WO2016159233A1 - Packaging material for cell, process for producing same, and cell - Google Patents

Packaging material for cell, process for producing same, and cell Download PDF

Info

Publication number
WO2016159233A1
WO2016159233A1 PCT/JP2016/060654 JP2016060654W WO2016159233A1 WO 2016159233 A1 WO2016159233 A1 WO 2016159233A1 JP 2016060654 W JP2016060654 W JP 2016060654W WO 2016159233 A1 WO2016159233 A1 WO 2016159233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
resin layer
fusible resin
packaging material
Prior art date
Application number
PCT/JP2016/060654
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 横田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2017510186A priority Critical patent/JP6939545B2/en
Publication of WO2016159233A1 publication Critical patent/WO2016159233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a packaging material for a battery, a manufacturing method thereof, and a battery.
  • a battery packaging material that can be easily processed into various shapes and can be made thinner and lighter, it is a film in which an intermediate layer / a heat-fusible resin layer composed of an outer layer / metal foil is sequentially laminated.
  • the laminated body of this is proposed.
  • a battery packaging material generally, a recess is formed by molding, and a battery element such as an electrode or an electrolytic solution is accommodated in the space formed by the recess, and the heat-fusible resin layers are heated together. By welding, a battery in which the battery element is accommodated in the battery packaging material is obtained.
  • Patent Document 1 discloses a battery case including a biaxially stretched polyamide film layer as an outer layer, an unstretched thermoplastic resin film layer as an inner layer, and an aluminum foil layer disposed between the two film layers.
  • a packaging material is disclosed.
  • the battery packaging material disclosed in Patent Document 1 has a problem that the insulation may be lowered when the battery packaging material is applied to a battery. It was done.
  • the electrolytic solution when the electrolytic solution is accommodated in the battery packaging material in the battery manufacturing process, the electrolytic solution is attached to the thermally welded portion of the inner layer, It has been found that the inner layer may be thermally welded. In such a case, bubbles formed by evaporation of the electrolyte located in the heat-welded portion are formed in the melted inner layer by heating at the time of heat-welding (for example, a high temperature of 170 ° C. or higher). In addition, it has been clarified that the bubbles grow larger and reach the intermediate layer composed of the metal foil or the vicinity thereof, and the thickness of the inner layer of the heat welded portion is reduced.
  • the present invention is an invention made by finding such a new problem. That is, the main object of the present invention is to provide a battery packaging material having high insulation properties.
  • the present inventor has intensively studied to solve the above problems.
  • it is composed of a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin, and the inner layer is rotated at 170 ° C. under dry nitrogen.
  • a resin layer having a thickness of 20 ⁇ m or more which is composed of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less at a speed of 20 rpm, the battery packaging material exhibits high insulation. I found it.
  • the present invention has been completed by further studies based on these findings.
  • this invention provides the packaging material for batteries of the aspect hung up below, its manufacturing method, and a battery.
  • Item 1 In the thickness direction, in order, a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin, The inner layer includes a resin layer having a thickness of 20 ⁇ m or more, which is made of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. material.
  • the inner layer is composed of one layer of the first heat-fusible resin layer,
  • the first heat-fusible resin layer is made of polypropylene,
  • the first heat-fusible resin layer is the resin layer;
  • Item 4. A battery packaging material according to Item 1.
  • the inner layer is composed of two layers: a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, and a second heat-fusible resin layer adjacent to the first heat-fusible resin layer. Configured, The first heat-fusible resin layer is made of polypropylene, The second heat-fusible resin layer is the resin layer; Item 4.
  • the inner layer includes a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, a second heat-fusible resin layer adjacent to the first heat-fusible resin layer, and the first layer 2 is composed of three layers of a heat-fusible resin layer and a third heat-fusible resin layer adjacent thereto,
  • the first heat-fusible resin layer is made of polypropylene, At least one of the second heat-fusible resin layer and the third heat-fusible resin layer is the resin layer;
  • Item 4. A battery packaging material according to Item 1.
  • Item 6. Item 6.
  • Item 7. Item 7.
  • a step of obtaining a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin
  • Production of a packaging material for a battery in which a resin layer having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less and having a thickness of 20 ⁇ m or more is provided as the inner layer under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm.
  • the inner layer is dried.
  • a battery having a high insulating property by including a resin layer having a thickness of 20 ⁇ m or more, which is made of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less at 170 ° C. and a rotation speed of 20 rpm under nitrogen.
  • Packaging materials can be provided. That is, the battery insulation can be enhanced by sealing the battery element with the battery packaging material of the present invention.
  • the battery packaging material of the present invention comprises a laminate comprising, in the thickness direction, an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin.
  • the resin layer is made of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less at 170 ° C. and a rotation speed of 20 rpm, and having a thickness of 20 ⁇ m or more.
  • the battery packaging material has, in the thickness direction, an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin. And an outer layer intermediate layer laminate.
  • the outer layer is the outermost layer side
  • the inner layer is the innermost layer. That is, when the battery is assembled, the inner layers 4 positioned on the periphery of the battery element are thermally welded to seal the battery element, thereby sealing the battery element.
  • the inner layer 4 is composed of one layer of the first heat-fusible resin layer 41.
  • the first heat-fusible resin layer 41 is made of polypropylene, and the first heat-fusible resin layer 41 is the aforementioned resin layer.
  • the inner layer 4 includes a first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3, and a second heat-fusible resin adjacent to the first heat-fusible resin layer 41.
  • the layer 42 is composed of two layers.
  • the first heat-fusible resin layer 41 is made of polypropylene
  • the second heat-fusible resin layer 42 is the aforementioned resin layer.
  • the inner layer 4 includes a first heat-fusible resin layer 41 as an outermost layer opposite to the intermediate layer 3, and a second heat-fusible resin layer 41 adjacent to the first heat-fusible resin layer 41.
  • the adhesive layer is composed of three layers, that is, an adhesive resin layer 42 and a third thermal adhesive resin layer 43 adjacent to the second thermal adhesive resin layer 42.
  • the first heat-fusible resin layer 41 is made of polypropylene, and at least one of the second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 is the aforementioned resin. Is a layer.
  • the inner layer 4 may be composed of four or more layers.
  • the melt viscosity is a value measured using MiniLab manufactured by HAAKE.
  • the battery packaging material of the present invention is provided with an adhesive layer 2 between the outer layer 1 and the intermediate layer 3 for the purpose of enhancing the adhesiveness as required. Good. Further, as shown in FIG. 5, the battery packaging material of the present invention is provided with an adhesive layer 5 between the intermediate layer 3 and the inner layer 4 as necessary for the purpose of enhancing the adhesiveness thereof. Also good.
  • the total thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but from the viewpoint of exhibiting high insulation while reducing the thickness of the battery packaging material, preferably about 50 ⁇ m or more and 150 ⁇ m or less, More preferably, it is about 55 ⁇ m or more and 120 ⁇ m or less.
  • the outer layer 1 is a layer positioned as the outermost layer when the battery is assembled when a surface coating layer to be described later is not provided.
  • the material forming the outer layer 1 is not particularly limited as long as it has insulating properties.
  • the material forming the outer layer 1 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. .
  • a polyester resin and a polyamide resin are mentioned, More preferably, a biaxially stretched polyester resin and a biaxially stretched polyamide resin are mentioned.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolyester, and polycarbonate.
  • polyamide resin examples include nylon 6, nylon 6,6, a copolymer of nylon 6 and nylon 6,6, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like. It is done.
  • the outer layer 1 may be formed from a single-layer resin film, but may be formed from two or more resin films in order to improve pinhole resistance and insulation.
  • the polyester resin / polyamide resin structure is preferable, and the polyethylene terephthalate / nylon structure is more preferable.
  • the outer layer 1 is formed of a multilayer resin film
  • two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin.
  • an adhesive component such as an adhesive or an adhesive resin.
  • an adhesive component such as an adhesive or an adhesive resin.
  • the type and amount of the adhesive component used, etc. This is the same as the case of the adhesive layer 2 described later.
  • stacking two or more resin films A well-known method can be employ
  • laminating by the dry laminating method it is preferable to use a urethane-based adhesive as the adhesive layer.
  • a thickness of an adhesive bond layer 2 micrometers or more and about 5 micrometers or less are mentioned, for example.
  • the thickness of the outer layer 1 is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the function as the outer layer.
  • the thickness is about 10 ⁇ m to 50 ⁇ m, preferably about 10 ⁇ m to 35 ⁇ m. .
  • the adhesive layer 2 is a layer provided between the outer layer 1 and the intermediate layer 3 in order to firmly bond them.
  • the adhesive layer 2 is formed of an adhesive that can bond the outer layer 1 and the intermediate layer 3 together.
  • the adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive.
  • the bonding mechanism of the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
  • adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester; Polyether adhesive; Polyurethane adhesive; Epoxy resin; Phenol resin resin; Polyamide resin such as nylon 6, nylon 66, nylon 12, copolymer polyamide; polyolefin, carboxylic acid modified polyolefin, metal modified polyolefin, etc.
  • Polyolefin resins polyvinyl acetate resins, cellulose adhesives, (meth) acrylic resins, polyimide resins, urea resins, melamine resins and other amino resins, chloroprene rubber, nitrile rubber, - Len rubbers such as butadiene rubber, silicone-based resins.
  • These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
  • the thickness of the adhesive layer 2 is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the function as the adhesive layer.
  • the thickness is about 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 5 ⁇ m. Degree.
  • the intermediate layer 3 is made of a metal foil.
  • the intermediate layer 3 is a layer that functions as a barrier layer for preventing water vapor, oxygen, light, and the like from entering the battery, in addition to improving the strength of the battery packaging material.
  • Specific examples of the metal constituting the intermediate layer 3 include aluminum, stainless steel, and titanium, and preferably aluminum.
  • the intermediate layer 3 is more preferably composed of an aluminum foil.
  • annealed aluminum JIS H4160 A8021H-O, JIS H4160 A8079H-O, JIS H4000: It is more preferable to use a soft aluminum foil such as 2014 A8021P-O, JIS H4000: 2014 A8079P-O).
  • the thickness of the intermediate layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor, but can be, for example, about 10 ⁇ m to 50 ⁇ m, preferably about 10 ⁇ m to 35 ⁇ m.
  • the intermediate layer 3 is preferably subjected to chemical conversion treatment on at least one surface, preferably both surfaces, for the purpose of stabilizing adhesion, preventing dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the intermediate layer.
  • chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc.
  • X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- A linear or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned.
  • the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulas (1) to (4) is preferably, for example, from 500 to 1,000,000, and from about 1,000 to 20,000. Is more preferable.
  • a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate particles dispersed therein
  • a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate particles dispersed therein
  • a method of forming a corrosion-resistant layer on the surface of the intermediate layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned.
  • a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the corrosion-resistant treatment layer.
  • examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned.
  • these cationic polymers only one type may be used, or two or more types may be used in combination.
  • examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
  • chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds.
  • chemical conversion treatments chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
  • the amount of acid-resistant coatings to be formed on the surface of the intermediate layer 3 in the chemical conversion treatment is not particularly limited, for example, in the case of performing the above-mentioned chromate treatment, the surface 1 m 2 per intermediate layer 3, chromic acid compounds About 0.5 mg to about 50 mg in terms of chromium, preferably about 1.0 mg to about 40 mg, phosphorus compound in terms of phosphorus, about 0.5 mg to about 50 mg, preferably about 1.0 mg to about 40 mg, and It is desirable that the aminated phenol polymer is contained in an amount of about 1 mg to about 200 mg, preferably about 5.0 mg to 150 mg.
  • a solution containing a compound used for forming an acid-resistant film is applied to the surface of the intermediate layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method or the like, and then the temperature of the intermediate layer is 70. It is performed by heating so that the temperature is about 200 ° C. or higher.
  • the intermediate layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this way, it is possible to more efficiently perform the chemical conversion process on the surface of the intermediate layer.
  • the inner layer 4 is made of a heat-fusible resin.
  • the inner layer 4 corresponds to the innermost layer, and is a layer in which the inner layers are thermally welded when the battery is assembled to seal the battery element.
  • the inner layer 4 includes a resin layer having a thickness of 20 ⁇ m or more, which is made of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less at 170 ° C. and a rotation speed of 20 Pa under dry nitrogen. Yes.
  • the electrolytic solution is attached to the heat-welded portion of the inner layer.
  • the inner layer may be thermally welded.
  • the electrolyte solution located in the thermally welded portion is vaporized and formed by heating at the time of thermal welding (for example, a high temperature of 170 ° C. or higher). It is clear that the bubbles are formed in the melted inner layer, the bubbles grow large and reach the intermediate layer made of metal foil or the vicinity thereof, and the thickness of the inner layer of the heat welded portion is reduced. became.
  • the inner layer 4 includes the resin layer having the specific melt viscosity and thickness, so that the electrolyte is attached to the heat-welded portion of the inner layer.
  • the resin having a melt viscosity much lower than 150 Pa ⁇ sec is used for the inner layer in consideration of heat weldability.
  • the above melt viscosity is used. Is formed of a resin of 150 Pa ⁇ sec or more, and the inner layer 4 includes a resin layer having a thickness of 20 ⁇ m or more. For this reason, it can suppress effectively that the bubble of electrolyte solution grows in the inner layer 4 fuse
  • the inner layer 4 is composed of a single layer or multiple layers. As shown in FIGS. 1 and 2, the inner layer 4 is composed of one layer of the first heat-fusible resin layer 41, and the first heat-fusible resin layer 41 is composed of polypropylene. A mode in which the first heat-fusible resin layer 41 is the above-described resin layer is preferable.
  • the inner layer 4 includes a first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3, and a second heat-adhesive resin layer 41 adjacent to the first heat-fusible resin layer 41.
  • the heat-fusible resin layer 42 is composed of two layers, the first heat-fusible resin layer 41 is composed of polypropylene, and the second heat-fusible resin layer 42 is the aforementioned resin layer. Some embodiments are preferred.
  • the inner layer 4 is adjacent to the first heat-fusible resin layer 41 and the first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3.
  • the second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 adjacent to the second heat-fusible resin layer 42, and the first heat-fusible resin layer 43.
  • 41 is made of polypropylene, and at least one of the second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 is the above-described resin layer.
  • the total thickness of the inner layer 4 is not particularly limited, but is preferably 50 ⁇ m or less, more preferably about 23 ⁇ m or more and 46 ⁇ m or less from the viewpoint of exhibiting high insulation while thinning the battery packaging material.
  • the melt viscosity of the resin layer contained in the inner layer 4 is 150 Pa ⁇ sec or more, 900 Pa ⁇ sec or less, more preferably 160 Pa ⁇ sec or more, at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. 870 Pa ⁇ sec or less.
  • the melt viscosity of the resin layer is preferably 150 Pa ⁇ sec or more and 500 Pa ⁇ sec or less, more preferably 180 Pa ⁇ sec or more and 450 Pa ⁇ sec. sec or less.
  • the melt viscosity of the resin layer is preferably 500 Pa ⁇ sec or more and 900 Pa ⁇ sec or less, more preferably Examples include 600 Pa ⁇ sec or more and 870 Pa ⁇ sec or less.
  • the melt viscosity of the resin layer can be adjusted by the type of resin constituting the resin layer, the weight average molecular weight, the additive, and the like.
  • the melting point of the resin is a value measured by the DSC method in accordance with JIS K6921-2 (ISO 1873-2.2: 95).
  • the thickness of the resin layer may be 20 ⁇ m or more, preferably about 20 ⁇ m to 46 ⁇ m, more preferably about 20 ⁇ m to 30 ⁇ m.
  • At least one of the layers (for example, the first to third heat-fusible resin layers) included in the inner layer 4 constitutes a resin layer.
  • the inner layer 4 it is preferable that only one resin layer is provided.
  • the first heat-fusible resin layer 41 is located on the outermost layer on the side opposite to the intermediate layer 3 of the inner layer 4 and is a layer formed of polypropylene.
  • the first heat-fusible resin layer 41 is the aforementioned resin layer. That is, in this case, the first heat-fusible resin layer 41 is formed of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm. 20 ⁇ m or more.
  • the first heat-fusible resin layer 41 is formed of polypropylene having a melt viscosity at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen at 120 Pa ⁇ sec or less. It is preferable that In this case, the melt viscosity of polypropylene is preferably about 60 Pa ⁇ sec to 110 Pa ⁇ sec.
  • the melting point of the polypropylene constituting the first heat-fusible resin layer 41 is not particularly limited, but is preferably about 120 ° C to 160 ° C, more preferably about 135 ° C to 150 ° C.
  • the polypropylene constituting the first heat-fusible resin layer 41 is not particularly limited, and is a block copolymer of polypropylene (for example, a block copolymer of propylene and ethylene) or a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene). And a homopolymer of polypropylene. Among these, a random copolymer of polypropylene is preferable. Moreover, as a polypropylene, you may use individually by 1 type and may be used in combination of 2 or more types.
  • the thickness of the first heat-fusible resin layer 41 is not particularly limited.
  • the thickness of the first heat-fusible resin layer 41 corresponds to the total thickness of the inner layer 4 described above.
  • the thickness of the first heat-fusible resin layer 41 is not particularly limited, but is preferably about 20 ⁇ m or more and 50 ⁇ m or less, more preferably about 23 ⁇ m or more and 46 ⁇ m or less. Can be mentioned.
  • the second heat-fusible resin layer 42 is a first heat-fusible resin layer 41 as the outermost layer on the side opposite to the intermediate layer 3 when the heat-fusible resin layer 4 is composed of multiple layers. And adjacent layers.
  • the melt viscosity of the second heat-fusible resin layer 42 is not particularly limited, but when the second heat-fusible resin layer 42 is a resin layer, it becomes the melt viscosity of the resin layer.
  • the melting point of the resin constituting the second heat-fusible resin layer 42 is not particularly limited, but is preferably about 140 ° C. or more and 165 ° C. or less, more preferably about 150 ° C. or more and 160 ° C. or less.
  • the resin component used for the second heat-fusible resin layer 42 is not particularly limited as long as it can be heat-welded.
  • polystyrene resin examples include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymer (for example, block copolymer of propylene and ethylene), polypropylene And a random copolymer (eg, a random copolymer of propylene and ethylene); an ethylene-butene-propylene terpolymer; and the like.
  • polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Is mentioned.
  • Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • the carboxylic acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of the polyolefin with carboxylic acid.
  • Examples of the carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • the carboxylic acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or by ⁇ , ⁇ with respect to the cyclic polyolefin.
  • the cyclic polyolefin to be modified with carboxylic acid is the same as described above.
  • the carboxylic acid used for modification is the same as that used for modification of the acid-modified cycloolefin copolymer.
  • the second heat-fusible resin layer 42 may be formed of one kind of resin component alone, or may be formed of a blend polymer in which two or more kinds of resin components are combined.
  • the second heat-fusible resin layer 42 is made of the above-described carboxylic acid-modified polyolefin. It is preferably formed from a carboxylic acid-modified cyclic polyolefin. Further, when the heat-fusible resin layer 4 further has another layer (for example, the third heat-fusible resin layer 43) constituting the inner layer 4 on the intermediate layer 3 side, the second heat-fusible resin layer 4 is provided.
  • the conductive resin layer 42 is preferably formed of the aforementioned polyolefin, cyclic polyolefin, or the like.
  • the thickness of the second heat-fusible resin layer 42 is not particularly limited, but is preferably about 20 ⁇ m to 46 ⁇ m, and more preferably about 20 ⁇ m to 30 ⁇ m.
  • the third heat-fusible resin layer 43 is a layer adjacent to the second heat-fusible resin layer when the heat-fusible resin layer 4 is composed of three or more layers.
  • the melt viscosity of the third heat-fusible resin layer 43 is not particularly limited, but when the third heat-fusible resin layer 43 is a resin layer, it becomes the melt viscosity of the resin layer.
  • the melting point of the resin constituting the third heat-fusible resin layer 43 is not particularly limited, but is preferably about 120 ° C. to 160 ° C., more preferably about 135 ° C. to 150 ° C.
  • the resin component used for the third heat-fusible resin layer 43 is not particularly limited as long as it can be heat-welded, and is the same as that exemplified in the second heat-fusible resin layer 42 described above. Can be illustrated.
  • the third heat-fusible resin layer 43 When the third heat-fusible resin layer 43 is adjacent to the intermediate layer 3, the third heat-fusible resin layer 43 has the above-described carboxylic acid modification since it has high adhesion to the intermediate layer 3. It is preferably formed from an acid-modified polyolefin such as polyolefin or carboxylic acid-modified cyclic polyolefin.
  • the thickness of the third heat-fusible resin layer 43 is not particularly limited, but is preferably about 3 ⁇ m to 15 ⁇ m, more preferably about 3 ⁇ m to 10 ⁇ m.
  • the inner layer 4 When the inner layer 4 is formed of four or more layers, in addition to the first to third heat-fusible resin layers, the inner layer 4 further includes a fourth heat-fusible resin layer, a fifth heat-fusible resin layer, and the like. Other layers may be included. The configuration of the other layers can be the same as that of the third heat-fusible resin layer.
  • an adhesive layer 5 is further provided between the intermediate layer 3 and the inner layer 4 as necessary for the purpose of firmly bonding the intermediate layer 3 and the inner layer 4. Also good.
  • the adhesive layer 5 is formed of an adhesive component capable of bonding the intermediate layer 3 and the inner layer 4.
  • the adhesive used for forming the adhesive layer 5 may be a two-component curable adhesive or a one-component curable adhesive. Moreover, it does not specifically limit about the adhesion
  • the inner layer 4 When the inner layer 4 is laminated on the intermediate layer 3 in the form of a laminated film, it is preferable to bond the intermediate layer 3 and the inner layer 4 via the adhesive layer 5.
  • the inner layer 4 when the inner layer 4 is formed of three or more layers, the inner layer 4 is preferably laminated on the intermediate layer 3 as a laminated film of three or more layers. For this reason, it can be said that it is preferable to have the adhesive layer 5 when the inner layer 4 is composed of three or more layers.
  • the thickness of the adhesive layer 5 is not particularly limited, but is preferably about 1 ⁇ m to 10 ⁇ m, and more preferably about 2 ⁇ m to 5 ⁇ m.
  • the outer layer 1 (as opposed to the intermediate layer 3 of the outer layer 1) may be used as necessary for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like.
  • a surface coating layer (not shown) may be provided if necessary.
  • a surface coating layer is a layer located in the outermost layer when a battery is assembled.
  • the surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix
  • Examples of the matting agent include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the matting agent is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape.
  • Specific examples of the matting agent include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide.
  • These matting agents may be used individually by 1 type, and may be used in combination of 2 or more type. Among these matting agents, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the matting agent may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment on the surface.
  • the method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer on one surface of the outer layer 1.
  • the matting agent may be added to the two-component curable resin, mixed, and then applied.
  • the thickness of the surface coating layer is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the above function as the surface coating layer.
  • the thickness is about 0.5 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m. For example, about 5 ⁇ m or less.
  • the production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained. At least the outer layer 1 and the intermediate layer 3 And a single-layer or multiple-layer inner layer 4 are laminated in this order to obtain a laminated body.
  • a resin layer having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm and having a thickness of 20 ⁇ m or more is provided.
  • the battery packaging material of the present invention can be manufactured by laminating each layer using the inner layer 4 described in the section “2. Each layer forming the battery packaging material”.
  • laminated body A a laminated body in which the outer layer 1, the adhesive layer 2, and the intermediate layer 3 are laminated in order
  • laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the outer layer 1 or the intermediate layer 3 whose surface is subjected to chemical conversion treatment, if necessary, by gravure coating, roll coating
  • a coating method such as a method
  • the intermediate layer 3 or the outer layer 1 can be laminated and the adhesive layer 2 can be cured by a dry lamination method.
  • the inner layer 4 is laminated on the intermediate layer 3 of the laminate A.
  • the resin component constituting the inner layer 4 may be applied on the intermediate layer 3 of the laminate A by a method such as gravure coating or roll coating.
  • the adhesive layer 5 is provided between the intermediate layer 3 and the inner layer 4, for example, (1) a method of laminating the adhesive layer 5 and the inner layer 4 on the intermediate layer 3 of the laminate A by coextrusion.
  • the surface coating layer is laminated on the surface of the outer layer 1 opposite to the intermediate layer 3.
  • the surface coating layer can be formed, for example, by applying the above-described resin forming the surface coating layer to the surface of the outer layer 1.
  • the order of the step of laminating the intermediate layer 3 on the surface of the outer layer 1 and the step of laminating the surface coating layer on the surface of the outer layer 1 are not particularly limited.
  • the intermediate layer 3 may be formed on the surface of the outer layer 1 opposite to the surface coating layer.
  • surface coating layer provided as necessary / outer layer 1 / adhesive layer 2 provided as needed / intermediate layer 3 having a surface subjected to chemical conversion treatment as needed / provided as needed A laminate composed of the adhesive layer 5 / inner layer 4 is formed.
  • a hot roll contact type, a hot air type You may use for near- or far-infrared type heat processing. Examples of such heat treatment conditions include 150 ° C. or more and 250 ° C. or less and 1 minute or more and 5 minutes or less.
  • each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
  • the battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.
  • a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward.
  • a battery using a battery packaging material is provided by covering the periphery of the element so that a flange portion (region where the inner layers are in contact with each other) can be formed and heat sealing the inner layers of the flange portion.
  • the battery packaging material of the present invention is used such that the sealant portion is on the inner side (surface in contact with the battery element).
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
  • a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like are suitable applications for the battery packaging material of the present invention.
  • the melting point and melt viscosity of the resin constituting the inner layer are values measured by the following methods, respectively.
  • ⁇ Measurement of melting point> It is a value measured by the DSC method in accordance with JIS K6921-2 (ISO 1873-2.2: 95).
  • ⁇ Measurement of melting temperature> Using MiniLab manufactured by HAAKE, a melt viscosity of 7.5 g of a resin sample was measured at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen.
  • Examples 1 to 6 and Comparative Examples 1 to 4> On a nylon film (thickness 25 ⁇ m) as an outer layer, an intermediate layer made of aluminum foil (thickness 30 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, an adhesive (polyol compound and aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer (thickness 3 ⁇ m) was formed on the intermediate layer. Subsequently, after laminating the adhesive layer and the outer layer on the intermediate layer, an aging treatment was carried out at 40 ° C. for 24 hours to prepare an outer layer / adhesive layer / intermediate layer laminate.
  • an adhesive polyol compound and aromatic isocyanate compound
  • the chemical conversion treatment of the aluminum foil used as the intermediate layer is performed by roll coating a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was performed on both surfaces of the aluminum foil by the method and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • Example 1 a carboxylic acid-modified polypropylene (disposed on the intermediate layer side) as a second heat-fusible resin layer on the intermediate layer of the laminate
  • the outer layer / adhesive layer / intermediate layer / second heat-fusible resin layer / first heat-fusible resin layer by coextruding random polypropylene (innermost layer) as the first heat-fusible resin layer was obtained.
  • the outer layer / adhesive layer / intermediate layer / first layer is obtained by melt-extruding random polypropylene (the innermost layer) as the first heat-fusible resin layer on the intermediate layer of the laminate.
  • a battery packaging material having a heat-sealable resin layer laminated thereon was obtained.
  • the carboxylic acid-modified polypropylene as the second heat-fusible resin layer and the random polypropylene as the first heat-fusible resin layer have melting points, melt viscosities, and thicknesses shown in Table 1, respectively.
  • Examples 7 and 8 and Comparative Examples 5 and 6> In the same manner as in Examples 1 to 6 and Comparative Examples 1 to 4, laminates of outer layer / adhesive layer / intermediate layer were produced. Next, in Examples 7 and 8, a three-layer polypropylene film having the melting point, melt viscosity, and thickness shown in Table 2 (first heat-fusible resin layer / second heat-fusible resin layer / (Having a laminated structure of a third heat-fusible resin layer). Next, the third sealant side of the polypropylene film and the intermediate layer of the laminate are adhered using an adhesive, and the outer layer / adhesive layer / intermediate layer / adhesive layer / third heat-fusible resin layer.
  • Example 7 and Comparative Example 5 A battery packaging material in which / second heat-fusible resin layer / first heat-fusible resin layer was laminated was obtained.
  • the adhesive layer between the intermediate layer and the third heat-fusible resin layer is a carboxylic acid-modified polypropylene. (15 ⁇ m), Example 8 and Comparative Example 6 were formed using a resin (3 ⁇ m) obtained by crosslinking an epoxy resin with an acid-modified polypropylene resin.
  • the polypropylene film having a three-layer structure of Example 7 and Example 8 was a three-layer co-pressed film of random polypropylene (2.5 ⁇ m) / block polypropylene (20 ⁇ m) / random polypropylene (2.5 ⁇ m).
  • the polypropylene film having the three-layer structure and the intermediate layer of the laminate were laminated by the sandwich lamination method in Example 7, and were laminated by the dry lamination method in Example 8.
  • the battery packaging materials of Examples 1 to 8 and Comparative Examples 1 to 6 were evaluated for insulation properties according to the following procedure.
  • the battery packaging material was cut into 60 mm (MD direction) ⁇ 60 mm (TD direction) sheet pieces. Next, these sheet pieces were folded in the MD direction, and two opposing sides were heat-sealed with a width of 7 mm to prepare a pouch-type exterior body having an opening on one side. Next, the obtained exterior body is sealed with a lithium ion battery main body including cells so that the metal terminal extends to the outside from one side of the opening, and the opening is formed while holding the metal terminal with the electrolytic solution.
  • a lithium ion battery was produced by hermetically sealing with a width of 3 mm.
  • the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 170 ° C., and a sealing time of 3.0 seconds.
  • the insulation evaluation test with respect to foaming was implemented using the insulation resistance testing machine 3154 made from HIOKI.
  • 10 lithium ion batteries are prepared, and one terminal of the tester is connected to the negative electrode terminal of each lithium ion battery, and the other terminal is connected to the peripheral heat seal portion of the battery exterior material with an intermediate layer of aluminum. Each was connected so as to contact the foil.
  • a voltage of 25 V was applied between the testers, and after 5 seconds, a test piece having a resistance value of 200 M ⁇ or more and 7 or more was regarded as acceptable (OK).
  • the thing less than 7 was set as the rejection (NG).
  • the results are shown in Tables 1 and 2.
  • the parentheses in the insulation evaluation indicate actual measurement values of the number of resistance values of 200 M ⁇ or more among the 10 lithium ion batteries.
  • 8 out of 10 have a resistance value of 200 M ⁇ or more.
  • the inner layer is a resin layer having a thickness of 20 ⁇ m or more formed of a resin having a melt viscosity of 150 Pa ⁇ sec or more and 900 Pa ⁇ sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm.
  • the insulating material It turns out that it is excellent in.
  • the battery packaging materials of Comparative Examples 1 to 6 having no resin layer having such a specific melt viscosity in the inner layer were inferior in insulation properties to Examples 1 to 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Provided is a packing material for cells which has high insulating properties. The packing material for cells is constituted of a laminate which comprises, in the following order along the thickness direction, an outer layer, an interlayer constituted of a metal foil, and an inner layer constituted of a fusion-bondable resin, wherein the inner layer comprises a resin layer that is constituted of a resin having a melt viscosity, as measured in a dry nitrogen atmosphere at 170ºC and a rotation speed of 20 rpm, of 150-900 Pa·sec and that has a thickness of 20 µm or greater.

Description

電池用包装材料、その製造方法、及び電池Battery packaging material, manufacturing method thereof, and battery
 本発明は、電池用包装材料、その製造方法、及び電池に関する。 The present invention relates to a packaging material for a battery, a manufacturing method thereof, and a battery.
 従来、様々なタイプの電池が開発されている。これらの電池において、電極、電解質などにより構成される電池素子は、包装材料などにより封止される必要がある。電池用包装材料としては、金属製の包装材料が多用されている。 Conventionally, various types of batteries have been developed. In these batteries, a battery element composed of an electrode, an electrolyte and the like needs to be sealed with a packaging material or the like. Metal packaging materials are frequently used as battery packaging materials.
 近年、電気自動車、ハイブリッド電気自動車、パーソナルコンピュータ、カメラ、携帯電話などの高性能化に伴い、多様な形状を有する電池が求められている。また、電池には、薄型化、軽量化なども求められている。しかしながら、従来多用されている金属製の包装材料では、電池形状の多様化に追従することが困難である。また、金属製であるため、包装材料の軽量化にも限界がある。 In recent years, batteries having various shapes have been demanded with the improvement in performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones and the like. The battery is also required to be thin and light. However, it is difficult to follow the diversification of battery shapes with metal packaging materials that have been widely used in the past. Further, since it is made of metal, there is a limit to reducing the weight of the packaging material.
 そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、外層/金属箔から構成された中間層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている。このような電池用包装材料においては、一般的に、成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの電池素子を収容し、熱融着性樹脂層同士を熱溶着させることにより、電池用包装材料の内部に電池素子が収容された電池が得られる。 Therefore, as a battery packaging material that can be easily processed into various shapes and can be made thinner and lighter, it is a film in which an intermediate layer / a heat-fusible resin layer composed of an outer layer / metal foil is sequentially laminated. The laminated body of this is proposed. In such a battery packaging material, generally, a recess is formed by molding, and a battery element such as an electrode or an electrolytic solution is accommodated in the space formed by the recess, and the heat-fusible resin layers are heated together. By welding, a battery in which the battery element is accommodated in the battery packaging material is obtained.
 例えば、特許文献1には、外側層としての2軸延伸ポリアミドフィルム層と、内側層としての熱可塑性樹脂未延伸フィルム層と、これら両フィルム層間に配設されたアルミニウム箔層とを含む電池ケース用包材が開示されている。 For example, Patent Document 1 discloses a battery case including a biaxially stretched polyamide film layer as an outer layer, an unstretched thermoplastic resin film layer as an inner layer, and an aluminum foil layer disposed between the two film layers. A packaging material is disclosed.
特開2008-287971号公報JP 2008-287971 A
 本発明者が鋭意検討を重ねた結果、特許文献1に開示されたような電池用包装材料では、電池用包装材料を電池に適用した場合、絶縁性が低下する場合があるという課題が見出された。 As a result of intensive studies by the inventor, the battery packaging material disclosed in Patent Document 1 has a problem that the insulation may be lowered when the battery packaging material is applied to a battery. It was done.
 そこで、本発明者がさらに鋭意検討を重ねた結果、電池の製造工程において、電解液などを電池用包装材料に収容する際に、内層の熱溶着される部分に電解液が付着した状態で、内層が熱溶着される場合があることを見出した。そして、このような場合に、熱溶着時の加熱(例えば、170℃以上の高温)によって、熱溶着された部分に位置する電解液が気化して形成された気泡が、溶融した内層内に形成され、さらに当該気泡が大きく成長して、金属箔から構成される中間層またはその近傍まで達し、熱溶着部分の内層の厚みが薄くなっていることが明らかとなった。このことは、絶縁性の低い電池用包装材料の熱溶着部分を切断して、ミクロトームを用いて断面を観察したところ、気泡の成長によって内層の形状が大きく変形している部分が確認されたことから明らかにされた。熱融着性樹脂層の熱溶着部部分の厚みが薄くなると、金属タブと、金属箔から構成される中間層とが接触または近接しやすくなり、電池の絶縁性が低下するという問題がある。 Therefore, as a result of further earnest studies by the present inventors, when the electrolytic solution is accommodated in the battery packaging material in the battery manufacturing process, the electrolytic solution is attached to the thermally welded portion of the inner layer, It has been found that the inner layer may be thermally welded. In such a case, bubbles formed by evaporation of the electrolyte located in the heat-welded portion are formed in the melted inner layer by heating at the time of heat-welding (for example, a high temperature of 170 ° C. or higher). In addition, it has been clarified that the bubbles grow larger and reach the intermediate layer composed of the metal foil or the vicinity thereof, and the thickness of the inner layer of the heat welded portion is reduced. This is because cutting the heat-welded part of the battery packaging material with low insulation and observing the cross section using a microtome, the part of the inner layer was greatly deformed due to the growth of bubbles was confirmed It was revealed from When the thickness of the heat-welded portion of the heat-fusible resin layer is reduced, there is a problem that the metal tab and the intermediate layer composed of the metal foil are easily brought into contact with or close to each other, resulting in a decrease in battery insulation.
 本発明は、このような新たな課題を見出したことによりなされた発明である。すなわち、本発明は、絶縁性の高い電池用包装材料を提供することを主な目的とする。 The present invention is an invention made by finding such a new problem. That is, the main object of the present invention is to provide a battery packaging material having high insulation properties.
 本発明者は、上記のような課題を解決すべく鋭意検討を行った。その結果、厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体からなり、内層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えていることにより、電池用包装材料が高い絶縁性を発揮することを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。 The present inventor has intensively studied to solve the above problems. As a result, in the thickness direction, it is composed of a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin, and the inner layer is rotated at 170 ° C. under dry nitrogen. By providing a resin layer having a thickness of 20 μm or more, which is composed of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at a speed of 20 rpm, the battery packaging material exhibits high insulation. I found it. The present invention has been completed by further studies based on these findings.
 すなわち、本発明は、下記に掲げる態様の電池用包装材料、その製造方法、及び電池を提供する。
項1. 厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体からなり、
 前記内層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えている、電池用包装材料。
項2. 前記内層が、第1熱融着性樹脂層の1層により構成されており、
 前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
 前記第1熱融着性樹脂層が、前記樹脂層である、
 項1に記載の電池用包装材料。
項3. 前記内層が、前記中間層とは反対側の最表層としての第1熱融着性樹脂層と、前記第1熱融着性樹脂層と隣接する第2熱融着性樹脂層の2層により構成されており、
 前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
 前記第2熱融着性樹脂層が、前記樹脂層である、
 項1に記載の電池用包装材料。
項4. 前記内層が、前記中間層とは反対側の最表層としての第1熱融着性樹脂層と、前記第1熱融着性樹脂層と隣接する第2熱融着性樹脂層と、前記第2熱融着性樹脂層と隣接する第3熱融着性樹脂層の3層により構成されており、
 前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
 前記第2熱融着性樹脂層及び第3熱融着性樹脂層の少なくとも1層が、前記樹脂層である、
 項1に記載の電池用包装材料。
項5. 前記第1熱融着性樹脂層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、120Pa・sec以下のポリプロピレンにより構成されている、項3又は項4に記載の電池用包装材料。
項6. 前記内層の総厚みが、50μm以下である、項1~5のいずれかに記載の電池用包装材料。
項7. 前記中間層と前記内層との間に、接着層を備える、項1~6のいずれかに記載の電池用包装材料。
項8. 正極、負極、及び電解質を備えた電池素子が、項1~7のいずれかに記載の電池用包装材料により形成された包装体によって封止されてなる、電池。
項9. 厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体を得る工程を備え、
 前記内層として、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成され、厚み20μm以上の樹脂層を設ける、電池用包装材料の製造方法。
That is, this invention provides the packaging material for batteries of the aspect hung up below, its manufacturing method, and a battery.
Item 1. In the thickness direction, in order, a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin,
The inner layer includes a resin layer having a thickness of 20 μm or more, which is made of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. material.
Item 2. The inner layer is composed of one layer of the first heat-fusible resin layer,
The first heat-fusible resin layer is made of polypropylene,
The first heat-fusible resin layer is the resin layer;
Item 4. A battery packaging material according to Item 1.
Item 3. The inner layer is composed of two layers: a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, and a second heat-fusible resin layer adjacent to the first heat-fusible resin layer. Configured,
The first heat-fusible resin layer is made of polypropylene,
The second heat-fusible resin layer is the resin layer;
Item 4. A battery packaging material according to Item 1.
Item 4. The inner layer includes a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, a second heat-fusible resin layer adjacent to the first heat-fusible resin layer, and the first layer 2 is composed of three layers of a heat-fusible resin layer and a third heat-fusible resin layer adjacent thereto,
The first heat-fusible resin layer is made of polypropylene,
At least one of the second heat-fusible resin layer and the third heat-fusible resin layer is the resin layer;
Item 4. A battery packaging material according to Item 1.
Item 5. Item 5. The battery packaging according to Item 3 or 4, wherein the first heat-fusible resin layer is made of polypropylene having a melt viscosity of 120 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. material.
Item 6. Item 6. The battery packaging material according to any one of Items 1 to 5, wherein the total thickness of the inner layer is 50 μm or less.
Item 7. Item 7. The battery packaging material according to any one of Items 1 to 6, further comprising an adhesive layer between the intermediate layer and the inner layer.
Item 8. A battery in which a battery element including a positive electrode, a negative electrode, and an electrolyte is sealed with a package formed of the battery packaging material according to any one of Items 1 to 7.
Item 9. In order in the thickness direction, comprising a step of obtaining a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin,
Production of a packaging material for a battery, in which a resin layer having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less and having a thickness of 20 μm or more is provided as the inner layer under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm. Method.
 本発明によれば、厚み方向において、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体からなる電池用包装材料において、内層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えていることにより、高い絶縁性を有する電池用包装材料を提供することができる。すなわち、本発明の電池用包装材料によって電池素子を封止することにより、電池の絶縁性を高めることができる。 According to the present invention, in the battery packaging material comprising a laminate including an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin in the thickness direction, the inner layer is dried. A battery having a high insulating property by including a resin layer having a thickness of 20 μm or more, which is made of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm under nitrogen. Packaging materials can be provided. That is, the battery insulation can be enhanced by sealing the battery element with the battery packaging material of the present invention.
本発明に係る電池用包装材料の一例の略図的断面図である。It is a schematic sectional drawing of an example of the packaging material for batteries which concerns on this invention. 本発明に係る電池用包装材料の一例の略図的断面図である。It is a schematic sectional drawing of an example of the packaging material for batteries which concerns on this invention. 本発明に係る電池用包装材料の一例の略図的断面図である。It is a schematic sectional drawing of an example of the packaging material for batteries which concerns on this invention. 本発明に係る電池用包装材料の一例の略図的断面図である。It is a schematic sectional drawing of an example of the packaging material for batteries which concerns on this invention. 本発明に係る電池用包装材料の一例の略図的断面図である。It is a schematic sectional drawing of an example of the packaging material for batteries which concerns on this invention.
 本発明の電池用包装材料は、厚み方向において、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体からなり、内層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えていることを特徴とする。以下、図1~5を参照しながら、本発明の電池用包装材料、その製造方法、及び電池素子が本発明の電池用包装材料により封止された本発明の電池について詳述する。 The battery packaging material of the present invention comprises a laminate comprising, in the thickness direction, an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin. The resin layer is made of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm, and having a thickness of 20 μm or more. Hereinafter, the battery packaging material of the present invention, the production method thereof, and the battery of the present invention in which the battery element is sealed with the battery packaging material of the present invention will be described in detail with reference to FIGS.
1.電池用包装材料の積層構造
 電池用包装材料は、図1及び図2に示すように、厚み方向において、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える外層中間層積層体からなる。本発明の電池用包装材料において、外層が最外層側になり、内層が最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する内層4同士が熱溶着して電池素子を密封することにより、電池素子が封止される。
1. As shown in FIGS. 1 and 2, the battery packaging material has, in the thickness direction, an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin. And an outer layer intermediate layer laminate. In the battery packaging material of the present invention, the outer layer is the outermost layer side, and the inner layer is the innermost layer. That is, when the battery is assembled, the inner layers 4 positioned on the periphery of the battery element are thermally welded to seal the battery element, thereby sealing the battery element.
 図1及び図2において、内層4は、第1熱融着性樹脂層41の1層により構成されている。この構成において、第1熱融着性樹脂層41は、ポリプロピレンにより構成されており、第1熱融着性樹脂層41が、前述の樹脂層である。 1 and 2, the inner layer 4 is composed of one layer of the first heat-fusible resin layer 41. In this configuration, the first heat-fusible resin layer 41 is made of polypropylene, and the first heat-fusible resin layer 41 is the aforementioned resin layer.
 図3において、内層4は、中間層3とは反対側の最表層としての第1熱融着性樹脂層41と、第1熱融着性樹脂層41と隣接する第2熱融着性樹脂層42の2層により構成されている。この構成において、第1熱融着性樹脂層41は、ポリプロピレンにより構成されており、第2熱融着性樹脂層42が、前述の樹脂層である。 In FIG. 3, the inner layer 4 includes a first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3, and a second heat-fusible resin adjacent to the first heat-fusible resin layer 41. The layer 42 is composed of two layers. In this configuration, the first heat-fusible resin layer 41 is made of polypropylene, and the second heat-fusible resin layer 42 is the aforementioned resin layer.
 図4及び図5において、内層4は、中間層3とは反対側の最表層としての第1熱融着性樹脂層41と、第1熱融着性樹脂層41と隣接する第2熱融着性樹脂層42と、第2熱融着性樹脂層42と隣接する第3熱融着性樹脂層43の3層により構成されている。この構成において、第1熱融着性樹脂層41は、ポリプロピレンにより構成されており、第2熱融着性樹脂層42及び第3熱融着性樹脂層43の少なくとも1層が、前述の樹脂層である。 4 and 5, the inner layer 4 includes a first heat-fusible resin layer 41 as an outermost layer opposite to the intermediate layer 3, and a second heat-fusible resin layer 41 adjacent to the first heat-fusible resin layer 41. The adhesive layer is composed of three layers, that is, an adhesive resin layer 42 and a third thermal adhesive resin layer 43 adjacent to the second thermal adhesive resin layer 42. In this configuration, the first heat-fusible resin layer 41 is made of polypropylene, and at least one of the second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 is the aforementioned resin. Is a layer.
 内層4は、4層以上により構成されていてもよい。なお、本発明において、溶融粘度は、HAAKE社製のMiniLabを用いて測定した値である。 The inner layer 4 may be composed of four or more layers. In the present invention, the melt viscosity is a value measured using MiniLab manufactured by HAAKE.
 本発明の電池用包装材料は、図2に示すように、外層1と中間層3との間に、これらの接着性を高める目的で、必要に応じて接着剤層2が設けられていてもよい。また、本発明の電池用包装材料は、図5に示すように、中間層3と内層4との間に、これらの接着性を高める目的で、必要に応じて接着層5が設けられていてもよい。 As shown in FIG. 2, the battery packaging material of the present invention is provided with an adhesive layer 2 between the outer layer 1 and the intermediate layer 3 for the purpose of enhancing the adhesiveness as required. Good. Further, as shown in FIG. 5, the battery packaging material of the present invention is provided with an adhesive layer 5 between the intermediate layer 3 and the inner layer 4 as necessary for the purpose of enhancing the adhesiveness thereof. Also good.
 本発明の電池用包装材料を構成する積層体の総厚みとしては、特に制限されないが、電池用包装材料を薄型化しつつ、高い絶縁性を発揮する観点からは、好ましくは50μm以上150μm以下程度、より好ましくは55μm以上120μm以下程度が挙げられる。 The total thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but from the viewpoint of exhibiting high insulation while reducing the thickness of the battery packaging material, preferably about 50 μm or more and 150 μm or less, More preferably, it is about 55 μm or more and 120 μm or less.
[外層1]
 本発明の電池用包装材料において、外層1は、後述する表面被覆層を設けない場合には、電池を組み立てた際に、最外層に位置する層である。外層1を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。外層1を形成する素材としては、例えば、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物等の樹脂フィルムが挙げられる。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂が挙げられ、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。
[Outer layer 1]
In the battery packaging material of the present invention, the outer layer 1 is a layer positioned as the outermost layer when the battery is assembled when a surface coating layer to be described later is not provided. The material forming the outer layer 1 is not particularly limited as long as it has insulating properties. Examples of the material forming the outer layer 1 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. . Among these, Preferably a polyester resin and a polyamide resin are mentioned, More preferably, a biaxially stretched polyester resin and a biaxially stretched polyamide resin are mentioned. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolyester, and polycarbonate. Specific examples of the polyamide resin include nylon 6, nylon 6,6, a copolymer of nylon 6 and nylon 6,6, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like. It is done.
 外層1は、1層の樹脂フィルムから形成されていてもよいが、耐ピンホール性や絶縁性を向上させるために、2層以上の樹脂フィルムで形成されていてもよい。例えば、外層1を2層の樹脂フィルムから形成する場合、ポリエステル樹脂/ポリアミド樹脂の構成にすることが好ましく、ポリエチレンテレフタレート/ナイロンの構成にすることがより好ましい。なお、当該積層構成においては、ポリエステル樹脂またはポリエチレンテレフタレートが最外層に位置するように外層1を積層することが好ましい。 The outer layer 1 may be formed from a single-layer resin film, but may be formed from two or more resin films in order to improve pinhole resistance and insulation. For example, when the outer layer 1 is formed from a two-layer resin film, the polyester resin / polyamide resin structure is preferable, and the polyethylene terephthalate / nylon structure is more preferable. In addition, in the said laminated structure, it is preferable to laminate | stack the outer layer 1 so that a polyester resin or a polyethylene terephthalate may be located in an outermost layer.
 外層1を多層の樹脂フィルムで形成する場合、2以上の樹脂フィルムは、接着剤または接着性樹脂などの接着成分を介して積層させればよく、使用される接着成分の種類や量等については、後述する接着剤層2の場合と同様である。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤層としてウレタン系接着剤を用いることが好ましい。このとき、接着剤層の厚みとしては、例えば2μm以上5μm以下程度が挙げられる。 When the outer layer 1 is formed of a multilayer resin film, two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin. For the type and amount of the adhesive component used, etc. This is the same as the case of the adhesive layer 2 described later. In addition, it does not restrict | limit especially as a method of laminating | stacking two or more resin films, A well-known method can be employ | adopted, for example, a dry lamination method, a sandwich lamination method, etc. are mentioned, Preferably the dry lamination method is mentioned. When laminating by the dry laminating method, it is preferable to use a urethane-based adhesive as the adhesive layer. At this time, as a thickness of an adhesive bond layer, 2 micrometers or more and about 5 micrometers or less are mentioned, for example.
 外層1の厚みについては、外層としての機能を発揮しつつ、電池用包装材料が上記の物性を満たせば特に制限されないが、例えば、10μm以上50μm以下程度、好ましくは10μm以上35μm以下程度が挙げられる。 The thickness of the outer layer 1 is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the function as the outer layer. For example, the thickness is about 10 μm to 50 μm, preferably about 10 μm to 35 μm. .
[接着剤層2]
 本発明の電池用包装材料において、接着剤層2は、外層1と中間層3を強固に接着させるために、これらの間に設けられる層である。
[Adhesive layer 2]
In the battery packaging material of the present invention, the adhesive layer 2 is a layer provided between the outer layer 1 and the intermediate layer 3 in order to firmly bond them.
 接着剤層2は、外層1と中間層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤層2の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。 The adhesive layer 2 is formed of an adhesive that can bond the outer layer 1 and the intermediate layer 3 together. The adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive. Furthermore, the bonding mechanism of the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
 接着剤層2の形成に使用できる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン系樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン系接着剤が挙げられる。 Specific examples of adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester; Polyether adhesive; Polyurethane adhesive; Epoxy resin; Phenol resin resin; Polyamide resin such as nylon 6, nylon 66, nylon 12, copolymer polyamide; polyolefin, carboxylic acid modified polyolefin, metal modified polyolefin, etc. Polyolefin resins, polyvinyl acetate resins, cellulose adhesives, (meth) acrylic resins, polyimide resins, urea resins, melamine resins and other amino resins, chloroprene rubber, nitrile rubber, - Len rubbers such as butadiene rubber, silicone-based resins. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
 接着剤層2の厚みについては、接着剤層としての機能を発揮しつつ、電池用包装材料が上記の物性を満たせば特に制限されないが、例えば、1μm以上10μm以下程度、好ましくは2μm以上5μm以下程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the function as the adhesive layer. For example, the thickness is about 1 μm to 10 μm, preferably 2 μm to 5 μm. Degree.
[中間層3]
 電池用包装材料において、中間層3は、金属箔により構成されている。中間層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止するためのバリア層として機能する層である。中間層3を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。中間層3は、アルミニウム箔により構成することがさらに好ましい。電池用包装材料の製造時に、中間層3にしわやピンホールが発生することを防止する観点からは、例えば、焼きなまし処理済みのアルミニウム(JIS H4160 A8021H-O、JIS H4160 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により構成することがより好ましい。
[Intermediate layer 3]
In the battery packaging material, the intermediate layer 3 is made of a metal foil. The intermediate layer 3 is a layer that functions as a barrier layer for preventing water vapor, oxygen, light, and the like from entering the battery, in addition to improving the strength of the battery packaging material. Specific examples of the metal constituting the intermediate layer 3 include aluminum, stainless steel, and titanium, and preferably aluminum. The intermediate layer 3 is more preferably composed of an aluminum foil. From the viewpoint of preventing generation of wrinkles and pinholes in the intermediate layer 3 during the production of the battery packaging material, for example, annealed aluminum (JIS H4160 A8021H-O, JIS H4160 A8079H-O, JIS H4000: It is more preferable to use a soft aluminum foil such as 2014 A8021P-O, JIS H4000: 2014 A8079P-O).
 中間層3の厚みは、水蒸気などのバリア層としての機能を発揮すれば特に制限されないが、例えば、10μm以上50μm以下程度、好ましくは10μm以上35μm以下程度とすることができる。 The thickness of the intermediate layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor, but can be, for example, about 10 μm to 50 μm, preferably about 10 μm to 35 μm.
 また、中間層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、中間層の表面に耐酸性皮膜を形成する処理をいう。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)から(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)から(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。 The intermediate layer 3 is preferably subjected to chemical conversion treatment on at least one surface, preferably both surfaces, for the purpose of stabilizing adhesion, preventing dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the intermediate layer. As the chemical conversion treatment, for example, chromate chromate using chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc. Treatment; Phosphoric acid chromate treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; aminated phenol having a repeating unit represented by the following general formulas (1) to (4) Examples include chromate treatment using a polymer. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be included singly or in any combination of two or more. Also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)から(4)中、Xは、水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシル基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)から(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1から4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1から4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)から(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)から(4)において、Xは、水素原子、ヒドロキシル基またはヒドロキシアルキル基であることが好ましい。一般式(1)から(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500以上100万以下であることが好ましく、1000以上2万以下程度であることがより好ましい。 In general formulas (1) to (4), X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- A linear or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulas (1) to (4) is preferably, for example, from 500 to 1,000,000, and from about 1,000 to 20,000. Is more preferable.
 また、中間層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、中間層3の表面に耐食処理層を形成する方法が挙げられる。また、耐食処理層の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 Further, as a chemical conversion treatment method for imparting corrosion resistance to the intermediate layer 3, a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate particles dispersed therein, A method of forming a corrosion-resistant layer on the surface of the intermediate layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned. Further, a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the corrosion-resistant treatment layer. Here, examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned. As these cationic polymers, only one type may be used, or two or more types may be used in combination. Examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
 化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロム酸クロメート処理や、クロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせたクロメート処理などが好ましい。 As the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among the chemical conversion treatments, chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
 化成処理において中間層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、中間層3の表面1m2当たり、クロム酸化合物がクロム換算で約0.5mg以上約50mg以下、好ましくは約1.0mg以上約40mg以下、リン化合物がリン換算で約0.5mg以上約50mg以下、好ましくは約1.0mg以上約40mg以下、及びアミノ化フェノール重合体が約1mg以上約200mg以下、好ましくは約5.0mg以上150mg以下の割合で含有されていることが望ましい。 The amount of acid-resistant coatings to be formed on the surface of the intermediate layer 3 in the chemical conversion treatment is not particularly limited, for example, in the case of performing the above-mentioned chromate treatment, the surface 1 m 2 per intermediate layer 3, chromic acid compounds About 0.5 mg to about 50 mg in terms of chromium, preferably about 1.0 mg to about 40 mg, phosphorus compound in terms of phosphorus, about 0.5 mg to about 50 mg, preferably about 1.0 mg to about 40 mg, and It is desirable that the aminated phenol polymer is contained in an amount of about 1 mg to about 200 mg, preferably about 5.0 mg to 150 mg.
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、中間層の表面に塗布した後に、中間層の温度が70℃以上200℃以下程度になるように加熱することにより行われる。また、中間層に化成処理を施す前に、予め中間層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、中間層の表面の化成処理をより効率的に行うことが可能となる。 In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the intermediate layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method or the like, and then the temperature of the intermediate layer is 70. It is performed by heating so that the temperature is about 200 ° C. or higher. In addition, before the chemical conversion treatment is performed on the intermediate layer, the intermediate layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this way, it is possible to more efficiently perform the chemical conversion process on the surface of the intermediate layer.
[内層4]
 本発明の電池用包装材料において、内層4は、熱融着性樹脂により構成されている。内層4は、最内層に該当し、電池の組み立て時に内層同士が熱溶着して電池素子を密封する層である。本発明においては、内層4は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えている。
[Inner layer 4]
In the battery packaging material of the present invention, the inner layer 4 is made of a heat-fusible resin. The inner layer 4 corresponds to the innermost layer, and is a layer in which the inner layers are thermally welded when the battery is assembled to seal the battery element. In the present invention, the inner layer 4 includes a resin layer having a thickness of 20 μm or more, which is made of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at 170 ° C. and a rotation speed of 20 Pa under dry nitrogen. Yes.
 前述の通り、本発明者が鋭意検討を重ねた結果、電池の製造工程において、電解液などを電池用包装材料に収容する際に、内層の熱溶着される部分に電解液が付着した状態で内層が熱溶着される場合があることを見出した。そして、このような場合に、従来の電池用包装材料を用いると、熱溶着時の加熱(例えば、170℃以上の高温)によって、熱溶着された部分に位置する電解液が気化して形成された気泡が、溶融した内層内に形成され、当該気泡が大きく成長して金属箔から構成される中間層またはその近傍まで到達し、熱溶着部分の内層の厚みが薄くなっていることが明らかとなった。このことは、絶縁性の低い電池用包装材料の熱溶着部分を切断して、ミクロトームを用いて断面を観察したところ、気泡の成長によって内層の形状が大きく変形している部分が確認されたことから明らかにされた。内層の熱溶着部分の厚みが薄くなると、電池の絶縁性が低下するという問題がある。 As described above, as a result of extensive studies by the inventor, when the electrolytic solution is accommodated in the battery packaging material in the battery manufacturing process, the electrolytic solution is attached to the heat-welded portion of the inner layer. It has been found that the inner layer may be thermally welded. In such a case, when a conventional battery packaging material is used, the electrolyte solution located in the thermally welded portion is vaporized and formed by heating at the time of thermal welding (for example, a high temperature of 170 ° C. or higher). It is clear that the bubbles are formed in the melted inner layer, the bubbles grow large and reach the intermediate layer made of metal foil or the vicinity thereof, and the thickness of the inner layer of the heat welded portion is reduced. became. This is because cutting the heat-welded part of the battery packaging material with low insulation and observing the cross section using a microtome, the part of the inner layer was greatly deformed due to the growth of bubbles was confirmed It was revealed from When the thickness of the heat-welded portion of the inner layer is reduced, there is a problem that the insulating properties of the battery are lowered.
 これに対して、本発明の電池用包装材料においては、内層4が上記特定の溶融粘度と厚みを備える樹脂層を備えていることにより、内層の熱溶着される部分に電解液が付着した状態で、内層が熱溶着される場合にも、溶融した内層内に電解液の気泡が大きく成長することを効果的に抑制することができる。すなわち、従来の電池用包装材料においては、熱溶着性を考慮して、上記の溶融粘度が150Pa・secよりもかなり低い樹脂が内層に使用されていたが、本発明においては、上記の溶融粘度が150Pa・sec以上の樹脂により形成され、厚みが20μm以上の樹脂層を内層4が備えている。このため、熱溶着時に溶融した内層4内に、電解液の気泡が大きく成長することを効果的に抑制することができる。従って、本発明の電池用包装材料においては、絶縁性が効果的に高められている。 On the other hand, in the battery packaging material of the present invention, the inner layer 4 includes the resin layer having the specific melt viscosity and thickness, so that the electrolyte is attached to the heat-welded portion of the inner layer. Thus, even when the inner layer is thermally welded, it is possible to effectively suppress the bubbles of the electrolyte from growing greatly in the melted inner layer. That is, in the conventional battery packaging material, the resin having a melt viscosity much lower than 150 Pa · sec is used for the inner layer in consideration of heat weldability. In the present invention, the above melt viscosity is used. Is formed of a resin of 150 Pa · sec or more, and the inner layer 4 includes a resin layer having a thickness of 20 μm or more. For this reason, it can suppress effectively that the bubble of electrolyte solution grows in the inner layer 4 fuse | melted at the time of heat welding. Therefore, in the battery packaging material of the present invention, insulation is effectively enhanced.
 内層4は、単層または複層により構成されている。
図1及び図2に示されるように、内層4は、第1熱融着性樹脂層41の1層により構成されており、第1熱融着性樹脂層41が、ポリプロピレンにより構成されており、第1熱融着性樹脂層41が、前述の樹脂層である態様が好ましい。
The inner layer 4 is composed of a single layer or multiple layers.
As shown in FIGS. 1 and 2, the inner layer 4 is composed of one layer of the first heat-fusible resin layer 41, and the first heat-fusible resin layer 41 is composed of polypropylene. A mode in which the first heat-fusible resin layer 41 is the above-described resin layer is preferable.
 また、図3に示すように、内層4は、中間層3とは反対側の最表層としての第1熱融着性樹脂層41と、第1熱融着性樹脂層41と隣接する第2熱融着性樹脂層42の2層により構成されており、第1熱融着性樹脂層41が、ポリプロピレンにより構成されており、第2熱融着性樹脂層42が、前述の樹脂層である態様が好ましい。 As shown in FIG. 3, the inner layer 4 includes a first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3, and a second heat-adhesive resin layer 41 adjacent to the first heat-fusible resin layer 41. The heat-fusible resin layer 42 is composed of two layers, the first heat-fusible resin layer 41 is composed of polypropylene, and the second heat-fusible resin layer 42 is the aforementioned resin layer. Some embodiments are preferred.
 さらに、図4及び図5に示すように、内層4は、中間層3とは反対側の最表層としての第1熱融着性樹脂層41と、第1熱融着性樹脂層41と隣接する第2熱融着性樹脂層42と、第2熱融着性樹脂層42と隣接する第3熱融着性樹脂層43の3層により構成されており、第1熱融着性樹脂層41が、ポリプロピレンにより構成されており、第2熱融着性樹脂層42及び第3熱融着性樹脂層43の少なくとも1層が、前述の樹脂層である態様が好ましい。 Further, as shown in FIGS. 4 and 5, the inner layer 4 is adjacent to the first heat-fusible resin layer 41 and the first heat-fusible resin layer 41 as the outermost layer opposite to the intermediate layer 3. The second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 adjacent to the second heat-fusible resin layer 42, and the first heat-fusible resin layer 43. It is preferable that 41 is made of polypropylene, and at least one of the second heat-fusible resin layer 42 and the third heat-fusible resin layer 43 is the above-described resin layer.
 内層4の総厚みとしては、特に制限されないが、電池用包装材料を薄型化しつつ、高い絶縁性を発揮させる観点からは、好ましくは50μm以下、よりましくは23μm以上46μm以下程度が挙げられる。 The total thickness of the inner layer 4 is not particularly limited, but is preferably 50 μm or less, more preferably about 23 μm or more and 46 μm or less from the viewpoint of exhibiting high insulation while thinning the battery packaging material.
(樹脂層)
 本発明において、内層4に含まれる樹脂層の溶融粘度としては、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下、より好ましくは160Pa・sec以上、870Pa・sec以下が挙げられる。例えば、樹脂層が、押出成形によって積層されるものである場合には、樹脂層の当該溶融粘度としては、好ましくは150Pa・sec以上、500Pa・sec以下、より好ましくは180Pa・sec以上、450Pa・sec以下が挙げられる。一方、樹脂層が、積層フィルムの形態で中間層3の上に積層されるものである場合には、樹脂層の溶融粘度としては、好ましくは500Pa・sec以上、900Pa・sec以下、より好ましくは600Pa・sec以上、870Pa・sec以下が挙げられる。なお、樹脂層の溶融粘度は、樹脂層を構成する樹脂の種類、重量平均分子量、添加剤などによって調整することができる。
(Resin layer)
In the present invention, the melt viscosity of the resin layer contained in the inner layer 4 is 150 Pa · sec or more, 900 Pa · sec or less, more preferably 160 Pa · sec or more, at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. 870 Pa · sec or less. For example, when the resin layer is laminated by extrusion molding, the melt viscosity of the resin layer is preferably 150 Pa · sec or more and 500 Pa · sec or less, more preferably 180 Pa · sec or more and 450 Pa · sec. sec or less. On the other hand, when the resin layer is laminated on the intermediate layer 3 in the form of a laminated film, the melt viscosity of the resin layer is preferably 500 Pa · sec or more and 900 Pa · sec or less, more preferably Examples include 600 Pa · sec or more and 870 Pa · sec or less. The melt viscosity of the resin layer can be adjusted by the type of resin constituting the resin layer, the weight average molecular weight, the additive, and the like.
 樹脂層の融点としては、特に制限されないが、好ましくは140℃以上165℃以下程度、より好ましくは150℃以上160℃以下程度が挙げられる。なお、本発明において、樹脂の融点は、JIS K6921-2(ISO1873-2.2:95)に準拠しDSC法により測定された値である。 Although it does not restrict | limit especially as melting | fusing point of a resin layer, Preferably it is about 140 to 165 degreeC, More preferably, about 150 to 160 degreeC is mentioned. In the present invention, the melting point of the resin is a value measured by the DSC method in accordance with JIS K6921-2 (ISO 1873-2.2: 95).
 また、樹脂層の厚みとしては、20μm以上であればよいが、好ましくは20μm以上46μm以下程度、より好ましくは20μm以上30μm以下程度が挙げられる。 The thickness of the resin layer may be 20 μm or more, preferably about 20 μm to 46 μm, more preferably about 20 μm to 30 μm.
 本発明においては、内層4に含まれる層(例えば、第1から第3熱融着性樹脂層)のうち少なくとも1層が、樹脂層を構成する。内層4においては、当該樹脂層は、1層のみ設けられていることが好ましい。 In the present invention, at least one of the layers (for example, the first to third heat-fusible resin layers) included in the inner layer 4 constitutes a resin layer. In the inner layer 4, it is preferable that only one resin layer is provided.
(第1熱融着性樹脂層41)
 本発明において、第1熱融着性樹脂層41は、内層4の中間層3とは反対側の最表層に位置しており、ポリプロピレンにより形成された層である。内層4が単層により構成されている場合には、第1熱融着性樹脂層41が前述の樹脂層となる。すなわち、この場合、第1熱融着性樹脂層41は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により形成された、厚みは20μm以上となる。
(First heat-fusible resin layer 41)
In the present invention, the first heat-fusible resin layer 41 is located on the outermost layer on the side opposite to the intermediate layer 3 of the inner layer 4 and is a layer formed of polypropylene. When the inner layer 4 is composed of a single layer, the first heat-fusible resin layer 41 is the aforementioned resin layer. That is, in this case, the first heat-fusible resin layer 41 is formed of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm. 20 μm or more.
 一方、内層4が、複層により形成されている場合、第1熱融着性樹脂層41は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、120Pa・sec以下のポリプロピレンにより形成されていることが好ましい。この場合、ポリプロピレンの溶融粘度としては、好ましくは60Pa・sec以上110Pa・sec以下程度が挙げられる。 On the other hand, when the inner layer 4 is formed of multiple layers, the first heat-fusible resin layer 41 is formed of polypropylene having a melt viscosity at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen at 120 Pa · sec or less. It is preferable that In this case, the melt viscosity of polypropylene is preferably about 60 Pa · sec to 110 Pa · sec.
 第1熱融着性樹脂層41を構成するポリプロピレンの融点としては、特に制限されないが、好ましくは120℃以上160℃以下程度、より好ましくは135℃以上150℃以下程度が挙げられる。 The melting point of the polypropylene constituting the first heat-fusible resin layer 41 is not particularly limited, but is preferably about 120 ° C to 160 ° C, more preferably about 135 ° C to 150 ° C.
 第1熱融着性樹脂層41を構成するポリプロピレンとしては、特に制限されず、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)、ポリプロピレンのホモポリマーなどが挙げられる。これらの中でも、ポリプロピレンのランダムコポリマーが好ましい。また、ポリプロピレンとしては、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The polypropylene constituting the first heat-fusible resin layer 41 is not particularly limited, and is a block copolymer of polypropylene (for example, a block copolymer of propylene and ethylene) or a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene). And a homopolymer of polypropylene. Among these, a random copolymer of polypropylene is preferable. Moreover, as a polypropylene, you may use individually by 1 type and may be used in combination of 2 or more types.
 第1熱融着性樹脂層41の厚みとしては、特に制限されない。例えば、内層4が第1熱融着性樹脂層41の単層により構成されている場合、第1熱融着性樹脂層41の厚みは、前述の内層4の総厚みに対応する。また、内層4が複層により構成されている場合、第1熱融着性樹脂層41の厚みとしては、特に制限されないが、好ましくは20μm以上50μm以下程度、より好ましくは23μm以上46μm以下程度が挙げられる。 The thickness of the first heat-fusible resin layer 41 is not particularly limited. For example, when the inner layer 4 is composed of a single layer of the first heat-fusible resin layer 41, the thickness of the first heat-fusible resin layer 41 corresponds to the total thickness of the inner layer 4 described above. When the inner layer 4 is composed of multiple layers, the thickness of the first heat-fusible resin layer 41 is not particularly limited, but is preferably about 20 μm or more and 50 μm or less, more preferably about 23 μm or more and 46 μm or less. Can be mentioned.
(第2熱融着性樹脂層42)
 第2熱融着性樹脂層42は、熱融着性樹脂層4が複層により構成されている場合に、中間層3とは反対側の最表層としての第1熱融着性樹脂層41と隣接する層である。第2熱融着性樹脂層42の上記の溶融粘度としては、特に制限されないが、第2熱融着性樹脂層42が樹脂層となる場合には、上記樹脂層の溶融粘度となる。
(Second heat-fusible resin layer 42)
The second heat-fusible resin layer 42 is a first heat-fusible resin layer 41 as the outermost layer on the side opposite to the intermediate layer 3 when the heat-fusible resin layer 4 is composed of multiple layers. And adjacent layers. The melt viscosity of the second heat-fusible resin layer 42 is not particularly limited, but when the second heat-fusible resin layer 42 is a resin layer, it becomes the melt viscosity of the resin layer.
 第2熱融着性樹脂層42を構成する樹脂の融点としては、特に制限されないが、好ましくは140℃以上165℃以下程度、より好ましくは150℃以上160℃以下程度が挙げられる。 The melting point of the resin constituting the second heat-fusible resin layer 42 is not particularly limited, but is preferably about 140 ° C. or more and 165 ° C. or less, more preferably about 150 ° C. or more and 160 ° C. or less.
 第2熱融着性樹脂層42に使用される樹脂成分については、熱溶着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンが挙げられる。 The resin component used for the second heat-fusible resin layer 42 is not particularly limited as long as it can be heat-welded. For example, polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, Can be mentioned.
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー;等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 Specific examples of the polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymer (for example, block copolymer of propylene and ethylene), polypropylene And a random copolymer (eg, a random copolymer of propylene and ethylene); an ethylene-butene-propylene terpolymer; and the like. Among these polyolefins, polyethylene and polypropylene are preferable.
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、更に好ましくはノルボルネンが挙げられる。 The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Is mentioned. Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkene is preferable, and norbornene is more preferable.
 前記カルボン酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用されるカルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。 The carboxylic acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of the polyolefin with carboxylic acid. Examples of the carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
 前記カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記酸変性シクロオレフィンコポリマーの変性に使用されるものと同様である。 The carboxylic acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its anhydride, or by α, β with respect to the cyclic polyolefin. A polymer obtained by block or graft polymerization of an unsaturated carboxylic acid or its anhydride. The cyclic polyolefin to be modified with carboxylic acid is the same as described above. The carboxylic acid used for modification is the same as that used for modification of the acid-modified cycloolefin copolymer.
 第2熱融着性樹脂層42は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。 The second heat-fusible resin layer 42 may be formed of one kind of resin component alone, or may be formed of a blend polymer in which two or more kinds of resin components are combined.
 第2熱融着性樹脂層42が中間層3と隣接する場合には、中間層3との密着性が高いことから、第2の熱融着性樹脂層42は、前述のカルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどにより形成することが好ましい。また、熱融着性樹脂層4が中間層3側に、内層4を構成する他の層(例えば、第3熱融着性樹脂層43など)をさらに有する場合には、第2熱融着性樹脂層42は、前述のポリオレフィン、環状ポリオレフィンなどにより形成することが好ましい。 When the second heat-fusible resin layer 42 is adjacent to the intermediate layer 3, the second heat-fusible resin layer 42 is made of the above-described carboxylic acid-modified polyolefin. It is preferably formed from a carboxylic acid-modified cyclic polyolefin. Further, when the heat-fusible resin layer 4 further has another layer (for example, the third heat-fusible resin layer 43) constituting the inner layer 4 on the intermediate layer 3 side, the second heat-fusible resin layer 4 is provided. The conductive resin layer 42 is preferably formed of the aforementioned polyolefin, cyclic polyolefin, or the like.
 第2熱融着性樹脂層42の厚みとしては、特に制限されないが、好ましくは20μm以上46μm以下程度、より好ましくは20μm以上30μm以下程度が挙げられる。 The thickness of the second heat-fusible resin layer 42 is not particularly limited, but is preferably about 20 μm to 46 μm, and more preferably about 20 μm to 30 μm.
(第3熱融着性樹脂層43)
 第3熱融着性樹脂層43は、熱融着性樹脂層4が3層以上により構成されている場合に、第2熱融着性樹脂層と隣接する層である。第3熱融着性樹脂層43の上記の溶融粘度としては、特に制限されないが、第3熱融着性樹脂層43が樹脂層となる場合には、上記樹脂層の溶融粘度となる。
(Third heat-fusible resin layer 43)
The third heat-fusible resin layer 43 is a layer adjacent to the second heat-fusible resin layer when the heat-fusible resin layer 4 is composed of three or more layers. The melt viscosity of the third heat-fusible resin layer 43 is not particularly limited, but when the third heat-fusible resin layer 43 is a resin layer, it becomes the melt viscosity of the resin layer.
 第3熱融着性樹脂層43を構成する樹脂の融点としては、特に制限されないが、好ましくは120℃以上160℃以下程度、より好ましくは135℃以上150℃以下程度が挙げられる。 The melting point of the resin constituting the third heat-fusible resin layer 43 is not particularly limited, but is preferably about 120 ° C. to 160 ° C., more preferably about 135 ° C. to 150 ° C.
 第3熱融着性樹脂層43に使用される樹脂成分については、熱溶着可能であることを限度として特に制限されず、前述の第2熱融着性樹脂層42で例示したものと同じものが例示できる。 The resin component used for the third heat-fusible resin layer 43 is not particularly limited as long as it can be heat-welded, and is the same as that exemplified in the second heat-fusible resin layer 42 described above. Can be illustrated.
 第3の熱融着性樹脂層43が中間層3と隣接する場合には、中間層3との密着性が高いことから、第3の熱融着性樹脂層43は、前述のカルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどの酸変性ポリオレフィンにより形成することが好ましい。 When the third heat-fusible resin layer 43 is adjacent to the intermediate layer 3, the third heat-fusible resin layer 43 has the above-described carboxylic acid modification since it has high adhesion to the intermediate layer 3. It is preferably formed from an acid-modified polyolefin such as polyolefin or carboxylic acid-modified cyclic polyolefin.
 第3熱融着性樹脂層43の厚みとしては、特に制限されないが、好ましくは3μm以上15μm以下程度、より好ましくは3μm以上10μm以下程度が挙げられる。 The thickness of the third heat-fusible resin layer 43 is not particularly limited, but is preferably about 3 μm to 15 μm, more preferably about 3 μm to 10 μm.
 (内層4のその他の層)
 内層4が4層以上により形成される場合、内層4は、第1から第3熱融着性樹脂層に加えて、さらに第4熱融着性樹脂層、第5熱融着性樹脂層などのその他の層を有していてもよい。その他の層の構成は、第3熱融着性樹脂層と同様とすることができる。
(Other layers of inner layer 4)
When the inner layer 4 is formed of four or more layers, in addition to the first to third heat-fusible resin layers, the inner layer 4 further includes a fourth heat-fusible resin layer, a fifth heat-fusible resin layer, and the like. Other layers may be included. The configuration of the other layers can be the same as that of the third heat-fusible resin layer.
[接着層5]
 本発明の電池用包装材料においては、中間層3と内層4とを強固に接着させることなどを目的として、必要に応じて、中間層3と内層4との間に接着層5をさらに設けてもよい。
[Adhesive layer 5]
In the battery packaging material of the present invention, an adhesive layer 5 is further provided between the intermediate layer 3 and the inner layer 4 as necessary for the purpose of firmly bonding the intermediate layer 3 and the inner layer 4. Also good.
 接着層5は、中間層3と内層4とを接着可能な接着剤成分によって形成される。接着層5の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。また、接着層5の形成に使用される接着剤成分の接着機構についても、特に限定されず、例えば、化学反応型、溶剤揮発型、熱溶融型、熱圧型などが挙げられる。 The adhesive layer 5 is formed of an adhesive component capable of bonding the intermediate layer 3 and the inner layer 4. The adhesive used for forming the adhesive layer 5 may be a two-component curable adhesive or a one-component curable adhesive. Moreover, it does not specifically limit about the adhesion | attachment mechanism of the adhesive agent component used for formation of the contact bonding layer 5, For example, a chemical reaction type | mold, a solvent volatilization type | mold, a hot-melt type, a hot-pressure type etc. are mentioned.
 接着層5の形成に使用できる接着剤成分の具体的としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステルなどのポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミドなどのポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィンなどのポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂などのアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴムなどのゴム;シリコーン系樹脂などが挙げられる。これらの接着剤成分は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the adhesive component that can be used to form the adhesive layer 5 include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymer polyester, and other polyester resins; polyethers Polyurethane adhesives; epoxy resins; phenol resin resins; polyamide resins such as nylon 6, nylon 66, nylon 12, copolymer polyamides; polyolefins such as polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins Resin, polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; urea resin, melamine resin and other amino resins; chloroprene rubber, nitrile rubber - styrene rubbers such as butadiene rubber; and silicone resins. These adhesive components may be used alone or in combination of two or more.
 内層4が中間層3の上に積層フィルムの形態で積層されるものである場合には、接着層5を介して、中間層3と内層4を接着することが好ましい。例えば、内層4が3層以上により形成されている場合、内層4は3層以上の積層フィルムとして中間層3の上に積層することが好ましい。このため、内層4は3層以上により構成される場合には、接着層5を有することが好ましいといえる。 When the inner layer 4 is laminated on the intermediate layer 3 in the form of a laminated film, it is preferable to bond the intermediate layer 3 and the inner layer 4 via the adhesive layer 5. For example, when the inner layer 4 is formed of three or more layers, the inner layer 4 is preferably laminated on the intermediate layer 3 as a laminated film of three or more layers. For this reason, it can be said that it is preferable to have the adhesive layer 5 when the inner layer 4 is composed of three or more layers.
 接着層5の厚みは、特に制限されないが、例えば、1μm以上10μm以下程度とすることが好ましく、2μm以上5μm以下程度とすることがより好ましい。 The thickness of the adhesive layer 5 is not particularly limited, but is preferably about 1 μm to 10 μm, and more preferably about 2 μm to 5 μm.
[表面被覆層]
 本発明の電池用包装材料においては、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、外層1の上(外層1の中間層3とは反対側)に、必要に応じて、表面被覆層(図示しない)を設けてもよい。表面被覆層は、電池を組み立てた時に、最外層に位置する層である。
[Surface coating layer]
In the battery packaging material of the present invention, the outer layer 1 (as opposed to the intermediate layer 3 of the outer layer 1) may be used as necessary for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like. On the side), a surface coating layer (not shown) may be provided if necessary. A surface coating layer is a layer located in the outermost layer when a battery is assembled.
 表面被覆層は、例えば、ポリ塩化ビニリデン、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などにより形成することができる。表面被覆層は、これらの中でも、2液硬化型樹脂により形成することが好ましい。表面被覆層を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂などが挙げられる。また、表面被覆層には、マット化剤を配合してもよい。 The surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix | blend a matting agent with a surface coating layer.
 マット化剤としては、例えば、粒径が0.5nm以上5μm以下程度の微粒子が挙げられる。マット化剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、マット化剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。マット化剤として、具体的には、タルク,シリカ,グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム,酸化アルミニウム,酸化ネオジウム,酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム,硫酸バリウム、炭酸カルシウム,ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム,シュウ酸カルシウム,ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらのマット化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのマット化剤の中でも、分散安定性やコスト等の観点から、好ましくはりシリカ、硫酸バリウム、酸化チタンが挙げられる。また、マット化剤には、表面に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。 Examples of the matting agent include fine particles having a particle size of about 0.5 nm to 5 μm. The material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. The shape of the matting agent is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape. Specific examples of the matting agent include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide. , Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, High melting point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel and the like can be mentioned. These matting agents may be used individually by 1 type, and may be used in combination of 2 or more type. Among these matting agents, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. The matting agent may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment on the surface.
 表面被覆層を形成する方法としては、特に制限されないが、例えば、表面被覆層を形成する2液硬化型樹脂を外層1の一方の表面上に塗布する方法が挙げられる。マット化剤を配合する場合には、2液硬化型樹脂にマット化剤を添加して混合した後、塗布すればよい。 The method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer on one surface of the outer layer 1. When the matting agent is blended, the matting agent may be added to the two-component curable resin, mixed, and then applied.
 表面被覆層の厚みとしては、表面被覆層としての上記の機能を発揮しつつ、電池用包装材料が上記の物性を満たせば特に制限されないが、例えば、0.5μm以上10μm以下程度、好ましくは1μm以上5μm以下程度が挙げられる。 The thickness of the surface coating layer is not particularly limited as long as the battery packaging material satisfies the above physical properties while exhibiting the above function as the surface coating layer. For example, the thickness is about 0.5 μm to 10 μm, preferably 1 μm. For example, about 5 μm or less.
3.電池用包装材料の製造方法
 本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、外層1と、中間層3と、単層または複層の内層4とをこの順に積層して積層体を得る工程を備えており、内層4として、以下のものを用いる製造方法を採用することができる。
 厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体外層中間層を得る工程を備え、
 前記内層として、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成され、厚み20μm以上の樹脂層を設ける。
3. Production method of battery packaging material The production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained. At least the outer layer 1 and the intermediate layer 3 And a single-layer or multiple-layer inner layer 4 are laminated in this order to obtain a laminated body. As the inner layer 4, a manufacturing method using the following can be adopted.
In order in the thickness direction, comprising a step of obtaining a laminate outer layer intermediate layer comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin,
As the inner layer, a resin layer having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm and having a thickness of 20 μm or more is provided.
 すなわち、内層4として、「2.電池用包装材料を形成する各層」の欄で説明した内層4を用いて、各層を積層することにより、本発明の電池用包装材料を製造することができる。 That is, as the inner layer 4, the battery packaging material of the present invention can be manufactured by laminating each layer using the inner layer 4 described in the section “2. Each layer forming the battery packaging material”.
 本発明の電池用包装材料の製造方法の一例としては、以下の通りである。まず、外層1、接着剤層2、中間層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、外層1上又は必要に応じて表面が化成処理された中間層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該中間層3又は外層1を積層させて接着剤層2を硬化させるドライラミネーション法によって行うことができる。 An example of the method for producing the battery packaging material of the present invention is as follows. First, a laminated body in which the outer layer 1, the adhesive layer 2, and the intermediate layer 3 are laminated in order (hereinafter, may be referred to as “laminated body A”) is formed. Specifically, the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the outer layer 1 or the intermediate layer 3 whose surface is subjected to chemical conversion treatment, if necessary, by gravure coating, roll coating After applying and drying by a coating method such as a method, the intermediate layer 3 or the outer layer 1 can be laminated and the adhesive layer 2 can be cured by a dry lamination method.
 次いで、積層体Aの中間層3上に、内層4を積層させる。中間層3上に内層4を直接積層させる場合には、積層体Aの中間層3上に、内層4を構成する樹脂成分をグラビアコート法、ロールコート法等の方法により塗布すればよい。また、中間層3と内層4の間に接着層5を設ける場合には、例えば、(1)積層体Aの中間層3上に、接着層5及び内層4を共押出しすることにより積層する方法(共押出しラミネーション法)、(2)別途、接着層5と内層4が積層した積層体を形成し、これを積層体Aの中間層3上に熱ラミネート法により積層する方法、(3)積層体Aの中間層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングした高温で乾燥さらには焼き付ける方法等により積層させ、この接着層5上に予めシート状に製膜した内層4をサーマルラミネート法により積層する方法、(4)積層体Aの中間層3と、予めシート状に製膜した内層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと内層4を貼り合せる方法(サンドイッチラミネート法)等が挙げられる。 Next, the inner layer 4 is laminated on the intermediate layer 3 of the laminate A. When the inner layer 4 is directly laminated on the intermediate layer 3, the resin component constituting the inner layer 4 may be applied on the intermediate layer 3 of the laminate A by a method such as gravure coating or roll coating. When the adhesive layer 5 is provided between the intermediate layer 3 and the inner layer 4, for example, (1) a method of laminating the adhesive layer 5 and the inner layer 4 on the intermediate layer 3 of the laminate A by coextrusion. (Co-extrusion lamination method), (2) Separately, a laminate in which the adhesive layer 5 and the inner layer 4 are laminated, and this is laminated on the intermediate layer 3 of the laminate A by a thermal lamination method, (3) Lamination An adhesive for forming the adhesive layer 5 is laminated on the intermediate layer 3 of the body A by an extrusion method, a solution-coated high temperature drying or baking method, and the like is formed in advance on the adhesive layer 5 in a sheet form. (4) Adhesive layer while pouring the molten adhesive layer 5 between the intermediate layer 3 of the laminate A and the inner layer 4 previously formed into a sheet shape. 5 to laminate the laminate A and the inner layer 4 through Chi lamination method) and the like.
 表面被覆層を設ける場合には、外層1の中間層3とは反対側の表面に、表面被覆層を積層する。表面被覆層は、例えば表面被覆層を形成する上記の樹脂を外層1の表面に塗布することに形成することができる。なお、外層1の表面に中間層3を積層する工程と、外層1の表面に表面被覆層を積層する工程の順番は、特に制限されない。例えば、外層1の表面に表面被覆層を形成した後、外層1の表面被覆層とは反対側の表面に中間層3を形成してもよい。 When providing the surface coating layer, the surface coating layer is laminated on the surface of the outer layer 1 opposite to the intermediate layer 3. The surface coating layer can be formed, for example, by applying the above-described resin forming the surface coating layer to the surface of the outer layer 1. The order of the step of laminating the intermediate layer 3 on the surface of the outer layer 1 and the step of laminating the surface coating layer on the surface of the outer layer 1 are not particularly limited. For example, after forming the surface coating layer on the surface of the outer layer 1, the intermediate layer 3 may be formed on the surface of the outer layer 1 opposite to the surface coating layer.
 上記のようにして、必要に応じて設けられる表面被覆層/外層1/必要に応じて設けられる接着剤層2/必要に応じて表面が化成処理された中間層3/必要に応じて設けられる接着層5/内層4からなる積層体が形成されるが、接着剤層2及び必要に応じて設けられる接着層5の接着性を強固にするために、更に、熱ロール接触式、熱風式、近又は遠赤外線式等の加熱処理に供してもよい。このような加熱処理の条件としては、例えば150℃以上250℃以下で1分間以上5分間以下が挙げられる。 As described above, surface coating layer provided as necessary / outer layer 1 / adhesive layer 2 provided as needed / intermediate layer 3 having a surface subjected to chemical conversion treatment as needed / provided as needed A laminate composed of the adhesive layer 5 / inner layer 4 is formed. In order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as necessary, a hot roll contact type, a hot air type, You may use for near- or far-infrared type heat processing. Examples of such heat treatment conditions include 150 ° C. or more and 250 ° C. or less and 1 minute or more and 5 minutes or less.
 本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。 In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
4.電池用包装材料の用途
 本発明の電池用包装材料は、正極、負極、電解質等の電池素子を密封して収容するための包装材料として使用される。
4). Application of Battery Packaging Material The battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.
 具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(内層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の内層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料を用いて電池素子を収容する場合、本発明の電池用包装材料のシーラント部分が内側(電池素子と接する面)になるようにして用いられる。 Specifically, a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward. A battery using a battery packaging material is provided by covering the periphery of the element so that a flange portion (region where the inner layers are in contact with each other) can be formed and heat sealing the inner layers of the flange portion. The In addition, when accommodating a battery element using the battery packaging material of the present invention, the battery packaging material of the present invention is used such that the sealant portion is on the inner side (surface in contact with the battery element).
 本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。なお、実施例及び比較例において、内層を構成する樹脂の融点及び溶融粘度は、それぞれ、以下の方法により測定された値である。
<融点の測定>
 JIS K6921-2(ISO1873-2.2:95)に準拠しDSC法により測定される値である。
<溶融温度の測定>
 HAAKE社製のMiniLabを用い、7.5gの樹脂試料を、乾燥窒素下、170℃、回転速度20rpmで溶融粘度測定した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples. In Examples and Comparative Examples, the melting point and melt viscosity of the resin constituting the inner layer are values measured by the following methods, respectively.
<Measurement of melting point>
It is a value measured by the DSC method in accordance with JIS K6921-2 (ISO 1873-2.2: 95).
<Measurement of melting temperature>
Using MiniLab manufactured by HAAKE, a melt viscosity of 7.5 g of a resin sample was measured at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen.
<実施例1~6及び比較例1~4>
 外層としてのナイロンフィルム(厚さ25μm)の上に、両面に化成処理を施したアルミニウム箔(厚さ30μm)からなる中間層をドライラミネート法により積層させた。具体的には、アルミニウム箔の一方面に、接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、中間層上に接着剤層(厚さ3μm)を形成した。次いで、中間層上の接着剤層と外層を積層した後、40℃で24時間のエージング処理を実施することにより、外層/接着剤層/中間層の積層体を作製した。なお、中間層として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。
<Examples 1 to 6 and Comparative Examples 1 to 4>
On a nylon film (thickness 25 μm) as an outer layer, an intermediate layer made of aluminum foil (thickness 30 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, an adhesive (polyol compound and aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer (thickness 3 μm) was formed on the intermediate layer. Subsequently, after laminating the adhesive layer and the outer layer on the intermediate layer, an aging treatment was carried out at 40 ° C. for 24 hours to prepare an outer layer / adhesive layer / intermediate layer laminate. In addition, the chemical conversion treatment of the aluminum foil used as the intermediate layer is performed by roll coating a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight). The coating was performed on both surfaces of the aluminum foil by the method and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
 次に、実施例1、3~6及び比較例1~4においては、積層体の中間層の上に、第2熱融着性樹脂層としてのカルボン酸変性ポリプロピレン(中間層側に配置)と、第1熱融着性樹脂層としてのランダムポリプロピレン(最内層)を共押し出しすることにより、外層/接着剤層/中間層/第2熱融着性樹脂層/第1熱融着性樹脂層が積層された電池用包装材料を得た。また、実施例2においては、積層体の中間層の上に、第1熱融着性樹脂層としてのランダムポリプロピレン(最内層)を溶融押出しすることにより、外層/接着剤層/中間層/第1熱融着性樹脂層が積層された電池用包装材料を得た。第2熱融着性樹脂層としてのカルボン酸変性ポリプロピレン及び第1熱融着性樹脂層としてのランダムポリプロピレンは、それぞれ、表1に記載の融点、溶融粘度、及び厚みを有する。 Next, in Examples 1, 3 to 6 and Comparative Examples 1 to 4, a carboxylic acid-modified polypropylene (disposed on the intermediate layer side) as a second heat-fusible resin layer on the intermediate layer of the laminate, The outer layer / adhesive layer / intermediate layer / second heat-fusible resin layer / first heat-fusible resin layer by coextruding random polypropylene (innermost layer) as the first heat-fusible resin layer Was obtained. In Example 2, the outer layer / adhesive layer / intermediate layer / first layer is obtained by melt-extruding random polypropylene (the innermost layer) as the first heat-fusible resin layer on the intermediate layer of the laminate. 1 A battery packaging material having a heat-sealable resin layer laminated thereon was obtained. The carboxylic acid-modified polypropylene as the second heat-fusible resin layer and the random polypropylene as the first heat-fusible resin layer have melting points, melt viscosities, and thicknesses shown in Table 1, respectively.
<実施例7,8及び比較例5,6>
 実施例1~6及び比較例1~4と同様にして、外層/接着剤層/中間層の積層体を作製した。次に、実施例7,8においては、表2に記載の融点、溶融粘度、及び厚みを有する3層構成のポリプロピレンフィルム(第1熱融着性樹脂層/第2熱融着性樹脂層/第3熱融着性樹脂層の積層構造を有する)を用意した。次に、当該ポリプロピレンフィルムの第3シーラント側と、前記積層体の中間層とを、接着剤を用いて接着し、外層/接着剤層/中間層/接着層/第3熱融着性樹脂層/第2熱融着性樹脂層/第1熱融着性樹脂層が積層された電池用包装材料を得た。なお、中間層と第3熱融着性樹脂層(比較例5、6では第1熱融着性樹脂層)との間の接着層について、実施例7及び比較例5では、カルボン酸変性ポリプロピレン(15μm)、実施例8及び比較例6では、酸変性ポリプロピレン樹脂にエポキシ樹脂を架橋させた樹脂(3μm)を用いて形成した。また、実施例7及び実施例8の3層構成のポリプロピレンフィルムは、ランダムポリプロピレン(2.5μm)/ブロックポリプロピレン(20μm)/ランダムポリプロピレン(2.5μm)の3層共押しフィルムを使用した。当該3層構成のポリプロピレンフィルムと前記積層体の中間層とを、実施例7ではサンドイッチラミネート法で積層し、実施例8ではドライラミネート法で積層した。
<Examples 7 and 8 and Comparative Examples 5 and 6>
In the same manner as in Examples 1 to 6 and Comparative Examples 1 to 4, laminates of outer layer / adhesive layer / intermediate layer were produced. Next, in Examples 7 and 8, a three-layer polypropylene film having the melting point, melt viscosity, and thickness shown in Table 2 (first heat-fusible resin layer / second heat-fusible resin layer / (Having a laminated structure of a third heat-fusible resin layer). Next, the third sealant side of the polypropylene film and the intermediate layer of the laminate are adhered using an adhesive, and the outer layer / adhesive layer / intermediate layer / adhesive layer / third heat-fusible resin layer. A battery packaging material in which / second heat-fusible resin layer / first heat-fusible resin layer was laminated was obtained. In addition, in Example 7 and Comparative Example 5, the adhesive layer between the intermediate layer and the third heat-fusible resin layer (first heat-fusible resin layer in Comparative Examples 5 and 6) is a carboxylic acid-modified polypropylene. (15 μm), Example 8 and Comparative Example 6 were formed using a resin (3 μm) obtained by crosslinking an epoxy resin with an acid-modified polypropylene resin. The polypropylene film having a three-layer structure of Example 7 and Example 8 was a three-layer co-pressed film of random polypropylene (2.5 μm) / block polypropylene (20 μm) / random polypropylene (2.5 μm). The polypropylene film having the three-layer structure and the intermediate layer of the laminate were laminated by the sandwich lamination method in Example 7, and were laminated by the dry lamination method in Example 8.
 一方、比較例5,6においては、表2に記載の融点、溶融粘度、及び厚みを有するポリプロピレンフィルムを用意した。次に、当該ポリプロピレンフィルムと、前記積層体の中間層とを、接着剤(2液硬化型ポリウレタン接着剤、厚みは表2に記載の通り)を用いて接着し、外層/接着剤層/中間層/接着層/第1熱融着性樹脂層が積層された電池用包装材料を得た。 On the other hand, in Comparative Examples 5 and 6, polypropylene films having melting points, melt viscosities and thicknesses shown in Table 2 were prepared. Next, the said polypropylene film and the intermediate | middle layer of the said laminated body are adhere | attached using an adhesive agent (2 liquid curing type polyurethane adhesive, thickness is as Table 2), and outer layer / adhesive layer / intermediate A battery packaging material in which a layer / adhesive layer / first heat-fusible resin layer was laminated was obtained.
<絶縁性評価>
 実施例1~8及び比較例1~6の電池用包装材料について、以下の手順で絶縁性評価を行った。電池用包装材料を60mm(MD方向)×60mm(TD方向)のシート片に裁断した。次に、これらのシート片をMD方向に2つ折りし、対向する2辺を7mm巾でヒートシールして1辺が開口を有するパウチタイプの外装体を作製した。次に、得られた外装体を、開口する1辺から金属端子が外部に延出するようにセルを含むリチウムイオン電池本体を封入し、電解液を入れ金属端子を挟持しながら、開口部を3mm巾で密封シールして、リチウムイオン電池を作製した。このとき、ヒートシールは、面圧1.0MPa、シール温度170℃、シール時間3.0秒の条件で行なった。次に、HIOKI製絶縁抵抗試験機3154を用いて、発泡に対する絶縁性評価試験を実施した。まず、上記リチウムイオン電池を、それぞれ10個用意して、テスターの一方の端子を各リチウムイオン電池の負極端子に接続し、他方の端子を電池用外装材料の周縁ヒートシール部に中間層のアルミニウム箔に接するようにそれぞれ接続した。次に、テスター間に25Vの電圧をかけ、5秒後に抵抗値200MΩ以上の個数が7個以上のものを合格(OK)とした。また、7個未満のものを不合格(NG)とした。結果を表1及び表2に示す。なお、表1及び表2において、絶縁性評価の括弧内は、リチウムイオン電池10個のうちの抵抗値200MΩ以上の個数の実測値を示す。例えば、実施例1においては、10個中8個が抵抗値200MΩ以上であったことを示している。
<Insulation evaluation>
The battery packaging materials of Examples 1 to 8 and Comparative Examples 1 to 6 were evaluated for insulation properties according to the following procedure. The battery packaging material was cut into 60 mm (MD direction) × 60 mm (TD direction) sheet pieces. Next, these sheet pieces were folded in the MD direction, and two opposing sides were heat-sealed with a width of 7 mm to prepare a pouch-type exterior body having an opening on one side. Next, the obtained exterior body is sealed with a lithium ion battery main body including cells so that the metal terminal extends to the outside from one side of the opening, and the opening is formed while holding the metal terminal with the electrolytic solution. A lithium ion battery was produced by hermetically sealing with a width of 3 mm. At this time, the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 170 ° C., and a sealing time of 3.0 seconds. Next, the insulation evaluation test with respect to foaming was implemented using the insulation resistance testing machine 3154 made from HIOKI. First, 10 lithium ion batteries are prepared, and one terminal of the tester is connected to the negative electrode terminal of each lithium ion battery, and the other terminal is connected to the peripheral heat seal portion of the battery exterior material with an intermediate layer of aluminum. Each was connected so as to contact the foil. Next, a voltage of 25 V was applied between the testers, and after 5 seconds, a test piece having a resistance value of 200 MΩ or more and 7 or more was regarded as acceptable (OK). Moreover, the thing less than 7 was set as the rejection (NG). The results are shown in Tables 1 and 2. In Tables 1 and 2, the parentheses in the insulation evaluation indicate actual measurement values of the number of resistance values of 200 MΩ or more among the 10 lithium ion batteries. For example, in Example 1, 8 out of 10 have a resistance value of 200 MΩ or more.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1及び表2に示される結果から、内層が、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が150Pa・sec以上、900Pa・sec以下の樹脂により形成された厚み20μm以上の樹脂層(実施例1、3~8では第2熱融着性樹脂層、実施例2では第1熱融着性樹脂層)を備えている実施例1~8の電池用包装材料においては、絶縁性に優れていることが分かる。一方、内層にこのような特定の溶融粘度を有する樹脂層を有していない比較例1~6の電池用包装材料においては、実施例1~8に比して、絶縁性が劣っていた。 From the results shown in Table 1 and Table 2, the inner layer is a resin layer having a thickness of 20 μm or more formed of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm. In the battery packaging materials of Examples 1 to 8 provided with (the second heat-fusible resin layer in Examples 1, 3 to 8, and the first heat-fusible resin layer in Example 2), the insulating material It turns out that it is excellent in. On the other hand, the battery packaging materials of Comparative Examples 1 to 6 having no resin layer having such a specific melt viscosity in the inner layer were inferior in insulation properties to Examples 1 to 8.
1…外層
2…接着剤層
3…中間層
4…内層
41…第1熱融着性樹脂層
42…第2熱融着性樹脂層
43…第3熱融着性樹脂層
5…接着層
DESCRIPTION OF SYMBOLS 1 ... Outer layer 2 ... Adhesive layer 3 ... Intermediate | middle layer 4 ... Inner layer 41 ... 1st heat-fusion resin layer 42 ... 2nd heat-fusion resin layer 43 ... 3rd heat-fusion resin layer 5 ... Adhesion layer

Claims (9)

  1.  厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体からなり、
     前記内層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成された、厚み20μm以上の樹脂層を備えている、電池用包装材料。
    In the thickness direction, in order, a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin,
    The inner layer includes a resin layer having a thickness of 20 μm or more, which is made of a resin having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. material.
  2.  前記内層が、第1熱融着性樹脂層の1層により構成されており、
     前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
     前記第1熱融着性樹脂層が、前記樹脂層である、
     請求項1に記載の電池用包装材料。
    The inner layer is composed of one layer of the first heat-fusible resin layer,
    The first heat-fusible resin layer is made of polypropylene,
    The first heat-fusible resin layer is the resin layer;
    The battery packaging material according to claim 1.
  3.  前記内層が、前記中間層とは反対側の最表層としての第1熱融着性樹脂層と、前記第1熱融着性樹脂層と隣接する第2熱融着性樹脂層の2層により構成されており、
     前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
     前記第2熱融着性樹脂層が、前記樹脂層である、
     請求項1に記載の電池用包装材料。
    The inner layer is composed of two layers: a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, and a second heat-fusible resin layer adjacent to the first heat-fusible resin layer. Configured,
    The first heat-fusible resin layer is made of polypropylene,
    The second heat-fusible resin layer is the resin layer;
    The battery packaging material according to claim 1.
  4.  前記内層が、前記中間層とは反対側の最表層としての第1熱融着性樹脂層と、前記第1熱融着性樹脂層と隣接する第2熱融着性樹脂層と、前記第2熱融着性樹脂層と隣接する第3熱融着性樹脂層の3層により構成されており、
     前記第1熱融着性樹脂層は、ポリプロピレンにより構成されており、
     前記第2熱融着性樹脂層及び第3熱融着性樹脂層の少なくとも1層が、前記樹脂層である、
     請求項1に記載の電池用包装材料。
    The inner layer includes a first heat-fusible resin layer as an outermost layer opposite to the intermediate layer, a second heat-fusible resin layer adjacent to the first heat-fusible resin layer, and the first layer 2 is composed of three layers of a heat-fusible resin layer and a third heat-fusible resin layer adjacent thereto,
    The first heat-fusible resin layer is made of polypropylene,
    At least one of the second heat-fusible resin layer and the third heat-fusible resin layer is the resin layer;
    The battery packaging material according to claim 1.
  5.  前記第1熱融着性樹脂層は、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、120Pa・sec以下のポリプロピレンにより構成されている、請求項3又は請求項4に記載の電池用包装材料。 5. The battery according to claim 3, wherein the first heat-fusible resin layer is made of polypropylene having a melt viscosity of 120 Pa · sec or less at 170 ° C. and a rotation speed of 20 rpm under dry nitrogen. Packaging materials.
  6.  前記内層の総厚みが、50μm以下である、請求項1~5のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 5, wherein the total thickness of the inner layer is 50 µm or less.
  7.  前記中間層と前記内層との間に、接着層を備える、請求項1~6のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 6, further comprising an adhesive layer between the intermediate layer and the inner layer.
  8.  正極、負極、及び電解質を備えた電池素子が、請求項1~7のいずれかに記載の電池用包装材料により形成された包装体によって封止されてなる、電池。 A battery in which a battery element including a positive electrode, a negative electrode, and an electrolyte is sealed with a package formed of the battery packaging material according to any one of claims 1 to 7.
  9.  厚み方向において順に、外層と、金属箔から構成された中間層と、熱融着性樹脂から構成された内層とを備える積層体を得る工程を備え、
     前記内層として、乾燥窒素下、170℃、回転速度20rpmでの溶融粘度が、150Pa・sec以上、900Pa・sec以下の樹脂により構成され、厚み20μm以上の樹脂層を設ける、電池用包装材料の製造方法。
    In order in the thickness direction, comprising a step of obtaining a laminate comprising an outer layer, an intermediate layer composed of a metal foil, and an inner layer composed of a heat-fusible resin,
    Production of a packaging material for a battery, in which a resin layer having a melt viscosity of 150 Pa · sec or more and 900 Pa · sec or less and having a thickness of 20 μm or more is provided as the inner layer under dry nitrogen at 170 ° C. and a rotation speed of 20 rpm. Method.
PCT/JP2016/060654 2015-03-31 2016-03-31 Packaging material for cell, process for producing same, and cell WO2016159233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510186A JP6939545B2 (en) 2015-03-31 2016-03-31 Battery packaging materials, their manufacturing methods, and batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-073330 2015-03-31
JP2015073330 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159233A1 true WO2016159233A1 (en) 2016-10-06

Family

ID=57004692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060654 WO2016159233A1 (en) 2015-03-31 2016-03-31 Packaging material for cell, process for producing same, and cell

Country Status (2)

Country Link
JP (1) JP6939545B2 (en)
WO (1) WO2016159233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195112A (en) * 2016-04-21 2017-10-26 昭和電工パッケージング株式会社 Exterior material for power storage device, and power storage device
CN108615828A (en) * 2018-03-30 2018-10-02 北京国能电池科技股份有限公司 The lithium ion battery of lithium ion battery encapsulating film, lithium ion battery packaging method and its preparation
JP7514585B2 (en) 2020-01-07 2024-07-11 株式会社レゾナック・パッケージング Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921565U (en) * 1982-07-30 1984-02-09 凸版印刷株式会社 Outer packaging material for flat thin lithium batteries
JPS60220553A (en) * 1984-04-16 1985-11-05 Matsushita Electric Ind Co Ltd Flat-type nonaqueous electrolyte cell
JPS60221952A (en) * 1984-04-19 1985-11-06 Toppan Printing Co Ltd Flat type nonaqueous electrolyte battery
JPH10152169A (en) * 1996-11-20 1998-06-09 Sumitomo Bakelite Co Ltd Medicine packaging container
JP2014063587A (en) * 2012-09-20 2014-04-10 Toppan Printing Co Ltd Exterior material for lithium ion battery and lithium ion battery using the same
JP2014199761A (en) * 2013-03-29 2014-10-23 凸版印刷株式会社 Exterior material, storage battery and method for producing exterior material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625556A (en) * 1985-06-28 1987-01-12 Toppan Printing Co Ltd Flat type nonaqueous electrolyte battery
JP2002343313A (en) * 2001-05-15 2002-11-29 Dainippon Printing Co Ltd Packaging material for battery
JP5763848B2 (en) * 2013-05-01 2015-08-12 大倉工業株式会社 Battery outer packaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921565U (en) * 1982-07-30 1984-02-09 凸版印刷株式会社 Outer packaging material for flat thin lithium batteries
JPS60220553A (en) * 1984-04-16 1985-11-05 Matsushita Electric Ind Co Ltd Flat-type nonaqueous electrolyte cell
JPS60221952A (en) * 1984-04-19 1985-11-06 Toppan Printing Co Ltd Flat type nonaqueous electrolyte battery
JPH10152169A (en) * 1996-11-20 1998-06-09 Sumitomo Bakelite Co Ltd Medicine packaging container
JP2014063587A (en) * 2012-09-20 2014-04-10 Toppan Printing Co Ltd Exterior material for lithium ion battery and lithium ion battery using the same
JP2014199761A (en) * 2013-03-29 2014-10-23 凸版印刷株式会社 Exterior material, storage battery and method for producing exterior material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195112A (en) * 2016-04-21 2017-10-26 昭和電工パッケージング株式会社 Exterior material for power storage device, and power storage device
CN108615828A (en) * 2018-03-30 2018-10-02 北京国能电池科技股份有限公司 The lithium ion battery of lithium ion battery encapsulating film, lithium ion battery packaging method and its preparation
JP7514585B2 (en) 2020-01-07 2024-07-11 株式会社レゾナック・パッケージング Heat exchanger

Also Published As

Publication number Publication date
JP6939545B2 (en) 2021-09-22
JPWO2016159233A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6988933B2 (en) Battery packaging material
EP3043399B1 (en) Resin composition for sealant layer of battery packaging material
JP6596869B2 (en) Adhesive film for metal terminals
WO2015087901A1 (en) Packaging material for battery
JP6657732B2 (en) Adhesive film for metal terminals
JP6446950B2 (en) Battery packaging materials
JP7314970B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
WO2016159190A1 (en) Cell packaging material, method for manufacturing same, and cell
JP2017139120A (en) Adhesive film for metal terminal
WO2017188445A1 (en) Battery packaging material and battery
JP6900648B2 (en) Battery packaging materials, their manufacturing methods, and batteries
WO2016158796A1 (en) Packaging material for batteries, method for producing same, and battery
JP2017139121A (en) Adhesive film for metal terminal
WO2016159233A1 (en) Packaging material for cell, process for producing same, and cell
JP2019117702A (en) Battery-packaging material and battery
JP6721870B2 (en) Battery packaging material
JP6736837B2 (en) Battery packaging material
WO2021006351A1 (en) Adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, electricity storage device using said adhesive film for metal terminals, and method for producing electricity storage device
JP6319387B2 (en) Battery packaging materials
JP6627908B2 (en) Battery packaging material
JP2016192404A (en) Cell packaging material, method for producing the same, and cell
JP6326788B2 (en) Battery packaging materials
JP2017147225A (en) Battery packaging material, method of producing the same, and battery
WO2019124282A1 (en) Battery packaging material and battery
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773113

Country of ref document: EP

Kind code of ref document: A1