂層1及び第2熱融着性樹脂層2の表面及び内部の少なくとも一方には、それぞれ、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 In addition, at least one of the surface and inside of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 includes a lubricant, a flame retardant, an anti-blocking agent, an antioxidant, a light stabilizer, Additives such as tackifiers and antistatic agents may also be present. Only one type of additive may be used, or a mixture of two or more types may be used.
 本開示において、第1熱融着性樹脂層1及び第2熱融着性樹脂層2の表面には、それぞれ、滑剤が存在しても構わない。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present disclosure, a lubricant may be present on the surfaces of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2, respectively. The lubricant is not particularly limited, but preferably includes an amide lubricant. Specific examples of amide lubricants include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylolamides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, aromatic bisamides, and the like. Specific examples of saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, and the like. Specific examples of unsaturated fatty acid amides include oleic acid amide and erucic acid amide. Specific examples of substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, and the like. Furthermore, specific examples of methylolamide include methylolstearamide and the like. Specific examples of saturated fatty acid bisamides include methylene bisstearamide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, and hexamethylene bis stearic acid amide. Examples include acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleyl sebacic acid amide. Examples include. Specific examples of fatty acid ester amides include stearamide ethyl stearate. Specific examples of aromatic bisamides include m-xylylene bisstearamide, m-xylylene bishydroxystearamide, and N,N'-distearylisophthalic acid amide. One type of lubricant may be used alone, or two or more types may be used in combination.
 第1熱融着性樹脂層1及び第2熱融着性樹脂層2の表面に滑剤が存在する場合、その存在量としては、それぞれ、特に制限されないが、例えば約3mg/m2以上、好ましくは約4mg/m2以上、約5mg/m2以上が挙げられる。また、第1熱融着性樹脂層1の表面に存在する滑剤量としては、例えば約15mg/m2以下、好ましくは約14mg/m2以下、約10mg/m2以下が挙げられる。また、第1熱融着性樹脂層1の表面に存在する滑剤量の好ましい範囲としては、3~15mg/m2程度、3~14mg/m2程度、3~10mg/m2程度、4~15mg/m2程度、4~14mg/m2程度、4~10mg/m2程度、5~15mg/m2程度、5~14mg/m2程度、5~10mg/m2程度が挙げられる。 When a lubricant is present on the surfaces of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2, the amount thereof is not particularly limited, but is preferably about 3 mg/m 2 or more, for example. Examples include about 4 mg/m 2 or more, about 5 mg/m 2 or more. Further, the amount of lubricant present on the surface of the first heat-fusible resin layer 1 is, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, and about 10 mg/m 2 or less. Further, the preferable range of the amount of lubricant present on the surface of the first heat-fusible resin layer 1 is about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , and about 4 to 15 mg/m 2 . Examples include about 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , and about 5 to 10 mg/m 2 .
 第1熱融着性樹脂層1及び第2熱融着性樹脂層2の表面に存在する滑剤は、それぞれ、第1熱融着性樹脂層1及び第2熱融着性樹脂層2を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、第1熱融着性樹脂層1の表面に滑剤を塗布したものであってもよい。 The lubricants present on the surfaces of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 constitute the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2, respectively. The lubricant contained in the resin may be exuded, or the lubricant may be applied to the surface of the first heat-fusible resin layer 1.
 また、本開示の効果をより好適に発揮する観点から、第1熱融着性樹脂層1及び第2熱融着性樹脂層2の厚みとしては、それぞれ、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上、であり、また、好ましくは約100μm以下、より好ましくは約80μm以下、さらに好ましくは約60μm以下であり、好ましい範囲としては、20~100μm程度、20~80μm程度、20~60μm程度、30~100μm程度、30~80μm程度、30~60μm程度、40~100μm程度、40~80μm程度、40~60μm程度などが挙げられる。第1熱融着性樹脂層1及び第2熱融着性樹脂層2の厚みが約20μm以上であることにより、シール強度が高められやすく、厚みが約100μm以下であることにより、蓄電デバイスのエネルギー密度が向上しやすくなる。 Further, from the viewpoint of more preferably exhibiting the effects of the present disclosure, the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is preferably about 20 μm or more, and more preferably about 20 μm or more. It is about 30 μm or more, more preferably about 40 μm or more, and preferably about 100 μm or less, more preferably about 80 μm or less, even more preferably about 60 μm or less, and the preferable range is about 20 to 100 μm, 20 to Examples include about 80 μm, about 20 to 60 μm, about 30 to 100 μm, about 30 to 80 μm, about 30 to 60 μm, about 40 to 100 μm, about 40 to 80 μm, and about 40 to 60 μm. When the thickness of the first heat-fusible resin layer 1 and the second heat-fusible resin layer 2 is about 20 μm or more, the sealing strength is easily increased, and when the thickness is about 100 μm or less, the Energy density becomes easier to improve.
 本開示の蓄電デバイス用外装材10において、第1熱融着性樹脂層1の形成には、予め形成された樹脂フィルム(すなわち、ポリエチレンを主成分とする樹脂フィルム(ポリエチレンフィルム))を用いてもよいし、第1熱融着性樹脂層1を後述するバリア層5や第1耐熱層3などと積層する際に、第1熱融着性樹脂層1を形成する樹脂(すなわち、ポリエチレンを主成分とする樹脂)を押出成形や塗布などによってフィルム化(すなわち樹脂フィルム(ポリエチレンフィルム)とし)して第1熱融着性樹脂層1としてもよい。第2熱融着性樹脂層2の形成についても、予め形成された樹脂フィルム(すなわち、ポリエチレンを主成分とする樹脂フィルム(ポリエチレンフィルム))を用いてもよいし、第2熱融着性樹脂層2を後述するバリア層5や第2耐熱層4などと積層する際に、第2熱融着性樹脂層2を形成する樹脂(すなわち、ポリエチレンを主成分とする樹脂)を押出成形や塗布などによってフィルム化(すなわち樹脂フィルム(ポリエチレンフィルム)とし)して第2熱融着性樹脂層2としてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 In the exterior material 10 for a power storage device of the present disclosure, the first heat-fusible resin layer 1 is formed using a pre-formed resin film (i.e., a resin film containing polyethylene as a main component (polyethylene film)). Alternatively, when laminating the first heat-fusible resin layer 1 with a barrier layer 5, a first heat-resistant layer 3, etc., which will be described later, the resin forming the first heat-fusible resin layer 1 (i.e., polyethylene) may be used. The first heat-fusible resin layer 1 may be formed by forming a resin (main component) into a film (that is, a resin film (polyethylene film)) by extrusion molding, coating, or the like. Regarding the formation of the second heat-fusible resin layer 2, a pre-formed resin film (i.e., a resin film containing polyethylene as a main component (polyethylene film)) may be used, or a second heat-fusible resin When layer 2 is laminated with barrier layer 5, second heat-resistant layer 4, etc., which will be described later, the resin that forms the second heat-fusible resin layer 2 (i.e., the resin whose main component is polyethylene) is extruded or coated. The second heat-fusible resin layer 2 may be formed into a film (ie, as a resin film (polyethylene film)) by a method such as the following. The resin film may be an unstretched film or a stretched film. Examples of the stretched film include uniaxially stretched film and biaxially stretched film, with biaxially stretched film being preferred. Examples of the stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of methods for applying the resin include roll coating, gravure coating, and extrusion coating.
[第1耐熱層3及び第2耐熱層4]
 第1耐熱層3は、第1熱融着性樹脂層1とバリア層5との間に、蓄電デバイス用外装材10の耐熱性を高めることなどを目的として、必要に応じて設けられる層である。また、第2耐熱層4は、第2熱融着性樹脂層2とバリア層5との間に、蓄電デバイス用外装材10の耐熱性を高めることなどを目的として、必要に応じて設けられる層である。
[First heat-resistant layer 3 and second heat-resistant layer 4]
The first heat-resistant layer 3 is a layer provided between the first heat-fusible resin layer 1 and the barrier layer 5 as necessary for the purpose of increasing the heat resistance of the exterior material 10 for an electricity storage device. be. Further, the second heat-resistant layer 4 is provided between the second heat-fusible resin layer 2 and the barrier layer 5 as necessary for the purpose of increasing the heat resistance of the exterior material 10 for an electricity storage device. It is a layer.
 第1耐熱層3及び第2耐熱層4は、それぞれ、耐熱性に優れた樹脂などによって形成することができる。 The first heat-resistant layer 3 and the second heat-resistant layer 4 can each be formed of resin or the like with excellent heat resistance.
 本開示の効果をより好適に発揮する観点から、第1耐熱層3及び第2耐熱層4の融解ピーク温度は、それぞれ、好ましくは約130℃以上、より好ましくは140~300℃程度、さらに好ましくは150~250℃程度である。第1耐熱層3及び第2耐熱層4の融解ピーク温度が130℃以上であることにより、高い耐熱性を発揮することができ、また、融解ピーク温度が250℃以下であることにより、コストの面で有利である。 From the viewpoint of more preferably exhibiting the effects of the present disclosure, the melting peak temperatures of the first heat-resistant layer 3 and the second heat-resistant layer 4 are preferably about 130° C. or higher, more preferably about 140 to 300° C., and even more preferably about 140 to 300° C. is about 150 to 250°C. Since the melting peak temperature of the first heat-resistant layer 3 and the second heat-resistant layer 4 is 130°C or higher, high heat resistance can be exhibited, and since the melting peak temperature is 250°C or lower, costs can be reduced. advantageous in terms of
 第1耐熱層3及び第2耐熱層4を形成する樹脂としては、それぞれ、例えば、ポリオレフィン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、第1耐熱層3及び第2耐熱層4を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 Examples of the resin forming the first heat-resistant layer 3 and the second heat-resistant layer 4 include resins such as polyolefin, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, and phenol resin, respectively. Examples include modified resins. Further, the resin forming the first heat-resistant layer 3 and the second heat-resistant layer 4 may be a copolymer of these resins, or may be a modified product of the copolymer. Furthermore, a mixture of these resins may be used.
 本開示の効果をより好適に発揮する観点から、第1耐熱層3及び第2耐熱層4を形成する樹脂としては、それぞれ、これらの中でも、好ましくはポリオレフィン、ポリエステルが挙げられる。 From the viewpoint of more suitably exhibiting the effects of the present disclosure, the resins forming the first heat-resistant layer 3 and the second heat-resistant layer 4 are preferably polyolefin or polyester.
 ポリオレフィンとしては、具体的には、ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specifically, the polyolefin includes polypropylene such as homopolypropylene, a block copolymer of polypropylene (for example, a block copolymer of propylene and ethylene), and a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); Polymer; terpolymer of ethylene-butene-propylene and the like. Among these, polypropylene is preferred. The polyolefin resin in the case of a copolymer may be a block copolymer or a random copolymer. These polyolefin resins may be used alone or in combination of two or more.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Additionally, the polyolefin may be a cyclic polyolefin. A cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. It will be done. Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
 また、ポリオレフィンは、酸変性ポリオレフィンであってもよい。酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 Additionally, the polyolefin may be an acid-modified polyolefin. Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component. As the acid-modified polyolefin, the aforementioned polyolefins, copolymers obtained by copolymerizing the aforementioned polyolefins with polar molecules such as acrylic acid or methacrylic acid, or polymers such as crosslinked polyolefins can also be used. Further, examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or their anhydrides.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing some of the monomers constituting the cyclic polyolefin in place of the acid component, or by block polymerizing or graft polymerizing the acid component to the cyclic polyolefin. be. The cyclic polyolefin to be acid-modified is the same as described above. Further, the acid component used for acid modification is the same as the acid component used for modifying the polyolefin described above.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, copolymerized polyester, and the like. Examples of the copolyester include copolyesters containing ethylene terephthalate as a main repeating unit. Specifically, copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/adipate), polyethylene (terephthalate/adipate), etc. Examples include sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate). These polyesters may be used alone or in combination of two or more.
 第1耐熱層3及び第2耐熱層4は、それぞれ、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、第1耐熱層3及び第2耐熱層4は、それぞれ、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The first heat-resistant layer 3 and the second heat-resistant layer 4 may each be formed from one type of resin alone, or may be formed from a blended polymer that is a combination of two or more types of resin. Further, each of the first heat-resistant layer 3 and the second heat-resistant layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
 本開示の蓄電デバイス用外装材10において、第1耐熱層3の形成には、予め形成された樹脂フィルムを用いてもよいし、第1耐熱層3を後述するバリア層5や第1熱融着性樹脂層1などと積層する際に、第1耐熱層3を形成する樹脂を押出成形や塗布などによってフィルム化(すなわち樹脂フィルムとし)して第1耐熱層3としてもよい。第2耐熱層4の形成についても、予め形成された樹脂フィルムを用いてもよいし、第2耐熱層4を後述するバリア層5や第2熱融着性樹脂層2などと積層する際に、第2耐熱層4を形成する樹脂を押出成形や塗布などによってフィルム化(すなわち樹脂フィルムとし)して第2耐熱層4としてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 In the exterior material 10 for power storage devices of the present disclosure, a pre-formed resin film may be used to form the first heat-resistant layer 3, or the first heat-resistant layer 3 may be replaced by a barrier layer 5 or a first heat-melting layer 5, which will be described later. When laminating with the adhesive resin layer 1 or the like, the first heat-resistant layer 3 may be formed by forming the resin forming the first heat-resistant layer 3 into a film (ie, a resin film) by extrusion molding, coating, or the like. Regarding the formation of the second heat-resistant layer 4, a pre-formed resin film may be used, or when the second heat-resistant layer 4 is laminated with a barrier layer 5, a second heat-fusible resin layer 2, etc., which will be described later. The second heat-resistant layer 4 may be formed by forming the resin forming the second heat-resistant layer 4 into a film (ie, a resin film) by extrusion molding, coating, or the like. The resin film may be an unstretched film or a stretched film. Examples of the stretched film include uniaxially stretched film and biaxially stretched film, with biaxially stretched film being preferred. Examples of the stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of methods for applying the resin include roll coating, gravure coating, and extrusion coating.
 本開示の効果をより好適に発揮する観点から、第1耐熱層3及び第2耐熱層4の厚みとしては、それぞれ、好ましくは約5μm以上、より好ましくは約10μm以上、さらに好ましくは約20μm以上、であり、また、好ましくは約50μm以下、より好ましくは約40μm以下、さらに好ましくは約30μm以下であり、好ましい範囲としては、5~50μm程度、5~40μm程度、5~30μm程度、10~50μm程度、10~40μm程度、10~30μm程度、20~50μm程度、20~40μm程度、20~30μm程度などが挙げられる。第1耐熱層3及び第2耐熱層4の厚みが約5μm以上であることにより、物理的な接触に対する耐性が高められ、約50μm以下であることにより蓄電デバイスのエネルギー密度を向上することができる。 From the viewpoint of more preferably exhibiting the effects of the present disclosure, the thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is preferably about 5 μm or more, more preferably about 10 μm or more, and even more preferably about 20 μm or more. , and is preferably about 50 μm or less, more preferably about 40 μm or less, even more preferably about 30 μm or less, and the preferable range is about 5 to 50 μm, about 5 to 40 μm, about 5 to 30 μm, and 10 to Examples include about 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 20 to 50 μm, about 20 to 40 μm, and about 20 to 30 μm. When the thickness of the first heat-resistant layer 3 and the second heat-resistant layer 4 is about 5 μm or more, resistance to physical contact is increased, and when the thickness is about 50 μm or less, the energy density of the electricity storage device can be improved. .
[第1接着層12、第2接着層22、第3接着層32、第4接着層42]
 第1接着層12は、第1熱融着性樹脂層1と、これに隣接する層との間の接着性を高めることなどを目的として、必要に応じて設けられる層である。したがって、第1接着層12は、第1熱融着性樹脂層1と隣接している。また、第2接着層22は、第2熱融着性樹脂層2と、これに隣接する層との間の接着性を高めることなどを目的として、必要に応じて設けられる層である。したがって、第2接着層22は、第2熱融着性樹脂層2と隣接している。また、第3接着層32は、第1耐熱層3とバリア層5との間の接着性を高めることなどを目的として、第1耐熱層3とバリア層5との間に必要に応じて設けられる層である。第3接着層32は、第1耐熱層3に隣接している。第4接着層42は、第2耐熱層4とバリア層5との間の接着性を高めることなどを目的として、第2耐熱層4とバリア層5との間に、必要に応じて設けられる層である。第4接着層42は、第2耐熱層4に隣接している。
[First adhesive layer 12, second adhesive layer 22, third adhesive layer 32, fourth adhesive layer 42]
The first adhesive layer 12 is a layer provided as necessary for the purpose of increasing the adhesiveness between the first heat-fusible resin layer 1 and a layer adjacent thereto. Therefore, the first adhesive layer 12 is adjacent to the first heat-fusible resin layer 1 . Further, the second adhesive layer 22 is a layer provided as necessary for the purpose of increasing the adhesiveness between the second heat-fusible resin layer 2 and a layer adjacent thereto. Therefore, the second adhesive layer 22 is adjacent to the second heat-fusible resin layer 2. Further, the third adhesive layer 32 is provided between the first heat resistant layer 3 and the barrier layer 5 as necessary for the purpose of increasing the adhesiveness between the first heat resistant layer 3 and the barrier layer 5. This is the layer where The third adhesive layer 32 is adjacent to the first heat-resistant layer 3. The fourth adhesive layer 42 is provided between the second heat resistant layer 4 and the barrier layer 5 as necessary for the purpose of increasing the adhesiveness between the second heat resistant layer 4 and the barrier layer 5. It is a layer. The fourth adhesive layer 42 is adjacent to the second heat-resistant layer 4 .
 第1接着層12、第2接着層22、第3接着層32、及び第4接着層42は、それぞれ、接着性を有する樹脂(接着剤)によって形成される。第1接着層12、第2接着層22、第3接着層32、及び第4接着層42の形成に使用される接着剤は、それぞれ、特に限定されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの接着剤であってもよい。また、当該接着剤は、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、第1接着層12、第2接着層22、第3接着層32、及び第4接着層42は、それぞれ、単層であってもよいし、多層であってもよい。 The first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are each formed of a resin (adhesive) having adhesive properties. The adhesives used for forming the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are not particularly limited, and are chemical reaction type, solvent volatilization type, thermal adhesive, etc. Any type of adhesive, such as a melt type adhesive or a hot pressure type adhesive, may be used. Further, the adhesive may be a two-component curing adhesive (two-component adhesive) or a one-component curing adhesive (one-component adhesive), which does not involve a curing reaction. It may also be made of resin. Moreover, the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 may each be a single layer or a multilayer.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン(ポリウレタン接着剤)が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specifically, the adhesive components contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenol resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; Examples include polyimide; polycarbonate; amino resins such as urea resin and melamine resin; rubbers such as chloroprene rubber, nitrile rubber, and styrene-butadiene rubber; and silicone resins. These adhesive components may be used alone or in combination of two or more. Among these adhesive components, polyurethane (polyurethane adhesive) is preferred. Further, the adhesive strength of these adhesive component resins can be increased by using an appropriate curing agent in combination. The curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着層がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても第1熱融着性樹脂層1が剥がれることが抑制される。 Examples of the polyurethane adhesive include a polyurethane adhesive that includes a first part containing a polyol compound and a second part containing an isocyanate compound. Preferred examples include two-component curing polyurethane adhesives in which a polyol such as a polyester polyol, a polyether polyol, or an acrylic polyol is used as a first part and an aromatic or aliphatic polyisocyanate is used as a second part. Further, examples of the polyurethane adhesive include a polyurethane adhesive containing a polyurethane compound prepared by reacting a polyol compound and an isocyanate compound in advance, and an isocyanate compound. Further, examples of the polyurethane adhesive include a polyurethane adhesive containing a polyurethane compound prepared by reacting a polyol compound and an isocyanate compound in advance, and a polyol compound. Further, examples of the polyurethane adhesive include, for example, a polyurethane adhesive obtained by curing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air or the like. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds. Examples of isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like. Also included are polyfunctional isocyanate modified products of one or more of these diisocyanates. It is also possible to use multimers (for example trimers) as the polyisocyanate compound. Such multimers include adducts, biurets, nurates, and the like. Since the adhesive layer is formed of a polyurethane adhesive, the exterior material for the power storage device has excellent electrolyte resistance, and even if the electrolyte adheres to the side surface, the first heat-fusible resin layer 1 will not peel off. suppressed.
 また、第1接着層12、第2接着層22、第3接着層32、及び第4接着層42は、それぞれ、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。第1接着層12、第2接着層22、第3接着層32、及び第4接着層42は、それぞれ、着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 In addition, the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are allowed to contain other components as long as they do not impede the adhesive properties, such as colorants and thermoplastic elastomers. , a tackifier, a filler, etc. The first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 each contain a coloring agent, so that the exterior material for the electricity storage device can be colored. As the colorant, known colorants such as pigments and dyes can be used. Moreover, only one type of coloring agent may be used, or two or more types of coloring agents may be used in combination.
 顔料の種類は、第1接着層12、第2接着層22、第3接着層32、及び第4接着層42の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the adhesive properties of the first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, and fourth adhesive layer 42. Examples of organic pigments include azo pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, dioxazine pigments, indigothioindigo pigments, perinone-perylene pigments, isoindolenine pigments, and benzimidazolone pigments. Examples of the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and in addition, mica (mica) fine powder, fish scale foil, and the like.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the colorants, carbon black is preferable, for example, in order to make the exterior of the power storage device exterior black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle diameter of the pigment is not particularly limited, and may be, for example, about 0.05 to 5 μm, preferably about 0.08 to 2 μm. Note that the average particle diameter of the pigment is the median diameter measured by a laser diffraction/scattering particle diameter distribution measuring device.
 第1接着層12、第2接着層22、第3接着層32、及び第4接着層42における顔料の含有量としては、それぞれ、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The pigment content in the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 is not particularly limited as long as the exterior material for the electricity storage device is colored, for example. The amount may be about 5 to 60% by weight, preferably 10 to 40% by weight.
 第1接着層12、第2接着層22、第3接着層32、及び第4接着層42の厚みは、それぞれ、特に制限されないが、例えば、約1μm以上、約2μm以上であり、また、例えば、約10μm以下、約7μm以下、約5μm以下であり、好ましい範囲としては、1~10μm程度、1~7μm程度、1~5μm程度、2~10μm程度、2~7μm程度、2~5μm程度が挙げられる。 The thicknesses of the first adhesive layer 12, the second adhesive layer 22, the third adhesive layer 32, and the fourth adhesive layer 42 are not particularly limited, but are, for example, about 1 μm or more, about 2 μm or more, and, for example, , about 10 μm or less, about 7 μm or less, about 5 μm or less, and preferred ranges are about 1 to 10 μm, about 1 to 7 μm, about 1 to 5 μm, about 2 to 10 μm, about 2 to 7 μm, and about 2 to 5 μm. Can be mentioned.
[着色層]
 着色層は、第1熱融着性樹脂層1とバリア層5との間に必要に応じて設けられる層である(図示を省略する)。第1接着層12を有する場合には、第1熱融着性樹脂層1と第1接着層12との間、第1接着層12とバリア層5との間に着色層を設けてもよい。
[Colored layer]
The colored layer is a layer provided as necessary between the first heat-fusible resin layer 1 and the barrier layer 5 (not shown). When the first adhesive layer 12 is provided, a colored layer may be provided between the first heat-fusible resin layer 1 and the first adhesive layer 12 and between the first adhesive layer 12 and the barrier layer 5. .
 着色層は、例えば、着色剤を含むインキを第1熱融着性樹脂層1の表面、またはバリア層5の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying ink containing a coloring agent to the surface of the first heat-fusible resin layer 1 or the surface of the barrier layer 5. As the colorant, known colorants such as pigments and dyes can be used. Moreover, only one type of coloring agent may be used, or two or more types of coloring agents may be used in combination.
 着色層に含まれる着色剤の具体例としては、[第1接着層12、第2接着層22、第3接着層32、第4接着層42]の欄で例示したものと同じものが例示される。 As specific examples of the coloring agent contained in the colored layer, the same ones as those exemplified in the column [first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, fourth adhesive layer 42] are exemplified. Ru.
[バリア層5]
 蓄電デバイス用外装材において、バリア層5は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 5]
In the exterior material for a power storage device, the barrier layer 5 is a layer that prevents at least moisture from entering.
 バリア層5としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層5としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層5は、複数層設けてもよい。バリア層5は、金属材料により構成された層を含むことが好ましい。バリア層5を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 5 include metal foil, vapor deposited film, and resin layer having barrier properties. Examples of the vapor-deposited film include a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, etc., and resin layers include polyvinylidene chloride, polymers mainly composed of chlorotrifluoroethylene (CTFE), and tetrafluoroethylene. Examples include fluorine-containing resins such as polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, and polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers. Further, examples of the barrier layer 5 include a resin film provided with at least one of these vapor-deposited films and a resin layer. A plurality of barrier layers 5 may be provided. It is preferable that the barrier layer 5 includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 5 include aluminum alloy, stainless steel, titanium steel, steel plate, etc. When used as metal foil, it includes at least one of aluminum alloy foil and stainless steel foil. It is preferable.
 アルミニウム合金箔は、蓄電デバイス用外装材に成形性を求められる場合には、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より高い成形性を求められる場合には、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 When the aluminum alloy foil is required to have formability as an exterior material for a power storage device, it is more preferable to use a soft aluminum alloy foil made of annealed aluminum alloy, for example, and when higher formability is required. In such cases, it is preferable to use an aluminum alloy foil containing iron. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for a power storage device that has better formability. By having an iron content of 9.0% by mass or less, it is possible to obtain an exterior material for a power storage device that has more excellent flexibility. Examples of the soft aluminum alloy foil include JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, or JIS H4000:2014 A8079P- Aluminum alloy with a composition specified by O One example is foil. Further, silicon, magnesium, copper, manganese, etc. may be added as necessary. Further, softening can be performed by annealing treatment or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性を求められる場合には、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Examples of the stainless steel foil include austenitic, ferritic, austenite-ferritic, martensitic, and precipitation hardening stainless steel foils. If further formability is required, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L, etc. Among these, SUS304 is particularly preferred.
 バリア層5の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層5の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層5の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、バリア層5の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層5がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、蓄電デバイス用外装材10に高成形性及び高剛性を付与する観点からは、バリア層3の厚みは、好ましくは約35μm以上、より好ましくは約45μm以上、さらに好ましくは約50μm以上、さらに好ましくは約55μm以上であり、また、好ましくは約200μm以下、より好ましくは約85μm以下、さらに好ましくは約75μm以下、さらに好ましくは約70μm以下であり、好ましい範囲としては、35~200μm程度、35~85μm程度、35~75μm程度、35~70μm程度、45~200μm程度、45~85μm程度、45~75μm程度、45~70μm程度、50~200μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~200μm程度、55~85μm程度、55~75μm程度、55~70μm程度である。蓄電デバイス用外装材10が高成形性を備えることにより、深絞り成形が容易となり、蓄電デバイスの高容量化に寄与し得る。また、蓄電デバイスが高容量化されると、蓄電デバイスの重量が増加するが、蓄電デバイス用外装材10の剛性が高められることにより、蓄電デバイスの高い密封性に寄与できる。また、特に、バリア層5がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 In the case of metal foil, the thickness of the barrier layer 5 may be about 9 to 200 μm, as long as it can at least function as a barrier layer to prevent moisture from entering. The thickness of the barrier layer 5 is preferably about 85 μm or less, more preferably about 50 μm or less, even more preferably about 40 μm or less, particularly preferably about 35 μm or less. Further, the thickness of the barrier layer 5 is preferably about 10 μm or more, more preferably about 20 μm or more, and even more preferably about 25 μm or more. Further, the preferable range of the thickness of the barrier layer 5 is about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, about 20 to 85 μm, about 20 to 50 μm, about 20 to 40 μm, and about 20 to 40 μm. Examples include about 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, and about 25 to 35 μm. When the barrier layer 5 is made of aluminum alloy foil, the above-mentioned range is particularly preferable. In addition, from the viewpoint of imparting high formability and high rigidity to the exterior material 10 for power storage devices, the thickness of the barrier layer 3 is preferably about 35 μm or more, more preferably about 45 μm or more, still more preferably about 50 μm or more, and It is preferably about 55 μm or more, and preferably about 200 μm or less, more preferably about 85 μm or less, even more preferably about 75 μm or less, even more preferably about 70 μm or less, and the preferable range is about 35 to 200 μm, 35 μm or less. ~85μm, 35-75μm, 35-70μm, 45-200μm, 45-85μm, 45-75μm, 45-70μm, 50-200μm, 50-85μm, 50-75μm, 50 - about 70 μm, about 55 to 200 μm, about 55 to 85 μm, about 55 to 75 μm, and about 55 to 70 μm. When the exterior material 10 for an electricity storage device has high formability, deep drawing becomes easy, which can contribute to increasing the capacity of the electricity storage device. Further, when the capacity of the power storage device is increased, the weight of the power storage device increases, but the increased rigidity of the exterior material 10 for the power storage device can contribute to high sealing performance of the power storage device. In addition, particularly when the barrier layer 5 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, and even more preferably about 30 μm. It is particularly preferably about 25 μm or less. Further, the thickness of the stainless steel foil is preferably about 10 μm or more, more preferably about 15 μm or more. Further, the preferable range of the thickness of the stainless steel foil is about 10 to 60 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, and about 15 to 50 μm. Examples include about 40 μm, about 15 to 30 μm, and about 15 to 25 μm.
 また、バリア層5が金属箔の場合は、溶解や腐食の防止などのために、少なくとも第1熱融着性樹脂層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層5は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層5が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層5とする。 Further, when the barrier layer 5 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the first heat-fusible resin layer in order to prevent dissolution and corrosion. The barrier layer 5 may be provided with a corrosion-resistant coating on both sides. Here, the corrosion-resistant film refers to, for example, hydrothermal conversion treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment with nickel or chromium, or corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer. A thin film that provides corrosion resistance (for example, acid resistance, alkali resistance, etc.) to the barrier layer. Specifically, the corrosion-resistant film refers to a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like. As the treatment for forming a corrosion-resistant film, one type of treatment may be performed or a combination of two or more types may be performed. Furthermore, it is possible to have not only one layer but also multiple layers. Furthermore, among these treatments, hydrothermal conversion treatment and anodization treatment are treatments in which the surface of the metal foil is dissolved with a treatment agent to form a metal compound with excellent corrosion resistance. Note that these treatments may be included in the definition of chemical conversion treatment. Further, when the barrier layer 5 includes a corrosion-resistant film, the barrier layer 5 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と第1熱融着性樹脂層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の第1熱融着性樹脂層とバリア層とのデラミネーション防止、成形時の第1熱融着性樹脂層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant film is produced by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the first heat-fusible resin layer, and by a reaction between electrolyte and moisture during molding of the exterior material for power storage devices. Hydrogen fluoride prevents the surface of the barrier layer from dissolving and corroding, especially when the barrier layer is made of aluminum alloy foil, the aluminum oxide present on the surface of the barrier layer is prevented from dissolving and corroding, and also prevents the adhesion of the surface of the barrier layer. properties (wettability) to prevent delamination between the first heat-fusible resin layer and the barrier layer during heat sealing, and to prevent delamination between the first heat-fusible resin layer and the barrier layer during molding. Show effectiveness.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various types of corrosion-resistant coatings are known that are formed by chemical conversion treatment, and mainly include at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides. Examples include corrosion-resistant coatings containing. Examples of chemical conversion treatments using phosphates and chromates include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment. Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium diphosphate, chromic acid acetylacetate, chromium chloride, potassium chromium sulfate, and the like. Further, examples of phosphorus compounds used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid. Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating type chromate treatment, and coating type chromate treatment is preferred. In this coating-type chromate treatment, at least the inner layer side of the barrier layer (for example, aluminum alloy foil) is first coated using a well-known method such as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, etc. Degrease treatment is performed using a treatment method, and then metal phosphates such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, and Zn (zinc) phosphate are applied to the degreased surface. Treatment liquids whose main components are salts and mixtures of these metal salts, treatment liquids whose main components are nonmetallic phosphoric acid salts and mixtures of these nonmetallic salts, or combinations of these with synthetic resins, etc. This is a process in which a treatment liquid consisting of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and then dried. Various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used as the treatment liquid, and water is preferable. In addition, the resin component used at this time includes polymers such as phenolic resins and acrylic resins, and aminated phenol polymers having repeating units represented by the following general formulas (1) to (4) are used. Examples include chromate treatment. In addition, in the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. Good too. The acrylic resin must be polyacrylic acid, acrylic acid methacrylate copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salt, ammonium salt, or amine salt. is preferred. Particularly preferred are polyacrylic acid derivatives such as ammonium salts, sodium salts, or amine salts of polyacrylic acid. In the present disclosure, polyacrylic acid refers to a polymer of acrylic acid. Further, the acrylic resin is also preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, such as ammonium salt, sodium salt, Or it is also preferable that it is an amine salt. Only one type of acrylic resin may be used, or a mixture of two or more types may be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. Further, R 1 and R 2 are each the same or different and represent a hydroxy group, an alkyl group, or a hydroxyalkyl group. In general formulas (1) to ( 4 ), the alkyl group represented by Examples include straight chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl group. Furthermore, examples of the hydroxyalkyl group represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, Straight chain or branched chain with 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group Examples include alkyl groups. In the general formulas (1) to (4), the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different. In general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having repeating units represented by general formulas (1) to (4) is preferably about 500 to 1,000,000, and preferably about 1,000 to 20,000, for example. More preferred. Aminated phenol polymers can be produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer consisting of repeating units represented by the above general formula (1) or general formula (3), and then adding formaldehyde to the polymer. and amine (R 1 R 2 NH) to introduce a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above. Aminated phenol polymers may be used alone or in combination of two or more.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Another example of a corrosion-resistant film is a film formed by a coating-type corrosion-preventing treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied. Examples include thin films that are The coating agent may further contain phosphoric acid or a phosphate salt, a crosslinking agent for crosslinking the polymer. The rare earth element oxide sol includes rare earth element oxide fine particles (for example, particles with an average particle size of 100 nm or less) dispersed in a liquid dispersion medium. Examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, with cerium oxide being preferred from the viewpoint of further improving adhesion. The rare earth element oxides contained in the corrosion-resistant film can be used alone or in combination of two or more. As the liquid dispersion medium for the rare earth element oxide sol, various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex consisting of a polymer containing polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is graft-polymerized onto an acrylic main skeleton, polyallylamine or its derivatives. , aminated phenol, etc. are preferred. The anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component. Further, it is preferable that the crosslinking agent is at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent. Moreover, it is preferable that the phosphoric acid or phosphate is a condensed phosphoric acid or a condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 An example of a corrosion-resistant film is to coat fine particles of barium sulfate or metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide in phosphoric acid on the surface of the barrier layer. Examples include those formed by performing baking treatment at temperatures above .degree.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary. Examples of the cationic polymer and anionic polymer include those mentioned above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 Note that the composition of the corrosion-resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
 化成処理においてバリア層5の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層5の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 5 in the chemical conversion treatment is not particularly limited. is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of chromium, the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of phosphorus, and the aminated phenol polymer. It is desirable that the content is, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant film is not particularly limited, but from the viewpoint of the cohesive force of the film and the adhesion with the barrier layer and the heat-fusible resin layer, it is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm. More preferably, it is about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation using a transmission electron microscope, or by a combination of observation using a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy. Analysis of the composition of the corrosion-resistant film using time-of-flight secondary ion mass spectrometry reveals that, for example, secondary ions consisting of Ce, P, and O (for example, at least one of Ce 2 PO 4 + , CePO 4 - , etc.) peaks derived from secondary ions (for example, at least one of CrPO 2 + and CrPO 4 - ) made of Cr, P, and O are detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer using a bar coating method, roll coating method, gravure coating method, dipping method, etc., and then changing the temperature of the barrier layer. This is done by heating to a temperature of about 70 to 200°C. Furthermore, before the barrier layer is subjected to the chemical conversion treatment, the barrier layer may be previously subjected to a degreasing treatment using an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this manner, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently. In addition, by using an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for degreasing treatment, it is possible to not only degrease the metal foil but also form passive metal fluoride. In such cases, only degreasing treatment may be performed.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、第1熱融着性樹脂層1、バリア層5、及び第2熱融着性樹脂層2がこの順となるように積層する工程を備える方法が挙げられる。本開示の蓄電デバイス用外装材の製造方法においても、第1熱融着性樹脂層1は、ポリエチレンを主成分として含み、第2熱融着性樹脂層2は、ポリエチレンを主成分として含んでいる。
3. Method for manufacturing an exterior material for an energy storage device The method for manufacturing an exterior material for an energy storage device is not particularly limited as long as a laminate in which each layer of the exterior material for an energy storage device of the present disclosure is laminated can be obtained. A method including a step of laminating the heat-fusible resin layer 1, the barrier layer 5, and the second heat-fusible resin layer 2 in this order can be mentioned. Also in the method for manufacturing an exterior material for a power storage device of the present disclosure, the first heat-fusible resin layer 1 contains polyethylene as a main component, and the second heat-fusible resin layer 2 contains polyethylene as a main component. There is.
 本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。 An example of the method for manufacturing the exterior material for a power storage device of the present disclosure is as follows.
 第1熱融着性樹脂層1、第1接着層12、及びバリア層5が順に積層された積層体を形成する。当該積層体の形成は、具体的には、第1熱融着性樹脂層1上又は必要に応じて表面が化成処理されたバリア層5に第1接着層12の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層5又は第1熱融着性樹脂層1を積層させて第1接着層12を硬化させるドライラミネート法によって行うことができる。 A laminate is formed in which the first heat-fusible resin layer 1, the first adhesive layer 12, and the barrier layer 5 are laminated in this order. Specifically, the formation of the laminate is performed by applying an adhesive used to form the first adhesive layer 12 on the first heat-fusible resin layer 1 or on the barrier layer 5 whose surface has been subjected to chemical conversion treatment if necessary. is coated and dried by a coating method such as a gravure coating method or a roll coating method, and then the barrier layer 5 or the first heat-fusible resin layer 1 is laminated and the first adhesive layer 12 is cured by a dry lamination method. It can be carried out.
 第1耐熱層3を設ける場合には、例えば、第1熱融着性樹脂層1、第1接着層12、及び第1耐熱層3が順に積層された積層体を形成する。当該積層体の形成は、具体的には、第1熱融着性樹脂層1上又は第1耐熱層3上に第1接着層12の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該第1耐熱層3又は第1熱融着性樹脂層1を積層させて第1接着層12を硬化させるドライラミネート法によって行うことができる。次に、得られた積層体の第1耐熱層3側とバリア層5とを積層させる。例えば、第1耐熱層3上又は必要に応じて表面が化成処理されたバリア層5に第3接着層32の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層5又は第1耐熱層3を積層させて第3接着層32を硬化させるドライラミネート法によって行うことができる。また、第3接着層32を介さずに第1耐熱層3とバリア層5とを積層する場合は、第1耐熱層3の押出成形や熱融着などが利用できる。 When providing the first heat-resistant layer 3, for example, a laminate is formed in which the first heat-fusible resin layer 1, the first adhesive layer 12, and the first heat-resistant layer 3 are laminated in this order. Specifically, the formation of the laminate is performed by applying the adhesive used for forming the first adhesive layer 12 on the first heat-fusible resin layer 1 or the first heat-resistant layer 3 using a gravure coating method, a roll coating method, etc. It can be performed by a dry lamination method in which the first heat-resistant layer 3 or the first heat-fusible resin layer 1 is laminated and the first adhesive layer 12 is cured after coating and drying by a coating method such as a coating method. Next, the first heat-resistant layer 3 side of the obtained laminate and the barrier layer 5 are laminated. For example, the adhesive used to form the third adhesive layer 32 is applied to the first heat-resistant layer 3 or to the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, by a coating method such as a gravure coating method or a roll coating method. This can be carried out by a dry lamination method in which after coating and drying, the barrier layer 5 or the first heat-resistant layer 3 is laminated and the third adhesive layer 32 is cured. Furthermore, when the first heat-resistant layer 3 and the barrier layer 5 are laminated without interposing the third adhesive layer 32, extrusion molding or thermal fusion of the first heat-resistant layer 3 can be used.
 次いで、得られた積層体のバリア層5上に、第2熱融着性樹脂層2を積層させる。具体的には、第2熱融着性樹脂層2上又は必要に応じて表面が化成処理されたバリア層5に第2接着層22の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層5又は第2熱融着性樹脂層2を積層させて第2接着層22を硬化させるドライラミネート法によって行うことができる。 Next, the second heat-fusible resin layer 2 is laminated on the barrier layer 5 of the obtained laminate. Specifically, the adhesive used to form the second adhesive layer 22 is coated on the second heat-fusible resin layer 2 or on the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, using a gravure coating method or a roll coating method. It can be performed by a dry lamination method in which the barrier layer 5 or the second heat-fusible resin layer 2 is laminated and the second adhesive layer 22 is cured after coating and drying by a coating method such as a coating method.
 第2耐熱層4を設ける場合には、第2熱融着性樹脂層2、第2接着層22、第2耐熱層4が順に積層された積層体を形成する。当該積層体の形成は、具体的には、第2熱融着性樹脂層2上又は第2耐熱層4上に第2接着層22の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該第2耐熱層4又は第2熱融着性樹脂層2を積層させて第2接着層22を硬化させるドライラミネート法によって行うことができる。次に、得られた積層体の第2耐熱層4側とバリア層5とを積層させる。例えば、第2耐熱層4上又は必要に応じて表面が化成処理されたバリア層5に第4接着層42の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層5又は第2耐熱層4を積層させて第4接着層42を硬化させるドライラミネート法によって行うことができる。また、第4接着層42を介さずに第2耐熱層4とバリア層5とを積層する場合は、第2耐熱層4の押出成形や熱融着などが利用できる。 When providing the second heat-resistant layer 4, a laminate is formed in which the second heat-fusible resin layer 2, the second adhesive layer 22, and the second heat-resistant layer 4 are laminated in this order. Specifically, the formation of the laminate is performed by applying the adhesive used for forming the second adhesive layer 22 on the second heat-fusible resin layer 2 or the second heat-resistant layer 4 using a gravure coating method or a roll method. It can be performed by a dry lamination method in which the second heat-resistant layer 4 or the second heat-fusible resin layer 2 is laminated and the second adhesive layer 22 is cured after coating and drying by a coating method such as a coating method. Next, the second heat-resistant layer 4 side of the obtained laminate and the barrier layer 5 are laminated. For example, the adhesive used to form the fourth adhesive layer 42 may be applied on the second heat-resistant layer 4 or on the barrier layer 5 whose surface has been subjected to a chemical conversion treatment if necessary, by a coating method such as a gravure coating method or a roll coating method. This can be carried out by a dry lamination method in which the barrier layer 5 or the second heat-resistant layer 4 is laminated after coating and drying, and the fourth adhesive layer 42 is cured. Furthermore, when the second heat-resistant layer 4 and the barrier layer 5 are laminated without interposing the fourth adhesive layer 42, extrusion molding or thermal fusion of the second heat-resistant layer 4 can be used.
 上記のようにして、第1熱融着性樹脂層1/必要に応じて設けられる第1接着層12/必要に応じて設けられる第1耐熱層3/必要に応じて設けられる第3接着層32/バリア層5/必要に応じて設けられる第4接着層42/必要に応じて設けられる第2耐熱層4/必要に応じて設けられる第2接着層22/第2熱融着性樹脂層2をこの順に備える積層体が形成されるが、必要に応じて設けられる第1接着層12、第2接着層22、第3接着層32、及び第4接着層42の接着性を強固にするために、さらに、加熱処理に供してもよい。 As described above, first heat-fusible resin layer 1 / first adhesive layer 12 provided as necessary / first heat-resistant layer 3 provided as necessary / third adhesive layer provided as necessary 32/Barrier layer 5/Fourth adhesive layer 42 provided as necessary/Second heat-resistant layer 4 provided as necessary/Second adhesive layer 22 provided as necessary/Second heat-fusible resin layer 2 is formed in this order, and the adhesiveness of the first adhesive layer 12, second adhesive layer 22, third adhesive layer 32, and fourth adhesive layer 42 provided as necessary is strengthened. For this reason, it may be further subjected to heat treatment.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Application of exterior packaging material for power storage devices The exterior packaging material for power storage devices of the present disclosure is used for a package for sealing and accommodating power storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device according to the present disclosure to form a power storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、図5に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、図5に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよいし、蓄電デバイス素子の周囲に蓄電デバイス用外装材を巻きつけ、熱融着性樹脂層同士をシールすることで熱融着部を形成し、両端の開口部をそれぞれ閉じるように蓋体などを配置して、蓄電デバイス素子の周囲に巻き付けた蓄電デバイス用外装材と熱融着して封止してもよい。蓋体は、例えば、樹脂成形品、金属成形品、蓄電デバイス用外装材などで形成できる。また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。図5に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。 Specifically, an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte is prepared using the exterior material for an electricity storage device of the present disclosure, with metal terminals connected to each of the positive electrode and the negative electrode protruding outward. , Covering the electricity storage device element so that a flange portion (an area where the heat-fusible resin layers contact each other) is formed around the periphery of the power storage device element, and sealing the heat-fusible resin layers of the flange portion by heat-sealing each other. provides an electricity storage device using an exterior material for an electricity storage device. Note that when a power storage device element is housed in a package formed of the power storage device exterior material of the present disclosure, the heat-fusible resin portion of the power storage device exterior material of the present disclosure is placed on the inside (the surface in contact with the power storage device element). ) to form a package. The heat-fusible resin layers of two exterior materials for power storage devices may be stacked facing each other, and the peripheral edges of the stacked exterior materials for power storage devices may be heat-sealed to form a package; As in the example shown in FIG. 5, a package may be formed by folding and overlapping one exterior material for a power storage device and heat-sealing the peripheral edge portions. When folded and stacked, the package may be formed by heat-sealing the sides other than the folded edges and sealing on three sides, as shown in the example shown in Fig. 5, or the package may be folded back so that a flange can be formed. It may be sealed on all sides, or the exterior material for the power storage device is wrapped around the power storage device element and the heat-sealable resin layers are sealed to form a heat-sealed part and the openings at both ends are closed. A lid body or the like may be arranged in this manner and sealed by heat-sealing with the exterior material for the power storage device wrapped around the power storage device element. The lid body can be formed of, for example, a resin molded product, a metal molded product, an exterior material for a power storage device, or the like. Further, a recessed portion for accommodating the power storage device element may be formed in the exterior material for the power storage device by deep drawing or stretch molding. As in the example shown in FIG. 5, one exterior material for an energy storage device may have a recess and the other exterior material for an energy storage device may not have a recess, or the other exterior material for an energy storage device may also have a recess. may be provided.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、半固体電池、擬固体電池、ポリマー電池、全樹脂電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for power storage devices of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.). Further, the exterior material for a power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery. The types of secondary batteries to which the exterior material for power storage devices of the present disclosure is applied are not particularly limited, and include, for example, lithium-ion batteries, lithium-ion polymer batteries, all-solid-state batteries, semi-solid-state batteries, pseudo-solid-state batteries, and polymer batteries. , all-resin batteries, lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, silver-zinc oxide batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, etc. . Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable for application of the exterior material for power storage devices of the present disclosure.
 前記の通り、蓄電デバイスは、様々な用途に使用されており、蓄電デバイスに求められるニーズも多種多様である。本開示の蓄電デバイス用外装材10は、被着体に対して熱融着する機能を有するため、蓄電デバイスに対しても、被着体に対して熱融着する機能を付与することができる。製品中の本開示の蓄電デバイスを熱融着によって固定したり、複数の蓄電デバイスを重ねた状態で熱融着して固定すれば、複数の蓄電デバイスが積層された状態で製品中に組み込まれた場合にも、個々の蓄電デバイスが固定されていることから、製品の振動などによる蓄電デバイスの位置ずれや製品に外力が加わったときの各蓄電デバイスに伝わる衝撃による破損などが抑制できるといった利点がある。 As mentioned above, power storage devices are used for various purposes, and the needs for power storage devices are also diverse. Since the exterior material 10 for a power storage device of the present disclosure has a function of thermally fusing an adherend, it can also provide a power storage device with a function of thermally fusing an adherend. . If the power storage device of the present disclosure is fixed in a product by heat fusion, or if a plurality of power storage devices are stacked and fixed by heat fusion, the plurality of power storage devices can be incorporated into the product in a stacked state. Even in cases where the power storage devices are fixed, each power storage device is fixed, which has the advantage of suppressing misalignment of the power storage devices due to product vibration or damage caused by shocks transmitted to each power storage device when external force is applied to the product. There is.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be explained in detail by showing Examples and Comparative Examples below. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1
 第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、高密度ポリエチレン(HDPE)フィルム(厚さ50μm 融解ピーク温度130℃、水蒸気透過度0.28g・mm/m2・24h)を用意した。第1耐熱層及び第2耐熱層として、それぞれ、未延伸ポリプロピレン(CPP)フィルム(厚さ30μm 融解ピーク温度161℃、水蒸気透過度0.40g・mm/m2・24h)を用意した。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm)を用意した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
<Manufacture of exterior materials for power storage devices>
Example 1
As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 μm, melting peak temperature 130°C, water vapor permeability 0.28 g・mm/m 2・24h) was prepared. Unstretched polypropylene (CPP) films (thickness: 30 μm, melting peak temperature: 161° C., water vapor permeability: 0.40 g·mm/m 2 ·24 h) were prepared as the first heat-resistant layer and the second heat-resistant layer, respectively. As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil were chemically treated. The chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
 第1熱融着性樹脂層と第1耐熱層とを、第1接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することで、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)が外側から順に積層された積層体1を得た。 By adhering the first heat-fusible resin layer and the first heat-resistant layer using a polyolefin adhesive (acid-modified polyolefin compound) that forms the first adhesive layer, and performing an aging treatment, the first A laminate 1 was obtained in which a heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing: 1.5 μm)/first heat-resistant layer (thickness: 30 μm) were laminated in this order from the outside. .
 また、第2熱融着性樹脂層と第2耐熱層とを、第2接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することにより、第2耐熱層(厚さ30μm)/第2接着層(厚さ1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体2を作製した。 In addition, by bonding the second heat-fusible resin layer and the second heat-resistant layer using a polyolefin adhesive (acid-modified polyolefin compound) that forms the second adhesive layer, and performing an aging treatment, A laminate 2 of second heat-resistant layer (thickness: 30 μm)/second adhesive layer (thickness: 1.5 μm)/second heat-fusible resin layer (thickness: 50 μm) was produced.
 次に、積層体1の第1耐熱層側の表面と、バリア層とを、第3接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することにより、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/第3接着層(硬化後の厚さは1.5μm)/バリア層(厚さ40μm)の積層体3を作製した。次に、積層体3のバリア層側の表面と、積層体2の第2耐熱層側の表面とを、第4接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することにより、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/第3接着層(硬化後の厚さは1.5μm)/バリア層(厚さ40μm)/第4接着層(硬化後の厚さは1.5μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。 Next, the surface of the laminate 1 on the first heat-resistant layer side and the barrier layer are bonded using a polyolefin adhesive (acid-modified polyolefin compound) that forms a third adhesive layer, and an aging treatment is performed. By this, first heat-fusible resin layer (thickness: 50 μm) / first adhesive layer (thickness after curing is 1.5 μm) / first heat-resistant layer (thickness: 30 μm) / third adhesive layer (after curing) A laminate 3 of 1.5 μm thick/barrier layer (40 μm thick) was prepared. Next, the surface of the laminate 3 on the barrier layer side and the surface of the laminate 2 on the second heat-resistant layer side are bonded together using a polyolefin adhesive (acid-modified polyolefin compound) that forms a fourth adhesive layer. Then, by performing the aging treatment, the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first heat-resistant layer (thickness: 30 μm)/ Third adhesive layer (thickness after curing is 1.5 μm) / Barrier layer (thickness 40 μm) / Fourth adhesive layer (thickness after curing is 1.5 μm) / Second heat-resistant layer (thickness 30 μm) / A laminate of second adhesive layer (thickness after curing is 1.5 μm)/second heat-fusible resin layer (thickness 50 μm) was produced, and used as an exterior material for a power storage device.
実施例2
 第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、高密度ポリエチレン(HDPE)フィルム(厚さ50μm 融解ピーク温度130℃、水蒸気透過度0.28g・mm/m2・24h)を用意した。第1耐熱層として、未延伸ポリプロピレン(CPP)フィルム(厚さ30μm 融解ピーク温度161℃、水蒸気透過度0.40g・mm/m2・24h)を用意した。第2耐熱層として、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)を用意した。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm)を用意した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 2
As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 μm, melting peak temperature 130°C, water vapor permeability 0.28 g・mm/m 2・24h) was prepared. As the first heat-resistant layer, an unstretched polypropylene (CPP) film (thickness: 30 μm, melting peak temperature: 161° C., water vapor permeability: 0.40 g·mm/m 2 ·24 h) was prepared. As the second heat-resistant layer, maleic anhydride-modified polypropylene (PPa) (thickness: 30 μm, melting peak temperature: 160° C., water vapor permeability: 0.45 g·mm/m 2 ·24 h) was prepared. As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil were chemically treated. The chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
 実施例1と同様にして、第1熱融着性樹脂層と第1耐熱層とを、第1接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することで、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)が外側から順に積層された積層体1を得た。 In the same manner as in Example 1, the first heat-fusible resin layer and the first heat-resistant layer were adhered using a polyolefin adhesive (acid-modified polyolefin compound) forming the first adhesive layer, and then subjected to aging treatment. By carrying out, the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first heat-resistant layer (thickness: 30 μm) are laminated in order from the outside. A laminate 1 was obtained.
 次に、実施例1と同様にして、積層体1の第1耐熱層側の表面と、バリア層とを、第3接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することにより、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/第3接着層(硬化後の厚さは1.5μm)/バリア層(厚さ40μm)の積層体3を作製した。 Next, in the same manner as in Example 1, the surface of the laminate 1 on the first heat-resistant layer side and the barrier layer were bonded using a polyolefin adhesive (acid-modified polyolefin compound) that forms the third adhesive layer. By adhering and performing aging treatment, the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first heat-resistant layer (thickness: 30 μm) A laminate 3 of /third adhesive layer (thickness after curing is 1.5 μm)/barrier layer (thickness 40 μm) was produced.
 次に、積層体3のバリア層側表面に、第2耐熱層を形成する樹脂を溶融押出しすることにより、第2耐熱層を積層した。さらに得られた積層体の第2耐熱層側表面と第2熱融着性樹脂層とを、第2接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施して第2熱融着性樹脂層を積層して、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/第3接着層(硬化後の厚さは1.5μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。 Next, a second heat-resistant layer was laminated on the barrier layer side surface of the laminate 3 by melt-extruding the resin forming the second heat-resistant layer. Furthermore, the surface of the second heat-resistant layer side of the obtained laminate and the second heat-fusible resin layer are adhered using a polyolefin adhesive (acid-modified polyolefin compound) that forms the second adhesive layer, and aging is performed. The treatment is carried out to laminate the second heat-fusible resin layer, and the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first Heat-resistant layer (30 μm thick) / 3rd adhesive layer (1.5 μm thick after curing) / Barrier layer (40 μm thick) / 2nd heat-resistant layer (30 μm thick) / 2nd adhesive layer (1.5 μm thick after curing) A laminate of 1.5 μm thick/2nd heat-fusible resin layer (50 μm thick) was produced, and used as an exterior material for a power storage device.
実施例3
 第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、高密度ポリエチレン(HDPE)フィルム(厚さ50μm 融解ピーク温度130℃、水蒸気透過度0.28g・mm/m2・24h)を用意した。また、第1耐熱層及び第2耐熱層として、それぞれ、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)を用いた。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm)を用意した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 3
As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 μm, melting peak temperature 130°C, water vapor permeability 0.28 g・mm/m 2・24h) was prepared. In addition, maleic anhydride-modified polypropylene (PPa) (thickness 30 μm, melting peak temperature 160°C, water vapor permeability 0.45 g·mm/m 2 ·24 h) was used as the first heat-resistant layer and the second heat-resistant layer, respectively. . As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil were chemically treated. The chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
 まず、バリア層の一方側の表面に、第1耐熱層を形成する樹脂を溶融押出して第1耐熱層を形成し、さらに、バリア層の他方側の表面に、第2耐熱層を形成する樹脂を溶融押出することで第2耐熱層を形成して、第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)の積層体を得た。 First, a resin forming a first heat-resistant layer is melt-extruded on one surface of the barrier layer to form a first heat-resistant layer, and a resin forming a second heat-resistant layer is further formed on the other surface of the barrier layer. A second heat-resistant layer was formed by melt-extruding to obtain a laminate of first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm).
 次に、得られた積層体の第1耐熱層(厚さ30μm)側表面と、第1熱融着性樹脂層とを、第1接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することで、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)が外側から順に積層された積層体を得た。 Next, the first heat-resistant layer (thickness: 30 μm) side surface of the obtained laminate and the first heat-fusible resin layer are bonded together using a polyolefin adhesive (acid-modified polyolefin compound) that forms the first adhesive layer. ), and by performing aging treatment, the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing: 1.5 μm)/first heat-resistant layer ( A laminate was obtained in which layers (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm) were laminated in this order from the outside.
 さらに、得られた積層体の第2耐熱層(厚さ30μm)側表面と、第2熱融着性樹脂層とを、第2接着層を形成するポリオレフィン系接着剤(酸変性ポリオレフィン系化合物)を用いて接着し、エージング処理を実施することで、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。 Furthermore, the second heat-resistant layer (thickness: 30 μm) side surface of the obtained laminate and the second heat-fusible resin layer are bonded using a polyolefin adhesive (acid-modified polyolefin compound) that forms the second adhesive layer. By adhering using a resin and performing an aging treatment, the first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first heat-resistant layer (thickness: thickness 30 μm) / barrier layer (thickness 40 μm) / second heat-resistant layer (thickness 30 μm) / second adhesive layer (thickness after curing is 1.5 μm) / second heat-fusible resin layer (thickness 50 μm) ) was produced and used as an exterior material for power storage devices.
実施例4
 第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、高密度ポリエチレン(HDPE)フィルム(厚さ50μm 融解ピーク温度130℃、水蒸気透過度0.28g・mm/m2・24h)の代わりに、無水マレイン酸変性ポリエチレン(PEa)フィルム(厚さ50μm 融解ピーク温度128℃、水蒸気透過度0.46g・mm/m2・24h)を用いたこと以外は、実施例3と同様にして、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。
Example 4
As the first heat-fusible resin layer and the second heat-fusible resin layer, high-density polyethylene (HDPE) films (thickness 50 μm, melting peak temperature 130°C, water vapor permeability 0.28 g・mm/m 2・Example 3 except that a maleic anhydride-modified polyethylene (PEa) film (thickness 50 μm, melting peak temperature 128°C, water vapor permeability 0.46 g mm/m 2 ·24 h) was used instead of 24 h). Similarly, first heat-fusible resin layer (thickness: 50 μm)/first adhesive layer (thickness after curing is 1.5 μm)/first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm) ) / second heat-resistant layer (thickness: 30 μm) / second adhesive layer (thickness after curing: 1.5 μm) / second heat-fusible resin layer (thickness: 50 μm) was prepared, and a power storage device was fabricated. It was used as an exterior material.
実施例5
 第1耐熱層及び第2耐熱層として、それぞれ、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)の代わりに、無水マレイン酸変性ポリプロピレン(PPa)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)とポリプロピレン(PP)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.40g・mm/m2・24h)の積層体(PPaとPPの溶融押出しにより形成)を用いたこと以外は、実施例3と同様にして、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。なお、第1耐熱層及び第2耐熱層のPPaを、それぞれ、バリア層側に配置した。
Example 5
As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h). Maleic acid-modified polypropylene (PPa) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h) and polypropylene (PP) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0) The first heat-fusible resin layer (thickness 50 μm) was prepared in the same manner as in Example 3, except that a laminate (formed by melt extrusion of PPa and PP ) of ) / first adhesive layer (thickness after curing is 1.5 μm) / first heat-resistant layer (thickness 30 μm) / barrier layer (thickness 40 μm) / second heat-resistant layer (thickness 30 μm) / second adhesive layer (Thickness after curing: 1.5 μm)/Second heat-fusible resin layer (thickness: 50 μm) A laminate was produced and used as an exterior material for a power storage device. Note that the PPa of the first heat-resistant layer and the second heat-resistant layer were respectively arranged on the barrier layer side.
実施例6
 第1耐熱層及び第2耐熱層として、それぞれ、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)の代わりに、無水マレイン酸変性ポリプロピレン(PPa)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)とポリプロピレン(PP)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.40g・mm/m2・24h)の積層体(PPaとPPの溶融押出しにより形成)を用いたこと以外は、実施例4と同様にして、第1熱融着性樹脂層(厚さ50μm)/第1接着層(硬化後の厚さは1.5μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2接着層(硬化後の厚さは1.5μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。なお、第1耐熱層及び第2耐熱層のPPaを、それぞれ、バリア層側に配置した。
Example 6
As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h). Maleic acid-modified polypropylene (PPa) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h) and polypropylene (PP) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0) The first heat-fusible resin layer (thickness 50 μm) was prepared in the same manner as in Example 4, except that a laminate (formed by melt extrusion of PPa and PP) of ) / first adhesive layer (thickness after curing is 1.5 μm) / first heat-resistant layer (thickness 30 μm) / barrier layer (thickness 40 μm) / second heat-resistant layer (thickness 30 μm) / second adhesive layer (Thickness after curing: 1.5 μm)/Second heat-fusible resin layer (thickness: 50 μm) A laminate was produced and used as an exterior material for a power storage device. Note that the PPa of the first heat-resistant layer and the second heat-resistant layer were respectively arranged on the barrier layer side.
比較例1
 第1熱融着性樹脂層及び第2熱融着性樹脂層として、それぞれ、ポリプロピレン(PP)(厚さ50μm 融解ピーク温度160℃、水蒸気透過度0.40g・mm/m2・24h)を用意した。また、第1耐熱層及び第2耐熱層として、それぞれ、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)を用いた。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm)を用意した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Comparative example 1
Polypropylene (PP) (thickness 50 μm, melting peak temperature 160°C, water vapor permeability 0.40 g・mm/m 2・24 h) was used as the first heat-fusible resin layer and the second heat-fusible resin layer, respectively. Prepared. In addition, maleic anhydride-modified polypropylene (PPa) (thickness 30 μm, melting peak temperature 160°C, water vapor permeability 0.45 g·mm/m 2 ·24 h) was used as the first heat-resistant layer and the second heat-resistant layer, respectively. . As a barrier layer, aluminum alloy foil (JIS H4160:1994 A8021H-O (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil were chemically treated. The chemical conversion treatment of the aluminum alloy foil was performed using phenol resin, A treatment solution consisting of a chromium fluoride compound and phosphoric acid was applied to both sides of an aluminum alloy foil using a roll coating method so that the amount of chromium applied was 10 mg/m 2 (dry mass), and then baked. .
 まず、バリア層の一方側の表面に、第1耐熱層を形成する樹脂を溶融押出して第1耐熱層を形成し、さらに、バリア層の他方側の表面に、第2耐熱層を形成する樹脂を溶融押出することで第2耐熱層を形成して、第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)の積層体を得た。 First, a resin forming a first heat-resistant layer is melt-extruded on one surface of the barrier layer to form a first heat-resistant layer, and a resin forming a second heat-resistant layer is further formed on the other surface of the barrier layer. A second heat-resistant layer was formed by melt-extruding to obtain a laminate of first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm).
 次に、得られた積層体の第1耐熱層(厚さ30μm)側表面に、第1熱融着性樹脂層を形成する樹脂を溶融押出して、第1熱融着性樹脂層(厚さ50μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)が外側から順に積層された積層体を得た。 Next, the resin forming the first heat-fusible resin layer is melt-extruded onto the first heat-resistant layer (thickness: 30 μm) side surface of the obtained laminate, and the first heat-fusible resin layer (thickness: A laminate was obtained in which the following layers were sequentially laminated from the outside: first heat-resistant layer (thickness: 50 μm)/first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm).
 さらに、得られた積層体の第2耐熱層(厚さ30μm)側表面に、第2熱融着性樹脂層を形成する樹脂を溶融押出して、第1熱融着性樹脂層(厚さ50μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2熱融着性樹脂層(厚さ50μm)の積層体を作製し、蓄電デバイス用外装材とした。 Furthermore, a resin forming a second heat-fusible resin layer is melt-extruded on the second heat-resistant layer (thickness: 30 μm) side surface of the obtained laminate, and a first heat-fusible resin layer (thickness: 50 μm) is melt-extruded. )/first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm)/second heat-fusible resin layer (thickness: 50 μm). Used as exterior material for power storage devices.
比較例2
 第1耐熱層及び第2耐熱層として、それぞれ、無水マレイン酸変性ポリプロピレン(PPa)(厚さ30μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)の代わりに、無水マレイン酸変性ポリプロピレン(PPa)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.45g・mm/m2・24h)とポリプロピレン(PP)(厚さ15μm 融解ピーク温度160℃、水蒸気透過度0.40g・mm/m2・24h)の積層体(PPaとPPの溶融押出しにより形成)を用いたこと以外は、比較例1と同様にして、第1熱融着性樹脂層(厚さ50μm)/第1耐熱層(厚さ30μm)/バリア層(厚さ40μm)/第2耐熱層(厚さ30μm)/第2熱融着性樹脂層(厚さ50μm)の積層体4を作製し、蓄電デバイス用外装材とした。なお、第1耐熱層及び第2耐熱層のPPaを、それぞれ、バリア層側に配置した。
Comparative example 2
As the first heat-resistant layer and the second heat-resistant layer, anhydrous anhydride was used instead of maleic anhydride-modified polypropylene (PPa) (thickness 30 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h). Maleic acid-modified polypropylene (PPa) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0.45 g・mm/m 2・24 h) and polypropylene (PP) (thickness 15 μm, melting peak temperature 160°C, water vapor permeability 0) The first heat-fusible resin layer (thickness 50 μm )/first heat-resistant layer (thickness: 30 μm)/barrier layer (thickness: 40 μm)/second heat-resistant layer (thickness: 30 μm)/second heat-fusible resin layer (thickness: 50 μm). , used as an exterior material for power storage devices. Note that the PPa of the first heat-resistant layer and the second heat-resistant layer were respectively arranged on the barrier layer side.
〈水蒸気透過度の測定方法〉
 水蒸気透過度の測定は、JIS K 7129-2 「プラスチック-フィルム及びシート-水蒸気透過度の求め方-第2部:赤外線センサ法」に準拠し、測定装置は、MOCON社製の商品名「PERMATRAN」を用いた。フィルム状のサンプルを100mm×100mmに裁断した後、40℃90%RH条件下にて測定し、水蒸気透過度を求めた。なお、水蒸気透過性の単位は、g/(m2・24h)が広く使用されるが、厚みが異なる各試験サンプルの数値比較を容易にするため、測定により求められた数値を厚み1.0mmとして換算した単位g・mm/m2・24hを用いた。
<Measurement method of water vapor permeability>
The measurement of water vapor permeability is based on JIS K 7129-2 "Plastics - Films and sheets - Determination of water vapor permeability - Part 2: Infrared sensor method", and the measuring device is MOCON's product name "PERMATRAN". ” was used. After cutting the film-like sample into 100 mm x 100 mm, it was measured under conditions of 40° C. and 90% RH to determine the water vapor permeability. The unit of water vapor permeability is g/( m2・24h), but in order to make it easier to compare the numerical values of test samples with different thicknesses, the numerical value obtained by measurement is calculated using a thickness of 1.0 mm. The unit g·mm/m 2 ·24h was used.
[シール強度の測定]
 JIS K7127:1999の規定に準拠して、25℃環境の測定温度における蓄電デバイス用外装材のシール強度を次のようにして測定した。試験サンプルとして、TD方向の幅が15mmの短冊状に裁断した蓄電デバイス用外装材を準備した。具体的には、図6に示すように、まず、各蓄電デバイス用外装材を60mm(TD方向)×200mm(MD方向)に裁断した(図6a)。次に、外側の第1熱融着性樹脂層同士が対向するようにして、蓄電デバイス用外装材を折り目P(MD方向の中間)の位置でMD方向に2つ折りにした(図6b)。折り目Pから10mm程度MD方向の内側において、シール幅7mm、表1に記載の各温度(℃)、面圧(MPa)、及び時間(秒間)の条件で第1熱融着性樹脂層同士をヒートシールした(図6c)。ヒートシールする際、ヒートシールバーに融解した熱融着性樹脂層が着かないように、ヒートシールバーはテフロン(登録商標)コートされたものを使用した。図6cにおいて、斜線部Sがヒートシールされている部分である。次に、TD方向の幅が15mmとなるようにして、MD方向に裁断(図6dの二点鎖線の位置で裁断)して試験サンプル13を得た(図6e)。次に、試験サンプル13を各測定温度で2分間放置し、各測定温度環境において、引張り試験機(島津製作所製、AG-Xplus(商品名))で熱融着部の第1熱融着性樹脂層を300mm/分の速度で剥離させた(図7)。剥離時の最大強度をシール強度(N/15mm)とした。チャック間距離は、50mmである。3回測定した平均値とした。以下の基準でシール強度を評価した。結果を表1に示す。なお、シール強度の測定においては、図7に示されるヒートシール界面Aで試験サンプル13が剥離(破壊)される場合と、ヒートシール界面Aとは異なる部分(例えば、図7のBの位置)で試験サンプル13が破断する場合とがある。試験サンプル13が破断した場合には、破断強度をシール強度とする。
A:シール強度が30N/15mm以上である。
B:シール強度が20N/15mm以上30N/15mm未満である。
C:シール強度が20N/15mm未満である。
[Measurement of seal strength]
In accordance with the regulations of JIS K7127:1999, the seal strength of the exterior material for a power storage device at a measurement temperature of 25° C. environment was measured as follows. As a test sample, an exterior material for a power storage device was prepared which was cut into strips having a width in the TD direction of 15 mm. Specifically, as shown in FIG. 6, each exterior material for an electricity storage device was first cut into 60 mm (TD direction) x 200 mm (MD direction) (FIG. 6a). Next, the exterior material for a power storage device was folded in half in the MD direction at a crease P (middle in the MD direction) so that the outer first heat-fusible resin layers faced each other (FIG. 6b). About 10 mm inside from the crease P in the MD direction, the first heat-fusible resin layers were bonded together under the conditions of a seal width of 7 mm, each temperature (°C), surface pressure (MPa), and time (seconds) listed in Table 1. Heat sealed (Figure 6c). During heat sealing, the heat seal bar was coated with Teflon (registered trademark) so that the molten heat-adhesive resin layer did not adhere to the heat seal bar. In FIG. 6c, the shaded area S is the heat-sealed area. Next, test sample 13 was obtained by cutting in the MD direction (cutting at the position of the two-dot chain line in FIG. 6d) so that the width in the TD direction was 15 mm (FIG. 6e). Next, the test sample 13 was left for 2 minutes at each measurement temperature, and in each measurement temperature environment, a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) was used to test the first thermal bonding property of the thermally bonded part. The resin layer was peeled off at a speed of 300 mm/min (FIG. 7). The maximum strength at the time of peeling was defined as the seal strength (N/15 mm). The distance between chucks is 50 mm. The average value of three measurements was taken. Seal strength was evaluated based on the following criteria. The results are shown in Table 1. In the measurement of seal strength, the test sample 13 is peeled off (destroyed) at the heat seal interface A shown in FIG. In some cases, the test sample 13 may break. When the test sample 13 breaks, the breaking strength is taken as the sealing strength.
A: Seal strength is 30N/15mm or more.
B: Seal strength is 20 N/15 mm or more and less than 30 N/15 mm.
C: Seal strength is less than 20N/15mm.
[厚み残存率の測定]
 前記[シール強度の測定]に用いるサンプルと同様に、[厚み残存率の測定]に用いるサンプルは、ヒートシールを行う前後の蓄電デバイス用外装材を用いて、第1耐熱層と第2耐熱層の合計厚みを測定し、ヒートシールする前の第1耐熱層と第2耐熱層の合計厚みに対する、ヒートシールした後の第1耐熱層と第2耐熱層の合計厚みの割合(%)を算出した。合計厚みの残存率は、2枚の測定サンプルについての平均値とした。厚みの測定は、ミクロトーム(大和光機工業製:REM-710リトラトーム)を用いて、測定サンプルを厚み方向に裁断し、得られた断面をレーザー顕微鏡(キーエンス製:VK-9700)で観察して行った。厚み残存率の評価は以下の基準で行った。結果を表1に示す。
A:厚み残存率が80%以上である。
B:厚み残存率が70%以上80%未満である。
C:厚み残存率が70%未満である。
[Measurement of thickness remaining rate]
Similar to the sample used in the above-mentioned [Measurement of seal strength], the sample used in [Measurement of thickness residual rate] uses the exterior material for a power storage device before and after heat sealing, and the first heat-resistant layer and the second heat-resistant layer. Measure the total thickness of the layer, and calculate the ratio (%) of the total thickness of the first heat-resistant layer and second heat-resistant layer after heat-sealing to the total thickness of the first heat-resistant layer and second heat-resistant layer before heat-sealing. did. The residual rate of total thickness was the average value of the two measurement samples. The thickness was measured by cutting the measurement sample in the thickness direction using a microtome (REM-710 litratome manufactured by Daiwa Koki Industries), and observing the obtained cross section with a laser microscope (VK-9700 manufactured by Keyence). went. The thickness residual rate was evaluated based on the following criteria. The results are shown in Table 1.
A: The thickness remaining rate is 80% or more.
B: The thickness residual rate is 70% or more and less than 80%.
C: Thickness remaining rate is less than 70%.
[絶縁性の評価]
 蓄電デバイス用外装材10を裁断し、幅40mm長さ100mmの短冊片を作製して、これを試験サンプルとした。なお、幅とはTD方向、長さとはMD方向である。前記短冊片の第2熱融着性樹脂層面側に、幅方向の中央に直径25μm長さ70mmのステンレス製ワイヤー20を配置した後に、幅30mm長さ100mm厚み100μmのアルミニウム板30を各試験サンプルの第2熱融着性樹脂層側と対向するように配置した。このとき、短冊片の幅方向の中央とアルミニウム板30の幅方向の中央が一致するようにした。次に、テスターのプラス極をアルミニウム板30に、マイナス極を蓄電デバイス用外装材にそれぞれ接続した。テスターのマイナス極については、ワニ口クリップを蓄電デバイス用外装材の第1熱融着性樹脂層側からバリア層に到達するように挟み込み、テスターのマイナス極とバリア層とを電気的に接続させた。テスターは印加電圧100V、抵抗200MΩ以下となったとき導通(短絡)信号が発するよう準備した。次にテスター間に100Vの電圧をかけ、この状態でステンレス製ワイヤー20がアルミニウム板30と蓄電デバイス用外装材との間に介在した状態で、ワイヤー20に直交するように、シール幅7mm、表1に記載の各温度(℃)、面圧(MPa)の条件で第1熱融着性樹脂層同士をヒートシールし、短絡信号が発するまでの時間を計測した。5回測定し、最長、最短の1点ずつを排除した3点の平均値とした。絶縁性の評価は以下の基準で行った。結果を表1に示す。
A+:短絡するまでの時間が40秒以上である。
A:短絡するまでの時間が30秒以上40秒未満である。
B:短絡するまでの時間が20秒以上30秒未満である。
C:短絡するまでの時間が20秒未満である。
[Evaluation of insulation]
The exterior material 10 for a power storage device was cut to produce a strip with a width of 40 mm and a length of 100 mm, which was used as a test sample. Note that the width refers to the TD direction, and the length refers to the MD direction. After arranging a stainless steel wire 20 with a diameter of 25 μm and a length of 70 mm at the center in the width direction on the side of the second heat-fusible resin layer of the strip, an aluminum plate 30 with a width of 30 mm, a length of 100 mm, and a thickness of 100 μm was placed on each test sample. It was arranged so as to face the second heat-fusible resin layer side. At this time, the center of the strip in the width direction was made to coincide with the center of the aluminum plate 30 in the width direction. Next, the positive electrode of the tester was connected to the aluminum plate 30, and the negative electrode was connected to the exterior material for the power storage device. For the negative terminal of the tester, insert an alligator clip so that it reaches the barrier layer from the first heat-fusible resin layer side of the exterior material for the power storage device, and electrically connect the negative terminal of the tester and the barrier layer. Ta. The tester was prepared to issue a continuity (short circuit) signal when the applied voltage was 100 V and the resistance was 200 MΩ or less. Next, a voltage of 100V is applied between the testers, and in this state, with the stainless steel wire 20 interposed between the aluminum plate 30 and the exterior material for the power storage device, the seal width is 7 mm, and the surface is made perpendicular to the wire 20. The first heat-fusible resin layers were heat-sealed to each other under the conditions of each temperature (° C.) and surface pressure (MPa) described in Section 1, and the time until a short circuit signal was generated was measured. The measurement was performed five times, and the longest and shortest points were excluded to take the average value of the three points. The insulation was evaluated based on the following criteria. The results are shown in Table 1.
A+: The time until short circuit occurs is 40 seconds or more.
A: The time until short circuit occurs is 30 seconds or more and less than 40 seconds.
B: The time until short circuit occurs is 20 seconds or more and less than 30 seconds.
C: The time until short circuit occurs is less than 20 seconds.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~6の蓄電デバイス用外装材は、外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体から構成されており、前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる。実施例1~6の蓄電デバイス用外装材は、外側に位置する第1熱融着性樹脂層のシール強度が高く、また、シール後の潰れも抑制されており、絶縁性に優れていた。これらの結果から、実施例1~6の蓄電デバイス用外装材は、蓄電デバイスに適用することで、蓄電デバイスの外側表面を被着体に熱融着させて用いることが可能であると評価される。 The exterior materials for power storage devices of Examples 1 to 6 are composed of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer, The first heat-fusible resin layer contains polyethylene as a main component, and the second heat-fusible resin layer contains polyethylene as a main component. In the exterior materials for power storage devices of Examples 1 to 6, the sealing strength of the first heat-fusible resin layer located on the outside was high, and collapse after sealing was suppressed, and the insulation properties were excellent. From these results, it is evaluated that the exterior materials for power storage devices of Examples 1 to 6 can be used by heat-sealing the outer surface of the power storage device to the adherend by applying it to the power storage device. Ru.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体から構成されており、
 前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、
 前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる、蓄電デバイス用外装材。
項2. 前記第1熱融着性樹脂層の厚みは、30μm以上である、項1に記載の蓄電デバイス用外装材。
項3.前記第1熱融着性樹脂層の前記ポリエチレンは、高密度ポリエチレンである、項1または2に記載の蓄電デバイス用外装材。
項4. 前記第2熱融着性樹脂層の前記ポリエチレンの40℃、90%RH環境下における水蒸気透過度が0.50g・mm/m2・24h以下である、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 前記第2熱融着性樹脂層の前記ポリエチレンは、高密度ポリエチレンである、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 前記第1熱融着性樹脂層の融解ピーク温度は、130℃以下である、項1~5のいずれか1項に記載の蓄電デバイス用外装材。
項7. 前記第2熱融着性樹脂層の融解ピーク温度は、130℃以下である、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 前記第1熱融着性樹脂層と前記バリア層との間に、第1耐熱層をさらに備える、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記第1耐熱層は、ポリプロピレン又は酸変性ポリプロピレンを主成分として含む、項8に記載の蓄電デバイス用外装材。
項10. 前記第1耐熱層の厚みは、15μm以上である、項8又は9に記載の蓄電デバイス用外装材。
項11. 前記バリア層と前記第2熱融着性樹脂層との間に、第2耐熱層をさらに備える、項1~10のいずれか1項に記載の蓄電デバイス用外装材。
項12. 前記第2耐熱層は、ポリプロピレン又は酸変性ポリプロピレンを主成分として含む、項11に記載の蓄電デバイス用外装材。
項13. 前記第2耐熱層の厚みは、15μm以上である、項11又は12に記載の蓄電デバイス用外装材。
項14. 前記第1熱融着性樹脂層の前記ポリエチレンの40℃、90%RH環境下における水蒸気透過度が0.50g・mm/m2・24h以下である、項1~13のいずれか1項に記載の蓄電デバイス用外装材。
項15. 前記第2熱融着性樹脂層の厚みは、30μm以上である、項1~14のいずれか1項に記載の蓄電デバイス用外装材。
項16. 前記バリア層の厚みは、30μm以上である、項1~15のいずれか1項に記載の蓄電デバイス用外装材。
項17. 前記バリア層は、アルミニウム合金箔又はステンレス鋼箔から構成されている、項1~16のいずれか1項に記載の蓄電デバイス用外装材。
項18. 外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体を得る工程を備えており、
 前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、
 前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる、蓄電デバイス用外装材の製造方法。
項19. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~17のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項20. 前記蓄電デバイスの外側表面を構成する前記第1熱融着性樹脂層が被着体に熱融着されるようにして用いられる、項19に記載の蓄電デバイス。
項21. 前記蓄電デバイスの外側表面を構成する前記第1熱融着性樹脂層同士が熱融着されることで、複数の蓄電デバイスが積層されるようにして用いられる、項19又は20に記載の蓄電デバイス。
As described above, the present disclosure provides inventions of the following aspects.
Item 1. Consisting of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
The first heat-fusible resin layer contains polyethylene as a main component,
The second heat-fusible resin layer is an exterior material for a power storage device, which contains polyethylene as a main component.
Item 2. Item 2. The exterior material for an electricity storage device according to Item 1, wherein the first heat-fusible resin layer has a thickness of 30 μm or more.
Item 3. Item 3. The exterior material for an electricity storage device according to Item 1 or 2, wherein the polyethylene of the first heat-fusible resin layer is high-density polyethylene.
Item 4. Any one of items 1 to 3, wherein the polyethylene of the second heat-fusible resin layer has a water vapor permeability of 0.50 g mm/m 2 24 h or less in an environment of 40° C. and 90% RH. The exterior material for the electricity storage device described above.
Item 5. Item 5. The exterior material for a power storage device according to any one of Items 1 to 4, wherein the polyethylene of the second heat-fusible resin layer is high-density polyethylene.
Item 6. Item 6. The exterior material for a power storage device according to any one of Items 1 to 5, wherein the first heat-fusible resin layer has a melting peak temperature of 130° C. or less.
Section 7. Item 7. The exterior material for a power storage device according to any one of Items 1 to 6, wherein the second heat-fusible resin layer has a melting peak temperature of 130° C. or less.
Section 8. Item 8. The exterior material for a power storage device according to any one of Items 1 to 7, further comprising a first heat-resistant layer between the first heat-fusible resin layer and the barrier layer.
Item 9. Item 9. The exterior material for a power storage device according to Item 8, wherein the first heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component.
Item 10. Item 9. The exterior material for an electricity storage device according to Item 8 or 9, wherein the first heat-resistant layer has a thickness of 15 μm or more.
Item 11. Item 11. The exterior material for an electricity storage device according to any one of Items 1 to 10, further comprising a second heat-resistant layer between the barrier layer and the second heat-fusible resin layer.
Item 12. Item 12. The exterior material for a power storage device according to Item 11, wherein the second heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component.
Item 13. Item 13. The exterior material for an electricity storage device according to Item 11 or 12, wherein the second heat-resistant layer has a thickness of 15 μm or more.
Section 14. Any one of Items 1 to 13, wherein the polyethylene of the first heat-fusible resin layer has a water vapor permeability of 0.50 g mm / m 2 · 24 h or less in an environment of 40 ° C. and 90% RH. The exterior material for the electricity storage device described above.
Item 15. Item 15. The exterior material for a power storage device according to any one of Items 1 to 14, wherein the second heat-fusible resin layer has a thickness of 30 μm or more.
Section 16. Item 16. The exterior packaging material for a power storage device according to any one of Items 1 to 15, wherein the barrier layer has a thickness of 30 μm or more.
Section 17. Item 17. The exterior packaging material for a power storage device according to any one of Items 1 to 16, wherein the barrier layer is made of aluminum alloy foil or stainless steel foil.
Section 18. A step of obtaining a laminate including at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer in order from the outside,
The first heat-fusible resin layer contains polyethylene as a main component,
The method for manufacturing an exterior material for a power storage device, wherein the second heat-fusible resin layer contains polyethylene as a main component.
Item 19. An electricity storage device, wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for an electricity storage device according to any one of Items 1 to 17.
Section 20. Item 20. The electricity storage device according to Item 19, wherein the first heat-fusible resin layer constituting the outer surface of the electricity storage device is used so as to be heat-sealed to an adherend.
Section 21. Item 19 or 20. The power storage device according to item 19 or 20, wherein the first heat-fusible resin layers constituting the outer surface of the power storage device are thermally fused to each other so that a plurality of power storage devices are stacked. device.
1 第1熱融着性樹脂層
2 第2熱融着性樹脂層
3 第1耐熱層
4 第2耐熱層
5 バリア層
10 蓄電デバイス用外装材
12 第1接着層
13 試験サンプル
22 第2接着層
20 ワイヤー
30 アルミニウム板
32 第3接着層
42 第4接着層
1 First heat-fusible resin layer 2 Second heat-fusible resin layer 3 First heat-resistant layer 4 Second heat-resistant layer 5 Barrier layer 10 Exterior material for power storage device 12 First adhesive layer 13 Test sample 22 Second adhesive layer 20 wire 30 aluminum plate 32 third adhesive layer 42 fourth adhesive layer

Claims (21)

  1.  外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体から構成されており、
     前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、
     前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる、蓄電デバイス用外装材。
    Consisting of a laminate including, in order from the outside, at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer,
    The first heat-fusible resin layer contains polyethylene as a main component,
    The second heat-fusible resin layer is an exterior material for a power storage device, which contains polyethylene as a main component.
  2.  前記第1熱融着性樹脂層の厚みは、30μm以上である、請求項1に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1, wherein the first heat-fusible resin layer has a thickness of 30 μm or more.
  3.  前記第1熱融着性樹脂層の前記ポリエチレンは、高密度ポリエチレンである、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein the polyethylene of the first heat-fusible resin layer is high-density polyethylene.
  4.  前記第2熱融着性樹脂層の前記ポリエチレンの40℃、90%RH環境下における水蒸気透過度が0.50g・mm/m2・24h以下である、請求項1または2に記載の蓄電デバイス用外装材。 The electricity storage device according to claim 1 or 2, wherein the polyethylene of the second heat-fusible resin layer has a water vapor permeability of 0.50 g·mm/m 2 ·24 h or less in a 40° C., 90% RH environment. exterior material.
  5.  前記第2熱融着性樹脂層の前記ポリエチレンは、高密度ポリエチレンである、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein the polyethylene of the second heat-fusible resin layer is high-density polyethylene.
  6.  前記第1熱融着性樹脂層の融解ピーク温度は、130℃以下である、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the first heat-fusible resin layer has a melting peak temperature of 130°C or less.
  7.  前記第2熱融着性樹脂層の融解ピーク温度は、130℃以下である、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the second heat-fusible resin layer has a melting peak temperature of 130°C or less.
  8.  前記第1熱融着性樹脂層と前記バリア層との間に、第1耐熱層をさらに備える、請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1, further comprising a first heat-resistant layer between the first heat-fusible resin layer and the barrier layer.
  9.  前記第1耐熱層は、ポリプロピレン又は酸変性ポリプロピレンを主成分として含む、請求項8に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 8, wherein the first heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component.
  10.  前記第1耐熱層の厚みは、15μm以上である、請求項8または9に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 8 or 9, wherein the first heat-resistant layer has a thickness of 15 μm or more.
  11.  前記バリア層と前記第2熱融着性樹脂層との間に、第2耐熱層をさらに備える、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, further comprising a second heat-resistant layer between the barrier layer and the second heat-fusible resin layer.
  12.  前記第2耐熱層は、ポリプロピレン又は酸変性ポリプロピレンを主成分として含む、請求項11に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 11, wherein the second heat-resistant layer contains polypropylene or acid-modified polypropylene as a main component.
  13.  前記第2耐熱層の厚みは、15μm以上である、請求項11または12に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 11 or 12, wherein the second heat-resistant layer has a thickness of 15 μm or more.
  14.  前記第1熱融着性樹脂層の前記ポリエチレンの40℃、90%RH環境下における水蒸気透過度が0.50g・mm/m2・24h以下である、請求項1または2に記載の蓄電デバイス用外装材。 The electricity storage device according to claim 1 or 2, wherein the polyethylene of the first heat-fusible resin layer has a water vapor permeability of 0.50 g·mm/m 2 ·24 h or less in a 40° C., 90% RH environment. exterior material.
  15.  前記第2熱融着性樹脂層の厚みは、30μm以上である、請求項1または2項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the second heat-fusible resin layer has a thickness of 30 μm or more.
  16.  前記バリア層の厚みは、30μm以上である、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein the barrier layer has a thickness of 30 μm or more.
  17.  前記バリア層は、アルミニウム合金箔又はステンレス鋼箔から構成されている、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the barrier layer is made of aluminum alloy foil or stainless steel foil.
  18.  外側から順に、少なくとも、第1熱融着性樹脂層、バリア層、及び第2熱融着性樹脂層を備える積層体を得る工程を備えており、
     前記第1熱融着性樹脂層は、ポリエチレンを主成分として含み、
     前記第2熱融着性樹脂層は、ポリエチレンを主成分として含んでいる、蓄電デバイス用外装材の製造方法。
    A step of obtaining a laminate including at least a first heat-fusible resin layer, a barrier layer, and a second heat-fusible resin layer in order from the outside,
    The first heat-fusible resin layer contains polyethylene as a main component,
    The method for manufacturing an exterior material for a power storage device, wherein the second heat-fusible resin layer contains polyethylene as a main component.
  19.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1または2に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 An electricity storage device, wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for an electricity storage device according to claim 1 or 2.
  20.  前記蓄電デバイスの外側表面を構成する前記第1熱融着性樹脂層が被着体に熱融着されるようにして用いられる、請求項19に記載の蓄電デバイス。 The power storage device according to claim 19, wherein the first heat-fusible resin layer forming the outer surface of the power storage device is used so as to be heat-sealed to an adherend.
  21.  前記蓄電デバイスの外側表面を構成する前記第1熱融着性樹脂層同士が熱融着されることで、複数の蓄電デバイスが積層されるようにして用いられる、請求項19に記載の蓄電デバイス。 The power storage device according to claim 19, wherein the first heat-fusible resin layers constituting the outer surface of the power storage device are heat-sealed to each other, so that a plurality of power storage devices are used in a stacked manner. .
PCT/JP2023/013407 2022-03-31 2023-03-30 Outer package material for power storage devices, method for producing same and power storage device WO2023190997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060737 2022-03-31
JP2022060737 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190997A1 true WO2023190997A1 (en) 2023-10-05

Family

ID=88202213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013407 WO2023190997A1 (en) 2022-03-31 2023-03-30 Outer package material for power storage devices, method for producing same and power storage device

Country Status (1)

Country Link
WO (1) WO2023190997A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (en) * 1995-08-24 1997-03-07 Sony Corp Battery
JPH10289698A (en) * 1997-04-16 1998-10-27 Sanyo Electric Co Ltd Thin sealed battery
JP2014216242A (en) * 2013-04-26 2014-11-17 株式会社リコー Combined power storage element
JP2015521363A (en) * 2013-04-29 2015-07-27 エルジー・ケム・リミテッド Cable type secondary battery package and cable type secondary battery including the same
JP2020113538A (en) * 2019-01-15 2020-07-27 華為技術有限公司Huawei Technologies Co.,Ltd. Battery packaging material and battery
JP2020188020A (en) * 2019-01-23 2020-11-19 大日本印刷株式会社 Exterior material for all-solid battery, method for manufacturing the same and all-solid battery
WO2021201294A1 (en) * 2020-04-03 2021-10-07 大日本印刷株式会社 Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (en) * 1995-08-24 1997-03-07 Sony Corp Battery
JPH10289698A (en) * 1997-04-16 1998-10-27 Sanyo Electric Co Ltd Thin sealed battery
JP2014216242A (en) * 2013-04-26 2014-11-17 株式会社リコー Combined power storage element
JP2015521363A (en) * 2013-04-29 2015-07-27 エルジー・ケム・リミテッド Cable type secondary battery package and cable type secondary battery including the same
JP2020113538A (en) * 2019-01-15 2020-07-27 華為技術有限公司Huawei Technologies Co.,Ltd. Battery packaging material and battery
JP2020188020A (en) * 2019-01-23 2020-11-19 大日本印刷株式会社 Exterior material for all-solid battery, method for manufacturing the same and all-solid battery
WO2021201294A1 (en) * 2020-04-03 2021-10-07 大日本印刷株式会社 Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device

Similar Documents

Publication Publication Date Title
JP7367645B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP7367646B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP7205547B2 (en) Aluminum alloy foil, exterior material for power storage device, method for producing the same, and power storage device
WO2017188445A1 (en) Battery packaging material and battery
JP6592933B2 (en) Battery packaging materials
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP2019117702A (en) Battery-packaging material and battery
JP7380544B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023190997A1 (en) Outer package material for power storage devices, method for producing same and power storage device
JP7359155B2 (en) Valve body for batteries, manufacturing method thereof, and batteries
WO2016159233A1 (en) Packaging material for cell, process for producing same, and cell
JP7447797B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device
JP7355274B2 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
JP7347455B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
JP7355275B2 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
JP2024075583A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2019117701A (en) Battery-packaging material and battery
JP7435598B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP7447826B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2024111604A1 (en) Power storage device exterior material, production method for same, and power storage device
WO2023058701A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP2023126201A (en) Method for evaluating moisture permeability of external material for power storage device, quality management method for external material for power storage device, exterior material for power storage device, and method for manufacturing power storage device
CN118160133A (en) Outer packaging material for electric storage device, method for producing same, and electric storage device
JP2023153770A (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781005

Country of ref document: EP

Kind code of ref document: A1