WO2023190980A1 - Glass fiber - Google Patents

Glass fiber Download PDF

Info

Publication number
WO2023190980A1
WO2023190980A1 PCT/JP2023/013381 JP2023013381W WO2023190980A1 WO 2023190980 A1 WO2023190980 A1 WO 2023190980A1 JP 2023013381 W JP2023013381 W JP 2023013381W WO 2023190980 A1 WO2023190980 A1 WO 2023190980A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
glass
sio
glass fiber
Prior art date
Application number
PCT/JP2023/013381
Other languages
French (fr)
Japanese (ja)
Inventor
浩輔 藤原
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2023190980A1 publication Critical patent/WO2023190980A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to glass fibers for inorganic hardened products, specifically glass fibers suitable for blending into cement, mortar, concrete, calcium silicate plates, plaster, etc.
  • Glass fiber reinforced cement is a composite material of cement and glass fiber, and is intended to control the tensile strength and ductility of cement.
  • Mortar cement mortar
  • cement concrete cement concrete
  • coarse aggregate such as gravel and fine aggregate. It is solidified.
  • Cement mixed with water produces calcium hydroxide (Ca(OH) 2 ), etc., and therefore exhibits alkalinity.
  • alkali-resistant glass fibers are used for cement reinforcement.
  • AR glass is known as a composition of alkali-resistant glass fiber.
  • the AR glass contains 16.8% zirconium oxide (ZrO 2 ) and 14.5% alkali metal oxide in mass %.
  • Patent Document 1 discloses an improved composition of AR glass.
  • Glass fibers are widely used as fibers to reinforce not only cement-based hardened bodies such as cement and mortar, but also various inorganic hardened bodies including calcium silicate plates.
  • Demand for inorganic hardened materials reinforced with glass fibers is increasing, and the areas in which they are used are also becoming more diverse.
  • an object of the present invention is to provide a new glass fiber suitable for reinforcing an inorganic cured product.
  • the present invention is a glass fiber for an inorganic cured product, Displayed in mass%, 50 ⁇ SiO 2 ⁇ 65, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 14, 10 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ ZrO 2 ⁇ 7,
  • a glass fiber comprising a glass composition containing the following components is provided.
  • a new glass fiber suitable for reinforcing an inorganic cured product is provided.
  • not substantially containing and not substantially containing mean that the content is less than 0.1% by mass, less than 0.05% by mass, less than 0.01% by mass, and even 0. This means less than 0.005% by weight, in particular less than 0.003% by weight, and in some cases less than 0.001% by weight.
  • substantially means that the inclusion of trace amounts of impurities originating from glass raw materials, manufacturing equipment, molding equipment, etc. is allowed.
  • Mainn component means a component having the highest content on a mass basis.
  • T-Fe 2 O 3 means total iron oxide converted to diiron trioxide (Fe 2 O 3 ).
  • Alkali metal oxide means lithium oxide (Li 2 O), sodium oxide (Na 2 O) and potassium oxide (K 2 O). The upper and lower limits of the content described below can be arbitrarily combined.
  • a glass fiber suitable for reinforcing an inorganic cured product is provided.
  • each component constituting the glass composition in this embodiment will be explained.
  • SiO2 Silicon dioxide
  • SiO 2 is a component that forms the skeleton of glass and is the main component of the glass composition. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves acid resistance.
  • the content of SiO 2 is 50% by mass or more and 65% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance and alkali resistance of the glass are increased. Further, within this range, the melting point of the glass will not become excessively high, and the uniformity of melting the raw materials will increase.
  • the lower limit of the content of SiO 2 may be 51% by mass or more, 52% by mass or more, 53% by mass or more, 54% by mass or more, 55% by mass or more, 56% by mass or more, 57% by mass or more, 58% by mass.
  • the content may be more than 59% by mass or more than 60% by mass.
  • the upper limit of the content of SiO 2 may be 64% by mass or less, or 63% by mass or less.
  • B 2 O 3 , Al 2 O 3 Diboron trioxide
  • B 2 O 3 is a component that forms the skeleton of glass.
  • B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive content of B 2 O 3 lowers the acid resistance and alkali resistance of the glass.
  • the lower limit of the content of B 2 O 3 may be 0.1% by mass or more.
  • the upper limit of the content of B 2 O 3 may be less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the upper limit of the content of B 2 O 3 may be 0.1% by mass or less.
  • the glass composition may be substantially free of B 2 O 3 .
  • Aluminum oxide (Al 2 O 3 ) is a component that forms the skeleton of glass. Furthermore, Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass. On the other hand, excessive content of Al 2 O 3 lowers the acid resistance and alkali resistance of the glass. When the Al 2 O 3 content is 5% by mass or more and 14% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance and alkali resistance of the glass are increased. Furthermore, the melting point of the glass does not become excessively high, and the uniformity of melting the raw materials increases.
  • the lower limit of the content of Al 2 O 3 may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 8.5% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass % or more, 10.5% by mass or more, 11% by mass or more, and even 11.1% by mass or more.
  • the upper limit of the Al 2 O 3 content may be 13% by mass or less, 12.5% by mass or less, less than 12% by mass, or even 11.9% by mass.
  • the devitrification temperature increases while suppressing an excessive increase in the devitrification temperature.
  • the devitrification temperature and viscosity can be set within a range suitable for glass production. Further, within this range, it is also possible to improve the alkali resistance of the glass.
  • the lower limit of (B 2 O 3 +Al 2 O 3 ) may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 9% by mass or more, and even 10% by mass or more.
  • the upper limit of (B 2 O 3 +Al 2 O 3 ) can be 15% by mass or less, 14% by mass or less, and even 13% by mass or less.
  • CaO Calcium oxide
  • CaO is a component that adjusts the devitrification temperature and viscosity during glass formation. Moreover, CaO is also a component that improves Young's modulus. When the CaO content is 10% by mass or more and 30% by mass or less, the Young's modulus is improved and the devitrification temperature and viscosity at the time of melting of the glass are controlled to be suitable for glass production while suppressing an excessive rise in the devitrification temperature.
  • the range can be within the specified range.
  • the lower limit of the content of CaO may be 12% by mass or more, 13% by mass or more, 14% by mass or more, 15% by mass or more, 16% by mass or more, 17% by mass or more, and even 18% by mass or more.
  • the upper limit of the content of CaO may be 28% by mass or less, 27% by mass or less, 26% by mass or less, further 25% by mass or less, particularly 24% by mass or less.
  • Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that adjust the devitrification temperature and viscosity during glass formation.
  • the devitrification temperature of the molten glass and the The viscosity can be in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, the acid resistance and alkali resistance of the glass are increased.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be greater than 0% by mass, or may be greater than or equal to 0.1% by mass.
  • the upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3% by mass or less, 2% by mass or less, and less than 2% by mass. If the alkali resistance of the glass composition is particularly important, the value of (Li 2 O+Na 2 O+K 2 O) may be set to 0.1% by mass or less.
  • the glass composition may be substantially free of alkali metal oxides.
  • Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
  • the lower limit of the content of lithium oxide (Li 2 O) may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, and even 0.4% by mass or more.
  • the upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
  • the lower limit of the content of sodium oxide (Na 2 O) may be 0.1% by mass or more, or 0.2% by mass or more.
  • the upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
  • the lower limit of the potassium oxide (K 2 O) content may be 0.1% by mass or more, or 0.2% by mass or more.
  • the upper limit of the content of K 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
  • the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content is 40% by mass or more, 41% by mass or more , 42% by mass or more, 43% by mass or more, 44% by mass or more, 45% by mass or more, 46% by mass or more, 47% by mass or more, more than 48% by mass, 48.5% by mass or more, and more than 49% by mass. , or even 49.5% or more.
  • the upper limit of (SiO 2 -Al 2 O 3 ) may be 57% by mass or less, 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, and even 52% by mass or less. It's possible.
  • the upper limit of (SiO 2 -B 2 O 3 -Al 2 O 3 ) may be 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, 52% by mass or less, and even It may be 51% by mass or less.
  • the value of the sum of the contents of SiO 2 and Al 2 O 3 (SiO 2 +Al 2 O 3 ) is important.
  • the lower limit of (SiO 2 +Al 2 O 3 ) is preferably 55% by mass or more, 58% by mass or more, 60% by mass or more, 62% by mass or more, 64% by mass or more, It may be 65% by mass or more, or 66% by mass or more.
  • the upper limit of (SiO 2 +Al 2 O 3 ) is preferably 80% by mass or less, and may be 78% by mass or less, 76% by mass or less, 75% by mass or less, 74% by mass or less, or 73% by mass or less. .
  • the value of the total content of SiO 2 , B 2 O 3 and Al 2 O 3 (SiO 2 +B 2 O 3 +Al 2 O 3 ) is important.
  • the lower limit of (SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 55% by mass or more, 58% by mass or more, 60% by mass or more, 62% by mass or more, 64% by mass or more. It may be at least 65% by mass, or at least 66% by mass.
  • the upper limit of (SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 80% by mass or less, 78% by mass or less, 76% by mass or less, 75% by mass or less, 74% by mass or less, and 73% by mass or less. There may be.
  • the glass composition may further contain magnesium oxide (MgO).
  • MgO is a component that adjusts the devitrification temperature and viscosity during glass formation. Moreover, MgO is also a component that improves Young's modulus. On the other hand, excessive MgO content reduces the alkali resistance of the glass.
  • the lower limit of the MgO content may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more.
  • the upper limit of the content of MgO may be 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4.5% by mass or less, or 4% by mass or less.
  • the value of the sum of the contents of MgO and CaO is important.
  • the lower limit of (MgO+CaO) is preferably 15% by mass or more, 16% by mass or more, 17% by mass or more, 18% by mass or more, 19% by mass or more. , 20% by mass or more, 21% by mass or more, and 22% by mass or more, in this order.
  • the upper limit of (MgO+CaO) is preferably 40% by mass or less, more preferably 35% by mass or less, 32% by mass or less, 30% by mass or less, 29% by mass or less, and 28% by mass or less.
  • the glass composition may further contain strontium oxide (SrO).
  • SrO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive SrO content reduces the acid resistance of the glass.
  • the lower limit of the content of SrO may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, 5% by mass or more, It may be 6% by mass or more, 7% by mass or more, or even 8% by mass or more.
  • the upper limit of the content of SrO can be 25% by mass or less, 20% by mass or less, 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less It can be.
  • the upper limit of the SrO content may be 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, or even 0.1% by mass or less.
  • the glass composition may be substantially free of SrO.
  • the value of the total content of MgO, CaO and SrO (MgO+CaO+SrO) is important.
  • the lower limit of (MgO + CaO + SrO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more.
  • the upper limit of (MgO+CaO+SrO) is preferably 40% by mass or less, more preferably 38% by mass or less, 36% by mass or less, 35% by mass or less, and 34% by mass or less.
  • the glass composition may further contain barium oxide (BaO).
  • BaO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive BaO content reduces the acid resistance of the glass.
  • the upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less.
  • the glass composition may be substantially free of BaO.
  • the value of the total content of MgO, CaO, SrO and BaO is important.
  • the lower limit of (MgO+CaO+SrO+BaO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more.
  • the upper limit of (MgO+CaO+SrO+BaO) is preferably 40% by mass or less, more preferably 38% by mass or less, 36% by mass or less, 35% by mass or less, and 34% by mass or less.
  • the glass composition may further contain zinc oxide (ZnO).
  • ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • the upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less.
  • the glass composition may be substantially free of ZnO.
  • the glass composition may further contain titanium dioxide ( TiO2 ).
  • TiO 2 is a component that improves the meltability and chemical durability of glass, and improves the ultraviolet absorption characteristics of glass. Furthermore, a suitable amount of TiO 2 improves the acid resistance and water resistance of the glass. However, since TiO 2 is a relatively expensive raw material, if it is contained in a large amount, the raw material cost will increase. The lower limit of the content of TiO 2 may be 0.1% by mass or more.
  • the upper limit of the content of TiO 2 can be 10% by mass or less, 8% by mass or less, 7% by mass or less, 6% by mass or less, 5% by mass or less, less than 2% by mass, 1% by mass or less, 0.5 The amount may be less than or equal to 0.3% by mass, or even less than 0.2% by mass.
  • the glass composition may be substantially free of TiO2 .
  • the lower limit of the content of TiO2 may be 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, 1.6% by mass or more, 2% by mass or more, 3% by mass or more, It may be 4% by mass or more, 5% by mass or more, more than 5% by mass, or even 5.1% by mass or more.
  • ZrO2 Zirconium oxide
  • ZrO 2 Zirconium oxide
  • ZrO 2 Zirconium oxide
  • ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. Furthermore, ZrO 2 is a component that improves the acid resistance and alkali resistance of glass.
  • ZrO 2 is a relatively expensive raw material, if it is contained in a large amount, the raw material cost will increase. A high content of ZrO 2 also increases the working temperature. Further, the lower limit of the content of ZrO 2 may be 0.1% by mass or more.
  • the upper limit of the content of ZrO2 may be less than 6% by mass, and may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, and may be 0.1% by mass or less.
  • the glass composition may be substantially free of ZrO2 .
  • the lower limit of the content of ZrO 2 may be 0.5% by mass or more, 1% by mass or more, 2% by mass or more, or even 3% by mass or more.
  • the glass composition may further contain iron oxide.
  • Iron (Fe) usually exists in the Fe 2+ or Fe 3+ state.
  • Fe 3+ is a component that enhances the ultraviolet absorption properties of glass
  • Fe 2+ is a component that enhances heat ray absorption properties of glass. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass can be prevented.
  • the upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass % or less, 0.4 mass% or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 The amount may be less than or equal to 0.04% by mass, or even less than 0.03% by mass.
  • the lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
  • the glass composition may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass.
  • the upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible.
  • the glass composition may be substantially free of F2 .
  • the upper limit of the content of Cl 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even less than 0.1% by mass. It's possible.
  • the glass composition may be substantially free of Cl2 .
  • Glass composition include P 2 O 5 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 and Sm 2 O3 , Eu2O3 , Gd2O3 , Tb2O3 , Dy2O3 , Ho2O3 , Er2O3 , Tm2O3 , Yb2O3 , Lu2O3 , WO3 , Nb 2 O 5 , Y 2 O 3 , MoO 3 , Ta 2 O 5 , MnO 2 and Cr 2 O 3 at a content of 0% by mass or more and 5% by mass or less, respectively. .
  • the permissible content of these components may be less than 2% by weight each, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight.
  • the total allowable content of these components may be 5% by weight or less, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight.
  • oxides of litanoid La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
  • the glass composition contains at least one selected from SO 3 , Br 2 , I 2 , SnO 2 , As 2 O 3 and Sb 2 O 3 as an additive in an amount of 0% by mass or more and 1% by mass or less, respectively. It can be contained at a certain content rate.
  • the permissible content of these components can be less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight for each.
  • the total allowable content of these components may be 1% by weight or less, less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight.
  • the other components mentioned above may not be substantially contained.
  • the glass composition may contain H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar, and N 2 at a content of 0% by mass or more and 0.1% by mass or less, respectively.
  • the permissible content of these components can be less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight for each.
  • the total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight.
  • the other components mentioned above may not be substantially contained.
  • the glass composition may contain trace amounts of noble metal elements.
  • noble metal elements such as Pt, Rh, Au, and Os can be included at a content of 0% by mass or more and 0.1% by mass or less, respectively.
  • the permissible content of these components may be less than 0.1% by weight each, less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight.
  • the total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight.
  • the other components mentioned above may not be substantially contained.
  • the glass composition may have a composition that does not substantially contain CuO. Further, the glass composition may have a composition that does not substantially contain CoO. Further, the glass composition can be substantially free of PbO. Further, the glass composition may have a composition that does not substantially contain NiO.
  • the glass composition of this embodiment contains the following components expressed in mass %, and may further have a preferable composition similarly described in mass % in the following paragraphs and subsequent paragraphs. 50 ⁇ SiO 2 ⁇ 65, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 14, 10 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ ZrO 2 ⁇ 7
  • a composition containing the following components and substantially free of alkali metal oxides A composition containing the following components and substantially free of alkali metal oxides.
  • the content of the alkali metal oxide is determined by the sum of the contents of Li 2 O, Na 2 O, and K 2 O.
  • composition containing the following ingredients 50 ⁇ SiO 2 ⁇ 65, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 14, 1 ⁇ MgO ⁇ 10, 15 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ ZrO 2 ⁇ 7, 0 ⁇ T-Fe 2 O 3 ⁇ 5, A composition containing the following ingredients.
  • composition containing the following ingredients.
  • the composition does not substantially contain B 2 O 3 .
  • composition containing the following ingredients 50 ⁇ SiO 2 ⁇ 65, 0.1 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 14, 0.1 ⁇ MgO ⁇ 10, 15 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ ZrO 2 ⁇ 7, 0 ⁇ T-Fe 2 O 3 ⁇ 5, A composition containing the following ingredients.
  • (SiO 2 -Al 2 O 3 ) is the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 on a mass basis.
  • the lower limit of (SiO 2 -Al 2 O 3 ) may be 49, and the upper limit may be 55.
  • compositions excluding compositions that do not substantially contain TiO 2 ), a composition further satisfies 0.1 ⁇ TiO 2 ⁇ 2.
  • the characteristics that the glass composition of this embodiment can have will be explained below.
  • the temperature at which the viscosity of the molten glass becomes 1000 dPa ⁇ sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for forming the glass.
  • the working temperature is 1100° C. or higher, variations in glass fiber diameter can be reduced. If the working temperature is 1290° C. or lower, the fuel cost for melting glass can be reduced, the glass manufacturing equipment will be less susceptible to corrosion due to heat, and the life of the equipment will be extended.
  • the lower limit of the working temperature may be 1100°C or higher, 1120°C or higher, 1140°C or higher, 1150°C or higher, 1160°C or higher, 1170°C or higher, 1180°C or higher, or even 1200°C or higher.
  • the upper limit of the working temperature may be 1290°C or less, 1270°C or less, 1260°C or less, or even 1250°C or less.
  • ⁇ T may be 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, or even 50°C or higher.
  • ⁇ T may be 200° C. or less, the glass composition can be easily adjusted.
  • ⁇ T may be 200°C or less, 180°C or less, or even 160°C or less.
  • the devitrification temperature is the temperature at which crystals are generated in the molten glass base and begin to grow.
  • long glass fibers are manufactured by, for example, pulling out a molten glass base through a nozzle of a bushing provided at the bottom of a kiln tank, continuously winding it up with a winder, and spinning it into a fiber.
  • Short glass fibers can be produced, for example, by pouring a molten glass base from the bottom of a kiln tank into a spinner that rotates at high speed, and by centrifugal force, the fibrous glass that pops out of a hole on the side of the spinner is further processed using the pressure of a gas jet or the like. Manufactured by stretching into thin pieces. Considering these manufacturing processes, it is desirable that the glass composition has excellent meltability and good moldability, has appropriate temperature-viscosity characteristics, and has a devitrification temperature lower than the working temperature. .
  • Young's modulus The higher the Young's modulus of the glass composition forming the glass fiber, the better the elasticity of the glass fiber, which improves the mechanical properties of an inorganic cured product reinforced with glass fiber, such as glass fiber reinforced cement.
  • the Young's modulus GPa
  • the lower limit of Young's modulus may be 85 GPa or more, 86 GPa or more, 87 GPa or more, 88 GPa or more, or even 89 GPa or more.
  • the upper limit of Young's modulus may preferably be 100 GPa or less, 99 GPa or less, 98 GPa or less, 97 GPa or less, 96 GPa or less, or even 95 GPa or less.
  • the glass composition of the present embodiment can have a higher Young's modulus than E glass or AR glass.
  • ⁇ W 1 of the glass fiber is 5.0% by mass or less.
  • ⁇ W 1 of the glass composition of the present embodiment may be 5.0% by mass or less, 4.5% by mass or less, 4.0% by mass or less, 3.5% by mass or less, and even 3.0% by mass It can be:
  • the ⁇ W 1 that can be achieved by this embodiment is, for example, 0.01 to 5.0% by mass.
  • ⁇ W 2 of the glass fiber is 10.0% by mass or less.
  • ⁇ W 2 of the glass composition of the present embodiment may be 10.0% by mass or less, 9.0% by mass or less, 8.0% by mass or less, 7.0% by mass or less, or even 6.0% by mass It can be:
  • the ⁇ W 2 that can be achieved by this embodiment is, for example, 0.1 to 10.0% by mass.
  • Glass fibers made of such a glass composition with excellent chemical durability can be suitably used for reinforcing materials such as cement, mortar, concrete, and calcium silicate plates.
  • emphasis has been placed on alkali resistance, but considering use in highly acidic environments such as chemical factories and sewage-related facilities, and exposure to acid rain, it is also desirable to place emphasis on acid resistance.
  • the glass fiber of this embodiment is made of the glass composition described above.
  • the glass fibers of this embodiment may be long glass fibers or short glass fibers.
  • Long glass fibers are produced by flowing a viscosity-controlled glass melt through a nozzle and winding it up with a winder. This continuous fiber is cut to an appropriate length at the time of use.
  • Short glass fibers are manufactured by blowing away glass melt using high-pressure air, centrifugal force, or the like. Short glass fibers are sometimes called glass wool because they have a cotton-like morphology.
  • the average fiber diameter of the glass fibers is, for example, 0.1 to 50 ⁇ m.
  • the average fiber diameter of the glass fibers may be 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, and even 0.5 ⁇ m or more, 50 ⁇ m or less, 40 ⁇ m or less, It may be 30 ⁇ m or less, or 25 ⁇ m or less.
  • the average fiber diameter may be 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or even 5 ⁇ m or more.
  • the average fiber diameter may be 10 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, or even 1 ⁇ m or less.
  • the inorganic cured body of this embodiment includes the glass fibers described above. That is, the inorganic cured body of this embodiment is reinforced with glass fiber.
  • the inorganic hardened material include cement, mortar, concrete, calcium silicate board, and plaster.
  • the inorganic cured product may be other than those mentioned above as long as it can be manufactured by a manufacturing method that involves curing. Curing is carried out, for example, by kneading a slurry prepared by adding water to raw materials or using an autoclave.
  • the inorganic cured product may contain an organic substance as long as the remainder excluding the glass fibers is mainly composed of an inorganic substance.
  • Example and comparative example Ordinary glass raw materials such as silica sand were prepared to have the compositions shown in Tables 1 to 4, and batches of glass raw materials were prepared for each of Examples and Comparative Examples. Using an electric furnace, each batch was heated to 1500-1600° C. to melt it and maintained there for about 4 hours until the composition became uniform. Thereafter, a part of the molten glass (glass melt) was poured out onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a bulk glass composition (plate-like material, glass sample).
  • the platinum ball pulling method refers to the relationship between the load (resistance) applied when a platinum ball is immersed in molten glass and pulled up with uniform motion, and the gravity and buoyancy force acting on the platinum ball. This is a method of measuring viscosity by applying Stokes' law, which describes the relationship between viscosity and falling speed when minute particles settle in a fluid.
  • devitrification temperature A glass composition pulverized to a particle size of 1.0 to 2.8 mm was placed in a platinum boat, held in an electric furnace with a temperature gradient (800 to 1400°C) for 2 hours, and placed at the position where crystals appeared.
  • the devitrification temperature was determined from the maximum temperature of the corresponding electric furnace. When the glass became cloudy and crystals could not be observed, the maximum temperature of the electric furnace corresponding to the position where the cloudiness appeared was taken as the devitrification temperature.
  • the particle size is a value measured by a sieving method.
  • the temperature difference ⁇ T is the temperature difference obtained by subtracting the devitrification temperature from the working temperature.
  • Glass single fibers (filaments) were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 ⁇ m was produced.
  • the tensile modulus of the obtained glass fiber was measured in accordance with the Japanese Industrial Standards (JIS) "Testing method for tensile properties of carbon fibers - monofilament R7606:2000".
  • JIS Japanese Industrial Standards
  • Mass reduction rate (%) ⁇ (Wa-Wb)/Wa ⁇ 100
  • Young's modulus is 88 to 95 GPa
  • tensile modulus is 76 to 87 GPa
  • working temperature is 1210 to 1283°C
  • ⁇ T working temperature - devitrification temperature
  • ⁇ W 1 is 0.26 to 3. Results of 48% by mass and ⁇ W 2 of 1.66 to 5.35% by mass were obtained.
  • the glass composition of Comparative Example 1 has an E glass composition.
  • E glass has poor acid resistance ( ⁇ W 1 ) and is also slightly inferior in Young's modulus and tensile modulus.
  • the glass composition of Comparative Example 2 has an AR glass (alkali-resistant glass) composition. Since AR glass requires a large amount of ZrO 2 , the raw material cost is high and the working temperature is also high.However, results superior to those of the Examples in terms of Young's modulus and tensile modulus could not be obtained.

Abstract

The present disclosure provides new glass fibers that are suitable for reinforcing an inorganic hardened body such as cement, mortar, concrete, calcium silicate plates, and gypsum. Glass fibers according to the present disclosure are to be used for an inorganic hardened body, and each contain a glass composition including components satisfying 50≤SiO2≤65, 0≤B2O3<2, 5≤Al2O3≤14, 10≤CaO≤30, 0≤(Li2O+Na2O+K2O)≤4, and 0≤ZrO2≤7, all expressed in mass%.

Description

ガラス繊維glass fiber
 本発明は、無機系硬化体用のガラス繊維、具体的には、セメント、モルタル、コンクリート、ケイ酸カルシウム板、石膏などへの配合に適したガラス繊維に関する。 The present invention relates to glass fibers for inorganic hardened products, specifically glass fibers suitable for blending into cement, mortar, concrete, calcium silicate plates, plaster, etc.
 ガラス繊維補強セメントは、セメントとガラス繊維の複合材料であり、セメントの引張強度や延性を制御しようとするものである。モルタル(セメントモルタル)は砂などの細骨材をセメントに水を加えたセメントペーストで固めた建築材料であり、コンクリート(セメントコンクリート)は、砂利などの粗骨材および細骨材をセメントペーストで固めたものである。水と混合したセメントは水酸化カルシウム(Ca(OH)2)などを生成するためアルカリ性を示す。このためセメント補強用のガラス繊維には耐アルカリ性ガラス繊維が用いられる。耐アルカリ性ガラス繊維の組成としてはARガラスが知られている。ARガラスは、質量%表示で、16.8%の酸化ジルコニウム(ZrO2)と、14.5%のアルカリ金属酸化物とを含む。特許文献1には、ARガラスの改良組成が開示されている。 Glass fiber reinforced cement is a composite material of cement and glass fiber, and is intended to control the tensile strength and ductility of cement. Mortar (cement mortar) is a building material made by hardening fine aggregate such as sand with cement paste made by adding water to cement, and concrete (cement concrete) is made by hardening fine aggregate such as sand and cement paste with coarse aggregate such as gravel and fine aggregate. It is solidified. Cement mixed with water produces calcium hydroxide (Ca(OH) 2 ), etc., and therefore exhibits alkalinity. For this reason, alkali-resistant glass fibers are used for cement reinforcement. AR glass is known as a composition of alkali-resistant glass fiber. The AR glass contains 16.8% zirconium oxide (ZrO 2 ) and 14.5% alkali metal oxide in mass %. Patent Document 1 discloses an improved composition of AR glass.
特開昭56-134534号公報Japanese Unexamined Patent Publication No. 56-134534
 セメント、モルタルなどセメント系の硬化体に限らず、ケイ酸カルシウム板を含む各種無機系硬化体を補強する繊維として、ガラス繊維は広く用いられている。ガラス繊維で補強された無機系硬化体の需要は拡大し、その使用部位も多様化する傾向にある。これに伴い、無機系硬化体の補強に適した新たなガラス繊維へのニーズが高くなっている。そこで本発明は、無機系硬化体の補強に適した新たなガラス繊維を提供することを目的とする。 Glass fibers are widely used as fibers to reinforce not only cement-based hardened bodies such as cement and mortar, but also various inorganic hardened bodies including calcium silicate plates. Demand for inorganic hardened materials reinforced with glass fibers is increasing, and the areas in which they are used are also becoming more diverse. Along with this, there is a growing need for new glass fibers suitable for reinforcing inorganic cured materials. Therefore, an object of the present invention is to provide a new glass fiber suitable for reinforcing an inorganic cured product.
 本発明は、無機系硬化体用ガラス繊維であって、
 質量%で表示して、
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦ZrO2≦7、
 の成分を含有するガラス組成物を含む、ガラス繊維を提供する。
The present invention is a glass fiber for an inorganic cured product,
Displayed in mass%,
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦ZrO 2 ≦7,
A glass fiber comprising a glass composition containing the following components is provided.
 本発明によれば、無機系硬化体の補強に適した、新たなガラス繊維が提供される。 According to the present invention, a new glass fiber suitable for reinforcing an inorganic cured product is provided.
 以下、本発明の実施形態を説明するが、以下の説明は本発明を特定の実施形態に限定する趣旨ではない。本明細書において、「実質的に含有しない」および「実質的に含有されない」は、含有率が、0.1質量%未満、0.05質量%未満、0.01質量%未満、さらに0.005質量%未満、特に0.003質量%未満、場合によっては0.001質量%未満であることを意味する。「実質的に」は、ガラス原料、製造装置、成形装置などに由来する微量の不純物の含有を許容する趣旨である。「主成分」は、質量基準で含有率が最も大きい成分を意味する。「T-Fe23」は、三酸化二鉄(Fe23)に換算した全酸化鉄を意味する。「アルカリ金属酸化物」は、酸化リチウム(Li2O)、酸化ナトリウム(Na2O)および酸化カリウム(K2O)を意味する。以下に述べる含有率の上限及び下限は、任意に組み合わせることができる。 Embodiments of the present invention will be described below, but the following description is not intended to limit the present invention to specific embodiments. In this specification, "not substantially containing" and "not substantially containing" mean that the content is less than 0.1% by mass, less than 0.05% by mass, less than 0.01% by mass, and even 0. This means less than 0.005% by weight, in particular less than 0.003% by weight, and in some cases less than 0.001% by weight. "Substantially" means that the inclusion of trace amounts of impurities originating from glass raw materials, manufacturing equipment, molding equipment, etc. is allowed. "Main component" means a component having the highest content on a mass basis. “T-Fe 2 O 3 ” means total iron oxide converted to diiron trioxide (Fe 2 O 3 ). "Alkali metal oxide" means lithium oxide (Li 2 O), sodium oxide (Na 2 O) and potassium oxide (K 2 O). The upper and lower limits of the content described below can be arbitrarily combined.
 本実施形態によれば、ガラス組成物を構成する成分のバランスが検討された結果、無機系硬化体の補強に適したガラス繊維が提供される。以下、本実施形態においてガラス組成物を構成する各成分について説明する。 According to the present embodiment, as a result of examining the balance of components constituting the glass composition, a glass fiber suitable for reinforcing an inorganic cured product is provided. Hereinafter, each component constituting the glass composition in this embodiment will be explained.
<ガラス組成物の成分>
 (SiO2
 二酸化ケイ素(SiO2)は、ガラスの骨格を形成する成分であり、ガラス組成物の主成分である。また、SiO2は、ガラス形成時の失透温度および粘度を調整する成分であり、耐酸性を向上させる成分である。SiO2の含有率が50質量%以上65質量%以下では、ガラスの製造が難しくなるようなガラスの失透温度の上昇が抑えられるとともに、ガラスの耐酸性や耐アルカリ性が高くなる。また、この範囲ではガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。SiO2の含有率の下限は、51質量%以上でありうるし、52質量%以上、53質量%以上、54質量%以上、55質量%以上、56質量%以上、57質量%以上、58質量%以上、59質量%超でありうるし、60質量%より大きくてもよい。SiO2の含有率の上限は、64質量%以下でありうるし、63質量%以下でありうる。
<Components of glass composition>
( SiO2 )
Silicon dioxide (SiO 2 ) is a component that forms the skeleton of glass and is the main component of the glass composition. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves acid resistance. When the content of SiO 2 is 50% by mass or more and 65% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance and alkali resistance of the glass are increased. Further, within this range, the melting point of the glass will not become excessively high, and the uniformity of melting the raw materials will increase. The lower limit of the content of SiO 2 may be 51% by mass or more, 52% by mass or more, 53% by mass or more, 54% by mass or more, 55% by mass or more, 56% by mass or more, 57% by mass or more, 58% by mass. The content may be more than 59% by mass or more than 60% by mass. The upper limit of the content of SiO 2 may be 64% by mass or less, or 63% by mass or less.
 (B23、Al23
 三酸化二ホウ素(B23)はガラスの骨格を形成する成分である。また、B23は、ガラス形成時の失透温度および粘度を調整する成分でもある。一方で、過度のB23の含有は、ガラスの耐酸性や耐アルカリ性を低下させる。B23の含有率の下限は、0.1質量%以上でありうる。B23の含有率の上限は、2質量%未満でありうるし、1.5質量%以下、1質量%以下、0.5質量%以下でありうる。B23の含有率の上限は、0.1質量%以下であってもよい。ガラス組成物はB23を実質的に含有しなくてもよい。
(B 2 O 3 , Al 2 O 3 )
Diboron trioxide (B 2 O 3 ) is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive content of B 2 O 3 lowers the acid resistance and alkali resistance of the glass. The lower limit of the content of B 2 O 3 may be 0.1% by mass or more. The upper limit of the content of B 2 O 3 may be less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less. The upper limit of the content of B 2 O 3 may be 0.1% by mass or less. The glass composition may be substantially free of B 2 O 3 .
 酸化アルミニウム(Al23)は、ガラスの骨格を形成する成分である。また、Al23は、ガラス形成時の失透温度および粘度を調整する成分でもあり、ガラスの耐水性を向上させる成分である。一方で、過度のAl23の含有は、ガラスの耐酸性や耐アルカリ性を低下させる。Al23の含有率が5質量%以上14質量%以下では、ガラスの製造が難しくなるようなガラスの失透温度の上昇が抑えられるとともに、ガラスの耐酸性や耐アルカリ性が高くなる。また、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。Al23の含有率の下限は、6質量%以上でありうるし、7質量%以上、8質量%以上、8.5質量%以上、9質量%以上、9.5質量%以上、10質量%以上、10.5質量%以上、11質量%以上、さらには11.1質量%以上でありうる。Al23の含有率の上限は、13質量%以下でありうるし、12.5質量%以下、12質量%未満、さらには11.9質量%以下でありうる。 Aluminum oxide (Al 2 O 3 ) is a component that forms the skeleton of glass. Furthermore, Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass. On the other hand, excessive content of Al 2 O 3 lowers the acid resistance and alkali resistance of the glass. When the Al 2 O 3 content is 5% by mass or more and 14% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance and alkali resistance of the glass are increased. Furthermore, the melting point of the glass does not become excessively high, and the uniformity of melting the raw materials increases. The lower limit of the content of Al 2 O 3 may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 8.5% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass % or more, 10.5% by mass or more, 11% by mass or more, and even 11.1% by mass or more. The upper limit of the Al 2 O 3 content may be 13% by mass or less, 12.5% by mass or less, less than 12% by mass, or even 11.9% by mass.
 B23およびAl23の含有率の和(B23+Al23)が5質量%以上16質量%未満では、失透温度の過度な上昇を抑制しながら、熔融ガラスの失透温度および粘度をガラスの製造に適した範囲とすることができる。また、この範囲ではガラスの耐アルカリ性を向上させることも可能となる。(B23+Al23)の下限は、6質量%以上でありうるし、7質量%以上、8質量%以上、9質量%以上、さらには10質量%以上でありうる。(B23+Al23)の上限は、15質量%以下、14質量%以下、さらには13質量%以下でありうる。 When the sum of the contents of B 2 O 3 and Al 2 O 3 (B 2 O 3 + Al 2 O 3 ) is 5% by mass or more and less than 16% by mass, the devitrification temperature increases while suppressing an excessive increase in the devitrification temperature. The devitrification temperature and viscosity can be set within a range suitable for glass production. Further, within this range, it is also possible to improve the alkali resistance of the glass. The lower limit of (B 2 O 3 +Al 2 O 3 ) may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 9% by mass or more, and even 10% by mass or more. The upper limit of (B 2 O 3 +Al 2 O 3 ) can be 15% by mass or less, 14% by mass or less, and even 13% by mass or less.
 (CaO)
 酸化カルシウム(CaO)は、ガラス形成時の失透温度および粘度を調整する成分である。また、CaOは、ヤング率を向上させる成分でもある。CaOの含有率が10質量%以上30質量%以下では、ヤング率を向上させるとともに、失透温度の過度な上昇を抑制しながらガラスの失透温度および熔融時の粘度を、ガラスの製造に適した範囲とすることができる。CaOの含有率の下限は、12質量%以上でありうるし、13質量%以上、14質量%以上、15質量%以上、16質量%以上、17質量%以上、さらには18質量%以上でありうる。CaOの含有率の上限は、28質量%以下でありうるし、27質量%以下、26質量%以下、さらには25質量%以下、特に24質量%以下でありうる。
(CaO)
Calcium oxide (CaO) is a component that adjusts the devitrification temperature and viscosity during glass formation. Moreover, CaO is also a component that improves Young's modulus. When the CaO content is 10% by mass or more and 30% by mass or less, the Young's modulus is improved and the devitrification temperature and viscosity at the time of melting of the glass are controlled to be suitable for glass production while suppressing an excessive rise in the devitrification temperature. The range can be within the specified range. The lower limit of the content of CaO may be 12% by mass or more, 13% by mass or more, 14% by mass or more, 15% by mass or more, 16% by mass or more, 17% by mass or more, and even 18% by mass or more. . The upper limit of the content of CaO may be 28% by mass or less, 27% by mass or less, 26% by mass or less, further 25% by mass or less, particularly 24% by mass or less.
 (Li2O、Na2O、K2O)
 アルカリ金属酸化物(Li2O、Na2O、K2O)は、ガラス形成時の失透温度および粘度を調整する成分である。アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)の値が0質量%以上4質量%以下では、失透温度の過度な上昇を抑制しながら、熔融ガラスの失透温度および粘度を、ガラスの製造に適した範囲とすることができる。また、ガラスの融点の上昇を抑え、ガラス原料のより均一な熔融を実施できながらも、ガラス転移温度が過度に低下することなく、高いガラスの耐熱性を確保できる。さらに、ガラスの耐酸性や耐アルカリ性が高くなる。一方で、過度のアルカリ金属酸化物の含有は、ガラスのヤング率やガラス繊維の弾性率を低下させる。(Li2O+Na2O+K2O)の下限は、0質量%より大きくてもよいし、0.1質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、3質量%以下でありうるし、2質量%以下、2質量%未満でありうる。ガラス組成物の耐アルカリ性を特に重要視する場合は、(Li2O+Na2O+K2O)の値を0.1質量%以下としてもよい。ガラス組成物はアルカリ金属酸化物を実質的に含有しなくてもよい。Li2O、Na2O、およびK2Oのそれぞれは任意成分である。言い換えるとこれら各成分の含有率の下限は0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that adjust the devitrification temperature and viscosity during glass formation. When the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is 0% by mass or more and 4% by mass or less, the devitrification temperature of the molten glass and the The viscosity can be in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, the acid resistance and alkali resistance of the glass are increased. On the other hand, excessive content of alkali metal oxide reduces the Young's modulus of glass and the elastic modulus of glass fiber. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be greater than 0% by mass, or may be greater than or equal to 0.1% by mass. The upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3% by mass or less, 2% by mass or less, and less than 2% by mass. If the alkali resistance of the glass composition is particularly important, the value of (Li 2 O+Na 2 O+K 2 O) may be set to 0.1% by mass or less. The glass composition may be substantially free of alkali metal oxides. Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
 酸化リチウム(Li2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上、0.3質量%以上、さらには0.4質量%以上でありうる。Li2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the content of lithium oxide (Li 2 O) may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, and even 0.4% by mass or more. The upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
 酸化ナトリウム(Na2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上でありうる。Li2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the content of sodium oxide (Na 2 O) may be 0.1% by mass or more, or 0.2% by mass or more. The upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
 酸化カリウム(K2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上でありうる。K2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the potassium oxide (K 2 O) content may be 0.1% by mass or more, or 0.2% by mass or more. The upper limit of the content of K 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
 (SiO2-Al23
 ガラスの耐酸性向上の観点からは、SiO2の含有率からAl23の含有率を引いた値(SiO2-Al23)の下限は、40質量%以上、、41質量%以上、42質量%以上、43質量%以上、44質量%以上、45質量%以上、46質量%以上、47質量%以上、48質量%超、48.5質量%以上、49質量%超でありうるし、さらには49.5%以上でありうる。また、(SiO2-Al23)の上限は、57質量%以下でありうるし、56質量%以下、55質量%以下、54質量%以下、53質量%以下、さらには52質量%以下でありうる。
(SiO 2 -Al 2 O 3 )
From the viewpoint of improving the acid resistance of glass, the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content (SiO 2 - Al 2 O 3 ) is 40% by mass or more, 41% by mass or more , 42% by mass or more, 43% by mass or more, 44% by mass or more, 45% by mass or more, 46% by mass or more, 47% by mass or more, more than 48% by mass, 48.5% by mass or more, and more than 49% by mass. , or even 49.5% or more. Further, the upper limit of (SiO 2 -Al 2 O 3 ) may be 57% by mass or less, 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, and even 52% by mass or less. It's possible.
 (SiO2-B23-Al23
 ガラスの耐酸性向上の観点からは、SiO2の含有率からB23の含有率を引いてさらにAl23の含有率を引いた値(SiO2-B23-Al23)の下限は、38質量%以上、40質量%以上、41質量%以上、42質量%以上、43質量%以上、44質量%以上、45質量%以上、46質量%以上、47質量%以上、48質量%超、48.5質量%以上、49質量%超でありうるし、さらには49.5%以上でありうる。また、(SiO2-B23-Al23)の上限は、56質量%以下でありうるし、55質量%以下、54質量%以下、53質量%以下、52質量%以下、さらには51質量%以下でありうる。
(SiO 2 -B 2 O 3 -Al 2 O 3 )
From the perspective of improving the acid resistance of glass, the value obtained by subtracting the B 2 O 3 content from the SiO 2 content and further subtracting the Al 2 O 3 content (SiO 2 -B 2 O 3 -Al 2 O 3 ) The lower limits are 38% by mass or more, 40% by mass or more, 41% by mass or more, 42% by mass or more, 43% by mass or more, 44% by mass or more, 45% by mass or more, 46% by mass or more, 47% by mass or more. , more than 48% by weight, more than 48.5% by weight, more than 49% by weight, or even more than 49.5% by weight. Further, the upper limit of (SiO 2 -B 2 O 3 -Al 2 O 3 ) may be 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, 52% by mass or less, and even It may be 51% by mass or less.
 (SiO2+Al23
 ガラスの耐アルカリ性に関し、SiO2およびAl23の含有率の和(SiO2+Al23)の値が重要となる。ガラスの耐アルカリ性が向上する観点からは、(SiO2+Al23)の下限は、55質量%以上が好ましく、58質量%以上、60質量%以上、62質量%以上、64質量%以上、65質量%以上、66質量%以上であってもよい。また、(SiO2+Al23)の上限は、80質量%以下が好ましく、78質量%以下、76質量%以下、75質量%以下、74質量%以下、73質量%以下であってもよい。
(SiO 2 + Al 2 O 3 )
Regarding the alkali resistance of glass, the value of the sum of the contents of SiO 2 and Al 2 O 3 (SiO 2 +Al 2 O 3 ) is important. From the viewpoint of improving the alkali resistance of the glass, the lower limit of (SiO 2 +Al 2 O 3 ) is preferably 55% by mass or more, 58% by mass or more, 60% by mass or more, 62% by mass or more, 64% by mass or more, It may be 65% by mass or more, or 66% by mass or more. Further, the upper limit of (SiO 2 +Al 2 O 3 ) is preferably 80% by mass or less, and may be 78% by mass or less, 76% by mass or less, 75% by mass or less, 74% by mass or less, or 73% by mass or less. .
 (SiO2+B23+Al23
 ガラスの耐アルカリ性に関し、SiO2、B23およびAl23の含有率の合計(SiO2+B23+Al23)の値が重要となる。ガラスの耐アルカリ性が向上する観点からは、(SiO2+B23+Al23)の下限は、55質量%以上が好ましく、58質量%以上、60質量%以上、62質量%以上、64質量%以上、65質量%以上、66質量%以上であってもよい。また、(SiO2+B23+Al23)の上限は、80質量%以下が好ましく、78質量%以下、76質量%以下、75質量%以下、74質量%以下、73質量%以下であってもよい。
(SiO 2 +B 2 O 3 +Al 2 O 3 )
Regarding the alkali resistance of glass, the value of the total content of SiO 2 , B 2 O 3 and Al 2 O 3 (SiO 2 +B 2 O 3 +Al 2 O 3 ) is important. From the viewpoint of improving the alkali resistance of the glass, the lower limit of (SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 55% by mass or more, 58% by mass or more, 60% by mass or more, 62% by mass or more, 64% by mass or more. It may be at least 65% by mass, or at least 66% by mass. Further, the upper limit of (SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 80% by mass or less, 78% by mass or less, 76% by mass or less, 75% by mass or less, 74% by mass or less, and 73% by mass or less. There may be.
 (MgO)
 ガラス組成物は酸化マグネシウム(MgO)をさらに含有しうる。MgOは、ガラス形成時の失透温度および粘度を調整する成分である。また、MgOは、ヤング率を向上させる成分でもある。一方で、過度のMgOの含有はガラスの耐アルカリ性を低下させる。MgOの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、1質量%以上、1.5質量%以上、さらには2質量%以上でありうる。MgOの含有率の上限は、10質量%以下でありうるし、8質量%以下、6質量%以下、5質量%以下、4.5質量%以下、4質量%以下でありうる。
(MgO)
The glass composition may further contain magnesium oxide (MgO). MgO is a component that adjusts the devitrification temperature and viscosity during glass formation. Moreover, MgO is also a component that improves Young's modulus. On the other hand, excessive MgO content reduces the alkali resistance of the glass. The lower limit of the MgO content may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more. The upper limit of the content of MgO may be 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4.5% by mass or less, or 4% by mass or less.
 (MgO+CaO)
 ガラスの熔融性や成形性に関し、MgOおよびCaOの含有率の和(MgO+CaO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO)の下限は、15質量%以上が好ましく、16質量%以上、17質量%以上、18質量%以上、19質量%以上、20質量%以上、21質量%以上、22質量%以上の順により好ましい。また、(MgO+CaO)の上限は、40質量%以下が好ましく、35質量%以下、32質量%以下、30質量%以下、29質量%以下、28質量%以下の順により好ましい。
(MgO+CaO)
Regarding the meltability and moldability of glass, the value of the sum of the contents of MgO and CaO (MgO+CaO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limit of (MgO+CaO) is preferably 15% by mass or more, 16% by mass or more, 17% by mass or more, 18% by mass or more, 19% by mass or more. , 20% by mass or more, 21% by mass or more, and 22% by mass or more, in this order. The upper limit of (MgO+CaO) is preferably 40% by mass or less, more preferably 35% by mass or less, 32% by mass or less, 30% by mass or less, 29% by mass or less, and 28% by mass or less.
 (SrO)
 ガラス組成物は酸化ストロンチウム(SrO)をさらに含有しうる。SrOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のSrOの含有はガラスの耐酸性を低下させる。SrOの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、1質量%以上、2質量%以上、3質量%以上、4質量%以上、5質量%以上、6質量%以上、7質量%以上、さらには8質量%以上でありうる。SrOの含有率の上限は、25質量%以下でありうるし、20質量%以下、15質量%以下、12質量%以下、10質量%以下、8質量%以下、6質量%以下、5質量%以下でありうる。SrOの含有率の上限は、2質量%以下であってもよく、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下であってもよい。ガラス組成物はSrOを実質的に含有しなくてもよい。
(SrO)
The glass composition may further contain strontium oxide (SrO). SrO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive SrO content reduces the acid resistance of the glass. The lower limit of the content of SrO may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, 5% by mass or more, It may be 6% by mass or more, 7% by mass or more, or even 8% by mass or more. The upper limit of the content of SrO can be 25% by mass or less, 20% by mass or less, 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less It can be. The upper limit of the SrO content may be 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, or even 0.1% by mass or less. . The glass composition may be substantially free of SrO.
 (MgO+CaO+SrO)
 ガラスの熔融性や成形性に関し、MgO、CaOおよびSrOの含有率の合計(MgO+CaO+SrO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO+SrO)の下限は、15質量%以上が好ましく、18質量%以上、20質量%以上、21質量%以上、22質量%以上、23質量%以上、24質量%以上、25質量%以上、26質量%以上、27質量%以上、28質量%以上の順により好ましい。また、(MgO+CaO+SrO)の上限は、40質量%以下が好ましく、38質量%以下、36質量%以下、35質量%以下、34質量%以下の順により好ましい。
(MgO+CaO+SrO)
Regarding the meltability and moldability of glass, the value of the total content of MgO, CaO and SrO (MgO+CaO+SrO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limit of (MgO + CaO + SrO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more. The upper limit of (MgO+CaO+SrO) is preferably 40% by mass or less, more preferably 38% by mass or less, 36% by mass or less, 35% by mass or less, and 34% by mass or less.
 (BaO)
 ガラス組成物は酸化バリウム(BaO)をさらに含有しうる。BaOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のBaOの含有はガラスの耐酸性を低下させる。BaOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。ガラス組成物はBaOを実質的に含有しなくてもよい。
(BaO)
The glass composition may further contain barium oxide (BaO). BaO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive BaO content reduces the acid resistance of the glass. The upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less. The glass composition may be substantially free of BaO.
 (MgO+CaO+SrO+BaO)
 ガラスの熔融性や成形性に関し、MgO、CaO、SrOおよびBaOの含有率の合計(MgO+CaO+SrO+BaO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO+SrO+BaO)の下限は、15質量%以上が好ましく、18質量%以上、20質量%以上、21質量%以上、22質量%以上、23質量%以上、24質量%以上、25質量%以上、26質量%以上、27質量%以上、28質量%以上の順により好ましい。また、(MgO+CaO+SrO+BaO)の上限は、40質量%以下が好ましく、38質量%以下、36質量%以下、35質量%以下、34質量%以下の順により好ましい。
(MgO+CaO+SrO+BaO)
Regarding the meltability and moldability of glass, the value of the total content of MgO, CaO, SrO and BaO (MgO+CaO+SrO+BaO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limit of (MgO+CaO+SrO+BaO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more. Further, the upper limit of (MgO+CaO+SrO+BaO) is preferably 40% by mass or less, more preferably 38% by mass or less, 36% by mass or less, 35% by mass or less, and 34% by mass or less.
 (ZnO)
 ガラス組成物は酸化亜鉛(ZnO)をさらに含有しうる。ZnOは、ガラス形成時の失透温度および粘度を調整する成分である。ただしZnOは、その原料が相対的に高価でもあるため、多量に含有させると原料コストの上昇を招く。ZnOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。ガラス組成物はZnOを実質的に含有しなくてもよい。
(ZnO)
The glass composition may further contain zinc oxide (ZnO). ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation. However, since ZnO is a relatively expensive raw material, if it is contained in a large amount, the raw material cost will increase. The upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less. The glass composition may be substantially free of ZnO.
 (TiO2
 ガラス組成物は二酸化チタン(TiO2)をさらに含有しうる。TiO2は、ガラスの熔融性および化学的耐久性を向上させ、ガラスの紫外線吸収特性を向上させる成分である。また、適量のTiO2は、ガラスの耐酸性や耐水性を向上させる。ただしTiO2は、その原料が相対的に高価でもあるため、多量に含有させると原料コストの上昇を招く。TiO2の含有率の下限は、0.1質量%以上でありうる。TiO2の含有率の上限は、10質量%以下でありうるし、8質量%以下、7質量%以下、6質量%以下、5質量%以下、2質量%未満、1質量%以下、0.5質量%以下、0.3質量%以下、さらには0.2質量%以下でありうる。ガラス組成物はTiO2を実質的に含有しなくてもよい。TiO2の含有率の下限は、0.5質量%以上であってもよく、1質量%以上、1.5質量%以上、1.6質量%以上、2質量%以上、3質量%以上、4質量%以上、5質量%以上、5質量%超、さらには5.1質量%以上であってもよい。
( TiO2 )
The glass composition may further contain titanium dioxide ( TiO2 ). TiO 2 is a component that improves the meltability and chemical durability of glass, and improves the ultraviolet absorption characteristics of glass. Furthermore, a suitable amount of TiO 2 improves the acid resistance and water resistance of the glass. However, since TiO 2 is a relatively expensive raw material, if it is contained in a large amount, the raw material cost will increase. The lower limit of the content of TiO 2 may be 0.1% by mass or more. The upper limit of the content of TiO 2 can be 10% by mass or less, 8% by mass or less, 7% by mass or less, 6% by mass or less, 5% by mass or less, less than 2% by mass, 1% by mass or less, 0.5 The amount may be less than or equal to 0.3% by mass, or even less than 0.2% by mass. The glass composition may be substantially free of TiO2 . The lower limit of the content of TiO2 may be 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, 1.6% by mass or more, 2% by mass or more, 3% by mass or more, It may be 4% by mass or more, 5% by mass or more, more than 5% by mass, or even 5.1% by mass or more.
 (ZrO2
 酸化ジルコニウム(ZrO2)は、ガラス形成時の失透温度および粘度を調整する成分である。また、ZrO2は、ガラスの耐酸性や耐アルカリ性を向上させる成分である。ただしZrO2は、その原料が相対的に高価でもあるため、多量に含有させると原料コストの上昇を招く。ZrO2の含有率が高いと、作業温度も上昇する。また、ZrO2の含有率の下限は、0.1質量%以上でありうる。ZrO2の含有率の上限は、6質量%未満でありうるし、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。ガラス組成物はZrO2を実質的に含有しなくてもよい。ZrO2の含有率の下限は、0.5質量%以上であってもよく、1質量%以上、2質量%以上、さらには3質量%以上であってもよい。
( ZrO2 )
Zirconium oxide (ZrO 2 ) is a component that adjusts the devitrification temperature and viscosity during glass formation. Furthermore, ZrO 2 is a component that improves the acid resistance and alkali resistance of glass. However, since ZrO 2 is a relatively expensive raw material, if it is contained in a large amount, the raw material cost will increase. A high content of ZrO 2 also increases the working temperature. Further, the lower limit of the content of ZrO 2 may be 0.1% by mass or more. The upper limit of the content of ZrO2 may be less than 6% by mass, and may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, and may be 0.1% by mass or less. The glass composition may be substantially free of ZrO2 . The lower limit of the content of ZrO 2 may be 0.5% by mass or more, 1% by mass or more, 2% by mass or more, or even 3% by mass or more.
 (Fe)
 ガラス組成物は酸化鉄をさらに含有しうる。鉄(Fe)は、通常、Fe2+またはFe3+の状態で存在する。Fe3+はガラスの紫外線吸収特性を高める成分であり、Fe2+はガラスの熱線吸収特性を高める成分である。Feは、意図的に含ませなくとも、工業用原料により不可避的に混入する場合がある。Feの含有量が少なければ、ガラスの着色を防止することができる。Feの含有率の上限は、T-Fe23により表示して5質量%以下でありうるし、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、さらには0.1質量%以下、0.1質量%未満、0.08質量%以下、0.05質量%以下、0.04質量%以下、さらには0.03質量%以下でありうる。Feの含有率の下限は、T-Fe23により表示して0.01質量%以上、0.05質量%以上、0.1質量%以上、さらに0.2質量%以上でありうる。特にアルカリ金属酸化物の含有率が低いガラス組成において、微量の酸化鉄はガラスの清澄の促進に寄与しうる。
(Fe)
The glass composition may further contain iron oxide. Iron (Fe) usually exists in the Fe 2+ or Fe 3+ state. Fe 3+ is a component that enhances the ultraviolet absorption properties of glass, and Fe 2+ is a component that enhances heat ray absorption properties of glass. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass can be prevented. The upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass % or less, 0.4 mass% or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 The amount may be less than or equal to 0.04% by mass, or even less than 0.03% by mass. The lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
 (F2、Cl2
 ガラス組成物はフッ素(F2)および塩素(Cl2)をさらに含有しうる。F2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。F2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%以下でありうる。ガラス組成物はF2を実質的に含有しなくてもよい。
( F2 , Cl2 )
The glass composition may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. The glass composition may be substantially free of F2 .
 Cl2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。Cl2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%未満でありうる。ガラス組成物はCl2を実質的に含有しなくてもよい。 Since Cl 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of Cl 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even less than 0.1% by mass. It's possible. The glass composition may be substantially free of Cl2 .
 (その他の成分)
 ガラス組成物は、その他の成分として、P25、Sc23、Y23、La23、CeO2、Pr23、Nd23、Pm23、Sm23、Eu23、Gd23、Tb23、Dy23、Ho23、Er23、Tm23、Yb23、Lu23、WO3、Nb25、Y23、MoO3、Ta25、MnO2およびCr23から選ばれる少なくとも1種を、それぞれ0質量%以上5質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて2質量%未満でありうるし、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。これらの成分の許容される含有率の合計は、5質量%以下でありうるし、2%質量%未満、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。また、ライタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)の酸化物は、実質的に含有されていなくてもよい。
(Other ingredients)
Other components of the glass composition include P 2 O 5 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 and Sm 2 O3 , Eu2O3 , Gd2O3 , Tb2O3 , Dy2O3 , Ho2O3 , Er2O3 , Tm2O3 , Yb2O3 , Lu2O3 , WO3 , Nb 2 O 5 , Y 2 O 3 , MoO 3 , Ta 2 O 5 , MnO 2 and Cr 2 O 3 at a content of 0% by mass or more and 5% by mass or less, respectively. . The permissible content of these components may be less than 2% by weight each, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. The total allowable content of these components may be 5% by weight or less, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. . However, the other components mentioned above may not be substantially contained. Furthermore, oxides of litanoid (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) may not be substantially contained.
 また、ガラス組成物は、添加物として、SO3、Br2、I2、SnO2、As23およびSb23から選ばれる少なくとも1種を、それぞれ0質量%以上1質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて0.5質量%未満でありうるし、0.2質量%未満、さらには0.1質量%未満でありうる。これらの成分の許容される含有率の合計は、1質量%以下でありうるし、0.5%質量%未満、0.2質量%未満、さらには0.1質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。 Further, the glass composition contains at least one selected from SO 3 , Br 2 , I 2 , SnO 2 , As 2 O 3 and Sb 2 O 3 as an additive in an amount of 0% by mass or more and 1% by mass or less, respectively. It can be contained at a certain content rate. The permissible content of these components can be less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight for each. The total allowable content of these components may be 1% by weight or less, less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成物は、H2O、OH、H2、CO2、CO、He、Ne、ArおよびN2を、それぞれ0質量%以上0.1質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて0.05質量%未満でありうるし、0.03質量%未満、さらには0.01質量%未満でありうる。これらの成分の許容される含有率の合計は、0.1質量%以下でありうるし、0.05%質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。 The glass composition may contain H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar, and N 2 at a content of 0% by mass or more and 0.1% by mass or less, respectively. The permissible content of these components can be less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight for each. The total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成物は、微量の貴金属元素を含有していてもよい。例えば、Pt、Rh、Au、Osなどの貴金属元素を、それぞれ0質量%以上0.1質量%以下の含有率で含むことができる。これらの成分の許容される含有率は、それぞれについて0.1質量%未満でありうるし、0.05質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。これらの成分の許容される含有率の合計は、0.1質量%以下でありうるし、0.05%質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。 The glass composition may contain trace amounts of noble metal elements. For example, noble metal elements such as Pt, Rh, Au, and Os can be included at a content of 0% by mass or more and 0.1% by mass or less, respectively. The permissible content of these components may be less than 0.1% by weight each, less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight. The total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成物は、CuOを実質的に含有しない組成でありうる。また、ガラス組成物は、CoOを実質的に含有しない組成でありうる。さらに、ガラス組成物は、PbOを実質的に含有しない組成でありうる。また、ガラス組成物は、NiOを実質的に含有しない組成でありうる。 The glass composition may have a composition that does not substantially contain CuO. Further, the glass composition may have a composition that does not substantially contain CoO. Further, the glass composition can be substantially free of PbO. Further, the glass composition may have a composition that does not substantially contain NiO.
 本実施形態のガラス組成物は、質量%表示で以下の成分を含有し、さらに、次段落以降に同様に質量%表示で記載する好ましい組成を有しうる。
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦ZrO2≦7
The glass composition of this embodiment contains the following components expressed in mass %, and may further have a preferable composition similarly described in mass % in the following paragraphs and subsequent paragraphs.
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦ZrO 2 ≦7
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
   1≦MgO≦10、
  15≦CaO≦30、
   0≦ZrO2≦7、
   0≦T-Fe23≦5、
の成分を含有し、アルカリ金属酸化物を実質的に含有しない組成。
 ここで、アルカリ金属酸化物の含有率は、Li2O、Na2O、およびK2Oの含有率の合計により定まる。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
1≦MgO≦10,
15≦CaO≦30,
0≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following components and substantially free of alkali metal oxides.
Here, the content of the alkali metal oxide is determined by the sum of the contents of Li 2 O, Na 2 O, and K 2 O.
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
   1≦MgO≦10、
  15≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦ZrO2≦7、
   0≦T-Fe23≦5、
の成分を含有する組成。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
1≦MgO≦10,
15≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   1≦SrO≦20、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦ZrO2≦7、
   0≦T-Fe23≦5
 の成分を含有する組成。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
1≦SrO≦20,
0≦( Li2O + Na2O + K2O )≦4,
0≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5
A composition containing the following ingredients.
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
 0.1≦TiO2≦10、
   0≦ZrO2≦7、
   0≦T-Fe23≦5、
 の成分を含有する組成。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0.1≦ TiO2 ≦10,
0≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
 0.1≦ZrO2≦7、
   0≦T-Fe23≦5、
 の成分を含有し、TiO2を実質的に含有しない組成。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0.1≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following components and substantially free of TiO 2 .
  50≦SiO2≦65、
   0≦B23<2、
   5≦Al23≦14、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
 0.1≦TiO2≦10、
   0≦T-Fe23≦5、
 の成分を含有し、ZrO2を実質的に含有しない組成。
50≦SiO 2 ≦65,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0.1≦ TiO2 ≦10,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following components and substantially free of ZrO 2 .
 以上の各組成において、B23を実質的に含有しない組成。 In each of the above compositions, the composition does not substantially contain B 2 O 3 .
  50≦SiO2≦65、
 0.1≦B23<2、
   5≦Al23≦14、
 0.1≦MgO≦10、
  15≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦ZrO2≦7、
   0≦T-Fe23≦5、
 の成分を含有する組成。
50≦SiO 2 ≦65,
0.1≦B 2 O 3 <2,
5≦Al 2 O 3 ≦14,
0.1≦MgO≦10,
15≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦ZrO 2 ≦7,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
 以上の各組成において、0≦ZnO≦2、がさらに成立する組成。 In each of the above compositions, 0≦ZnO≦2 is further satisfied.
 以上の各組成において、48≦(SiO2-Al23)≦57、が成立する組成。これが成立するガラス組成は耐酸性の向上に適している。(SiO2-Al23)は、質量基準でSiO2の含有率からAl23の含有率を差し引いた値である。(SiO2-Al23)の下限は49であってもよく、その上限は55であってもよい。 In each of the above compositions, 48≦(SiO 2 −Al 2 O 3 )≦57 holds true. A glass composition that satisfies this is suitable for improving acid resistance. (SiO 2 -Al 2 O 3 ) is the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 on a mass basis. The lower limit of (SiO 2 -Al 2 O 3 ) may be 49, and the upper limit may be 55.
 以上の各組成(ただし、TiO2を実質的に含有しない組成を除く)において、0.1≦TiO2≦2、がさらに成立する組成。 In each of the above compositions (excluding compositions that do not substantially contain TiO 2 ), a composition further satisfies 0.1≦TiO 2 ≦2.
<特性>
 本実施形態のガラス組成物がとりうる特性について、以下、説明する。
 (熔融特性)
 熔融ガラスの粘度が1000dPa・sec(1000poise)となるときの温度は、当該ガラスの作業温度と呼ばれ、ガラスの成形に最も適する温度である。ガラス繊維を製造する場合、ガラスの作業温度が1100℃以上であれば、ガラス繊維径のばらつきを小さくできる。作業温度が1290℃以下であれば、ガラスを熔融する際の燃料費を低減でき、ガラス製造装置が熱による腐食を受け難くなり、装置寿命が延びる。作業温度の下限は、1100℃以上でありうるし、1120℃以上、1140℃以上、1150℃以上、1160℃以上、1170℃以上、1180℃以上、さらには1200℃以上でありうる。作業温度の上限は、1290℃以下でありうるし、1270℃以下、1260℃以下、さらには1250℃以下でありうる。
<Characteristics>
The characteristics that the glass composition of this embodiment can have will be explained below.
(melting characteristics)
The temperature at which the viscosity of the molten glass becomes 1000 dPa·sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for forming the glass. When manufacturing glass fibers, if the glass working temperature is 1100° C. or higher, variations in glass fiber diameter can be reduced. If the working temperature is 1290° C. or lower, the fuel cost for melting glass can be reduced, the glass manufacturing equipment will be less susceptible to corrosion due to heat, and the life of the equipment will be extended. The lower limit of the working temperature may be 1100°C or higher, 1120°C or higher, 1140°C or higher, 1150°C or higher, 1160°C or higher, 1170°C or higher, 1180°C or higher, or even 1200°C or higher. The upper limit of the working temperature may be 1290°C or less, 1270°C or less, 1260°C or less, or even 1250°C or less.
 作業温度から失透温度を差し引いた温度差ΔTが大きいほど、ガラス成形時に失透が生じ難く、均質なガラスを高い歩留りで製造できる。ΔTは0℃以上でありうるし、10℃以上、20℃以上、30℃以上、40℃以上、さらには50℃以上でありうる。一方、ΔTが200℃以下であれば、ガラス組成の調整が容易になる。ΔTは200℃以下でありうるし、180℃以下、さらには160℃以下でありうる。なお、失透温度は、熔融ガラス素地中に結晶が生成し、成長しはじめるときの温度である。 The larger the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature, the less devitrification occurs during glass molding, and it is possible to produce homogeneous glass at a high yield. ΔT may be 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, or even 50°C or higher. On the other hand, if ΔT is 200° C. or less, the glass composition can be easily adjusted. ΔT may be 200°C or less, 180°C or less, or even 160°C or less. Note that the devitrification temperature is the temperature at which crystals are generated in the molten glass base and begin to grow.
 ガラス繊維のうち、ガラス長繊維は、例えば、熔融ガラス素地を窯槽底部に設けられたブッシングのノズルより引き出し、巻取機により連続的に巻き取り、繊維状に紡糸することにより製造される。ガラス短繊維は、例えば、熔融ガラス素地を窯槽底部より高速回転させたスピナーに流し出し、遠心力によりスピナー側面に設けられた穴から飛び出した繊維状のガラスを、ガスジェット等の圧力でさらに細く引き延ばすことにより製造される。これらの製造工程を勘案すると、ガラス組成物は、熔融性に優れていて成形性が良好であること、適正な温度-粘度特性を持つこと、および作業温度よりも失透温度が低いことが望ましい。 Among glass fibers, long glass fibers are manufactured by, for example, pulling out a molten glass base through a nozzle of a bushing provided at the bottom of a kiln tank, continuously winding it up with a winder, and spinning it into a fiber. Short glass fibers can be produced, for example, by pouring a molten glass base from the bottom of a kiln tank into a spinner that rotates at high speed, and by centrifugal force, the fibrous glass that pops out of a hole on the side of the spinner is further processed using the pressure of a gas jet or the like. Manufactured by stretching into thin pieces. Considering these manufacturing processes, it is desirable that the glass composition has excellent meltability and good moldability, has appropriate temperature-viscosity characteristics, and has a devitrification temperature lower than the working temperature. .
 (ヤング率)
 ガラス繊維は、該ガラス繊維を形成するガラス組成物のヤング率が高いほど弾力性が良く、ガラス繊維強化セメントを始めとする、ガラス繊維により強化された無機系硬化体の機械特性が向上する。ここで、ヤング率(GPa)は、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度と横波速度とを測定し、別にアルキメデス法により測定したガラスの密度とから求めることができる。このヤング率の下限は85GPa以上でありうるし、86GPa以上、87GPa以上、88GPa以上、さらには89GPa以上でありうる。ヤング率の上限は好ましくは100GPa以下でありうるし、99GPa以下、98GPa以下、97GPa以下、96GPa以下、さらには95GPa以下でありうる。本実施形態のガラス組成物は、後述する実施例および比較例から把握できるとおり、EガラスやARガラスと比較して、高いヤング率を有しうる。
(Young's modulus)
The higher the Young's modulus of the glass composition forming the glass fiber, the better the elasticity of the glass fiber, which improves the mechanical properties of an inorganic cured product reinforced with glass fiber, such as glass fiber reinforced cement. Here, the Young's modulus (GPa) can be determined by measuring the longitudinal wave velocity and shear wave velocity of elastic waves propagating in the glass using a normal ultrasonic method, and from the density of the glass separately measured using the Archimedes method. can. The lower limit of Young's modulus may be 85 GPa or more, 86 GPa or more, 87 GPa or more, 88 GPa or more, or even 89 GPa or more. The upper limit of Young's modulus may preferably be 100 GPa or less, 99 GPa or less, 98 GPa or less, 97 GPa or less, 96 GPa or less, or even 95 GPa or less. As can be understood from the Examples and Comparative Examples described later, the glass composition of the present embodiment can have a higher Young's modulus than E glass or AR glass.
 (化学的耐久性)
 無機系硬化体の補強用途における化学的耐久性の指標としては、耐酸性および耐アルカリ性が適切である。
 耐酸性の指標としては、後述する質量減少率ΔW1が採用され、このΔW1が小さいほど耐酸性が高いことを示す。ガラス繊維をセメントやケイ酸カルシウム板などの補強材として用いる場合、ガラス繊維のΔW1は5.0質量%以下であることが好ましい。本実施形態のガラス組成物のΔW1は、5.0質量%以下でありうるし、4.5質量%以下、4.0質量%以下、3.5質量%以下、さらには3.0質量%以下でありうる。本実施形態により実現できるΔW1は、例えば、0.01~5.0質量%である。
(chemical durability)
Acid resistance and alkali resistance are appropriate indicators of chemical durability in reinforcing applications of inorganic cured products.
As an index of acid resistance, the mass reduction rate ΔW 1 described later is employed, and the smaller this ΔW 1 is, the higher the acid resistance is. When glass fiber is used as a reinforcing material for cement, calcium silicate board, etc., it is preferable that ΔW 1 of the glass fiber is 5.0% by mass or less. ΔW 1 of the glass composition of the present embodiment may be 5.0% by mass or less, 4.5% by mass or less, 4.0% by mass or less, 3.5% by mass or less, and even 3.0% by mass It can be: The ΔW 1 that can be achieved by this embodiment is, for example, 0.01 to 5.0% by mass.
 耐アルカリ性の指標としては、後述する質量減少率ΔW2が採用され、このΔW2が小さいほど耐アルカリ性が高いことを示す。ガラス繊維をセメントやケイ酸カルシウム板などの補強材として用いる場合、ガラス繊維のΔW2は10.0質量%以下であることが好ましい。本実施形態のガラス組成物のΔW2は、10.0質量%以下でありうるし、9.0質量%以下、8.0質量%以下、7.0質量%以下、さらには6.0質量%以下でありうる。本実施形態により実現できるΔW2は、例えば、0.1~10.0質量%である。 As an index of alkali resistance, the mass reduction rate ΔW 2 described later is employed, and the smaller ΔW 2 is, the higher the alkali resistance is. When glass fiber is used as a reinforcing material for cement, calcium silicate board, etc., it is preferable that ΔW 2 of the glass fiber is 10.0% by mass or less. ΔW 2 of the glass composition of the present embodiment may be 10.0% by mass or less, 9.0% by mass or less, 8.0% by mass or less, 7.0% by mass or less, or even 6.0% by mass It can be: The ΔW 2 that can be achieved by this embodiment is, for example, 0.1 to 10.0% by mass.
 このような化学的耐久性に優れたガラス組成物により構成されるガラス繊維は、セメント、モルタル、コンクリートやケイ酸カルシウム板などの補強材等に好適に使用することができる。この用途では、耐アルカリ性が重視されてきたが、化学工場や下水道関連施設などにおける酸性度の高い環境下での使用や、酸性雨への暴露を考慮すると、耐酸性も重視することが望ましい。 Glass fibers made of such a glass composition with excellent chemical durability can be suitably used for reinforcing materials such as cement, mortar, concrete, and calcium silicate plates. In this application, emphasis has been placed on alkali resistance, but considering use in highly acidic environments such as chemical factories and sewage-related facilities, and exposure to acid rain, it is also desirable to place emphasis on acid resistance.
<ガラス繊維>
 本実施形態のガラス繊維は、上述したガラス組成物により構成される。本実施形態のガラス繊維は、ガラス長繊維であってもガラス短繊維であってもよい。ガラス長繊維は、粘度を制御したガラス融液をノズルから流出させ、巻き取り機によって巻き取って製造される。この連続繊維は、使用時に適切な長さに切断される。ガラス短繊維は、高圧空気、遠心力等によってガラス融液を吹き飛ばしながら製造される。ガラス短繊維は、綿状の形態を有しているためにグラスウールと呼ばれることもある。
<Glass fiber>
The glass fiber of this embodiment is made of the glass composition described above. The glass fibers of this embodiment may be long glass fibers or short glass fibers. Long glass fibers are produced by flowing a viscosity-controlled glass melt through a nozzle and winding it up with a winder. This continuous fiber is cut to an appropriate length at the time of use. Short glass fibers are manufactured by blowing away glass melt using high-pressure air, centrifugal force, or the like. Short glass fibers are sometimes called glass wool because they have a cotton-like morphology.
 ガラス繊維の平均繊維径は、例えば0.1~50μmである。ガラス繊維の平均繊維径は、平均繊維径は0.1μm以上、0.2μm以上、0.3μm以上、0.4μm以上、さらには0.5μm以上であってもよく、50μm以下、40μm以下、30μm以下、25μm以下であってもよい。ガラス長繊維の場合、平均繊維径は1μm以上、2μm以上、3μm以上、4μm以上、さらには5μm以上であってもよい。ガラス短繊維の場合、平均繊維径は10μm以下、5μm以下、4μm以下、3μm以下、2μm以下、さらには1μm以下であってもよい。 The average fiber diameter of the glass fibers is, for example, 0.1 to 50 μm. The average fiber diameter of the glass fibers may be 0.1 μm or more, 0.2 μm or more, 0.3 μm or more, 0.4 μm or more, and even 0.5 μm or more, 50 μm or less, 40 μm or less, It may be 30 μm or less, or 25 μm or less. In the case of long glass fibers, the average fiber diameter may be 1 μm or more, 2 μm or more, 3 μm or more, 4 μm or more, or even 5 μm or more. In the case of short glass fibers, the average fiber diameter may be 10 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, 2 μm or less, or even 1 μm or less.
<無機系硬化体> 
 本実施形態の無機系硬化体は、上記で説明したガラス繊維を含む。すなわち、本実施形態の無機系硬化体は、ガラス繊維によって補強されている。無機系硬化体は、例えば、セメント、モルタル、コンクリート、ケイ酸カルシウム板、石膏である。ただし、無機系硬化体は、硬化を伴う製法によって製造されうるものであれば、上記以外であってもよい。硬化は、例えば、原料に水を加えて調製したスラリーを混錬することにより、或いはオートクレーブを用いて実施される。無機系硬化体は、ガラス繊維を除く残余が無機物を主成分とする限り、有機物を含んでいてもよい。
<Inorganic cured body>
The inorganic cured body of this embodiment includes the glass fibers described above. That is, the inorganic cured body of this embodiment is reinforced with glass fiber. Examples of the inorganic hardened material include cement, mortar, concrete, calcium silicate board, and plaster. However, the inorganic cured product may be other than those mentioned above as long as it can be manufactured by a manufacturing method that involves curing. Curing is carried out, for example, by kneading a slurry prepared by adding water to raw materials or using an autoclave. The inorganic cured product may contain an organic substance as long as the remainder excluding the glass fibers is mainly composed of an inorganic substance.
 以下、実施例および比較例を挙げて本発明の実施形態をさらに具体的に説明する。
 (実施例および比較例)
 表1~4に示した組成となるように、珪砂等の通常のガラス原料を調合し、実施例および比較例毎にガラス原料のバッチを作製した。電気炉を用いて、各バッチを1500~1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス(ガラス溶融物)の一部を鉄板上に流し出し、電気炉中で室温まで徐冷し、バルクとしてのガラス組成物(板状物、ガラス試料)を得た。
Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example and comparative example)
Ordinary glass raw materials such as silica sand were prepared to have the compositions shown in Tables 1 to 4, and batches of glass raw materials were prepared for each of Examples and Comparative Examples. Using an electric furnace, each batch was heated to 1500-1600° C. to melt it and maintained there for about 4 hours until the composition became uniform. Thereafter, a part of the molten glass (glass melt) was poured out onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a bulk glass composition (plate-like material, glass sample).
 特性の評価法を以下に説明する。
 (作業温度)
 得られたガラス組成物について、通常の白金球引き上げ法により粘度と温度との関係を調べ、その結果から作業温度を求めた。ここで、白金球引き上げ法とは、溶融ガラス中に白金球を浸し、その白金球を等速運動で引き上げる際の負荷荷重(抵抗)と、白金球に働く重力および浮力などとの関係を、微小の粒子が流体中を沈降する際の粘度と落下速度との関係を示したストークス(Stokes)の法則にあてはめることにより、粘度を測定する方法である。
The method for evaluating the characteristics will be explained below.
(Working temperature)
Regarding the obtained glass composition, the relationship between viscosity and temperature was investigated by the usual platinum ball pulling method, and the working temperature was determined from the results. Here, the platinum ball pulling method refers to the relationship between the load (resistance) applied when a platinum ball is immersed in molten glass and pulled up with uniform motion, and the gravity and buoyancy force acting on the platinum ball. This is a method of measuring viscosity by applying Stokes' law, which describes the relationship between viscosity and falling speed when minute particles settle in a fluid.
 (失透温度)
 粒子径1.0~2.8mmの大きさに粉砕したガラス組成物を白金ボートに入れ、温度勾配(800~1400℃)を設けた電気炉中で2時間保持し、結晶の出現した位置に対応する電気炉の最高温度から失透温度を求めた。ガラスが白濁して結晶が観察できない場合は、白濁の出現した位置に対応する電気炉の最高温度を失透温度とした。ここで、粒子径は、ふるい分け法により測定された値である。なお、電気炉内の場所に応じて異なる温度(電気炉内の温度分布)は、予め測定されており、電気炉内の所定の場所に置かれたガラス組成物は、予め測定された、当該所定の場所の温度で加熱される。温度差ΔTは、作業温度から失透温度を差し引いた温度差である。
(devitrification temperature)
A glass composition pulverized to a particle size of 1.0 to 2.8 mm was placed in a platinum boat, held in an electric furnace with a temperature gradient (800 to 1400°C) for 2 hours, and placed at the position where crystals appeared. The devitrification temperature was determined from the maximum temperature of the corresponding electric furnace. When the glass became cloudy and crystals could not be observed, the maximum temperature of the electric furnace corresponding to the position where the cloudiness appeared was taken as the devitrification temperature. Here, the particle size is a value measured by a sieving method. Note that the temperature (temperature distribution in the electric furnace) that varies depending on the location in the electric furnace is measured in advance, and the glass composition placed at a predetermined location in the electric furnace is Heated at a given location temperature. The temperature difference ΔT is the temperature difference obtained by subtracting the devitrification temperature from the working temperature.
 (ヤング率)
 ヤング率Eは、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度vlと横波速度vtを測定し、別にアルキメデス法により測定したガラスの密度ρから、E=3ρ・vt 2・(vl 2-4/3・vt 2)/(vl 2-vt 2)の式により求めた。
(Young's modulus)
The Young's modulus E is determined by measuring the longitudinal wave velocity vl and shear wave velocity vt of elastic waves propagating in the glass using the ordinary ultrasonic method, and from the glass density ρ measured separately using the Archimedes method, E=3ρ・v t It was determined using the formula 2. (v l 2 -4/3.v t 2 )/(v l 2 -v t 2 ).
 (引張弾性率)
 得られたガラス組成物(バルク)を用いてガラス単繊維(フィラメント)を作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを用いて、直径が15μmであるガラス単繊維を作製した。得られたガラス繊維について、引張弾性率を日本産業規格(JIS)の「炭素繊維-単繊維の引張特性の試験方法 R7606:2000」に準拠した方法により測定した。
(Tensile modulus)
Glass single fibers (filaments) were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 μm was produced. The tensile modulus of the obtained glass fiber was measured in accordance with the Japanese Industrial Standards (JIS) "Testing method for tensile properties of carbon fibers - monofilament R7606:2000".
 (化学的耐久性)
・耐酸性
 直径15μmのガラス単繊維を長さ20mmに切断し、ガラスの比重と同じグラム数量り取り、このガラス繊維を80℃、10質量%の硫酸水溶液100mLに24時間浸漬した場合の質量減少率を求め、この質量減少率をΔW1とした。
・耐アルカリ性
 直径15μmのガラス単繊維を長さ20mmに切断し、ガラスの比重と同じグラム数量り取り、このガラス繊維を80℃、10質量%の水酸化ナトリウム水溶液100mLに24時間浸漬した場合の質量減少率を求め、この質量減少率をΔW2とした。
 なお、上記質量減少率は、浸漬前の質量をWa、浸漬後の質量をWbとして、以下の式に基づいて算出した。
 質量減少率(%)={(Wa-Wb)/Wa}×100
(chemical durability)
- Acid resistance: Cut a single glass fiber with a diameter of 15 μm into a length of 20 mm, weigh out the same number of grams as the specific gravity of the glass, and immerse this glass fiber in 100 mL of a 10 mass % sulfuric acid aqueous solution at 80°C for 24 hours. Loss in mass The mass reduction rate was determined as ΔW 1 .
・Alkali resistance When a single glass fiber with a diameter of 15 μm is cut into a length of 20 mm, a weight in grams equal to the specific gravity of the glass is taken out, and this glass fiber is immersed in 100 mL of a 10% by mass sodium hydroxide aqueous solution at 80°C for 24 hours. The mass reduction rate was determined, and this mass reduction rate was defined as ΔW 2 .
The mass reduction rate was calculated based on the following formula, where Wa is the mass before immersion and Wb is the mass after immersion.
Mass reduction rate (%) = {(Wa-Wb)/Wa}×100
 これらの測定結果を表1~4に示した。なお、表中のガラス組成は、すべて質量%で表示した値である。 The results of these measurements are shown in Tables 1 to 4. In addition, all the glass compositions in the table are values expressed in mass %.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~41からは、ヤング率88~95GPa、引張弾性率76~87GPa、作業温度1210~1283℃、ΔT(作業温度-失透温度)4~78℃、ΔW10.26~3.48質量%、ΔW21.66~5.35質量%の結果が得られた。 From Examples 1 to 41, Young's modulus is 88 to 95 GPa, tensile modulus is 76 to 87 GPa, working temperature is 1210 to 1283°C, ΔT (working temperature - devitrification temperature) is 4 to 78°C, and ΔW 1 is 0.26 to 3. Results of 48% by mass and ΔW 2 of 1.66 to 5.35% by mass were obtained.
 比較例1のガラス組成物はEガラス組成を有する。Eガラスは、耐酸性(ΔW1)に劣り、ヤング率および引張弾性率においてもやや劣る。比較例2のガラス組成物はARガラス(耐アルカリ性ガラス)組成を有する。ARガラスは、多量のZrO2を要することから原料コストが高く、かつ作業温度も高く、そうであるのにヤング率および引張弾性率において実施例を上回る結果が得られなかった。
 
The glass composition of Comparative Example 1 has an E glass composition. E glass has poor acid resistance (ΔW 1 ) and is also slightly inferior in Young's modulus and tensile modulus. The glass composition of Comparative Example 2 has an AR glass (alkali-resistant glass) composition. Since AR glass requires a large amount of ZrO 2 , the raw material cost is high and the working temperature is also high.However, results superior to those of the Examples in terms of Young's modulus and tensile modulus could not be obtained.

Claims (14)

  1.  無機系硬化体用ガラス繊維であって、
     質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
      10≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦ZrO2≦7、
     の成分を含有するガラス組成物を含む、ガラス繊維。
    A glass fiber for an inorganic cured product,
    Displayed in mass%,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    10≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦ZrO 2 ≦7,
    A glass fiber comprising a glass composition containing the following components.
  2.  前記ガラス組成物が、質量%で表示して、0≦T-Fe23≦5、の成分を含有する、請求項1に記載のガラス繊維。
     ただし、T-Fe23は、Fe23に換算した全酸化鉄である。
    The glass fiber according to claim 1, wherein the glass composition contains a component of 0≦T-Fe 2 O 3 ≦5 expressed in mass %.
    However, T-Fe 2 O 3 is total iron oxide converted to Fe 2 O 3 .
  3.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
       1≦MgO≦10、
      15≦CaO≦30、
       0≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有し、アルカリ金属酸化物を実質的に含有しない、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    1≦MgO≦10,
    15≦CaO≦30,
    0≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, which contains the following components and is substantially free of alkali metal oxides.
  4.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
       1≦MgO≦10、
      15≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    1≦MgO≦10,
    15≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  5.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
      5≦Al23≦14、
      10≦CaO≦30、
       1≦SrO≦20、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    10≦CaO≦30,
    1≦SrO≦20,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  6.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
      10≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
     0.1≦TiO2≦10、
       0≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    10≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0.1≦ TiO2 ≦10,
    0≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  7.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
      10≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
     0.1≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有し、TiO2を実質的に含有しない、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    10≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0.1≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, which contains the following components and substantially does not contain TiO2 .
  8.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
       0≦B23<2、
       5≦Al23≦14、
      10≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
     0.1≦TiO2≦10、
       0≦T-Fe23≦5、
     の成分を含有し、ZrO2を実質的に含有しない、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    10≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0.1≦ TiO2 ≦10,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2 , which contains the following components and substantially does not contain ZrO2.
  9.  前記ガラス組成物が、B23を実質的に含有しない、請求項1~8のいずれか1項に記載のガラス繊維。 Glass fiber according to any one of claims 1 to 8, wherein the glass composition is substantially free of B 2 O 3 .
  10.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦65、
     0.1≦B23<2、
       5≦Al23≦14、
     0.1≦MgO≦10、
      15≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦ZrO2≦7、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦65,
    0.1≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦14,
    0.1≦MgO≦10,
    15≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦ZrO 2 ≦7,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  11.  前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度が1290℃以下である、請求項1~10のいずれか1項に記載のガラス繊維。 The glass fiber according to any one of claims 1 to 10, wherein the working temperature is 1290°C or less when the working temperature is the temperature when the viscosity of the glass composition is 1000 dPa·sec.
  12.  前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度から失透温度を差し引いた温度差ΔTが0℃以上である、請求項1~11のいずれか1項に記載のガラス繊維。 Any one of claims 1 to 11, wherein the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature is 0° C. or more, when the working temperature is the temperature when the viscosity of the glass composition is 1000 dPa sec. Glass fiber according to item 1.
  13.  前記ガラス組成物のヤング率が85~100GPaである、請求項1~12のいずれか1項に記載のガラス繊維。 The glass fiber according to any one of claims 1 to 12, wherein the glass composition has a Young's modulus of 85 to 100 GPa.
  14.  請求項1~13のいずれか1項に記載のガラス繊維を含む無機系硬化体。
     
     
    An inorganic cured product comprising the glass fiber according to any one of claims 1 to 13.

PCT/JP2023/013381 2022-03-30 2023-03-30 Glass fiber WO2023190980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-057489 2022-03-30
JP2022057489 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190980A1 true WO2023190980A1 (en) 2023-10-05

Family

ID=88202167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013381 WO2023190980A1 (en) 2022-03-30 2023-03-30 Glass fiber

Country Status (2)

Country Link
TW (1) TW202402702A (en)
WO (1) WO2023190980A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247684A (en) * 1999-03-03 2000-09-12 Nippon Sheet Glass Co Ltd Glass fiber
JP2003500330A (en) * 1999-05-28 2003-01-07 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber composition
JP2020504067A (en) * 2018-06-22 2020-02-06 ジュシ グループ カンパニー リミテッド Glass fiber composition, glass fiber thereof, and composite material
WO2020230550A1 (en) * 2019-05-10 2020-11-19 日本電気硝子株式会社 Glass composition for glass fibers
CN114014601A (en) * 2021-12-06 2022-02-08 深圳市纳路特建材科技有限公司 Alkali-resistant heat-insulating cement mortar and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247684A (en) * 1999-03-03 2000-09-12 Nippon Sheet Glass Co Ltd Glass fiber
JP2003500330A (en) * 1999-05-28 2003-01-07 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber composition
JP2020504067A (en) * 2018-06-22 2020-02-06 ジュシ グループ カンパニー リミテッド Glass fiber composition, glass fiber thereof, and composite material
WO2020230550A1 (en) * 2019-05-10 2020-11-19 日本電気硝子株式会社 Glass composition for glass fibers
CN114014601A (en) * 2021-12-06 2022-02-08 深圳市纳路特建材科技有限公司 Alkali-resistant heat-insulating cement mortar and preparation method thereof

Also Published As

Publication number Publication date
TW202402702A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CN102482142B (en) What improve modulus does not contain lithium glass
JP6202318B2 (en) Glass composition for glass fiber, glass fiber and method for producing glass fiber
EP3887329B1 (en) High performance fiberglass composition with improved elastic modulus
KR20110097974A (en) Composition for high performance glass fibers and fibers formed therewith
JP2000247683A (en) Corrosion resistant glass fiber
KR20210096138A (en) High-performance fiber glass composition with improved specific modulus
CN109982982B (en) Glass composition for glass fiber, and method for producing glass fiber
WO2016093212A1 (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
CN111433166B (en) Glass fiber and method for producing same
WO2023190980A1 (en) Glass fiber
JP5964219B2 (en) Glass filler
JP2013159546A (en) Glass filler
JP2023510200A (en) Fiberglass composition for higher modulus
JP2024007454A (en) glass composition
JP7235928B1 (en) Glass fibers and compositions for glass fibers
WO2023190982A1 (en) Glass fibers
JPH06157072A (en) Corrosion resistant glass fiber
JP7235915B1 (en) Glass fibers and compositions for glass fibers
JP7480142B2 (en) High performance glass fiber composition having improved specific modulus
WO2023190981A1 (en) Glass product for resin composite materials
WO2023106048A1 (en) Glass fibers, method for manufacturing glass fibers, and glass
WO2023190983A1 (en) Glass fiber
KR810000741B1 (en) Alkali resistant glass fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780988

Country of ref document: EP

Kind code of ref document: A1