WO2016093212A1 - Glass composition for glass fiber, glass fiber, and method for producing glass fiber - Google Patents

Glass composition for glass fiber, glass fiber, and method for producing glass fiber Download PDF

Info

Publication number
WO2016093212A1
WO2016093212A1 PCT/JP2015/084359 JP2015084359W WO2016093212A1 WO 2016093212 A1 WO2016093212 A1 WO 2016093212A1 JP 2015084359 W JP2015084359 W JP 2015084359W WO 2016093212 A1 WO2016093212 A1 WO 2016093212A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass fiber
composition
temperature
glass composition
Prior art date
Application number
PCT/JP2015/084359
Other languages
French (fr)
Japanese (ja)
Inventor
拡志 澤里
長壽 研
晋作 西田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2016563676A priority Critical patent/JPWO2016093212A1/en
Publication of WO2016093212A1 publication Critical patent/WO2016093212A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass

Definitions

  • the present invention relates to a glass composition for glass fibers having excellent corrosion resistance.
  • a glass composition for glass fiber that is suitable as a reinforcing material such as calcium silicate board and GRC (glass fiber reinforced concrete), and as a material that requires corrosion resistance such as a battery separator and an asbestos substitute, and has excellent productivity. It is.
  • This glass fiber is also used as a corrosion-resistant material for reinforcing materials for calcium silicate plates and battery separators.
  • GRC is a building that is molded into a plate shape by spraying a mixture of glass fiber cut to a predetermined length and cement, aggregate, admixture, water, etc. into the mold using a spray gun or the like. It is a structural material for use. Glass fibers used for GRC are required to have sufficient strength even in decades in concrete.
  • the glass fiber as described above is obtained by continuously molding and spinning molten glass using a noble metal bushing device to obtain a fiber shape.
  • the bushing structure has a container shape for retaining molten glass, and a number of nozzles are arranged in the vertical direction at the bottom.
  • Glass fiber is molded by drawing molten glass adjusted to a temperature in the vicinity of the spinning temperature (the temperature at which the viscosity of the glass is approximately 10 3 dPa ⁇ s, also called the molding temperature) from the nozzle at the bottom of the bushing. .
  • Patent Document 2 reduces the ZrO 2 content and contains a certain amount of TiO 2 and K 2 O, thereby achieving a spinning temperature of 1280 ° C. or lower and a difference between the liquid phase temperature and the spinning temperature of 80 ° C. or higher.
  • the glass composition made public. However, considering continuous production in a glass melting kiln, it is preferable that there is little change in devitrification (difference between liquidus temperature and spinning temperature) even if the glass composition changes somewhat. However, the glass composition disclosed in Patent Document 2 does not consider such a point.
  • the present invention has been made in view of the above circumstances, and since the difference between the spinning temperature and the liquidus temperature of the glass is large, the productivity is good and the devitrification property is not easily changed by a composition change.
  • the object is to provide a glass composition.
  • the glass composition for glass fibers of the present invention has a glass composition in terms of oxide mass%, SiO 2 50 to 65%, Al 2 O 3 0 to 5%, CaO 0.3 to 10%, Na 2 O 10-20%, K 2 O 0.6-5%, TiO 2 7.3-10%, ZrO 2 17-20%.
  • the glass composition for glass fiber is excellent in alkali resistance, has a glass spinning temperature and a liquidus temperature of 100 ° C. or higher, and devitrification hardly changes due to a composition change. Can do.
  • Li 2 O 0 to 0.2% by mass% in terms of oxide it is preferable to contain Li 2 O 0 to 0.2% by mass% in terms of oxide.
  • Na 2 O + K 2 O is preferably 10 to 20%.
  • Na 2 O + K 2 O means the total content of Na 2 O and K 2 O.
  • the viscosity of glass can be reduced and the glass composition for glass fibers excellent in the meltability and a moldability can be obtained.
  • the spinning temperature is preferably 1280 ° C. or lower.
  • the “spinning temperature” means a temperature at which the glass has a viscosity of 10 3 dPa ⁇ s.
  • fiberization can be performed at a low temperature, so that the service life of fiberization equipment such as bushings can be extended, and the production cost can be reduced.
  • the difference between the spinning temperature and the liquidus temperature is preferably 105 ° C. or higher.
  • the weight reduction rate of the glass is 3% or less. Preferably there is.
  • the glass has a weight reduction rate of 3% or less when immersed in 100 ml of a 10% by weight HCl aqueous solution at 80 ° C. for 16 hours in a glass having a specific gravity of 2 weight classified to a particle size of 300 to 500 ⁇ m. Preferably there is.
  • the glass fiber of the present invention is characterized by comprising the above glass fiber glass composition.
  • the method for producing glass fibers of the present invention has a glass composition of mass% in terms of oxide, 50 to 65% SiO 2 , 0 to 5% Al 2 O 3 , 0.3 to 10% CaO, and Na 2 O 10
  • a raw material batch prepared so as to be a glass containing -20%, K 2 O 0.6-5%, TiO 2 7.3-10%, ZrO 2 17-20% is melted in a glass melting furnace and melted. Glass is continuously drawn from the bushing and formed into a fiber shape.
  • SiO 2 is a main component that forms a glass skeleton structure. Moreover, it is a component which improves the acid resistance of glass.
  • the content of SiO 2 is 50 to 65%, preferably 55 to 60%, more preferably 57 to 60%. When the content of SiO 2 is too small, the mechanical strength of the glass tends to decrease. Moreover, the acid resistance of glass falls. When the content of SiO 2 is too large, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased. Moreover, the alkali resistance of glass falls.
  • Al 2 O 3 is a component that increases the chemical durability and mechanical strength of glass.
  • Al 2 O 3 is also a component that increases the viscosity of the glass.
  • the content of Al 2 O 3 is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%. Al viscosity of the glass when the content is too large the 2 O 3 becomes energy increases required for melting the glass is high.
  • CaO is a component that lowers the viscosity of the glass.
  • the CaO content is 0.3 to 10%, preferably 0.3 to 5%, more preferably 0.3 to 4%, and still more preferably 0.3 to 3%. If the content of CaO is too small, it is difficult to obtain the above effect. If the content of CaO is too large, crystals composed of Zr, Si, Na, and Ca are likely to precipitate in the glass, the liquidus temperature of the glass is increased, and the difference between the spinning temperature and the liquidus temperature is reduced, resulting in productivity. Decreases.
  • Na 2 O and K 2 O which are alkali metal oxides, are components that lower the viscosity of the glass and increase the meltability and moldability.
  • the alkali metal oxide is a component that reduces the water resistance of the glass if contained in a large amount.
  • the total content of Na 2 O and K 2 O (Na 2 O + K 2 O) is 10 to 20%, preferably 10 to 18%, more preferably 12 to 18%, still more preferably 16.1 to 17%. It is.
  • Na 2 O + K 2 the amount of O is too small, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased.
  • Na 2 O + K 2 the amount of O is too large, the water resistance of the glass decreases.
  • Na 2 O is a component that increases the meltability and moldability of glass by reducing the viscosity of the glass.
  • the content of Na 2 O is 10 to 20%, preferably 10 to 18%, more preferably 12 to 18%, and most preferably 12 to 15.6%.
  • the Na 2 O content is too small, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased.
  • the content of Na 2 O is too large high liquidus temperature of the glass, the difference between the spinning temperature and the liquidus temperature becomes productivity is reduced smaller. Moreover, the water resistance of the glass decreases.
  • K 2 O is a component that improves the meltability and moldability of the glass by reducing the viscosity of the glass. In addition, it has a function of lowering the liquidus temperature, and has a great effect of reducing fluctuations in devitrification due to composition changes.
  • the content of K 2 O is 0.6 to 5%, preferably 0.6 to 3%, more preferably 0.6 to 2%, still more preferably 0.8 to 2%, and most preferably 1.0 to 2.0%. If the content of K 2 O is too small, devitrification changes rapidly due to a composition change, which is not preferable. When the content of K 2 O is too large water resistance of glass decreases.
  • the batch raw material easily absorbs moisture, and an aggregate (so-called “dama”) of the raw material powder is easily formed. If aggregates of the raw material powder are formed, the solubility of the batch raw material deteriorates, and undissolved zirconia tends to remain in the product glass, which is not preferable.
  • the glass composition for glass fiber of the present invention may contain Li 2 O.
  • Li 2 O is a component that significantly lowers the liquidus temperature by adding a small amount, increases the difference between the spinning temperature and the liquidus temperature, and improves the productivity.
  • the content of Li 2 O is preferably 0 to 0.2%.
  • Li 2 O has a high raw material cost, if the content of Li 2 O is too large, the manufacturing cost increases.
  • Li 2 O lithium material can not be secured required for production and the content is too much, there is a concern that is necessary measures such as reducing the production.
  • Li 2 O it is preferred not to contain Li 2 O.
  • “not containing Li 2 O” means that Li 2 O is not actively contained as a glass composition, and does not exclude inevitable impurities. More specifically, it means that the content including impurities is 0.01% by mass or less. Employing the above configuration makes it easy to avoid problems such as anxiety of raw material supply and soaring raw material costs.
  • TiO 2 is a component that improves the water resistance and alkali resistance of glass, lowers the spinning temperature, and greatly reduces the liquidus temperature.
  • the content of TiO 2 is 7.3 to 10%, preferably 7.3 to 8.5%, more preferably 7.3 to 8.0%.
  • the content of TiO 2 is too small, water resistance and alkali resistance of the glass decreases.
  • the spinning temperature rises and the production cost increases.
  • the content of TiO 2 is too large, the liquidus temperature becomes easier crystals precipitated comprising TiO 2 rises dramatically in the glass. As a result, the difference between the spinning temperature and the liquidus temperature is reduced and the productivity is lowered.
  • ZrO 2 is a component that improves the alkali resistance, acid resistance, and water resistance of the glass.
  • the content of ZrO 2 is 17 to 20%, preferably 17.2 to 20%, more preferably 17.2 to 19.5%, still more preferably 17.2 to 18.5%, most preferably 17.5. ⁇ 18.0%.
  • the content of ZrO 2 is too small, the alkali resistance is decreased, can not be realized and the durability required for GRC.
  • the content of ZrO 2 is too large, the liquidus temperature of the glass becomes high, the difference between the spinning temperature and the liquidus temperature becomes small, and the productivity is lowered.
  • the glass composition for glass fiber of the present invention does not contain Li 2 O in terms of composition design.
  • the glass composition for glass fiber of the present invention may comprise the above-mentioned component (SiO 2, Al 2 O 3 , CaO, Na 2 O, K 2 O, TiO 2 and ZrO 2) other than the component.
  • SiO 2, Al 2 O 3 , CaO, Na 2 O, K 2 O, TiO 2 and ZrO 2 other than the component.
  • the reason for this is that when the total amount of these components is less than 98%, the alkali resistance, acid resistance, and water resistance are lowered due to unintentional mixing of different components, and the product characteristics are lowered, and the spinning temperature and liquid phase are decreased. Inconveniences such as a decrease in temperature and a decrease in productivity are likely to occur.
  • trace components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be contained up to 0.1%.
  • noble metal elements such as Pt, Rh, Au, to 500 ppm in glass.
  • B 2 O 3 , MgO, SrO, BaO, ZnO, Fe 2 O 3 , P 2 O 5 , Cr 2 O 3 , Sb 2 O 3 , SO 3 , MnO, SnO 2 , CeO 2 , Cl 2 , La 2 O 3 , WO 3 , Nb 2 O 5 , Y 2 O 3 and the like may be contained up to 2% in total.
  • the glass composition for glass fiber of the present invention is a glass weight reduction when a specific gravity ⁇ 2 weight glass classified to a particle size of 300 to 500 ⁇ m is immersed in 100 ml of 10% by weight NaOH aqueous solution at 80 ° C. for 16 hours.
  • the rate is preferably 3% or less, particularly 1% or less, and more preferably 0.8% or less.
  • the weight reduction rate of the glass by this alkali resistance test is higher than 3%, the alkali resistance of the glass is lowered, and the reliability as a reinforcing material of a composite material such as a calcium silicate plate or GRC is lowered.
  • the glass composition for glass fiber according to the present invention is a glass weight reduction when a glass having a specific gravity of 2 wt% classified to a particle size of 300 to 500 ⁇ m is immersed in 100 ml of a 10 mass% HCl aqueous solution at 80 ° C. for 16 hours.
  • the rate is preferably 3% or less, particularly 1% or less, and more preferably 0.5% or less.
  • the glass composition for glass fiber of the present invention preferably has an alkali elution amount of 0.40 mg or less, particularly 0.35 mg or less, more preferably 0.30 mg or less.
  • an alkali elution amount 0.40 mg or less, particularly 0.35 mg or less, more preferably 0.30 mg or less.
  • the glass composition for glass fibers of the present invention preferably has a spinning temperature of 1280 ° C or lower, particularly 1260 ° C or lower.
  • a spinning temperature of 1280 ° C or lower, particularly 1260 ° C or lower.
  • the glass composition for glass fiber of the present invention preferably has a difference between the spinning temperature and the liquidus temperature of 100 ° C. or higher, particularly 105 ° C. or higher. If the difference between the spinning temperature and the liquidus temperature is small, the productivity decreases.
  • the glass composition for glass fiber of the present invention is preferably 23 ° C. or lower when the devitrification change amount with respect to composition variation obtained by the following evaluation is evaluated.
  • the difference ( ⁇ T) between the spinning temperature and the liquidus temperature is determined.
  • the difference between the spinning temperature and the liquidus temperature is obtained.
  • ) of the difference in the difference between the spinning temperature and the liquid phase temperature before and after substitution when 0.3% by mass of K 2 O is substituted with TiO 2 0.3 of CaO
  • ) of the amount of change in the difference between the spinning temperature and the liquidus temperature before and after the substitution when the mass% is substituted with TiO 2 is determined.
  • the value having the largest amount of change is adopted, and this value is referred to as “the amount of change in devitrification with respect to composition variation”. Call it. If this value is too large, it becomes difficult to perform stable spinning in actual production.
  • MM method marble melt method
  • MM method marble melt method
  • the glass raw material is prepared so that the glass contains 7.3 to 10% of TiO 2 and 17 to 20% of ZrO 2 .
  • Glass cullet may be used for a part or all of the glass raw material. The reason why the content of each component is as described above is as described above, and the description is omitted here.
  • the melting temperature is preferably about 1400 to 1600 ° C.
  • molten glass is spun and formed into glass fibers. More specifically, molten glass is supplied to the bushing. The molten glass supplied to the bushing is continuously drawn out in filament form from a number of bushing nozzles provided on the bottom surface. Various processing agents are applied to the monofilaments drawn in this way, and glass fibers are obtained by focusing each monofilament.
  • the glass fiber of the present invention thus formed is processed into chopped strands, yarns, rovings, etc. and used for various purposes.
  • the chopped strand is obtained by cutting glass fibers (strands) obtained by focusing glass monofilaments into a predetermined length.
  • a yarn is a twisted strand.
  • Roving is a combination of a plurality of strands wound in a cylindrical shape.
  • Table 1 shows examples of the present invention (Sample Nos. 1 to 7), and Table 2 shows comparative examples (Sample Nos. 8 to 10).
  • various glass raw materials such as a natural raw material and a chemical raw material, were weighed and mixed so that it might become the glass composition in a table
  • this glass batch was heated in an indirect heating electric furnace at 1550 ° C. for 5 hours to obtain a molten glass.
  • the molten glass was stirred a plurality of times using a heat-resistant stirring rod during heating.
  • the molten glass obtained was poured into a refractory mold to form a plate-like glass, and then annealed in a slow cooling furnace (heated at a temperature 30 to 50 ° C. higher than the temperature at 10 13 dPa ⁇ s for 30 minutes) Then, the temperature range from the annealing point to the strain point was decreased at 1 ° C./min). About each obtained sample, alkali resistance, acid resistance, the amount of alkali elution, spinning temperature, and liquidus temperature were measured.
  • the alkali resistance was measured as follows. First, the above plate glass sample is pulverized, glass having a particle diameter of 300 to 500 ⁇ m is precisely weighed by a specific gravity ⁇ 2 weight, and then immersed in 100 ml of 10 mass% NaOH solution at 80 ° C. for 16 hours. Shake on the conditions. Thereafter, the weight reduction rate of the glass sample was measured. The smaller this value, the better the alkali resistance.
  • Acid resistance was measured as follows. First, the above plate glass sample is pulverized, and glass having a particle size of 300 to 500 ⁇ m is precisely weighed by a specific gravity ⁇ 2 weight, and then immersed in 100 ml of 10 mass% HCl solution at 80 ° C. for 16 hours. Shake on the conditions. Thereafter, the weight reduction rate of the glass sample was measured. The smaller this value, the better the acid resistance.
  • the alkali elution amount was measured by a method based on JIS R3502 (1995). The smaller this value, the better the water resistance.
  • the spinning temperature was measured as follows. First, a plate-like glass sample was crushed to an appropriate size and put into an alumina crucible so as to prevent air bubbles from being involved. Subsequently, the alumina crucible was heated to bring the sample into a molten state, and the viscosity of the glass at a plurality of temperatures was determined by a platinum ball pulling method. Thereafter, a viscosity curve was created from the obtained plurality of measured values, and the temperature at which 10 3 dPa ⁇ s was obtained was calculated by interpolation.
  • the liquid phase temperature was measured as follows. First, a plate-like glass sample was pulverized, and filled in a fire-resistant container having an appropriate bulk density in a state adjusted to have a particle size in the range of 300 to 500 ⁇ m. Subsequently, the refractory container was placed in an indirect heating type temperature gradient furnace having a maximum temperature set to 1250 ° C. and left to stand for 16 hours in an air atmosphere. Then, the test body was taken out from the temperature gradient furnace together with the refractory container, cooled to room temperature, and then the liquid phase temperature was specified by a polarizing microscope.
  • the difference between the spinning temperature and the liquidus temperature was calculated from both values.
  • the amount of change in devitrification with respect to composition variation was evaluated as follows. First SiO 2, Al 2 O 3, Na 2 O, the content of ZrO 2 is fixed to a constant value, and the measurement sample a of 0.3 mass% was replaced by K 2 O of CaO, the K 2 O 0. 3% by weight and the measurement sample b was replaced by TiO 2, were respectively prepared measurement sample c was substituted for 0.3 weight% of CaO in TiO 2. Next, for each measurement sample, the absolute value (° C.) of the amount of change in the difference between the spinning temperature and the liquid phase temperature before and after substitution was determined. Of the absolute values thus determined, the largest value was defined as the amount of change in devitrification with respect to composition variation.
  • the GRC durability was evaluated as follows. First, using a spray gun, a mixture of glass fiber and mortar was sprayed into a wooden frame and formed into a plate shape. The sample on the 14th day of the material age was immersed in warm water at 70 ° C., and the sample on the 10th day after the immersion was subjected to a three-point bending test to measure the bending strength (Modulus of rupture). The evaluation of the bending strength was conducted using sample No. The case where it became 10 or more was marked with ⁇ , and the others were marked with ⁇ .
  • the glass fiber produced by using the glass composition for glass fiber of the present invention is suitable as a corrosion resistant material such as a reinforcing material for a calcium silicate plate and a battery separator.

Landscapes

  • Glass Compositions (AREA)

Abstract

Provided is an alkali-resistant glass composition for a glass fiber, said composition having good productivity since the difference between the spinning temperature and liquid phase temperature of the glass is large, and having devitrification properties that do not easily change due to compositional variation. The present invention is characterized by containing, as a glass composition, by mass% in terms of oxides, 50-65% of SiO2, 0-5% of Al2O3, 0.3-10% of CaO, 10-20% of Na2O, 0.6-5% of K2O, 7.3-10% of TiO2, and 17-20% of ZrO2.

Description

ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法Glass composition for glass fiber, glass fiber and method for producing glass fiber
 本発明は、耐食性に優れたガラス繊維用ガラス組成物に関する。特にケイ酸カルシウム板やGRC(ガラス繊維強化コンクリート)等の補強材として、またバッテリーセパレータやアスベスト代替品等の耐食性が要求される材料として適し、生産性に優れたガラス繊維用ガラス組成物に関するものである。 The present invention relates to a glass composition for glass fibers having excellent corrosion resistance. In particular, it relates to a glass composition for glass fiber that is suitable as a reinforcing material such as calcium silicate board and GRC (glass fiber reinforced concrete), and as a material that requires corrosion resistance such as a battery separator and an asbestos substitute, and has excellent productivity. It is.
 従来、GRCの補強材としては、特許文献1に記載されているようなSiO-ZrO-RO(RはLi、Na、K)系のZrO含有耐アルカリ性ガラス繊維が使用されている。 Conventionally, as a reinforcing material for GRC, a SiO 2 —ZrO 2 —R 2 O (R is Li, Na, K) -based ZrO 2 -containing alkali-resistant glass fiber as described in Patent Document 1 has been used. Yes.
 またこのガラス繊維は、ケイ酸カルシウム板の補強材やバッテリーセパレータ等の耐食性材料としても使用されている。 This glass fiber is also used as a corrosion-resistant material for reinforcing materials for calcium silicate plates and battery separators.
 GRCは、所定の長さに切断されたガラス繊維と、セメント、骨材、混和剤、水等の混合物を型枠内にスプレーガンなどを使用して吹き付けることによって、板状に成形される建築用の構造材である。GRCに使用されるガラス繊維は、コンクリート中で何十年経過しても信頼性に足る強度を保持できる事が求められる。 GRC is a building that is molded into a plate shape by spraying a mixture of glass fiber cut to a predetermined length and cement, aggregate, admixture, water, etc. into the mold using a spray gun or the like. It is a structural material for use. Glass fibers used for GRC are required to have sufficient strength even in decades in concrete.
 前述のようなガラス繊維は、例えば、貴金属製のブッシング装置を使用して、溶融ガラスを連続的に成形、紡糸し、繊維形状にしたものである。尚、ブッシングの構造は、溶融ガラスを滞留させるために容器形状を有しており、その底部には鉛直方向に多数のノズルが配設されている。ガラス繊維は、紡糸温度(ガラスの粘度が約10dPa・sとなる温度、成形温度とも呼ばれる)付近の温度に調整された溶融ガラスをブッシング底部のノズルから繊維状に引き出すことで成形される。 The glass fiber as described above, for example, is obtained by continuously molding and spinning molten glass using a noble metal bushing device to obtain a fiber shape. The bushing structure has a container shape for retaining molten glass, and a number of nozzles are arranged in the vertical direction at the bottom. Glass fiber is molded by drawing molten glass adjusted to a temperature in the vicinity of the spinning temperature (the temperature at which the viscosity of the glass is approximately 10 3 dPa · s, also called the molding temperature) from the nozzle at the bottom of the bushing. .
特公昭49-40126号公報Japanese Patent Publication No.49-40126 WO2014/065321号公報WO2014 / 065321
 耐アルカリ性向上の観点からは、特許文献1に記載されているように、ガラス組成中にZrOを多量に含有させることが有効であるが、ZrOを多量に含有させるとガラスの紡糸温度が高くなってしまう。ガラスの紡糸温度が高いと、高温でのガラス溶融を必要とするため貴金属製のブッシング装置の損傷が激しくなり、交換頻度が高くなって生産コストが高くなる。またZrOを多量に含有させると液相温度が上昇し、紡糸温度と液相温度の差が小さくなり易い。紡糸温度と液相温度の差が小さいと、ブッシング底部のノズルにおいてガラスが失透しやすくなり、連続生産が難しいという問題がある。 From the viewpoint of improving alkali resistance, as described in Patent Document 1, it is effective to contain a large amount of ZrO 2 in the glass composition. However, if a large amount of ZrO 2 is contained, the spinning temperature of the glass is reduced. It will be high. When the spinning temperature of glass is high, glass melting at a high temperature is required, so that the noble metal bushing device is severely damaged, and the replacement frequency increases, resulting in an increase in production cost. Further, when ZrO 2 is contained in a large amount, the liquidus temperature rises and the difference between the spinning temperature and the liquidus temperature tends to be small. When the difference between the spinning temperature and the liquidus temperature is small, there is a problem that the glass tends to be devitrified at the nozzle at the bottom of the bushing and continuous production is difficult.
 特許文献2にはZrOの含有量を低減させ、一定量のTiO、KOを含有することによって、紡糸温度が1280℃以下、液相温度と紡糸温度の差が80℃以上を達成したガラス組成が公開されている。しかしながら、ガラス溶融窯において連続生産を行うことを考えるとガラス組成が多少変化しても失透性(液相温度と紡糸温度の差)の変化が少ない方が好ましい。しかし、特許文献2に開示されているガラス組成はこのような点が考慮されていない。 Patent Document 2 reduces the ZrO 2 content and contains a certain amount of TiO 2 and K 2 O, thereby achieving a spinning temperature of 1280 ° C. or lower and a difference between the liquid phase temperature and the spinning temperature of 80 ° C. or higher. The glass composition made public. However, considering continuous production in a glass melting kiln, it is preferable that there is little change in devitrification (difference between liquidus temperature and spinning temperature) even if the glass composition changes somewhat. However, the glass composition disclosed in Patent Document 2 does not consider such a point.
 本発明は、上記事情に鑑みなされたものであり、ガラスの紡糸温度と液相温度の差が大きいために生産性がよく、しかも組成変化によって失透性が変化しにくい耐アルカリ性のガラス繊維用ガラス組成物を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and since the difference between the spinning temperature and the liquidus temperature of the glass is large, the productivity is good and the devitrification property is not easily changed by a composition change. The object is to provide a glass composition.
 本発明者等は鋭意検討の結果、ガラス組成を厳密に規定することによって、上記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have found that the above problems can be solved by strictly defining the glass composition, and propose the present invention.
 即ち、本発明のガラス繊維用ガラス組成物は、ガラス組成として、酸化物換算の質量%で、SiO 50~65%、Al 0~5%、CaO 0.3~10%、NaO 10~20%、KO 0.6~5%、TiO 7.3~10%、ZrO 17~20%を含有することを特徴とする。 That is, the glass composition for glass fibers of the present invention has a glass composition in terms of oxide mass%, SiO 2 50 to 65%, Al 2 O 3 0 to 5%, CaO 0.3 to 10%, Na 2 O 10-20%, K 2 O 0.6-5%, TiO 2 7.3-10%, ZrO 2 17-20%.
 上記構成を有することにより、耐アルカリ性に優れており、またガラスの紡糸温度と液相温度が100℃以上であり、しかも組成変化によって失透性が変化しにくいガラス繊維用ガラス組成物とすることができる。 By having the above-mentioned configuration, the glass composition for glass fiber is excellent in alkali resistance, has a glass spinning temperature and a liquidus temperature of 100 ° C. or higher, and devitrification hardly changes due to a composition change. Can do.
 本発明においては、酸化物換算の質量%でLiO 0~0.2%を含有することが好ましい。 In the present invention, it is preferable to contain Li 2 O 0 to 0.2% by mass% in terms of oxide.
 本発明においては、NaO+KOが10~20%となることが好ましい。ここで「NaO+KO」は、NaO及びKOの含有量の合量を意味している。 In the present invention, Na 2 O + K 2 O is preferably 10 to 20%. Here, “Na 2 O + K 2 O” means the total content of Na 2 O and K 2 O.
 上記構成を採用すれば、ガラスの粘度を低下させることができ、溶融性や成形性に優れたガラス繊維用ガラス組成物を得ることができる。 If the said structure is employ | adopted, the viscosity of glass can be reduced and the glass composition for glass fibers excellent in the meltability and a moldability can be obtained.
 本発明においては、紡糸温度が1280℃以下であることが好ましい。本発明において「紡糸温度」とは、ガラスの粘度が10dPa・sとなる温度を意味する。 In the present invention, the spinning temperature is preferably 1280 ° C. or lower. In the present invention, the “spinning temperature” means a temperature at which the glass has a viscosity of 10 3 dPa · s.
 上記構成を採用すれば、低温で繊維化できるようになることから、ブッシング等の繊維化設備の長寿命化が図れ、生産コストを低減することができる。 If the above configuration is adopted, fiberization can be performed at a low temperature, so that the service life of fiberization equipment such as bushings can be extended, and the production cost can be reduced.
 本発明においては、紡糸温度と液相温度の差が105℃以上であることが好ましい。 In the present invention, the difference between the spinning temperature and the liquidus temperature is preferably 105 ° C. or higher.
 上記構成を採用すれば、紡糸が容易になることから、生産性に優れたガラス繊維用ガラス組成物を効果的に得ることができる。 If the above configuration is adopted, spinning becomes easy, and thus a glass composition for glass fiber excellent in productivity can be effectively obtained.
 本発明においては、300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のNaOH水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下であることが好ましい。 In the present invention, when the glass having a specific gravity of 2 weights classified to a particle size of 300 to 500 μm is immersed in 100 ml of 10% by weight NaOH aqueous solution at 80 ° C. for 16 hours, the weight reduction rate of the glass is 3% or less. Preferably there is.
 上記構成を採用すれば、ケイ酸カルシウム板やGRC等の複合材料の補強材として信頼性の高いガラス繊維を得ることが容易になる。 If the above configuration is adopted, it becomes easy to obtain a highly reliable glass fiber as a reinforcing material for a composite material such as a calcium silicate plate or GRC.
 本発明においては、300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のHCl水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下であることが好ましい。 In the present invention, the glass has a weight reduction rate of 3% or less when immersed in 100 ml of a 10% by weight HCl aqueous solution at 80 ° C. for 16 hours in a glass having a specific gravity of 2 weight classified to a particle size of 300 to 500 μm. Preferably there is.
 上記構成を採用すれば、バッテリーセパレータ等の耐食性材料として信頼性が高いガラス繊維を得ることが容易になる。 If the above configuration is adopted, it becomes easy to obtain a highly reliable glass fiber as a corrosion-resistant material such as a battery separator.
 本発明のガラス繊維は、上記のガラス繊維用ガラス組成物からなることを特徴とする。 The glass fiber of the present invention is characterized by comprising the above glass fiber glass composition.
 本発明のガラス繊維の製造方法は、ガラス組成として、酸化物換算の質量%で、SiO 50~65%、Al 0~5%、CaO 0.3~10%、NaO 10~20%、KO 0.6~5%、TiO 7.3~10%、ZrO 17~20%を含有したガラスとなるように調合した原料バッチをガラス溶融炉で溶融し、溶融ガラスをブッシングから連続的に引き出して繊維状に成形することを特徴とする。 The method for producing glass fibers of the present invention has a glass composition of mass% in terms of oxide, 50 to 65% SiO 2 , 0 to 5% Al 2 O 3 , 0.3 to 10% CaO, and Na 2 O 10 A raw material batch prepared so as to be a glass containing -20%, K 2 O 0.6-5%, TiO 2 7.3-10%, ZrO 2 17-20% is melted in a glass melting furnace and melted. Glass is continuously drawn from the bushing and formed into a fiber shape.
 以下、本発明の実施形態のガラス繊維用ガラス組成物について説明する。まず、本発明のガラスを構成する成分の作用と、その含有量を上記のように規定した理由を説明する。尚、各成分の含有範囲の説明において、%表示は質量%を指す。 Hereinafter, the glass composition for glass fiber according to the embodiment of the present invention will be described. First, the effect | action of the component which comprises the glass of this invention and the reason which prescribed | regulated the content as mentioned above are demonstrated. In addition, in description of the containing range of each component,% display points out the mass%.
 SiOは、ガラス骨格構造を形成する主要成分である。また、ガラスの耐酸性を向上させる成分である。SiOの含有量は50~65%、好ましくは55~60%、より好ましくは57~60%である。SiOの含有量が少なすぎると、ガラスの機械的強度が低下し易くなる。また、ガラスの耐酸性が低下する。SiOの含有量が多すぎると、ガラスの粘度が高くなってガラスの溶融に必要なエネルギーが増大する。また貴金属製ブッシングの損傷が激しくなって交換頻度が高くなり、生産コストが高くなる。また、ガラスの耐アルカリ性が低下する。 SiO 2 is a main component that forms a glass skeleton structure. Moreover, it is a component which improves the acid resistance of glass. The content of SiO 2 is 50 to 65%, preferably 55 to 60%, more preferably 57 to 60%. When the content of SiO 2 is too small, the mechanical strength of the glass tends to decrease. Moreover, the acid resistance of glass falls. When the content of SiO 2 is too large, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased. Moreover, the alkali resistance of glass falls.
 Alは、ガラスの化学的耐久性や機械的強度を高める成分である。一方、Alは、ガラスの粘度を高める成分でもある。Alの含有量は0~5%、好ましくは0~3%、より好ましくは0~1%である。Alの含有量が多すぎるとガラスの粘度が高くなってガラスの溶融に必要なエネルギーが増大する。 Al 2 O 3 is a component that increases the chemical durability and mechanical strength of glass. On the other hand, Al 2 O 3 is also a component that increases the viscosity of the glass. The content of Al 2 O 3 is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%. Al viscosity of the glass when the content is too large the 2 O 3 becomes energy increases required for melting the glass is high.
 CaOは、ガラスの粘度を低下させる成分である。CaOの含有量は0.3~10%、好ましくは0.3~5%、より好ましくは0.3~4%、さらに好ましくは0.3~3%である。CaOの含有量が少なすぎると上記効果を得難くなる。CaOの含有量が多すぎるとガラス中にZr、Si、Na、Caからなる結晶が析出しやすくなり、ガラスの液相温度が高くなり、紡糸温度と液相温度の差が小さくなって生産性が低下する。 CaO is a component that lowers the viscosity of the glass. The CaO content is 0.3 to 10%, preferably 0.3 to 5%, more preferably 0.3 to 4%, and still more preferably 0.3 to 3%. If the content of CaO is too small, it is difficult to obtain the above effect. If the content of CaO is too large, crystals composed of Zr, Si, Na, and Ca are likely to precipitate in the glass, the liquidus temperature of the glass is increased, and the difference between the spinning temperature and the liquidus temperature is reduced, resulting in productivity. Decreases.
 アルカリ金属酸化物であるNaO及びKOはガラスの粘度を低下させ、溶融性や成形性を高める成分である。一方、アルカリ金属酸化物は、多量に含有しすぎるとガラスの耐水性を低下させてしまう成分である。NaO及びKOの含有量の合量(NaO+KO)は10~20%、好ましくは10~18%、より好ましくは12~18%、さらに好ましくは16.1~17%である。NaO+KOの量が少なすぎると、ガラスの粘度が高くなってガラスの溶融に必要なエネルギーが増大する。また貴金属製ブッシングの損傷が激しくなって交換頻度が高くなり、生産コストが高くなる。NaO+KOの量が多すぎると、ガラスの耐水性が低下する。 Na 2 O and K 2 O, which are alkali metal oxides, are components that lower the viscosity of the glass and increase the meltability and moldability. On the other hand, the alkali metal oxide is a component that reduces the water resistance of the glass if contained in a large amount. The total content of Na 2 O and K 2 O (Na 2 O + K 2 O) is 10 to 20%, preferably 10 to 18%, more preferably 12 to 18%, still more preferably 16.1 to 17%. It is. When Na 2 O + K 2 the amount of O is too small, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased. When Na 2 O + K 2 the amount of O is too large, the water resistance of the glass decreases.
 NaOは、ガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。NaOの含有量は10~20%、好ましくは10~18%、より好ましくは12~18%、最も好ましくは12~15.6%である。NaOの含有量が少なすぎると、ガラスの粘度が高くなってガラスの溶融に必要なエネルギーが増大する。また貴金属製ブッシングの損傷が激しくなって交換頻度が高くなり、生産コストが高くなる。NaOの含有量が多すぎるとガラスの液相温度が高くなり、紡糸温度と液相温度の差が小さくなって生産性が低下する。また、ガラスの耐水性が低下する。 Na 2 O is a component that increases the meltability and moldability of glass by reducing the viscosity of the glass. The content of Na 2 O is 10 to 20%, preferably 10 to 18%, more preferably 12 to 18%, and most preferably 12 to 15.6%. When the Na 2 O content is too small, the energy increases required to melt the glass viscosity of the glass becomes high. Further, the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased. When the content of Na 2 O is too large high liquidus temperature of the glass, the difference between the spinning temperature and the liquidus temperature becomes productivity is reduced smaller. Moreover, the water resistance of the glass decreases.
 KOは、ガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。また、液相温度を下げる働きがあり、組成変化による失透性の変動を小さくする効果が大きい。KOの含有量は0.6~5%、好ましくは0.6~3%、より好ましくは0.6~2%、さらに好ましくは0.8~2%、最も好ましくは1.0~2.0%である。KOの含有量が少なすぎると、組成変化によって失透性が急激に変化するため好ましくない。KOの含有量が多すぎるとガラスの耐水性が低下する。また、バッチ原料が水分を吸収しやすくなり、原料粉末の凝集体(いわゆる「だま」)が形成されやすい。原料粉末の凝集体が形成されるとバッチ原料の溶解性が悪化し、製品ガラス中に未溶解のジルコニアが残留しやすくなって好ましくない。 K 2 O is a component that improves the meltability and moldability of the glass by reducing the viscosity of the glass. In addition, it has a function of lowering the liquidus temperature, and has a great effect of reducing fluctuations in devitrification due to composition changes. The content of K 2 O is 0.6 to 5%, preferably 0.6 to 3%, more preferably 0.6 to 2%, still more preferably 0.8 to 2%, and most preferably 1.0 to 2.0%. If the content of K 2 O is too small, devitrification changes rapidly due to a composition change, which is not preferable. When the content of K 2 O is too large water resistance of glass decreases. In addition, the batch raw material easily absorbs moisture, and an aggregate (so-called “dama”) of the raw material powder is easily formed. If aggregates of the raw material powder are formed, the solubility of the batch raw material deteriorates, and undissolved zirconia tends to remain in the product glass, which is not preferable.
 またNaO及びKOに加えて、本発明のガラス繊維用ガラス組成物にはLiOを含有することができる。LiOは少量の添加によって液相温度を大幅に下げ、紡糸温度と液相温度の差を大きくし、生産性を向上させる成分である。LiOの含有量は、0~0.2%であることが好ましい。ただしLiOは原料コストが高いため、LiOの含有量が多すぎると製造コストが増加する。さらに、近年リチウムバッテリーの需要増加に伴い、リチウム原料の供給がショートする懸念が高まっている。このためLiOの含有量が多すぎると生産に必要なリチウム原料が確保できず、生産量を低下させる等の対策が必要となる懸念がある。よってコスト及び供給の観点からは、LiOを含有しないことが好ましい。ここで「LiOを含有しない」とは、ガラス組成としてLiOを積極的に含有させない、という意味であり、不可避的不純物まで排除するものではない。より具体的には、不純物を含めた含有量が質量%で0.01%以下であることを指す。上記構成を採用すれば、原料供給不安、原料費の高騰等の問題を回避し易くなる。 In addition to Na 2 O and K 2 O, the glass composition for glass fiber of the present invention may contain Li 2 O. Li 2 O is a component that significantly lowers the liquidus temperature by adding a small amount, increases the difference between the spinning temperature and the liquidus temperature, and improves the productivity. The content of Li 2 O is preferably 0 to 0.2%. However, since Li 2 O has a high raw material cost, if the content of Li 2 O is too large, the manufacturing cost increases. Furthermore, with the recent increase in demand for lithium batteries, there is a growing concern that the supply of lithium raw materials will be short-circuited. Therefore Li 2 O lithium material can not be secured required for production and the content is too much, there is a concern that is necessary measures such as reducing the production. Thus from the point of view of cost and supply, it is preferred not to contain Li 2 O. Here, “not containing Li 2 O” means that Li 2 O is not actively contained as a glass composition, and does not exclude inevitable impurities. More specifically, it means that the content including impurities is 0.01% by mass or less. Employing the above configuration makes it easy to avoid problems such as anxiety of raw material supply and soaring raw material costs.
 TiOは、ガラスの耐水性と耐アルカリ性を向上させると共に、紡糸温度を下げ、液相温度を大幅に低下させる成分である。TiOの含有量は、7.3~10%、好ましくは7.3~8.5%、より好ましくは7.3~8.0%である。TiOの含有量が少なすぎると、ガラスの耐水性と耐アルカリ性が低下する。また、紡糸温度が上昇して生産コストが高くなる。TiOの含有量が多すぎると、ガラス中にTiOを含む結晶が析出しやすくなって液相温度が大幅に上昇する。その結果、紡糸温度と液相温度の差が小さくなって生産性が低下する。 TiO 2 is a component that improves the water resistance and alkali resistance of glass, lowers the spinning temperature, and greatly reduces the liquidus temperature. The content of TiO 2 is 7.3 to 10%, preferably 7.3 to 8.5%, more preferably 7.3 to 8.0%. When the content of TiO 2 is too small, water resistance and alkali resistance of the glass decreases. In addition, the spinning temperature rises and the production cost increases. When the content of TiO 2 is too large, the liquidus temperature becomes easier crystals precipitated comprising TiO 2 rises dramatically in the glass. As a result, the difference between the spinning temperature and the liquidus temperature is reduced and the productivity is lowered.
 ZrOは、ガラスの耐アルカリ性、耐酸性及び耐水性を向上させる成分である。ZrOの含有量は17~20%、好ましくは17.2~20%、より好ましくは17.2~19.5%、さらに好ましくは17.2~18.5%、最も好ましくは17.5~18.0%である。ZrOの含有量が少なすぎると、耐アルカリ性が低下し、GRCに求められる耐久性を実現できない。ZrOの含有量が多すぎるとガラスの液相温度が高くなり、紡糸温度と液相温度の差が小さくなって生産性が低下する。 ZrO 2 is a component that improves the alkali resistance, acid resistance, and water resistance of the glass. The content of ZrO 2 is 17 to 20%, preferably 17.2 to 20%, more preferably 17.2 to 19.5%, still more preferably 17.2 to 18.5%, most preferably 17.5. ~ 18.0%. When the content of ZrO 2 is too small, the alkali resistance is decreased, can not be realized and the durability required for GRC. When the content of ZrO 2 is too large, the liquidus temperature of the glass becomes high, the difference between the spinning temperature and the liquidus temperature becomes small, and the productivity is lowered.
 また近年リチウムバッテリーの需要増加に伴い、リチウム原料の供給がショートする懸念が高まっている。今後も電気自動車の普及や再生可能エネルギーの増加によるリチウムバッテリーの需要増加が見込まれる。さらにLiOは原料コストが高い。それゆえ、本発明のガラス繊維用ガラス組成物は、組成設計上、LiOを含有しないことが好ましい。 In recent years, with the increase in demand for lithium batteries, there is a growing concern that the supply of lithium raw materials will be short-circuited. The demand for lithium batteries is expected to increase due to the popularization of electric vehicles and the increase in renewable energy. Furthermore, Li 2 O has a high raw material cost. Therefore, it is preferable that the glass composition for glass fiber of the present invention does not contain Li 2 O in terms of composition design.
 また本発明のガラス繊維用ガラス組成物は、上記した成分(SiO、Al、CaO、NaO、KO、TiO及びZrO)以外の成分を含みうる。ただし上記した成分の含有量が合量で98%以上、特に99%以上となるように組成を調節することが望ましい。その理由は、これらの成分の合量が98%未満の場合、意図しない異種成分の混入によって耐アルカリ性、耐酸性、耐水性が低下して製品としての特性が低下したり、紡糸温度と液相温度の差が小さくなって生産性が低下したりする等の不都合が生じ易い。 The glass composition for glass fiber of the present invention may comprise the above-mentioned component (SiO 2, Al 2 O 3 , CaO, Na 2 O, K 2 O, TiO 2 and ZrO 2) other than the component. However, it is desirable to adjust the composition so that the total content of the above components is 98% or more, particularly 99% or more. The reason for this is that when the total amount of these components is less than 98%, the alkali resistance, acid resistance, and water resistance are lowered due to unintentional mixing of different components, and the product characteristics are lowered, and the spinning temperature and liquid phase are decreased. Inconveniences such as a decrease in temperature and a decrease in productivity are likely to occur.
 上記した成分以外の成分として、例えばH、CO、CO、HO、He、Ne、Ar、N等の微量成分をそれぞれ0.1%まで含有してもよい。また、ガラス中にPt、Rh、Au等の貴金属元素を500ppmまで添加してもよい。 As components other than the above-described components, for example, trace components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be contained up to 0.1%. Moreover, you may add noble metal elements, such as Pt, Rh, Au, to 500 ppm in glass.
 さらに耐アルカリ性、耐酸性、耐水性、液相温度の改善のために、B、MgO、SrO、BaO、ZnO、Fe、P、Cr、Sb、SO、MnO、SnO、CeO、Cl、La、WO、Nb、Y等を合量で2%まで含有してもよい。 Furthermore, in order to improve alkali resistance, acid resistance, water resistance and liquidus temperature, B 2 O 3 , MgO, SrO, BaO, ZnO, Fe 2 O 3 , P 2 O 5 , Cr 2 O 3 , Sb 2 O 3 , SO 3 , MnO, SnO 2 , CeO 2 , Cl 2 , La 2 O 3 , WO 3 , Nb 2 O 5 , Y 2 O 3 and the like may be contained up to 2% in total.
 本発明のガラス繊維用ガラス組成物は、300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のNaOH水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下、特に1%以下、さらには0.8%以下であることが好ましい。この耐アルカリ性試験によるガラスの重量減少率が3%よりも高いと、ガラスの耐アルカリ性が低下し、ケイ酸カルシウム板やGRC等の複合材料の補強材としての信頼性が低くなる。 The glass composition for glass fiber of the present invention is a glass weight reduction when a specific gravity × 2 weight glass classified to a particle size of 300 to 500 μm is immersed in 100 ml of 10% by weight NaOH aqueous solution at 80 ° C. for 16 hours. The rate is preferably 3% or less, particularly 1% or less, and more preferably 0.8% or less. When the weight reduction rate of the glass by this alkali resistance test is higher than 3%, the alkali resistance of the glass is lowered, and the reliability as a reinforcing material of a composite material such as a calcium silicate plate or GRC is lowered.
 本発明のガラス繊維用ガラス組成物は、300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のHCl水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下、特に1%以下、さらには0.5%以下であることが好ましい。この耐酸性試験によるガラスの重量減少率が3%よりも高いと、ガラスの耐酸性が低下し、バッテリーセパレータ等の耐食性材料としての信頼性が低下する。 The glass composition for glass fiber according to the present invention is a glass weight reduction when a glass having a specific gravity of 2 wt% classified to a particle size of 300 to 500 μm is immersed in 100 ml of a 10 mass% HCl aqueous solution at 80 ° C. for 16 hours. The rate is preferably 3% or less, particularly 1% or less, and more preferably 0.5% or less. When the weight reduction rate of the glass by this acid resistance test is higher than 3%, the acid resistance of the glass is lowered, and the reliability as a corrosion resistant material such as a battery separator is lowered.
 本発明のガラス繊維用ガラス組成物は、アルカリ溶出量が0.40mg以下、特に0.35mg以下、さらには0.30mg以下であることが好ましい。アルカリ溶出量が0.40mgよりも多いと、オートクレーブ処理中にガラスからアルカリ成分が溶出して、ガラスが劣化しやすくなる。 The glass composition for glass fiber of the present invention preferably has an alkali elution amount of 0.40 mg or less, particularly 0.35 mg or less, more preferably 0.30 mg or less. When the amount of alkali elution is larger than 0.40 mg, the alkali component is eluted from the glass during the autoclave treatment, and the glass tends to deteriorate.
 本発明のガラス繊維用ガラス組成物は、紡糸温度が1280℃以下、特に1260℃以下であることが好ましい。紡糸温度が1280℃より高いと、高温で紡糸を行う必要があることから、貴金属製ブッシングの損傷が激しくなり、交換頻度が高くなって生産コストが高くなる。 The glass composition for glass fibers of the present invention preferably has a spinning temperature of 1280 ° C or lower, particularly 1260 ° C or lower. When the spinning temperature is higher than 1280 ° C., it is necessary to perform spinning at a high temperature, so that the noble metal bushing is severely damaged, the replacement frequency is increased, and the production cost is increased.
 本発明のガラス繊維用ガラス組成物は、紡糸温度と液相温度の差が100℃以上、特に105℃以上であることが好ましい。紡糸温度と液相温度の差が小さいと、生産性が低下する。 The glass composition for glass fiber of the present invention preferably has a difference between the spinning temperature and the liquidus temperature of 100 ° C. or higher, particularly 105 ° C. or higher. If the difference between the spinning temperature and the liquidus temperature is small, the productivity decreases.
 本発明のガラス繊維用ガラス組成物は、以下の評価によって得られる、組成変動に対する失透性の変化量を評価した場合に、23℃以下であることが好ましい。まず評価対象の組成について、紡糸温度と液相温度の差(ΔT)を求める。次いでSiO、Al、NaO、ZrOの含有量を一定値に固定し、CaOの0.3質量%をKOに置換した組成について、紡糸温度と液相温度の差の変化量の絶対値(|ΔT-ΔTck|)を求める。同様にしてKOの0.3質量%をTiOに置換した場合の置換前後の紡糸温度と液相温度の差の変化量の絶対値(|ΔT-ΔTkt|)、CaOの0.3質量%をTiOに置換した場合の置換前後の紡糸温度と液相温度の差の変化量の絶対値(|ΔT-ΔTct|)をそれぞれ求める。このようにして求めた|ΔT-ΔTck|、|ΔT-ΔTkt|、|ΔT-ΔTct|のうち、最も変化量が大きい値を採用し、この値を「組成変動に対する失透性の変化量」と呼ぶ。この値が大きすぎると、実際の生産において、安定して紡糸を行いにくくなる。 The glass composition for glass fiber of the present invention is preferably 23 ° C. or lower when the devitrification change amount with respect to composition variation obtained by the following evaluation is evaluated. First, for the composition to be evaluated, the difference (ΔT) between the spinning temperature and the liquidus temperature is determined. Next, for the composition in which the content of SiO 2 , Al 2 O 3 , Na 2 O and ZrO 2 was fixed to a constant value and 0.3% by mass of CaO was replaced with K 2 O, the difference between the spinning temperature and the liquidus temperature The absolute value (| ΔT−ΔTck |) of the amount of change in is obtained. Similarly, the absolute value (| ΔT−ΔTkt |) of the difference in the difference between the spinning temperature and the liquid phase temperature before and after substitution when 0.3% by mass of K 2 O is substituted with TiO 2 , 0.3 of CaO The absolute value (| ΔT−ΔTct |) of the amount of change in the difference between the spinning temperature and the liquidus temperature before and after the substitution when the mass% is substituted with TiO 2 is determined. Among the | ΔT−ΔTck |, | ΔT−ΔTkt |, and | ΔT−ΔTct | determined in this way, the value having the largest amount of change is adopted, and this value is referred to as “the amount of change in devitrification with respect to composition variation”. Call it. If this value is too large, it becomes difficult to perform stable spinning in actual production.
 次に本発明のガラス繊維を製造する方法を、ダイレクトメルト法(DM法)を例にして説明する。なお本発明は下記の方法に制限されるものではなく、例えばマーブル状に成形した繊維用ガラス材料をブッシング装置で再溶融し紡糸する、いわゆる間接成形法(MM法:マーブルメルト法)を採用することもできる。この方法は少量多品種生産に向いている。 Next, a method for producing the glass fiber of the present invention will be described using the direct melt method (DM method) as an example. The present invention is not limited to the following method. For example, a so-called indirect molding method (MM method: marble melt method) in which a glass fiber material molded into a marble shape is remelted and spun using a bushing apparatus is employed. You can also This method is suitable for small-lot, multi-product production.
 まず酸化物換算の質量%で、SiO 50~65%、Al 0~5%、CaO 0.3~10%、NaO 10~20%、KO 0.6~5%、TiO 7.3~10%、ZrO 17~20%含有するガラスとなるようにガラス原料を調合する。なおガラス原料の一部又は全部にガラスカレットを使用してもよい。各成分の含有量を上記の通りとした理由は既述の通りであり、ここでは説明を省略する。 First, in terms of oxide mass%, SiO 2 50 to 65%, Al 2 O 3 0 to 5%, CaO 0.3 to 10%, Na 2 O 10 to 20%, K 2 O 0.6 to 5% The glass raw material is prepared so that the glass contains 7.3 to 10% of TiO 2 and 17 to 20% of ZrO 2 . Glass cullet may be used for a part or all of the glass raw material. The reason why the content of each component is as described above is as described above, and the description is omitted here.
 次いで、調合したガラス原料バッチをガラス溶融炉に投入し、ガラス化し、溶融、均質化する。溶融温度は1400~1600℃程度が好適である。 Next, the prepared glass raw material batch is put into a glass melting furnace, vitrified, melted and homogenized. The melting temperature is preferably about 1400 to 1600 ° C.
 続いて溶融ガラスを紡糸してガラス繊維に成形する。詳述すると、溶融ガラスをブッシングに供給する。ブッシングに供給された溶融ガラスは、その底面に設けられた多数のブッシングノズルからフィラメント状に連続的に引き出される。このようにして引き出されたモノフィラメントに各種処理剤を塗布し、所定本数毎に集束することによってガラス繊維を得る。 Subsequently, molten glass is spun and formed into glass fibers. More specifically, molten glass is supplied to the bushing. The molten glass supplied to the bushing is continuously drawn out in filament form from a number of bushing nozzles provided on the bottom surface. Various processing agents are applied to the monofilaments drawn in this way, and glass fibers are obtained by focusing each monofilament.
 このようにして成形された本発明のガラス繊維は、チョップドストランド、ヤーン、ロービング等に加工され、種々の用途に供される。 The glass fiber of the present invention thus formed is processed into chopped strands, yarns, rovings, etc. and used for various purposes.
 なおチョップドストランドとは、ガラスモノフィラメントを集束したガラス繊維(ストランド)を所定長の長さに切断したものである。ヤーンとは、ストランドに撚りをかけたものである。ロービングとは、ストランドを複数本合糸し、円筒状に巻き取ったものである。 The chopped strand is obtained by cutting glass fibers (strands) obtained by focusing glass monofilaments into a predetermined length. A yarn is a twisted strand. Roving is a combination of a plurality of strands wound in a cylindrical shape.
 以下、実施例に基づいて、本発明を詳細に説明する。
表1は本発明の実施例(試料No.1~7)を、表2は比較例(試料No.8~10)をそれぞれ示している。
Hereinafter, based on an Example, this invention is demonstrated in detail.
Table 1 shows examples of the present invention (Sample Nos. 1 to 7), and Table 2 shows comparative examples (Sample Nos. 8 to 10).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表の各試料は、次のようにして調製した。 Each sample in the table was prepared as follows.
 まず、表中のガラス組成になるように、天然原料、化成原料等の各種ガラス原料を秤量、混合して、ガラスバッチを作製した。次に、このガラスバッチを白金ロジウム合金製坩堝に投入した後、間接加熱電気炉内で1550℃、5時間加熱して、溶融ガラスを得た。尚、均質な溶融ガラスを得るために、加熱時に、耐熱性撹拌棒を用いて、溶融ガラスを複数回攪拌した。続いて、得られた溶融ガラスを耐火性鋳型内に流し出し、板状のガラスを成形した後、徐冷炉内でアニール処理(1013dPa・sにおける温度より30~50℃高い温度で30分間加熱した後、徐冷点~歪点の温度域を1℃/分で降温)を行った。得られた各試料につき、耐アルカリ性、耐酸性、アルカリ溶出量、紡糸温度、液相温度を測定した。 First, various glass raw materials, such as a natural raw material and a chemical raw material, were weighed and mixed so that it might become the glass composition in a table | surface, and the glass batch was produced. Next, after putting this glass batch into a crucible made of platinum rhodium alloy, it was heated in an indirect heating electric furnace at 1550 ° C. for 5 hours to obtain a molten glass. In order to obtain a homogeneous molten glass, the molten glass was stirred a plurality of times using a heat-resistant stirring rod during heating. Subsequently, the molten glass obtained was poured into a refractory mold to form a plate-like glass, and then annealed in a slow cooling furnace (heated at a temperature 30 to 50 ° C. higher than the temperature at 10 13 dPa · s for 30 minutes) Then, the temperature range from the annealing point to the strain point was decreased at 1 ° C./min). About each obtained sample, alkali resistance, acid resistance, the amount of alkali elution, spinning temperature, and liquidus temperature were measured.
 なお耐アルカリ性は次のようにして測定した。まず、上記した板状ガラス試料を粉砕し、直径300~500μmの粒度のガラスを比重×2重量分だけ精秤し、続いて10質量%NaOH溶液100ml中に浸漬して、80℃、16時間の条件で振とうした。その後、ガラス試料の重量減少率を測定した。この値が小さいほど耐アルカリ性に優れていることになる。 The alkali resistance was measured as follows. First, the above plate glass sample is pulverized, glass having a particle diameter of 300 to 500 μm is precisely weighed by a specific gravity × 2 weight, and then immersed in 100 ml of 10 mass% NaOH solution at 80 ° C. for 16 hours. Shake on the conditions. Thereafter, the weight reduction rate of the glass sample was measured. The smaller this value, the better the alkali resistance.
 耐酸性は次のようにして測定した。まず、上記した板状ガラス試料を粉砕し、直径300~500μmの粒度のガラスを比重×2重量分だけ精秤し、続いて10質量%HCl溶液100ml中に浸漬して、80℃、16時間の条件で振とうした。その後、ガラス試料の重量減少率を測定した。この値が小さいほど耐酸性に優れていることになる。 Acid resistance was measured as follows. First, the above plate glass sample is pulverized, and glass having a particle size of 300 to 500 μm is precisely weighed by a specific gravity × 2 weight, and then immersed in 100 ml of 10 mass% HCl solution at 80 ° C. for 16 hours. Shake on the conditions. Thereafter, the weight reduction rate of the glass sample was measured. The smaller this value, the better the acid resistance.
 アルカリ溶出量は、JIS R3502(1995)に準拠した方法で測定した。この値が小さいほど耐水性に優れていることになる。 The alkali elution amount was measured by a method based on JIS R3502 (1995). The smaller this value, the better the water resistance.
 紡糸温度の測定は次のようにして行った。まず、板状のガラス試料を適正な寸法に破砕し、なるべく気泡が巻き込まれないようにアルミナ製坩堝に投入した。続いてアルミナ坩堝を加熱して、試料を融液状態とし、白金球引き上げ法によって複数の温度におけるガラスの粘度を求めた。その後、得られた複数の計測値から粘度曲線を作成し、その内挿によって10dPa・sとなる温度を算出した。 The spinning temperature was measured as follows. First, a plate-like glass sample was crushed to an appropriate size and put into an alumina crucible so as to prevent air bubbles from being involved. Subsequently, the alumina crucible was heated to bring the sample into a molten state, and the viscosity of the glass at a plurality of temperatures was determined by a platinum ball pulling method. Thereafter, a viscosity curve was created from the obtained plurality of measured values, and the temperature at which 10 3 dPa · s was obtained was calculated by interpolation.
 液相温度の測定は次のようにして行った。まず、板状のガラス試料を粉砕し、300~500μmの範囲の粒度となるように調整した状態で耐火性の容器に適切な嵩密度を有する状態に充填した。続いてこの耐火性容器を、最高温度を1250℃に設定した間接加熱型の温度勾配炉内に入れて静置し、16時間大気雰囲気中で加熱操作を行った。その後、温度勾配炉から、耐火性容器ごと試験体を取り出し、室温まで冷却後、偏光顕微鏡によって液相温度を特定した。 The liquid phase temperature was measured as follows. First, a plate-like glass sample was pulverized, and filled in a fire-resistant container having an appropriate bulk density in a state adjusted to have a particle size in the range of 300 to 500 μm. Subsequently, the refractory container was placed in an indirect heating type temperature gradient furnace having a maximum temperature set to 1250 ° C. and left to stand for 16 hours in an air atmosphere. Then, the test body was taken out from the temperature gradient furnace together with the refractory container, cooled to room temperature, and then the liquid phase temperature was specified by a polarizing microscope.
 紡糸温度と液相温度の差は両者の値から算出した。 The difference between the spinning temperature and the liquidus temperature was calculated from both values.
 組成変動に対する失透性の変化量は、次のようにして評価した。まずSiO、Al、NaO、ZrOの含有量を一定値に固定し、CaOの0.3質量%をKOに置換した測定試料aと、KOの0.3質量%をTiOに置換した測定試料bと、CaOの0.3質量%をTiOに置換した測定試料cをそれぞれ用意した。次に、各測定試料について、置換前後の紡糸温度と液相温度の差の変化量の絶対値(℃)を求めた。このようにして求めた絶対値のうち、最も大きい値を、組成変動に対する失透性の変化量とした。 The amount of change in devitrification with respect to composition variation was evaluated as follows. First SiO 2, Al 2 O 3, Na 2 O, the content of ZrO 2 is fixed to a constant value, and the measurement sample a of 0.3 mass% was replaced by K 2 O of CaO, the K 2 O 0. 3% by weight and the measurement sample b was replaced by TiO 2, were respectively prepared measurement sample c was substituted for 0.3 weight% of CaO in TiO 2. Next, for each measurement sample, the absolute value (° C.) of the amount of change in the difference between the spinning temperature and the liquid phase temperature before and after substitution was determined. Of the absolute values thus determined, the largest value was defined as the amount of change in devitrification with respect to composition variation.
 GRC耐久性は、次のようにして評価した。まずスプレーガンを用いてガラス繊維とモルタルの混合物を木枠の中に吹き付け、板状に成形した。材令14日目のサンプルを70℃の温水中に浸漬し、浸漬後10日目のサンプルに対し3点曲げ試験を行い、曲げ強度(Modulus of rupture)を測定した。曲げ強度の評価は、試料No.10以上となった場合を○、それ以外を×とした。 The GRC durability was evaluated as follows. First, using a spray gun, a mixture of glass fiber and mortar was sprayed into a wooden frame and formed into a plate shape. The sample on the 14th day of the material age was immersed in warm water at 70 ° C., and the sample on the 10th day after the immersion was subjected to a three-point bending test to measure the bending strength (Modulus of rupture). The evaluation of the bending strength was conducted using sample No. The case where it became 10 or more was marked with ◯, and the others were marked with ×.
 本発明のガラス繊維用ガラス組成物を用いて作製したガラス繊維は、ケイ酸カルシウム板の補強材やバッテリーセパレータ等の耐食性材料として好適である。 The glass fiber produced by using the glass composition for glass fiber of the present invention is suitable as a corrosion resistant material such as a reinforcing material for a calcium silicate plate and a battery separator.

Claims (10)

  1.  ガラス組成として、酸化物換算の質量%で、SiO 50~65%、Al 0~5%、CaO 0.3~10%、NaO 10~20%、KO 0.6~5%、TiO 7.3~10%、ZrO 17~20%を含有することを特徴とするガラス繊維用ガラス組成物。 As the glass composition, SiO 2 50 to 65%, Al 2 O 3 0 to 5%, CaO 0.3 to 10%, Na 2 O 10 to 20%, K 2 O 0.6 in mass% in terms of oxide. A glass composition for glass fiber, comprising: 5%, TiO 2 7.3-10%, and ZrO 2 17-20%.

  2.  酸化物換算の質量%で、さらにLiO 0~0.2%を含有することを特徴とする請求項1に記載のガラス繊維用ガラス組成物。

    2. The glass composition for glass fiber according to claim 1, further comprising Li 2 O 0 to 0.2% in terms of mass% in terms of oxide.
  3.  NaO+KOが10~20%となることを特徴とする請求項1又は2に記載のガラス繊維用ガラス組成物。 3. The glass composition for glass fiber according to claim 1, wherein Na 2 O + K 2 O is 10 to 20%.
  4.  紡糸温度が1280℃以下であることを特徴とする請求項1~3の何れかに記載のガラス繊維用ガラス組成物。 The glass composition for glass fiber according to any one of claims 1 to 3, wherein a spinning temperature is 1280 ° C or lower.
  5.  紡糸温度と液相温度の差が105℃以上であることを特徴とする請求項1~4の何れかに記載のガラス繊維用ガラス組成物。 The glass composition for glass fiber according to any one of claims 1 to 4, wherein the difference between the spinning temperature and the liquidus temperature is 105 ° C or more.
  6.  JIS R3502によるアルカリ溶出量が0.40mg以下であることを特徴とする請求項1~5の何れかに記載のガラス繊維用ガラス組成物。 The glass composition for glass fiber according to any one of claims 1 to 5, wherein an alkali elution amount according to JIS R3502 is 0.40 mg or less.

  7.  300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のNaOH水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下であることを特徴とする請求項1~6の何れかに記載のガラス繊維用ガラス組成物。

    The glass has a weight reduction rate of 3% or less when immersed in 100 ml of 10% by weight NaOH aqueous solution at 80 ° C. for 16 hours in a glass having a specific gravity of 2 weight classified to a particle size of 300 to 500 μm. The glass composition for glass fiber according to any one of claims 1 to 6.

  8.  300~500μmの粒度に分級された比重×2重量分のガラスを10質量%のHCl水溶液100ml中に80℃、16時間浸漬した時のガラスの重量減少率が3%以下であることを特徴とする請求項1~7の何れかに記載のガラス繊維用ガラス組成物。

    The glass has a weight reduction rate of 3% or less when immersed in 100 ml of a 10% by weight HCl aqueous solution at 80 ° C. for 16 hours in a glass having a specific gravity of 2 weight classified to a particle size of 300 to 500 μm. The glass composition for glass fiber according to any one of claims 1 to 7.
  9.  請求項1~8の何れかのガラス繊維用ガラス組成物からなることを特徴とするガラス繊維。 A glass fiber comprising the glass composition for glass fiber according to any one of claims 1 to 8.
  10.  ガラス組成として、酸化物換算の質量%で、SiO 50~65%、Al 0~5%、CaO 0.3~10%、NaO 10~20%、KO 0.6~5%、TiO 7.3~10%、ZrO 17~20%含有するガラスとなるように調合した原料バッチをガラス溶融炉で溶融し、溶融ガラスをブッシングから連続的に引き出して繊維状に成形することを特徴とするガラス繊維の製造方法。
     
    As the glass composition, SiO 2 50 to 65%, Al 2 O 3 0 to 5%, CaO 0.3 to 10%, Na 2 O 10 to 20%, K 2 O 0.6 in mass% in terms of oxide. A raw material batch prepared so as to be a glass containing ˜5%, TiO 2 7.3˜10%, ZrO 2 17˜20% is melted in a glass melting furnace, and the molten glass is continuously drawn from the bushing to form a fiber A method for producing glass fiber, characterized in that it is formed into a glass.
PCT/JP2015/084359 2014-12-11 2015-12-08 Glass composition for glass fiber, glass fiber, and method for producing glass fiber WO2016093212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563676A JPWO2016093212A1 (en) 2014-12-11 2015-12-08 Glass composition for glass fiber, glass fiber and method for producing glass fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014250543 2014-12-11
JP2014-250543 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016093212A1 true WO2016093212A1 (en) 2016-06-16

Family

ID=56107393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084359 WO2016093212A1 (en) 2014-12-11 2015-12-08 Glass composition for glass fiber, glass fiber, and method for producing glass fiber

Country Status (2)

Country Link
JP (1) JPWO2016093212A1 (en)
WO (1) WO2016093212A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089822A (en) * 2016-12-01 2018-06-14 日本電気硝子株式会社 Mesh laminate and concrete peeling preventing material
JP2019034486A (en) * 2017-08-17 2019-03-07 日本電気硝子株式会社 Method for molding cured body
WO2019111713A1 (en) * 2017-12-05 2019-06-13 日本電気硝子株式会社 Glass fiber and method for producing same
CN109982982A (en) * 2016-12-27 2019-07-05 日本电气硝子株式会社 The manufacturing method of glass fibre glass composition, glass fibre and glass fibre

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963712A (en) * 1972-07-27 1974-06-20
JPS5046712A (en) * 1973-02-14 1975-04-25
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JPH09156957A (en) * 1995-12-08 1997-06-17 Nippon Electric Glass Co Ltd Corrosion resistant glass fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963712A (en) * 1972-07-27 1974-06-20
JPS5046712A (en) * 1973-02-14 1975-04-25
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JPH09156957A (en) * 1995-12-08 1997-06-17 Nippon Electric Glass Co Ltd Corrosion resistant glass fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089822A (en) * 2016-12-01 2018-06-14 日本電気硝子株式会社 Mesh laminate and concrete peeling preventing material
CN109982982A (en) * 2016-12-27 2019-07-05 日本电气硝子株式会社 The manufacturing method of glass fibre glass composition, glass fibre and glass fibre
JP2019034486A (en) * 2017-08-17 2019-03-07 日本電気硝子株式会社 Method for molding cured body
WO2019111713A1 (en) * 2017-12-05 2019-06-13 日本電気硝子株式会社 Glass fiber and method for producing same
CN111433166A (en) * 2017-12-05 2020-07-17 日本电气硝子株式会社 Glass fiber and method for producing same
JPWO2019111713A1 (en) * 2017-12-05 2020-10-08 日本電気硝子株式会社 Glass fiber and its manufacturing method
CN111433166B (en) * 2017-12-05 2022-10-14 日本电气硝子株式会社 Glass fiber and method for producing same
US11577990B2 (en) 2017-12-05 2023-02-14 Nippon Electric Glass Co., Ltd. Glass fiber and method for producing same
JP7288246B2 (en) 2017-12-05 2023-06-07 日本電気硝子株式会社 Glass fiber and its manufacturing method

Also Published As

Publication number Publication date
JPWO2016093212A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6202318B2 (en) Glass composition for glass fiber, glass fiber and method for producing glass fiber
KR101758938B1 (en) Improved modulus, lithium free glass
CN111217520B (en) High performance fiber glass compositions with improved elastic modulus
JP6959563B2 (en) Glass composition for glass fiber, glass fiber and method for producing glass fiber
KR20110099325A (en) Composition for high performance glass fibers and fibers formed therewith
WO2014062715A1 (en) High modulus glass fibers
JP2022507967A (en) High-performance fiberglass composition with improved specific elastic modulus
WO2016093212A1 (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
US11214512B2 (en) High performance fiberglass composition
US11577990B2 (en) Glass fiber and method for producing same
JP7303486B2 (en) Glass composition for glass fiber
JP2019112246A (en) Glass fiber and method for producing the same
WO2017221637A1 (en) Method for manufacturing glass fiber
WO2023106048A1 (en) Glass fibers, method for manufacturing glass fibers, and glass
JP3771073B2 (en) Glass fiber
JP2016117627A (en) Production method of glass fiber
JPH06157072A (en) Corrosion resistant glass fiber
KR102668384B1 (en) High performance fiberglass compositions
JP2016113339A (en) Glass fiber glass composition, glass fiber and method for producing glass fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866695

Country of ref document: EP

Kind code of ref document: A1