WO2023190982A1 - Glass fibers - Google Patents

Glass fibers Download PDF

Info

Publication number
WO2023190982A1
WO2023190982A1 PCT/JP2023/013383 JP2023013383W WO2023190982A1 WO 2023190982 A1 WO2023190982 A1 WO 2023190982A1 JP 2023013383 W JP2023013383 W JP 2023013383W WO 2023190982 A1 WO2023190982 A1 WO 2023190982A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
glass
composition
sio
Prior art date
Application number
PCT/JP2023/013383
Other languages
French (fr)
Japanese (ja)
Inventor
浩輔 藤原
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2023190982A1 publication Critical patent/WO2023190982A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to glass fibers suitable for use as thermal and/or soundproofing materials.
  • Glass wool is an aggregate of short glass fibers made from glass fibers, and because it contains many air layers inside, it has excellent insulation and sound-absorbing performance, and is used as insulation and sound-absorbing material for buildings, vehicles, etc. It is being Additionally, glass wool does not burn and is used as a noncombustible material.
  • Patent Document 1 discloses that soda lime glass and A glass are preferable as glass fibers for such glass wool.
  • C glass composition is known as a glass composition with excellent chemical durability.
  • the C glass composition contains about 4 to 6% by mass of diboron trioxide (B 2 O 3 ).
  • B 2 O 3 easily scatters when glass raw materials are melted, and corrodes the walls of the melting furnace and the heat storage furnace. Therefore, a glass composition containing B 2 O 3 to the above-mentioned extent can affect the life of the equipment that manufactures it. Therefore, an object of the present invention is to provide a new glass fiber suitable for use as a heat insulating material and/or a sound absorbing material, and also suitable for mass production.
  • the present invention is a glass fiber for a heat insulating material and/or a sound absorbing material, Displayed in mass%, 50 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 5 ⁇ Al 2 O 3 ⁇ 15, 5 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 20, A glass fiber comprising a glass composition containing the following components is provided.
  • Another aspect of the present invention is a glass fiber for a heat insulating material and/or a sound absorbing material, Displayed in mass%, 50 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 0.1 ⁇ (MgO+CaO) ⁇ 20, 9 ⁇ ( Li2O + Na2O + K2O ) ⁇ 20, 5 ⁇ ZrO 2 ⁇ 20,
  • a glass fiber comprising a glass composition containing the following components is provided.
  • a new glass fiber is provided that is suitable for use in heat insulating materials and/or sound absorbing materials, and is also suitable for mass production.
  • not substantially containing and not substantially containing mean that the content is less than 0.1% by mass, less than 0.05% by mass, less than 0.01% by mass, and even 0. This means less than 0.005% by weight, in particular less than 0.003% by weight, and in some cases less than 0.001% by weight.
  • substantially means that the inclusion of trace amounts of impurities originating from glass raw materials, manufacturing equipment, molding equipment, etc. is allowed.
  • Mainn component means a component having the highest content on a mass basis.
  • T-Fe 2 O 3 means total iron oxide converted to diiron trioxide (Fe 2 O 3 ).
  • Alkali metal oxide means lithium oxide (Li 2 O), sodium oxide (Na 2 O) and potassium oxide (K 2 O). The upper and lower limits of the content described below can be arbitrarily combined.
  • glass fiber for heat insulating material and/or sound absorbing material specifically means “glass fiber used as at least one selected from the group consisting of heat insulating material and sound absorbing material.”
  • Glass composition A An example of a glass composition (hereinafter referred to as glass composition A) is expressed in mass%, 50 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 5 ⁇ Al 2 O 3 ⁇ 15, 5 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 20, Contains the following ingredients.
  • the content of silicon dioxide (SiO 2 ) in glass composition A may be 55% by mass or more and 72% by mass or less.
  • the content of aluminum oxide (Al 2 O 3 ) may be 5% by mass or more and 14% by mass or less.
  • the content of calcium oxide (CaO) may be 5% by mass or more and 28% by mass or less.
  • the content of diboron trioxide (B 2 O 3 ) may be 0.1% by mass or more and 4% by mass or less.
  • Glass composition A may be a composition that does not substantially contain B 2 O 3 .
  • the total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or more and 20% by mass or less.
  • Glass composition A may be a composition substantially free of alkali metal oxides. Glass composition A does not need to contain substantially any components other than the above-mentioned components.
  • compositions A-1 to A-4 are illustrated as more specific glass compositions A.
  • Composition A-1 contains the following components in mass %. 50 ⁇ SiO 2 ⁇ 67, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 15, 45 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 57, 1 ⁇ MgO ⁇ 10, 10 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 12 0 ⁇ T-Fe 2 O 3 ⁇ 5
  • the glass composition having glass composition A-1 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability.
  • SiO2 is a component that forms the skeleton of glass and is the main component of composition A-1. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves acid resistance.
  • the content of SiO 2 is 50% by mass or more and 67% by mass or less, particularly 55% by mass or more and 65% by mass or less, but the lower limit of the content of SiO 2 can be 56% by mass or more, and 57% by mass or more. , 58% by mass or more, 59% by mass or more, or even more than 60% by mass.
  • the upper limit of the content of SiO 2 may be 64% by mass or less, or 63% by mass or less.
  • B 2 O 3 is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation.
  • the lower limit of the content of B 2 O 3 may be 0.1% by mass or more.
  • the upper limit of the content of B 2 O 3 may be less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the upper limit of the content of B 2 O 3 may be 0.1% by mass or less.
  • Composition A-1 may be substantially free of B 2 O 3 .
  • Al 2O3 Al 2 O 3 is a component that forms the skeleton of glass. Furthermore, Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass. Furthermore, Al 2 O 3 is a component that improves the Young's modulus and heat resistance of glass. On the other hand, excessive content of Al 2 O 3 lowers the acid resistance of the glass. When the Al 2 O 3 content is 5% by mass or more and 15% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance of the glass is increased.
  • the lower limit of the content of Al 2 O 3 may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 8.5% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass % or more, 10.5% by mass or more, 11% by mass or more, and even 11.1% by mass or more.
  • the upper limit of the content of Al 2 O 3 may be 14% by mass or less, 13% by mass or less, 12.5% by mass or less, less than 12% by mass, or even 11.9% by mass or less.
  • the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content (SiO 2 - Al 2 O 3 ) is 45% by mass or more, 47% by mass or more, It can be more than 48% by mass, more than 48.5% by mass, more than 49% by mass, and even more than 49.5% by mass.
  • the upper limit of (SiO 2 -Al 2 O 3 ) may be 57% by mass or less, 56% by mass or less, 55% by mass or less, 54% by mass or less, 53.5% by mass or less, 53% by mass or less, Furthermore, it may be 52% by mass or less.
  • the lower limit may be 45% by mass or more, 46% by mass or more, 47% by mass or more, more than 48% by mass, 48.5% by mass or more, more than 49% by mass, and even 49.5% by mass or more. It's possible.
  • the upper limit of (SiO 2 -B 2 O 3 -Al 2 O 3 ) may be 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, 53.5% by mass or less, It may be 52% by mass or less, or even 51% by mass or less.
  • MgO, CaO are components that adjust the devitrification temperature and viscosity during glass formation. Moreover, MgO and CaO are also components that improve Young's modulus.
  • the content of MgO is 1% by mass or more and 10% by mass or less, but the lower limit can be 1.5% by mass or more, 1.8% by mass or more, or even 2% by mass or more.
  • the upper limit of the content of MgO may be 8% by mass or less, 6% by mass or less, 5% by mass or less, 4.5% by mass or less, or even 4% by mass or less.
  • the devitrification temperature and the viscosity at the time of melting of the glass should be in a range suitable for manufacturing a glass composition while suppressing an excessive increase in the devitrification temperature. I can do it.
  • the lower limit of the CaO content may be 15% by mass or more, 16% by mass or more, 17% by mass or more, 18% by mass or more, further 19% by mass or more, and in some cases 20% by mass or more.
  • the upper limit of the content of CaO may be 28% by mass or less, 27% by mass or less, 26% by mass or less, 25% by mass or less, or even 24% by mass or less.
  • (MgO+CaO) Regarding the meltability and moldability of glass, the value of the sum of the contents of MgO and CaO (MgO+CaO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limits of (MgO+CaO) are 8% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass or more, and 10.5% by mass.
  • % or more 11 mass% or more, 11.5 mass% or more, 12 mass% or more, 13 mass% or more, 13.5 mass% or more, 14 mass% or more, 14.5 mass% or more, 15 mass% or more, 16 It can be at least 17% by mass, at least 18% by mass, at least 19% by mass, at least 20% by mass, at least 21% by mass, and at least 22% by mass.
  • the upper limit of (MgO+CaO) is preferably 40% by mass or less, 35% by mass or less, 32% by mass or less, 30% by mass or less, 29% by mass or less, 28% by mass or less, 27% by mass or less, 26.5% by mass % or less, 26% by mass or less, 25% by mass or less, 24% by mass or less, or 23% by mass or less.
  • SrO Composition A-1 may further contain strontium oxide (SrO).
  • SrO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive SrO content reduces the acid resistance of the glass.
  • the lower limit of the content of SrO may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, 5% by mass or more, It may be 6% by mass or more, 7% by mass or more, or even 8% by mass or more.
  • the upper limit of the content of SrO can be 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less , 2% by mass or less, 1.5% by mass or less, 1% by mass or less, and 0.5% by mass or less.
  • the upper limit of the SrO content may be 0.1% by mass or less.
  • Composition A-1 may be substantially free of SrO.
  • the value of the total content of MgO, CaO and SrO (MgO+CaO+SrO) is important.
  • the lower limit of (MgO + CaO + SrO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more.
  • the upper limit of (MgO+CaO+SrO) is preferably 40% by mass or less, and may be 38% by mass or less, 36% by mass or less, 35% by mass or less, or 34% by mass or less.
  • Composition A-1 may further contain barium oxide (BaO).
  • BaO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive BaO content reduces the acid resistance of the glass.
  • the upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less.
  • Composition A-1 may be substantially free of BaO.
  • the value of the total content of MgO, CaO, SrO and BaO is important.
  • the lower limit of (MgO+CaO+SrO+BaO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more.
  • the upper limit of (MgO+CaO+SrO+BaO) is preferably 40% by mass or less, and may be 38% by mass or less, 36% by mass or less, 35% by mass or less, or 34% by mass or less.
  • composition A-1 may further contain zinc oxide (ZnO). Furthermore, when included in composition A-1, ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation. However, since the raw material for ZnO is relatively expensive, the content thereof should be low. In composition A-1, the upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, Furthermore, it may be 0.1% by mass or less. Composition A-1 may be substantially free of ZnO.
  • Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that adjust the devitrification temperature and viscosity during glass formation.
  • the value of the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is 0% by mass or more and 4% by mass or less, the devitrification temperature and viscosity of the molten glass are reduced while suppressing an excessive increase in the devitrification temperature. can be in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be greater than 0% by mass, or may be greater than or equal to 0.1% by mass.
  • the upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3% by mass or less, 2% by mass or less, and less than 2% by mass.
  • the value of (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or less.
  • Composition A-1 may be substantially free of alkali metal oxides.
  • Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
  • the lower limit of the content of lithium oxide (Li 2 O) may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, and even 0.4% by mass or more.
  • the upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
  • the lower limit of the content of sodium oxide (Na 2 O) may be 0.1% by mass or more, or 0.2% by mass or more.
  • the upper limit of the content of Na 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
  • the lower limit of the potassium oxide (K 2 O) content may be 0.1% by mass or more, or 0.2% by mass or more.
  • the upper limit of the content of K 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
  • Composition A-1 may further contain titanium dioxide (TiO 2 ).
  • TiO 2 is a component that improves the meltability and chemical durability of glass, and improves the ultraviolet absorption characteristics of glass. Furthermore, TiO 2 is a component that improves the acid resistance and water resistance of glass. However, since the raw material for TiO 2 is relatively expensive, the content thereof should be lower. The lower limit of the content of TiO 2 may be 0.1% by mass or more. The upper limit of the content of TiO 2 can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.3% by mass or less, and even 0. It may be 2% by mass or less. Composition A-1 may be substantially free of TiO 2 .
  • ZrO2 Composition A-1 may further contain zirconium oxide (ZrO 2 ).
  • ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. Furthermore, ZrO 2 is a component that improves the acid resistance and alkali resistance of glass. Furthermore, ZrO 2 is a component that improves the Young's modulus and heat resistance of glass. However, since the raw material for ZrO 2 is relatively expensive, the content thereof should be lower.
  • the upper limit of the content of ZrO 2 may be 7% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5 It may be less than 0.1% by mass, and even less than 0.1% by mass.
  • Composition A-1 may be substantially free of ZrO 2 .
  • Composition A-1 may further contain diiron trioxide (Fe 2 O 3 ).
  • Iron (Fe) usually exists in the Fe 2+ or Fe 3+ state.
  • Fe 3+ is a component that enhances the ultraviolet absorption properties of glass
  • Fe 2+ is a component that enhances heat ray absorption properties of glass. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass can be prevented.
  • the upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 mass% or less, 0.04 mass% or less , and even 0.03% by mass or less.
  • the lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
  • Composition A-1 may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass.
  • the upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible.
  • Composition A-1 may be substantially free of F 2 .
  • Composition A-1 may be substantially free of Cl 2 .
  • Composition A-1 may have a preferred composition described in mass % in the following paragraphs.
  • composition containing the following components and substantially free of alkali metal oxides.
  • composition containing the following ingredients 55 ⁇ SiO 2 ⁇ 67, 0.1 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 15, 45 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 57, 1 ⁇ MgO ⁇ 10, 15 ⁇ CaO ⁇ 30, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ T-Fe 2 O 3 ⁇ 5, A composition containing the following ingredients.
  • composition containing the following ingredients 50 ⁇ SiO 2 ⁇ 67, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 15, 45 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 57, 1 ⁇ MgO ⁇ 10, 10 ⁇ CaO ⁇ 30, 1 ⁇ SrO ⁇ 15, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ T-Fe 2 O 3 ⁇ 5, A composition containing the following ingredients.
  • compositions (excluding compositions where 0.1 ⁇ B 2 O 3 ⁇ 2) does not substantially contain B 2 O 3 .
  • Composition A-2 contains the following components in mass %. 65 ⁇ SiO2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 2, 5 ⁇ Al 2 O 3 ⁇ 15, 50 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 60, 1 ⁇ MgO ⁇ 10, 10 ⁇ CaO ⁇ 25, 0 ⁇ ( Li2O + Na2O + K2O ) ⁇ 4, 0 ⁇ T-Fe 2 O 3 ⁇ 5
  • the glass fiber having the glass composition A-2 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability, particularly acid resistance.
  • SiO2 SiO 2 is also the main component in composition A-2.
  • the content of SiO 2 is greater than 65% by mass and not more than 75% by mass, but the lower limit may be 66% by mass or more.
  • the upper limit of the content of SiO 2 may be 72% by mass or less, 70% by mass or less, 69% by mass or less, 68% by mass or less, or even 67% by mass or less.
  • composition A-2 the content of B 2 O 3 and Al 2 O 3 can have the same upper and lower limits as composition A-1.
  • the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content (SiO 2 -Al 2 O 3 ) is more than 50% by mass. It can be 51% by mass or more, 52% by mass or more, or even more than 53% by mass. Further, the upper limit of (SiO 2 -Al 2 O 3 ) may be 60% by mass or less, 59% by mass or less, 58% by mass or less, and further 57% by mass or less.
  • composition A-2 the MgO content may have the same upper and lower limits as composition A-1.
  • the content of CaO is 10% by mass or more and 25% by mass or less.
  • the lower limit of the CaO content may be 12% by mass or more, 13% by mass or more, 14% by mass or more, and even more than 15% by mass.
  • the upper limit of the CaO content may be 23% by mass or less, 22% by mass or less, 21% by mass or less, or even 20% by mass or less.
  • composition A-2 may further contain SrO.
  • the upper limit of the content of SrO can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less , and even less than 0.1% by mass.
  • Composition A-2 may be substantially free of SrO.
  • Composition A-2 may further contain BaO.
  • the content of BaO may have the same upper and lower limits as in composition A-1.
  • Composition A-2 may be substantially free of BaO.
  • composition A-2 may further contain ZnO.
  • the ZnO content may have the same upper and lower limits as composition A-1.
  • Composition A-2 may be substantially free of ZnO.
  • composition A-2 the total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) is 0% by mass or more and 4% by mass or less.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more.
  • the upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3.5% by mass or less, or 3% by mass or less.
  • Composition A-2 may be substantially free of alkali metal oxides.
  • Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
  • composition A-2 Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above.
  • the lower limit of the content of Li 2 O in composition A-2 may be 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more.
  • the upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2.5% by mass or less, or 2% by mass or less.
  • composition A-2 the contents of Na 2 O and K 2 O can have the same upper and lower limits as composition A-1.
  • Composition A-2 may further contain TiO 2 .
  • the content of TiO 2 can have the same upper and lower limits as in composition A-1.
  • Composition A-2 may be substantially free of TiO 2 .
  • composition A-2 may further contain ZrO 2 .
  • the content of ZrO 2 can have the same upper and lower limits as composition A-1.
  • Composition A-2 may be substantially free of ZrO 2 .
  • composition A-2 may further contain each of the above components.
  • the preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
  • Composition A-3 contains the following components expressed in mass %. 60 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 5 ⁇ Al 2 O 3 ⁇ 15, 47 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 60, 1 ⁇ MgO ⁇ 10, 10 ⁇ CaO ⁇ 25, 4 ⁇ ( Li2O + Na2O + K2O ) ⁇ 9 0 ⁇ T-Fe 2 O 3 ⁇ 5
  • the glass fiber having the glass composition A-3 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability, particularly acid resistance.
  • SiO2 SiO 2 is also the main component in composition A-3.
  • the content of SiO 2 is 60% by mass or more and 75% by mass or less, but the lower limit can be 62% by mass or more, 63% by mass or more, 64% by mass or more, and even more than 65% by mass. sell.
  • the upper limit of the content of SiO 2 may be 72% by mass or less, 70% by mass or less, 69% by mass or less, 68% by mass or less, or even 67% by mass or less.
  • B 2 O 3 is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation.
  • the lower limit of the content of B 2 O 3 may be 0.1% by mass or more.
  • the upper limit of the content of B 2 O 3 may be 4% by mass or less, 3% by mass or less, less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less. .
  • the upper limit of the content of B 2 O 3 may be 0.1% by mass or less.
  • Composition A-1 may be substantially free of B 2 O 3 .
  • composition A-3 the content of Al 2 O 3 can have the same upper and lower limits as composition A-1.
  • the lower limit of the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 (SiO 2 -Al 2 O 3 ) is 47% by mass or more, It can be more than 49% by weight, more than 50% by weight, more than 51% by weight, more than 52% by weight, and even more than 53% by weight.
  • the upper limit of (SiO 2 -Al 2 O 3 ) may be 60% by mass or less, 59% by mass or less, 58% by mass or less, and even 57% by mass or less.
  • composition A-3 the MgO content can have the same upper and lower limits as composition A-1.
  • the content of CaO is 10% by mass or more and 25% by mass or less.
  • the lower limit of the CaO content may be 12% by mass or more, 13% by mass or more, 14% by mass or more, and even more than 15% by mass.
  • the upper limit of the content of CaO may be 23% by mass or less, 21% by mass or less, 20% by mass or less, 19% by mass or less, or even 18% by mass or less.
  • the sum of the contents of MgO and CaO can be set to 11% by mass or more and 35% by mass or less.
  • the total content of alkali metal oxides and the total content of MgO and CaO are in appropriate ranges, so that the devitrification temperature of the glass can be suppressed while suppressing an excessive rise in the devitrification temperature.
  • the temperature and viscosity at the time of melting can be set within a range suitable for producing a glass composition. Moreover, high acid resistance of the glass can be ensured.
  • the lower limit of (MgO+CaO) may be 13% by mass or more, more than 14% by mass, 15% by mass or more, 16% by mass or more, and even more than 17% by mass.
  • the upper limit of (MgO+CaO) may be 30% by mass or less, 28% by mass or less, 26% by mass or less, 25% by mass or less, or even 24% by mass or less.
  • composition A-3 may further contain SrO.
  • the SrO content can have the same upper and lower limits as composition A-2.
  • Composition A-3 may be substantially free of SrO.
  • Composition A-3 may further contain BaO.
  • the content of BaO may have the same upper and lower limits as in composition A-1.
  • Composition A-3 may be substantially free of BaO.
  • composition A-3 may further contain ZnO.
  • the ZnO content can have the same upper and lower limits as composition A-1.
  • Composition A-3 may be substantially free of ZnO.
  • the total content of alkali metal oxides is greater than 4% by mass and less than 9% by mass.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be 4.5% by mass or more, or 5% by mass or more.
  • the upper limit of (Li 2 O+Na 2 O+K 2 O) may be 8.5% by mass or less, 8% by mass or less, 7.5% by mass or less, and further 7% by mass or less.
  • Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
  • composition A-3 Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above.
  • the lower limit of the Li 2 O content in composition A-3 may be 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more.
  • the upper limit of the content of Li 2 O may be 3% by mass or less, or 2% by mass or less.
  • the lower limit of the content of Na 2 O may be 0.1% by mass or more, 0.2% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass. In addition to the above, the content may be 2% by mass or more.
  • the upper limit of the content of Na 2 O may be 8% by mass or less, 7% by mass or less, and further 6% by mass or less.
  • the lower limit of the content of K 2 O may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more.
  • the upper limit of the content of K 2 O may be 3% by mass or less, 2% by mass or less, and even 1% by mass or less.
  • Composition A-3 may further contain TiO 2 .
  • the content of TiO 2 can have the same upper and lower limits as in composition A-1.
  • Composition A-3 may be substantially free of TiO 2 .
  • composition A-3 may further contain ZrO 2 .
  • the content of ZrO 2 can have the same upper and lower limits as composition A-1.
  • Composition A-3 may be substantially free of ZrO 2 .
  • composition A-3 may further contain each of the above components.
  • the preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
  • Composition A-4 contains the following components expressed in mass %. 60 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 5 ⁇ Al 2 O 3 ⁇ 15, 47 ⁇ (SiO 2 -Al 2 O 3 ) ⁇ 60, 5 ⁇ CaO ⁇ 20, 6 ⁇ Na 2 O ⁇ 20, 9 ⁇ ( Li2O + Na2O + K2O ) ⁇ 20 0 ⁇ T-Fe 2 O 3 ⁇ 5
  • the glass composition having glass composition A-4 further has excellent heat resistance and chemical durability.
  • composition A-4 Each component in glass composition A-4 will be explained below. However, regarding the role of each component, descriptions that overlap with the glass compositions A-1 to A-3 will be omitted.
  • SiO2 SiO 2 is also the main component in composition A-4. In composition A-4, the content of SiO 2 can have the same upper and lower limits as composition A-3.
  • composition A-4 the content of B 2 O 3 can have the same upper and lower limits as composition A-3.
  • composition A-4 the content of Al 2 O 3 can have the same upper and lower limits as composition A-1.
  • composition A-4 from the viewpoint of improving the acid resistance of the glass, the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 (SiO 2 -Al 2 O 3 ) is the same as that of composition A-3. It can have an upper limit and a lower limit.
  • composition A-4 may further contain MgO.
  • MgO MgO, CaO
  • the lower limit of the content of MgO may be 0% by mass or more, 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more.
  • the upper limit of the content of MgO may be 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, and even 4% by mass or less.
  • the content of CaO is 5% by mass or more and 20% by mass or less.
  • the lower limit of the content of CaO may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 9% by mass or more, or even 10% by mass or more.
  • the upper limit of the content of CaO may be 18% by mass or less, 17% by mass or less, 16% by mass or less, and even 15% by mass or less.
  • composition A-4 when the ease of molding of the glass composition is important, the sum of the contents of MgO and CaO (MgO+CaO) can be set to 5% by mass or more and 30% by mass or less.
  • the sum of the content of alkali metal oxides and the sum of the contents of MgO and CaO is in an appropriate range, so that the devitrification temperature of the glass can be suppressed while suppressing an excessive rise in the devitrification temperature.
  • the temperature and viscosity at the time of melting can be set within a range suitable for producing a glass composition. Moreover, high acid resistance of the glass can be ensured.
  • the lower limit of (MgO+CaO) may be 6% by mass or more, 8% by mass or more, 9% by mass or more, 10% by mass or more, 11% by mass or more, 12% by mass or more, and even 13% by mass or more.
  • the upper limit of (MgO+CaO) may be 26% by mass or less, 23% by mass or less, 22% by mass or less, 21% by mass or less, 20% by mass or less, 19% by mass or less, or even 18% by mass or less.
  • composition A-4 may further contain SrO.
  • the SrO content can have the same upper and lower limits as composition A-2.
  • Composition A-4 may be substantially free of SrO.
  • Composition A-4 may further contain BaO.
  • the BaO content may have the same upper and lower limits as composition A-1.
  • Composition A-4 may be substantially free of BaO.
  • composition A-4 may further contain ZnO.
  • the ZnO content can have the same upper and lower limits as composition A-1.
  • Composition A-4 may be substantially free of ZnO.
  • the total content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 9% by mass or more and 20% by mass or less.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be 9.5% by mass or more, or may be 10% by mass or more.
  • the upper limit of (Li 2 O + Na 2 O + K 2 O) can be 18% by mass or less, 16% by mass or less, less than 15% by mass, 14% by mass or less, 13% by mass or less, 12.5% by mass or less, 12% by mass % or less.
  • Each of Li 2 O and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be 0 as long as the total content of alkali metal oxides is 9% by mass or more.
  • Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above.
  • the inclusion of Li 2 O can lower the working temperature of the glass substrate when forming the glass composition, and when the working temperature is lowered, the glass composition becomes easier to form, and its productivity improves.
  • excessive inclusion of Li 2 O lowers the glass transition temperature and reduces the heat resistance of the glass.
  • the lower limit of the content of Li 2 O in composition A-4 may be 0% by mass or more, 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more.
  • the upper limit of the content of Li 2 O may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or even less than 2% by mass.
  • the content of Na 2 O is 6% by mass or more and 20% by mass or less. When the content of Na 2 O is within these ranges, the effect based on the alkali metal oxide described above becomes more reliable.
  • the lower limit of the content of Na 2 O may be 7% by mass or more, and further may be 8% by mass or more.
  • the upper limit of the content of Na 2 O may be 17% by mass or less, 16% by mass or less, less than 15% by mass, 14% by mass or less, 13% by mass or less, and even 12% by mass or less.
  • the lower limit of the content of K 2 O may be 0% by mass or more, 0.1% by mass or more, or even 0.5% by mass or more.
  • the upper limit of the content of K 2 O may be 5% by mass or less, 3% by mass or less, 2% by mass or less, less than 2% by mass, or even 1% by mass or less.
  • Composition A-4 may further contain TiO 2 .
  • the content of TiO 2 can have the same upper and lower limits as in composition A-1.
  • Composition A-4 may be substantially free of TiO 2 .
  • composition A-4 may further contain ZrO 2 .
  • the content of ZrO 2 can have the same upper and lower limits as composition A-1.
  • Composition A-4 may be substantially free of ZrO 2 .
  • composition A-4 may further contain each of the above components.
  • the preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
  • Glass composition B In addition, another example of the glass composition (hereinafter referred to as glass composition B) is expressed in mass%, 50 ⁇ SiO 2 ⁇ 75, 0 ⁇ B 2 O 3 ⁇ 4, 0.1 ⁇ (MgO+CaO) ⁇ 20, 9 ⁇ ( Li2O + Na2O + K2O ) ⁇ 20, 5 ⁇ ZrO 2 ⁇ 20, Contains the following ingredients.
  • Glass composition B does not need to contain substantially any components other than the above-mentioned components. Moreover, the glass composition B can be a glass fiber with high chemical durability.
  • SiO2 is a component that forms the skeleton of glass and is the main component of composition B. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. A component that improves water resistance and acid resistance.
  • the content of SiO 2 is 50% by mass or more and 75% by mass or less, but the lower limit of the content of SiO 2 can be 52% by mass or more, 54% by mass or more, 56% by mass or more, 58% by mass or more. , 60% by mass or more, 62% by mass or more, 63% by mass or more, 64% by mass or more, more than 65% by mass, or even more than 66% by mass.
  • the upper limit of the content of SiO 2 may be 74% by mass or less, 73% by mass or less, 71% by mass or less, or even 70% by mass or less.
  • Composition B may further contain B 2 O 3 .
  • B 2 O 3 is a component that forms the skeleton of glass.
  • B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive content of B 2 O 3 lowers the acid resistance of the glass.
  • the upper limit of the content of B 2 O 3 may be 4% by mass or less, 3% by mass or less, less than 2% by mass, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even It may be 0.1% by mass or less.
  • Composition B may be substantially free of B 2 O 3 .
  • Composition B may further contain Al 2 O 3 .
  • Al 2 O 3 is a component that forms the skeleton of glass.
  • Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass.
  • excessive content of Al 2 O 3 lowers the acid resistance of the glass.
  • the upper limit of the content of Al 2 O 3 may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or even 1.5% by mass or less.
  • composition B when ease of forming the glass and acid resistance are important, the sum of the contents of B 2 O 3 and Al 2 O 3 (B 2 O 3 +Al 2 O 3 ) may be important.
  • composition B (B 2 O 3 +Al 2 O 3 ) may be 5% by mass or less.
  • an increase in the devitrification temperature of the glass, which would make it difficult to manufacture the glass, is suppressed, and the acid resistance of the glass is increased.
  • the melting point of the glass does not become excessively high, and the uniformity of melting the raw materials increases.
  • the upper limit of (B 2 O 3 +Al 2 O 3 ) may be 4% by mass or less, 3% by mass or less, 2% by mass or less, or even less than 1.5% by mass.
  • Composition B may further contain MgO.
  • MgO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • MgO is also a component that adjusts the acid resistance and water resistance of the glass composition.
  • the lower limit of the MgO content may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even more than 2% by mass.
  • the upper limit of the content of MgO may be 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, or even 5% by mass or less.
  • Composition B may further contain CaO.
  • CaO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • CaO is also a component that adjusts the acid resistance and water resistance of the glass composition.
  • the lower limit of the CaO content may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or even more than 3% by mass.
  • the upper limit of the CaO content may be 15% by mass or less, 12% by mass or less, 10% by mass or less, or even 8% by mass or less.
  • composition B when the value of the sum of the contents of MgO and CaO (MgO+CaO) is 0.1% by mass or more and 20% by mass or less, the devitrification temperature and viscosity of the molten glass can be controlled while suppressing an excessive increase in the devitrification temperature. , the range suitable for glass production. Further, within this range, it is also possible to improve the chemical durability of the glass.
  • the lower limit of (MgO+CaO) may be 2% by mass or more, 4% by mass or more, 6% by mass or more, 8% by mass or more, or even 9% by mass or more.
  • the upper limit of (MgO+CaO) may be 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, or even 13% by mass or less.
  • each of MgO and CaO is an optional component.
  • the lower limit of the content of these components may be 0 as long as the total content is 0.1% by mass or more.
  • Composition B may further contain SrO.
  • SrO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive SrO content reduces the acid resistance of the glass.
  • the upper limit of the SrO content can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less.
  • Composition B may be substantially free of SrO.
  • Composition B may further contain BaO.
  • BaO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • excessive BaO content reduces the acid resistance of the glass.
  • the upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less.
  • Composition B may be substantially free of BaO.
  • composition B may further contain ZnO.
  • ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • ZnO is easily volatilized and may scatter during melting, excessive ZnO content causes significant fluctuations in the glass component ratio due to volatilization, making it difficult to manage the glass composition.
  • the raw material for ZnO is relatively expensive, the content thereof should be low.
  • the upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, less than 3% by mass, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, Furthermore, it may be 0.1% by mass or less.
  • Composition B may be substantially free of ZnO.
  • Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components in composition B that adjust the devitrification temperature and viscosity during glass formation. Further, the alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are also components that adjust the acid resistance and water resistance of the glass. Li 2 O and K 2 O are each optional components. In other words, the lower limit of the content of each of these components may be zero.
  • the lower limit of the content of Li 2 O may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 1.5% by mass or more.
  • the upper limit of the content of Li 2 O may be 5% by mass or less, 4% by mass or less, 3.5% by mass or less, or even 3% by mass or less.
  • the lower limit of the content of Na 2 O may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more.
  • the content of Na 2 O may be 6% by mass or more and 20% by mass or less.
  • the devitrification temperature and viscosity of the molten glass can be controlled to be within a range suitable for glass production while suppressing an excessive increase in the devitrification temperature. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, within this range, it is also possible to improve the chemical durability of the glass.
  • the lower limit of Na 2 O may be 7% by mass or more, 7.5% by mass or more, or even 8% by mass or more.
  • the upper limit of Na 2 O may be 18% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, or even 12% by mass or less.
  • the lower limit of the content of K 2 O may be 0.1% by mass or more, and may be greater than 0.5% by mass.
  • the upper limit of the content of K 2 O may be 10% by mass or less, 5% by mass or less, less than 4% by mass, 3% by mass or less, and even less than 2% by mass.
  • composition B when the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is 9% by mass or more and 20% by mass or less, the devitrification temperature is suppressed and the molten glass is not devitrified excessively.
  • the transmission temperature and viscosity can be set in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, within this range, it is also possible to improve the chemical durability of the glass.
  • the lower limit of (Li 2 O+Na 2 O+K 2 O) may be 9.5% by mass or more, or may be 10% by mass or more.
  • the upper limit of (Li 2 O + Na 2 O + K 2 O) may be 18% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, less than 13% by mass, or even less than 12% by mass.
  • Each of Li 2 O, Na 2 O and K 2 O is an optional component.
  • the lower limit of the content of each of these components may be 0 as long as the total content of alkali metal oxides is 9% by mass or more.
  • composition B may further contain TiO2 .
  • TiO 2 is a component that improves the meltability and chemical durability of glass. However, since the raw material for TiO 2 is relatively expensive, the content thereof should be lower. The upper limit of the content of TiO 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less.
  • Composition B may be substantially free of TiO2 .
  • ZrO2 ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation.
  • ZrO 2 is also a component that adjusts the acid resistance and water resistance of the glass composition.
  • ZrO 2 is also a component that improves Young's modulus.
  • the content of ZrO 2 in composition B is 5% by mass or more and 20% by mass or less, an increase in the devitrification temperature of the glass, which would make it difficult to manufacture the glass, is suppressed, and the water resistance and acid resistance of the glass are increased.
  • the raw material for ZrO 2 is relatively expensive, the content thereof should be lower.
  • the lower limit of the content of ZrO 2 is greater than 5% by mass, and may be 5.5% by mass or more, 6% by mass or more, 6.5% by mass or more, or even 7% by mass or more.
  • the upper limit of the content of ZrO 2 can be 18% by mass or less, 15% by mass or less, 12% by mass or less, 10% by mass or less, 9.5% by mass or less, 9% by mass or less, 8.5% by mass or less , or even 8% by mass or less.
  • Fe Iron (Fe) contained in the glass composition usually exists in the form of Fe 2+ or Fe 3+ .
  • Fe 3+ is a component that enhances the ultraviolet absorption properties of the glass composition
  • Fe 2+ is a component that enhances the heat ray absorption properties of the glass composition. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass composition can be prevented.
  • the upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 mass% or less, 0.04 mass% or less , and even 0.03% by mass or less.
  • the lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
  • Composition B may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass.
  • the upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible.
  • F 2 may be substantially absent.
  • Cl 2 Since Cl 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass.
  • the upper limit of the content of Cl 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. Cl 2 may be substantially free.
  • Glass composition A and glass composition B may further contain the following components as long as the effects of the present invention can be obtained.
  • Glass composition A and glass composition B include P 2 O 5 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O as other components.
  • the total allowable content of these components may be 5% by weight or less, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. .
  • the other components mentioned above may not be substantially contained.
  • oxides of litanoid La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
  • La europoride
  • Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, Lu
  • Glass composition A and glass composition B each contain at least one kind selected from SO 3 , Br 2 , I 2 , SnO 2 , As 2 O 3 and Sb 2 O 3 as an additive in an amount of 0% by mass or more and 1% by mass. It can be contained in a content of % by mass or less.
  • the permissible content of these components can be less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight for each.
  • the total allowable content of these components may be 1% by weight or less, less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight.
  • the other components mentioned above may not be substantially contained.
  • Glass composition A and glass composition B each contain H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar, and N 2 at a content of 0% by mass or more and 0.1% by mass or less. sell.
  • the permissible content of these components can be less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight for each.
  • the total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight.
  • the other components mentioned above may not be substantially contained.
  • Glass composition A and glass composition B may contain trace amounts of noble metal elements.
  • noble metal elements such as Pt, Rh, Au, and Os can be included at a content of 0% by mass or more and 0.1% by mass or less, respectively.
  • the permissible content of these components may be less than 0.1% by weight each, less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight.
  • the total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight.
  • the other components mentioned above may not be substantially contained.
  • Glass composition A and glass composition B may be compositions that do not substantially contain CuO. Moreover, the glass composition A and the glass composition B may be compositions that do not substantially contain CoO. Furthermore, glass composition A and glass composition B may be compositions that do not substantially contain PbO. Moreover, the glass composition A and the glass composition B may be compositions that do not substantially contain NiO.
  • the characteristics that the glass of the present invention can have will be explained below.
  • the temperature at which the viscosity of the molten glass becomes 1000 dPa ⁇ sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for forming the glass.
  • the working temperature is 1100° C. or higher, variations in glass fiber diameter can be reduced. If the working temperature is 1300° C. or lower, the fuel cost for melting glass can be reduced, the glass manufacturing equipment will be less susceptible to corrosion due to heat, and the life of the equipment will be extended.
  • the lower limit of the working temperature may be 1100°C or higher, 1120°C or higher, 1140°C or higher, 1150°C or higher, 1160°C or higher, 1170°C or higher, 1180°C or higher, or even 1200°C or higher.
  • the upper limit of the working temperature may be 1300°C or less, 1280°C or less, 1270°C or less, 1260°C or less, or even 1250°C or less.
  • ⁇ T of glass composition A may be 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, or even 50°C or higher.
  • ⁇ T is 200° C. or less, the glass composition can be easily adjusted.
  • ⁇ T of glass composition A may be 200°C or less, 180°C or less, or even 160°C or less.
  • Young's modulus The higher the Young's modulus of the glass composition forming the glass fiber, the better the elasticity of the glass fiber, and the better the mechanical properties of a heat insulating material or a sound absorbing material made of the glass fiber.
  • the Young's modulus GPa
  • the lower limit of Young's modulus may be 77 GPa or more, 78 GPa or more, 79 GPa or more, or even 80 GPa or more.
  • the upper limit of Young's modulus may preferably be 100 GPa or less, 99 GPa or less, 98 GPa or less, 97 GPa or less, 96 GPa or less, or even 95 GPa or less.
  • Glass-transition temperature The higher the glass transition temperature (Tg) of a glass composition, the higher its heat resistance, and the less likely it is to be deformed by processing that involves high-temperature heating. If the glass transition temperature is 560° C. or higher, there is little risk that the shape of the glass wool will change in the event of a fire or the like. With the glass composition defined in this embodiment, a glass having a glass transition temperature of 560° C. or higher can be easily obtained.
  • the glass transition temperature of the glass composition is preferably 560°C or higher, more preferably 570°C or higher, and even more preferably 580°C or higher.
  • the glass transition temperature may be 600°C or higher, 620°C or higher, 650°C or higher, 680°C or higher, 700°C or higher, 720°C or higher, and in some cases 740°C or higher.
  • the upper limit of the glass transition temperature is preferably about 800°C, more preferably 780°C or less.
  • Acid resistance and water resistance are appropriate indicators of chemical durability in heat insulation and/or sound absorbing material applications.
  • the mass reduction rate ⁇ W 1 described later is employed, and the smaller this ⁇ W 1 is, the higher the acid resistance is.
  • the mass reduction rate ⁇ W 2 described later is employed, and the smaller this ⁇ W 2 is, the higher the water resistance is.
  • ⁇ W 1 is preferably 5.0% by mass or less.
  • ⁇ W 1 of the glass can be 5.0% by mass or less, 4.0% by mass or less, 3.0% by mass or less, 2.0% by mass or less, 1.5% by mass or less, 1.2% by mass or less % or less, 1.0 mass% or less, 0.9 mass% or less, 0.8 mass% or less, 0.7 mass% or less, 0.6 mass% or less, 0.5 mass% or less, 0.4 mass%
  • the content may be 0.3% by mass or less and 0.2% by mass or less.
  • the ⁇ W 1 that can be achieved by this embodiment is, for example, 0.01 to 5.0% by mass.
  • ⁇ W 2 of the glass fiber is less than 0.50% by mass.
  • ⁇ W 2 of the glass composition of the present embodiment may be less than 0.50 mass%, 0.45 mass% or less, 0.40 mass% or less, 0.35 mass% or less, 0.30 mass% or less, It may be 0.25% by mass or less, and 0.20% by mass or less.
  • ⁇ W 2 that can be realized by this embodiment is, for example, 0.01% by mass or more and less than 0.50% by mass.
  • the glass fiber of this embodiment is made of the glass composition described above.
  • the glass fibers of this embodiment may be long glass fibers or short glass fibers.
  • Long glass fibers are produced by flowing a viscosity-controlled glass melt through a nozzle and winding it up with a winder. This continuous fiber is cut to an appropriate length at the time of use.
  • Short glass fibers are manufactured by blowing away glass melt using high-pressure air, centrifugal force, or the like. Short glass fibers are sometimes called glass wool because they have a cotton-like morphology.
  • the average fiber diameter of the glass fibers is, for example, 0.1 to 50 ⁇ m.
  • the average fiber diameter of the glass fibers may be 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, and even 0.5 ⁇ m or more, 50 ⁇ m or less, 40 ⁇ m or less, It may be 30 ⁇ m or less, or 25 ⁇ m or less.
  • the average fiber diameter may be 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or even 5 ⁇ m or more.
  • the average fiber diameter may be 10 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, or even 1 ⁇ m or less.
  • the glass wool of this embodiment contains the above-mentioned glass fibers.
  • the glass wool of this embodiment is, for example, an aggregate of the above-mentioned short glass fibers containing voids inside, and has various shapes depending on the area of use, such as a lump, a flat plate, a curved plate, a corrugated plate, and a cylindrical shape. I can do it.
  • the glass wool of this embodiment can have high chemical durability. Therefore, the glass wool of this embodiment maintains its properties as a heat insulating material and/or sound absorbing material for a long period of time, even in areas where water such as rainwater can enter, areas in highly acidic environments such as chemical factories, etc. Can be maintained stably.
  • Example and comparative example Ordinary glass raw materials such as silica sand were prepared to have the compositions shown in Tables 1 to 7, and batches of glass raw materials were prepared for each example and comparative example. Using an electric furnace, each batch was heated to 1500-1600° C. to melt it and maintained there for about 4 hours until the composition became uniform. Thereafter, a part of the molten glass (glass melt) was poured out onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a bulk glass composition (plate-like material, glass sample).
  • glass melt glass melt
  • the method for evaluating the characteristics will be explained below.
  • Glass-transition temperature The thermal expansion coefficient of the obtained glass composition was measured using a commercially available dilatometer (Rigaku Co., Ltd., Thermomechanical Analyzer, TMA8510), and the glass transition temperature was determined from the thermal expansion curve.
  • the platinum ball pulling method refers to the relationship between the load (resistance) applied when a platinum ball is immersed in molten glass and pulled up with uniform motion, and the gravity and buoyancy force acting on the platinum ball. This is a method of measuring viscosity by applying Stokes' law, which describes the relationship between viscosity and falling speed when minute particles settle in a fluid.
  • devitrification temperature A glass composition pulverized to a particle size of 1.0 to 2.8 mm was placed in a platinum boat, held in an electric furnace with a temperature gradient (800 to 1400°C) for 2 hours, and placed at the position where crystals appeared.
  • the devitrification temperature was determined from the maximum temperature of the corresponding electric furnace. When the glass became cloudy and crystals could not be observed, the maximum temperature of the electric furnace corresponding to the position where the cloudiness appeared was taken as the devitrification temperature.
  • the particle size is a value measured by a sieving method.
  • the temperature difference ⁇ T is the temperature difference obtained by subtracting the devitrification temperature from the working temperature.
  • Glass single fibers (filaments) were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 ⁇ m was produced.
  • the tensile modulus of the obtained glass fiber was measured in accordance with the Japanese Industrial Standards (JIS) "Testing method for tensile properties of carbon fibers - monofilament R7606:2000".
  • JIS Japanese Industrial Standards
  • Glass single fibers were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 ⁇ m was produced.
  • - Acid resistance Cut a single glass fiber with a diameter of 15 ⁇ m into a length of 20 mm, weigh out the same number of grams as the specific gravity of the glass, and immerse this glass fiber in 100 mL of a 10 mass % sulfuric acid aqueous solution at 80°C for 24 hours. Loss in mass The mass reduction rate was determined as ⁇ W 1 .
  • Examples 1 to 75 have a Young's modulus of 77 to 93 GPa, a tensile modulus of elasticity of 69 to 88 GPa, a glass transition temperature of 562 to 782°C, a working temperature of 1208 to 1297°C, and a temperature difference ⁇ T (working temperature - devitrification temperature) of 2 to 271. °C, ⁇ W 1 0.16 to 2.61% by mass, and ⁇ W 2 0.14 to 0.48% by mass.
  • the glass composition of Comparative Example 1 had a plate glass composition, a relatively low glass transition temperature of 553° C., and a relatively large ⁇ W 2 of 0.50% by mass.
  • the glass composition of Comparative Example 2 has a C glass composition.
  • C glass has a relatively low glass transition temperature of 549°C.
  • C glass has a high B 2 O 3 content, and there is concern that it may affect manufacturing equipment.

Abstract

The present disclosure provides novel glass fibers which are suitable for mass production, while being suitable for use as a thermal insulation material and/or a sound absorbing material. The present disclosure provides glass fibers which contain a glass composition that contains, in mass%, 50 ≤ SiO2 ≤ 75, 0 ≤ B2O3 ≤ 4, 5 ≤ Al2O3 ≤ 15, 5 ≤ CaO ≤ 30 and 0 ≤ (Li2O + Na2O + K2O) ≤ 20, or alternatively a glass composition that contains, in mass%, 50 ≤ SiO2 ≤ 75, 0 ≤ B2O3 ≤ 4, 0.1 ≤ (MgO + CaO) ≤ 20, 9 ≤ (Li2O + Na2O + K2O) ≤ 20 and 5 ≤ ZrO2 ≤ 20.

Description

ガラス繊維glass fiber
 本発明は、断熱材および/または防音材としての使用に適したガラス繊維に関する。 The present invention relates to glass fibers suitable for use as thermal and/or soundproofing materials.
 グラスウールは、ガラスを綿状に繊維化したガラス短繊維の集積体であり、内部に多くの空気層を含むため、断熱性能や吸音性能に優れ、建築物・車両などの断熱・吸音材として用いられている。また、グラスウールは燃えることがなく、不燃材料としても用いられる。特許文献1には、このようなグラスウール用のガラス繊維として、ソーダライムガラスやAガラスが好ましいことが開示されている。 Glass wool is an aggregate of short glass fibers made from glass fibers, and because it contains many air layers inside, it has excellent insulation and sound-absorbing performance, and is used as insulation and sound-absorbing material for buildings, vehicles, etc. It is being Additionally, glass wool does not burn and is used as a noncombustible material. Patent Document 1 discloses that soda lime glass and A glass are preferable as glass fibers for such glass wool.
特開2016-141248号公報Japanese Patent Application Publication No. 2016-141248
 ソーダライムガラスやAガラスのようないわゆる板ガラス組成には、耐水性が不十分であり、ガラス繊維の断熱や防音の性能を徐々に低下させるという問題がある。化学的耐久性に優れたガラス組成としてはCガラス組成が知られている。しかし、Cガラス組成は、三酸化二ホウ素(B23)を4~6質量%程度含有する。B23は、ガラス原料の熔融時に飛散しやすく、熔融窯の炉壁や蓄熱窯を浸食する。このため、上記程度にB23を含むガラス組成は、それを製造する装置の寿命に影響を及ぼしうる。そこで、本発明は、断熱材および/または吸音材としての使用に適し、かつ量産にも適した、新たなガラス繊維を提供することを目的とする。 So-called sheet glass compositions such as soda-lime glass and A-glass have a problem in that they have insufficient water resistance and gradually reduce the thermal insulation and soundproofing performance of glass fibers. C glass composition is known as a glass composition with excellent chemical durability. However, the C glass composition contains about 4 to 6% by mass of diboron trioxide (B 2 O 3 ). B 2 O 3 easily scatters when glass raw materials are melted, and corrodes the walls of the melting furnace and the heat storage furnace. Therefore, a glass composition containing B 2 O 3 to the above-mentioned extent can affect the life of the equipment that manufactures it. Therefore, an object of the present invention is to provide a new glass fiber suitable for use as a heat insulating material and/or a sound absorbing material, and also suitable for mass production.
 本発明は、断熱材および/または吸音材用のガラス繊維であって、
 質量%で表示して、
  50≦SiO2≦75、
   0≦B23≦4、
   5≦Al23≦15、
   5≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦20、
 の成分を含有する、ガラス組成物を含む、ガラス繊維を提供する。
The present invention is a glass fiber for a heat insulating material and/or a sound absorbing material,
Displayed in mass%,
50≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
5≦Al 2 O 3 ≦15,
5≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦20,
A glass fiber comprising a glass composition containing the following components is provided.
 本発明は、その別の側面から、断熱材および/または吸音材用のガラス繊維であって、
 質量%で表示して、
  50≦SiO2≦75、
   0≦B23≦4、
 0.1≦(MgO+CaO)≦20、
   9≦(Li2O+Na2O+K2O)≦20、
   5≦ZrO2≦20、
 の成分を含有する、ガラス組成物を含む、ガラス繊維を提供する。
Another aspect of the present invention is a glass fiber for a heat insulating material and/or a sound absorbing material,
Displayed in mass%,
50≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
0.1≦(MgO+CaO)≦20,
9≦( Li2O + Na2O + K2O )≦20,
5≦ZrO 2 ≦20,
A glass fiber comprising a glass composition containing the following components is provided.
 本発明によれば、断熱材および/または吸音材における使用に適し、かつ量産にも適した、新たなガラス繊維が提供される。 According to the present invention, a new glass fiber is provided that is suitable for use in heat insulating materials and/or sound absorbing materials, and is also suitable for mass production.
 以下、本発明の実施形態を説明するが、以下の説明は本発明を特定の実施形態に限定する趣旨ではない。本明細書において、「実質的に含有しない」および「実質的に含有されない」は、含有率が、0.1質量%未満、0.05質量%未満、0.01質量%未満、さらに0.005質量%未満、特に0.003質量%未満、場合によっては0.001質量%未満であることを意味する。「実質的に」は、ガラス原料、製造装置、成形装置などに由来する微量の不純物の含有を許容する趣旨である。「主成分」は、質量基準で含有率が最も大きい成分を意味する。「T-Fe23」は、三酸化二鉄(Fe23)に換算した全酸化鉄を意味する。「アルカリ金属酸化物」は、酸化リチウム(Li2O)、酸化ナトリウム(Na2O)および酸化カリウム(K2O)を意味する。以下に述べる含有率の上限及び下限は、任意に組み合わせることができる。 Embodiments of the present invention will be described below, but the following description is not intended to limit the present invention to specific embodiments. In this specification, "not substantially containing" and "not substantially containing" mean that the content is less than 0.1% by mass, less than 0.05% by mass, less than 0.01% by mass, and even 0. This means less than 0.005% by weight, in particular less than 0.003% by weight, and in some cases less than 0.001% by weight. "Substantially" means that the inclusion of trace amounts of impurities originating from glass raw materials, manufacturing equipment, molding equipment, etc. is allowed. "Main component" means a component having the highest content on a mass basis. “T-Fe 2 O 3 ” means total iron oxide converted to diiron trioxide (Fe 2 O 3 ). "Alkali metal oxide" means lithium oxide (Li 2 O), sodium oxide (Na 2 O) and potassium oxide (K 2 O). The upper and lower limits of the content described below can be arbitrarily combined.
 なお、「断熱材および/または吸音材用のガラス繊維」は、詳細には、「断熱材および吸音材からなる群より選択される少なくとも1つとして使用されるガラス繊維」の意味である。 In addition, "glass fiber for heat insulating material and/or sound absorbing material" specifically means "glass fiber used as at least one selected from the group consisting of heat insulating material and sound absorbing material."
 <ガラス組成物の成分>
(ガラス組成A)
 ガラス組成物の一例(以下、ガラス組成A)は、質量%で表示して、
  50≦SiO2≦75、
   0≦B23≦4、
   5≦Al23≦15、
   5≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦20、
 の成分を含有する。
<Components of glass composition>
(Glass composition A)
An example of a glass composition (hereinafter referred to as glass composition A) is expressed in mass%,
50≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
5≦Al 2 O 3 ≦15,
5≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦20,
Contains the following ingredients.
 ガラス組成Aにおける二酸化ケイ素(SiO2)の含有率は、55質量%以上72質量%以下でありうる。酸化アルミニウム(Al23)の含有率は、5質量%以上14質量%以下でありうる。酸化カルシウム(CaO)の含有率は、5質量%以上28質量%以下でありうる。三酸化二ホウ素(B23)の含有率は、0.1質量%以上4質量%以下でありうる。ガラス組成Aは、B23を実質的に含有しない組成でありうる。アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)は、0.1質量%以上20質量%以下でありうる。ガラス組成Aは、アルカリ金属酸化物を実質的に含有しない組成でありうる。ガラス組成Aは、上述した各成分以外の成分を実質的に含有しなくてもよい。 The content of silicon dioxide (SiO 2 ) in glass composition A may be 55% by mass or more and 72% by mass or less. The content of aluminum oxide (Al 2 O 3 ) may be 5% by mass or more and 14% by mass or less. The content of calcium oxide (CaO) may be 5% by mass or more and 28% by mass or less. The content of diboron trioxide (B 2 O 3 ) may be 0.1% by mass or more and 4% by mass or less. Glass composition A may be a composition that does not substantially contain B 2 O 3 . The total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or more and 20% by mass or less. Glass composition A may be a composition substantially free of alkali metal oxides. Glass composition A does not need to contain substantially any components other than the above-mentioned components.
(ガラス組成Aの具体例)
 以下に、より具体的なガラス組成Aとして、組成A-1~A-4を例示する。
(Specific example of glass composition A)
Below, compositions A-1 to A-4 are illustrated as more specific glass compositions A.
 (組成A-1)
 組成A-1は、質量%表示で以下の成分を含有する。
  50≦SiO2≦67、
   0≦B23<2、
   5≦Al23≦15、
 45≦(SiO2-Al23)≦57、
   1≦MgO≦10、
  10≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦12
   0≦T-Fe23≦5
(Composition A-1)
Composition A-1 contains the following components in mass %.
50≦SiO 2 ≦67,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
45≦(SiO 2 -Al 2 O 3 )≦57,
1≦MgO≦10,
10≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦12
0≦T-Fe 2 O 3 ≦5
 ガラス組成A-1を有するガラス組成物は、耐熱性に優れ、高温に過熱されたときの変形が抑制されるとともに、化学的耐久性に優れる。 The glass composition having glass composition A-1 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability.
 ガラス組成A-1における各成分について、以下に説明する。
 (SiO2
 SiO2は、ガラスの骨格を形成する成分であり、組成A-1の主成分である。また、SiO2は、ガラス形成時の失透温度および粘度を調整する成分であり、耐酸性を向上させる成分である。SiO2の含有率は、50質量%以上67質量%以下、特に55質量%以上65質量%以下であるが、SiO2の含有率の下限は、56質量%以上でありうるし、57質量%以上、58質量%以上、59質量%以上でありうるし、60質量%より大きくてもよい。SiO2の含有率の上限は、64質量%以下でありうるし、63質量%以下でありうる。
Each component in glass composition A-1 will be explained below.
( SiO2 )
SiO 2 is a component that forms the skeleton of glass and is the main component of composition A-1. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves acid resistance. The content of SiO 2 is 50% by mass or more and 67% by mass or less, particularly 55% by mass or more and 65% by mass or less, but the lower limit of the content of SiO 2 can be 56% by mass or more, and 57% by mass or more. , 58% by mass or more, 59% by mass or more, or even more than 60% by mass. The upper limit of the content of SiO 2 may be 64% by mass or less, or 63% by mass or less.
 (B23
 B23は、ガラスの骨格を形成する成分である。また、B23は、ガラス形成時の失透温度および粘度を調整する成分でもある。B23の含有率の下限は、0.1質量%以上でありうる。B23の含有率の上限は、2質量%未満でありうるし、1.5質量%以下、1質量%以下、0.5質量%以下でありうる。B23の含有率の上限は、0.1質量%以下であってもよい。組成A-1はB23を実質的に含有しなくてもよい。
(B 2 O 3 )
B 2 O 3 is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation. The lower limit of the content of B 2 O 3 may be 0.1% by mass or more. The upper limit of the content of B 2 O 3 may be less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less. The upper limit of the content of B 2 O 3 may be 0.1% by mass or less. Composition A-1 may be substantially free of B 2 O 3 .
 (Al23
 Al23は、ガラスの骨格を形成する成分である。また、Al23は、ガラス形成時の失透温度および粘度を調整する成分でもあり、ガラスの耐水性を向上させる成分である。さらに、Al23は、ガラスのヤング率および耐熱性を向上させる成分である。一方で、過度のAl23の含有は、ガラスの耐酸性を低下させる。Al23の含有率が5質量%以上15質量%以下では、ガラスの製造が難しくなるようなガラスの失透温度の上昇が抑えられるとともに、ガラスの耐酸性が高くなる。また、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。Al23の含有率の下限は、6質量%以上でありうるし、7質量%以上、8質量%以上、8.5質量%以上、9質量%以上、9.5質量%以上、10質量%以上、10.5質量%以上、11質量%以上、さらには11.1質量%以上でありうる。Al23の含有率の上限は、14質量%以下でありうるし、13質量%以下、12.5質量%以下、12質量%未満、さらには11.9質量%以下でありうる。
( Al2O3 )
Al 2 O 3 is a component that forms the skeleton of glass. Furthermore, Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass. Furthermore, Al 2 O 3 is a component that improves the Young's modulus and heat resistance of glass. On the other hand, excessive content of Al 2 O 3 lowers the acid resistance of the glass. When the Al 2 O 3 content is 5% by mass or more and 15% by mass or less, an increase in the devitrification temperature of the glass, which would make glass production difficult, is suppressed, and the acid resistance of the glass is increased. Furthermore, the melting point of the glass does not become excessively high, and the uniformity of melting the raw materials increases. The lower limit of the content of Al 2 O 3 may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 8.5% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass % or more, 10.5% by mass or more, 11% by mass or more, and even 11.1% by mass or more. The upper limit of the content of Al 2 O 3 may be 14% by mass or less, 13% by mass or less, 12.5% by mass or less, less than 12% by mass, or even 11.9% by mass or less.
 (SiO2-Al23
 ガラスの耐酸性向上の観点からは、SiO2の含有率からAl23の含有率を引いた値(SiO2-Al23)の下限は、45質量%以上、47質量%以上、48質量%超、48.5質量%以上、49質量%超でありうるし、さらには49.5質量%以上でありうる。また、(SiO2-Al23)の上限は、57質量%以下でありうるし、56質量%以下、55質量%以下、54質量%以下、53.5質量%以下、53質量%以下、さらには52質量%以下でありうる。
(SiO 2 -Al 2 O 3 )
From the viewpoint of improving the acid resistance of glass, the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content (SiO 2 - Al 2 O 3 ) is 45% by mass or more, 47% by mass or more, It can be more than 48% by mass, more than 48.5% by mass, more than 49% by mass, and even more than 49.5% by mass. Further, the upper limit of (SiO 2 -Al 2 O 3 ) may be 57% by mass or less, 56% by mass or less, 55% by mass or less, 54% by mass or less, 53.5% by mass or less, 53% by mass or less, Furthermore, it may be 52% by mass or less.
 (SiO2-B23-Al23
 ガラスの耐酸性向上の観点からは、SiO2の含有率からB23の含有率を引いてさらにAl23の含有率を引いた値(SiO2-B23-Al23)の下限は、45質量%以上、46質量%以上、47質量%以上、48質量%超、48.5質量%以上、49質量%超でありうるし、さらには49.5質量%以上でありうる。また、(SiO2-B23-Al23)の上限は、56質量%以下でありうるし、55質量%以下、54質量%以下、53質量%以下、53.5質量%以下、52質量%以下、さらには51質量%以下でありうる。
(SiO 2 -B 2 O 3 -Al 2 O 3 )
From the perspective of improving the acid resistance of glass, the value obtained by subtracting the B 2 O 3 content from the SiO 2 content and further subtracting the Al 2 O 3 content (SiO 2 -B 2 O 3 -Al 2 O 3 ) The lower limit may be 45% by mass or more, 46% by mass or more, 47% by mass or more, more than 48% by mass, 48.5% by mass or more, more than 49% by mass, and even 49.5% by mass or more. It's possible. Further, the upper limit of (SiO 2 -B 2 O 3 -Al 2 O 3 ) may be 56% by mass or less, 55% by mass or less, 54% by mass or less, 53% by mass or less, 53.5% by mass or less, It may be 52% by mass or less, or even 51% by mass or less.
 (MgO、CaO)
 MgOおよびCaOは、ガラス形成時の失透温度および粘度を調整する成分である。また、MgOおよびCaOは、ヤング率を向上させる成分でもある。MgOの含有率は、1質量%以上10質量%以下であるが、下限は、1.5質量%以上、1.8質量%以上、さらには2質量%以上でありうる。MgOの含有率の上限は、8質量%以下、6質量%以下、5質量%以下、4.5質量%以下、さらには4質量%以下でありうる。
(MgO, CaO)
MgO and CaO are components that adjust the devitrification temperature and viscosity during glass formation. Moreover, MgO and CaO are also components that improve Young's modulus. The content of MgO is 1% by mass or more and 10% by mass or less, but the lower limit can be 1.5% by mass or more, 1.8% by mass or more, or even 2% by mass or more. The upper limit of the content of MgO may be 8% by mass or less, 6% by mass or less, 5% by mass or less, 4.5% by mass or less, or even 4% by mass or less.
 CaOの含有率が10質量%以上30質量%以下では、失透温度の過度な上昇を抑制しながらガラスの失透温度および熔融時の粘度を、ガラス組成物の製造に適した範囲とすることができる。CaOの含有率の下限は、15質量%以上でありうるし、16質量%以上、17質量%以上、18質量%以上、さらに19質量%以上、場合によっては20質量%以上でありうる。CaOの含有率の上限は、28質量%以下でありうるし、27質量%以下、26質量%以下、25質量%以下、さらには24質量%以下でありうる。 When the content of CaO is 10% by mass or more and 30% by mass or less, the devitrification temperature and the viscosity at the time of melting of the glass should be in a range suitable for manufacturing a glass composition while suppressing an excessive increase in the devitrification temperature. I can do it. The lower limit of the CaO content may be 15% by mass or more, 16% by mass or more, 17% by mass or more, 18% by mass or more, further 19% by mass or more, and in some cases 20% by mass or more. The upper limit of the content of CaO may be 28% by mass or less, 27% by mass or less, 26% by mass or less, 25% by mass or less, or even 24% by mass or less.
 (MgO+CaO)
 ガラスの熔融性や成形性に関し、MgOおよびCaOの含有率の和(MgO+CaO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO)の下限は、8質量%以上、9質量%以上、9.5質量%以上、10質量%以上、10.5質量%以上、11質量%以上、11.5質量%以上、12質量%以上、13質量%以上、13.5質量%以上、14質量%以上、14.5質量%以上、15質量%以上、16質量%以上、17質量%以上、18質量%以上、19質量%以上、20質量%以上、21質量%以上、22質量%以上でありうる。また、(MgO+CaO)の上限は、40質量%以下が好ましく、35質量%以下、32質量%以下、30質量%以下、29質量%以下、28質量%以下、27質量%以下、26.5質量%以下、26質量%以下、25質量%以下、24質量%以下、23質量%以下でありうる。
(MgO+CaO)
Regarding the meltability and moldability of glass, the value of the sum of the contents of MgO and CaO (MgO+CaO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limits of (MgO+CaO) are 8% by mass or more, 9% by mass or more, 9.5% by mass or more, 10% by mass or more, and 10.5% by mass. % or more, 11 mass% or more, 11.5 mass% or more, 12 mass% or more, 13 mass% or more, 13.5 mass% or more, 14 mass% or more, 14.5 mass% or more, 15 mass% or more, 16 It can be at least 17% by mass, at least 18% by mass, at least 19% by mass, at least 20% by mass, at least 21% by mass, and at least 22% by mass. Further, the upper limit of (MgO+CaO) is preferably 40% by mass or less, 35% by mass or less, 32% by mass or less, 30% by mass or less, 29% by mass or less, 28% by mass or less, 27% by mass or less, 26.5% by mass % or less, 26% by mass or less, 25% by mass or less, 24% by mass or less, or 23% by mass or less.
 (SrO)
 組成A-1は酸化ストロンチウム(SrO)をさらに含有しうる。SrOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のSrOの含有はガラスの耐酸性を低下させる。SrOの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、1質量%以上、2質量%以上、3質量%以上、4質量%以上、5質量%以上、6質量%以上、7質量%以上、さらには8質量%以上でありうる。SrOの含有率の上限は、15質量%以下でありうるし、12質量%以下、10質量%以下、8質量%以下、6質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下でありうる。SrOの含有率の上限は、0.1質量%以下であってもよい。組成A-1はSrOを実質的に含有しなくてもよい。
(SrO)
Composition A-1 may further contain strontium oxide (SrO). SrO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive SrO content reduces the acid resistance of the glass. The lower limit of the content of SrO may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, 5% by mass or more, It may be 6% by mass or more, 7% by mass or more, or even 8% by mass or more. The upper limit of the content of SrO can be 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less , 2% by mass or less, 1.5% by mass or less, 1% by mass or less, and 0.5% by mass or less. The upper limit of the SrO content may be 0.1% by mass or less. Composition A-1 may be substantially free of SrO.
 (MgO+CaO+SrO)
 ガラスの熔融性や成形性に関し、MgO、CaOおよびSrOの含有率の合計(MgO+CaO+SrO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO+SrO)の下限は、15質量%以上が好ましく、18質量%以上、20質量%以上、21質量%以上、22質量%以上、23質量%以上、24質量%以上、25質量%以上、26質量%以上、27質量%以上、28質量%以上でありうる。また、(MgO+CaO+SrO)の上限は、40質量%以下が好ましく、38質量%以下、36質量%以下、35質量%以下、34質量%以下でありうる。
(MgO+CaO+SrO)
Regarding the meltability and moldability of glass, the value of the total content of MgO, CaO and SrO (MgO+CaO+SrO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limit of (MgO + CaO + SrO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more. Further, the upper limit of (MgO+CaO+SrO) is preferably 40% by mass or less, and may be 38% by mass or less, 36% by mass or less, 35% by mass or less, or 34% by mass or less.
 (BaO)
 組成A-1は酸化バリウム(BaO)をさらに含有しうる。BaOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のBaOの含有はガラスの耐酸性を低下させる。BaOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成A-1はBaOを実質的に含有しなくてもよい。
(BaO)
Composition A-1 may further contain barium oxide (BaO). BaO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive BaO content reduces the acid resistance of the glass. The upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less. Composition A-1 may be substantially free of BaO.
 (MgO+CaO+SrO+BaO)
 ガラスの熔融性や成形性に関し、MgO、CaO、SrOおよびBaOの含有率の合計(MgO+CaO+SrO+BaO)の値が重要となる。ガラスの製造に適した熔融性や成形性を得る観点からは、(MgO+CaO+SrO+BaO)の下限は、15質量%以上が好ましく、18質量%以上、20質量%以上、21質量%以上、22質量%以上、23質量%以上、24質量%以上、25質量%以上、26質量%以上、27質量%以上、28質量%以上でありうる。また、(MgO+CaO+SrO+BaO)の上限は、40質量%以下が好ましく、38質量%以下、36質量%以下、35質量%以下、34質量%以下でありうる。
(MgO+CaO+SrO+BaO)
Regarding the meltability and moldability of glass, the value of the total content of MgO, CaO, SrO and BaO (MgO+CaO+SrO+BaO) is important. From the viewpoint of obtaining meltability and formability suitable for glass production, the lower limit of (MgO+CaO+SrO+BaO) is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, 21% by mass or more, 22% by mass or more. , 23% by mass or more, 24% by mass or more, 25% by mass or more, 26% by mass or more, 27% by mass or more, and 28% by mass or more. Further, the upper limit of (MgO+CaO+SrO+BaO) is preferably 40% by mass or less, and may be 38% by mass or less, 36% by mass or less, 35% by mass or less, or 34% by mass or less.
 (ZnO)
 組成A-1は酸化亜鉛(ZnO)をさらに含有しうる。また、組成A-1に含まれた場合にZnOは、ガラス形成時の失透温度および粘度を調整する成分である。ただしZnOは、その原料が相対的に高価であることから、その含有率は低いほうがよい。組成A-1においてZnOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成A-1はZnOを実質的に含有しなくてもよい。
(ZnO)
Composition A-1 may further contain zinc oxide (ZnO). Furthermore, when included in composition A-1, ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation. However, since the raw material for ZnO is relatively expensive, the content thereof should be low. In composition A-1, the upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, Furthermore, it may be 0.1% by mass or less. Composition A-1 may be substantially free of ZnO.
 (Li2O、Na2O、K2O)
 アルカリ金属酸化物(Li2O、Na2O、K2O)は、ガラス形成時の失透温度および粘度を調整する成分である。アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)の値が0質量%以上4質量%以下では、失透温度の過度な上昇を抑制しながら熔融ガラスの失透温度および粘度を、ガラスの製造に適した範囲とすることができる。また、ガラスの融点の上昇を抑え、ガラス原料のより均一な熔融を実施できながらも、ガラス転移温度が過度に低下することなく、高いガラスの耐熱性を確保できる。さらに、ガラスの耐酸性が高くなる。(Li2O+Na2O+K2O)の下限は、0質量%より大きくてもよいし、0.1質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、3質量%以下でありうるし、2質量%以下、2質量%未満でありうる。(Li2O+Na2O+K2O)の値を0.1質量%以下としてもよい。組成A-1はアルカリ金属酸化物を実質的に含有しなくてもよい。Li2O、Na2O、およびK2Oのそれぞれは任意成分である。言い換えるとこれらの各成分の含有率の下限は0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that adjust the devitrification temperature and viscosity during glass formation. When the value of the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is 0% by mass or more and 4% by mass or less, the devitrification temperature and viscosity of the molten glass are reduced while suppressing an excessive increase in the devitrification temperature. can be in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, the acid resistance of the glass increases. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be greater than 0% by mass, or may be greater than or equal to 0.1% by mass. The upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3% by mass or less, 2% by mass or less, and less than 2% by mass. The value of (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or less. Composition A-1 may be substantially free of alkali metal oxides. Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
 酸化リチウム(Li2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上、0.3質量%以上、さらには0.4質量%以上でありうる。Li2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the content of lithium oxide (Li 2 O) may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, and even 0.4% by mass or more. The upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, and even 1% by mass or less.
 酸化ナトリウム(Na2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上でありうる。Na2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the content of sodium oxide (Na 2 O) may be 0.1% by mass or more, or 0.2% by mass or more. The upper limit of the content of Na 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
 酸化カリウム(K2O)の含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上でありうる。K2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、1.5質量%以下、さらには1質量%以下でありうる。 The lower limit of the potassium oxide (K 2 O) content may be 0.1% by mass or more, or 0.2% by mass or more. The upper limit of the content of K 2 O may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
 (TiO2
 組成A-1は二酸化チタン(TiO2)をさらに含有しうる。TiO2は、ガラスの熔融性および化学的耐久性を向上させ、ガラスの紫外線吸収特性を向上させる成分である。また、TiO2は、ガラスの耐酸性や耐水性を向上させる成分である。ただしTiO2は、その原料が相対的に高価であることから、その含有率は低いほうがよい。TiO2の含有率の下限は、0.1質量%以上でありうる。TiO2の含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.3質量%以下、さらには0.2質量%以下でありうる。組成A-1はTiO2を実質的に含有しなくてもよい。
( TiO2 )
Composition A-1 may further contain titanium dioxide (TiO 2 ). TiO 2 is a component that improves the meltability and chemical durability of glass, and improves the ultraviolet absorption characteristics of glass. Furthermore, TiO 2 is a component that improves the acid resistance and water resistance of glass. However, since the raw material for TiO 2 is relatively expensive, the content thereof should be lower. The lower limit of the content of TiO 2 may be 0.1% by mass or more. The upper limit of the content of TiO 2 can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.3% by mass or less, and even 0. It may be 2% by mass or less. Composition A-1 may be substantially free of TiO 2 .
 (ZrO2
 組成A-1は酸化ジルコニウム(ZrO2)をさらに含有しうる。ZrO2は、ガラス形成時の失透温度および粘度を調整する成分である。また、ZrO2は、ガラスの耐酸性や耐アルカリ性を向上させる成分である。さらに、ZrO2は、ガラスのヤング率および耐熱性を向上させる成分である。ただしZrO2は、その原料が相対的に高価であることから、その含有率は低いほうがよい。ZrO2の含有率の上限は、7質量%以下でありうるし、6質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成A-1はZrO2を実質的に含有しなくてもよい。
( ZrO2 )
Composition A-1 may further contain zirconium oxide (ZrO 2 ). ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. Furthermore, ZrO 2 is a component that improves the acid resistance and alkali resistance of glass. Furthermore, ZrO 2 is a component that improves the Young's modulus and heat resistance of glass. However, since the raw material for ZrO 2 is relatively expensive, the content thereof should be lower. The upper limit of the content of ZrO 2 may be 7% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5 It may be less than 0.1% by mass, and even less than 0.1% by mass. Composition A-1 may be substantially free of ZrO 2 .
 (Fe)
 組成A-1は三酸化二鉄(Fe23)をさらに含有しうる。鉄(Fe)は、通常、Fe2+またはFe3+の状態で存在する。Fe3+はガラスの紫外線吸収特性を高める成分であり、Fe2+はガラスの熱線吸収特性を高める成分である。Feは、意図的に含ませなくとも、工業用原料により不可避的に混入する場合がある。Feの含有量が少なければ、ガラスの着色を防止することができる。Feの含有率の上限は、T-Fe23により表示して5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、さらには0.1質量%以下、0.1質量%未満、0.08質量%以下、0.05質量%以下、0.04質量%以下、さらには0.03質量%以下でありうる。Feの含有率の下限は、T-Fe23により表示して0.01質量%以上、0.05質量%以上、0.1質量%以上、さらに0.2質量%以上でありうる。特にアルカリ金属酸化物の含有率が低いガラス組成において、微量の酸化鉄はガラスの清澄の促進に寄与しうる。
(Fe)
Composition A-1 may further contain diiron trioxide (Fe 2 O 3 ). Iron (Fe) usually exists in the Fe 2+ or Fe 3+ state. Fe 3+ is a component that enhances the ultraviolet absorption properties of glass, and Fe 2+ is a component that enhances heat ray absorption properties of glass. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass can be prevented. The upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 mass% or less, 0.04 mass% or less , and even 0.03% by mass or less. The lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
 (F2、Cl2
 組成A-1はフッ素(F2)および塩素(Cl2)をさらに含有しうる。F2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。F2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%以下でありうる。組成A-1はF2を実質的に含有しなくてもよい。
( F2 , Cl2 )
Composition A-1 may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. Composition A-1 may be substantially free of F 2 .
 Cl2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。Cl2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%以下でありうる。組成A-1はCl2を実質的に含有しなくてもよい。 Since Cl 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of Cl 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. Composition A-1 may be substantially free of Cl 2 .
 組成A-1は、次段落以降に質量%表示で記載する好ましい組成を有しうる。 Composition A-1 may have a preferred composition described in mass % in the following paragraphs.
  50≦SiO2≦67、
   0≦B23<2、
   5≦Al23≦15、
 45≦(SiO2-Al23)≦57、
   1≦MgO≦10、
  15≦CaO≦30、
   0≦T-Fe23≦5、
 の成分を含有し、アルカリ金属酸化物を実質的に含有しない組成。
50≦SiO 2 ≦67,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
45≦(SiO 2 -Al 2 O 3 )≦57,
1≦MgO≦10,
15≦CaO≦30,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following components and substantially free of alkali metal oxides.
  57≦SiO2≦67、
   0≦B23<2、
   5≦Al23≦15、
 45≦(SiO2-Al23)≦57、
   1≦MgO≦10、
  15≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦T-Fe23≦5、
 の成分を含有する組成。
57≦SiO 2 ≦67,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
45≦(SiO 2 -Al 2 O 3 )≦57,
1≦MgO≦10,
15≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
  55≦SiO2≦67、
 0.1≦B23<2、
   5≦Al23≦15、
 45≦(SiO2-Al23)≦57、
   1≦MgO≦10、
  15≦CaO≦30、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦T-Fe23≦5、
 の成分を含有する組成。
55≦SiO 2 ≦67,
0.1≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
45≦(SiO 2 -Al 2 O 3 )≦57,
1≦MgO≦10,
15≦CaO≦30,
0≦( Li2O + Na2O + K2O )≦4,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
  50≦SiO2≦67、
   0≦B23<2、
   5≦Al23≦15、
 45≦(SiO2-Al23)≦57、
  1≦MgO≦10、
 10≦CaO≦30、
   1≦SrO≦15、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦T-Fe23≦5、
 の成分を含有する組成。
50≦SiO 2 ≦67,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
45≦(SiO 2 -Al 2 O 3 )≦57,
1≦MgO≦10,
10≦CaO≦30,
1≦SrO≦15,
0≦( Li2O + Na2O + K2O )≦4,
0≦T-Fe 2 O 3 ≦5,
A composition containing the following ingredients.
 以上の各組成において、0≦ZnO≦2、がさらに成立する組成。 In each of the above compositions, 0≦ZnO≦2 is further satisfied.
 以上の各組成(ただし、0.1≦B23<2が成立する組成を除く)において、B23を実質的に含有しない組成。 Each of the above compositions (excluding compositions where 0.1≦B 2 O 3 <2) does not substantially contain B 2 O 3 .
 (組成A-2)
 組成A-2は、質量%表示で以下の成分を含有する。
  65<SiO2≦75、
   0≦B23<2、
   5≦Al23≦15、
 50<(SiO2-Al23)≦60、
   1≦MgO≦10、
  10≦CaO≦25、
   0≦(Li2O+Na2O+K2O)≦4、
   0≦T-Fe23≦5
(Composition A-2)
Composition A-2 contains the following components in mass %.
65< SiO2 ≦75,
0≦B 2 O 3 <2,
5≦Al 2 O 3 ≦15,
50<(SiO 2 -Al 2 O 3 )≦60,
1≦MgO≦10,
10≦CaO≦25,
0≦( Li2O + Na2O + K2O )≦4,
0≦T-Fe 2 O 3 ≦5
 ガラス組成A-2を有するガラス繊維は、耐熱性に優れ、高温に過熱されたときの変形が抑制されるとともに、化学的耐久性、特に耐酸性、に優れる。 The glass fiber having the glass composition A-2 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability, particularly acid resistance.
 ガラス組成A-2における各成分について、以下に説明する。ただし、各成分の役割について、ガラス組成A-1と重複する記載は割愛する。 Each component in glass composition A-2 will be explained below. However, regarding the role of each component, descriptions that overlap with glass composition A-1 will be omitted.
 (SiO2
 SiO2は、組成A-2においても主成分である。SiO2の含有率は、65質量%より大きく75質量%以下であるが、下限は、66質量%以上でありうる。SiO2の含有率の上限は、72質量%以下でありうるし、70質量%以下、69質量%以下、68質量%以下、さらには67質量%以下でありうる。
( SiO2 )
SiO 2 is also the main component in composition A-2. The content of SiO 2 is greater than 65% by mass and not more than 75% by mass, but the lower limit may be 66% by mass or more. The upper limit of the content of SiO 2 may be 72% by mass or less, 70% by mass or less, 69% by mass or less, 68% by mass or less, or even 67% by mass or less.
 (B23)(Al23
 組成A-2において、B23およびAl23の含有率は、組成A-1と同様の上限及び下限を有しうる。
(B 2 O 3 ) (Al 2 O 3 )
In composition A-2, the content of B 2 O 3 and Al 2 O 3 can have the same upper and lower limits as composition A-1.
 (SiO2-Al23
 組成A-2では、ガラスの耐酸性向上の観点から、SiO2の含有率からAl23の含有率を引いた値(SiO2-Al23)の下限は、50質量%超でありうるし、51質量%以上、52質量%以上、さらには53質量%超でありうる。また、(SiO2-Al23)の上限は、60質量%以下でありうるし、59質量%以下、、58質量%以下、さらに57質量%以下でありうる。
(SiO 2 -Al 2 O 3 )
In composition A-2, from the viewpoint of improving the acid resistance of the glass, the lower limit of the value obtained by subtracting the Al 2 O 3 content from the SiO 2 content (SiO 2 -Al 2 O 3 ) is more than 50% by mass. It can be 51% by mass or more, 52% by mass or more, or even more than 53% by mass. Further, the upper limit of (SiO 2 -Al 2 O 3 ) may be 60% by mass or less, 59% by mass or less, 58% by mass or less, and further 57% by mass or less.
 (MgO、CaO)
 組成A-2において、MgOの含有率は組成A-1と同様の上限及び下限を有しうる。
(MgO, CaO)
In composition A-2, the MgO content may have the same upper and lower limits as composition A-1.
 組成A-2において、CaOの含有率は10質量%以上25質量%以下である。CaOの含有率の下限は、12質量%以上でありうるし、13質量%以上、14質量%以上、さらには15質量%より大きいことがありうる。CaOの含有率の上限は、23質量%以下でありうるし、22質量%以下、21質量%以下、さらには20質量%以下でありうる。 In composition A-2, the content of CaO is 10% by mass or more and 25% by mass or less. The lower limit of the CaO content may be 12% by mass or more, 13% by mass or more, 14% by mass or more, and even more than 15% by mass. The upper limit of the CaO content may be 23% by mass or less, 22% by mass or less, 21% by mass or less, or even 20% by mass or less.
 (SrO)
 組成A-2はSrOをさらに含有しうる。組成A-2において、SrOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%未満でありうる。組成A-2はSrOを実質的に含有しなくてもよい。
(SrO)
Composition A-2 may further contain SrO. In composition A-2, the upper limit of the content of SrO can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less , and even less than 0.1% by mass. Composition A-2 may be substantially free of SrO.
 (BaO)
 組成A-2はBaOをさらに含有しうる。組成A-2においてBaOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-2はBaOを実質的に含有しなくてもよい。
(BaO)
Composition A-2 may further contain BaO. In composition A-2, the content of BaO may have the same upper and lower limits as in composition A-1. Composition A-2 may be substantially free of BaO.
 (ZnO)
 組成A-2はZnOをさらに含有しうる。組成A-2においてZnOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-2はZnOを実質的に含有しなくてもよい。
(ZnO)
Composition A-2 may further contain ZnO. In composition A-2, the ZnO content may have the same upper and lower limits as composition A-1. Composition A-2 may be substantially free of ZnO.
 (Li2O、Na2O、K2O)
 組成A-2において、アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)は0質量%以上4質量%以下である。(Li2O+Na2O+K2O)の下限は、0.1質量%以上でありうるし、1質量%以上、1.5質量%以上、さらには2質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、3.5質量%以下でありうるし、3質量%以下でありうる。組成A-2はアルカリ金属酸化物を実質的に含有しなくてもよい。Li2O、Na2O、およびK2Oのそれぞれは任意成分である。言い換えるとこれらの各成分の含有率の下限は0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
In composition A-2, the total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) is 0% by mass or more and 4% by mass or less. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be 0.1% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more. The upper limit of (Li 2 O+Na 2 O+K 2 O) may be 3.5% by mass or less, or 3% by mass or less. Composition A-2 may be substantially free of alkali metal oxides. Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
 組成A-2では、Li2Oが、上述したアルカリ金属酸化物に基づく効果について特に高い寄与を示す。この観点からは、組成A-2におけるLi2Oの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、さらには1質量%以上でありうる。Li2Oの含有率の上限は、4質量%以下でありうるし、3質量%以下、2.5質量%以下でありうるし、2質量%以下でありうる。 In composition A-2, Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above. From this point of view, the lower limit of the content of Li 2 O in composition A-2 may be 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more. The upper limit of the content of Li 2 O may be 4% by mass or less, 3% by mass or less, 2.5% by mass or less, or 2% by mass or less.
 組成A-2において、Na2OおよびK2Oの含有率は、組成A-1と同様の上限および下限を有しうる。 In composition A-2, the contents of Na 2 O and K 2 O can have the same upper and lower limits as composition A-1.
 (TiO2
 組成A-2はTiO2をさらに含有しうる。組成A-2においてTiO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-2はTiO2を実質的に含有しなくてもよい。
( TiO2 )
Composition A-2 may further contain TiO 2 . In composition A-2, the content of TiO 2 can have the same upper and lower limits as in composition A-1. Composition A-2 may be substantially free of TiO 2 .
 (ZrO2
 組成A-2はZrO2をさらに含有しうる。組成A-2においてZrO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-2はZrO2を実質的に含有しなくてもよい。
( ZrO2 )
Composition A-2 may further contain ZrO 2 . In composition A-2, the content of ZrO 2 can have the same upper and lower limits as composition A-1. Composition A-2 may be substantially free of ZrO 2 .
 (Fe)(F2、Cl2
 組成A-2は上記各成分をさらに含有しうる。これら各成分の好ましい含有率その他は、組成A-1と同様であるため、記載を省略する。
(Fe) (F 2 , Cl 2 )
Composition A-2 may further contain each of the above components. The preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
 (組成A-3)
 組成A-3は、質量%表示で以下の成分を含有する。
  60≦SiO2≦75、
   0≦B23≦4、
   5≦Al23≦15、
 47≦(SiO2-Al23)≦60、
   1≦MgO≦10、
  10≦CaO≦25、
   4<(Li2O+Na2O+K2O)<9
   0≦T-Fe23≦5
(Composition A-3)
Composition A-3 contains the following components expressed in mass %.
60≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
5≦Al 2 O 3 ≦15,
47≦(SiO 2 -Al 2 O 3 )≦60,
1≦MgO≦10,
10≦CaO≦25,
4<( Li2O + Na2O + K2O )<9
0≦T-Fe 2 O 3 ≦5
 ガラス組成A-3を有するガラス繊維は、耐熱性に優れ、高温に過熱されたときの変形が抑制されるとともに、化学的耐久性、特に耐酸性、に優れる。 The glass fiber having the glass composition A-3 has excellent heat resistance, suppresses deformation when heated to high temperatures, and has excellent chemical durability, particularly acid resistance.
 ガラス組成A-3における各成分について、以下に説明する。ただし、各成分の役割について、ガラス組成A-1またはA-2と重複する記載は割愛する。
 (SiO2
 SiO2は、組成A-3においても主成分である。SiO2の含有率は、60質量%以上 75質量%以下であるが、下限は、62質量%以上でありうるし、63質量%以上、64質量%以上、さらには65質量%より大きいことがありうる。SiO2の含有率の上限は、72質量%以下でありうるし、70質量%以下、69質量%以下、68質量%以下、さらには67質量%以下でありうる。
Each component in glass composition A-3 will be explained below. However, regarding the role of each component, descriptions that overlap with the glass composition A-1 or A-2 will be omitted.
( SiO2 )
SiO 2 is also the main component in composition A-3. The content of SiO 2 is 60% by mass or more and 75% by mass or less, but the lower limit can be 62% by mass or more, 63% by mass or more, 64% by mass or more, and even more than 65% by mass. sell. The upper limit of the content of SiO 2 may be 72% by mass or less, 70% by mass or less, 69% by mass or less, 68% by mass or less, or even 67% by mass or less.
 (B23
 B23は、ガラスの骨格を形成する成分である。また、B23は、ガラス形成時の失透温度および粘度を調整する成分でもある。B23の含有率の下限は、0.1質量%以上でありうる。B23の含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%未満、1.5質量%以下、1質量%以下、0.5質量%以下でありうる。B23の含有率の上限は、0.1質量%以下であってもよい。組成A-1はB23を実質的に含有しなくてもよい。
(B 2 O 3 )
B 2 O 3 is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation. The lower limit of the content of B 2 O 3 may be 0.1% by mass or more. The upper limit of the content of B 2 O 3 may be 4% by mass or less, 3% by mass or less, less than 2% by mass, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less. . The upper limit of the content of B 2 O 3 may be 0.1% by mass or less. Composition A-1 may be substantially free of B 2 O 3 .
 (Al23
 組成A-3において、Al23の含有率は、組成A-1と同様の上限及び下限を有しうる。
( Al2O3 )
In composition A-3, the content of Al 2 O 3 can have the same upper and lower limits as composition A-1.
 (SiO2-Al23
 組成A-3では、ガラスの耐酸性向上の観点から、SiO2の含有率からAl23の含有率を引いた値(SiO2-Al23)の下限は、47質量%以上、49質量%超、50質量%超、51質量%以上、52質量%以上、さらに53質量%超でありうる。また、(SiO2-Al23)の上限は、60質量%以下でありうるし、59質量%以下、58質量%以下、さらには57質量%以下でありうる。
(SiO 2 -Al 2 O 3 )
In composition A-3, from the viewpoint of improving the acid resistance of the glass, the lower limit of the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 (SiO 2 -Al 2 O 3 ) is 47% by mass or more, It can be more than 49% by weight, more than 50% by weight, more than 51% by weight, more than 52% by weight, and even more than 53% by weight. Further, the upper limit of (SiO 2 -Al 2 O 3 ) may be 60% by mass or less, 59% by mass or less, 58% by mass or less, and even 57% by mass or less.
 (MgO、CaO)
 組成A-3において、MgOの含有率は組成A-1と同様の上限及び下限を有しうる。
(MgO, CaO)
In composition A-3, the MgO content can have the same upper and lower limits as composition A-1.
 組成A-3において、CaOの含有率は10質量%以上25質量%以下である。CaOの含有率の下限は、12質量%以上でありうるし、13質量%以上、14質量%以上、さらには15質量%より大きいことがありうる。CaOの含有率の上限は、23質量%以下でありうるし、21質量%以下、20質量%以下、19質量%以下、さらには18質量%以下でありうる。 In composition A-3, the content of CaO is 10% by mass or more and 25% by mass or less. The lower limit of the CaO content may be 12% by mass or more, 13% by mass or more, 14% by mass or more, and even more than 15% by mass. The upper limit of the content of CaO may be 23% by mass or less, 21% by mass or less, 20% by mass or less, 19% by mass or less, or even 18% by mass or less.
 (MgO+CaO)
 組成A-3においてガラス組成物の成形し易さを重視する場合、MgOおよびCaOの含有率の和(MgO+CaO)を11質量%以上35質量%以下とすることができる。組成A-3では、アルカリ金属酸化物の含有率の合計とMgOおよびCaOの含有率の合計とが適切な範囲にあることによって、失透温度の過度な上昇を抑制しながら、ガラスの失透温度および熔融時の粘度をガラス組成物の製造に適した範囲とすることができる。また、ガラスの高い耐酸性を確保できる。(MgO+CaO)の下限は、13質量%以上でありうるし、14質量%超、15質量%以上、16質量%以上、さらには17質量%超でありうる。(MgO+CaO)の上限は、30質量%以下でありうるし、28質量%以下、26質量%以下、25質量%以下、さらには24質量%以下でありうる。
(MgO+CaO)
When emphasizing the ease of molding of the glass composition in composition A-3, the sum of the contents of MgO and CaO (MgO+CaO) can be set to 11% by mass or more and 35% by mass or less. In composition A-3, the total content of alkali metal oxides and the total content of MgO and CaO are in appropriate ranges, so that the devitrification temperature of the glass can be suppressed while suppressing an excessive rise in the devitrification temperature. The temperature and viscosity at the time of melting can be set within a range suitable for producing a glass composition. Moreover, high acid resistance of the glass can be ensured. The lower limit of (MgO+CaO) may be 13% by mass or more, more than 14% by mass, 15% by mass or more, 16% by mass or more, and even more than 17% by mass. The upper limit of (MgO+CaO) may be 30% by mass or less, 28% by mass or less, 26% by mass or less, 25% by mass or less, or even 24% by mass or less.
 (SrO)
 組成A-3はSrOをさらに含有しうる。組成A-3においてSrOの含有率は組成A-2と同様の上限および下限を有しうる。組成A-3はSrOを実質的に含有しなくてもよい。
(SrO)
Composition A-3 may further contain SrO. In composition A-3, the SrO content can have the same upper and lower limits as composition A-2. Composition A-3 may be substantially free of SrO.
 (BaO)
 組成A-3はBaOをさらに含有しうる。組成A-3においてBaOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-3はBaOを実質的に含有しなくてもよい。
(BaO)
Composition A-3 may further contain BaO. In composition A-3, the content of BaO may have the same upper and lower limits as in composition A-1. Composition A-3 may be substantially free of BaO.
 (ZnO)
 組成A-3はZnOをさらに含有しうる。組成A-3においてZnOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-3はZnOを実質的に含有しなくてもよい。
(ZnO)
Composition A-3 may further contain ZnO. In composition A-3, the ZnO content can have the same upper and lower limits as composition A-1. Composition A-3 may be substantially free of ZnO.
 (Li2O、Na2O、K2O)
 組成A-3において、アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)は4質量%より大きく9質量%未満である。(Li2O+Na2O+K2O)の下限は、4.5質量%以上でありうるし、5質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、8.5質量%以下でありうるし、8質量%以下、7.5質量%以下、さらに7質量%以下でありうる。Li2O、Na2O、およびK2Oのそれぞれは任意成分である。言い換えるとこれらの各成分の含有率の下限は0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
In composition A-3, the total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) is greater than 4% by mass and less than 9% by mass. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be 4.5% by mass or more, or 5% by mass or more. The upper limit of (Li 2 O+Na 2 O+K 2 O) may be 8.5% by mass or less, 8% by mass or less, 7.5% by mass or less, and further 7% by mass or less. Each of Li 2 O, Na 2 O, and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be zero.
 組成A-3では、Li2Oが、上述したアルカリ金属酸化物に基づく効果について特に高い寄与を示す。この観点からは、組成A-3におけるLi2Oの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、さらには1質量%以上でありうる。Li2Oの含有率の上限は、3質量%以下でありうるし、2質量%以下でありうる。 In composition A-3, Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above. From this point of view, the lower limit of the Li 2 O content in composition A-3 may be 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more. The upper limit of the content of Li 2 O may be 3% by mass or less, or 2% by mass or less.
 組成A-3において、Na2Oの含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上、0.5質量%以上、1質量%以上、1.5質量%以上、さらに2質量%以上でありうる。Na2Oの含有率の上限は、8質量%以下、7質量%以下、さらに6質量%以下でありうる。 In composition A-3, the lower limit of the content of Na 2 O may be 0.1% by mass or more, 0.2% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass. In addition to the above, the content may be 2% by mass or more. The upper limit of the content of Na 2 O may be 8% by mass or less, 7% by mass or less, and further 6% by mass or less.
 組成A-3において、K2Oの含有率の下限は、0.1質量%以上でありうるし、0.2質量%以上、0.3質量%以上でありうる。K2Oの含有率の上限は、3質量%以下でありうるし、2質量%以下、さらには1質量%以下でありうる。 In composition A-3, the lower limit of the content of K 2 O may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more. The upper limit of the content of K 2 O may be 3% by mass or less, 2% by mass or less, and even 1% by mass or less.
 (TiO2
 組成A-3はTiO2をさらに含有しうる。組成A-3においてTiO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-3はTiO2を実質的に含有しなくてもよい。
( TiO2 )
Composition A-3 may further contain TiO 2 . In composition A-3, the content of TiO 2 can have the same upper and lower limits as in composition A-1. Composition A-3 may be substantially free of TiO 2 .
 (ZrO2
 組成A-3はZrO2をさらに含有しうる。組成A-3においてZrO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-3はZrO2を実質的に含有しなくてもよい。
( ZrO2 )
Composition A-3 may further contain ZrO 2 . In composition A-3, the content of ZrO 2 can have the same upper and lower limits as composition A-1. Composition A-3 may be substantially free of ZrO 2 .
 (Fe)(F2、Cl2
 組成A-3は上記各成分をさらに含有しうる。これら各成分の好ましい含有率その他は、組成A-1と同様であるため、記載を省略する。
(Fe) (F 2 , Cl 2 )
Composition A-3 may further contain each of the above components. The preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
 (組成A-4)
 組成A-4は、質量%表示で以下の成分を含有する。
  60≦SiO2≦75、
   0≦B23≦4、
   5≦Al23≦15、
 47≦(SiO2-Al23)≦60、
   5≦CaO≦20、
   6≦Na2O≦20、
   9≦(Li2O+Na2O+K2O)≦20
   0≦T-Fe23≦5
(Composition A-4)
Composition A-4 contains the following components expressed in mass %.
60≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
5≦Al 2 O 3 ≦15,
47≦(SiO 2 -Al 2 O 3 )≦60,
5≦CaO≦20,
6≦Na 2 O≦20,
9≦( Li2O + Na2O + K2O )≦20
0≦T-Fe 2 O 3 ≦5
 ガラス組成A-4を有するガラス組成物は、さらに、耐熱性および化学的耐久性に優れる。 The glass composition having glass composition A-4 further has excellent heat resistance and chemical durability.
 ガラス組成A-4における各成分について、以下に説明する。ただし、各成分の役割について、ガラス組成A-1~A-3と重複する記載は割愛する。
 (SiO2
 SiO2は、組成A-4においても主成分である。組成A-4において、SiO2の含有率は、組成A-3と同様の上限及び下限を有しうる。
Each component in glass composition A-4 will be explained below. However, regarding the role of each component, descriptions that overlap with the glass compositions A-1 to A-3 will be omitted.
( SiO2 )
SiO 2 is also the main component in composition A-4. In composition A-4, the content of SiO 2 can have the same upper and lower limits as composition A-3.
 (B23
 組成A-4において、B23の含有率は、組成A-3と同様の上限及び下限を有しうる。
(B 2 O 3 )
In composition A-4, the content of B 2 O 3 can have the same upper and lower limits as composition A-3.
 (Al23
 組成A-4において、Al23の含有率は、組成A-1と同様の上限及び下限を有しうる。
( Al2O3 )
In composition A-4, the content of Al 2 O 3 can have the same upper and lower limits as composition A-1.
 (SiO2-Al23
 組成A-4では、ガラスの耐酸性向上の観点から、SiO2の含有率からAl23の含有率を引いた値(SiO2-Al23)は、組成A-3と同様の上限及び下限を有しうる。
(SiO 2 -Al 2 O 3 )
In composition A-4, from the viewpoint of improving the acid resistance of the glass, the value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 (SiO 2 -Al 2 O 3 ) is the same as that of composition A-3. It can have an upper limit and a lower limit.
 (MgO、CaO)
 組成A-4はMgOをさらに含有しうる。ただし、組成A-4においてMgOの含有は必須ではない。MgOの含有率の下限は、0質量%以上、0.1質量%以上、0.5質量%以上、1質量%以上、1.5質量%以上、さらには2質量%以上でありうる。MgOの含有率の上限は、10質量%以下でありうるし、8質量%以下、6質量%以下、5質量%以下、さらには4質量%以下でありうる。
(MgO, CaO)
Composition A-4 may further contain MgO. However, the inclusion of MgO in composition A-4 is not essential. The lower limit of the content of MgO may be 0% by mass or more, 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even 2% by mass or more. The upper limit of the content of MgO may be 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, and even 4% by mass or less.
 組成A-4において、CaOの含有率は5質量%以上20質量%以下である。CaOの含有率の下限は、6質量%以上でありうるし、7質量%以上、8質量%以上、9質量%以上、さらには10質量%以上でありうる。CaOの含有率の上限は、18質量%以下でありうるし、17質量%以下、16質量%以下、さらには15質量%以下でありうる。 In composition A-4, the content of CaO is 5% by mass or more and 20% by mass or less. The lower limit of the content of CaO may be 6% by mass or more, 7% by mass or more, 8% by mass or more, 9% by mass or more, or even 10% by mass or more. The upper limit of the content of CaO may be 18% by mass or less, 17% by mass or less, 16% by mass or less, and even 15% by mass or less.
(MgO+CaO)
 組成A-4においてガラス組成物の成形し易さを重視する場合、MgOおよびCaOの含有率の和(MgO+CaO)を5質量%以上30質量%以下とすることができる。組成A-4では、アルカリ金属酸化物の含有率の合計とMgOおよびCaOの含有率の和とが適切な範囲にあることによって、失透温度の過度な上昇を抑制しながら、ガラスの失透温度および熔融時の粘度をガラス組成物の製造に適した範囲とすることができる。また、ガラスの高い耐酸性を確保できる。(MgO+CaO)の下限は、6質量%以上でありうるし、8質量%以上、9質量%以上、10質量%以上、11質量%以上、12質量%以上、さらには13質量%以上でありうる。(MgO+CaO)の上限は、26質量%以下でありうるし、23質量%以下、22質量%以下、21質量%以下、20質量%以下、19質量%以下、さらには18質量%以下でありうる。
(MgO+CaO)
In composition A-4, when the ease of molding of the glass composition is important, the sum of the contents of MgO and CaO (MgO+CaO) can be set to 5% by mass or more and 30% by mass or less. In composition A-4, the sum of the content of alkali metal oxides and the sum of the contents of MgO and CaO is in an appropriate range, so that the devitrification temperature of the glass can be suppressed while suppressing an excessive rise in the devitrification temperature. The temperature and viscosity at the time of melting can be set within a range suitable for producing a glass composition. Moreover, high acid resistance of the glass can be ensured. The lower limit of (MgO+CaO) may be 6% by mass or more, 8% by mass or more, 9% by mass or more, 10% by mass or more, 11% by mass or more, 12% by mass or more, and even 13% by mass or more. The upper limit of (MgO+CaO) may be 26% by mass or less, 23% by mass or less, 22% by mass or less, 21% by mass or less, 20% by mass or less, 19% by mass or less, or even 18% by mass or less.
 (SrO)
 組成A-4はSrOをさらに含有しうる。組成A-4においてSrOの含有率は組成A-2と同様の上限および下限を有しうる。組成A-4はSrOを実質的に含有しなくてもよい。
(SrO)
Composition A-4 may further contain SrO. In composition A-4, the SrO content can have the same upper and lower limits as composition A-2. Composition A-4 may be substantially free of SrO.
 (BaO)
 組成A-4はBaOをさらに含有しうる。組成A-4においてBaOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-4はBaOを実質的に含有しなくてもよい。
(BaO)
Composition A-4 may further contain BaO. In composition A-4, the BaO content may have the same upper and lower limits as composition A-1. Composition A-4 may be substantially free of BaO.
 (ZnO)
 組成A-4はZnOをさらに含有しうる。組成A-4においてZnOの含有率は組成A-1と同様の上限および下限を有しうる。組成A-4はZnOを実質的に含有しなくてもよい。
(ZnO)
Composition A-4 may further contain ZnO. In composition A-4, the ZnO content can have the same upper and lower limits as composition A-1. Composition A-4 may be substantially free of ZnO.
 (Li2O、Na2O、K2O)
 組成A-4において、アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)は9質量%以上20質量%以下である。(Li2O+Na2O+K2O)の下限は、9.5質量%以上でありうるし、10質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、18質量%以下でありうるし、16質量%以下、15質量%未満、14質量%以下、13質量%以下、12.5質量%以下、12質量%以下でありうる。Li2OおよびK2Oのそれぞれは任意成分である。言い換えるとこれらの各成分の含有率の下限は、アルカリ金属酸化物の含有率の合計が9質量%以上である限り、0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
In composition A-4, the total content of alkali metal oxides (Li 2 O+Na 2 O+K 2 O) is 9% by mass or more and 20% by mass or less. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be 9.5% by mass or more, or may be 10% by mass or more. The upper limit of (Li 2 O + Na 2 O + K 2 O) can be 18% by mass or less, 16% by mass or less, less than 15% by mass, 14% by mass or less, 13% by mass or less, 12.5% by mass or less, 12% by mass % or less. Each of Li 2 O and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be 0 as long as the total content of alkali metal oxides is 9% by mass or more.
 組成A-4では、Li2Oが、上述したアルカリ金属酸化物に基づく効果について特に高い寄与を示す。また、Li2Oの含有によって、ガラス組成物を形成する際のガラス素地の作業温度を下げることができ、作業温度が下がるとガラス組成物が形成しやすくなり、その生産性が向上する。一方、過度のLi2Oの含有は、ガラス転移温度を下げ、ガラスの耐熱性が低下する。組成A-4におけるLi2Oの含有率の下限は、0質量%以上でありうるし、0.1質量%以上、0.5質量%以上、さらには1質量%以上でありうる。Li2Oの含有率の上限は、5質量%以下でありうるし、4質量%以下、3質量%以下、2質量%以下、さらには2質量%未満でありうる。 In composition A-4, Li 2 O makes a particularly high contribution to the effect based on the alkali metal oxide described above. In addition, the inclusion of Li 2 O can lower the working temperature of the glass substrate when forming the glass composition, and when the working temperature is lowered, the glass composition becomes easier to form, and its productivity improves. On the other hand, excessive inclusion of Li 2 O lowers the glass transition temperature and reduces the heat resistance of the glass. The lower limit of the content of Li 2 O in composition A-4 may be 0% by mass or more, 0.1% by mass or more, 0.5% by mass or more, or even 1% by mass or more. The upper limit of the content of Li 2 O may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or even less than 2% by mass.
 Na2Oの含有率は、6質量%以上20質量%以下である。Na2Oの含有率がこれらの範囲において、上述したアルカリ金属酸化物に基づく効果がより確実となる。Na2Oの含有率の下限は、7質量%以上でありうるし、さらには8質量%以上でありうる。Na2Oの含有率の上限は、17質量%以下でありうるし、16質量%以下、15質量%未満、14質量%以下、13質量%以下、さらには12質量%以下でありうる。 The content of Na 2 O is 6% by mass or more and 20% by mass or less. When the content of Na 2 O is within these ranges, the effect based on the alkali metal oxide described above becomes more reliable. The lower limit of the content of Na 2 O may be 7% by mass or more, and further may be 8% by mass or more. The upper limit of the content of Na 2 O may be 17% by mass or less, 16% by mass or less, less than 15% by mass, 14% by mass or less, 13% by mass or less, and even 12% by mass or less.
 組成A-4においてK2Oの含有率の下限は、0質量%以上でありうるし、0.1質量%以上、さらには0.5質量%以上でありうる。K2Oの含有率の上限は、5質量%以下でありうるし、3質量%以下、2質量%以下、2質量%未満、さらには1質量%以下でありうる。 In composition A-4, the lower limit of the content of K 2 O may be 0% by mass or more, 0.1% by mass or more, or even 0.5% by mass or more. The upper limit of the content of K 2 O may be 5% by mass or less, 3% by mass or less, 2% by mass or less, less than 2% by mass, or even 1% by mass or less.
 (TiO2
 組成A-4はTiO2をさらに含有しうる。組成A-4においてTiO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-4はTiO2を実質的に含有しなくてもよい。
( TiO2 )
Composition A-4 may further contain TiO 2 . In composition A-4, the content of TiO 2 can have the same upper and lower limits as in composition A-1. Composition A-4 may be substantially free of TiO 2 .
 (ZrO2
 組成A-4はZrO2をさらに含有しうる。組成A-4においてZrO2の含有率は組成A-1と同様の上限および下限を有しうる。組成A-4はZrO2を実質的に含有しなくてもよい。
( ZrO2 )
Composition A-4 may further contain ZrO 2 . In composition A-4, the content of ZrO 2 can have the same upper and lower limits as composition A-1. Composition A-4 may be substantially free of ZrO 2 .
 (Fe)(F2、Cl2
 組成A-4は上記各成分をさらに含有しうる。これら各成分の好ましい含有率その他は、組成A-1と同様であるため、記載を省略する。
(Fe) (F 2 , Cl 2 )
Composition A-4 may further contain each of the above components. The preferred contents and other details of each of these components are the same as those for composition A-1, so their description will be omitted.
(ガラス組成B)
 また、ガラス組成物の別の一例(以下、ガラス組成B)は、質量%で表示して、
   50≦SiO2≦75、
    0≦B23≦4、
  0.1≦(MgO+CaO)≦20、
    9≦(Li2O+Na2O+K2O)≦20、
    5≦ZrO2≦20、
 の成分を含有する。
(Glass composition B)
In addition, another example of the glass composition (hereinafter referred to as glass composition B) is expressed in mass%,
50≦SiO 2 ≦75,
0≦B 2 O 3 ≦4,
0.1≦(MgO+CaO)≦20,
9≦( Li2O + Na2O + K2O )≦20,
5≦ZrO 2 ≦20,
Contains the following ingredients.
 ガラス組成Bは、上述した各成分以外の成分を実質的に含有しなくてもよい。また、ガラス組成Bは、高い化学的耐久性を備えたガラス繊維となりうる。 Glass composition B does not need to contain substantially any components other than the above-mentioned components. Moreover, the glass composition B can be a glass fiber with high chemical durability.
 ガラス組成Bにおける各成分について、以下に説明する。
 (SiO2
 SiO2は、ガラスの骨格を形成する成分であり、組成Bの主成分である。また、SiO2は、ガラス形成時の失透温度および粘度を調整する成分であり。耐水性や耐酸性を向上させる成分である。SiO2の含有率は、50質量%以上75質量%以下であるが、SiO2の含有率の下限は、52質量%以上でありうるし、54質量%以上、56質量%以上、58質量%以上、60質量%以上、62質量%以上、63質量%以上、64質量%以上、65質量%より大きく、さらには66質量%より大きくてもよい。SiO2の含有率の上限は、74質量%以下でありうるし、73質量%以下、71質量%以下、さらには70質量%以下でありうる。
Each component in glass composition B will be explained below.
( SiO2 )
SiO 2 is a component that forms the skeleton of glass and is the main component of composition B. Further, SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. A component that improves water resistance and acid resistance. The content of SiO 2 is 50% by mass or more and 75% by mass or less, but the lower limit of the content of SiO 2 can be 52% by mass or more, 54% by mass or more, 56% by mass or more, 58% by mass or more. , 60% by mass or more, 62% by mass or more, 63% by mass or more, 64% by mass or more, more than 65% by mass, or even more than 66% by mass. The upper limit of the content of SiO 2 may be 74% by mass or less, 73% by mass or less, 71% by mass or less, or even 70% by mass or less.
 (B23
 組成Bは、B23をさらに含有しうる。B23は、ガラスの骨格を形成する成分である。また、B23は、ガラス形成時の失透温度および粘度を調整する成分でもある。一方で、過度のB23の含有は、ガラスの耐酸性を低下させる。B23の含有率の上限は、4質量%以下でありうるし、3質量%以下、2質量%未満、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成BはB23を実質的に含有しなくてもよい。
(B 2 O 3 )
Composition B may further contain B 2 O 3 . B 2 O 3 is a component that forms the skeleton of glass. Moreover, B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive content of B 2 O 3 lowers the acid resistance of the glass. The upper limit of the content of B 2 O 3 may be 4% by mass or less, 3% by mass or less, less than 2% by mass, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even It may be 0.1% by mass or less. Composition B may be substantially free of B 2 O 3 .
 (Al23
 組成Bは、Al23をさらに含有しうる。Al23は、ガラスの骨格を形成する成分である。また、Al23は、ガラス形成時の失透温度および粘度を調整する成分でもあり、ガラスの耐水性を向上させる成分である。一方で、過度のAl23の含有は、ガラスの耐酸性を低下させる。Al23の含有率の上限は、5質量%以下でありうるし、4質量%以下、3質量%以下、2質量%以下、さらには1.5質量%以下でありうる。
( Al2O3 )
Composition B may further contain Al 2 O 3 . Al 2 O 3 is a component that forms the skeleton of glass. Furthermore, Al 2 O 3 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass. On the other hand, excessive content of Al 2 O 3 lowers the acid resistance of the glass. The upper limit of the content of Al 2 O 3 may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or even 1.5% by mass or less.
 (B23+Al23
 組成Bでは、ガラスの形成し易さおよび耐酸性を重視する場合、B23およびAl23の含有率の和(B23+Al23)が重要となりうる。組成Bにおいて(B23+Al23)は5質量%以下でありうる。この場合、ガラスの製造が難しくなるようなガラスの失透温度の上昇が抑えられるとともに、ガラスの耐酸性が高くなる。また、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。(B23+Al23)の上限は、4質量%以下でありうるし、3質量%以下、2質量%以下、さらには1.5質量%未満でありうる。
(B 2 O 3 + Al 2 O 3 )
In composition B, when ease of forming the glass and acid resistance are important, the sum of the contents of B 2 O 3 and Al 2 O 3 (B 2 O 3 +Al 2 O 3 ) may be important. In composition B, (B 2 O 3 +Al 2 O 3 ) may be 5% by mass or less. In this case, an increase in the devitrification temperature of the glass, which would make it difficult to manufacture the glass, is suppressed, and the acid resistance of the glass is increased. Furthermore, the melting point of the glass does not become excessively high, and the uniformity of melting the raw materials increases. The upper limit of (B 2 O 3 +Al 2 O 3 ) may be 4% by mass or less, 3% by mass or less, 2% by mass or less, or even less than 1.5% by mass.
 (MgO、CaO)
 組成BはMgOをさらに含有しうる。MgOは、ガラス形成時の失透温度および粘度を調整する成分である。また、MgOは、ガラス組成物の耐酸性および耐水性を調整する成分でもある。MgOの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、1質量%以上、1.5質量%以上、さらには2質量%より大きくてもよい。MgOの含有率の上限は、15質量%以下でありうるし、12質量%以下、10質量%以下、8質量%以下、6質量%以下、さらには5質量%以下でありうる。
(MgO, CaO)
Composition B may further contain MgO. MgO is a component that adjusts the devitrification temperature and viscosity during glass formation. Moreover, MgO is also a component that adjusts the acid resistance and water resistance of the glass composition. The lower limit of the MgO content may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, or even more than 2% by mass. The upper limit of the content of MgO may be 15% by mass or less, 12% by mass or less, 10% by mass or less, 8% by mass or less, 6% by mass or less, or even 5% by mass or less.
 組成BはCaOをさらに含有しうる。CaOは、ガラス形成時の失透温度および粘度を調整する成分である。また、CaOは、ガラス組成物の耐酸性および耐水性を調整する成分でもある。CaOの含有率の下限は、0.1質量%以上でありうるし、1質量%以上、2質量%以上、さらには3質量%より大きくてもよい。CaOの含有率の上限は、15質量%以下でありうるし、12質量%以下、10質量%以下、さらには8質量%以下でありうる。 Composition B may further contain CaO. CaO is a component that adjusts the devitrification temperature and viscosity during glass formation. CaO is also a component that adjusts the acid resistance and water resistance of the glass composition. The lower limit of the CaO content may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or even more than 3% by mass. The upper limit of the CaO content may be 15% by mass or less, 12% by mass or less, 10% by mass or less, or even 8% by mass or less.
 組成Bにおいて、MgOおよびCaOの含有率の和(MgO+CaO)の値が0.1質量%以上20質量%以下では、失透温度の過度な上昇を抑制しながら熔融ガラスの失透温度および粘度を、ガラスの製造に適した範囲とすることができる。また、この範囲ではガラスの化学的耐久性を向上させることも可能となる。(MgO+CaO)の下限は、2質量%以上でありうるし、4質量%以上、6質量%以上、8質量%以上、さらには9質量%以上でありうる。(MgO+CaO)の上限は、20質量%以下でありうるし、18質量%以下、16質量%以下、14質量%以下、さらには13質量%以下でありうる。組成BにおいてMgOおよびCaOのそれぞれは任意成分である。言い換えるとこれらの成分の含有率の下限は、その合計が0.1質量%以上である限り、0であってもよい。 In composition B, when the value of the sum of the contents of MgO and CaO (MgO+CaO) is 0.1% by mass or more and 20% by mass or less, the devitrification temperature and viscosity of the molten glass can be controlled while suppressing an excessive increase in the devitrification temperature. , the range suitable for glass production. Further, within this range, it is also possible to improve the chemical durability of the glass. The lower limit of (MgO+CaO) may be 2% by mass or more, 4% by mass or more, 6% by mass or more, 8% by mass or more, or even 9% by mass or more. The upper limit of (MgO+CaO) may be 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, or even 13% by mass or less. In composition B, each of MgO and CaO is an optional component. In other words, the lower limit of the content of these components may be 0 as long as the total content is 0.1% by mass or more.
 (SrO)
 組成BはSrOをさらに含有しうる。SrOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のSrOの含有はガラスの耐酸性を低下させる。SrOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成BはSrOを実質的に含有しなくてもよい。
(SrO)
Composition B may further contain SrO. SrO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive SrO content reduces the acid resistance of the glass. The upper limit of the SrO content can be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less. Composition B may be substantially free of SrO.
 (BaO)
 組成BはBaOをさらに含有しうる。BaOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のBaOの含有はガラスの耐酸性を低下させる。BaOの含有率の上限は、10質量%以下でありうるし、5質量%以下、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成BはBaOを実質的に含有しなくてもよい。
(BaO)
Composition B may further contain BaO. BaO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, excessive BaO content reduces the acid resistance of the glass. The upper limit of the BaO content may be 10% by mass or less, 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. % by mass or less. Composition B may be substantially free of BaO.
 (ZnO)
 組成BはZnOをさらに含有しうる。ZnOは、ガラス形成時の失透温度および粘度を調整する成分である。一方で、ZnOは揮発しやすく、熔融時に飛散する可能性があるため、過度のZnOの含有は、揮発によるガラス成分比の変動を顕著化させ、ガラス組成の管理を難しくする。またZnOは、その原料が相対的に高価であることから、その含有率は低いほうがよい。ZnOの含有率の上限は、10質量%以下でありうるし、5質量%以下、3質量%未満、2質量%以下、1.5質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成BはZnOを実質的に含有しなくてもよい。
(ZnO)
Composition B may further contain ZnO. ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation. On the other hand, since ZnO is easily volatilized and may scatter during melting, excessive ZnO content causes significant fluctuations in the glass component ratio due to volatilization, making it difficult to manage the glass composition. Furthermore, since the raw material for ZnO is relatively expensive, the content thereof should be low. The upper limit of the content of ZnO may be 10% by mass or less, 5% by mass or less, less than 3% by mass, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, Furthermore, it may be 0.1% by mass or less. Composition B may be substantially free of ZnO.
 (Li2O、Na2O、K2O)
 アルカリ金属酸化物(Li2O、Na2O、K2O)は、組成Bにおいて、ガラス形成時の失透温度および粘度を調整する成分である。また、アルカリ金属酸化物(Li2O、Na2O、K2O)は、ガラスの耐酸性および耐水性を調整する成分でもある。Li2OおよびK2Oは、それぞれ任意成分である。言い換えるとこれらの各成分の含有率の下限は0であってもよい。
(Li 2 O, Na 2 O, K 2 O)
Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components in composition B that adjust the devitrification temperature and viscosity during glass formation. Further, the alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are also components that adjust the acid resistance and water resistance of the glass. Li 2 O and K 2 O are each optional components. In other words, the lower limit of the content of each of these components may be zero.
 Li2Oの含有率の下限は、0.1質量%以上でありうるし、0.5質量%以上、1質量%以上、1.5質量%以上でありうる。Li2Oの含有率の上限は、5質量%以下でありうるし、4質量%以下、3.5質量%以下、さらには3質量%以下でありうる。 The lower limit of the content of Li 2 O may be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 1.5% by mass or more. The upper limit of the content of Li 2 O may be 5% by mass or less, 4% by mass or less, 3.5% by mass or less, or even 3% by mass or less.
 Na2Oの含有率の下限は、0.1質量%以上でありうるし、1質量%以上、3質量%以上でありうる。Na2Oの含有率は6質量%以上20質量%以下でありうる。この場合、失透温度の過度な上昇を抑制しながら熔融ガラスの失透温度および粘度を、ガラスの製造に適した範囲とすることができる。また、ガラスの融点の上昇を抑え、ガラス原料のより均一な熔融を実施できながらも、ガラス転移温度が過度に低下することなく、高いガラスの耐熱性を確保できる。さらに、この範囲ではガラスの化学的耐久性を向上させることも可能となる。Na2Oの下限は、7質量%以上でありうるし、7.5質量%以上、さらには8質量%以上でありうる。Na2Oの上限は、18質量%以下でありうるし、16質量%以下、15質量%以下、14質量%以下、13質量%以下、さらには12質量%以下でありうる。 The lower limit of the content of Na 2 O may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more. The content of Na 2 O may be 6% by mass or more and 20% by mass or less. In this case, the devitrification temperature and viscosity of the molten glass can be controlled to be within a range suitable for glass production while suppressing an excessive increase in the devitrification temperature. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, within this range, it is also possible to improve the chemical durability of the glass. The lower limit of Na 2 O may be 7% by mass or more, 7.5% by mass or more, or even 8% by mass or more. The upper limit of Na 2 O may be 18% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, or even 12% by mass or less.
 K2Oの含有率の下限は、0.1質量%以上でありうるし、0.5質量%より大きくてもよい。組成BにおいてK2Oの含有率の上限は、10質量%以下、5質量%以下でありうるし、4質量%未満、3質量%以下、さらには2質量%未満でありうる。 The lower limit of the content of K 2 O may be 0.1% by mass or more, and may be greater than 0.5% by mass. In composition B, the upper limit of the content of K 2 O may be 10% by mass or less, 5% by mass or less, less than 4% by mass, 3% by mass or less, and even less than 2% by mass.
 組成Bにおいて、アルカリ金属酸化物の含有率の合計(Li2O+Na2O+K2O)の値が9質量%以上20質量%以下では、失透温度の過度な上昇を抑制しながら熔融ガラスの失透温度および粘度を、ガラスの製造に適した範囲とすることができる。また、ガラスの融点の上昇を抑え、ガラス原料のより均一な熔融を実施できながらも、ガラス転移温度が過度に低下することなく、高いガラスの耐熱性を確保できる。さらに、この範囲ではガラスの化学的耐久性を向上させることも可能となる。(Li2O+Na2O+K2O)の下限は、9.5質量%以上でありうるし、10質量%以上でありうる。(Li2O+Na2O+K2O)の上限は、18質量%以下でありうるし、16質量%以下、15質量%以下、14質量%以下、13質量%未満、さらには12質量%未満でありうる。Li2O、Na2OおよびK2Oのそれぞれは任意成分である。言い換えるとこれらの各成分の含有率の下限は、アルカリ金属酸化物の含有率の合計が9質量%以上である限り、0であってもよい。 In composition B, when the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is 9% by mass or more and 20% by mass or less, the devitrification temperature is suppressed and the molten glass is not devitrified excessively. The transmission temperature and viscosity can be set in a range suitable for glass production. Further, while suppressing the increase in the melting point of the glass and achieving more uniform melting of the glass raw materials, high heat resistance of the glass can be ensured without excessively lowering the glass transition temperature. Furthermore, within this range, it is also possible to improve the chemical durability of the glass. The lower limit of (Li 2 O+Na 2 O+K 2 O) may be 9.5% by mass or more, or may be 10% by mass or more. The upper limit of (Li 2 O + Na 2 O + K 2 O) may be 18% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, less than 13% by mass, or even less than 12% by mass. . Each of Li 2 O, Na 2 O and K 2 O is an optional component. In other words, the lower limit of the content of each of these components may be 0 as long as the total content of alkali metal oxides is 9% by mass or more.
 (TiO2
 ガラス組成BはTiO2をさらに含有しうる。TiO2は、ガラスの熔融性および化学的耐久性を向上させる成分である。ただしTiO2は、その原料が相対的に高価であることから、その含有率は低いほうがよい。TiO2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%以下でありうる。組成BはTiO2を実質的に含有しなくてもよい。
( TiO2 )
Glass composition B may further contain TiO2 . TiO 2 is a component that improves the meltability and chemical durability of glass. However, since the raw material for TiO 2 is relatively expensive, the content thereof should be lower. The upper limit of the content of TiO 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, and even 0.1% by mass or less. Composition B may be substantially free of TiO2 .
 (ZrO2
 ZrO2は、ガラス形成時の失透温度および粘度を調整する成分である。また、ZrO2は、ガラス組成物の耐酸性および耐水性を調整する成分でもある。さらに、ZrO2は、ヤング率を向上させる成分でもある。組成BにおいてZrO2の含有率が5質量%以上20質量%以下では、ガラスの製造が難しくなるようなガラスの失透温度の上昇が抑えられるとともに、ガラスの耐水性や耐酸性が高くなる。ただしZrO2は、その原料が相対的に高価であることから、その含有率は低いほうがよい。ZrO2の含有率の下限は、5質量%より大きく、5.5質量%以上、6質量%以上、6.5質量%以上、さらには7質量%以上でありうる。ZrO2の含有率の上限は、18質量%以下でありうるし、15質量%以下、12質量%以下、10質量%以下、9.5質量%以下、9質量%以下、8.5質量%以下、さらには8質量%以下でありうる。
( ZrO2 )
ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation. ZrO 2 is also a component that adjusts the acid resistance and water resistance of the glass composition. Furthermore, ZrO 2 is also a component that improves Young's modulus. When the content of ZrO 2 in composition B is 5% by mass or more and 20% by mass or less, an increase in the devitrification temperature of the glass, which would make it difficult to manufacture the glass, is suppressed, and the water resistance and acid resistance of the glass are increased. However, since the raw material for ZrO 2 is relatively expensive, the content thereof should be lower. The lower limit of the content of ZrO 2 is greater than 5% by mass, and may be 5.5% by mass or more, 6% by mass or more, 6.5% by mass or more, or even 7% by mass or more. The upper limit of the content of ZrO 2 can be 18% by mass or less, 15% by mass or less, 12% by mass or less, 10% by mass or less, 9.5% by mass or less, 9% by mass or less, 8.5% by mass or less , or even 8% by mass or less.
 (Fe)
 ガラス組成物中に含まれる鉄(Fe)は、通常、Fe2+またはFe3+の状態で存在する。Fe3+はガラス組成物の紫外線吸収特性を高める成分であり、Fe2+はガラス組成物の熱線吸収特性を高める成分である。Feは、意図的に含ませなくとも、工業用原料により不可避的に混入する場合がある。Feの含有量が少なければ、ガラス組成物の着色を防止することができる。Feの含有率の上限は、T-Fe23により表示して5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、さらには0.1質量%以下、0.1質量%未満、0.08質量%以下、0.05質量%以下、0.04質量%以下、さらには0.03質量%以下でありうる。Feの含有率の下限は、T-Fe23により表示して0.01質量%以上、0.05質量%以上、0.1質量%以上、さらに0.2質量%以上でありうる。特にアルカリ金属酸化物の含有率が低いガラス組成において、微量の酸化鉄はガラスの清澄の促進に寄与しうる。
(Fe)
Iron (Fe) contained in the glass composition usually exists in the form of Fe 2+ or Fe 3+ . Fe 3+ is a component that enhances the ultraviolet absorption properties of the glass composition, and Fe 2+ is a component that enhances the heat ray absorption properties of the glass composition. Even if Fe is not intentionally included, it may be unavoidably mixed in with industrial raw materials. If the content of Fe is small, coloring of the glass composition can be prevented. The upper limit of the content of Fe expressed by T-Fe 2 O 3 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3 mass% or less, 0.2 mass% or less, further 0.1 mass% or less, less than 0.1 mass%, 0.08 mass% or less, 0.05 mass% or less, 0.04 mass% or less , and even 0.03% by mass or less. The lower limit of the content of Fe expressed by T-Fe 2 O 3 may be 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, and further 0.2% by mass or more. Particularly in glass compositions with a low content of alkali metal oxides, trace amounts of iron oxide can contribute to promoting glass fining.
 (F2、Cl2
 組成Bはフッ素(F2)および塩素(Cl2)をさらに含有しうる。F2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。F2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%以下でありうる。F2は、実質的に含まれていなくてもよい。
( F2 , Cl2 )
Composition B may further contain fluorine (F 2 ) and chlorine (Cl 2 ). Since F 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of F2 can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. F 2 may be substantially absent.
 Cl2は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。Cl2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%以下でありうる。Cl2は、実質的に含まれていなくてもよい。 Since Cl 2 easily volatizes, there is a possibility of it scattering during melting, and there is also the problem that it is difficult to control the content in the glass. The upper limit of the content of Cl 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, and even 0.1% by mass or less. It's possible. Cl 2 may be substantially free.
 ガラス組成Aおよびガラス組成Bは、本発明の効果が得られる限り、さらに下記の成分を含有しうる。 Glass composition A and glass composition B may further contain the following components as long as the effects of the present invention can be obtained.
 (その他の成分)
 ガラス組成Aおよびガラス組成Bは、その他の成分として、P25、Sc23、Y23、La23、CeO2、Pr23、Nd23、Pm23、Sm23、Eu23、Gd23、Tb23、Dy23、Ho23、Er23、Tm23、Yb23、Lu23、WO3、Nb25、Y23、MoO3、Ta25、MnO2およびCr23から選ばれる少なくとも1種を、それぞれ0質量%以上5質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて2質量%未満でありうるし、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。これらの成分の許容される含有率の合計は、5質量%以下でありうるし、2%質量%未満、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。また、ライタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)の酸化物は、実質的に含有されていなくてもよい。
(Other ingredients)
Glass composition A and glass composition B include P 2 O 5 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O as other components. 3 , Sm2O3 , Eu2O3 , Gd2O3 , Tb2O3 , Dy2O3 , Ho2O3 , Er2O3 , Tm2O3 , Yb2O3 , Lu2O 3 , WO 3 , Nb 2 O 5 , Y 2 O 3 , MoO 3 , Ta 2 O 5 , MnO 2 and Cr 2 O 3 at a content of 0% by mass or more and 5% by mass or less, respectively. It can be contained in The permissible content of these components may be less than 2% by weight each, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. The total allowable content of these components may be 5% by weight or less, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. . However, the other components mentioned above may not be substantially contained. Furthermore, oxides of litanoid (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) may not be substantially contained.
 また、ガラス組成Aおよびガラス組成Bは、添加物として、SO3、Br2、I2、SnO2、As23およびSb23から選ばれる少なくとも1種を、それぞれ0質量%以上1質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて0.5質量%未満でありうるし、0.2質量%未満、さらには0.1質量%未満でありうる。これらの成分の許容される含有率の合計は、1質量%以下でありうるし、0.5%質量%未満、0.2質量%未満、さらには0.1質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。 Glass composition A and glass composition B each contain at least one kind selected from SO 3 , Br 2 , I 2 , SnO 2 , As 2 O 3 and Sb 2 O 3 as an additive in an amount of 0% by mass or more and 1% by mass. It can be contained in a content of % by mass or less. The permissible content of these components can be less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight for each. The total allowable content of these components may be 1% by weight or less, less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成Aおよびガラス組成Bは、H2O、OH、H2、CO2、CO、He、Ne、ArおよびN2を、それぞれ0質量%以上0.1質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて0.05質量%未満でありうるし、0.03質量%未満、さらには0.01質量%未満でありうる。これらの成分の許容される含有率の合計は、0.1質量%以下でありうるし、0.05%質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含まれていなくてもよい。 Glass composition A and glass composition B each contain H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar, and N 2 at a content of 0% by mass or more and 0.1% by mass or less. sell. The permissible content of these components can be less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight for each. The total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成Aおよびガラス組成Bは、微量の貴金属元素を含有していてもよい。例えば、Pt、Rh、Au、Osなどの貴金属元素を、それぞれ0質量%以上0.1質量%以下の含有率で含むことができる。これらの成分の許容される含有率は、それぞれについて0.1質量%未満でありうるし、0.05質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。これらの成分の許容される含有率の合計は、0.1質量%以下でありうるし、0.05%質量%未満、0.03質量%未満、さらには0.01質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含有されていなくてもよい。 Glass composition A and glass composition B may contain trace amounts of noble metal elements. For example, noble metal elements such as Pt, Rh, Au, and Os can be included at a content of 0% by mass or more and 0.1% by mass or less, respectively. The permissible content of these components may be less than 0.1% by weight each, less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight. The total allowable content of these components can be 0.1% by weight or less, less than 0.05% by weight, less than 0.03% by weight, and even less than 0.01% by weight. However, the other components mentioned above may not be substantially contained.
 ガラス組成Aおよびガラス組成Bは、CuOを実質的に含有しない組成でありうる。また、ガラス組成Aおよびガラス組成Bは、CoOを実質的に含有しない組成でありうる。さらに、ガラス組成Aおよびガラス組成Bは、PbOを実質的に含有しない組成でありうる。また、ガラス組成Aおよびガラス組成Bは、NiOを実質的に含有しない組成でありうる。 Glass composition A and glass composition B may be compositions that do not substantially contain CuO. Moreover, the glass composition A and the glass composition B may be compositions that do not substantially contain CoO. Furthermore, glass composition A and glass composition B may be compositions that do not substantially contain PbO. Moreover, the glass composition A and the glass composition B may be compositions that do not substantially contain NiO.
 <特性>
 本発明のガラスがとりうる特性について、以下、説明する。
 (熔融特性)
 熔融ガラスの粘度が1000dPa・sec(1000poise)となるときの温度は、当該ガラスの作業温度と呼ばれ、ガラスの成形に最も適する温度である。ガラス繊維を製造する場合、ガラスの作業温度が1100℃以上であれば、ガラス繊維径のばらつきを小さくできる。作業温度が1300℃以下であれば、ガラスを熔融する際の燃料費を低減でき、ガラス製造装置が熱による腐食を受け難くなり、装置寿命が延びる。作業温度の下限は、1100℃以上でありうるし、1120℃以上、1140℃以上、1150℃以上、1160℃以上、1170℃以上、1180℃以上、さらには1200℃以上でありうる。作業温度の上限は、1300℃以下でありうるし、1280℃以下、1270℃以下、1260℃以下、さらには1250℃以下でありうる。
<Characteristics>
The characteristics that the glass of the present invention can have will be explained below.
(melting characteristics)
The temperature at which the viscosity of the molten glass becomes 1000 dPa·sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for forming the glass. When manufacturing glass fibers, if the glass working temperature is 1100° C. or higher, variations in glass fiber diameter can be reduced. If the working temperature is 1300° C. or lower, the fuel cost for melting glass can be reduced, the glass manufacturing equipment will be less susceptible to corrosion due to heat, and the life of the equipment will be extended. The lower limit of the working temperature may be 1100°C or higher, 1120°C or higher, 1140°C or higher, 1150°C or higher, 1160°C or higher, 1170°C or higher, 1180°C or higher, or even 1200°C or higher. The upper limit of the working temperature may be 1300°C or less, 1280°C or less, 1270°C or less, 1260°C or less, or even 1250°C or less.
 作業温度から失透温度を差し引いた温度差ΔTが大きいほど、ガラス成形時に失透が生じ難く、均質なガラスを高い歩留りで製造できる。したがって、ガラス組成AのΔTは0℃以上でありうるし、10℃以上、20℃以上、30℃以上、40℃以上、さらには50℃以上でありうる。一方、ΔTが200℃以下であれば、ガラス組成の調整が容易になる。ガラス組成AのΔTは200℃以下でありうるし、180℃以下、さらには160℃以下でありうる。 The larger the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature, the less devitrification occurs during glass molding, and it is possible to produce homogeneous glass at a high yield. Therefore, ΔT of glass composition A may be 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, or even 50°C or higher. On the other hand, if ΔT is 200° C. or less, the glass composition can be easily adjusted. ΔT of glass composition A may be 200°C or less, 180°C or less, or even 160°C or less.
 (ヤング率)
 ガラス繊維は、該ガラス繊維を形成するガラス組成物のヤング率が高いほど弾力性が良く、ガラス繊維により構成された断熱材や吸音材用の機械特性が向上する。ここで、ヤング率(GPa)は、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度と横波速度とを測定し、別にアルキメデス法により測定したガラスの密度とから求めることができる。このヤング率の下限は77GPa以上でありうるし、78GPa以上、79GPa以上、さらには80GPa以上でありうる。ヤング率の上限は好ましくは100GPa以下でありうるし、99GPa以下、98GPa以下、97GPa以下、96GPa以下、さらには95GPa以下でありうる。
(Young's modulus)
The higher the Young's modulus of the glass composition forming the glass fiber, the better the elasticity of the glass fiber, and the better the mechanical properties of a heat insulating material or a sound absorbing material made of the glass fiber. Here, the Young's modulus (GPa) can be determined by measuring the longitudinal wave velocity and shear wave velocity of elastic waves propagating in the glass using a normal ultrasonic method, and from the density of the glass separately measured using the Archimedes method. can. The lower limit of Young's modulus may be 77 GPa or more, 78 GPa or more, 79 GPa or more, or even 80 GPa or more. The upper limit of Young's modulus may preferably be 100 GPa or less, 99 GPa or less, 98 GPa or less, 97 GPa or less, 96 GPa or less, or even 95 GPa or less.
 (ガラス転移温度)
 ガラス組成物は、ガラス転移温度(ガラス転移点、Tg)が高いほど耐熱性が高く、高温加熱を伴う加工に対して変形し難くなる。ガラス転移温度が560℃以上であれば、火災などの際に、グラスウールの形状が変化するおそれが小さい。本実施形態で規定したガラス組成であれば、560℃以上のガラス転移温度を有するガラスを容易に得ることができる。ガラス組成物のガラス転移温度は、560℃以上であることが好ましく、570℃以上であることがより好ましく、580℃以上であることがさらに好ましい。ガラス転移温度は、600℃以上、620℃以上、650℃以上、680℃以上、700℃以上、720℃以上、場合によっては740℃以上であってもよい。ガラス転移温度の上限は、800℃程度であることが好ましく、780℃以下であることがより好ましい。
(Glass-transition temperature)
The higher the glass transition temperature (Tg) of a glass composition, the higher its heat resistance, and the less likely it is to be deformed by processing that involves high-temperature heating. If the glass transition temperature is 560° C. or higher, there is little risk that the shape of the glass wool will change in the event of a fire or the like. With the glass composition defined in this embodiment, a glass having a glass transition temperature of 560° C. or higher can be easily obtained. The glass transition temperature of the glass composition is preferably 560°C or higher, more preferably 570°C or higher, and even more preferably 580°C or higher. The glass transition temperature may be 600°C or higher, 620°C or higher, 650°C or higher, 680°C or higher, 700°C or higher, 720°C or higher, and in some cases 740°C or higher. The upper limit of the glass transition temperature is preferably about 800°C, more preferably 780°C or less.
 (化学的耐久性)
 断熱材および/または吸音材用途における化学的耐久性の指標としては、耐酸性、耐水性が適切である。
 耐酸性の指標としては、後述する質量減少率ΔW1が採用され、このΔW1が小さいほど耐酸性が高いことを示す。また、耐水性の指標としては、後述する質量減少率ΔW2が採用され、このΔW2が小さいほど耐水性が高いことを示す。ガラス繊維を断熱材や吸音材等に用いる場合、ΔW1は5.0質量%以下であることが好ましい。したがって、ガラスのΔW1は、5.0質量%以下でありうるし、4.0質量%以下、3.0質量%以下、2.0質量%以下、1.5質量%以下、1.2質量%以下、1.0質量%以下、0.9質量%以下、0.8質量%以下、0.7質量%以下、0.6質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下でありうる。本実施形態により実現できるΔW1は、例えば、0.01~5.0質量%である。
(chemical durability)
Acid resistance and water resistance are appropriate indicators of chemical durability in heat insulation and/or sound absorbing material applications.
As an index of acid resistance, the mass reduction rate ΔW 1 described later is employed, and the smaller this ΔW 1 is, the higher the acid resistance is. Further, as an index of water resistance, the mass reduction rate ΔW 2 described later is employed, and the smaller this ΔW 2 is, the higher the water resistance is. When glass fiber is used as a heat insulating material, a sound absorbing material, etc., ΔW 1 is preferably 5.0% by mass or less. Therefore, ΔW 1 of the glass can be 5.0% by mass or less, 4.0% by mass or less, 3.0% by mass or less, 2.0% by mass or less, 1.5% by mass or less, 1.2% by mass or less % or less, 1.0 mass% or less, 0.9 mass% or less, 0.8 mass% or less, 0.7 mass% or less, 0.6 mass% or less, 0.5 mass% or less, 0.4 mass% The content may be 0.3% by mass or less and 0.2% by mass or less. The ΔW 1 that can be achieved by this embodiment is, for example, 0.01 to 5.0% by mass.
 ガラス繊維を断熱材や吸音材等に用いる場合、ガラス繊維のΔW2は0.50質量%未満であることが好ましい。本実施形態のガラス組成物のΔW2は、0.50質量%未満でありうるし、0.45質量%以下、0.40質量%以下、0.35質量%以下、0.30質量%以下、0.25質量%以下、0.20質量%以下でありうる。本実施形態により実現できるΔW2は、例えば、0.01質量%以上0.50質量%未満である。 When glass fiber is used for a heat insulating material, a sound absorbing material, etc., it is preferable that ΔW 2 of the glass fiber is less than 0.50% by mass. ΔW 2 of the glass composition of the present embodiment may be less than 0.50 mass%, 0.45 mass% or less, 0.40 mass% or less, 0.35 mass% or less, 0.30 mass% or less, It may be 0.25% by mass or less, and 0.20% by mass or less. ΔW 2 that can be realized by this embodiment is, for example, 0.01% by mass or more and less than 0.50% by mass.
 <ガラス繊維>
 本実施形態のガラス繊維は、上述したガラス組成物により構成される。本実施形態のガラス繊維は、ガラス長繊維であってもガラス短繊維であってもよい。ガラス長繊維は、粘度を制御したガラス融液をノズルから流出させ、巻き取り機によって巻き取って製造される。この連続繊維は、使用時に適切な長さに切断される。ガラス短繊維は、高圧空気、遠心力等によってガラス融液を吹き飛ばしながら製造される。ガラス短繊維は、綿状の形態を有しているためにグラスウールと呼ばれることもある。
<Glass fiber>
The glass fiber of this embodiment is made of the glass composition described above. The glass fibers of this embodiment may be long glass fibers or short glass fibers. Long glass fibers are produced by flowing a viscosity-controlled glass melt through a nozzle and winding it up with a winder. This continuous fiber is cut to an appropriate length at the time of use. Short glass fibers are manufactured by blowing away glass melt using high-pressure air, centrifugal force, or the like. Short glass fibers are sometimes called glass wool because they have a cotton-like morphology.
 ガラス繊維の平均繊維径は、例えば0.1~50μmである。ガラス繊維の平均繊維径は、平均繊維径は0.1μm以上、0.2μm以上、0.3μm以上、0.4μm以上、さらには0.5μm以上であってもよく、50μm以下、40μm以下、30μm以下、25μm以下であってもよい。ガラス長繊維の場合、平均繊維径は1μm以上、2μm以上、3μm以上、4μm以上、さらには5μm以上であってもよい。ガラス短繊維の場合、平均繊維径は10μm以下、5μm以下、4μm以下、3μm以下、2μm以下、さらには1μm以下であってもよい。 The average fiber diameter of the glass fibers is, for example, 0.1 to 50 μm. The average fiber diameter of the glass fibers may be 0.1 μm or more, 0.2 μm or more, 0.3 μm or more, 0.4 μm or more, and even 0.5 μm or more, 50 μm or less, 40 μm or less, It may be 30 μm or less, or 25 μm or less. In the case of long glass fibers, the average fiber diameter may be 1 μm or more, 2 μm or more, 3 μm or more, 4 μm or more, or even 5 μm or more. In the case of short glass fibers, the average fiber diameter may be 10 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, 2 μm or less, or even 1 μm or less.
<グラスウール>
 本実施形態のグラスウールは、上述したガラス繊維を含んでいる。本実施形態のグラスウールは、例えば、内部に空隙を含む上述したガラス短繊維の集積体であり、塊状、平板状、曲板状、波板状、筒状など使用部位に応じた各種形状を有しうる。本実施形態のグラスウールは、高い化学的耐久性を有しうる。このため、本実施形態のグラスウールは、雨水などの水が侵入しうる部位、化学工場などにおいて酸性度の高い環境下にある部位などにおいても、断熱材および/または吸音材としての特性を長期間安定して維持できる。
<Glass wool>
The glass wool of this embodiment contains the above-mentioned glass fibers. The glass wool of this embodiment is, for example, an aggregate of the above-mentioned short glass fibers containing voids inside, and has various shapes depending on the area of use, such as a lump, a flat plate, a curved plate, a corrugated plate, and a cylindrical shape. I can do it. The glass wool of this embodiment can have high chemical durability. Therefore, the glass wool of this embodiment maintains its properties as a heat insulating material and/or sound absorbing material for a long period of time, even in areas where water such as rainwater can enter, areas in highly acidic environments such as chemical factories, etc. Can be maintained stably.
 以下、実施例および比較例を挙げて本発明の実施形態をさらに具体的に説明する。
 (実施例および比較例)
 表1~7に示した組成となるように、珪砂等の通常のガラス原料を調合し、実施例および比較例毎にガラス原料のバッチを作製した。電気炉を用いて、各バッチを1500~1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス(ガラス溶融物)の一部を鉄板上に流し出し、電気炉中で室温まで徐冷し、バルクとしてのガラス組成物(板状物、ガラス試料)を得た。
Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example and comparative example)
Ordinary glass raw materials such as silica sand were prepared to have the compositions shown in Tables 1 to 7, and batches of glass raw materials were prepared for each example and comparative example. Using an electric furnace, each batch was heated to 1500-1600° C. to melt it and maintained there for about 4 hours until the composition became uniform. Thereafter, a part of the molten glass (glass melt) was poured out onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a bulk glass composition (plate-like material, glass sample).
 特性の評価法を以下に説明する。
 (ガラス転移温度)
 得られたガラス組成物について、市販の膨張計〔(株)リガク、熱機械分析装置、TMA8510〕を用いて熱膨張係数を測定し、熱膨張曲線からガラス転移温度を求めた。
The method for evaluating the characteristics will be explained below.
(Glass-transition temperature)
The thermal expansion coefficient of the obtained glass composition was measured using a commercially available dilatometer (Rigaku Co., Ltd., Thermomechanical Analyzer, TMA8510), and the glass transition temperature was determined from the thermal expansion curve.
 (作業温度)
 得られたガラス組成物について、通常の白金球引き上げ法により粘度と温度との関係を調べ、その結果から作業温度を求めた。ここで、白金球引き上げ法とは、溶融ガラス中に白金球を浸し、その白金球を等速運動で引き上げる際の負荷荷重(抵抗)と、白金球に働く重力および浮力などとの関係を、微小の粒子が流体中を沈降する際の粘度と落下速度との関係を示したストークス(Stokes)の法則にあてはめることにより、粘度を測定する方法である。
(Working temperature)
Regarding the obtained glass composition, the relationship between viscosity and temperature was investigated by the usual platinum ball pulling method, and the working temperature was determined from the results. Here, the platinum ball pulling method refers to the relationship between the load (resistance) applied when a platinum ball is immersed in molten glass and pulled up with uniform motion, and the gravity and buoyancy force acting on the platinum ball. This is a method of measuring viscosity by applying Stokes' law, which describes the relationship between viscosity and falling speed when minute particles settle in a fluid.
 (失透温度)
 粒子径1.0~2.8mmの大きさに粉砕したガラス組成物を白金ボートに入れ、温度勾配(800~1400℃)を設けた電気炉中で2時間保持し、結晶の出現した位置に対応する電気炉の最高温度から失透温度を求めた。ガラスが白濁して結晶が観察できない場合は、白濁の出現した位置に対応する電気炉の最高温度を失透温度とした。ここで、粒子径は、ふるい分け法により測定された値である。なお、電気炉内の場所に応じて異なる温度(電気炉内の温度分布)は、予め測定されており、電気炉内の所定の場所に置かれたガラス組成物は、予め測定された、当該所定の場所の温度で加熱される。温度差ΔTは、作業温度から失透温度を差し引いた温度差である。
(devitrification temperature)
A glass composition pulverized to a particle size of 1.0 to 2.8 mm was placed in a platinum boat, held in an electric furnace with a temperature gradient (800 to 1400°C) for 2 hours, and placed at the position where crystals appeared. The devitrification temperature was determined from the maximum temperature of the corresponding electric furnace. When the glass became cloudy and crystals could not be observed, the maximum temperature of the electric furnace corresponding to the position where the cloudiness appeared was taken as the devitrification temperature. Here, the particle size is a value measured by a sieving method. Note that the temperature (temperature distribution in the electric furnace) that varies depending on the location in the electric furnace is measured in advance, and the glass composition placed at a predetermined location in the electric furnace is Heated at a given location temperature. The temperature difference ΔT is the temperature difference obtained by subtracting the devitrification temperature from the working temperature.
 (ヤング率)
 ヤング率Eは、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度vlと横波速度vtを測定し、別にアルキメデス法により測定したガラスの密度ρから、E=3ρ・vt 2・(vl 2-4/3・vt 2)/(vl 2-vt 2)の式により求めた。
(Young's modulus)
The Young's modulus E is determined by measuring the longitudinal wave velocity v l and shear wave velocity v t of elastic waves propagating in the glass using a normal ultrasonic method, and from the density ρ of the glass separately measured using the Archimedes method, E=3ρ・It was determined by the formula: v t 2 ·(v l 2 -4/3·v t 2 )/(v l 2 -v t 2 ).
 (引張弾性率)
 得られたガラス組成物(バルク)を用いてガラス単繊維(フィラメント)を作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを用いて、直径が15μmであるガラス単繊維を作製した。得られたガラス繊維について、引張弾性率を日本産業規格(JIS)の「炭素繊維-単繊維の引張特性の試験方法 R7606:2000」に準拠した方法により測定した。
(Tensile modulus)
Glass single fibers (filaments) were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 μm was produced. The tensile modulus of the obtained glass fiber was measured in accordance with the Japanese Industrial Standards (JIS) "Testing method for tensile properties of carbon fibers - monofilament R7606:2000".
 (化学的耐久性)
 得られたガラス組成物(バルク)を用いてガラス単繊維(フィラメント)を作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを用いて、直径が15μmであるガラス単繊維を作製した。
・耐酸性
 直径15μmのガラス単繊維を長さ20mmに切断し、ガラスの比重と同じグラム数量り取り、このガラス繊維を80℃、10質量%の硫酸水溶液100mLに24時間浸漬した場合の質量減少率を求め、この質量減少率をΔW1とした。
・耐水性
 直径15μmのガラス単繊維を長さ20mmに切断し、ガラスの比重と同じグラム数量り取り、このガラス繊維を80℃、蒸留水100mLに24時間浸漬した場合の質量減少率を求め、この質量減少率をΔW2とした。
 なお、上記質量減少率は、浸漬前の質量をWa、浸漬後の質量をWbとして、以下の式に基づいて算出した。
 質量減少率(%)={(Wa-Wb)/Wa}×100
(chemical durability)
Glass single fibers (filaments) were produced using the obtained glass composition (bulk). That is, the glass composition (bulk) was remelted in an electric furnace and then molded into pellets while being cooled. Using this pellet, a single glass fiber having a diameter of 15 μm was produced.
- Acid resistance: Cut a single glass fiber with a diameter of 15 μm into a length of 20 mm, weigh out the same number of grams as the specific gravity of the glass, and immerse this glass fiber in 100 mL of a 10 mass % sulfuric acid aqueous solution at 80°C for 24 hours. Loss in mass The mass reduction rate was determined as ΔW 1 .
・Water resistance Cut a single glass fiber with a diameter of 15 μm to a length of 20 mm, weigh out the same number of grams as the specific gravity of the glass, and calculate the mass reduction rate when this glass fiber is immersed in 100 mL of distilled water at 80 ° C. for 24 hours. This mass reduction rate was defined as ΔW 2 .
The mass reduction rate was calculated based on the following formula, where Wa is the mass before immersion and Wb is the mass after immersion.
Mass reduction rate (%) = {(Wa-Wb)/Wa}×100
 これらの測定結果を表1~7に示した。なお、表中のガラス組成は、すべて質量%で表示した値である。 The results of these measurements are shown in Tables 1 to 7. In addition, all the glass compositions in the table are values expressed in mass %.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~75からは、ヤング率77~93GPa、引張弾性率69~88GPa、ガラス転移温度562~782℃、作業温度1208~1297℃、温度差ΔT(作業温度-失透温度)2~271℃、ΔW10.16~2.61質量%、ΔW20.14~0.48質量%の結果が得られた。 Examples 1 to 75 have a Young's modulus of 77 to 93 GPa, a tensile modulus of elasticity of 69 to 88 GPa, a glass transition temperature of 562 to 782°C, a working temperature of 1208 to 1297°C, and a temperature difference ΔT (working temperature - devitrification temperature) of 2 to 271. ℃, ΔW 1 0.16 to 2.61% by mass, and ΔW 2 0.14 to 0.48% by mass.
 比較例1のガラス組成物は、板ガラス組成を有し、553℃と相対的に低いガラス転移温度と、0.50質量%と相対的に大きいΔW2とを有していた。比較例2のガラス組成物はCガラス組成を有する。Cガラスは549℃と相対的に低いガラス転移温度を有する。Cガラスは、B23の含有率が高く、製造設備への影響も懸念される。
 
The glass composition of Comparative Example 1 had a plate glass composition, a relatively low glass transition temperature of 553° C., and a relatively large ΔW 2 of 0.50% by mass. The glass composition of Comparative Example 2 has a C glass composition. C glass has a relatively low glass transition temperature of 549°C. C glass has a high B 2 O 3 content, and there is concern that it may affect manufacturing equipment.

Claims (20)

  1.  断熱材および/または吸音材用のガラス繊維であって、
     質量%で表示して、
      50≦SiO2≦75、
       0≦B23≦4、
       5≦Al23≦15、
       5≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦20、
     の成分を含有するガラス組成物を含む、ガラス繊維。
    Glass fiber for insulation and/or sound absorption,
    Displayed in mass%,
    50≦SiO 2 ≦75,
    0≦B 2 O 3 ≦4,
    5≦Al 2 O 3 ≦15,
    5≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦20,
    A glass fiber comprising a glass composition containing the following components.
  2.  前記ガラス組成物が、質量%で表示して、0≦T-Fe23≦5、の成分を含有する、請求項1に記載のガラス繊維。
     ただし、T-Fe23は、Fe23に換算した全酸化鉄である。
    The glass fiber according to claim 1, wherein the glass composition contains a component of 0≦T-Fe 2 O 3 ≦5 expressed in mass %.
    However, T-Fe 2 O 3 is total iron oxide converted to Fe 2 O 3 .
  3.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦67、
       0≦B23<2、
       5≦Al23≦15、
     45≦(SiO2-Al23)≦57、
       1≦MgO≦10、
      10≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦12、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦67,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    45≦(SiO 2 -Al 2 O 3 )≦57,
    1≦MgO≦10,
    10≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦12,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  4.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦67、
       0≦B23<2、
       5≦Al23≦15、
     45≦(SiO2-Al23)≦57、
       1≦MgO≦10、
      15≦CaO≦30、
       0≦T-Fe23≦5、
     の成分を含有し、アルカリ金属酸化物を実質的に含有しない、請求項3に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦67,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    45≦(SiO 2 -Al 2 O 3 )≦57,
    1≦MgO≦10,
    15≦CaO≦30,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 3, which contains the following components and is substantially free of alkali metal oxides.
  5.  前記ガラス組成物が、質量%で表示して、
      57≦SiO2≦67、
       0≦B23<2、
       5≦Al23≦15、
     45≦(SiO2-Al23)≦57、
       1≦MgO≦10、
      15≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦T-Fe23≦5、
     の成分を含有する、請求項3に記載のガラス繊維。
    The glass composition is expressed in mass %,
    57≦SiO 2 ≦67,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    45≦(SiO 2 -Al 2 O 3 )≦57,
    1≦MgO≦10,
    15≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 3, which contains the following components.
  6.  前記ガラス組成物が、質量%で表示して、
      50≦SiO2≦67、
       0≦B23<2、
       5≦Al23≦15、
     45≦(SiO2-Al23)≦57、
       1≦MgO≦10、
      10≦CaO≦30、
       1≦SrO≦15、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦T-Fe23≦5、
     の成分を含有する、請求項3に記載のガラス繊維。
    The glass composition is expressed in mass %,
    50≦SiO 2 ≦67,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    45≦(SiO 2 -Al 2 O 3 )≦57,
    1≦MgO≦10,
    10≦CaO≦30,
    1≦SrO≦15,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 3, which contains the following components.
  7.  前記ガラス組成物が、質量%で表示して、
      65<SiO2≦75、
       0≦B23<2、
       5≦Al23≦15、
     50<(SiO2-Al23)≦60、
       1≦MgO≦10、
      10≦CaO≦25、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    65< SiO2 ≦75,
    0≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    50<(SiO 2 -Al 2 O 3 )≦60,
    1≦MgO≦10,
    10≦CaO≦25,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  8.  前記ガラス組成物が、質量%で表示して、
      60≦SiO2≦75、
       0≦B23≦4、
       5≦Al23≦15、
     47≦(SiO2-Al23)≦60、
       1≦MgO≦10、
      10≦CaO≦25、
       4<(Li2O+Na2O+K2O)<9、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    60≦SiO 2 ≦75,
    0≦B 2 O 3 ≦4,
    5≦Al 2 O 3 ≦15,
    47≦(SiO 2 -Al 2 O 3 )≦60,
    1≦MgO≦10,
    10≦CaO≦25,
    4<( Li2O + Na2O + K2O )<9,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  9.  前記ガラス組成物が、質量%で表示して、
      60≦SiO2≦75、
       0≦B23≦4、
       5≦Al23≦15、
     47≦(SiO2-Al23)≦60、
       5≦CaO≦20、
       6≦Na2O≦20、
       9≦(Li2O+Na2O+K2O)≦20、
       0≦T-Fe23≦5、
     の成分を含有する、請求項2に記載のガラス繊維。
    The glass composition is expressed in mass %,
    60≦SiO 2 ≦75,
    0≦B 2 O 3 ≦4,
    5≦Al 2 O 3 ≦15,
    47≦(SiO 2 -Al 2 O 3 )≦60,
    5≦CaO≦20,
    6≦Na 2 O≦20,
    9≦( Li2O + Na2O + K2O )≦20,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 2, containing the following components.
  10.  断熱材および/または吸音材用のガラス繊維であって、
     質量%で表示して、
      50≦SiO2≦75、
       0≦B23≦4、
     0.1≦(MgO+CaO)≦20、
       9≦(Li2O+Na2O+K2O)≦20、
       5≦ZrO2≦20、
     の成分を含有するガラス組成物を含む、ガラス繊維。
    Glass fiber for insulation and/or sound absorption,
    Displayed in mass%,
    50≦SiO 2 ≦75,
    0≦B 2 O 3 ≦4,
    0.1≦(MgO+CaO)≦20,
    9≦( Li2O + Na2O + K2O )≦20,
    5≦ZrO 2 ≦20,
    A glass fiber comprising a glass composition containing the following components.
  11.  前記ガラス組成物が、B23を実質的に含有しない、請求項1~10のいずれか1項に記載のガラス繊維。 Glass fiber according to any one of claims 1 to 10, wherein the glass composition is substantially free of B 2 O 3 .
  12.  前記ガラス組成物が、質量%で表示して、
      55≦SiO2≦67、
     0.1≦B23<2、
       5≦Al23≦15、
     45≦(SiO2-Al23)≦57、
       1≦MgO≦10、
      15≦CaO≦30、
       0≦(Li2O+Na2O+K2O)≦4、
       0≦T-Fe23≦5、
     の成分を含有する、請求項3に記載のガラス繊維。
    The glass composition is expressed in mass %,
    55≦SiO 2 ≦67,
    0.1≦B 2 O 3 <2,
    5≦Al 2 O 3 ≦15,
    45≦(SiO 2 -Al 2 O 3 )≦57,
    1≦MgO≦10,
    15≦CaO≦30,
    0≦( Li2O + Na2O + K2O )≦4,
    0≦T-Fe 2 O 3 ≦5,
    The glass fiber according to claim 3, which contains the following components.
  13.  前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度が1300℃以下である、請求項1~12のいずれか1項に記載のガラス繊維。 The glass fiber according to any one of claims 1 to 12, wherein the working temperature is 1300°C or less when the working temperature is the temperature when the viscosity of the glass composition is 1000 dPa·sec.
  14.  前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度から失透温度を差し引いた温度差ΔTが0℃以上である、請求項1~13のいずれか1項に記載のガラス繊維。 Any one of claims 1 to 13, wherein the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature is 0° C. or more, when the working temperature is the temperature when the viscosity of the glass composition is 1000 dPa sec. Glass fiber according to item 1.
  15.  前記ガラス組成物のΔW1が0.01~1.5質量%である、請求項1~14のいずれか1項に記載のガラス繊維。
     ここで、前記ΔW1は、質量を前記ガラス組成物の比重と同じ値のグラム数とした、前記ガラス組成物により構成された直径15μm、長さ20mmのガラス単繊維群を、80℃、10質量%の硫酸水溶液100mLに24時間浸漬したときの質量減少率である。
    The glass fiber according to any one of claims 1 to 14, wherein the glass composition has a ΔW 1 of 0.01 to 1.5% by mass.
    Here, ΔW 1 is a group of single glass fibers with a diameter of 15 μm and a length of 20 mm made of the glass composition, whose mass is in grams having the same value as the specific gravity of the glass composition, at 80° C. This is the mass reduction rate when immersed in 100 mL of a sulfuric acid aqueous solution of % by mass for 24 hours.
  16.  前記ガラス組成物のΔW2が0.01~0.5質量%である、請求項1~15のいずれか1項に記載のガラス繊維。
     ここで、前記ΔW2は、質量を前記ガラス組成物の比重と同じ値のグラム数とした、前記ガラス組成物により構成された直径15μm、長さ20mmのガラス単繊維群を、80℃の蒸留水100mLに24時間浸漬したときの質量減少率である。
    The glass fiber according to any one of claims 1 to 15, wherein the glass composition has a ΔW 2 of 0.01 to 0.5% by mass.
    Here, the above ΔW 2 is obtained by distilling a group of glass single fibers with a diameter of 15 μm and a length of 20 mm made of the glass composition at 80°C, with the mass in grams having the same value as the specific gravity of the glass composition. This is the mass reduction rate when immersed in 100 mL of water for 24 hours.
  17.  前記ガラス組成物のガラス転移温度が560~800℃である、請求項1~16のいずれか1項に記載のガラス繊維。 The glass fiber according to any one of claims 1 to 16, wherein the glass composition has a glass transition temperature of 560 to 800°C.
  18.  前記ガラス組成物のヤング率が77~100GPaである、請求項1~17のいずれか1項に記載のガラス繊維。 The glass fiber according to any one of claims 1 to 17, wherein the glass composition has a Young's modulus of 77 to 100 GPa.
  19.  前記ガラス組成物により構成された直径が15μmであるガラス単繊維を、日本産業規格(JIS)の「炭素繊維-単繊維の引張特性の試験方法 R7606:2000」に準拠した方法により測定したときの引張弾性率が69~88GPaである、請求項1~18のいずれか1項に記載のガラス繊維。 When a glass single fiber with a diameter of 15 μm made of the above glass composition was measured by a method compliant with the Japanese Industrial Standards (JIS) "Test method for tensile properties of carbon fiber-single fiber R7606:2000". Glass fiber according to any one of claims 1 to 18, having a tensile modulus of 69 to 88 GPa.
  20.  請求項1~19のいずれか1項に記載のガラス繊維を含む、断熱材および/または吸音材であるグラスウール。
     
    Glass wool that is a heat insulating material and/or a sound absorbing material, comprising the glass fiber according to any one of claims 1 to 19.
PCT/JP2023/013383 2022-03-30 2023-03-30 Glass fibers WO2023190982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057491 2022-03-30
JP2022-057491 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190982A1 true WO2023190982A1 (en) 2023-10-05

Family

ID=88202179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013383 WO2023190982A1 (en) 2022-03-30 2023-03-30 Glass fibers

Country Status (2)

Country Link
TW (1) TW202402701A (en)
WO (1) WO2023190982A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113646A (en) * 1978-12-08 1980-09-02 Saint Gobain Fiberizing glass
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JP2003500330A (en) * 1999-05-28 2003-01-07 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber composition
JP2007529401A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strands that can reinforce organic and / or inorganic materials
JP2010507557A (en) * 2006-10-25 2010-03-11 サン ゴバン ヴェトロテックス フランス ソシエテ アノニム Glass composition resistant to chemical media for the production of glass reinforced yarns
JP2010513207A (en) * 2006-12-22 2010-04-30 サンーゴバン テクニカル ファブリックス ヨーロッパ Glass yarn that can reinforce organic and / or inorganic materials
US20100184345A1 (en) * 2007-05-23 2010-07-22 Saint-Gobain Technical Fabrics Europe Glass yarns suitable for reinforcing organic and/or inorganic materials
US20130217822A1 (en) * 2005-11-04 2013-08-22 Douglas A. Hofmann Composition for high performance glass, high performance glass fibers and articles therefrom
EP2676939A1 (en) * 2011-02-14 2013-12-25 Chongqing Polycomp International Corporation Glass fibre composition free of boron and fluorine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113646A (en) * 1978-12-08 1980-09-02 Saint Gobain Fiberizing glass
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JP2003500330A (en) * 1999-05-28 2003-01-07 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber composition
JP2007529401A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strands that can reinforce organic and / or inorganic materials
US20130217822A1 (en) * 2005-11-04 2013-08-22 Douglas A. Hofmann Composition for high performance glass, high performance glass fibers and articles therefrom
JP2010507557A (en) * 2006-10-25 2010-03-11 サン ゴバン ヴェトロテックス フランス ソシエテ アノニム Glass composition resistant to chemical media for the production of glass reinforced yarns
JP2010513207A (en) * 2006-12-22 2010-04-30 サンーゴバン テクニカル ファブリックス ヨーロッパ Glass yarn that can reinforce organic and / or inorganic materials
US20100184345A1 (en) * 2007-05-23 2010-07-22 Saint-Gobain Technical Fabrics Europe Glass yarns suitable for reinforcing organic and/or inorganic materials
EP2676939A1 (en) * 2011-02-14 2013-12-25 Chongqing Polycomp International Corporation Glass fibre composition free of boron and fluorine

Also Published As

Publication number Publication date
TW202402701A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7184073B2 (en) glass for chemical strengthening
JP2017149644A (en) ION EXCHANGEABLE Li-CONTAINING GLASS COMPOSITIONS FOR 3-D FORMING
TW201031613A (en) Composition for high performance glass fibers and fibers formed therewith
JP5432711B2 (en) Glass composition
US20210009462A1 (en) Glass for chemical strengthening
JPS641415B2 (en)
KR20110099325A (en) Composition for high performance glass fibers and fibers formed therewith
TW202110763A (en) Glass, chemically strengthened glass, and cover glass
JP2012051773A (en) Glass for resin composite substrate
WO2023082935A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
JP2003119048A (en) Glass composition
WO2009081906A1 (en) Glass composition
JP5810086B2 (en) Glass filler
WO2020230550A1 (en) Glass composition for glass fibers
JP2019521068A (en) High heat resistant glass fiber and method for producing the same
WO2006080292A1 (en) Substrate glass for display
JP5809900B2 (en) Glass composition, glass filler for polycarbonate resin using the same, and polycarbonate resin composition
WO2023190982A1 (en) Glass fibers
JP5964219B2 (en) Glass filler
CN111433166B (en) Glass fiber and method for producing same
WO2023082936A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
JP2013159546A (en) Glass filler
JP2011162415A (en) Glass composition and use thereof
JPH10231143A (en) Corrosion-resistant glass fiber
JP2023510200A (en) Fiberglass composition for higher modulus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780990

Country of ref document: EP

Kind code of ref document: A1