WO2019124282A1 - Battery packaging material and battery - Google Patents

Battery packaging material and battery Download PDF

Info

Publication number
WO2019124282A1
WO2019124282A1 PCT/JP2018/046211 JP2018046211W WO2019124282A1 WO 2019124282 A1 WO2019124282 A1 WO 2019124282A1 JP 2018046211 W JP2018046211 W JP 2018046211W WO 2019124282 A1 WO2019124282 A1 WO 2019124282A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
packaging material
battery packaging
battery
Prior art date
Application number
PCT/JP2018/046211
Other languages
French (fr)
Japanese (ja)
Inventor
大佑 安田
山下 孝典
山下 力也
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201880082171.XA priority Critical patent/CN111512463A/en
Priority to JP2019561062A priority patent/JP7192795B2/en
Publication of WO2019124282A1 publication Critical patent/WO2019124282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery packaging material and a battery.
  • a concave portion is formed by cold molding, and battery elements such as an electrode and an electrolytic solution are disposed in the space formed by the concave portions, and heat fusible resin layers are mutually attached.
  • thermally welding a battery is obtained in which the battery element is housed inside a package formed of the battery packaging material.
  • the periphery of the battery packaging material is heated using a heated metal plate or the like.
  • the battery element is sealed by heating and pressurizing the unit for several seconds.
  • the present inventors attempted to reduce the time for sealing the battery element to several seconds to about one second.
  • the heat fusible resin layers are not sufficiently heat-fused together in a short time of 1 second, and the seal strength becomes insufficient.
  • heat fusing is performed in a short time such as 1 second, heat fusing at a higher temperature than in the past is required, but when heat fusing is performed at a high temperature, it is included in the base material layer of the battery packaging material It has also been found that moisture is vaporized inside the substrate layer to cause appearance defects.
  • the present invention provides a heat-sealable resin at a high temperature and in a short time, in a battery packaging material comprising a laminate in which a base material layer, a barrier layer, and a heat-sealable resin layer are laminated in this order.
  • the layers can be heat-sealed together, the occurrence of appearance defects of the base layer due to heat-sealed is suppressed, and further, the main object is to provide a battery packaging material excellent in seal strength in a high temperature environment. To aim.
  • the present inventors diligently studied to solve the above-mentioned problems. As a result, it consists of a layered product provided with a substrate layer, a barrier layer, and a heat-fusion resin layer in this order, and resin which constitutes a substrate layer is 220 ° C or more in melting point, and temperature 65 ° C
  • resin which constitutes a substrate layer is 220 ° C or more in melting point, and temperature 65 ° C
  • the resin having a water absorption of 1% by mass or less when left at a relative humidity of 90% for 24 hours and having a heat-fusible resin layer has a melting point of 140 ° C.
  • the battery packaging material having a capacity of 6 g / 10 min or more can thermally fuse the thermally fusible resin layers to each other at a high temperature and in a short time, and suppress the occurrence of appearance defects of the base material layer due to the thermal fusion. Furthermore, it has been found that the seal strength in a high temperature environment is excellent. The present invention has been completed by further studies based on these findings.
  • the laminate comprises at least a base material layer, a barrier layer, and a heat fusible resin layer in this order,
  • the resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours,
  • a packaging material for a battery wherein a resin constituting the heat-fusible resin layer has a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
  • the heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C.
  • the heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled off and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 25 ° C. 3.
  • Item 4 The heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other.
  • the packaging material for a battery according to any one of Items 1 to 3, wherein the tensile strength to be measured is maintained at 2N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement. Item 5.
  • the heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C.
  • the heat fusible resin layers are placed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa or more, and a time of 1 second or less, with the heat fusible resin layers of the battery packaging material facing each other.
  • Item 7. The battery packaging material according to any one of items 1 to 6, wherein the base material layer is made of a polyester resin.
  • Item 8 The battery packaging material according to any one of Items 1 to 7, wherein the thickness of the base material layer is 9 to 50 ⁇ m.
  • Item 10 A battery, wherein a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is contained in a package formed of the battery packaging material according to any one of Items 1 to 9.
  • Item 11 At least a step of laminating the base material layer, the barrier layer, and the heat fusible resin layer in this order;
  • the resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C.
  • the manufacturing method of the packaging material for batteries whose melting
  • a battery packaging material comprising at least a base layer, a barrier layer, and a heat-sealable resin layer laminated in this order
  • heat-sealable resin layers at high temperature and in a short time Can be heat-sealed, generation of appearance defects of the base material layer due to heat-sealed is suppressed, and a battery packaging material excellent in seal strength in a high temperature environment can be provided.
  • the battery packaging material of the present invention is composed of a laminate including at least a base layer, a barrier layer, and a heat fusible resin layer in this order, and the resin constituting the base layer has a melting point Is 220 ° C. or higher, and the water absorption when left for 24 hours at a temperature of 65 ° C. and a relative humidity of 90% is 1% by mass or less, and the resin constituting the heat-fusible resin layer has a melting point It is characterized by having a temperature of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
  • the battery packaging material of the present invention by having such a configuration, the heat fusible resin layers can be heat-fused to each other at high temperature and in a short time, and The occurrence of appearance defects is suppressed, and further, the seal strength in a high temperature environment is excellent. Therefore, the battery packaging material of the present invention can be suitably used particularly as a packaging material for a large battery such as a vehicle battery. In addition, it can be suitably used as a battery packaging material for thermally fusing heat-sealable resin layers at a high temperature of 210 ° C. to 250 ° C. for a short time of 1 second.
  • the battery packaging material of the present invention will be described in detail.
  • a numerical range indicated by “to” means “above” or “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the battery packaging material 10 of the present invention is, for example, a laminate comprising a base material layer 1, a barrier layer 3 and a heat fusible resin layer 4 in this order as shown in FIG. It consists of
  • the base material layer 1 is the outermost layer side
  • the heat-fusible resin layer 4 is the innermost layer. That is, when assembling the battery, the battery element is sealed by sealing the battery element by thermally fusing the heat-fusible resin layers 4 located on the peripheral edge of the battery element.
  • the battery packaging material of the present invention may be provided with an adhesive layer 2 between the base layer 1 and the barrier layer 3 as shown in FIG. 2, for example. Further, as shown in FIG. 3, an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4. Furthermore, as shown in FIG. 4, a surface coating layer 6 may be provided on the outer side of the base material layer 1 (opposite to the heat fusible resin layer 4) as needed.
  • the heat sealing resin layer 4 of the battery packaging material faces each other, and the heat is applied under the conditions of temperature 150 ° C. to 250 ° C., surface pressure 0.5 MPa, time 1 second.
  • the fusion bondable resin layers 4 are heat-sealed, and then, using a tensile tester, under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm under an environment of 25 ° C.
  • the tensile strength measured by peeling the fused interface is preferably maintained at 20 N / 15 mm or more for 1.5 seconds from 1 second after the tensile strength measurement start, 25 N / 15 mm or more It is more preferable that The upper limit of the tensile strength is usually about 130 N / 15 mm or less.
  • the heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 25 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm.
  • the tensile strength measured by peeling the thermally fused interface is preferably maintained at 80 N / 15 mm or more for 1.5 seconds from 1 second after the tensile strength measurement start, 90 N / 15 mm or more It is more preferable that the condition of The upper limit of the tensile strength is usually about 130 N / 15 mm or less.
  • the heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 140 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm.
  • the tensile strength measured by peeling the heat-sealed interface is preferably maintained at 2 N / 15 mm or more for 1.5 seconds from the start of tensile strength measurement, 3 N / 15 mm or more It is more preferable that the condition of The upper limit of the tensile strength is usually about 10 N / 15 mm or less.
  • the heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 140 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm.
  • the tensile strength measured by peeling the heat-fused interface is preferably maintained at 10 N / 15 mm or more for 1.5 seconds from the start of tensile strength measurement.
  • the upper limit of the tensile strength is usually about 15 N / 15 mm or less.
  • the measuring method of the above seal strength can employ
  • the heat fusible resin layers can be thermally fused at a high temperature and in a short time, and the occurrence of appearance defects of the base material layer due to the thermal fusion is suppressed. Excellent seal strength in high temperature environment.
  • the battery packaging material of the present invention has a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa or more (preferably a surface, with the thermally fusible resin layers 4 of the battery packaging material facing each other.
  • thermally fusible resin layers 4 In order to seal the battery element by thermally fusing the thermally fusible resin layers 4 under the conditions of a pressure of 0.5 to 3 MPa and a time of 1 second or less (preferably, a time of 0.3 to 1 second) It is preferably used.
  • the base material layer 1 is a layer located on the outermost layer side.
  • the resin constituting the substrate layer 1 needs to have a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. is there. More specifically, the base material layer 1 only has a melting point of 220 ° C. or higher, and a resin having a water absorption of 1% by mass or less when left to stand at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. It is preferable that it is comprised.
  • polyester resin As resin which can satisfy such a characteristic, polyester resin etc. are mentioned. Among these, preferably a biaxially stretched polyester resin is mentioned. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and copolyester.
  • the base material layer 1 may be formed of a resin film of one layer, or may be formed of a resin film of two or more layers in order to improve pinhole resistance and insulation. Specifically, a multilayer structure in which a plurality of polyester films are laminated may be mentioned.
  • base material layer 1 is multilayer structure, the layered product on which two or more biaxial stretched polyester films were laminated is preferred.
  • the thickness of each layer is preferably about 2 to 25 ⁇ m.
  • the base material layer 1 is formed of a multi-layered resin film
  • two or more resin films may be laminated via an adhesive or an adhesive component such as an adhesive resin, and the type and amount of the adhesive component used, etc. Is similar to that of the adhesive layer 2 described later.
  • limit especially as a method to laminate the resin film of two or more layers A well-known method can be adopted, for example, a dry laminating method, a sandwich laminating method, etc. are mentioned, Preferably a dry laminating method is mentioned.
  • a urethane type adhesive is, for example, about 2 to 5 ⁇ m.
  • the adhesive portion is the base material layer 1 Not included in
  • the melting point of the resin constituting the base material layer 1 may be 220 ° C. or higher, but the heat fusible resin layers 4 are thermally melted at high temperature and short time (for example, 1 second or less at 210 to 250 ° C.) In order to more effectively suppress the occurrence of appearance defects of the substrate layer 1 due to heat fusion when it is attached, it is preferably about 220 to 290 ° C., more preferably about 230 to 280 ° C. .
  • the melting point of the resin is a value measured by differential scanning calorimetry (DSC).
  • the resin constituting the base material layer 1 needs to have a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. From the viewpoint of more effectively suppressing the occurrence of appearance defects of the base material layer due to heat fusion when heat fusion bonding resin layers are thermally fused at 250 ° C. for 1 second or less), the water absorption The amount is preferably about 0.1 to 1% by mass, more preferably about 0.1 to 0.5% by mass.
  • the resin constituting the base material layer 1 preferably has a water absorption of about 0.1 to 0.5% by mass when left to stand at a temperature of 25 ° C. and a relative humidity of 50% for 24 hours. More preferably, it is about 0.1 to 0.3% by mass.
  • a lubricant is preferably attached to the surface of the base layer 1.
  • the lubricant is not particularly limited, but preferably includes amide lubricants.
  • Specific examples of the amide-based lubricant include the same as those exemplified for the heat-fusible resin layer 4 described later.
  • the amount thereof is not particularly limited, but it is preferably about 3 mg / m 2 or more, more preferably 4 to 5 in an environment of 24 ° C. and 60% relative humidity. It may be about 15 mg / m 2 , more preferably about 5 to 14 mg / m 2 .
  • the base material layer 1 may contain a lubricant.
  • the lubricant present on the surface of the substrate layer 1 may be one in which the lubricant contained in the resin constituting the substrate layer 1 is exuded, or the lubricant coated on the surface of the substrate layer 1 It may be
  • the thickness of the base material layer 1 is not particularly limited as long as it exhibits the function as the base material layer, but high temperature and short time (for example, at 210 to 250 ° C.) in the battery packaging material having the above configuration of the present invention. 9 to 50 ⁇ m from the viewpoint of more effectively suppressing the occurrence of appearance defects of the base material layer due to heat fusion when heat fusion bonding resin layers are thermally fused in 1 second or less).
  • the degree is more preferably about 10 to 35 ⁇ m, further preferably about 10 to 30 ⁇ m.
  • the adhesive layer 2 is a layer provided between the substrate layer 1 and the barrier layer 3 as needed in order to firmly bond the substrate layer 1 and the barrier layer 3.
  • the adhesive layer 2 is formed of an adhesive capable of adhering the base layer 1 and the barrier layer 3.
  • the adhesive used to form the adhesive layer 2 may be a two-part curable adhesive, or may be a one-part curable adhesive.
  • the adhesion mechanism of the adhesive used to form the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a heat pressure type, and the like.
  • the thickness of the adhesive layer 2 is not particularly limited as long as it exhibits the function as a layer to be adhered, but in the battery packaging material having the above-described configuration of the present invention, the heat fusible resin layers Even in the case where heat sealing is performed, generation of appearance defects of the base material layer due to heat sealing is suppressed, and from the viewpoint of improving the seal strength in a high temperature environment, for example, about 1 to 10 ⁇ m, preferably 2 There may be about 5 ⁇ m.
  • the barrier layer 3 is a layer having a function to prevent water vapor, oxygen, light and the like from invading the inside of the battery, in addition to the strength improvement of the battery packaging material.
  • the barrier layer 3 can be formed of a metal foil, a metal deposition film, an inorganic oxide deposition film, a carbon-containing inorganic oxide deposition film, a film provided with these deposition layers, or the like, and is a layer formed of metal Is preferred. Specifically as a metal which comprises the barrier layer 3, aluminum alloy, stainless steel, titanium steel etc. are mentioned, Preferably aluminum alloy and stainless steel are mentioned.
  • the barrier layer 3 is preferably formed of a metal foil, more preferably an aluminum alloy foil or a stainless steel foil.
  • the aluminum alloy foil is, for example, a soft aluminum alloy foil made of an annealed aluminum alloy or the like, from the viewpoint of preventing the occurrence of wrinkles and pin holes in the barrier layer 3 when the battery packaging material is formed. It is more preferable that As a soft aluminum alloy foil, for example, an aluminum alloy having a composition defined by JIS H 4 160: 1994 A802 1 H-O, JIS H 4 160: 1994 A 8079 H-O, JIS H 4000: 2014 A 802 1 P-O, or JIS H 4000: 2014 A 8079 P-O. Foil is mentioned.
  • stainless steel foil from the viewpoint of preventing generation of wrinkles and pin holes in the barrier layer 3 at the time of molding of the battery packaging material, austenitic stainless steel foil, ferritic stainless steel foil and the like are listed.
  • the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steels that constitute stainless steel foil include SUS304, SUS301, SUS316L, etc.
  • SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 is not particularly limited as long as it exhibits a function as a barrier layer such as water vapor, but for example, the upper limit is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably 40 ⁇ m or less
  • the lower limit is preferably about 10 ⁇ m or more, and the thickness range is about 10 to 80 ⁇ m, preferably about 10 to 50 ⁇ m.
  • the upper limit of the thickness of the stainless steel foil is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less.
  • the lower limit is about 10 ⁇ m or more
  • the preferable thickness range is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, more preferably 10 to It may be about 40 ⁇ m, more preferably about 10 to 30 ⁇ m, and still more preferably about 15 to 25 ⁇ m.
  • the barrier layer 3 it is preferable that at least one surface, preferably both surfaces, of the barrier layer 3 be subjected to chemical conversion treatment in order to stabilize adhesion, to prevent dissolution or corrosion, and the like.
  • the chemical conversion treatment means a treatment for forming an acid resistant film on the surface of the barrier layer.
  • the barrier layer 3 contains the acid resistant film.
  • chromate chromate using a chromate compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromate acetyl acetate, chromium chloride, potassium chromium sulfate, etc.
  • a chromate compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromate acetyl acetate, chromium chloride, potassium chromium sulfate, etc.
  • Phosphoric acid chromate treatment using phosphoric acid compounds such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, etc .
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group,
  • a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned.
  • examples of the hydroxyalkyl group represented by X, R 1 and R 2 include, for example, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- C 1-4 linear or branched C 1 -C 4 substituted with one hydroxy group, such as hydroxypropyl, 1-hydroxybutyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl and the like
  • An alkyl group is mentioned.
  • the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be identical to or different from each other.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having repeating units represented by the general formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, and about 1,000 to 20,000. More preferable.
  • a coating in which fine particles of aluminum oxide, titanium oxide, cerium oxide, metal oxide such as tin oxide, or barium sulfate are dispersed in phosphoric acid is coated;
  • a method of forming an acid resistant film on the surface of the barrier layer 3 can be mentioned by carrying out the baking treatment at 150 ° C. or higher.
  • a resin layer may be further formed by crosslinking the cationic polymer with a crosslinking agent.
  • the cationic polymer for example, polyethylene imine, an ionic polymer complex composed of polyethylene imine and a polymer having a carboxylic acid, primary amine graft acrylic resin obtained by graft polymerizing a primary amine on an acrylic main skeleton, polyallylamine Or derivatives thereof, aminophenol and the like.
  • these cationic polymers only 1 type may be used and you may use combining 2 or more types.
  • a crosslinking agent the compound which has an at least 1 sort (s) of functional group chosen from the group which consists of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, a silane coupling agent etc. are mentioned, for example.
  • these crosslinking agents only one type may be used, or two or more types may be used in combination.
  • At least the surface on the inner layer side of the aluminum foil (barrier layer) is first subjected to an alkaline dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolysis method.
  • the degreasing treatment is performed by a known treatment method such as an acid cleaning method or an acid activation method, and then the surface to be degreased is treated with Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, phosphorus Acid solution (aqueous solution) mainly composed of phosphoric acid metal salts such as zinc (zinc) salts and mixtures of these metal salts, or phosphoric acid nonmetal salts and mixtures of these nonmetallic salts Roll-coating, gravure printing of a treatment solution (aqueous solution) consisting of a treatment solution (aqueous solution) or a mixture of these with an aqueous synthetic resin such as an acrylic resin, a phenol resin or a polyurethane resin.
  • a treatment solution consisting of a treatment solution (aqueous solution) or a mixture of these with an aqueous synthetic resin such as an acrylic resin, a phenol resin or a polyurethane resin.
  • the acid-resistant coating By coating in a known coating method of the immersion method, it is possible to form the acid-resistant coating.
  • CrPO 4 chromium phosphate
  • AlPO 4 aluminum phosphate
  • Al 2 O 3 aluminum oxide
  • Al (OH) x water It becomes an acid-resistant film consisting of aluminum oxide), AlF x (aluminum fluoride), etc.
  • a phosphoric acid Zn (zinc) salt-based treatment solution Zn 2 PO 4 ⁇ 4H 2 O (zinc phosphate hydrate) ), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (aluminum hydroxide), AlF x (aluminum fluoride) and the like.
  • an acid resistant coating for example, at least the surface on the inner layer side of an aluminum foil is first subjected to an alkaline dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activity
  • An acid resistant film can be formed by degreasing treatment by a known treatment method such as chemical conversion method and then applying known anodizing treatment to the degreasing treatment surface.
  • a coating of a phosphorus compound (for example, a phosphate type) or a chromium compound (for example, a chromic acid type) can be mentioned.
  • phosphates include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate and chromium phosphate.
  • chromic acid include chromium chromate.
  • an acid resistant coating such as a phosphorus compound (such as phosphate), a chromium compound (such as chromate), a fluoride or a triazine thiol compound Dissolution of aluminum surface, corrosion, in particular dissolution and corrosion of aluminum oxide present on the surface of aluminum, by the prevention of delamination between aluminum and substrate layer, hydrogen fluoride generated by the reaction between electrolyte and water And improve the adhesion (wettability) of the aluminum surface, prevent delamination of the substrate layer and aluminum during heat sealing, and in the case of the emboss type, remove the substrate layer and aluminum during press molding. It shows the effect of preventing lamination.
  • an aqueous solution composed of a phenolic resin, a chromium fluoride (3) compound, and a phosphoric acid three component is applied on the aluminum surface, and the dry baking treatment is good.
  • the acid resistant film further comprises a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent for crosslinking the anionic polymer, wherein the phosphoric acid or phosphate is any of the above. It may be blended in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of cerium oxide. It is preferable that the acid resistant coating be a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
  • the said anionic polymer is a copolymer which has poly (meth) acrylic acid or its salt, or (meth) acrylic acid or its salt as a main component.
  • the said crosslinking agent is at least 1 sort (s) chosen from the group which consists of a compound which has a functional group in any one of an isocyanate group, glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
  • the said phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
  • chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion treatments may be performed in combination. Furthermore, these chemical conversion treatments may be performed using one type of compound alone, or may be performed using two or more types of compounds in combination.
  • chemical conversion treatments chromate chromate treatment, chromate treatment in which a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are combined are preferable.
  • the acid resistant film examples include those containing at least one of phosphate, chromate, fluoride, and triazine thiol compound.
  • an acid resistant film containing a cerium compound is also preferable.
  • cerium compound cerium oxide is preferable.
  • an acid resistant film a phosphate type film, a chromate type film, a fluoride type film, a triazine thiol compound film, etc. are mentioned.
  • the acid resistant coating may be one of these or a combination of two or more.
  • a treatment liquid comprising a mixture of a metal salt of phosphoric acid and an aqueous synthetic resin, or a mixture of a nonmetallic metal salt of phosphoric acid and an aqueous synthetic resin It may be formed by the treatment liquid.
  • the analysis of the composition of the acid-resistant film can be performed using, for example, time-of-flight secondary ion mass spectrometry.
  • the amount of the acid resistant coating formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but, for example, in the case of performing the above-mentioned chromate treatment, a chromic acid compound is contained per 1 m 2 of the surface of the barrier layer 3 About 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, of the phosphorus compound in terms of phosphorus, and The content is desirably about 0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the acid-resistant coating is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably about 1 nm to 100 nm, from the viewpoint of the cohesion of the film and the adhesion to the barrier layer and the heat fusible resin layer. More preferably, about 1 nm to 50 nm can be mentioned.
  • the thickness of the acid-resistant film can be measured by a transmission electron microscope or a combination of an observation by a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy.
  • secondary ions consisting of Ce, P and O (for example, at least one of Ce 2 PO 4 + , CePO 4 ⁇ , etc.
  • peaks derived from secondary ions for example, at least one of CrPO 2 + , CrPO 4 ⁇ and the like consisting of Cr, P and O, for example.
  • the temperature of the barrier layer is 70 after the solution containing the compound used for forming the acid resistant coating is applied to the surface of the barrier layer by the bar coating method, roll coating method, gravure coating method, immersion method or the like. It is carried out by heating to about 200 ° C.
  • the barrier layer may be subjected in advance to a degreasing treatment by an alkaline immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like. By performing the degreasing treatment in this manner, the chemical conversion treatment on the surface of the barrier layer can be performed more efficiently.
  • the thermally fusible resin layer 4 corresponds to the innermost layer, and is a layer that thermally fuses the thermally fusible resin layers when the battery is assembled to seal the battery element.
  • the resin constituting the heat-fusible resin layer 4 needs to have a melting point of 140 ° C. or more and a melt mass flow rate (MFR) of 6 g / 10 minutes or more.
  • the melting point of the resin constituting the heat-fusible resin layer 4 may be 140 ° C.
  • the heat-fusible resin layers Even when heat fusion is performed, from the viewpoint of suppressing the occurrence of appearance defects of the base material layer due to heat fusion and further improving the seal strength in a high temperature environment, preferably about 140 to 160 ° C., more preferably The temperature may be about 140 to 155 ° C., and more preferably about 140 to 150 ° C.
  • the melting point of the resin is a value measured by differential scanning calorimetry (DSC).
  • melt mass flow rate (MFR) of the resin constituting the heat-fusible resin layer 4 may be 6 g / 10 min or more, but from the above viewpoint, preferably it is about 8 to 25 g / 10 min. It is preferably about 10 to 25 g / 10 minutes, and more preferably about 10 to 20 g / 10 minutes.
  • MFR is a value measured by JISK7210.
  • the above-mentioned melting point and MFR of the heat fusible resin layer 4 may satisfy the above requirements as a whole of the resin constituting the heat fusible resin layer 4.
  • the resin component used for the heat-fusible resin layer 4 satisfies the above melting point and MFR and is not particularly limited as long as it can be heat-fused, but, for example, polyolefin, cyclic polyolefin, acid-modified polyolefin And acid-modified cyclic polyolefins. That is, the resin constituting the heat-fusible resin layer 4 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton.
  • the resin constituting the heat-fusible resin layer 4 may contain a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and not detected. In that case, analysis is possible by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene and linear low density polyethylene; homopolypropylene, block copolymers of polypropylene (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers of (for example, random copolymers of propylene and ethylene); terpolymers of ethylene-butene-propylene and the like.
  • polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene and linear low density polyethylene
  • homopolypropylene block copolymers of polypropylene (for example, block copolymers of propylene and ethylene)
  • polypropylene Polypropylenes such as random copolymers of (for example, random copolymers of propylene and ethylene); terpolymers of ethylene-butene-propylene and the like.
  • polyethylene and polypropylene are mentioned.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, isoprene and the like. .
  • a cyclic monomer which is a constituent monomer of the cyclic polyolefin for example, cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like can be mentioned.
  • these polyolefins preferred are cyclic alkenes, more preferably norbornene.
  • the acid-modified polyolefin is a polymer obtained by modifying the polyolefin by block polymerization or graft polymerization with an acid component such as a carboxylic acid.
  • an acid component such as a carboxylic acid.
  • carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride, or anhydrides thereof.
  • the acid-modified cyclic polyolefin is prepared by copolymerizing part of the monomers constituting the cyclic polyolefin with an ⁇ , ⁇ -unsaturated carboxylic acid or an anhydride thereof, or ⁇ , ⁇ - to the cyclic polyolefin. It is a polymer obtained by block polymerization or graft polymerization of unsaturated carboxylic acid or its anhydride.
  • the cyclic polyolefin to be carboxylic acid modified is the same as described above. Moreover, as a carboxylic acid used for modification
  • polyolefins such as polypropylene, carboxylic acid-modified polyolefins, and more preferably polypropylene and acid-modified polypropylenes.
  • the heat fusible resin layer 4 may be formed of one type of resin component alone, or may be formed of a blend polymer in which two or more types of resin components are combined. Furthermore, although the heat fusible resin layer 4 may be formed of only one layer, it may be formed of two or more layers of the same or different resin components.
  • a lubricant adheres to the surface of the heat-fusible resin layer.
  • the lubricant is not particularly limited, but preferably includes amide lubricants.
  • Specific examples of the amide lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide and the like.
  • Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide and the like.
  • the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
  • methylolamide include methylol stearic acid amide and the like.
  • saturated fatty acid bisamide examples include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylene bisstearin Acid amide, hexamethylene bisbehenamide, hexamethylene hydroxystearic amide, N, N'-distearyl adipamide, N, N'-distearyl sebacate amide and the like can be mentioned.
  • unsaturated fatty acid bisamides include ethylene bis oleic acid amide, ethylene bis erucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipic acid amide, N, N'-dioleyl sebacic acid amide Etc.
  • fatty acid ester amides include stearoamidoethyl stearate and the like.
  • specific examples of the aromatic bisamides include m-xylylene bis-stearic acid amide, m-xylylene bis-hydroxystearic acid amide, N, N'-distearyl isophthalic acid amide and the like.
  • the lubricant may be used alone or in combination of two or more.
  • the amount thereof is not particularly limited, but it is preferably about 3 mg / m 2 or more, more preferably in an environment of 24 ° C. and 60% relative humidity. Is about 4 to 15 mg / m 2 , and more preferably about 5 to 14 mg / m 2 .
  • the heat fusible resin layer 4 may contain a lubricant.
  • the lubricant present on the surface of the heat-fusible resin layer 4 may be one in which the lubricant contained in the resin constituting the heat-fusible resin layer 4 is exuded, or the heat-fusible resin layer The surface of 4 may be coated with a lubricant.
  • the thickness of the heat fusible resin layer 4 is not particularly limited as long as it exhibits the function as the heat fusible resin layer, but in the battery packaging material having the above configuration of the present invention, high temperature and short time Even when the heat fusible resin layers are heat-sealed together, it is preferable from the viewpoint of suppressing the occurrence of appearance defects of the base material layer due to heat-sealing and further improving the seal strength in a high temperature environment. It may be about 30 to 140 ⁇ m, more preferably about 40 to 120 ⁇ m, and still more preferably about 45 to 100 ⁇ m.
  • the adhesive layer 5 is a layer optionally provided between the barrier layer 3 and the heat-fusible resin layer 4 in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
  • the adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the heat fusible resin layer 4.
  • resin used for formation of adhesion layer 5 the thing of the adhesion mechanism, the kind of adhesive agent component, etc. can use the thing similar to the adhesive illustrated by adhesive agent layer 2.
  • resin used for formation of the contact bonding layer 5 polyolefin resin, such as polyolefin mentioned above-mentioned heat-fusion resin layer 4, cyclic polyolefin, carboxylic acid modified polyolefin, carboxylic acid modified cyclic polyolefin, can also be used. .
  • the polyolefin a carboxylic acid-modified polyolefin is preferable, and a carboxylic acid-modified polypropylene is particularly preferable, from the viewpoint of excellent adhesion between the barrier layer 3 and the heat-fusible resin layer 4. That is, the resin constituting the adhesive layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. It is possible to analyze that the resin constituting the adhesive layer 5 contains a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography-mass spectrometry, etc., and there is no particular limitation on the analysis method.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and not detected. In that case, analysis is possible by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It may be a cured product.
  • the acid-modified polyolefin preferably, the same ones as the carboxylic acid-modified polyolefin and the carboxylic acid-modified cyclic polyolefin exemplified in the heat fusible resin layer 4 can be exemplified.
  • the curing agent is not particularly limited as long as it cures acid-modified polyolefin.
  • examples of the curing agent include epoxy-based curing agents, polyfunctional isocyanate-based curing agents, carbodiimide-based curing agents, oxazoline-based curing agents, and the like.
  • the epoxy curing agent is not particularly limited as long as it is a compound having at least one epoxy group.
  • the epoxy curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like.
  • the polyfunctional isocyanate-based curing agent is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or denating these, or the like Mixtures and copolymers with other polymers may be mentioned.
  • curing agent the polycarbodiimide compound which has a carbodiimide group 2 or more at least is preferable.
  • the oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the oxazoline curing agent include Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the curing agent may be composed of two or more types of compounds.
  • the content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
  • the thickness of the adhesive layer 5 is not particularly limited as long as it exhibits the function as an adhesive layer, but in the case of using the adhesive exemplified in the adhesive layer 2, it is preferably about 1 to 10 ⁇ m, more preferably 1 There may be about 5 ⁇ m. Further, in the case of using the resin exemplified for the heat fusible resin layer 4, it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m. In the case of a cured product of an acid-modified polyolefin and a curing agent, it is preferably about 30 ⁇ m or less, more preferably about 0.1 to 20 ⁇ m, and still more preferably about 0.5 to 5 ⁇ m. When the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like.
  • a surface covering layer 6 In the battery packaging material of the present invention, on the base material layer 1 (the barrier layer of the base material layer 1), as needed, for the purpose of improving designability, electrolytic solution resistance, abrasion resistance, moldability, etc. If necessary, a surface covering layer 6 may be provided on the side opposite to 3). The surface covering layer 6 is a layer located in the outermost layer when the battery is assembled.
  • the surface coating layer 6 can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin or the like. Among these, the surface coating layer 6 is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface covering layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Further, an additive may be blended in the surface coating layer 6.
  • Examples of the additive include fine particles having a particle diameter of about 0.5 nm to 5 ⁇ m.
  • the material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the additive is not particularly limited, and examples thereof include spheres, fibers, plates, indeterminate shapes, and balloons.
  • talc silica, graphite, kaolin, montmorrroid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel and the like can be mentioned.
  • additives may be used alone or in combination of two or more.
  • silica, barium sulfate and titanium oxide are preferably mentioned from the viewpoint of dispersion stability and cost.
  • the surface may be subjected to various surface treatments such as insulation treatment, high dispersion treatment, and the like.
  • the content of the additive in the surface coating layer is not particularly limited, but preferably about 0.05 to 1.0% by mass, more preferably about 0.1 to 0.5% by mass.
  • coating 2-component curable resin which forms the surface coating layer 6 on one surface of the base material layer 1 is mentioned.
  • the additive may be added to and mixed with the two-component curable resin and then applied.
  • the thickness of the surface coating layer 6 is not particularly limited as long as the above-described function as the surface coating layer 6 is exerted, and for example, 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m can be mentioned.
  • the method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate obtained by laminating each layer of a predetermined composition is obtained. That is, the method for producing a packaging material for a battery of the present invention comprises the step of laminating at least the base layer 1, the barrier layer 3 and the heat-fusible resin layer 4 in this order,
  • the resin constituting the material layer 1 has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left to stand at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours.
  • the resin constituting the conductive resin layer 4 has a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
  • the manufacturing method of the packaging material for batteries of this invention it is as follows. First, a laminate (hereinafter sometimes referred to as “laminate A”) in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are sequentially laminated is formed. Specifically, the laminate A is formed by, for example, a gravure coating method using an adhesive used to form the adhesive layer 2 on the base layer 1 or the barrier layer 3 whose surface is chemically treated as necessary. It can carry out by the dry laminating method which makes the said barrier layer 3 or the base material layer 1 laminate, and hardens the adhesive layer 2 after applying and drying by coating methods, such as a coating method.
  • coating methods such as a coating method.
  • the adhesive layer 5 and the heat-fusible resin layer 4 are laminated in this order on the barrier layer 3 of the laminate A.
  • a method of laminating the adhesive layer 5 and the heat-fusible resin layer 4 by coextrusion on the barrier layer 3 of the laminate A co-extrusion laminating method
  • the adhesive for forming the layer 5 is extruded or solution coated, laminated by drying or baking at a high temperature, and the like, and the heat fusible resin layer 4 previously formed into a sheet on the adhesive layer 5 is formed.
  • the surface covering layer 6 is laminated on the surface of the base layer 1 opposite to the barrier layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above-mentioned resin that forms the surface coating layer 6 on the surface of the base layer 1.
  • the order of the process of laminating the barrier layer 3 on the surface of the base material layer 1 and the process of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base layer 1 opposite to the surface covering layer 6.
  • a laminated body consisting of the adhesive layer 5 / the heat fusible resin layer 4 to be provided is formed, but in order to strengthen the adhesion of the adhesive layer 2 or the adhesive layer 5, further, a heat roll contact type, a hot air It may be subjected to a heat treatment such as a formula, a near infrared type or a far infrared type.
  • the conditions for such heat treatment include, for example, 150 ° C. to 250 ° C. and 1 minute to 5 minutes.
  • each layer constituting the laminate improves or stabilizes film forming ability, lamination processing, final product secondary processing (pouching, embossing) suitability, etc., as necessary.
  • surface activation treatments such as corona treatment, blast treatment, oxidation treatment, and ozone treatment may be performed.
  • the battery packaging material of the present invention is used for a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, the battery element provided with at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to make a battery.
  • a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is a battery packaging material of the present invention, in which the metal terminal connected to each of the positive electrode and the negative electrode protrudes outward.
  • the battery is covered by forming flanges (areas in which the heat fusible resin layers are in contact with each other) on the periphery of the element, and heat sealing the heat fusible resin layers of the flanges to seal them.
  • a battery using a packaging material is provided.
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
  • lithium ion battery, lithium ion polymer battery, lead storage battery, nickel hydrogen storage battery, nickel cadmium storage battery, nickel Iron storage batteries, nickel-zinc storage batteries, silver oxide-zinc storage batteries, metal air batteries, multivalent cation batteries, capacitors, capacitors and the like can be mentioned.
  • lithium ion batteries and lithium ion polymer batteries are mentioned as a suitable application object of the packaging material for batteries of the present invention.
  • the heat fusible resin layers can be thermally fused at a high temperature and in a short time, and the occurrence of appearance defects of the base material layer due to the thermal fusion is suppressed. Since the seal strength in a high temperature environment is excellent, it can be suitably used for a large battery such as a vehicle battery. In particular, as a battery to which the battery packaging material of the present invention can be suitably applied, a large battery having a battery capacity of 30 Ah or more can be mentioned.
  • Example 1-6, Comparative Example 1-18, Reference Example 1-6, Reference Comparative Example 1-18 As a substrate layer, polyethylene terephthalate (PET) film (12 ⁇ m in thickness), polyethylene naphthalate (PEN) film (12 ⁇ m in thickness), stretched nylon (ONy) film (15 ⁇ m in thickness), polyethylene terephthalate film (PET, A laminated film (PEN / ONy) in which a 12 ⁇ m thick film and an oriented nylon film (ONy, 15 ⁇ m thick) are bonded with a 3 ⁇ m thick two-component urethane adhesive (polyol compound and aromatic isocyanate compound) is prepared. did.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • ONy stretched nylon
  • PET polyethylene terephthalate film
  • the material of the resin constituting the base layer and the melting point of the resin are as described in Tables 1 to 3, respectively.
  • the melting point of PET is 255 ° C.
  • the melting point of PEN is 270 ° C.
  • the melting point of ONy is 220 ° C. It is.
  • the melting points of these resins are values measured by differential scanning calorimetry (DSC). When the laminated film of PET and ONy was used as a base material layer, ONy was arrange
  • barrier layers aluminum foils (JIS H4160: 1994 A8021 H-O) each having a thickness of 40 ⁇ m were prepared as barrier layers.
  • a two-component urethane adhesive polyol compound and aromatic isocyanate compound
  • an adhesive layer 3 ⁇ m in thickness
  • the adhesive layer on the barrier layer and the base material layer were laminated by a dry lamination method, and then an aging treatment was performed to produce a laminate of base material layer / adhesive layer / barrier layer.
  • chemical conversion treatment is performed on both sides of the barrier layer.
  • the chemical conversion treatment of the barrier layer is carried out on both sides of the barrier layer by a roll coating method so that the coating amount of chromium is 10 mg / m 2 (dry mass) with a treatment liquid consisting of a phenol resin, a chromium fluoride compound and phosphoric acid. It did by applying and baking.
  • MFR melt mass flow rate
  • a heat fusible resin layer is laminated on the barrier layer by melt-extruding polypropylene (PP) having a thickness ( ⁇ m), and base material layer / adhesive layer / barrier layer / heat fusible property
  • PP polypropylene
  • Examples 1 to 6 and Referential Examples 1 to 6 are battery packaging materials having the same configuration, except that storage environments at the time of measuring the following seal strengths are different. Further, Comparative Examples 1 to 18 and Reference Comparative Examples 1 to 18 are battery packaging materials having the same configuration except that storage environments at the time of measuring the following seal strengths are different.
  • each battery packaging material 10 obtained above was allowed to stand for 24 hours in the storage environment of Tables 1 to 3.
  • each battery packaging material was cut into a rectangle of width 60 mm ⁇ length 150 mm to obtain a test sample.
  • the test sample was folded back at the center P in the lengthwise direction, and the heat fusible resin layers were made to face each other.
  • the heat fusible resin layers were heat-fused to each other in the entire width direction (that is, 60 mm) of 3 mm (width of metal plate).
  • the width 15 mm of the test sample was cut off.
  • the heat-sealed area is indicated by S.
  • using a tensile tester under the conditions of a temperature of 25 ° C. or an environment of a temperature 140 ° C., under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm.
  • the melting point of the resin constituting the base material layer is 220 ° C. or higher, and when it is left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours (storage environment Example 1 to 1 having a water absorption coefficient of 1% by mass or less, and further having a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 min or more of the resin constituting the heat-fusible resin layer.
  • the heat fusible resin layers can be heat-fused together at high temperature and in a short time (for example, 1 second or less at 210 to 250.degree. C.). It is understood that the occurrence of defects is suppressed, and furthermore, the seal strength in a very high temperature environment of 140 ° C. is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

According to the present invention, a battery packaging material is formed of a laminate comprising at least a base layer; a barrier layer; and a heat-fusible resin layer, in this order, wherein a resin constituting the base layer has a melting point of 220°C or higher and has a water absorption rate of 1 mass% or less when left alone for 24 hours at a temperature of 65°C and a relative humidity of 90%, and a resin constituting the heat-fusible resin layer has a melting point of 140°C or higher and a melt mass flow rate of 6 g/10 min or more.

Description

電池用包装材料及び電池Battery packaging material and battery
 本発明は、電池用包装材料及び電池に関する。 The present invention relates to a battery packaging material and a battery.
 従来、様々なタイプの電池が開発されているが、あらゆる電池において、電極や電解質などの電池素子を封止するために包装材料が不可欠な部材になっている。従来、電池用包装として金属製の包装材料が多用されていた。 Conventionally, various types of batteries have been developed, but in all batteries, a packaging material has become an indispensable member for sealing battery elements such as electrodes and electrolytes. Conventionally, metal packaging materials have been widely used as packaging for batteries.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、電池には、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の電池用包装材料では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the advancement of performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., various shapes are required for batteries, and thinning and weight reduction are required. However, in the case of metal battery packaging materials that have been widely used in the past, it is difficult to follow the diversification of the shape, and there is also a drawback that there is a limit to weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, a film-like laminate in which a base material layer / barrier layer / thermal adhesive resin layer is sequentially laminated as a battery packaging material that can be easily processed into various shapes and can realize thinning and weight reduction A body has been proposed (see, for example, Patent Document 1).
 このような電池用包装材料においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの電池素子を配し、熱融着性樹脂層同士を熱溶着させることにより、電池用包装材料により形成された包装体の内部に電池素子が収容された電池が得られる。 In such a battery packaging material, generally, a concave portion is formed by cold molding, and battery elements such as an electrode and an electrolytic solution are disposed in the space formed by the concave portions, and heat fusible resin layers are mutually attached. By thermally welding, a battery is obtained in which the battery element is housed inside a package formed of the battery packaging material.
特開2008-287971号公報JP 2008-287971A 特開2013-201027号公報JP, 2013-201027, A
 前述のようなフィルム状の積層体により構成された電池用包装材料において、熱融着性樹脂層同士を熱溶着させる際には、加熱された金属板などを用いて、電池用包装材料の周縁部を、数秒間程度、加熱・加圧することにより、電池素子が封止されている。 In the battery packaging material composed of the film-like laminate as described above, when heat-welding the heat-fusible resin layers to each other, the periphery of the battery packaging material is heated using a heated metal plate or the like. The battery element is sealed by heating and pressurizing the unit for several seconds.
 しかしながら、近年、電池用包装材料の需要が増大しており、生産速度をより一層向上させることが求められている。そこで、本発明者等は、電池素子を封止する際の時間を、数秒間から1秒間程度にまで短縮することを試みた。しかしながら、従来の電池用包装材料では、1秒間という短時間では、熱融着性樹脂層同士が十分に熱融着されず、シール強度が不十分になることが確認された。また、1秒間という短時間で熱融着させる際には、従来よりも高温で熱融着させることが求められるが、高温で熱融着させると、電池用包装材料の基材層に含まれる水分が、基材層の内部で気化して、外観不良が生じるという問題点も見出された。 However, in recent years, the demand for battery packaging materials has been increasing, and it is required to further improve the production rate. Therefore, the present inventors attempted to reduce the time for sealing the battery element to several seconds to about one second. However, in the conventional battery packaging material, it has been confirmed that the heat fusible resin layers are not sufficiently heat-fused together in a short time of 1 second, and the seal strength becomes insufficient. In addition, when heat fusing is performed in a short time such as 1 second, heat fusing at a higher temperature than in the past is required, but when heat fusing is performed at a high temperature, it is included in the base material layer of the battery packaging material It has also been found that moisture is vaporized inside the substrate layer to cause appearance defects.
 さらに、近年、電気自動車、ハイブリッド電気自動車などの大型の電池に対して、前述のようなフィルム状の積層体により構成された電池用包装材料の使用が検討されている。このような車両等に用いられる大型の電池は、高温環境に晒されるため、熱融着性樹脂層同士のシール強度は、常温環境だけでなく、100℃を超える高温環境でも十分なシール強度を備えていることが求められる。 Furthermore, in recent years, the use of a battery packaging material composed of a film-like laminate as described above has been studied for large-sized batteries such as electric vehicles and hybrid electric vehicles. Since large batteries used in such vehicles are exposed to high temperature environments, the seal strength between heat fusible resin layers is sufficient not only for normal temperature environments but also for high temperature environments exceeding 100 ° C. It is required to be equipped.
 このような状況下、本発明は、基材層、バリア層、及び熱融着性樹脂層がこの順に積層された積層体からなる電池用包装材料において、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れた電池用包装材料を提供することを主な目的とする。 Under such circumstances, the present invention provides a heat-sealable resin at a high temperature and in a short time, in a battery packaging material comprising a laminate in which a base material layer, a barrier layer, and a heat-sealable resin layer are laminated in this order. The layers can be heat-sealed together, the occurrence of appearance defects of the base layer due to heat-sealed is suppressed, and further, the main object is to provide a battery packaging material excellent in seal strength in a high temperature environment. To aim.
 本発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなり、基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレート(MFR)が6g/10分以上である電池用包装材料は、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成したものである。 The present inventors diligently studied to solve the above-mentioned problems. As a result, it consists of a layered product provided with a substrate layer, a barrier layer, and a heat-fusion resin layer in this order, and resin which constitutes a substrate layer is 220 ° C or more in melting point, and temperature 65 ° C The resin having a water absorption of 1% by mass or less when left at a relative humidity of 90% for 24 hours and having a heat-fusible resin layer has a melting point of 140 ° C. or more, and a melt mass flow rate (MFR) The battery packaging material having a capacity of 6 g / 10 min or more can thermally fuse the thermally fusible resin layers to each other at a high temperature and in a short time, and suppress the occurrence of appearance defects of the base material layer due to the thermal fusion. Furthermore, it has been found that the seal strength in a high temperature environment is excellent. The present invention has been completed by further studies based on these findings.
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなり、
 前記基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、
 前記熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である、電池用包装材料。
項2. 前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、20N/15mm以上の状態が保たれる、項1に記載の電池用包装材料。
項3. 前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、80N/15mm以上の状態が保たれる、項1又は2に記載の電池用包装材料。
項4. 前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、2N/15mm以上の状態が保たれる、項1~3のいずれかに記載の電池用包装材料。
項5. 前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、10N/15mm以上の状態が保たれる、項1~4のいずれかに記載の電池用包装材料。
項6. 前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa以上、時間1秒間以下の条件で前記熱融着性樹脂層同士を熱融着させて、電池素子を封止するために用いられる、項1~5のいずれかに記載の電池用包装材料。
項7. 前記基材層が、ポリエステル樹脂により構成されている、項1~6のいずれかに記載の電池用包装材料。
項8. 前記基材層の厚さが、9~50μmである、項1~7のいずれかに記載の電池用包装材料。
項9. 前記熱融着性樹脂層の厚さが、45~100μmである、項1~8のいずれかに記載の電池用包装材料。
項10. 少なくとも正極、負極、及び電解質を備えた電池素子が、項1~9のいずれかに記載の電池用包装材料により形成された包装体中に収容されている、電池。
項11. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順となるように積層する工程を備えており、
 前記基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、
 前記熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である、電池用包装材料の製造方法。
That is, the present invention provides the inventions of the aspects listed below.
Item 1. The laminate comprises at least a base material layer, a barrier layer, and a heat fusible resin layer in this order,
The resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours,
A packaging material for a battery, wherein a resin constituting the heat-fusible resin layer has a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
Item 2. The heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled off and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 25 ° C. 2. The battery packaging material according to item 1, wherein the tensile strength is maintained at 20 N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
Item 3. The heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled off and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 25 ° C. 3. The battery packaging material according to item 1 or 2, wherein the tensile strength to be measured is maintained at 80 N / 15 mm or more for 1.5 seconds after 1 second from the start of tensile strength measurement.
Item 4. The heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 140 ° C. The packaging material for a battery according to any one of Items 1 to 3, wherein the tensile strength to be measured is maintained at 2N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
Item 5. The heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 140 ° C. 5. The battery packaging material according to any one of Items 1 to 4, wherein the tensile strength to be measured is maintained at 10 N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
Item 6. The heat fusible resin layers are placed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa or more, and a time of 1 second or less, with the heat fusible resin layers of the battery packaging material facing each other. The battery packaging material according to any one of Items 1 to 5, which is used to thermally seal the battery element and seal the battery element.
Item 7. 7. The battery packaging material according to any one of items 1 to 6, wherein the base material layer is made of a polyester resin.
Item 8. The battery packaging material according to any one of Items 1 to 7, wherein the thickness of the base material layer is 9 to 50 μm.
Item 9. The battery packaging material according to any one of Items 1 to 8, wherein the thickness of the heat-fusible resin layer is 45 to 100 μm.
Item 10. A battery, wherein a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is contained in a package formed of the battery packaging material according to any one of Items 1 to 9.
Item 11. At least a step of laminating the base material layer, the barrier layer, and the heat fusible resin layer in this order;
The resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours,
The manufacturing method of the packaging material for batteries whose melting | fusing point is 140 degreeC or more, and whose melt mass flow rate is 6 g / 10 minutes or more of resin which comprises the said heat fusible resin layer.
 本発明によれば、少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順に積層された積層体からなる電池用包装材料において、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れた電池用包装材料を提供することができる。また、本発明によれば、当該電池用包装材料の製造方法、及び当該電池用包装材料を用いた電池を提供することもできる。 According to the present invention, in a battery packaging material comprising at least a base layer, a barrier layer, and a heat-sealable resin layer laminated in this order, heat-sealable resin layers at high temperature and in a short time Can be heat-sealed, generation of appearance defects of the base material layer due to heat-sealed is suppressed, and a battery packaging material excellent in seal strength in a high temperature environment can be provided. Further, according to the present invention, it is possible to provide a method for producing the battery packaging material and a battery using the battery packaging material.
本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. シール強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of seal | sticker intensity | strength. シール強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of seal | sticker intensity | strength. シール強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of seal | sticker intensity | strength. 引張強度の測定によって得られる、時間と引張強度との関係を示すグラフにおいて、引張強度測定開始1秒後から1.5秒間の間、20N/15mm以上の状態が保たれる様子の模式図である。In the graph showing the relationship between time and tensile strength obtained by measurement of tensile strength, it is a schematic diagram of the state that 20 N / 15 mm or more is maintained for 1.5 seconds from 1 second after tensile strength measurement start is there.
 本発明の電池用包装材料は、少なくとも、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、前記基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、前記熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上であることを特徴とする。本発明の電池用包装材料においては、このような構成を備えていることにより、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れる。このため、本発明の電池用包装材料は、特に、車両用電池などの大型電池の包装材料として好適に使用することができる。また、温度210℃から250℃という高温で、時間1秒間という短時間で熱融着性樹脂層同士を熱融着させる電池用包装材料として好適に使用することができる。以下、本発明の電池用包装材料について詳述する。 The battery packaging material of the present invention is composed of a laminate including at least a base layer, a barrier layer, and a heat fusible resin layer in this order, and the resin constituting the base layer has a melting point Is 220 ° C. or higher, and the water absorption when left for 24 hours at a temperature of 65 ° C. and a relative humidity of 90% is 1% by mass or less, and the resin constituting the heat-fusible resin layer has a melting point It is characterized by having a temperature of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more. In the battery packaging material of the present invention, by having such a configuration, the heat fusible resin layers can be heat-fused to each other at high temperature and in a short time, and The occurrence of appearance defects is suppressed, and further, the seal strength in a high temperature environment is excellent. Therefore, the battery packaging material of the present invention can be suitably used particularly as a packaging material for a large battery such as a vehicle battery. In addition, it can be suitably used as a battery packaging material for thermally fusing heat-sealable resin layers at a high temperature of 210 ° C. to 250 ° C. for a short time of 1 second. Hereinafter, the battery packaging material of the present invention will be described in detail.
 なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 In the present specification, a numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.電池用包装材料の積層構造と物性
 本発明の電池用包装材料10は、例えば図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。本発明の電池用包装材料において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する熱融着性樹脂層4同士が熱融着して電池素子を密封することにより、電池素子が封止される。
1. Laminated Structure and Physical Properties of Battery Packaging Material The battery packaging material 10 of the present invention is, for example, a laminate comprising a base material layer 1, a barrier layer 3 and a heat fusible resin layer 4 in this order as shown in FIG. It consists of In the battery packaging material of the present invention, the base material layer 1 is the outermost layer side, and the heat-fusible resin layer 4 is the innermost layer. That is, when assembling the battery, the battery element is sealed by sealing the battery element by thermally fusing the heat-fusible resin layers 4 located on the peripheral edge of the battery element.
 本発明の電池用包装材料は、例えば図2に示すように、基材層1とバリア層3との間に、接着剤層2を備えていてもよい。また、図3に示すように、バリア層3と熱融着性樹脂層4との間に、接着層5を備えていてもよい。さらに、図4に示すように、基材層1の外側(熱融着性樹脂層4とは反対側)には、必要に応じて表面被覆層6を備えていてもよい。 The battery packaging material of the present invention may be provided with an adhesive layer 2 between the base layer 1 and the barrier layer 3 as shown in FIG. 2, for example. Further, as shown in FIG. 3, an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4. Furthermore, as shown in FIG. 4, a surface coating layer 6 may be provided on the outer side of the base material layer 1 (opposite to the heat fusible resin layer 4) as needed.
 本発明の電池用包装材料においては、電池用包装材料の熱融着性樹脂層4同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で熱融着性樹脂層4同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、20N/15mm以上の状態が保たれることが好ましく、25N/15mm以上の状態が保たれることがより好ましい。なお、当該引張強度の上限は、通常、130N/15mm以下程度である。 In the battery packaging material of the present invention, the heat sealing resin layer 4 of the battery packaging material faces each other, and the heat is applied under the conditions of temperature 150 ° C. to 250 ° C., surface pressure 0.5 MPa, time 1 second. The fusion bondable resin layers 4 are heat-sealed, and then, using a tensile tester, under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm under an environment of 25 ° C. The tensile strength measured by peeling the fused interface is preferably maintained at 20 N / 15 mm or more for 1.5 seconds from 1 second after the tensile strength measurement start, 25 N / 15 mm or more It is more preferable that The upper limit of the tensile strength is usually about 130 N / 15 mm or less.
 引張強度の測定によって得られる、時間と引張強度との関係を示すグラフにおいて、引張強度測定開始1秒後から1.5秒間の間、20N/15mm以上の状態が保たれる様子の模式図を図8に示す。 In a graph showing the relationship between time and tensile strength obtained by measurement of tensile strength, a schematic view showing how a state of 20N / 15 mm or more is maintained for 1.5 seconds from 1 second after the start of tensile strength measurement It is shown in FIG.
 また、本発明の電池用包装材料においては、電池用包装材料の熱融着性樹脂層4同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で熱融着性樹脂層4同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、80N/15mm以上の状態が保たれることが好ましく、90N/15mm以上の状態が保たれることがより好ましい。なお、当該引張強度の上限は、通常、130N/15mm以下程度である。 Further, in the battery packaging material of the present invention, the conditions of temperature 210 ° C. to 250 ° C., surface pressure 0.5 MPa, time 1 second, with heat fusible resin layers 4 of the battery packaging material facing each other. The heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 25 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm. The tensile strength measured by peeling the thermally fused interface is preferably maintained at 80 N / 15 mm or more for 1.5 seconds from 1 second after the tensile strength measurement start, 90 N / 15 mm or more It is more preferable that the condition of The upper limit of the tensile strength is usually about 130 N / 15 mm or less.
 さらに、本発明の電池用包装材料においては、電池用包装材料の熱融着性樹脂層4同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で熱融着性樹脂層4同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、2N/15mm以上の状態が保たれることが好ましく、3N/15mm以上の状態が保たれることがより好ましい。なお、当該引張強度の上限は、通常、10N/15mm以下程度である。 Furthermore, in the battery packaging material of the present invention, the conditions of the temperature of 150 ° C. to 250 ° C., the surface pressure of 0.5 MPa, and the time of 1 second, with the heat fusible resin layers 4 of the battery packaging material facing each other. The heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 140 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm. The tensile strength measured by peeling the heat-sealed interface is preferably maintained at 2 N / 15 mm or more for 1.5 seconds from the start of tensile strength measurement, 3 N / 15 mm or more It is more preferable that the condition of The upper limit of the tensile strength is usually about 10 N / 15 mm or less.
 また、本発明の電池用包装材料においては、電池用包装材料の熱融着性樹脂層4同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で熱融着性樹脂層4同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、10N/15mm以上の状態が保たれることが好ましい。なお、当該引張強度の上限は、通常、15N/15mm以下程度である。 Further, in the battery packaging material of the present invention, the conditions of temperature 210 ° C. to 250 ° C., surface pressure 0.5 MPa, time 1 second, with heat fusible resin layers 4 of the battery packaging material facing each other. The heat fusible resin layers 4 are heat-sealed together, and then, using a tensile tester, under conditions of a temperature of 140 ° C., a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm. The tensile strength measured by peeling the heat-fused interface is preferably maintained at 10 N / 15 mm or more for 1.5 seconds from the start of tensile strength measurement. The upper limit of the tensile strength is usually about 15 N / 15 mm or less.
 なお、以上のシール強度の測定方法は、具体的には、実施例に記載の方法を採用することができる(図6及び図7を参照)。 In addition, the measuring method of the above seal strength can employ | adopt the method as described in an Example specifically (refer FIG.6 and FIG.7).
 本発明の電池用包装材料は、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れる。このため、本発明の電池用包装材料は、電池用包装材料の熱融着性樹脂層4同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa以上(好ましくは、面圧0.5~3MPa)、時間1秒間以下(好ましくは、時間0.3~1秒間)の条件で熱融着性樹脂層4同士を熱融着させて、電池素子を封止するために好適に用いられる。 In the battery packaging material of the present invention, the heat fusible resin layers can be thermally fused at a high temperature and in a short time, and the occurrence of appearance defects of the base material layer due to the thermal fusion is suppressed. Excellent seal strength in high temperature environment. For this reason, the battery packaging material of the present invention has a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa or more (preferably a surface, with the thermally fusible resin layers 4 of the battery packaging material facing each other. In order to seal the battery element by thermally fusing the thermally fusible resin layers 4 under the conditions of a pressure of 0.5 to 3 MPa and a time of 1 second or less (preferably, a time of 0.3 to 1 second) It is preferably used.
2.電池用包装材料を形成する各層
[基材層1]
 本発明の電池用包装材料において、基材層1は最外層側に位置する層である。基材層1を構成する樹脂については、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であることが必要である。より具体的には、基材層1は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下である樹脂のみにより構成されていることが好ましい。このような特性を充足し得る樹脂しては、ポリエステル樹脂などが挙げられる。これらの中でも、好ましくは2軸延伸ポリエステル樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステルなどが挙げられる。
2. Each Layer Forming a Packaging Material for a Battery [Base Material Layer 1]
In the battery packaging material of the present invention, the base material layer 1 is a layer located on the outermost layer side. The resin constituting the substrate layer 1 needs to have a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. is there. More specifically, the base material layer 1 only has a melting point of 220 ° C. or higher, and a resin having a water absorption of 1% by mass or less when left to stand at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. It is preferable that it is comprised. As resin which can satisfy such a characteristic, polyester resin etc. are mentioned. Among these, preferably a biaxially stretched polyester resin is mentioned. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and copolyester.
 基材層1は、1層の樹脂フィルムから形成されていてもよいし、耐ピンホール性や絶縁性を向上させるために、2層以上の樹脂フィルムで形成されていてもよい。具体的には、ポリエステルフィルムを複数層積層させた多層構造などが挙げられる。基材層1が多層構造である場合、2軸延伸ポリエステルフィルムを複数積層させた積層体が好ましい。例えば、基材層1を2層の樹脂フィルムから形成する場合、ポリエステル樹脂とポリエステル樹脂を積層する構成、ポリエチレンテレフタレートとポリエチレンテレフタレートを積層する構成にすることがより好ましい。基材層1を多層構造とする場合、各層の厚さとして、好ましくは2~25μm程度が挙げられる。 The base material layer 1 may be formed of a resin film of one layer, or may be formed of a resin film of two or more layers in order to improve pinhole resistance and insulation. Specifically, a multilayer structure in which a plurality of polyester films are laminated may be mentioned. When base material layer 1 is multilayer structure, the layered product on which two or more biaxial stretched polyester films were laminated is preferred. For example, when forming the base material layer 1 from a resin film of two layers, it is more preferable to set it as the structure which laminates a polyester resin and a polyester resin, and the structure which laminates a polyethylene terephthalate and a polyethylene terephthalate. When the base material layer 1 has a multilayer structure, the thickness of each layer is preferably about 2 to 25 μm.
 基材層1を多層の樹脂フィルムで形成する場合、2以上の樹脂フィルムは、接着剤又は接着性樹脂などの接着成分を介して積層させればよく、使用される接着成分の種類や量などについては、後述する接着剤層2の場合と同様である。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着層としてウレタン系接着剤を用いることが好ましい。このとき、接着層の厚さとしては、例えば2~5μm程度が挙げられる。 When the base material layer 1 is formed of a multi-layered resin film, two or more resin films may be laminated via an adhesive or an adhesive component such as an adhesive resin, and the type and amount of the adhesive component used, etc. Is similar to that of the adhesive layer 2 described later. In addition, it does not restrict | limit especially as a method to laminate the resin film of two or more layers, A well-known method can be adopted, for example, a dry laminating method, a sandwich laminating method, etc. are mentioned, Preferably a dry laminating method is mentioned. When laminating by the dry lamination method, it is preferable to use a urethane type adhesive as an adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 2 to 5 μm.
 なお、基材層1が複数層により構成されており、基材層を構成する各層が接着剤(通常、厚さ3μm以下)などにより接着されている場合、接着剤の部分は基材層1には含まれない。 When the base material layer 1 is composed of a plurality of layers and each layer constituting the base material layer is adhered by an adhesive (usually 3 μm or less in thickness), the adhesive portion is the base material layer 1 Not included in
 基材層1を構成する樹脂の融点としては、220℃以上であればよいが、高温かつ短時間(例えば、210~250℃で1秒以下)で熱融着性樹脂層4同士を熱融着させた場合に、熱融着による基材層1の外観不良の発生をより一層効果的に抑制する観点からは、好ましくは220~290℃程度、より好ましくは230~280℃程度が挙げられる。なお、樹脂の融点は、示差走査熱量測定(DSC)によって測定された値である。 The melting point of the resin constituting the base material layer 1 may be 220 ° C. or higher, but the heat fusible resin layers 4 are thermally melted at high temperature and short time (for example, 1 second or less at 210 to 250 ° C.) In order to more effectively suppress the occurrence of appearance defects of the substrate layer 1 due to heat fusion when it is attached, it is preferably about 220 to 290 ° C., more preferably about 230 to 280 ° C. . The melting point of the resin is a value measured by differential scanning calorimetry (DSC).
 また、基材層1を構成する樹脂は、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下である必要があり、高温かつ短時間(例えば、210~250℃で1秒以下)で熱融着性樹脂層同士を熱融着させた場合に、熱融着による基材層の外観不良の発生をより一層効果的に抑制する観点からは、当該吸水量としては、好ましくは0.1~1質量%程度、より好ましくは0.1~0.5質量%程度が挙げられる。 In addition, the resin constituting the base material layer 1 needs to have a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. From the viewpoint of more effectively suppressing the occurrence of appearance defects of the base material layer due to heat fusion when heat fusion bonding resin layers are thermally fused at 250 ° C. for 1 second or less), the water absorption The amount is preferably about 0.1 to 1% by mass, more preferably about 0.1 to 0.5% by mass.
 また、本発明において、基材層1を構成する樹脂は、温度25℃、相対湿度50%で24時間放置された際の吸水率としては、好ましくは0.1~0.5質量%程度、より好ましくは0.1~0.3質量%程度が挙げられる。 In the present invention, the resin constituting the base material layer 1 preferably has a water absorption of about 0.1 to 0.5% by mass when left to stand at a temperature of 25 ° C. and a relative humidity of 50% for 24 hours. More preferably, it is about 0.1 to 0.3% by mass.
 本発明において、電池用包装材料の成形性を高める観点からは、基材層1の表面には、滑剤が付着していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、後述の熱融着性樹脂層4で例示したものと同じものが挙げられる。 In the present invention, from the viewpoint of enhancing the formability of the battery packaging material, a lubricant is preferably attached to the surface of the base layer 1. The lubricant is not particularly limited, but preferably includes amide lubricants. Specific examples of the amide-based lubricant include the same as those exemplified for the heat-fusible resin layer 4 described later.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、温度24℃、相対湿度60%の環境において、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When a lubricant is present on the surface of the substrate layer 1, the amount thereof is not particularly limited, but it is preferably about 3 mg / m 2 or more, more preferably 4 to 5 in an environment of 24 ° C. and 60% relative humidity. It may be about 15 mg / m 2 , more preferably about 5 to 14 mg / m 2 .
 基材層1の中には、滑剤が含まれていてもよい。また、基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The base material layer 1 may contain a lubricant. The lubricant present on the surface of the substrate layer 1 may be one in which the lubricant contained in the resin constituting the substrate layer 1 is exuded, or the lubricant coated on the surface of the substrate layer 1 It may be
 基材層1の厚さについては、基材層としての機能を発揮すれば特に制限されないが、本発明の上記構成を備える電池用包装材料において、高温かつ短時間(例えば、210~250℃で1秒以下)で熱融着性樹脂層同士を熱融着させた場合に、熱融着による基材層の外観不良の発生をより一層効果的に抑制する観点からは、好ましくは9~50μm程度、より好ましくは10~35μm程度、さらに好ましくは10~30μm程度が挙げられる。 The thickness of the base material layer 1 is not particularly limited as long as it exhibits the function as the base material layer, but high temperature and short time (for example, at 210 to 250 ° C.) in the battery packaging material having the above configuration of the present invention. 9 to 50 μm from the viewpoint of more effectively suppressing the occurrence of appearance defects of the base material layer due to heat fusion when heat fusion bonding resin layers are thermally fused in 1 second or less). The degree is more preferably about 10 to 35 μm, further preferably about 10 to 30 μm.
[接着剤層2]
 本発明の電池用包装材料10において、接着剤層2は、基材層1とバリア層3を強固に接着させるために、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the battery packaging material 10 of the present invention, the adhesive layer 2 is a layer provided between the substrate layer 1 and the barrier layer 3 as needed in order to firmly bond the substrate layer 1 and the barrier layer 3.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。さらに、接着剤層2の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型などのいずれであってもよい。 The adhesive layer 2 is formed of an adhesive capable of adhering the base layer 1 and the barrier layer 3. The adhesive used to form the adhesive layer 2 may be a two-part curable adhesive, or may be a one-part curable adhesive. Furthermore, the adhesion mechanism of the adhesive used to form the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a heat pressure type, and the like.
 接着剤層2の形成に使用できる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステルなどのポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミドなどのポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィンなどのポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;ポリカーボネート;尿素樹脂、メラミン樹脂などのアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴムなどのゴム;シリコーン系樹脂などが挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン系接着剤が挙げられる。 Specific examples of the adhesive component that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, copolyester, etc .; Adhesives; Polyurethane adhesive; Epoxy resin; Phenolic resin resin; Polyamide resin such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; Polyolefin resin such as polyolefin, carboxylic acid modified polyolefin, metal modified polyolefin Resin, polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; polycarbonate; amino resin such as urea resin, melamine resin; chloroprene rubber, nitrile - arm, styrene rubbers such as butadiene rubber; and silicone resins. These adhesive components may be used alone or in combination of two or more. Among these adhesive components, a polyurethane adhesive is preferably mentioned.
 接着剤層2の厚さについては、接着する層としての機能を発揮すれば特に制限されないが、本発明の上記構成を備える電池用包装材料において、高温かつ短時間で熱融着性樹脂層同士を熱融着させた場合にも、熱融着による基材層の外観不良の発生を抑制し、さらに、高温環境におけるシール強度を向上させる観点からは、例えば、1~10μm程度、好ましくは2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as it exhibits the function as a layer to be adhered, but in the battery packaging material having the above-described configuration of the present invention, the heat fusible resin layers Even in the case where heat sealing is performed, generation of appearance defects of the base material layer due to heat sealing is suppressed, and from the viewpoint of improving the seal strength in a high temperature environment, for example, about 1 to 10 μm, preferably 2 There may be about 5 μm.
[バリア層3]
 電池用包装材料において、バリア層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層3は、金属箔、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着層を設けたフィルムなどにより形成することができ、金属で形成されている層であることが好ましい。バリア層3を構成する金属としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼などが挙げられ、好ましくはアルミニウム合金及びステンレス鋼が挙げられる。
[Barrier layer 3]
In the battery packaging material, the barrier layer 3 is a layer having a function to prevent water vapor, oxygen, light and the like from invading the inside of the battery, in addition to the strength improvement of the battery packaging material. The barrier layer 3 can be formed of a metal foil, a metal deposition film, an inorganic oxide deposition film, a carbon-containing inorganic oxide deposition film, a film provided with these deposition layers, or the like, and is a layer formed of metal Is preferred. Specifically as a metal which comprises the barrier layer 3, aluminum alloy, stainless steel, titanium steel etc. are mentioned, Preferably aluminum alloy and stainless steel are mentioned.
 バリア層3は、金属箔により形成することが好ましく、アルミニウム合金箔又はステンレス鋼箔により形成することがさらに好ましい。 The barrier layer 3 is preferably formed of a metal foil, more preferably an aluminum alloy foil or a stainless steel foil.
 アルミニウム合金箔としては、電池用包装材料の成形時に、バリア層3にしわやピンホールが発生することを防止する観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましい。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。 The aluminum alloy foil is, for example, a soft aluminum alloy foil made of an annealed aluminum alloy or the like, from the viewpoint of preventing the occurrence of wrinkles and pin holes in the barrier layer 3 when the battery packaging material is formed. It is more preferable that As a soft aluminum alloy foil, for example, an aluminum alloy having a composition defined by JIS H 4 160: 1994 A802 1 H-O, JIS H 4 160: 1994 A 8079 H-O, JIS H 4000: 2014 A 802 1 P-O, or JIS H 4000: 2014 A 8079 P-O. Foil is mentioned.
 また、ステンレス鋼箔としては、電池用包装材料の成形時に、バリア層3にしわやピンホールが発生することを防止する観点から、オーステナイト系のステンレス鋼箔、フェライト系のステンレス鋼箔などが挙げられる。ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Further, as stainless steel foil, from the viewpoint of preventing generation of wrinkles and pin holes in the barrier layer 3 at the time of molding of the battery packaging material, austenitic stainless steel foil, ferritic stainless steel foil and the like are listed. Be The stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of austenitic stainless steels that constitute stainless steel foil include SUS304, SUS301, SUS316L, etc. Among these, SUS304 is particularly preferable.
 バリア層3の厚みは、水蒸気などのバリア層としての機能を発揮すれば特に制限されないが、例えば、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは40μm以下が挙げられ、下限については、好ましくは約10μm以上が挙げられ、当該厚みの範囲としては、10~80μm程度、好ましくは10~50μm程度が挙げられる。なお、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、下限については、約10μm以上が挙げられ、好ましい厚みの範囲としては、10~85μm程度、10~50μm程度、より好ましくは10~40μm程度、より好ましくは10~30μm程度、さらに好ましくは15~25μm程度が挙げられる。 The thickness of the barrier layer 3 is not particularly limited as long as it exhibits a function as a barrier layer such as water vapor, but for example, the upper limit is preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably 40 μm or less The lower limit is preferably about 10 μm or more, and the thickness range is about 10 to 80 μm, preferably about 10 to 50 μm. In particular, when the barrier layer 3 is made of stainless steel foil, the upper limit of the thickness of the stainless steel foil is preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less. More preferably, it is about 30 μm or less, particularly preferably about 25 μm or less, the lower limit is about 10 μm or more, and the preferable thickness range is about 10 to 85 μm, about 10 to 50 μm, more preferably 10 to It may be about 40 μm, more preferably about 10 to 30 μm, and still more preferably about 15 to 25 μm.
 また、バリア層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐酸性皮膜を形成する処理をいう。本発明のバリア層3の表面に耐酸性皮膜が形成されている場合、バリア層3には耐酸性皮膜が含まれる。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。 In addition, it is preferable that at least one surface, preferably both surfaces, of the barrier layer 3 be subjected to chemical conversion treatment in order to stabilize adhesion, to prevent dissolution or corrosion, and the like. Here, the chemical conversion treatment means a treatment for forming an acid resistant film on the surface of the barrier layer. When the acid resistant film is formed on the surface of the barrier layer 3 of the present invention, the barrier layer 3 contains the acid resistant film. As the chemical conversion treatment, for example, chromate chromate using a chromate compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromate acetyl acetate, chromium chloride, potassium chromium sulfate, etc. Treatment: Phosphoric acid chromate treatment using phosphoric acid compounds such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, etc .; Aminated phenol having repeating units represented by the following general formulas (1) to (4) The chromate process etc. which used the polymer are mentioned. In the aminated phenol polymer, repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. It is also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. Also, R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned. Also, examples of the hydroxyalkyl group represented by X, R 1 and R 2 include, for example, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- C 1-4 linear or branched C 1 -C 4 substituted with one hydroxy group, such as hydroxypropyl, 1-hydroxybutyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl and the like An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be identical to or different from each other. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having repeating units represented by the general formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, and about 1,000 to 20,000. More preferable.
 また、バリア層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、バリア層3の表面に耐酸性皮膜を形成する方法が挙げられる。また、耐酸性皮膜の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 In addition, as a chemical conversion treatment method for imparting corrosion resistance to the barrier layer 3, a coating in which fine particles of aluminum oxide, titanium oxide, cerium oxide, metal oxide such as tin oxide, or barium sulfate are dispersed in phosphoric acid is coated; A method of forming an acid resistant film on the surface of the barrier layer 3 can be mentioned by carrying out the baking treatment at 150 ° C. or higher. In addition, on the acid resistant film, a resin layer may be further formed by crosslinking the cationic polymer with a crosslinking agent. Here, as the cationic polymer, for example, polyethylene imine, an ionic polymer complex composed of polyethylene imine and a polymer having a carboxylic acid, primary amine graft acrylic resin obtained by graft polymerizing a primary amine on an acrylic main skeleton, polyallylamine Or derivatives thereof, aminophenol and the like. As these cationic polymers, only 1 type may be used and you may use combining 2 or more types. Moreover, as a crosslinking agent, the compound which has an at least 1 sort (s) of functional group chosen from the group which consists of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, a silane coupling agent etc. are mentioned, for example. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
 また、耐酸性皮膜を具体的に設ける方法としては、たとえば、一つの例として、少なくともアルミニウム箔(バリア層)の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩およびこれらの金属塩の混合体を主成分とする処理液(水溶液)、あるいは、リン酸非金属塩およびこれらの非金属塩の混合体を主成分とする処理液(水溶液)、あるいは、これらとアクリル系樹脂ないしフェノール系樹脂ないしポリウレタン系樹脂等の水系合成樹脂との混合物からなる処理液(水溶液)をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工することにより、耐酸性皮膜を形成することができる。たとえば、リン酸Cr(クロム)塩系処理液で処理した場合は、CrPO4(リン酸クロム)、AlPO4(リン酸アルミニウム)、Al23(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となり、リン酸Zn(亜鉛)塩系処理液で処理した場合は、Zn2PO4・4H2O(リン酸亜鉛水和物)、AlPO4(リン酸アルミニウム)、Al23(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となる。 Moreover, as a method of specifically providing the acid resistant coating, for example, at least the surface on the inner layer side of the aluminum foil (barrier layer) is first subjected to an alkaline dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolysis method. The degreasing treatment is performed by a known treatment method such as an acid cleaning method or an acid activation method, and then the surface to be degreased is treated with Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, phosphorus Acid solution (aqueous solution) mainly composed of phosphoric acid metal salts such as zinc (zinc) salts and mixtures of these metal salts, or phosphoric acid nonmetal salts and mixtures of these nonmetallic salts Roll-coating, gravure printing of a treatment solution (aqueous solution) consisting of a treatment solution (aqueous solution) or a mixture of these with an aqueous synthetic resin such as an acrylic resin, a phenol resin or a polyurethane resin. By coating in a known coating method of the immersion method, it is possible to form the acid-resistant coating. For example, when treated with a Cr (chromium) phosphate-based treatment solution, CrPO 4 (chromium phosphate), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (water It becomes an acid-resistant film consisting of aluminum oxide), AlF x (aluminum fluoride), etc. and is treated with a phosphoric acid Zn (zinc) salt-based treatment solution, Zn 2 PO 4 · 4H 2 O (zinc phosphate hydrate) ), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (aluminum hydroxide), AlF x (aluminum fluoride) and the like.
 また、耐酸性皮膜を設ける具体的方法の他の例としては、たとえば、少なくともアルミニウム箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面に周知の陽極酸化処理を施すことにより、耐酸性皮膜を形成することができる。 In addition, as another example of a specific method of forming an acid resistant coating, for example, at least the surface on the inner layer side of an aluminum foil is first subjected to an alkaline dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activity An acid resistant film can be formed by degreasing treatment by a known treatment method such as chemical conversion method and then applying known anodizing treatment to the degreasing treatment surface.
 また、耐酸性皮膜の他の一例としては、リン化合物(例えば、リン酸塩系)、クロム化合物(例えば、クロム酸系)の皮膜が挙げられる。リン酸塩系としては、リン酸亜鉛、リン酸鉄、リン酸マンガン、リン酸カルシウム、リン酸クロムなどが挙げられ、クロム酸系としては、クロム酸クロムなどが挙げられる。 In addition, as another example of the acid resistant coating, a coating of a phosphorus compound (for example, a phosphate type) or a chromium compound (for example, a chromic acid type) can be mentioned. Examples of phosphates include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate and chromium phosphate. Examples of chromic acid include chromium chromate.
 また、耐酸性皮膜の他の一例としては、リン化合物(リン酸塩など)、クロム化合物(クロム酸塩など)、フッ化物、トリアジンチオール化合物等の耐酸性皮膜を形成することによって、エンボス成形時のアルミニウムと基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム表面の溶解、腐食、特にアルミニウムの表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウムとのデラミネーション防止、エンボスタイプにおいてはプレス成形時の基材層とアルミニウムとのデラミネーション防止の効果を示す。耐酸性皮膜を形成する物質のなかでも、フェノール系樹脂、フッ化クロム(3)化合物、リン酸の3成分から構成された水溶液をアルミニウム表面に塗布し、乾燥焼付けの処理が良好である。 In addition, as another example of the acid resistant coating, at the time of embossing by forming an acid resistant coating such as a phosphorus compound (such as phosphate), a chromium compound (such as chromate), a fluoride or a triazine thiol compound Dissolution of aluminum surface, corrosion, in particular dissolution and corrosion of aluminum oxide present on the surface of aluminum, by the prevention of delamination between aluminum and substrate layer, hydrogen fluoride generated by the reaction between electrolyte and water And improve the adhesion (wettability) of the aluminum surface, prevent delamination of the substrate layer and aluminum during heat sealing, and in the case of the emboss type, remove the substrate layer and aluminum during press molding. It shows the effect of preventing lamination. Among the substances forming the acid resistant film, an aqueous solution composed of a phenolic resin, a chromium fluoride (3) compound, and a phosphoric acid three component is applied on the aluminum surface, and the dry baking treatment is good.
 また、耐酸性皮膜は、酸化セリウムと、リン酸またはリン酸塩と、アニオン性ポリマーと、該アニオン性ポリマーを架橋させる架橋剤とを有する層を含み、前記リン酸またはリン酸塩が、前記酸化セリウム100質量部に対して、1~100質量部配合されていてもよい。耐酸性皮膜が、カチオン性ポリマーおよび該カチオン性ポリマーを架橋させる架橋剤を有する層をさらに含む多層構造であることが好ましい。 The acid resistant film further comprises a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent for crosslinking the anionic polymer, wherein the phosphoric acid or phosphate is any of the above. It may be blended in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of cerium oxide. It is preferable that the acid resistant coating be a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
 さらに、前記アニオン性ポリマーが、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、前記架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。 Furthermore, it is preferable that the said anionic polymer is a copolymer which has poly (meth) acrylic acid or its salt, or (meth) acrylic acid or its salt as a main component. Moreover, it is preferable that the said crosslinking agent is at least 1 sort (s) chosen from the group which consists of a compound which has a functional group in any one of an isocyanate group, glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
 また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Moreover, it is preferable that the said phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
 化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロム酸クロメート処理や、クロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせたクロメート処理などが好ましい。 For the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion treatments may be performed in combination. Furthermore, these chemical conversion treatments may be performed using one type of compound alone, or may be performed using two or more types of compounds in combination. Among the chemical conversion treatments, chromate chromate treatment, chromate treatment in which a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are combined are preferable.
 耐酸性皮膜の具体例としては、リン酸塩、クロム酸塩、フッ化物、及びトリアジンチオール化合物のうち少なくとも1種を含むものが挙げられる。また、セリウム化合物を含む耐酸性皮膜も好ましい。セリウム化合物としては、酸化セリウムが好ましい。 Specific examples of the acid resistant film include those containing at least one of phosphate, chromate, fluoride, and triazine thiol compound. In addition, an acid resistant film containing a cerium compound is also preferable. As a cerium compound, cerium oxide is preferable.
 また、耐酸性皮膜の具体例としては、リン酸塩系皮膜、クロム酸塩系皮膜、フッ化物系皮膜、トリアジンチオール化合物皮膜なども挙げられる。耐酸性皮膜としては、これらのうち1種類であってもよいし、複数種類の組み合わせであってもよい。さらに、耐酸性皮膜としては、バリア層の化成処理面を脱脂処理した後に、リン酸金属塩と水系合成樹脂との混合物からなる処理液、またはリン酸非金属塩と水系合成樹脂との混合物からなる処理液で形成されたものであってもよい。 Moreover, as a specific example of an acid resistant film, a phosphate type film, a chromate type film, a fluoride type film, a triazine thiol compound film, etc. are mentioned. The acid resistant coating may be one of these or a combination of two or more. Furthermore, as the acid resistant coating, after degreasing the chemical conversion treatment surface of the barrier layer, a treatment liquid comprising a mixture of a metal salt of phosphoric acid and an aqueous synthetic resin, or a mixture of a nonmetallic metal salt of phosphoric acid and an aqueous synthetic resin It may be formed by the treatment liquid.
 なお、耐酸性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The analysis of the composition of the acid-resistant film can be performed using, for example, time-of-flight secondary ion mass spectrometry.
 化成処理においてバリア層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the acid resistant coating formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but, for example, in the case of performing the above-mentioned chromate treatment, a chromic acid compound is contained per 1 m 2 of the surface of the barrier layer 3 About 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, of the phosphorus compound in terms of phosphorus, and The content is desirably about 0 to 200 mg, preferably about 5.0 to 150 mg.
 耐酸性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐酸性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐酸性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the acid-resistant coating is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably about 1 nm to 100 nm, from the viewpoint of the cohesion of the film and the adhesion to the barrier layer and the heat fusible resin layer. More preferably, about 1 nm to 50 nm can be mentioned. The thickness of the acid-resistant film can be measured by a transmission electron microscope or a combination of an observation by a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy. Analysis of the composition of the acid-resistant film using time-of-flight secondary ion mass spectrometry, for example, secondary ions consisting of Ce, P and O (for example, at least one of Ce 2 PO 4 + , CePO 4 −, etc. And peaks derived from secondary ions (for example, at least one of CrPO 2 + , CrPO 4 − and the like) consisting of Cr, P and O, for example.
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。 In the chemical conversion treatment, the temperature of the barrier layer is 70 after the solution containing the compound used for forming the acid resistant coating is applied to the surface of the barrier layer by the bar coating method, roll coating method, gravure coating method, immersion method or the like. It is carried out by heating to about 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer, the barrier layer may be subjected in advance to a degreasing treatment by an alkaline immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like. By performing the degreasing treatment in this manner, the chemical conversion treatment on the surface of the barrier layer can be performed more efficiently.
[熱融着性樹脂層4]
 本発明の電池用包装材料において、熱融着性樹脂層4は、最内層に該当し、電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する層である。
[Heat-fusible resin layer 4]
In the battery packaging material of the present invention, the thermally fusible resin layer 4 corresponds to the innermost layer, and is a layer that thermally fuses the thermally fusible resin layers when the battery is assembled to seal the battery element.
 本発明において、熱融着性樹脂層4を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレート(MFR)が6g/10分以上である必要がある。熱融着性樹脂層4を構成する樹脂の融点は、140℃以上であればよいが、本発明の上記構成を備える電池用包装材料において、高温かつ短時間で熱融着性樹脂層同士を熱融着させた場合にも、熱融着による基材層の外観不良の発生を抑制し、さらに、高温環境におけるシール強度を向上させる観点からは、好ましくは140~160℃程度、より好ましくは140~155℃程度、さらに好ましくは140~150℃程度が挙げられる。なお、樹脂の融点は、示差走査熱量測定(DSC)によって測定された値である。 In the present invention, the resin constituting the heat-fusible resin layer 4 needs to have a melting point of 140 ° C. or more and a melt mass flow rate (MFR) of 6 g / 10 minutes or more. The melting point of the resin constituting the heat-fusible resin layer 4 may be 140 ° C. or higher, but in the battery packaging material having the above-mentioned constitution of the present invention, the heat-fusible resin layers Even when heat fusion is performed, from the viewpoint of suppressing the occurrence of appearance defects of the base material layer due to heat fusion and further improving the seal strength in a high temperature environment, preferably about 140 to 160 ° C., more preferably The temperature may be about 140 to 155 ° C., and more preferably about 140 to 150 ° C. The melting point of the resin is a value measured by differential scanning calorimetry (DSC).
 また、熱融着性樹脂層4を構成する樹脂のメルトマスフローレート(MFR)は、6g/10分以上であればよいが、上記の観点からは、好ましくは8~25g/10分程度、より好ましくは10~25g/10分程度、さらに好ましくは10~20g/10分程度が挙げられる。なお、MFRは、JIS K7210によって測定された値である。 Further, the melt mass flow rate (MFR) of the resin constituting the heat-fusible resin layer 4 may be 6 g / 10 min or more, but from the above viewpoint, preferably it is about 8 to 25 g / 10 min. It is preferably about 10 to 25 g / 10 minutes, and more preferably about 10 to 20 g / 10 minutes. In addition, MFR is a value measured by JISK7210.
 熱融着性樹脂層4の上記の融点及びMFRは、それぞれ、熱融着性樹脂層4を構成する樹脂全体として、上記の要件を充足していればよい。 The above-mentioned melting point and MFR of the heat fusible resin layer 4 may satisfy the above requirements as a whole of the resin constituting the heat fusible resin layer 4.
 熱融着性樹脂層4に使用される樹脂成分については、上記の融点及びMFRを充足し、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンが挙げられる。すなわち、熱融着性樹脂層4を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。熱融着性樹脂層4を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin component used for the heat-fusible resin layer 4 satisfies the above melting point and MFR and is not particularly limited as long as it can be heat-fused, but, for example, polyolefin, cyclic polyolefin, acid-modified polyolefin And acid-modified cyclic polyolefins. That is, the resin constituting the heat-fusible resin layer 4 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. The resin constituting the heat-fusible resin layer 4 may contain a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid denaturation degree is low, the peak may be small and not detected. In that case, analysis is possible by nuclear magnetic resonance spectroscopy.
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)などのポリプロピレン;エチレン-ブテン-プロピレンのターポリマーなどが挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 Specific examples of the polyolefin include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene and linear low density polyethylene; homopolypropylene, block copolymers of polypropylene (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers of (for example, random copolymers of propylene and ethylene); terpolymers of ethylene-butene-propylene and the like. Among these polyolefins, preferably polyethylene and polypropylene are mentioned.
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレンなどが挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネンなどの環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエンなどの環状ジエンなどが挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, isoprene and the like. . Moreover, as a cyclic monomer which is a constituent monomer of the cyclic polyolefin, for example, cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like can be mentioned. Among these polyolefins, preferred are cyclic alkenes, more preferably norbornene.
 前記酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸などの酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸などのカルボン酸又はその無水物が挙げられる。 The acid-modified polyolefin is a polymer obtained by modifying the polyolefin by block polymerization or graft polymerization with an acid component such as a carboxylic acid. Examples of the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride, or anhydrides thereof.
 前記酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記ポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified cyclic polyolefin is prepared by copolymerizing part of the monomers constituting the cyclic polyolefin with an α, β-unsaturated carboxylic acid or an anhydride thereof, or α, β- to the cyclic polyolefin. It is a polymer obtained by block polymerization or graft polymerization of unsaturated carboxylic acid or its anhydride. The cyclic polyolefin to be carboxylic acid modified is the same as described above. Moreover, as a carboxylic acid used for modification | denaturation, it is the same as that of the acid component used for modification | denaturation of the said polyolefin.
 これらの樹脂成分の中でも、好ましくはポリプロピレンなどのポリオレフィン、カルボン酸変性ポリオレフィン;さらに好ましくはポリプロピレン、酸変性ポリプロピレンが挙げられる。 Among these resin components, preferred are polyolefins such as polypropylene, carboxylic acid-modified polyolefins, and more preferably polypropylene and acid-modified polypropylenes.
 熱融着性樹脂層4は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで成されていてもよいが、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。 The heat fusible resin layer 4 may be formed of one type of resin component alone, or may be formed of a blend polymer in which two or more types of resin components are combined. Furthermore, although the heat fusible resin layer 4 may be formed of only one layer, it may be formed of two or more layers of the same or different resin components.
 本発明において、電池用包装材料の成形性を高める観点からは、熱融着性樹脂層の表面には、滑剤が付着していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族系ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present invention, from the viewpoint of enhancing the moldability of the battery packaging material, it is preferable that a lubricant adheres to the surface of the heat-fusible resin layer. The lubricant is not particularly limited, but preferably includes amide lubricants. Specific examples of the amide lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide and the like. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. In addition, specific examples of methylolamide include methylol stearic acid amide and the like. Specific examples of the saturated fatty acid bisamide include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylene bisstearin Acid amide, hexamethylene bisbehenamide, hexamethylene hydroxystearic amide, N, N'-distearyl adipamide, N, N'-distearyl sebacate amide and the like can be mentioned. Specific examples of unsaturated fatty acid bisamides include ethylene bis oleic acid amide, ethylene bis erucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipic acid amide, N, N'-dioleyl sebacic acid amide Etc. Specific examples of fatty acid ester amides include stearoamidoethyl stearate and the like. Further, specific examples of the aromatic bisamides include m-xylylene bis-stearic acid amide, m-xylylene bis-hydroxystearic acid amide, N, N'-distearyl isophthalic acid amide and the like. The lubricant may be used alone or in combination of two or more.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、温度24℃、相対湿度60%の環境において、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When a lubricant is present on the surface of the heat-fusible resin layer 4, the amount thereof is not particularly limited, but it is preferably about 3 mg / m 2 or more, more preferably in an environment of 24 ° C. and 60% relative humidity. Is about 4 to 15 mg / m 2 , and more preferably about 5 to 14 mg / m 2 .
 熱融着性樹脂層4の中には、滑剤が含まれていてもよい。また、熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The heat fusible resin layer 4 may contain a lubricant. Also, the lubricant present on the surface of the heat-fusible resin layer 4 may be one in which the lubricant contained in the resin constituting the heat-fusible resin layer 4 is exuded, or the heat-fusible resin layer The surface of 4 may be coated with a lubricant.
 また、熱融着性樹脂層4の厚さとしては、熱融着性樹脂層としての機能を発揮すれば特に制限されないが、本発明の上記構成を備える電池用包装材料において、高温かつ短時間で熱融着性樹脂層同士を熱融着させた場合にも、熱融着による基材層の外観不良の発生を抑制し、さらに、高温環境におけるシール強度を向上させる観点からは、好ましくは30~140μm程度、より好ましくは40~120μm程度、さらに好ましくは45~100μm程度が挙げられる。 Further, the thickness of the heat fusible resin layer 4 is not particularly limited as long as it exhibits the function as the heat fusible resin layer, but in the battery packaging material having the above configuration of the present invention, high temperature and short time Even when the heat fusible resin layers are heat-sealed together, it is preferable from the viewpoint of suppressing the occurrence of appearance defects of the base material layer due to heat-sealing and further improving the seal strength in a high temperature environment. It may be about 30 to 140 μm, more preferably about 40 to 120 μm, and still more preferably about 45 to 100 μm.
[接着層5]
 本発明の電池用包装材料において、接着層5は、バリア層3と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the battery packaging material of the present invention, the adhesive layer 5 is a layer optionally provided between the barrier layer 3 and the heat-fusible resin layer 4 in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、その接着機構、接着剤成分の種類などは、接着剤層2で例示した接着剤と同様のものが使用できる。また、接着層5の形成に使用される樹脂としては、前述の熱融着性樹脂層4で例示したポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどのポリオレフィン系樹脂も使用できる。バリア層3と熱融着性樹脂層4との密着性に優れる観点から、ポリオレフィンとしては、カルボン酸変性ポリオレフィンが好ましく、カルボン酸変性ポリプロピレンが特に好ましい。すなわち、接着層5を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。接着層5を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the heat fusible resin layer 4. As resin used for formation of adhesion layer 5, the thing of the adhesion mechanism, the kind of adhesive agent component, etc. can use the thing similar to the adhesive illustrated by adhesive agent layer 2. Moreover, as resin used for formation of the contact bonding layer 5, polyolefin resin, such as polyolefin mentioned above-mentioned heat-fusion resin layer 4, cyclic polyolefin, carboxylic acid modified polyolefin, carboxylic acid modified cyclic polyolefin, can also be used. . As the polyolefin, a carboxylic acid-modified polyolefin is preferable, and a carboxylic acid-modified polypropylene is particularly preferable, from the viewpoint of excellent adhesion between the barrier layer 3 and the heat-fusible resin layer 4. That is, the resin constituting the adhesive layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. It is possible to analyze that the resin constituting the adhesive layer 5 contains a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography-mass spectrometry, etc., and there is no particular limitation on the analysis method. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid denaturation degree is low, the peak may be small and not detected. In that case, analysis is possible by nuclear magnetic resonance spectroscopy.
 さらに、電池用包装材料の厚さを薄くしつつ、成形後の形状安定性に優れた電池用包装材料とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であってもよい。酸変性ポリオレフィンとしては、好ましくは、熱融着性樹脂層4で例示したカルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンと同じものが例示できる。 Furthermore, from the viewpoint of making the battery packaging material excellent in shape stability after molding while reducing the thickness of the battery packaging material, the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It may be a cured product. As the acid-modified polyolefin, preferably, the same ones as the carboxylic acid-modified polyolefin and the carboxylic acid-modified cyclic polyolefin exemplified in the heat fusible resin layer 4 can be exemplified.
 また、硬化剤としては、酸変性ポリオレフィンを硬化させるものであれば、特に限定されない。硬化剤としては、例えば、エポキシ系硬化剤、多官能イソシアネート系硬化剤、カルボジイミド系硬化剤、オキサゾリン系硬化剤などが挙げられる。 The curing agent is not particularly limited as long as it cures acid-modified polyolefin. Examples of the curing agent include epoxy-based curing agents, polyfunctional isocyanate-based curing agents, carbodiimide-based curing agents, oxazoline-based curing agents, and the like.
 エポキシ系硬化剤は、少なくとも1つのエポキシ基を有する化合物であれば、特に限定されない。エポキシ系硬化剤としては、例えば、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどのエポキシ樹脂が挙げられる。 The epoxy curing agent is not particularly limited as long as it is a compound having at least one epoxy group. Examples of the epoxy curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like.
 多官能イソシアネート系硬化剤は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。 The polyfunctional isocyanate-based curing agent is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or denating these, or the like Mixtures and copolymers with other polymers may be mentioned.
 カルボジイミド系硬化剤は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド系硬化剤としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。 The carbodiimide curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (-N = C = N-). As a carbodiimide type | system | group hardening | curing agent, the polycarbodiimide compound which has a carbodiimide group 2 or more at least is preferable.
 オキサゾリン系硬化剤は、オキサゾリン骨格を有する化合物であれば、特に限定されない。オキサゾリン系硬化剤としては、具体的には、日本触媒社製のエポクロスシリーズなどが挙げられる。 The oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the oxazoline curing agent include Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5によるバリア層3と熱融着性樹脂層4との密着性を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。 From the viewpoint of, for example, enhancing the adhesion between the barrier layer 3 and the thermally fusible resin layer 4 by the adhesive layer 5, the curing agent may be composed of two or more types of compounds.
 接着層5を形成する樹脂組成物における硬化剤の含有量は、0.1~50質量%程度の範囲にあることが好ましく、0.1~30質量%程度の範囲にあることがより好ましく、0.1~10質量%程度の範囲にあることがさらに好ましい。 The content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
 接着層5の厚さについては、接着層としての機能を発揮すれば特に制限されないが、接着剤層2で例示した接着剤を用いる場合であれば、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。また、酸変性ポリオレフィンと硬化剤との硬化物である場合であれば、好ましくは約30μm以下、より好ましくは0.1~20μm程度、さらに好ましくは0.5~5μm程度が挙げられる。なお、接着層5が酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、当該樹脂組成物を塗布し、加熱などにより硬化させることにより、接着層5を形成することができる。 The thickness of the adhesive layer 5 is not particularly limited as long as it exhibits the function as an adhesive layer, but in the case of using the adhesive exemplified in the adhesive layer 2, it is preferably about 1 to 10 μm, more preferably 1 There may be about 5 μm. Further, in the case of using the resin exemplified for the heat fusible resin layer 4, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. In the case of a cured product of an acid-modified polyolefin and a curing agent, it is preferably about 30 μm or less, more preferably about 0.1 to 20 μm, and still more preferably about 0.5 to 5 μm. When the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like.
[表面被覆層6]
 本発明の電池用包装材料においては、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、必要に応じて、表面被覆層6を設けてもよい。表面被覆層6は、電池を組み立てた時に、最外層に位置する層である。
[Surface covering layer 6]
In the battery packaging material of the present invention, on the base material layer 1 (the barrier layer of the base material layer 1), as needed, for the purpose of improving designability, electrolytic solution resistance, abrasion resistance, moldability, etc. If necessary, a surface covering layer 6 may be provided on the side opposite to 3). The surface covering layer 6 is a layer located in the outermost layer when the battery is assembled.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などにより形成することができる。表面被覆層6は、これらの中でも、2液硬化型樹脂により形成することが好ましい。表面被覆層6を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂などが挙げられる。また、表面被覆層6には、添加剤を配合してもよい。 The surface coating layer 6 can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin or the like. Among these, the surface coating layer 6 is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface covering layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Further, an additive may be blended in the surface coating layer 6.
 添加剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物などが挙げられる。また、添加剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状などが挙げられる。添加剤として、具体的には、タルク、シリカ、グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。これらの添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施しておいてもよい。 Examples of the additive include fine particles having a particle diameter of about 0.5 nm to 5 μm. The material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. Further, the shape of the additive is not particularly limited, and examples thereof include spheres, fibers, plates, indeterminate shapes, and balloons. As an additive, specifically, talc, silica, graphite, kaolin, montmorrroid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel and the like can be mentioned. These additives may be used alone or in combination of two or more. Among these additives, silica, barium sulfate and titanium oxide are preferably mentioned from the viewpoint of dispersion stability and cost. In addition, the surface may be subjected to various surface treatments such as insulation treatment, high dispersion treatment, and the like.
 表面被覆層中の添加剤の含有量としては、特に制限されないが、好ましくは0.05~1.0質量%程度、より好ましくは0.1~0.5質量%程度が挙げられる。 The content of the additive in the surface coating layer is not particularly limited, but preferably about 0.05 to 1.0% by mass, more preferably about 0.1 to 0.5% by mass.
 表面被覆層6を形成する方法としては、特に制限されないが、例えば、表面被覆層6を形成する2液硬化型樹脂を基材層1の一方の表面に塗布する方法が挙げられる。添加剤を配合する場合には、2液硬化型樹脂に添加剤を添加して混合した後、塗布すればよい。 Although it does not restrict | limit especially as a method to form the surface coating layer 6, For example, the method of apply | coating 2-component curable resin which forms the surface coating layer 6 on one surface of the base material layer 1 is mentioned. In the case of blending the additive, the additive may be added to and mixed with the two-component curable resin and then applied.
 表面被覆層6の厚さとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されないが、例えば、0.5~10μm、好ましくは1~5μmが挙げられる。 The thickness of the surface coating layer 6 is not particularly limited as long as the above-described function as the surface coating layer 6 is exerted, and for example, 0.5 to 10 μm, preferably 1 to 5 μm can be mentioned.
3.電池用包装材料の製造方法
 本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されない。すなわち、本発明の電池用包装材料の製造方法においては、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4をこの順となるように積層する工程を備えており、基材層1を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、さらに、熱融着性樹脂層4を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である。
3. Method for Producing Battery Packaging Material The method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate obtained by laminating each layer of a predetermined composition is obtained. That is, the method for producing a packaging material for a battery of the present invention comprises the step of laminating at least the base layer 1, the barrier layer 3 and the heat-fusible resin layer 4 in this order, The resin constituting the material layer 1 has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left to stand at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours. The resin constituting the conductive resin layer 4 has a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
 本発明の電池用包装材料の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布・乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 As an example of the manufacturing method of the packaging material for batteries of this invention, it is as follows. First, a laminate (hereinafter sometimes referred to as “laminate A”) in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are sequentially laminated is formed. Specifically, the laminate A is formed by, for example, a gravure coating method using an adhesive used to form the adhesive layer 2 on the base layer 1 or the barrier layer 3 whose surface is chemically treated as necessary. It can carry out by the dry laminating method which makes the said barrier layer 3 or the base material layer 1 laminate, and hardens the adhesive layer 2 after applying and drying by coating methods, such as a coating method.
 次いで、積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4をこの順になるように積層させる。例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)などが挙げられる。 Next, the adhesive layer 5 and the heat-fusible resin layer 4 are laminated in this order on the barrier layer 3 of the laminate A. For example, (1) a method of laminating the adhesive layer 5 and the heat-fusible resin layer 4 by coextrusion on the barrier layer 3 of the laminate A (co-extrusion laminating method), (2) separately, the adhesive layer 5 To form a laminate in which the heat-fusion resin layer 4 is laminated, and laminating it on the barrier layer 3 of the laminate A by thermal lamination method, (3) bonding on the barrier layer 3 of the laminate A The adhesive for forming the layer 5 is extruded or solution coated, laminated by drying or baking at a high temperature, and the like, and the heat fusible resin layer 4 previously formed into a sheet on the adhesive layer 5 is formed. Method of laminating by thermal laminating method, (4) Bonding while pouring the melted adhesive layer 5 between the barrier layer 3 of the laminate A and the heat-fusible resin layer 4 previously formed into a sheet The laminate A and the heat fusible resin layer 4 are provided via the layer 5 Ri fit method (sandwich lamination method).
 表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 When the surface covering layer 6 is provided, the surface covering layer 6 is laminated on the surface of the base layer 1 opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above-mentioned resin that forms the surface coating layer 6 on the surface of the base layer 1. The order of the process of laminating the barrier layer 3 on the surface of the base material layer 1 and the process of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited. For example, after the surface covering layer 6 is formed on the surface of the base layer 1, the barrier layer 3 may be formed on the surface of the base layer 1 opposite to the surface covering layer 6.
 上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/必要に応じて表面が化成処理されたバリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4からなる積層体が形成されるが、接着剤層2又は接着層5の接着性を強固にするために、さらに、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式などの加熱処理に供してもよい。このような加熱処理の条件としては、例えば150℃~250℃で1分間~5分間が挙げられる。 As described above, surface covering layer 6 / base layer 1 / optional layer 1 / optional adhesive layer 2 / optional layer surface optionally treated / optional 3 / optional layer A laminated body consisting of the adhesive layer 5 / the heat fusible resin layer 4 to be provided is formed, but in order to strengthen the adhesion of the adhesive layer 2 or the adhesive layer 5, further, a heat roll contact type, a hot air It may be subjected to a heat treatment such as a formula, a near infrared type or a far infrared type. The conditions for such heat treatment include, for example, 150 ° C. to 250 ° C. and 1 minute to 5 minutes.
 本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施していてもよい。 In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming ability, lamination processing, final product secondary processing (pouching, embossing) suitability, etc., as necessary. For this purpose, surface activation treatments such as corona treatment, blast treatment, oxidation treatment, and ozone treatment may be performed.
4.電池用包装材料の用途
 本発明の電池用包装材料は、正極、負極、電解質などの電池素子を密封して収容するための包装体に使用される。すなわち、本発明の電池用包装材料によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた電池素子を収容して、電池とすることができる。
4. Applications of Battery Packaging Material The battery packaging material of the present invention is used for a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, the battery element provided with at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to make a battery.
 具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料により形成された包装体中に電池素子を収容する場合、本発明の電池用包装材料の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして、包装体を形成する。 Specifically, a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is a battery packaging material of the present invention, in which the metal terminal connected to each of the positive electrode and the negative electrode protrudes outward. The battery is covered by forming flanges (areas in which the heat fusible resin layers are in contact with each other) on the periphery of the element, and heat sealing the heat fusible resin layers of the flanges to seal them. A battery using a packaging material is provided. When the battery element is housed in a package formed of the battery packaging material of the present invention, the heat fusible resin portion of the battery packaging material of the present invention is on the inner side (surface in contact with the battery element) Then, form a package.
 本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシターなどが挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, lithium ion battery, lithium ion polymer battery, lead storage battery, nickel hydrogen storage battery, nickel cadmium storage battery, nickel Iron storage batteries, nickel-zinc storage batteries, silver oxide-zinc storage batteries, metal air batteries, multivalent cation batteries, capacitors, capacitors and the like can be mentioned. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are mentioned as a suitable application object of the packaging material for batteries of the present invention.
 本発明の電池用包装材料は、高温かつ短時間で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、高温環境におけるシール強度に優れるため、車両用電池などの大型電池に好適に使用することができる。特に本発明の電池用包装材料を好適に適用できる電池としては、電池容量が30Ah以上の大型電池が挙げられる。 In the battery packaging material of the present invention, the heat fusible resin layers can be thermally fused at a high temperature and in a short time, and the occurrence of appearance defects of the base material layer due to the thermal fusion is suppressed. Since the seal strength in a high temperature environment is excellent, it can be suitably used for a large battery such as a vehicle battery. In particular, as a battery to which the battery packaging material of the present invention can be suitably applied, a large battery having a battery capacity of 30 Ah or more can be mentioned.
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail by showing Examples and Comparative Examples. However, the present invention is not limited to the examples.
<電池用包装材料の製造>
実施例1-6、比較例1-18、参考実施例1-6、参考比較例1-18
 基材層として、ポリエチレンテレフタレート(PET)フィルム(厚さ12μm)、ポリエチレンナフタレート(PEN)フィルム(厚さ12μm)、延伸ナイロン(ONy)フィルム(厚さ15μm)、さらに、ポリエチレンテレフタレートフィルム(PET、厚さ12μm)と延伸ナイロンフィルム(ONy、厚さ15μm)とが厚さ3μmの2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)で接着された積層フィルム(PEN/ONy)を用意した。基材層を構成する樹脂の材質及び樹脂の融点は、それぞれ、表1~表3に記載されたとおりであり、PETの融点は255℃、PENの融点は270℃、ONyの融点は220℃である。なお、これらの樹脂の融点は、示差走査熱量測定(DSC)によって測定された値である。基材層としてPETとONyの積層フィルムを用いた場合には、ONyをバリア層側に配置した。
<Manufacture of battery packaging materials>
Example 1-6, Comparative Example 1-18, Reference Example 1-6, Reference Comparative Example 1-18
As a substrate layer, polyethylene terephthalate (PET) film (12 μm in thickness), polyethylene naphthalate (PEN) film (12 μm in thickness), stretched nylon (ONy) film (15 μm in thickness), polyethylene terephthalate film (PET, A laminated film (PEN / ONy) in which a 12 μm thick film and an oriented nylon film (ONy, 15 μm thick) are bonded with a 3 μm thick two-component urethane adhesive (polyol compound and aromatic isocyanate compound) is prepared. did. The material of the resin constituting the base layer and the melting point of the resin are as described in Tables 1 to 3, respectively. The melting point of PET is 255 ° C., the melting point of PEN is 270 ° C., and the melting point of ONy is 220 ° C. It is. The melting points of these resins are values measured by differential scanning calorimetry (DSC). When the laminated film of PET and ONy was used as a base material layer, ONy was arrange | positioned at the barrier layer side.
 また、バリア層として、それぞれ、厚さ40μmのアルミニウム箔(JIS H4160:1994 A8021H-O)を用意した。次に、バリアの一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層上に接着剤層(厚さ3μm)を形成した。次いで、バリア層上の接着剤層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。なお、バリア層の両面には、化成処理が施してある。バリア層の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりバリア層の両面に塗布し、焼付けすることにより行った。 In addition, aluminum foils (JIS H4160: 1994 A8021 H-O) each having a thickness of 40 μm were prepared as barrier layers. Next, a two-component urethane adhesive (polyol compound and aromatic isocyanate compound) was applied to one surface of the barrier to form an adhesive layer (3 μm in thickness) on the barrier layer. Next, the adhesive layer on the barrier layer and the base material layer were laminated by a dry lamination method, and then an aging treatment was performed to produce a laminate of base material layer / adhesive layer / barrier layer. In addition, chemical conversion treatment is performed on both sides of the barrier layer. The chemical conversion treatment of the barrier layer is carried out on both sides of the barrier layer by a roll coating method so that the coating amount of chromium is 10 mg / m 2 (dry mass) with a treatment liquid consisting of a phenol resin, a chromium fluoride compound and phosphoric acid. It did by applying and baking.
 次に、上記で得られた各積層体のバリア層の上に、熱融着性樹脂層として、表1~表3に記載の融点(℃)、メルトマスフローレート(MFR(g/10分))、及び厚さ(μm)を有するポリプロピレン(PP)を溶融押し出しすることにより、バリア層上に熱融着性樹脂層を積層させ、基材層/接着剤層/バリア層/熱融着性樹脂層が順に積層された電池用包装材料を得た。 Next, on the barrier layer of each laminate obtained above, a melting point (° C.) and a melt mass flow rate (MFR (g / 10 min) described in Tables 1 to 3 as a heat-fusible resin layer. And a heat fusible resin layer is laminated on the barrier layer by melt-extruding polypropylene (PP) having a thickness (μm), and base material layer / adhesive layer / barrier layer / heat fusible property The battery packaging material in which the resin layer was laminated | stacked in order was obtained.
 なお、実施例1~6と参考実施例1~6とは、それぞれ、下記のシール強度を測定する際の保管環境が異なるのみであり、同じ構成を備える電池用包装材料である。また、比較例1~18と参考比較例1~18とは、それぞれ、下記のシール強度を測定する際の保管環境が異なるのみであり、同じ構成を備える電池用包装材料である。 Examples 1 to 6 and Referential Examples 1 to 6 are battery packaging materials having the same configuration, except that storage environments at the time of measuring the following seal strengths are different. Further, Comparative Examples 1 to 18 and Reference Comparative Examples 1 to 18 are battery packaging materials having the same configuration except that storage environments at the time of measuring the following seal strengths are different.
<各保管環境における基材層の吸水量の測定>
 上記の電池用包装材料の製造に用いた各基材層を構成する樹脂フィルムについて、JIS K7209の規定に準拠した方法により測定された、温度25℃及び相対湿度50%で24時間放置された際の吸水量、及び温度65℃及び相対湿度90%で24時間放置された際の吸水量をそれぞれ、表1~表3に示す。なお、PETとONyが積層された積層フィルムについては、吸水率のより高いONyの吸水率を表1~表3に示した。
<Measurement of water absorption of base material layer in each storage environment>
When the resin film constituting each base material layer used for the production of the above-mentioned battery packaging material is left to stand at a temperature of 25 ° C. and a relative humidity of 50% for 24 hours, which is measured by a method in accordance with JIS K7209. Table 1 to Table 3 show the water absorption amount of each of the above and the water absorption amount when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours, respectively. With regard to the laminated film in which PET and ONy are laminated, the water absorption of ONy having a higher water absorption is shown in Tables 1 to 3.
<25℃環境または140℃環境でのシール強度の測定>
 上記で得られた各電池用包装材料10を、それぞれ、表1~表3の保管環境において、24時間静置した。次に、各電池用包装材料を幅60mm×長さ150mmの長方形に裁断して試験サンプルとした。次に、図5に示すように、試験サンプルを長さ方向の中心Pで折り返し、熱融着性樹脂層同士を対向させた。次に、幅3mmの金属板20を用いて、面圧0.5MPa、時間1秒間、表1~表3の各シール温度(150℃~250℃)の条件で、試験サンプルの長さ方向に3mm(金属板の幅)、全幅方向(すなわち60mm)において、熱融着性樹脂層同士を熱融着させた。次に、図6に示すように、試験サンプルの幅15mmを切りとった。図6及び図7において、熱融着された領域をSで示す。次に、図7に示すように、引張試験機を用い、温度25℃の環境又は温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて、引張強度測定開始1秒後から1.5秒間の間の引張強度(N/15mm)の最小値を、25℃環境でのシール強度、140℃環境でのシール強度とした。なお、各シール強度は、それぞれ、同様にして3つの試験サンプルを作製して測定された平均値(n=3)である。結果を表1~表3に示す。
<Measurement of seal strength in 25 ° C. environment or 140 ° C. environment>
Each of the battery packaging materials 10 obtained above was allowed to stand for 24 hours in the storage environment of Tables 1 to 3. Next, each battery packaging material was cut into a rectangle of width 60 mm × length 150 mm to obtain a test sample. Next, as shown in FIG. 5, the test sample was folded back at the center P in the lengthwise direction, and the heat fusible resin layers were made to face each other. Next, using a metal plate 20 with a width of 3 mm, in the longitudinal direction of the test sample under the conditions of each seal temperature (150 ° C. to 250 ° C.) of Table 1 to Table 3, surface pressure 0.5 MPa, time 1 second. The heat fusible resin layers were heat-fused to each other in the entire width direction (that is, 60 mm) of 3 mm (width of metal plate). Next, as shown in FIG. 6, the width 15 mm of the test sample was cut off. In FIG. 6 and FIG. 7, the heat-sealed area is indicated by S. Next, as shown in FIG. 7, using a tensile tester, under the conditions of a temperature of 25 ° C. or an environment of a temperature 140 ° C., under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm. The fused interface is peeled off, and the minimum value of the tensile strength (N / 15 mm) between 1 second and 1.5 seconds after the tensile strength measurement start, the seal strength at 25 ° C environment, seal at 140 ° C environment It was strength. In addition, each seal strength is an average value (n = 3) which produced and measured three test samples similarly respectively. The results are shown in Tables 1 to 3.
<シール後の外観の評価>
 前述のシール強度の測定において、熱融着性樹脂層同士を熱融着させた後の試験サンプルについて、熱融着された部分に位置する基材層の表面を目視で観察し、以下の評価基準に従って、シール後の外観評価を行った。結果を表1~表3に示す。
A:基材層に気泡が発生しておらず、外観は良好であった。
C:基材層に気泡が発生し、外観が不良であった。
<Evaluation of appearance after sealing>
In the measurement of the seal strength described above, the surface of the base material layer located in the heat-fused portion of the test sample after thermally fusing the heat-fusible resin layers was visually observed, and the following evaluations were made According to the standard, the appearance after sealing was evaluated. The results are shown in Tables 1 to 3.
A: Air bubbles were not generated in the base material layer, and the appearance was good.
C: Air bubbles were generated in the substrate layer, and the appearance was poor.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1~表3に示される結果から明らかなとおり、基材層を構成する樹脂の融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際(保管環境)の吸水率が1質量%以下であり、さらに、熱融着性樹脂層を構成する樹脂の融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である実施例1~6の電池用包装材料においては、高温かつ短時間(例えば210~250℃で1秒以下)で熱融着性樹脂層同士を熱融着させることができ、熱融着による基材層の外観不良の発生が抑制されており、さらに、140℃という非常に高温環境におけるシール強度に優れることが分かる。 As apparent from the results shown in Tables 1 to 3, the melting point of the resin constituting the base material layer is 220 ° C. or higher, and when it is left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours (storage environment Example 1 to 1 having a water absorption coefficient of 1% by mass or less, and further having a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 min or more of the resin constituting the heat-fusible resin layer. In the battery packaging material of No. 6, the heat fusible resin layers can be heat-fused together at high temperature and in a short time (for example, 1 second or less at 210 to 250.degree. C.). It is understood that the occurrence of defects is suppressed, and furthermore, the seal strength in a very high temperature environment of 140 ° C. is excellent.
1…基材層
2…接着剤層
3…バリア層
4…熱融着性樹脂層
5…接着層
6…表面被覆層
10…電池用包装材料
20…金属板
P…中心
S…熱融着された領域
DESCRIPTION OF SYMBOLS 1 ... Base material layer 2 ... Adhesive layer 3 ... Barrier layer 4 ... Thermal adhesive resin layer 5 ... Adhesive layer 6 ... Surface coating layer 10 ... Packaging material for batteries 20 ... Metal plate P ... Center S ... Thermal fusion Area

Claims (11)

  1.  少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなり、
     前記基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、
     前記熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である、電池用包装材料。
    The laminate comprises at least a base material layer, a barrier layer, and a heat fusible resin layer in this order,
    The resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours,
    A packaging material for a battery, wherein a resin constituting the heat-fusible resin layer has a melting point of 140 ° C. or more and a melt mass flow rate of 6 g / 10 minutes or more.
  2.  前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、20N/15mm以上の状態が保たれる、請求項1に記載の電池用包装材料。 The heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled off and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 25 ° C. The battery packaging material according to claim 1, wherein the tensile strength to be measured is maintained at 20 N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
  3.  前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度25℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、80N/15mm以上の状態が保たれる、請求項1又は2に記載の電池用包装材料。 The heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled off and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 25 ° C. The battery packaging material according to claim 1 or 2, wherein the tensile strength to be measured is maintained at 80 N / 15 mm or more for 1.5 seconds after 1 second from the start of tensile strength measurement.
  4.  前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度150℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、2N/15mm以上の状態が保たれる、請求項1~3のいずれかに記載の電池用包装材料。 The heat sealable resin layers are heat-treated under the conditions of a temperature of 150 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 140 ° C. The battery packaging material according to any one of claims 1 to 3, wherein the tensile strength to be measured is maintained at 2N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
  5.  前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa、時間1秒間の条件で前記熱融着性樹脂層同士を熱融着させ、次に、引張試験機を用い、温度140℃の環境で、引張速度300mm/分、剥離角180°、チャック間距離50mmの条件で、当該熱融着した界面を剥離させて測定される引張強度が、引張強度測定開始1秒後から1.5秒間の間、10N/15mm以上の状態が保たれる、請求項1~4のいずれかに記載の電池用包装材料。 The heat sealable resin layers are heat-sealed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa, and a time of 1 second, with the heat sealable resin layers of the battery packaging material facing each other. Fusing is performed, and then, using a tensile tester, the thermally fused interface is peeled and measured under the conditions of a tensile speed of 300 mm / min, a peeling angle of 180 °, and a distance between chucks of 50 mm in an environment of 140 ° C. The battery packaging material according to any one of claims 1 to 4, wherein the tensile strength to be measured is maintained at 10 N / 15 mm or more for 1.5 seconds from 1 second after the start of tensile strength measurement.
  6.  前記電池用包装材料の前記熱融着性樹脂層同士を対向させた状態で、温度210℃から250℃、面圧0.5MPa以上、時間1秒間以下の条件で前記熱融着性樹脂層同士を熱融着させて、電池素子を封止するために用いられる、請求項1~5のいずれかに記載の電池用包装材料。 The heat fusible resin layers are placed under the conditions of a temperature of 210 ° C. to 250 ° C., a surface pressure of 0.5 MPa or more, and a time of 1 second or less, with the heat fusible resin layers of the battery packaging material facing each other. The battery packaging material according to any one of claims 1 to 5, which is used to thermally seal the battery element to seal the battery element.
  7.  前記基材層が、ポリエステル樹脂により構成されている、請求項1~6のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 6, wherein the base material layer is made of a polyester resin.
  8.  前記基材層の厚さが、9~50μmである、請求項1~7のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 7, wherein the thickness of the base material layer is 9 to 50 μm.
  9.  前記熱融着性樹脂層の厚さが、45~100μmである、請求項1~8のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 8, wherein the thickness of the heat-fusible resin layer is 45 to 100 μm.
  10.  少なくとも正極、負極、及び電解質を備えた電池素子が、請求項1~9のいずれかに記載の電池用包装材料により形成された包装体中に収容されている、電池。 A battery, wherein a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is contained in a package formed of the battery packaging material according to any one of claims 1 to 9.
  11.  少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順となるように積層する工程を備えており、
     前記基材層を構成する樹脂は、融点が220℃以上であり、かつ、温度65℃、相対湿度90%で24時間放置された際の吸水率が1質量%以下であり、
     前記熱融着性樹脂層を構成する樹脂は、融点が140℃以上であり、かつ、メルトマスフローレートが6g/10分以上である、電池用包装材料の製造方法。
    At least a step of laminating the base material layer, the barrier layer, and the heat fusible resin layer in this order;
    The resin constituting the base material layer has a melting point of 220 ° C. or higher, and a water absorption of 1% by mass or less when left at a temperature of 65 ° C. and a relative humidity of 90% for 24 hours,
    The manufacturing method of the packaging material for batteries whose melting | fusing point is 140 degreeC or more, and whose melt mass flow rate is 6 g / 10 minutes or more of resin which comprises the said heat fusible resin layer.
PCT/JP2018/046211 2017-12-20 2018-12-14 Battery packaging material and battery WO2019124282A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880082171.XA CN111512463A (en) 2017-12-20 2018-12-14 Battery packaging material and battery
JP2019561062A JP7192795B2 (en) 2017-12-20 2018-12-14 Battery packaging materials and batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-243916 2017-12-20
JP2017243916 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019124282A1 true WO2019124282A1 (en) 2019-06-27

Family

ID=66993381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046211 WO2019124282A1 (en) 2017-12-20 2018-12-14 Battery packaging material and battery

Country Status (3)

Country Link
JP (1) JP7192795B2 (en)
CN (1) CN111512463A (en)
WO (1) WO2019124282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022155574A (en) * 2021-03-30 2022-10-13 エルジー エナジー ソリューション リミテッド Pouch type secondary battery and battery module including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133683A1 (en) * 2011-03-29 2012-10-04 昭和電工パッケージング株式会社 Molding packaging material and battery case
JP2015201387A (en) * 2014-04-09 2015-11-12 凸版印刷株式会社 Sheath material for secondary battery, secondary battery, and manufacturing method of the same
JP2016186872A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Wrapping material for battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525938B2 (en) * 2010-07-02 2014-06-18 昭和電工パッケージング株式会社 Molding packaging material and manufacturing method thereof
JP5801550B2 (en) * 2010-11-29 2015-10-28 昭和電工パッケージング株式会社 Molding packaging material and manufacturing method thereof
EP2955770B1 (en) * 2013-02-06 2019-05-08 Dai Nippon Printing Co., Ltd. Battery packaging material
WO2015033958A1 (en) * 2013-09-03 2015-03-12 大日本印刷株式会社 Resin composition for sealant layer of battery packaging material
JP6492497B2 (en) * 2014-09-30 2019-04-03 大日本印刷株式会社 Battery packaging materials
CN113410552B (en) * 2014-09-30 2023-02-21 大日本印刷株式会社 Battery packaging material and battery
JP2017069203A (en) * 2015-09-30 2017-04-06 大日本印刷株式会社 Battery-packaging material and battery
JP7010211B2 (en) * 2016-04-06 2022-01-26 大日本印刷株式会社 Battery packaging materials, their manufacturing methods, and batteries
JP6996499B2 (en) * 2016-04-27 2022-01-17 大日本印刷株式会社 Battery packaging material, its manufacturing method, battery and its manufacturing method
JP7020401B2 (en) * 2016-04-28 2022-02-16 大日本印刷株式会社 Battery packaging materials and batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133683A1 (en) * 2011-03-29 2012-10-04 昭和電工パッケージング株式会社 Molding packaging material and battery case
JP2015201387A (en) * 2014-04-09 2015-11-12 凸版印刷株式会社 Sheath material for secondary battery, secondary battery, and manufacturing method of the same
JP2016186872A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Wrapping material for battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022155574A (en) * 2021-03-30 2022-10-13 エルジー エナジー ソリューション リミテッド Pouch type secondary battery and battery module including the same

Also Published As

Publication number Publication date
CN111512463A (en) 2020-08-07
JPWO2019124282A1 (en) 2021-01-07
JP7192795B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6489296B1 (en) Packaging material for battery, method for producing the same, and battery
KR102551200B1 (en) Battery packaging material, production method therefor, battery, and polyester film
JP6566133B2 (en) Battery packaging material, method for producing the same, battery, and polyester film
JP7136108B2 (en) Battery packaging materials and batteries
JP7347628B2 (en) Battery packaging materials and batteries
WO2019124281A1 (en) Packaging material for battery, method for producing same, and battery
JP2019029300A (en) Battery-packaging material, method for manufacturing the same, and battery
WO2019017457A1 (en) Battery wrapping material, method for producing battery wrapping material, and battery
JP7367645B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2020235534A1 (en) Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
JPWO2017188445A1 (en) Battery packaging material and battery
JP6555454B1 (en) Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
JP7325926B2 (en) Battery packaging materials and batteries
JPWO2017188396A1 (en) Packaging material for battery, method for manufacturing the same, battery and method for manufacturing the same
JP2019212433A (en) Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
JP2024056802A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP6736837B2 (en) Battery packaging material
JP6939545B2 (en) Battery packaging materials, their manufacturing methods, and batteries
WO2019124282A1 (en) Battery packaging material and battery
JP7347455B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
JP7052344B2 (en) Battery packaging materials and batteries
JP6424933B2 (en) Aluminum alloy foil for battery packaging material, battery packaging material, and battery
JP7447797B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891996

Country of ref document: EP

Kind code of ref document: A1