WO2023190903A1 - Multilayer body and packaging bag - Google Patents

Multilayer body and packaging bag Download PDF

Info

Publication number
WO2023190903A1
WO2023190903A1 PCT/JP2023/013257 JP2023013257W WO2023190903A1 WO 2023190903 A1 WO2023190903 A1 WO 2023190903A1 JP 2023013257 W JP2023013257 W JP 2023013257W WO 2023190903 A1 WO2023190903 A1 WO 2023190903A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
base material
less
sealant
Prior art date
Application number
PCT/JP2023/013257
Other languages
French (fr)
Japanese (ja)
Inventor
峻 石川
真一朗 河野
祐也 高杉
清 中田
憲一 山田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022057547A external-priority patent/JP2023149135A/en
Priority claimed from JP2022057556A external-priority patent/JP2023149144A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023190903A1 publication Critical patent/WO2023190903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present disclosure relates to a laminate and a packaging bag.
  • Packaging bags are used to store fluid contents such as liquids and powders.
  • the packaging bag is composed of a laminate including a base material and a sealant layer.
  • a resin film made of polyolefin such as polyethylene is widely used as a sealant layer because it has flexibility and transparency and has excellent heat sealability.
  • resin films made of polyester or polyamide are widely used as base materials because of their excellent strength and heat resistance.
  • the base material and the sealant layer are each made of the same type of resin material (monomaterialization).
  • the base material and the sealant layer are made of polyethylene.
  • the base material contains a different type of resin material from the resin material that makes up the sealant layer
  • the base material can be selectively exposed to altered parts. can be formed.
  • the base material and the sealant layer are each made of the same type of resin material, polyolefin such as polyethylene, the base material cannot absorb the laser sufficiently, and the deteriorated parts of the base material are not easily formed. They tend not to form. Therefore, the tearability was not sufficiently improved by laser irradiation.
  • One object of the present disclosure is to provide a laminate that has excellent recyclability and can improve tearability by laser irradiation.
  • the laminate of the first aspect of the present disclosure includes at least a stretched base material and a sealant layer, the stretched base material includes at least a polyolefin layer, the sealant layer contains polyolefin as a main component, and the laminate includes: A heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat, and the heat-generating resin layer is arranged in the stretched base material, between the stretched base material and the sealant layer, and in the stretched base material. located at at least one location on the surface opposite to the surface on the sealant layer side.
  • the laminate of the second aspect of the present disclosure includes at least a stretched base material and a sealant layer, the stretched base material contains polyethylene as a main component, and the sealant layer includes a first layer, a second layer, and a sealant layer.
  • the first layer contains an ethylene/ ⁇ -olefin copolymer as a main component
  • the first layer has a melting point of 112° C. or lower
  • the second layer contains a polyethylene as a main component.
  • the melting point of the second layer is 114° C. or higher
  • one surface layer of the laminate is the first layer
  • the laminate has a laser beam between the stretched base material and the sealant layer.
  • the apparatus further includes a heat generating layer containing a heat generating substance that absorbs and generates heat.
  • the present disclosure it is possible to provide a laminate that has excellent recyclability and can favorably improve tearability by laser irradiation.
  • a packaging bag with excellent recyclability and ease of opening can be produced.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the laminate.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of the laminate.
  • FIG. 4 is a schematic cross-sectional view showing one embodiment of the laminate.
  • FIG. 5 is a front view showing one embodiment of the packaging bag.
  • FIG. 6 is a cross-sectional view showing an example of a through hole of an easy-to-open wire.
  • FIG. 7 is a diagram for explaining a method of measuring the width of the altered part.
  • FIG. 8 is a front view showing an example of an easy-to-open line.
  • FIG. 9 is a front view showing one embodiment of the packaging bag.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the laminate.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment
  • FIG. 10 is a front view showing one embodiment of the packaging bag.
  • FIG. 11 is a front view showing one embodiment of a packaging bag.
  • FIG. 12 is a front view of a test piece for measuring tear strength.
  • FIG. 13 is an observation image of the cross-sectional shape of the laminate.
  • FIG. 14 is an observation image of the cross-sectional shape of the laminate.
  • FIG. 15 is a schematic cross-sectional view showing one embodiment of the laminate.
  • FIG. 16 is a schematic cross-sectional view showing one embodiment of the sealant layer.
  • FIG. 17 is a schematic cross-sectional view showing one embodiment of the sealant layer.
  • FIG. 18 is a schematic cross-sectional view showing one embodiment of the sealant layer.
  • the numerical range of the parameter is defined as any one upper limit value candidate and any one lower limit value. It may be configured by combining the candidates.
  • “Parameter B is preferably A1 or more, more preferably A2 or more, even more preferably A3 or more. Parameter B is preferably A4 or less, more preferably A5 or less, and still more preferably A6 or less.” '' will be explained.
  • the numerical range of parameter B may be A1 or more and A4 or less, A1 or more and A5 or less, A1 or more and A6 or less, A2 or more and A4 or less, A2 or more and A5 or less, A2 or more and A6 or less. It may be A3 or more and A4 or less, A3 or more and A5 or less, or A3 or more and A6 or less.
  • each component that appears may be used alone. Often, two or more types may be used.
  • "Main component” means a component contained in a layer or base material in an amount of 50% by mass or more.
  • the laminate of the present disclosure includes at least a stretched base material and a sealant layer.
  • the laminate of the present disclosure can be suitably used as a packaging material.
  • the stretched base material includes at least a polyolefin layer.
  • the sealant layer contains polyolefin as a main component.
  • the laminate of the first aspect of the present disclosure includes a heat-generating resin layer containing as a main component a heteroatom-containing resin that generates heat by absorbing laser.
  • the exothermic resin layer is provided in the stretched base material, between the stretched base material and the sealant layer, and on the surface of the stretched base material opposite to the surface on the sealant layer side.
  • the laminate can be irradiated with a laser to form a deteriorated portion, and the laminate can be easily torn by hand, thereby improving the ease of opening a packaging bag including the laminate.
  • MD longitudinal direction
  • TD transverse direction
  • tearing in each direction can be achieved. You can improve your sexuality. In particular, it is possible to improve not only the MD and TD of the laminate, but also the tearability in a direction diagonal to the MD at 45 degrees.
  • the main components of the resin constituting the stretched base material and the resin constituting the sealant layer are both polyolefins, so that, for example, the recyclability of the laminate can be improved.
  • the content of polyolefin (specifically polyethylene or polypropylene) in the entire laminate of the first aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more. be.
  • a monomaterial packaging bag can be produced using the laminate, and the recyclability of the packaging bag can be improved.
  • the upper limit of the polyolefin content is not particularly limited, but may be 99% by mass or 95% by mass.
  • the stretched base material contains polyethylene as a main component.
  • the sealant layer includes at least a first layer and a second layer, each of which will be described later.
  • the laminate of the second aspect of the present disclosure further includes a heat generating layer containing a heat generating substance that absorbs laser and generates heat between the stretched base material and the sealant layer.
  • MD longitudinal direction
  • TD transverse direction
  • tearing in each direction can be achieved.
  • the main components of the resin constituting the stretched base material and the resin constituting the sealant layer are both polyethylene, so that, for example, the recyclability of the laminate can be improved.
  • the content of polyethylene in the entire laminate of the second aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 90% by mass or more.
  • a monomaterial packaging bag can be produced using the laminate, and the recyclability of the packaging bag can be improved.
  • the upper limit of the content of polyethylene is not particularly limited, but may be 99% by mass or 95% by mass.
  • the stretched base material includes at least a polyolefin layer.
  • polyolefin layer refers to a layer containing polyolefin such as polyethylene and polypropylene as a main component.
  • the stretched base material may be a polyolefin base material containing polyolefin as a main component.
  • the stretched base material is a polyethylene base material containing polyethylene as a main component.
  • the stretched base material may contain additives.
  • additives include crosslinking agents, antioxidants, antiblocking agents, slip agents, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, compatibilizers, pigments, and modifying resins. Can be mentioned.
  • the stretched base material may further include a heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat. That is, the stretched base material may include a polyolefin layer and a heat-generating resin layer.
  • the stretched base material may include, for example, a polyolefin layer, an adhesive resin layer, a heat-generating resin layer, an adhesive resin layer, and a polyolefin layer in this order, and the polyolefin layer, the adhesive resin layer, The heat generating resin layer may be provided in this order.
  • Each layer such as a polyolefin layer may be present in two or more layers.
  • the stretched base material is a base material that has been subjected to a stretching process. Thereby, for example, the strength, heat resistance, and transparency of the base material can be improved.
  • the stretching treatment may be uniaxial stretching or biaxial stretching.
  • the stretching ratio when stretching in the longitudinal direction may be 2 times or more, 3 times or more, 10 times or less, or 7 times or less.
  • the stretching ratio when stretching in the transverse direction may be 2 times or more, 3 times or more, 10 times or less, or 7 times or less.
  • the stretched base material is, for example, a uniaxially stretched film stretched in the machine direction (MD).
  • the stretched base material may have a single layer structure or a multilayer structure.
  • the thickness of the stretched base material is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less. It is as follows. When the thickness is at least the lower limit, for example, the strength and heat resistance of the laminate can be improved. When the thickness is below the upper limit, for example, the processability of the laminate can be improved.
  • the stretched base material can be produced, for example, by forming a film from a polyolefin such as polyethylene or its resin composition by an inflation molding method, a T-die molding method, or the like, and then stretching the film. According to the inflation molding method, film formation and stretching can be performed simultaneously.
  • the stretched substrate in one embodiment, is a coextruded resin film.
  • the stretched base material is a resin film obtained by coextruding two or more materials constituting a polyolefin layer such as a polyethylene layer using a coextrusion inflation method and further stretching the film.
  • the stretched base material includes a material constituting the polyolefin layer, a material constituting the adhesive resin layer when the stretched base material includes an adhesive resin layer, and a material constituting the exothermic resin layer. , a resin film obtained by coextrusion film formation by a coextrusion inflation method and further stretching treatment.
  • the stretched base material may be surface-treated.
  • the adhesion between the stretched base material and other layers can be improved.
  • surface treatment methods include physical treatments such as corona treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and/or nitrogen gas, and glow discharge treatment; and chemical treatments such as oxidation treatment using chemicals.
  • the polyolefin layer contains polyolefin as a main component.
  • polyolefins include polyethylene, polypropylene, and polymethylpentene.
  • a polyethylene layer and a polypropylene layer are preferred.
  • the melt flow rate (MFR) of the polyolefin is preferably 0.1 g/10 minutes or more, more preferably 0.2 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes or less, for example 0.1 g/10 minutes. It is more than 50g/10 minutes.
  • the MFR of polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the measurement temperature for MFR is set depending on the melting point of the polyolefin, and is, for example, 190°C in the case of polyethylene and 230°C in the case of polypropylene.
  • the content of polyolefin in the polyolefin layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
  • the polyolefin layer may contain resin materials other than polyolefin.
  • resin materials include (meth)acrylic resins, vinyl resins, cellulose resins, polyamides, polyesters, and ionomer resins.
  • the polyolefin layer may contain additives.
  • additives include crosslinking agents, antioxidants, antiblocking agents, slip agents, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, compatibilizers, pigments, and modifying resins. Can be mentioned.
  • the thickness of the polyolefin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness is at least the lower limit, the strength, heat resistance, and recyclability of the base material can be improved, for example.
  • the thickness is below the upper limit, for example, the processing suitability of the base material can be improved.
  • the stretched base material includes two or more polyolefin layers, the above "thickness" means the total thickness of each polyolefin layer.
  • the stretched base material may be provided with one polyolefin layer, or may be provided with two or more layers.
  • polyethylene layer contains polyethylene as a main component.
  • polyethylene refers to a polymer in which the content of ethylene-derived structural units is 50 mol% or more among all repeating structural units.
  • the content of the structural unit derived from ethylene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol% or more.
  • the above content ratio is measured by NMR method.
  • polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and an ethylenically unsaturated monomer other than ethylene.
  • ethylenically unsaturated monomers other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
  • polyethylene includes, for example, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and very low-density polyethylene.
  • high-density polyethylene and medium-density polyethylene are preferred.
  • linear low-density polyethylene and medium-density polyethylene are preferred.
  • Particularly preferred is medium density polyethylene.
  • biomass-derived polyethylene, mechanically recycled or chemically recycled polyethylene may be used.
  • the density of polyethylene is as follows.
  • the density of the high density polyethylene is preferably greater than 0.945 g/cm 3 .
  • the upper limit of the density of high-density polyethylene is, for example, 0.965 g/cm 3 .
  • the density of the medium density polyethylene is preferably greater than 0.930 g/cm 3 and less than 0.945 g/cm 3 .
  • the density of the low density polyethylene is preferably greater than 0.900 g/cm 3 and less than 0.930 g/cm 3 .
  • the density of the linear low density polyethylene is preferably more than 0.900 g/cm 3 and less than 0.930 g/cm 3 .
  • the density of the ultra-low density polyethylene is preferably 0.900 g/cm 3 or less.
  • the lower limit of the density of ultra-low density polyethylene is, for example, 0.860 g/cm 3 .
  • the density of polyethylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
  • Low-density polyethylene is usually polyethylene obtained by polymerizing ethylene using a high-pressure polymerization method (high-pressure low-density polyethylene).
  • Linear low-density polyethylene is usually polyethylene obtained by polymerizing ethylene and a small amount of ⁇ -olefin by a polymerization method using a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst.
  • Polyethylenes having different densities or branches can be obtained by appropriately selecting the polymerization method.
  • a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst is used as a polymerization catalyst, and one-stage polymerization is performed by any one of gas phase polymerization, slurry polymerization, solution polymerization, and high-pressure ionic polymerization.
  • the above description of polyethylene can also be applied elsewhere.
  • the melting point (Tm) of polyethylene is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably 140°C or lower. , for example, 100°C or more and 140°C or less.
  • Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the content of polyethylene in the polyethylene layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
  • the polypropylene layer contains polypropylene as a main component.
  • the polypropylene may be any of a propylene homopolymer (homopolypropylene), a propylene random copolymer (random polypropylene), and a propylene block copolymer (block polypropylene), or a mixture of two or more selected from these.
  • a propylene homopolymer homopolymer
  • a propylene random copolymer random polypropylene
  • a propylene block copolymer block polypropylene
  • biomass-derived polypropylene mechanically recycled or chemically recycled polypropylene may be used.
  • a propylene homopolymer is a polymer made only of propylene.
  • a propylene random copolymer is a random copolymer of propylene and an ⁇ -olefin other than propylene.
  • a propylene block copolymer is a copolymer having at least a polymer block made of propylene and a polymer block made of at least an ⁇ -olefin other than propylene.
  • ⁇ -olefins other than propylene examples include ⁇ -olefins having 2 to 20 carbon atoms, specifically ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Mention may be made of decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene.
  • propylene random copolymers are preferred from the viewpoint of transparency.
  • propylene homopolymer is preferred.
  • propylene block copolymers are preferred.
  • the density of polypropylene is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less.
  • the density of polypropylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
  • the melting point (Tm) of polypropylene is preferably 120°C or higher, more preferably 130°C or higher, even more preferably 150°C or higher, and preferably 170°C or lower, for example 120°C or higher and 170°C. It is as follows. Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the content of polypropylene in the polypropylene layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
  • the stretched base material may further include a heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat.
  • a heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat.
  • heteroatoms in the heteroatom-containing resin examples include oxygen atoms, sulfur atoms, and nitrogen atoms.
  • the heteroatom-containing resin has a heteroatom-containing group such as a hydroxy group, an amide group, an ester group, and an imide group.
  • examples of the heteroatom-containing resin that absorbs laser and generates heat include ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyamide, polyester, and polyimide. Among these, from the viewpoint of ease of opening the packaging bag, ethylene-vinyl alcohol copolymers, polyvinyl alcohol and polyamides are preferred, ethylene-vinyl alcohol copolymers and polyamides are more preferred, and ethylene-vinyl alcohol copolymers are even more preferred. preferable.
  • Ethylene-vinyl alcohol copolymer can be obtained, for example, by copolymerizing ethylene and a vinyl ester monomer and then saponifying the copolymer.
  • the copolymerization of ethylene and the vinyl ester monomer can be carried out by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc.
  • vinyl ester monomer vinyl acetate is generally used, but other vinyl ester monomers may also be used.
  • vinyl ester monomers include vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate.
  • Aliphatic vinyl esters include aromatic vinyl esters such as vinyl benzoate.
  • the content ratio of structural units derived from ethylene (ethylene content ratio) in EVOH is preferably 20 mol% or more, more preferably 25 mol% or more, and preferably 60 mol% or less, more preferably 50 mol% or less. For example, it is 20 mol% or more and 60 mol% or less.
  • the ethylene content is at least the lower limit, for example, the processing suitability of the stretched base material can be improved.
  • the ethylene content is at most the upper limit, for example, the unsealability of the packaging bag can be improved, and the oxygen barrier properties and water vapor barrier properties of the stretched base material can be improved.
  • the ethylene content rate is measured by NMR method.
  • the average degree of saponification in EVOH may be 90 mol% or more, 95 mol% or more, or 99 mol% or more.
  • the average saponification degree is measured in accordance with JIS K6726:1994 (however, EVOH uses a solution uniformly dissolved in a water/methanol solvent).
  • the melting point (Tm) of EVOH is preferably 140°C or higher, more preferably 145°C or higher, even more preferably 150°C or higher, and preferably 200°C or lower, more preferably 195°C or lower, and Preferably it is 190°C or less, for example 140°C or more and 200°C or less.
  • the Tm of EVOH is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the melt flow rate (MFR) of EVOH is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes, for example 0.1 g/10 minutes. It is 30g/10 minutes or less.
  • the MFR of EVOH is measured in accordance with ASTM D1238 at a temperature of 190° C. and a load of 2.16 kg. The measurement temperature may be 210° C. depending on the melting point of EVOH.
  • EVOH may be modified by urethanation, acetalization, cyanoethylation, oxyalkylenation, etc. by known methods.
  • the average degree of saponification in polyvinyl alcohol (PVA) may be 70 mol% or more, 75 mol% or more, 80 mol% or more, or 85 mol% or more.
  • the average degree of saponification is measured in accordance with JIS K6726:1994.
  • polyamide examples include aliphatic polyamide and semi-aromatic polyamide.
  • aliphatic polyamide is preferable, and crystalline aliphatic polyamide is more preferable.
  • aliphatic polyamides examples include aliphatic homopolyamides and aliphatic copolyamides.
  • polyamide is also referred to as "PA”.
  • the aliphatic homopolyamides include polycaprolactam (PA6), polyenanthlactam (PA7), polyundecanelactam (PA11), polylauryllactam (PA12), polyhexamethylene adipamide (PA66), and polyamide.
  • the aliphatic copolymer polyamides include caprolactam/hexamethylene diamino adipic acid copolymer (PA6/66), caprolactam/hexamethylene diamino azelaic acid copolymer (PA6/69), and caprolactam/hexamethylene diamino acid copolymer (PA6/69).
  • Sebacic acid copolymer (PA6/610), caprolactam/hexamethylenediaminoundecanoic acid copolymer (PA6/611), caprolactam/hexamethylenediaminododecanoic acid copolymer (PA6/612), caprolactam/aminoundecanoic acid copolymer combination (PA6/11), caprolactam/lauryllactam copolymer (PA6/12), caprolactam/hexamethylene diamino adipic acid/lauryllactam copolymer (PA6/66/12), caprolactam/hexamethylene diamino adipic acid/hexa Examples include methylene diamino sebacic acid copolymer (PA6/66/610) and caprolactam/hexamethylene diamino adipic acid/hexamethylene diamino dodecane dicarboxylic acid copolymer (PA6/66/612).
  • the relative viscosity of the aliphatic polyamide is preferably 1.5 or more and 5.0 or less, more preferably 2.0 or more and 5.0 or less, and still more preferably 2.5 or more and 4.5 or less.
  • the relative viscosity of aliphatic polyamide is measured at 25° C. by dissolving 1 g of polyamide in 100 mL of 96% concentrated sulfuric acid in accordance with JIS K6920-2:2009.
  • Semi-aromatic polyamide is a polyamide having a structural unit derived from an aromatic diamine and a structural unit derived from an aliphatic dicarboxylic acid, or a polyamide having a structural unit derived from an aliphatic diamine and a structural unit derived from an aromatic dicarboxylic acid. It is a polyamide having structural units. Examples include polyamides composed of aromatic diamines and aliphatic dicarboxylic acids, and polyamides composed of aliphatic diamines and aromatic dicarboxylic acids.
  • semi-aromatic polyamides examples include polyhexamethylene terephthalamide (PA6T), polyhexamethylene isophthalamide (PA6I), polynonamethylene terephthalamide (PA9T), and polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer.
  • PA66/6T polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer
  • PA66/6I polyhexamethylene terephthalamide/polycaproamide copolymer
  • PA6T/6 polyhexamethylene isophthalamide amide/polycaproamide copolymer
  • PA6I/6 polyhexamethylene terephthalamide/polydodecamide copolymer
  • PA6T/12 polyhexamethylene isophthalamide/polyhexamethylene terephthalamide copolymer
  • PA6I/6T Polyhexamethylene terephthalamide/poly(2-methylpentamethylene terephthalamide) copolymer
  • PA6T/M5T polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer
  • PA66/6T) /6I polyhexamethylene adipamide/polyhexamethylene isophthalamide copo
  • the melt volume rate (MVR) of the semi-aromatic polyamide is preferably from 5 cm 3 /10 minutes to 200 cm 3 /10 minutes, more preferably from 10 cm 3 /10 minutes to 100 cm 3 /10 minutes. MVR is measured at a temperature of 275° C. and a load of 5 kg in accordance with ISO1133.
  • crystalline aliphatic polyamide is preferred.
  • crystalline aliphatic polyamides include PA6, PA11, PA12, PA66, PA610, PA612, PA6/66 and PA6/66/12.
  • the melting point (Tm) of the crystalline aliphatic polyamide is preferably 180°C or higher, preferably 300°C or lower, more preferably 250°C or lower, even more preferably 230°C or lower, for example, 180°C or higher and 300°C or lower.
  • Tm of polyamide is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the content ratio of the heteroatom-containing resin in the exothermic resin layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more, or 95% by mass or more. be. Thereby, for example, the ease of opening the packaging bag can be improved.
  • the exothermic resin layer may contain the above additives.
  • the thickness of the exothermic resin layer in the stretched base material is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, even more preferably 1.5 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 8.0 ⁇ m or less. , more preferably 6.0 ⁇ m or less, for example 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved.
  • the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
  • the stretched base material includes two or more heat-generating resin layers, the above "thickness" means the total thickness of each heat-generating resin layer.
  • the thickness of the exothermic resin layer is preferably 1% or more, more preferably 3% or more, even more preferably 5% or more, and preferably 30% or less, more preferably It is 25% or less, more preferably 20% or less, for example 1% or more and 30% or less.
  • the above "thickness" means the total thickness of each heat-generating resin layer.
  • the stretched base material including the heat generating resin layer may include an adhesive resin layer between the polyolefin layer and the heat generating resin layer. Thereby, for example, the adhesion between the polyolefin layer and the exothermic resin layer can be improved.
  • the adhesive resin layer contains a resin material.
  • the resin material include polyolefin, modified polyolefin, vinyl resin, polyether, polyester, polyurethane, silicone resin, epoxy resin, and phenol resin.
  • polyolefins and modified polyolefins are preferred, and modified polyolefins such as acid-modified polyolefins are more preferred.
  • modified polyolefins include modified polyolefins, particularly graft-modified polyolefins, with unsaturated carboxylic acids such as maleic acid and fumaric acid, or acid anhydrides, esters, or metal salts thereof.
  • modified polyolefins are preferred from the viewpoint of obtaining a structure suitable for monomaterial packaging materials.
  • the melt flow rate (MFR) of the modified polyolefin may be 0.1 g/10 minutes or more, 0.3 g/10 minutes or more, or 0.5 g/10 minutes or more from the viewpoint of film formability and processing suitability. , 50 g/10 minutes or less, 30 g/10 minutes or less, 10 g/10 minutes or less, for example, 0.1 g/10 minutes or more and 50 g/10 minutes or less.
  • the MFR of the modified polyolefin is measured in accordance with ASTM D1238 at a temperature of 190° C. and a load of 2.16 kg, but the measurement temperature may be changed depending on the melting point of the modified polyolefin.
  • the adhesive resin layer may contain the above additives.
  • the thickness of the adhesive resin layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, for example, 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the thickness is at least the lower limit, the adhesion can be improved.
  • the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
  • the stretched base material includes two or more adhesive resin layers, the above "thickness" means the total thickness of each adhesive resin layer.
  • the stretched base material provided with a heat-generating resin layer includes (1) a stretched base material comprising a medium-density polyethylene layer, an adhesive resin layer, and a heat-generating resin layer in this order; (2) medium-density polyethylene layer; A stretched base material comprising a polyethylene layer, a medium-density polyethylene layer, a medium-density polyethylene layer, an adhesive resin layer, and a heat-generating resin layer in this order; (3) a medium-density polyethylene layer, an adhesive resin layer, An example is a stretched base material comprising a heat generating resin layer, an adhesive resin layer, and a medium density polyethylene layer in this order.
  • the medium density polyethylene layer contains medium density polyethylene as a main component.
  • the exothermic resin layer is arranged so as to face the sealant layer side.
  • the stretched base material may be a polyolefin base material including a polyolefin layer and containing polyolefin as a main component.
  • the polyolefin include polyethylene, polypropylene, and polymethylpentene, and the details are as described above.
  • the polyolefin base material a polyethylene base material and a polypropylene base material are preferred.
  • the content of polyolefin in the polyolefin base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be.
  • the polyolefin base material may contain the above resin materials other than polyolefin.
  • the polyolefin base material may contain the above additives.
  • the haze value of the polyolefin base material may be 25% or less, 15% or less, or 10% or less.
  • the lower limit of the haze value may be 0.1% or 1%.
  • the haze value of the polyolefin base material is measured in accordance with JIS K7136:2000.
  • the polyolefin base material may have a single layer structure or a multilayer structure.
  • a polyolefin base material having a multilayer structure is preferable from the viewpoint of, for example, an excellent balance of strength, heat resistance, printability, and stretching suitability.
  • the polyolefin base material may have two or more polyolefin layers. In this case, the number of polyolefin layers may be 2 or more, 3 or more, 7 or less, or 5 or less, for example, 3, 5, or 7 layers.
  • the thickness of the polyolefin base material is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less. It is as follows. When the thickness is at least the lower limit, for example, the strength and heat resistance of the laminate can be improved. When the thickness is below the upper limit, for example, the processability of the laminate can be improved.
  • the polyethylene base material contains polyethylene as a main component. Details of the polyethylene are as described above.
  • the melt flow rate (MFR) of polyethylene is preferably 0.1 g/10 minutes or more, more preferably 0.2 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes or less, for example 0.1 g/10 minutes. It is more than 50g/10 minutes.
  • the MFR of polyethylene is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014. The measurement temperature of MFR is 190°C.
  • the melting point (Tm) of polyethylene is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably 140°C or lower. , for example, 100°C or more and 140°C or less.
  • Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the content of polyethylene in the polyethylene base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be. With such a configuration, for example, the recyclability of the laminate can be improved.
  • the polyethylene base material may be a uniaxially stretched film or a biaxially stretched film, for example, a uniaxially stretched film that has been stretched in the machine direction (MD). Details of the stretching process are as described above.
  • the polyethylene base material may have a single layer structure or a multilayer structure.
  • the stretched base material may be provided with one polyethylene layer containing polyethylene as a main component, or may be provided with two or more layers.
  • a polyethylene base material having a multilayer structure is preferable from the viewpoint of, for example, an excellent balance of strength, heat resistance, printability, and stretching suitability.
  • the number of polyethylene layers may be 2 or more, 3 or more, 7 or less, or 5 or less, for example, 3, 5, or 7. It is a layer.
  • Examples of polyethylene base materials having a multilayer structure include the following. (1) A base material comprising a medium density polyethylene layer, a high density polyethylene layer, a blend layer of medium density polyethylene and high density polyethylene, a high density polyethylene layer, and a medium density polyethylene layer in this order; (2) A base material comprising, in this order, a medium density polyethylene layer, a medium density polyethylene layer, a blend layer of medium density polyethylene and linear low density polyethylene, a medium density polyethylene layer, and a medium density polyethylene layer; (3) A blend layer of medium density polyethylene and high density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a linear low density polyethylene layer, and a blend layer of medium density polyethylene and linear low density polyethylene.
  • a base material comprising a blend layer and a blend layer of medium density polyethylene and high density polyethylene in this order; (4) A blend layer of medium density polyethylene and high density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, A base material comprising a blend layer of linear low-density polyethylene and a blend layer of medium-density polyethylene and high-density polyethylene in this order; (5) A blend layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a blend layer of linear low-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, and a layer of high-density polyethylene and medium-density polyethylene.
  • a base material comprising a blend layer in this order;
  • a base material comprising a layer and a high-density polyethylene layer in this order;
  • a base material comprising a high-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and high-density polyethylene in this order;
  • a base material comprising a medium-density polyethylene layer, a high-density polyethylene layer, a linear low-density polyethylene layer, a high-density polyethylene layer, and a medium-density polyethylene layer in this order.
  • Each of the base materials (1) to (11) above has five layers. Each layer is described as a first layer to a fifth layer in order from the outside.
  • the thickness of each of the first layer and the fifth layer may be 0.5 ⁇ m or more, 1 ⁇ m or more, 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of each of the second layer and the fourth layer may be 0.5 ⁇ m or more, 1 ⁇ m or more, 15 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, for example, 0.5 ⁇ m or more and 15 ⁇ m or less. .
  • the thickness of the third layer may be 1 ⁇ m or more, 2 ⁇ m or more, 5 ⁇ m or more, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • Examples of the polyethylene base material having a multilayer structure include the following. (12) A base material comprising a high-density polyethylene layer and a medium-density polyethylene layer in this order; (13) A base material comprising a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer in this order.
  • the polypropylene base material contains polypropylene as a main component.
  • the polypropylene base material in the laminate of the present disclosure, for example, the oil resistance of a packaging bag produced using the laminate can be improved. Details of the polypropylene are as described above.
  • the content of polypropylene in the polypropylene base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be. With such a configuration, for example, the recyclability of the laminate can be improved.
  • the polypropylene base material may be a uniaxially stretched film or a biaxially stretched film, for example, a biaxially stretched film. Details of the stretching process are as described above.
  • the laminate of the first aspect of the present disclosure may include the heat generating resin layer between the stretched base material and the sealant layer.
  • the laminate of the first aspect of the present disclosure may include the heat-generating resin layer on the surface of the stretched base material opposite to the surface on the sealant layer side.
  • the exothermic resin layer The details of the exothermic resin layer are as described above, so the explanation in this section will be omitted.
  • the heteroatom-containing resin that absorbs laser and generates heat ethylene-vinyl alcohol copolymer and polyvinyl alcohol are preferred.
  • the thickness of the exothermic resin layer is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, even more preferably 0.5 ⁇ m or more, and may be 5.0 ⁇ m or less, or 3.0 ⁇ m or less, for example, .1 ⁇ m or more and 5.0 ⁇ m or less.
  • the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved.
  • the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
  • the exothermic resin layer provided on the surface of the stretched base material is formed, for example, by applying a coating liquid containing the above-mentioned heteroatom-containing resin that generates heat by absorbing laser to the stretched base material and drying it. be able to. That is, the exothermic resin layer may be a surface coat layer provided on the stretched base material. Furthermore, when the laminate is viewed in plan, the surface coat layer may be provided over the entire surface, or may be provided only at locations where easy-to-open lines are formed when a packaging bag is produced from the laminate.
  • the laminate of the first aspect of the present disclosure may include a heat-generating resin layer on one surface or both surfaces of the stretched base material.
  • the laminate of the first aspect of the present disclosure may include an anchor coat layer between the stretched base material and the heat-generating resin layer.
  • the laminate of the present disclosure may include an anchor coat layer between the stretched base material and the heat generating layer. Thereby, for example, adhesion between layers can be improved.
  • the anchor coating agent examples include isocyanate-based, polyurethane-based, polyolefin-based, polyethyleneimine-based, or epoxy resin-based anchor coating agents.
  • the anchor coating agent is a two-component curable resin, and includes, for example, a polyol as a main ingredient and a polyisocyanate as a curing agent.
  • the anchor coating agent includes polyisocyanate.
  • polyols include polyether polyols, polyester polyols, and (meth)acrylic polyols.
  • polyisocyanate examples include aromatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenylene polyisocyanate, and aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate.
  • the anchor coat layer in one embodiment, consists of polyurethane obtained by reaction of polyol and polyisocyanate.
  • polyurethane include polyether polyurethane, polyester polyurethane, and poly(meth)acrylic polyurethane.
  • the anchor coat layer can be formed, for example, by applying an anchor coat agent to the stretched base material.
  • the anchor coating agent can be applied by, for example, a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or a printing method.
  • the thickness of the anchor coat layer is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.2 ⁇ m or more, and preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and even more preferably is 1.0 ⁇ m or less, for example, 0.05 ⁇ m or more and 3.0 ⁇ m or less.
  • the laminate of the first aspect of the present disclosure may include a printed layer.
  • the laminate according to the second aspect of the present disclosure may include a printed layer other than the heat generating layer.
  • the printing layer contains an image. Examples of images include characters, figures, patterns, symbols, and combinations thereof.
  • the image may include text information such as the product name, the name of the contents in the packaging bag, the manufacturer, and the name of raw materials.
  • the image may be a solid color (a so-called solid image).
  • the printing layer contains coloring materials such as pigments and dyes, for example.
  • the printing layer may be formed using biomass-derived ink, for example. Thereby, for example, the environmental load can be further reduced.
  • the heat generating layer described below may function as a printing layer containing an image.
  • Examples of methods for forming the printing layer include conventionally known printing methods such as gravure printing, offset printing, and flexographic printing. From the viewpoint of reducing environmental impact, a flexographic printing method may be used.
  • the thickness of the printing layer may be 0.5 ⁇ m or more, 1.0 ⁇ m or more, 10 ⁇ m or less, 6.0 ⁇ m or less, 4.0 ⁇ m or less, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the printed layer may be formed on any surface of the stretched base material.
  • the printed layer is preferably formed on the surface of the stretched base material on the sealant layer side, since contact between the printed layer and the outside air can be suppressed and deterioration of the printed layer over time can be suppressed.
  • the laminate of the first aspect of the present disclosure may further include a heat generating layer containing a heat generating substance that absorbs laser and generates heat (excluding the heteroatom-containing resin that absorbs laser and generates heat).
  • the laminate according to the second aspect of the present disclosure includes a heat generating layer containing a heat generating substance that absorbs laser and generates heat.
  • the heat generating layer is provided between the stretched base material and the sealant layer.
  • the heat generating layer may further contain a binder resin.
  • exothermic substances that absorb laser and generate heat examples include metal oxides, bismuth-based compounds, molybdenum or molybdenum-based compounds, copper or copper-based compounds, and carbon black.
  • metal oxides include metal oxides, bismuth-based compounds, molybdenum or molybdenum-based compounds, copper or copper-based compounds, and carbon black.
  • inorganic substances are preferred, and metal oxides are more preferred.
  • metal oxides include titanium oxide, magnesium oxide, zinc oxide, aluminum oxide, silicon oxide, nickel oxide, tin oxide, neodymium oxide, mica, zeolite, kaolinite, copper/molybdenum composite oxide, and copper/tungsten composite.
  • oxides include oxides. Among these, titanium oxide is preferred.
  • the heat generating layer may be, for example, a white layer or a white layer containing titanium oxide.
  • bismuth compounds include bismuth nitrates such as bismuth oxide, bismuth nitrate and bismuth oxynitrate, bismuth halides such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, Mention may be made of bismuth titanate and bismuth subcarbonate.
  • molybdenum-based compounds include molybdenum oxides such as molybdenum dioxide and molybdenum trioxide, molybdenum chloride, and metal molybdates.
  • metal component in the metal molybdate include K, Zn, Ca, Ni, bismuth, and Mg.
  • Examples of the copper-based compound include copper oxide, copper halide, organic acid copper such as formic acid, citric acid, salicylic acid, lauric acid, oxalic acid, and maleic acid, copper phosphate, and copper hydroxyphosphate.
  • the content ratio of the exothermic substance in the heat generating layer may be 5% by mass or more, 10% by mass or more, 20% by mass or more, 50% by mass or more, 85% by mass or less, 80% by mass or less. It may be 75% by mass or less, for example, 5% by mass or more and 85% by mass or less.
  • binder resin examples include polyurethane, polyester, (meth)acrylic resin, and cellulose resin.
  • the content ratio of the binder resin in the heat generating layer may be 15% by mass or more, 20% by mass or more, 25% by mass or more, 95% by mass or less, 90% by mass or less, or 80% by mass or less. It may be 50% by mass or less, for example, 15% by mass or more and 95% by mass or less.
  • the thickness of the heat generating layer may be 0.5 ⁇ m or more, 1.0 ⁇ m or more, 4.0 ⁇ m or less, 3.5 ⁇ m or less, or 3.0 ⁇ m or less, for example, 0.5 ⁇ m or more and 4.0 ⁇ m.
  • the following may be used.
  • the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved.
  • the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
  • the position of the heat generating layer is, for example, between the stretched base material and the sealant layer.
  • the heat generating layer may be provided over the entire surface, or may be provided only at locations where easy-to-open lines are formed when producing a packaging bag from the laminate.
  • the heat generating layer can be formed, for example, by applying a composition containing a binder resin and a heat generating substance to a stretched base material and drying the composition.
  • the coating method include printing methods such as gravure printing, offset printing, and flexographic printing. That is, the heat generating layer may be a printed layer provided on the stretched base material.
  • the printed layer may be provided on the entire surface, or may be provided only at the locations where easy-to-open lines are formed when producing a packaging bag from the laminate.
  • the laminate of the present disclosure includes a sealant layer.
  • the sealant layer contains polyolefin such as polyethylene as a main component. This allows the packaging bag to be made of monomaterial. After collecting used packaging bags, there is no need to separate the stretched base material and the sealant layer, and the recyclability of the packaging bags can be improved.
  • polyethylene and polypropylene are preferred.
  • the sealant layer contains polyethylene as a main component.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. and very low density polyethylene are preferred.
  • biomass-derived polyethylene mechanically recycled or chemically recycled polyethylene may be used.
  • the sealant layer preferably contains low-density polyethylene and linear low-density polyethylene. From the viewpoint of tearability, the sealant layer preferably contains low density polyethylene.
  • the content ratio (mass %) of the linear low-density polyethylene may be larger than the content ratio (mass %) of the low-density polyethylene.
  • the melting point (Tm) of the polyethylene constituting the sealant layer is preferably 90°C or higher, more preferably 95°C or higher, and preferably 140°C or lower, more preferably 130°C or higher, from the viewpoint of the balance between heat resistance and heat sealability. °C or less, for example, 90°C or more and 140°C or less.
  • the MFR of the polyethylene constituting the sealant layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes, from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, still more preferably 10 g/10 minutes or less, for example 0.1 g/10 minutes or more and 50 g/10 minutes or less.
  • the processability of the sealant layer can be improved.
  • film formability can be improved if the MFR is below the upper limit.
  • the content of polyethylene in the sealant layer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
  • the sealant layer contains polypropylene as a main component.
  • the oil resistance of the packaging bag can be improved.
  • polypropylene examples include propylene homopolymers, propylene random copolymers such as propylene- ⁇ -olefin random copolymers, and propylene block copolymers such as propylene- ⁇ -olefin block copolymers. Details of the ⁇ -olefin are as described above.
  • polypropylene from the viewpoint of reducing environmental load, biomass-derived polypropylene, mechanically recycled or chemically recycled polypropylene may be used.
  • the density of polypropylene is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less.
  • the melting point (Tm) of the polypropylene constituting the sealant layer is preferably 120°C or higher, more preferably 125°C or higher, even more preferably 130°C or higher, and preferably 160°C or higher, from the viewpoint of the balance between heat resistance and heat sealability. °C or less, more preferably 155°C or less, still more preferably 150°C or less, for example, 120°C or more and 160°C or less.
  • the content of polypropylene in the sealant layer is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
  • the MFR of the polyolefin constituting the sealant layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes, from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, still more preferably 10 g/10 minutes or less, for example 0.1 g/10 minutes or more and 50 g/10 minutes or less.
  • the processability of the sealant layer can be improved.
  • film formability can be improved if the MFR is below the upper limit.
  • the content of polyolefin in the sealant layer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 75% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
  • the sealant layer may contain the above additives.
  • the thickness of the sealant layer is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, even more preferably 50 ⁇ m or more, particularly preferably 80 ⁇ m or more, and preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less. , for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the sealant layer has a multilayer structure, the total thickness thereof is preferably within the above range.
  • the thickness is at least the lower limit, for example, the heat sealability of the sealant layer and the recyclability of the packaging bag can be improved.
  • the thickness is below the upper limit, for example, the processability of the laminate can be improved.
  • the sealant layer is preferably an unstretched resin film, more preferably an unstretched coextruded resin film, and each layer constituting the sealant layer is a coextruded resin layer.
  • the resin film can be produced by, for example, a casting method, a T-die method, an inflation method, or the like. "Unstretched” is a concept that includes not only a film that has not been stretched at all, but also a film that has been slightly stretched due to the tension applied during film formation.
  • an unstretched resin film corresponding to the sealant layer may be laminated on the stretched base material via an adhesive layer as necessary, or a polyolefin such as polyethylene or its resin composition may be melt-extruded onto the stretched base material.
  • a sealant layer may be formed by doing so. In the latter case, the adhesive layer may not be provided. Examples of the adhesive layer include the adhesive layer described below.
  • the sealant layer may include a first layer and a second layer as described below.
  • the first layer contains an ethylene/ ⁇ -olefin copolymer as a main component and has a melting point of 112° C. or lower.
  • the second layer contains polyethylene as a main component and has a melting point of 114° C. or higher.
  • the first layer can improve low-temperature sealing properties, and the second layer can improve rigidity and hand-cutting properties.
  • the stretched base material which mainly contains polyethylene, is composed of polyethylene that has a lower melting point than conventional resin films such as polyester and nylon, so the heat sealing temperature when manufacturing packaging bags using the laminate is lower. cannot be made too high.
  • a sealant layer comprising a first layer and a second layer
  • the first layer can be heat-sealed at a lower temperature than the second layer. Also, the sealing properties of the packaging bag can be maintained.
  • Stretched base material made of polyethylene has higher tear strength than resin films such as polyester or nylon, so when the laminate is processed into a packaging bag, the tearability (tearability) when opening the bag may be reduced. .
  • the tearability of the laminate is improved.
  • the sealant layer which includes the second layer having a melting point of 114° C. or higher, improves the toughness and further improves the tearability of the laminate.
  • tearability can be improved by providing an easy-to-open line in the laminate as described above, and tearability can be further improved by using the sealant layer of the above embodiment.
  • the melting point of a layer is a value determined in accordance with JIS K7121:2012 using a differential scanning calorimeter. Specifically, a sample is taken from each layer of the sealant layer, and the melting point is measured by the method described in the Examples section.
  • the first layer in the sealant layer contains an ethylene/ ⁇ -olefin copolymer as a main component and has a melting point of 112° C. or lower. Thereby, as described above, the low-temperature sealing properties of the sealant layer can be improved.
  • the first layer is one surface layer of the sealant layer and also one surface layer of the laminate. The first layer is the layer facing the contents contained in the packaging bag.
  • linear polyethylene examples include linear polyethylene.
  • Linear polyethylene is a copolymer of ethylene and ⁇ -olefin, which is obtained using, for example, a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst.
  • the linear polyethylene having a density of 0.930 g/cm 3 or less is, for example, linear low density polyethylene.
  • the ⁇ -olefin that is a comonomer of the above copolymer is, for example, an ⁇ -olefin having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Examples include nonene and 4-methylpentene, and tearability tends to improve as the number of carbon atoms increases. In consideration of low-temperature sealability and tearability, 1-hexene and 1-octene are preferred as the ⁇ -olefin.
  • Polyethylene can be produced using, for example, a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst as a polymerization catalyst.
  • a single-site catalyst is a catalyst capable of forming uniform active species, and is usually prepared by bringing a metallocene transition metal compound or a non-metallocene transition metal compound into contact with an activation cocatalyst.
  • Single-site catalysts are preferable compared to multi-site catalysts because they have a uniform structure of active sites and can yield polymers with high molecular weight and highly uniform structures.
  • a metallocene catalyst is preferred.
  • an ethylene/ ⁇ -olefin copolymer produced using a metallocene catalyst in the first layer an ethylene/ ⁇ -olefin copolymer produced using a Ziegler-Natta catalyst can be used.
  • low-temperature sealing performance can be further improved than in the case of the conventional method.
  • the ethylene/ ⁇ -olefin copolymer produced using a metallocene catalyst in the second layer or third layer described below the ethylene/ ⁇ -olefin copolymer produced using a Ziegler-Natta catalyst can be used.
  • impact resistance can be improved more than when a polymer is used.
  • the melting point of the first layer is preferably 110°C or lower, more preferably 105°C or lower, even more preferably 100°C or lower, and may be 80°C or higher, or even 90°C or higher.
  • the temperature may be 80°C or higher and 110°C or lower.
  • the difference between the melting point of the second layer and the first layer is preferably 4°C or higher, more preferably 15°C or higher, and even more preferably 20°C, from the viewpoint of the low-temperature sealing property and rigidity balance of the sealant layer.
  • the temperature is preferably 50°C or lower, more preferably 48°C or lower, still more preferably 46°C or lower, and may be, for example, 40°C or lower, for example, 4°C or higher and 50°C or lower.
  • the density of the first layer is preferably 0.915 g/cm 3 or less, more preferably 0.912 g/cm 3 or less, even more preferably 0.908 g/cm 3 or less, and even 0.890 g/cm 3 or more. It may be 0.900 g/cm 3 or more, for example, 0.890 g/cm 3 or more and 0.915 g/cm 3 or less.
  • the density of the first layer is preferably 0.915 g/cm 3 or less, more preferably 0.912 g/cm 3 or less, even more preferably 0.908 g/cm 3 or less, and even 0.890 g/cm 3 or more. It may be 0.900 g/cm 3 or more, for example, 0.890 g/cm 3 or more and 0.915 g/cm 3 or less.
  • the content of the ethylene/ ⁇ -olefin copolymer in the first layer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more.
  • the first layer is an ethylene/ ⁇ - Contains olefin copolymer.
  • the density of the ethylene/ ⁇ -olefin copolymer is preferably 0.890 g/cm 3 or more, more preferably 0.895 g/cm 3 or more.
  • the density is, for example, 0.890 g/cm 3 or more and 0.912 g/cm 3 or less.
  • the first layer contains an ethylene/ ⁇ -olefin copolymer having a density of 0.912 g/cm 3 or less, the low-temperature sealing properties of the sealant layer can be improved, for example.
  • the density of the ethylene/ ⁇ -olefin copolymer is 0.890 g/cm 3 or more, the blocking resistance of the laminate can be improved, for example.
  • the thickness of the first layer may be 5 ⁇ m or more, 15 ⁇ m or more, 50 ⁇ m or less, 30 ⁇ m or less, for example, 5 ⁇ m or more and 50 ⁇ m or less.
  • the first layer may be a single layer or a multilayer with each layer having the same composition. If the first layer is multilayer, the thickness of the first layer is the total thickness of each layer.
  • the ratio of the thickness of the first layer to the thickness of the sealant layer is preferably 3% or more, more preferably 5% or more, even more preferably 10% or more, particularly preferably 15% or more, and preferably 40%.
  • the content is more preferably 35% or less, still more preferably 30% or less, particularly preferably 25% or less, for example 3% or more and 40% or less.
  • the first layer is preferably in contact with the second layer or the third layer, and more preferably in contact with the second layer. That is, in one embodiment, the first layer is preferably in contact with the second layer or the third layer without an adhesive layer interposed therebetween. In one embodiment, the first layer is an unstretched resin layer.
  • the first layer may contain the above additive.
  • the second layer in the sealant layer contains polyethylene as a main component and has a melting point of 114° C. or higher. Thereby, as described above, the rigidity of the sealant layer can be improved.
  • the melting point of the second layer is preferably 117°C or higher, more preferably 120°C or higher, and may be 150°C or lower, or 135°C or lower.
  • the density of the second layer is preferably 0.916 g/cm 3 or more, more preferably 0.917 g/cm 3 or more, even more preferably 0.920 g/cm 3 or more, particularly preferably 0.930 g/cm 3 or more. It may be 0.950 g/cm 3 or less, 0.945 g/cm 3 or less, for example, 0.916 g/cm 3 or more and 0.950 g/cm 3 or less.
  • the density of the second layer By setting the density of the second layer to 0.916 g/cm 3 or more, for example, the rigidity and tearability of the sealant layer can be improved.
  • the density of the second layer By setting the density of the second layer to 0.950 g/cm 3 or less, for example, the impact resistance of the sealant layer can be improved.
  • the content of polyethylene in the second layer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more.
  • the second layer in one embodiment, preferably contains polyethylene having a density of 0.915 g/cm 3 or more, more preferably 0.935 g/cm 3 or more.
  • the density of the polyethylene is preferably 0.970 g/cm 3 or less, more preferably 0.960 g/cm 3 or less.
  • the density may be, for example, 0.915 g/cm 3 or more and 0.970 g/cm 3 or less.
  • the second layer contains polyethylene having a density of 0.915 g/cm 3 or more, for example, the rigidity and tearability of the sealant layer can be improved.
  • the density of the polyethylene is 0.970 g/cm 3 or less, for example, the impact resistance of the sealant layer can be improved.
  • the second layer may contain an ethylene/ ⁇ -olefin copolymer as the polyethylene.
  • the content of the ethylene/ ⁇ -olefin copolymer in the second layer is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass, based on the entire second layer.
  • the content is more preferably 80% by mass or less, for example 50% by mass or more and 90% by mass or less.
  • the second layer may contain an ethylene homopolymer as the polyethylene.
  • the content ratio of the ethylene homopolymer in the second layer is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 15% by mass or more, based on the entire second layer. Preferably it is 25% by mass or less, for example 10% by mass or more and 50% by mass or less.
  • the second layer when the sealant layer is composed of two layers, the second layer is the surface layer of the sealant layer on the stretched base material side. In one embodiment, when the sealant layer is composed of three or more layers, the second layer is a surface layer and/or an intermediate layer on the stretched substrate side in the sealant layer. In this case, the first layer and the intermediate layer are preferably made of different constituent materials from the viewpoint of the balance between low-temperature sealability and rigidity.
  • the intermediate layer means a layer located between one surface layer and the other surface layer of the sealant layer.
  • the intermediate layer may be a single layer or a multilayer.
  • the composition of each intermediate layer may be the same or different.
  • the second layer may be a plurality of layers in the sealant layer as long as it contains polyethylene as a main component and has a melting point of 114° C. or higher.
  • both the surface layer and the intermediate layer on the stretched base material side may be the second layer.
  • the thickness of the second layer may be 10 ⁇ m or more, 45 ⁇ m or more, 250 ⁇ m or less, 170 ⁇ m or less, for example, 10 ⁇ m or more and 250 ⁇ m or less. If the second layer is multilayer, the thickness of the second layer is the total thickness of each layer.
  • the second layer is an unstretched resin layer.
  • the second layer may contain the above additive.
  • the sealant layer may further include a third layer in addition to the first layer and the second layer.
  • the third layer is a layer containing polyethylene as a main component, and is a layer that does not correspond to the first layer or the second layer.
  • the third layer is a surface layer and/or an intermediate layer on the side of the stretched substrate.
  • the third layer may be a plurality of layers within the sealant layer.
  • the third layer is an unstretched resin layer.
  • the third layer may contain the above additive.
  • the layer structure of the sealant layer containing polyethylene as a main component is as follows: ⁇ First layer/second layer, ⁇ First layer/second layer/first layer, ⁇ First layer/second layer/second layer, ⁇ First layer/second layer/third layer, ⁇ First layer/third layer/second layer, can be mentioned. "/" means between layers.
  • the melting point of the intermediate layer is higher than the melting point of the surface layer on the stretched base material side. Further, it is preferable that the melting point of the intermediate layer is higher than that of the first layer. Further, it is preferable that the melting point of the surface layer on the stretched base material side is higher than the melting point of the first layer. With such a configuration, for example, the low-temperature sealability, rigidity, and impact resistance of the sealant layer can be further improved.
  • the difference between the melting point of the intermediate layer and the melting point of the surface layer on the stretched base material side may be 0°C or more and 30°C or less, 1°C or more, 2°C or more, or 25°C or less, or 20°C or more.
  • the temperature may be below 15°C, or below 10°C.
  • the difference between the melting point of the intermediate layer and the first layer may be 2°C or more and 50°C or less, 4°C or more, 15°C or more, or 40°C or less, or 35°C or less. good.
  • the difference between the melting point of the surface layer on the stretched base material side and the melting point of the first layer may be 2°C or more and 40°C or less, 4°C or more, 15°C or more, or 35°C or less. , 30°C or lower.
  • the ratio of the thickness of the first layer to the thickness of the sealant layer and the thickness of the surface layer on the stretched base material side are The proportions are each independently preferably 3% or more, more preferably 5% or more, even more preferably 10% or more, particularly preferably 15% or more, preferably 40% or less, more preferably 35% or less, and Preferably it is 30% or less, particularly preferably 25% or less, for example 3% or more and 40% or less.
  • the ratio of the thickness of the intermediate layer to the thickness of the sealant layer is preferably 20% or more, more preferably 30% or more. , more preferably 40% or more, particularly preferably 50% or more, preferably 94% or less, more preferably 90% or less, even more preferably 80% or less, particularly preferably 70% or less, for example 20% or more It is 94% or less.
  • the sealant layer does not have an adhesive layer between each layer selected from the first layer, the second layer, and optionally the third layer constituting the sealant layer.
  • the sealant layer is a coextruded resin film.
  • the content of the ethylene/ ⁇ -olefin copolymer in the sealant layer is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or less, more preferably is 80% by mass or less, for example, 50% by mass or more and 90% by mass or less.
  • the content of the ethylene homopolymer in the sealant layer is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 25% by mass, based on the entire sealant layer. % or less, for example, 10% by mass or more and 50% by mass or less.
  • the tearability of the sealant layer can be improved.
  • the impact resistance of the sealant layer can be improved.
  • a surface treatment may be applied to the surface of the sealant layer located on the opposite side of the first layer. Thereby, adhesion between adjacent layers can be improved. Specific examples of the surface treatment are as described above.
  • the laminate of the present disclosure may include an adhesive layer between arbitrary layers, such as between the stretched base material and the sealant layer, for example, between the heat generating layer and the sealant layer. Thereby, the adhesiveness between the stretched base material and the sealant layer can be improved.
  • the thickness of the adhesive layer may be 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.5 ⁇ m or more, 10 ⁇ m or less, 8.0 ⁇ m or less, 6.0 ⁇ m or less, for example 0.
  • the thickness may be 1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the adhesive layer may be 2.0 ⁇ m or less.
  • the adhesive layer may be an adhesive layer made of adhesive.
  • the adhesive may be a one-component curing adhesive, a two-component curing adhesive, or a non-curing adhesive.
  • the adhesive may be a solvent-free adhesive or a solvent-based adhesive.
  • solvent-free adhesives that is, non-solvent laminating adhesives
  • examples of solvent-free adhesives include polyether adhesives, polyester adhesives, silicone adhesives, epoxy adhesives, and urethane adhesives.
  • urethane adhesives are preferred, and two-component curing type urethane adhesives are more preferred.
  • the solvent-free adhesive is a two-component curing adhesive that includes a base agent and a curing agent.
  • the weight average molecular weight (Mw) of the polymer component contained in the base resin is preferably 800 or more and 10,000 or less, more preferably 1,200 or more and 4,000 or less, from the viewpoint of coating suitability.
  • the polydispersity (Mw/Mn) of the polymer component contained in the base agent is preferably 2.8 or less, more preferably 1.2 or more and 2.7 or less, even more preferably 1.5 or more and 2.6 or less, especially Preferably it is 2.0 or more and 2.5 or less.
  • Mn is the number average molecular weight of the polymer component contained in the base resin.
  • Each average molecular weight is measured by gel permeation chromatography (GPC) in accordance with JIS K7252-1:2008, and is a value in terms of polystyrene.
  • solvent-based adhesives examples include rubber adhesives, vinyl adhesives, olefin adhesives, silicone adhesives, epoxy adhesives, phenolic adhesives, and urethane adhesives.
  • the amount of residual solvent specifically, the amount of residual organic solvent in the laminate can be further reduced, for example.
  • organic solvents include hydrocarbon solvents such as toluene, xylene, n-hexane, and methylcyclohexane; ester solvents such as ethyl acetate, n-propyl acetate, n-butyl acetate, and isobutyl acetate; methanol, ethanol, isopropyl alcohol, Alcohol solvents such as n-butyl alcohol and isobutyl alcohol; and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • the adhesive layer can be made thinner, for example, than when a solvent-based adhesive is used. Thereby, the content ratio of polyolefin in the entire laminate can be further improved.
  • a laminate is suitable for producing a monomaterial packaging bag.
  • the tearability of the laminate can be improved more than when using a solvent-based adhesive.
  • this urethane adhesive for example, an adhesive having a base agent containing a polyol compound such as a polyester polyol and a curing agent containing an isocyanate compound is preferable.
  • polyol compounds examples include polyester polyols, polyether polyols, polycarbonate polyols, and (meth)acrylic polyols. Among these, polyester polyols are preferred.
  • a polyester polyol has two or more hydroxyl groups in one molecule.
  • a polyester polyol has, for example, a polyester structure or a polyester polyurethane structure as a main skeleton.
  • Polyester polyols can be obtained, for example, by dehydration condensation reaction, transesterification, or ring-opening reaction between a polyhydric alcohol component and a polyhydric carboxylic acid component.
  • polyhydric alcohol component examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Diols such as hexanediol, neopentyl glycol and cyclohexanedimethanol; trifunctional or higher functional polyols such as glycerin, triethylolpropane, trimethylolpropane, pentaerythritol and sorbitol.
  • polycarboxylic acid component examples include aliphatic polycarboxylic acids, alicyclic polycarboxylic acids, aromatic polycarboxylic acids, and ester derivatives and acid anhydrides thereof.
  • aliphatic polycarboxylic acids examples include aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid, and dimer acid.
  • alicyclic polycarboxylic acids examples include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • aromatic polycarboxylic acids examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, and 1,2-bis(phenoxy)ethane-p , p'-dicarboxylic acid.
  • the polyester polyol can also be lengthened in advance with polyisocyanate, if necessary.
  • polyisocyanates include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ' ⁇ '-tetramethyl-m-xylylene diisocyanate, tolylene diisocyanate, and naphthalene.
  • Diisocyanates such as diisocyanates and diphenylmethane diisocyanate; and biurets, nurates, or trimethylolpropane adducts of diisocyanates can be mentioned.
  • the weight average molecular weight (Mw) of the polyol compound such as polyester polyol is preferably 800 or more and 10,000 or less, more preferably 1,200 or more and 4,000 or less.
  • the polydispersity (Mw/Mn) of the polyol compound such as polyester polyol is preferably 2.8 or less, more preferably 1.2 or more and 2.7 or less, still more preferably 1.5 or more and 2.6 or less, particularly preferably is 2.0 or more and 2.5 or less.
  • Mn is the number average molecular weight of the polyol compound.
  • Each average molecular weight is measured by gel permeation chromatography (GPC) in accordance with JIS K7252-1:2008, and is a value in terms of polystyrene.
  • the isocyanate compound has two or more isocyanate groups in one molecule.
  • examples of the isocyanate compound include aromatic isocyanates and aliphatic isocyanates.
  • the isocyanate compound may be a blocked isocyanate compound obtained by addition reaction using a known isocyanate blocking agent by a known and commonly used method.
  • isocyanate compound examples include tetramethylene diisocyanate, hexamethylene diisocyanate, norbornene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, m-xylylene diisocyanate, hydrogenated xylylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, and ⁇ , Diisocyanates such as ⁇ , ⁇ ' ⁇ '-tetramethyl-m-xylylene diisocyanate; trimers of these diisocyanates; and these diisocyanate compounds and low-molecular active hydrogen compounds or their alkylene oxide adducts, or polymeric active compounds. Examples include an adduct, a burette, and an allophanate, which are obtained by reacting with a hydrogen compound.
  • low-molecular active hydrogen compounds include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, neneopentyl glycol, 1,6-hexamethylene glycol, 1,8-octamethylene glycol, 1,4-Cyclohexane dimethanol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanol Amines include diethanolamine, triethanolamine and metaxylylene diamine.
  • the polymeric active hydrogen compound include polyester, polyether polyol, and polyamide.
  • the adhesive layer may be an adhesive resin layer containing a thermoplastic resin.
  • thermoplastic resins include high-density polyethylene, medium-density polyethylene, high-pressure low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer, and ethylene-vinyl acetate copolymer.
  • examples include resins obtained by graft polymerization or copolymerization of polymers.
  • the thermoplastic resin may be a fossil fuel-derived material, a biomass-derived material, or both.
  • the laminate of the present disclosure may be manufactured by bonding a stretched base material and a resin film corresponding to the sealant layer by a non-solvent laminating method using a solvent-free adhesive. They may be manufactured by bonding them together by a dry lamination method using a solvent-based adhesive.
  • the laminate 30 shown in FIG. 1 includes a stretched base material 40 including a polyolefin layer 42, a polyolefin layer 42, an adhesive resin layer 44, and a heat generating resin layer 46, an adhesive layer 60, and a sealant layer 70. Prepare in this order.
  • the laminate 30 shown in FIG. 1 may further include a heat generating layer 80 (not shown) between the stretched base material 40 and the adhesive layer 60.
  • the stretched base material 40 may include a polyolefin layer 42, an adhesive resin layer 44, a heat generating resin layer 46, an adhesive resin layer 44, and a polyolefin layer 42, as shown in FIG.
  • the laminate 30 shown in FIG. 3 includes a stretched base material (polyolefin base material) 40, a heat-generating resin layer 50, an adhesive layer 60, and a sealant layer 70 in this order.
  • the laminate 30 shown in FIG. 3 further includes a heat generating layer 80 (not shown) between the heat generating resin layer 50 and the adhesive layer 60 and/or between the stretched base material 40 and the heat generating resin layer 50. It's okay.
  • the laminate 30 shown in FIG. 4 includes a heat-generating resin layer 50, a stretched base material (polyolefin base material) 40, an adhesive layer 60, and a sealant layer 70 in this order.
  • the laminate shown in FIG. 4 may further include a heat generating layer 80 (not shown) between the stretched base material 40 and the adhesive layer 60.
  • the stretched base material 40 may have a multilayer structure.
  • an anchor coat layer (not shown) may be provided between the exothermic resin layer 50 and the stretched base material 40.
  • the laminate 30 shown in FIG. 15 includes a stretched base material 40, a heat generating layer 50, an adhesive layer 60, and a sealant layer 70 in this order.
  • the stretched base material 40 may have a multilayer structure.
  • the sealant layer 70 in FIG. 15 has a layer structure shown in FIGS. 16 to 18, for example.
  • the sealant layer 70 shown in FIG. 16 includes a first layer 72 as a sealing layer and a second layer 74 as a laminate layer in this order.
  • the sealant layer 70 shown in FIG. 17 includes a first layer 72 as a sealing layer, a second layer 74 as an intermediate layer, and a second layer 74 as a laminate layer in this order.
  • the two second layers 74 may be the same or different from each other.
  • the sealant layer 70 shown in FIG. 18 includes, in this order, a first layer 72 as a sealing layer, a second layer 74 as an intermediate layer, and a third layer 76 as a laminate layer.
  • the laminate of the present disclosure can be suitably used for packaging material applications.
  • Packaging materials are used to make packaging bags.
  • a packaging bag with excellent tearability can be manufactured.
  • the packaging bag may be a refill pouch, particularly a standing pouch, that accommodates fluid contents such as liquid or powder that is refilled into a container such as a bottle.
  • packaging bags include standing pouch type, side seal type, two side seal type, three side seal type, four side seal type, envelope sticker type, gasho sticker type (pillow seal type), pleated seal type, and flat bottom seal type.
  • packaging bags include standing pouch type, side seal type, two side seal type, three side seal type, four side seal type, envelope sticker type, gasho sticker type (pillow seal type), pleated seal type, and flat bottom seal type.
  • types of packaging bags such as a type, a square bottom seal type, and a gusset type.
  • the packaging bag of the present disclosure includes the laminate of the present disclosure.
  • the packaging bag of the present disclosure is a storage section that accommodates the contents; a sealing part where the sealant layers of the laminate are joined; and an easy-to-open line that includes the altered portion of the laminate.
  • the seal portion includes an inner edge that defines a housing portion.
  • the easy-to-open line is a line that includes a first intersection point and a second intersection point that intersect with the inner edge of the seal portion, and crosses the storage portion when the packaging bag is viewed from above.
  • the packaging bag may further include a notch that serves as a starting point for tearing.
  • the packaging bag has a seal portion where the sealant layers of the laminate are joined together.
  • seal portion where the sealant layers of the laminate are joined together.
  • methods for forming the seal portion include heat sealing, in which the sealant layers of the laminate are melted by heating and the sealant layers are fused together, and specifically, bar seals, rotating roll seals, belt seals, Impulse seals, high frequency seals and ultrasonic seals may be mentioned.
  • the packaging bag has an easy-to-open line as a path for tearing the packaging bag.
  • the easy-to-open line includes a deteriorated portion, which is a portion where the laminate has deteriorated in quality.
  • the width W1 of the altered part included in the easy-to-open line is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, even more preferably 70 ⁇ m or more, and may be 250 ⁇ m or less, 230 ⁇ m or less, 200 ⁇ m or less, for example 30 ⁇ m or more. It may be 250 ⁇ m or less. Thereby, for example, the ease of opening the packaging bag can be improved.
  • the width W1 is measured at the end surface of the stretched base material on the sealant layer side.
  • the width W1 tends to increase as the energy absorbed from the laser by the exothermic resin layer or the exothermic layer increases. A specific example of the method for calculating the width W1 will be described later.
  • the laminate that constitutes the packaging bag may have two or more easy-to-open lines.
  • the number of easy-to-open lines may be 1 or more, 2 or more, 3 or more, 10 or less, 8 or less, 5 or less, for example, 1 or more and 10 or less.
  • the easy-to-open line may be formed on both the front film and the back film, which will be described later. In this case, the front film and the back film may each have the above number of easy-to-open lines.
  • the easy-open line including the altered portion can be formed, for example, by irradiating the laminate that constitutes the packaging bag with a laser.
  • the reason why altered parts are formed in the laminate is presumed to be as follows.
  • the laminate is irradiated with a laser, the heteroatom-containing resin contained in the exothermic resin layer or the exothermic substance contained in the exothermic layer absorbs the laser, thereby increasing the temperature of the exothermic resin layer or the exothermic layer.
  • gas is generated around the heated heat-generating resin layer or heat-generating layer, for example.
  • the temperature of the gas rises and the pressure of the gas increases, a portion of the stretched base material scatters, forming an altered part.
  • the altered portion may penetrate the stretched base material, may further penetrate the heat-generating resin layer or the heat-generating layer, or may further penetrate the adhesive layer. Even if a through-hole is not formed, an altered portion may be formed, for example, by expansion of the heat-generating resin layer or heat-generating layer and the stretching base material being partially raised or peeled off. Note that the altered portion may be formed according to another principle.
  • Laser irradiation can be performed while moving the laser irradiation position in the laminate.
  • a laser irradiation device that emits a laser toward the laminate may be moved relative to the laminate.
  • an altered portion is formed along the movement path of the laser irradiation device.
  • an easy-to-open line extending in a direction corresponding to the movement path of the laser irradiation device is formed in the laminate.
  • the relative movement may include moving the laser irradiation device with respect to the stacked body, and may include moving the stacked body with respect to the laser irradiation device.
  • the irradiation position of the laser on the stacked body may be moved by changing the trajectory of the laser using a galvanometer mirror or the like.
  • the laminate may be irradiated with a laser from the sealant layer side.
  • the laminate may be irradiated with a laser from the stretched base material side.
  • the scanning speed of laser irradiation may be 10 mm/s or more, 20 mm/s or more, or 50 mm/s or more.
  • the scanning speed of laser irradiation can be appropriately selected depending on the type and wavelength of the laser.
  • the scanning speed of laser irradiation may be 2000 mm/s or less, 1500 mm/s or less, or 1000 mm/s or less.
  • the heat-generating resin layer or the heat-generating layer can appropriately absorb laser energy.
  • the output of the laser may be 1 W or more, 2 W or more, 100 W or less, 80 W or less, 50 W or less, for example, 1 W or more and 100 W or less.
  • the line width of the laser may be 40 ⁇ m or more, 60 ⁇ m or more, 500 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, for example, 40 ⁇ m or more and 500 ⁇ m or less.
  • the laser may be a UV laser, a visible light laser, or an infrared laser.
  • the wavelength of the laser may be 200 nm or more, 300 nm or more, 500 nm or more, 800 nm or more, 1000 nm or more, 20 ⁇ m or less, 15 ⁇ m or less, 2000 nm or less, 1800 nm or less,
  • the thickness may be 1500 nm or less, for example, 200 nm or more and 20 ⁇ m or less.
  • lasers examples include fiber lasers, YAG lasers, YVO 4 lasers, semiconductor lasers, and carbon dioxide lasers (CO 2 lasers). From the viewpoint of tearability (particularly the tearability in the diagonal direction of 45°, which will be described later), a fiber laser is preferable, and from the viewpoint of productivity, a CO 2 laser is preferable.
  • Examples of the contents accommodated in the packaging bag include liquids, solids, powders, and gels.
  • the contents may be food or drink products, or non-food or drink products such as chemicals, cosmetics, pharmaceuticals, metal parts, and electronic parts.
  • the packaging bag can be sealed by heat-sealing the opening of the packaging bag.
  • Contents include, for example, shampoo, conditioner, conditioner, hand soap, body soap, fragrance, deodorant, deodorant, insect repellent, detergent; sauce, soy sauce, dressing, cooking oil, mayonnaise, ketchup, syrup, and cooking.
  • Alcoholic beverages other liquid or viscous seasonings; fruit juices; spices; liquid drinks, jelly drinks, liquid soups, powdered soups, instant foods, other food and drinks; creams; metal parts and electronic parts. .
  • a packaging bag is produced by folding the laminate of the present disclosure in half so that the stretched base material is on the outside and the sealant layer is on the inside, stacking them on top of each other, and heat-sealing the edges and the like.
  • a packaging bag can be produced by stacking a plurality of laminates of the present disclosure so that the sealant layers face each other and heat-sealing the ends and the like.
  • the entire packaging bag may be composed of the above-mentioned laminate, or a part of the packaging bag may be composed of the above-mentioned laminate.
  • FIG. 5 is a front view showing the packaging bag 10 of one embodiment.
  • FIG. 5 shows the packaging bag 10 in a state before it is filled with contents (in a state in which no contents are accommodated).
  • the packaging bag 10 is a gusset-type pouch configured to be self-supporting.
  • the packaging bag 10 includes an upper part 11, a lower part 12, and a side part 13, and has a substantially rectangular outline in a front view.
  • the packaging bag 10 has a storage section 17, a seal section 19, and an easy-to-open line 26.
  • the storage section 17 stores contents.
  • the seal portion 19 includes an inner edge 19x that defines the housing portion 17.
  • the seal portion 19 is constructed by joining together the sealant layers of the laminate that constitutes the packaging bag 10. In a plan view such as FIG. 5, the seal portion 19 is hatched.
  • the accommodating part 17 may include a spout part 20.
  • the spout portion 20 is a portion through which the contents are taken out from the packaging bag 10.
  • the width of the spout portion 20 is narrower than the width of the other portions of the accommodating portion 17. Therefore, the user can accurately determine the direction in which the contents are poured out from the packaging bag 10 through the spout section 20.
  • the easy-to-open line 26 is formed on the packaging bag 10 in order to improve the tearability of the packaging bag 10.
  • the easy-to-open line 26 crosses the accommodating portion 17 when the packaging bag 10 is viewed from above.
  • the direction of the easy-to-open line 26 that crosses the accommodating portion 17 is not particularly limited, and may be, for example, the MD direction of the laminate, or a direction at any angle with respect to the MD direction (for example, the TD direction or a 45° direction).
  • the easy-to-open line 26 crosses the spout portion 20 in plan view.
  • a cutout 28 adjacent to the easy-open line 26 may be formed at the outer edge of the packaging bag 10. Instead of the notch 28, a notch may be formed on the outer edge of the packaging bag 10.
  • the film is torn as the sealant layer 70 breaks along the easy-open line 26.
  • Tearability refers to the ease with which the packaging bag 10 breaks due to shearing force applied to the film.
  • the film of the packaging bag 10 can be broken along the easy-open line 26 by the user applying an appropriate shearing force to the packaging bag 10.
  • the shearing force applied to the packaging bag 10 is used as a force to stretch some layers of the packaging bag 10, or as a force to peel some layers of the packaging bag 10 from other layers. Therefore, the film is difficult to break.
  • the packaging bag 10 includes a front film 14 constituting the front surface, a back film 15 constituting the back surface, and a lower film 16 constituting the lower part 12.
  • the lower film 16 is placed between the front film 14 and the back film 15 in a folded state at the folded portion 16f.
  • the laminate 30 includes a stretched base material 40, a heat generating resin layer or heat generating layer 50, an adhesive layer 60, and a sealant layer 70, as shown in FIG.
  • the laminate 30 includes an inner surface 30x and an outer surface 30y.
  • the inner surface 30x is a surface that comes into contact with the contents.
  • the outer surface 30y is a surface located on the opposite side of the inner surface 30x.
  • the sealant layer 70 is located on the inner surface 30x side with respect to the stretched base material 40.
  • the heat generating resin layer or heat generating layer 50 is located between the stretched base material 40 and the sealant layer 70.
  • the packaging bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are arranged in series, or the packaging bag 10 in which the front film 14 and the lower film 16 are arranged in series. It may be manufactured using a total of two films, one film and one back film 15, or a total of three films, one front film 14, one back film 15, and one bottom film 16. It may also be manufactured using a film.
  • the seal portion 19 includes a lower seal portion 12a, a side seal portion 13a, and a spout seal portion 20a.
  • the lower seal portion 12a extends to the lower portion 12.
  • the side seal portion 13a extends along the pair of side portions 13.
  • the spout seal portion 20a defines the spout portion 20.
  • the distance between the inner edges of the spout seal portions 20a is smaller than the distance between the inner edges of the pair of side seal portions 13a.
  • the upper part 11 of the packaging bag 10 has an opening 11b.
  • the sealant layer of the front film 14 and the sealant layer of the back film 15 are joined at the upper part 11, thereby forming an upper seal part in the opening 11b. Ru.
  • the accommodating portion 17 is sealed from the outside of the packaging bag 10.
  • the side seal part 13a, spout seal part 20a, and top seal part are constructed by joining the sealant layer of the front film 14 and the sealant layer of the back film 15.
  • the lower seal portion 12a includes a portion where the sealant layer of the front film 14 and a sealant layer of the lower film 16 are joined, and a portion where the sealant layer of the back film 15 and the sealant layer of the lower film 16 are joined. include. As shown by the dotted line labeled 13c in FIG. 5, a cutout may be formed in a portion of the lower film 16. At the position of the notch, the sealant layer of the front film 14 and the sealant layer of the back film 15 may be joined.
  • FIG. 6 is a diagram showing the easy-to-open line 26 formed on the surface film 14.
  • FIG. 6 is a cross-sectional view showing a case where the surface film 14 is cut along a direction perpendicular to the direction in which the easy-to-open line 26 extends, as indicated by the symbol A in FIG.
  • an easy-to-open line 26 may also be formed on the back film 15.
  • the easy-to-open line 26 of the front film 14 and the easy-to-open line 26 of the back film 15 may overlap when viewed along the normal direction of the front film 14.
  • the easy-to-open line 26 includes a through hole 27 that penetrates the stretched base material 40 .
  • the easy-to-open line 26 is formed by irradiating the laminate 30 with a laser.
  • the packaging bag 10 may have a plurality of easy-to-open lines 26 that cross the accommodating portion 17.
  • a method for calculating the width of the altered portion will be explained with reference to FIG. 7.
  • the easy-to-open line 26 intersects with the inner edge 19x of the seal portion 19 at a first intersection 261 and a second intersection 262.
  • Points P1, P2, and P3 are located at boundaries when the section of the easy-to-open line 26 from the first intersection 261 to the second intersection 262 is divided into four.
  • the packaging bag 10 is cut along a straight line that is perpendicular to the direction in which the easy-to-open line 26 extends and passes through points P1, P2, and P3. Observe the three cut surfaces and measure the width. The average value of the three width measurements is used as the width W1 of the altered portion.
  • a digital microscope VHX-6000 manufactured by Keyence Corporation is used as a device for observing the cut surface.
  • the observation magnification is 1000 times.
  • the width of the altered area is measured using the length measurement function of the VHX-6000.
  • the layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the sealant layer of the front film 14 and the sealant layer of the back film 15.
  • the above-mentioned laminate 30 may be used as the lower film 16.
  • a film having a structure different from that of the laminate 30 of the present disclosure may be used as the lower film 16.
  • the packaging bag 10 can be produced, for example, as follows.
  • a laminate 30 is prepared.
  • the laminated body 30 is irradiated with a laser to form an easy-to-open line 26.
  • the laminate 30 on which the easy-to-open line 26 is formed is cut into two. Thereby, a front film 14 and a back film 15 are obtained.
  • the folded lower film 16 is inserted between the front film 14 and the back film 15.
  • the sealant layers of each film are heat-sealed to form seal parts such as the lower seal part 12a, the side seal part 13a, and the spout seal part 20a.
  • the films joined together by heat sealing are cut into appropriate shapes. Thereby, the packaging bag 10 shown in FIG. 5 is obtained.
  • the storage portion 17 of the packaging bag 10 is filled with the contents.
  • the upper portion 11 is heat-sealed to form an upper sealed portion. In this way, a sealed packaging bag 10 containing the contents is obtained.
  • the packaging bag 10 is a gusset-type pouch, but the specific configuration of the packaging bag 10 is not particularly limited.
  • the packaging bag 10 does not need to include the lower film 16, as shown in FIGS. 9 and 10.
  • the lower seal part 12a and the side seal part 13a of the packaging bag 10 are formed by bonding the sealant layers of the front film 14 and the back film 15, respectively, which are made of the laminate 30.
  • the packaging bag 10 is sealed by joining the sealant layer of the front film 14 and the sealant layer of the back film 15 at the opening 11b of the upper part 11.
  • the packaging bag 10 includes an easy-to-open line 26 that crosses the accommodating portion 17 in plan view. Thereby, the tearability of the packaging bag 10 can be improved.
  • the packaging bag 10 may be a pillow pouch.
  • the packaging bag 10 includes a folded palm portion 18 formed by overlapping the ends of the laminate 30 that constitutes the front film 14 and the back film 15.
  • the palms in prayer portion 18 includes a palms in prayer portion seal portion 18a in which the sealant layers of the laminate 30 are joined together.
  • the easy-to-open line 26 is formed to cross the housing portion 17 and the folded palms portion 18.
  • a notch 28 or a notch may be formed at the outer edge of the palm-to-face portion in contact with the easy-to-open line 26.
  • the first aspect of the present disclosure relates to, for example, the following [1] to [13].
  • a laminate including at least a stretched base material and a sealant layer, wherein the stretched base material includes at least a polyolefin layer, the sealant layer contains polyolefin as a main component, and the laminate is a heat-generating resin layer containing as a main component a heteroatom-containing resin that generates heat by absorbing A laminate located at at least one location on a surface of the stretched base material opposite to the surface facing the sealant layer.
  • the heteroatom-containing resin contains at least one selected from ethylene-vinyl alcohol copolymer, polyvinyl alcohol, and polyamide.
  • the laminate further comprises a heat generating layer containing a heat generating substance that absorbs laser and generates heat (excluding the heteroatom-containing resin that generates heat by absorbing laser) [1] to [ 6].
  • the exothermic substance is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black.
  • the polyolefin layer of the stretched base material is a polyethylene layer, and the sealant layer contains polyethylene as a main component, or the polyolefin layer of the stretched base material is a polypropylene layer, and the sealant layer The laminate according to any one of [1] to [8] above, which contains polypropylene as a main component.
  • the sealant layer includes at least a first layer and a second layer, the first layer containing an ethylene/ ⁇ -olefin copolymer as a main component, and the first layer containing an ethylene/ ⁇ -olefin copolymer as a main component. a melting point of 112° C.
  • the second layer contains polyethylene as a main component, a melting point of the second layer is 114° C. or higher, and one surface layer of the laminate contains polyethylene as a main component;
  • the laminate according to [10] wherein the first layer has a density of 0.915 g/cm 3 or less, and the second layer has a density of 0.916 g/cm 3 or more.
  • a packaging bag comprising the laminate according to any one of [1] to [12] above, wherein the packaging bag includes a storage section for accommodating contents and the sealant layer of the laminate. a seal portion that is joined to each other; and an easy-to-open line that includes an altered portion of the laminate; the seal portion includes an inner edge defining the housing portion; and the easy-to-open line includes
  • the packaging bag includes a first intersection point and a second intersection point that intersect with the inner edge of the portion, and is a line that crosses the storage portion when the packaging bag is viewed from above.
  • the second aspect of the present disclosure relates to, for example, the following [1] to [8].
  • a laminate comprising at least a stretched base material and a sealant layer, the stretched base material containing polyethylene as a main component, and the sealant layer comprising at least a first layer and a second layer.
  • the first layer contains an ethylene/ ⁇ -olefin copolymer as a main component
  • the first layer has a melting point of 112° C. or less
  • the second layer contains polyethylene as a main component.
  • the melting point of the second layer is 114°C or higher
  • one surface layer of the laminate is the first layer
  • the laminate contains the stretched base material and the sealant layer.
  • a laminate further comprising a heat generating layer containing a heat generating substance that absorbs laser and generates heat between the two.
  • the exothermic substance described in [1] or [2] above is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black. laminate.
  • the packaging bag includes a first intersection point and a second intersection point that intersect with the inner edge of the portion, and is a line that crosses the storage portion when the packaging bag is viewed from above.
  • LLDPE, blend PE (A), and blend PE (B) were formed by inflation molding to form blend PE (B) layer 15 ⁇ m/blend PE (A) layer 22.5 ⁇ m/LLDPE layer 50 ⁇ m/blend PE (A) 22.5 ⁇ m.
  • Blend PE (B) layer Co-extrusion of 5 layers with a layer thickness ratio of 15 ⁇ m was performed to form a tube-shaped film to obtain a polyethylene film with a total thickness of 125 ⁇ m, and the tube-shaped film was folded at the nip point to form two sheets. I layered it.
  • the obtained polyethylene film was stretched 5 times in the machine direction (MD), and one of the blended PE (B) layers was subjected to corona treatment, and then the end was slit and divided into two sheets with a thickness of 25 ⁇ m.
  • a polyethylene base material hereinafter also referred to as "PE base material" was obtained.
  • the film was stretched 5 times in the machine direction (MD) using a stretching device to obtain an EVOH-containing base material (A).
  • the EVOH-containing base material (A) thus obtained includes a 7 ⁇ m thick MDPE layer, a 4 ⁇ m thick adhesive resin layer, a 2.5 ⁇ m thick EVOH layer, a 4 ⁇ m thick adhesive resin layer, and a 7.5 ⁇ m thick MDPE layer in this order. Corona treatment was performed on one MDPE layer surface.
  • the EVOH-containing base material (B) thus obtained consists of an EVOH layer with a thickness of 2.5 ⁇ m, an adhesive resin layer with a thickness of 3 ⁇ m, and three MDPE layers with a total thickness of 19.5 ⁇ m in this order. Be prepared. Corona treatment was performed on the EVOH layer surface.
  • the EVOH-containing base material (C) thus obtained comprises, in this order, an EVOH layer with a thickness of 5 ⁇ m, an adhesive resin layer with a thickness of 3 ⁇ m, and three MDPE layers with a total thickness of 17 ⁇ m. Corona treatment was performed on the EVOH layer surface.
  • ⁇ Ny-containing base material (D)> A Ny-containing base material (D) was obtained in the same manner as the EVOH-containing base material (B) except that EVOH (EVAL E171B) was changed to Ny (5033).
  • the Ny-containing base material (D) thus obtained has a Ny layer with a thickness of 2.5 ⁇ m, an adhesive resin layer with a thickness of 3 ⁇ m, and three MDPE layers with a total thickness of 19.5 ⁇ m in this order. Be prepared. Corona treatment was performed on the Ny layer surface.
  • PP base material 20 ⁇ m thick biaxially oriented polypropylene base material (Toyobo, P2161)
  • Ny base material 15 ⁇ m thick biaxially stretched nylon base material (Idemitsu Unitec, G-100)
  • a mixture of 93 parts by mass of copolymer A, 1 part by mass of slip agent MB, and 6 parts by mass of AB agent MB was used as the first layer (sealing layer), and the second layer (intermediate layer)
  • a second layer (laminate layer) a mixture of 69 parts by mass of copolymer C, 30 parts by mass of LDPE, and 1 part by mass of slip agent MB was used, and 89 parts by mass of copolymer B was used as the second layer (laminate layer).
  • a sealant film (hereinafter also referred to as "PE film (A)") having a thickness of 130 ⁇ m was obtained by three-layer extrusion film forming at a ratio of 1:3:1. Corona treatment was performed on the laminate layer surface of the PE film (A).
  • the melting point of each layer in the obtained PE film (A) was determined in accordance with JIS K7121:2012 using a differential scanning calorimeter based on the following method.
  • the melting point of the first layer (seal layer) was 99°C
  • the melting point of the second layer (intermediate layer) was 122°C
  • the melting point of the second layer (laminate layer) was 117°C.
  • the density of the first layer (sealing layer) is 0.906g/cm 3
  • the density of the second layer (intermediate layer) is 0.934g/cm 3
  • the density of the second layer (laminate layer) is 0.906g/cm 3 .
  • the density of was 0.918 g/cm 3 .
  • the melting point of each layer in the sealant film was determined using a differential scanning calorimeter in accordance with JIS K7121:2012.
  • a thermal analyzer TA7000 series manufactured by Hitachi High-Tech Science Co., Ltd. was used. Specifically, samples of each layer were taken from the sealant film. Approximately 10 mg of the sample was placed in an aluminum cell, and heated at a heating rate of 10°C/min from 20°C to a temperature sufficiently higher than the melting point (for example, 200°C) in a nitrogen atmosphere, and at that temperature it was heated to 10°C. After holding for a minute, it was cooled to 20°C at a cooling rate of 10°C/min. This heating, holding, and cooling process was repeated once more, and the melting peak temperature of the maximum endothermic peak observed during the second heating was determined, and this was taken as the melting point.
  • PP film 80 ⁇ m thick unstretched polypropylene film (Toray Film Processing, ZK-207)
  • the weight average molecular weight (Mw) of the polymer component contained in the base resin is in the range of 2,000 to 2,500, and the polydispersity (Mw/Mn) of the polymer component contained in the base resin is 2.0 to 2. It was in the range of 5.
  • the weight average molecular weight (Mw) of the polymer component contained in the base agent was in the range of 30,000 to 34,000, and the number average molecular weight (Mn) was in the range of 7,500 to 9,500.
  • EVOH-containing coating liquid ⁇ 12 parts by mass of ethylene-vinyl alcohol copolymer (EVOH, manufactured by Mitsubishi Chemical, SoarnoL 16DX) ⁇ Water 44 parts by mass ⁇ Isopropyl alcohol (IPA) 44 parts by mass
  • Example 1 A solvent-free adhesive is applied to the corona-treated surface of the EVOH-containing substrate (A) to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface is connected to the corona-treated surface of the PE film (A). Pasted together. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • Example 2 A white layer coating solution was applied to the corona-treated surface of the EVOH-containing substrate (A) using a gravure printing machine and dried with hot air to form a 1.0 ⁇ m thick white layer. A solvent-free adhesive was applied to the white layer surface of the base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • Examples 3 to 8 A laminate was produced in the same manner as in Example 1 or 2, except that the EVOH-containing base material or Ny-containing base material listed in Table 2 was used instead of the EVOH-containing base material (A).
  • Example 9 An EVOH-containing coating liquid was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form an EVOH coating layer with a thickness of 1.0 ⁇ m.
  • a solvent-free adhesive was applied to the EVOH coat layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • Example 10 and 11 A laminate was produced in the same manner as in Example 9 except that a 1.0 ⁇ m thick white layer was further formed on the EVOH coat layer or the PE base material.
  • Example 12 and 13 A laminate of Example 12 was prepared in the same manner as in Example 1, except that a solvent-based adhesive was applied instead of a solvent-free adhesive and dried with hot air to form an adhesive layer with a thickness of 3.0 ⁇ m. did.
  • a laminate of Example 13 was prepared in the same manner as in Example 2, except that a solvent-based adhesive was applied instead of a solvent-free adhesive and dried with hot air to form an adhesive layer with a thickness of 3.0 ⁇ m. did.
  • Example 14 Corona treatment was performed on both sides of the PE substrate. The procedure was the same as in Example 9, except that an EVOH coat layer was formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced.
  • Example 15 Corona treatment was performed on both sides of the PE substrate. An EVOH coating layer was formed on one side of the PE base material, a white layer was formed on the other side, and the corona-treated side of the PE film (A) was further bonded with a solvent-free adhesive. A laminate was produced in the same manner as in Example 10 except for this.
  • Example 16 A laminate was produced in the same manner as in Example 4, except that "CXU-ELS” was used instead of PE film (A).
  • Example 17 Using a gravure printing machine, a PVA-containing coating liquid was applied to the corona-treated surface of the PE base material instead of an EVOH-containing coating liquid, and the coating liquid was dried with hot air to form a PVA coating layer with a thickness of 1.0 ⁇ m. A laminate was produced in the same manner as in Example 9 except for this.
  • Example 18 Corona treatment was performed on both sides of the PE substrate. A PVA coating layer was formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced.
  • An anchor coat agent was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form an anchor coat layer (AC layer) with a thickness of 0.5 ⁇ m.
  • An EVOH-containing coating liquid was applied to the AC layer surface of the PE base material using a gravure printer and dried with hot air to form an EVOH coat layer with a thickness of 1.0 ⁇ m.
  • a solvent-free adhesive was applied to the EVOH coat layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days.
  • a laminate was produced as described above.
  • Example 20 A laminate was produced in the same manner as in Example 19 except that a white layer was further formed on the EVOH coat layer.
  • Example 21 Corona treatment was performed on both sides of the PE substrate. Example except that an AC layer and an EVOH coat layer were sequentially formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced in the same manner as in Example 19.
  • Example 22 Corona treatment was performed on both sides of the PE substrate. An AC layer and an EVOH coat layer are sequentially formed on one side of the PE base material, a white layer is formed on the other side, and the corona-treated side of the PE film (A) is further bonded with a solvent-free adhesive. A laminate was produced in the same manner as in Example 20 except that they were bonded together.
  • Example 23 A laminate was produced in the same manner as in Example 17 except that a PVA coat layer was formed on the PE base material via an AC layer.
  • Example 24 Corona treatment was performed on both sides of the PE substrate. Example except that an AC layer and a PVA coat layer were sequentially formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced in the same manner as in Example 23.
  • Example 25 An anchor coating agent was applied to the corona-treated surface of the PP base material using a gravure printing machine and dried with hot air to form an AC layer with a thickness of 0.5 ⁇ m.
  • An EVOH-containing coating liquid was applied to the AC layer surface of the PP base material using a gravure printing machine and dried with hot air to form an EVOH coat layer with a thickness of 1.0 ⁇ m.
  • a white layer coating liquid was applied to the EVOH coat layer surface of the PP base material using a gravure printer and dried with hot air to form a 1.0 ⁇ m thick white layer.
  • a solvent-free adhesive was applied to the white layer surface of the PP base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface was bonded to the corona-treated surface of the PP film. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • a solvent-based adhesive is applied to the corona-treated surface of the PE base material or Ny base material and dried with hot air to form an adhesive layer with a thickness of 3.0 ⁇ m, and the adhesive layer surface is subjected to the corona treatment of the PE film (A). Attached to the surface. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • Example 1A A white layer coating solution was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form a 1.0 ⁇ m thick white layer. A solvent-free adhesive was applied to the white layer surface of the base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • Example 2A Using a gravure printing machine on the corona-treated surface of the PE base material, - In Example 2A, an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart) was applied and dried with hot air to form a printing layer, and a white layer coating liquid was applied on top of that and dried with hot air to form a white layer. form; - In Example 3A, the above oil-based gravure ink is applied and dried with hot air to form a printing layer, the coating liquid for white layer is applied on top of that and dried with hot air to form a white layer, and the above oil-based gravure ink is applied on top of that and the white layer is formed by drying with hot air.
  • an oil-based gravure ink manufactured by DIC Graphics, trade name: Finart
  • Example 4A Applying ink and drying with hot air to form a printing layer; -
  • Example 4A a white layer coating solution was applied and dried with hot air to form a white layer, and the oil-based gravure ink was applied thereon and dried with hot air to form a printed layer.
  • the thickness of each layer is 1.0 ⁇ m.
  • a solvent-free adhesive is applied to the white layer surface or printed layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 ⁇ m, and the adhesive layer surface is bonded to the corona-treated surface of the PE film (A). Ta. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • a solvent-based adhesive is applied to the corona-treated surface of the PE base material or Ny base material and dried with hot air to form an adhesive layer with a thickness of 3.0 ⁇ m, and the adhesive layer surface is subjected to the corona treatment of the PE film (A). Attached to the surface. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
  • the laminates produced in Examples and Comparative Examples were cut into a size of 63 mm x 76 mm to produce test pieces.
  • the laminate was cut so that the short sides of the 63 mm length were aligned in the longitudinal direction (MD), transverse direction (TD), or diagonal direction of 45° with respect to the MD.
  • MD longitudinal direction
  • TD transverse direction
  • the output is 80% of the (average) output of each device and the scanning speed is 100 mm/s or 1000 mm/s.
  • a straight easy-to-cut line (easy-to-open line) was formed by irradiating the laser with a laser. Five easy-to-open lines were formed (see FIG. 12). The interval between the easy-to-open lines was 4 mm.
  • the following laser irradiation device was used.
  • ⁇ CO 2 laser irradiation device manufactured by Keyence, 3-Axis CO 2 laser marker ML-Z9520, CO 2 laser, wavelength 10.6 ⁇ m, average output 30 W
  • ⁇ Fiber laser irradiation device Manufactured by Panasonic, LP-Z250, Yb: fiber laser, wavelength 1060 nm, average output 25 W, Print pulse period 10 ⁇ s, line width 70 ⁇ m
  • ⁇ UV laser irradiation device Keyence, 3-Axis UV laser marker MD-U1000C, YVO 4 laser, wavelength 355 nm, output 2.5 W
  • the tear strength along the easy tear line was measured in accordance with the Elmendorf tear method of JIS K7128-2:1998.
  • the measuring device used was an Elmendorf tear tester (Toyo Seiki Seisakusho S-01).
  • a test piece is made by stacking four laminates, two test pieces are measured, the result is multiplied by 4, the value is converted to a value for each 16 pieces, and the average value of the obtained values is determined as the tear strength (N ).
  • the evaluation when the easy-to-open line was not formed in the laminate of Example 1A was described as Reference Example 1A.
  • Example 2 CO 2 laser irradiation, output: 80%, scanning speed: 1000 mm/sec
  • B Example 2 (fiber laser irradiation, Output: 80%, scanning speed: 100 mm/sec)
  • C The cross-sectional shape of the laminate of Example 2 (UV laser irradiation, output: 80%, scanning speed: 100 mm/sec) was observed (observation magnification: 1000 times) ).
  • FIGS. 13(A) to 13(C) Each is an image of a cross section perpendicular to the MD direction of a laminate irradiated with laser along the MD direction.
  • FIG. 14 is an image of a cross section perpendicular to the MD direction of the laminate irradiated with laser along the MD direction. Using the length measurement function of VHX-6000, the width W1 of the altered portion shown in FIG. 14 was measured. As a result, it was 109 ⁇ m.
  • Packaging bag 11 Upper part 12 Lower part 12a Lower seal part 13 Side part 13a Side seal part 14 Front film 15 Back film 16 Lower film 17 Storage part 20 Spout part 20a Spout seal part 26 Easy-open line 27 Through hole 28 Notch 30 Laminate 30x Inner surface 30y Outer surface 40 Stretched base material 42 Polyolefin layer 44 Adhesive resin layer 46 Exothermic resin layer 50 Exothermic resin layer or exothermic layer 60 Adhesive layer 70 Sealant layer 80 Exothermic layer

Abstract

The present invention provides a multilayer body which comprises at least a stretched base material and a sealant layer, wherein: the stretched base material comprises at least a polyolefin layer; the sealant layer contains a polyolefin as a main component; the multilayer body comprises a heat-generating resin layer that contains, as a main component, a heteroatom-containing resin which generates heat upon absorption of laser radiation; and the heat-generating resin layer is positioned at least between the stretched base material and the sealant layer or on a surface of the stretched base material, the surface being on the reverse side of the sealant layer-side surface, in the stretched base material.

Description

積層体及び包装袋Laminates and packaging bags 関連出願の相互参照Cross-reference of related applications
 本願は、2022年3月30日に出願された日本国特許出願2022-57556号、及び2022年3月30日に出願された日本国特許出願2022-57547号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。 This application claims priority based on Japanese Patent Application No. 2022-57556 filed on March 30, 2022 and Japanese Patent Application No. 2022-57547 filed on March 30, 2022. , the entire disclosures of which are hereby incorporated by reference.
 本開示は、積層体及び包装袋に関する。 The present disclosure relates to a laminate and a packaging bag.
 液体及び粉体などの流動性を有する内容物を収容するための包装袋として、包装袋が用いられている。包装袋は、基材及びシーラント層を備える積層体から構成される。例えば、ポリエチレン等のポリオレフィンから構成される樹脂フィルムは、柔軟性及び透明性を有すると共にヒートシール性に優れることから、シーラント層として広く使用されている。また、ポリエステル又はポリアミドから構成される樹脂フィルムは、強度及び耐熱性に優れることから、基材として広く使用されている。 Packaging bags are used to store fluid contents such as liquids and powders. The packaging bag is composed of a laminate including a base material and a sealant layer. For example, a resin film made of polyolefin such as polyethylene is widely used as a sealant layer because it has flexibility and transparency and has excellent heat sealability. Furthermore, resin films made of polyester or polyamide are widely used as base materials because of their excellent strength and heat resistance.
 近年、環境負荷低減の観点から、包装袋をリサイクルすることが求められている。リサイクルの観点からは、基材とシーラント層とがそれぞれ同種の樹脂材料から構成されること(モノマテリアル化)が好ましい。例えば特許文献1は、基材及びシーラント層をポリエチレンから構成することを提案している。 In recent years, there has been a demand for recycling packaging bags from the perspective of reducing environmental impact. From the viewpoint of recycling, it is preferable that the base material and the sealant layer are each made of the same type of resin material (monomaterialization). For example, Patent Document 1 proposes that the base material and the sealant layer are made of polyethylene.
特開2020-55156号公報JP2020-55156A
 包装袋の手による開封を容易化するという観点から、包装袋に易開封線が形成されることがある。本開示者らは、積層体にレーザーを照射して変質部を形成することにより、易開封線を形成することを検討した。変質部(易開封線)に沿って積層体を容易に引き裂くことができると考えられる。 From the perspective of making it easier to open the packaging bag by hand, easy-to-open lines are sometimes formed on the packaging bag. The present inventors have considered forming an easy-to-open line by irradiating a laminate with a laser to form an altered portion. It is thought that the laminate can be easily torn along the altered portion (easy tear line).
 シーラント層を構成する樹脂材料とは異種の樹脂材料を基材が含有する場合、基材には吸収されるがシーラント層には吸収されないレーザーを選択することにより、選択的に基材に変質部を形成できる。しかしながら、リサイクルの観点から、基材とシーラント層とをそれぞれ同種の樹脂材料である、ポリエチレン等のポリオレフィンから構成する場合、基材がレーザーを充分に吸収できず、基材に変質部が良好に形成されない傾向にある。したがって、レーザー照射による引裂き性の向上が充分ではなかった。 If the base material contains a different type of resin material from the resin material that makes up the sealant layer, by selecting a laser that is absorbed by the base material but not absorbed by the sealant layer, the base material can be selectively exposed to altered parts. can be formed. However, from the viewpoint of recycling, when the base material and the sealant layer are each made of the same type of resin material, polyolefin such as polyethylene, the base material cannot absorb the laser sufficiently, and the deteriorated parts of the base material are not easily formed. They tend not to form. Therefore, the tearability was not sufficiently improved by laser irradiation.
 本開示の一つの課題は、リサイクル性に優れ、レーザー照射により引裂き性を良好に向上できる積層体を提供することにある。 One object of the present disclosure is to provide a laminate that has excellent recyclability and can improve tearability by laser irradiation.
 本開示の第1の態様の積層体は、延伸基材とシーラント層とを少なくとも備え、延伸基材は、ポリオレフィン層を少なくとも備え、シーラント層は、ポリオレフィンを主成分として含有し、積層体は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層を備え、該発熱性樹脂層が、延伸基材中、延伸基材とシーラント層との間、及び延伸基材におけるシーラント層側の面とは反対側の面上の少なくともいずれかの箇所に位置する。 The laminate of the first aspect of the present disclosure includes at least a stretched base material and a sealant layer, the stretched base material includes at least a polyolefin layer, the sealant layer contains polyolefin as a main component, and the laminate includes: A heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat, and the heat-generating resin layer is arranged in the stretched base material, between the stretched base material and the sealant layer, and in the stretched base material. located at at least one location on the surface opposite to the surface on the sealant layer side.
 本開示の第2の態様の積層体は、延伸基材とシーラント層とを少なくとも備え、延伸基材は、ポリエチレンを主成分として含有し、シーラント層は、第1の層と第2の層とを少なくとも備え、第1の層が、エチレン/α-オレフィン共重合体を主成分として含有し、第1の層の融点が、112℃以下であり、第2の層が、ポリエチレンを主成分として含有し、第2の層の融点が、114℃以上であり、積層体の一方の表面層が、第1の層であり、積層体は、延伸基材とシーラント層との間に、レーザーを吸収して発熱する発熱物質を含有する発熱層をさらに備える。 The laminate of the second aspect of the present disclosure includes at least a stretched base material and a sealant layer, the stretched base material contains polyethylene as a main component, and the sealant layer includes a first layer, a second layer, and a sealant layer. The first layer contains an ethylene/α-olefin copolymer as a main component, the first layer has a melting point of 112° C. or lower, and the second layer contains a polyethylene as a main component. the melting point of the second layer is 114° C. or higher, one surface layer of the laminate is the first layer, and the laminate has a laser beam between the stretched base material and the sealant layer. The apparatus further includes a heat generating layer containing a heat generating substance that absorbs and generates heat.
 本開示によれば、リサイクル性に優れ、レーザー照射により引裂き性を良好に向上できる積層体を提供することができる。本開示の積層体を用いることにより、リサイクル性及び開封性に優れる包装袋を作製できる。 According to the present disclosure, it is possible to provide a laminate that has excellent recyclability and can favorably improve tearability by laser irradiation. By using the laminate of the present disclosure, a packaging bag with excellent recyclability and ease of opening can be produced.
図1は、積層体の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate. 図2は、積層体の一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of the laminate. 図3は、積層体の一実施形態を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing one embodiment of the laminate. 図4は、積層体の一実施形態を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing one embodiment of the laminate. 図5は、包装袋の一実施形態を示す正面図である。FIG. 5 is a front view showing one embodiment of the packaging bag. 図6は、易開封線の貫通孔の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a through hole of an easy-to-open wire. 図7は、変質部の幅の測定方法を説明するための図である。FIG. 7 is a diagram for explaining a method of measuring the width of the altered part. 図8は、易開封線の一例を示す正面図である。FIG. 8 is a front view showing an example of an easy-to-open line. 図9は、包装袋の一実施形態を示す正面図である。FIG. 9 is a front view showing one embodiment of the packaging bag. 図10は、包装袋の一実施形態を示す正面図である。FIG. 10 is a front view showing one embodiment of the packaging bag. 図11は、包装袋の一実施形態を示す正面図である。FIG. 11 is a front view showing one embodiment of a packaging bag. 図12は、引裂き強度を測定するための試験片の正面図である。FIG. 12 is a front view of a test piece for measuring tear strength. 図13は、積層体の断面形状の観察画像である。FIG. 13 is an observation image of the cross-sectional shape of the laminate. 図14は、積層体の断面形状の観察画像である。FIG. 14 is an observation image of the cross-sectional shape of the laminate. 図15は、積層体の一実施形態を示す模式断面図である。FIG. 15 is a schematic cross-sectional view showing one embodiment of the laminate. 図16は、シーラント層の一実施形態を示す模式断面図である。FIG. 16 is a schematic cross-sectional view showing one embodiment of the sealant layer. 図17は、シーラント層の一実施形態を示す模式断面図である。FIG. 17 is a schematic cross-sectional view showing one embodiment of the sealant layer. 図18は、シーラント層の一実施形態を示す模式断面図である。FIG. 18 is a schematic cross-sectional view showing one embodiment of the sealant layer.
 以下、本開示の実施形態について、詳細に説明する。本開示は多くの異なる形態で実施でき、以下に例示する実施形態の記載内容に限定して解釈されない。図面は、説明をより明確にするため、実施形態に比べ、各層の幅、厚さ及び形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定しない。本明細書と各図において、既出の図に関してすでに説明したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present disclosure will be described in detail. This disclosure may be implemented in many different forms and is not to be construed as limited to the description of the exemplary embodiments below. In order to make the explanation clearer, the drawings may schematically represent the width, thickness, shape, etc. of each layer compared to the embodiment, but this is just an example and does not limit the interpretation of the present disclosure. . In this specification and each figure, elements that are the same as those already explained with respect to the existing figures are denoted by the same reference numerals, and detailed explanations may be omitted as appropriate.
 本明細書において、あるパラメータに関して複数の上限値の候補及び複数の下限値の候補が挙げられている場合、そのパラメータの数値範囲は、任意の1つの上限値の候補と任意の1つの下限値の候補とを組み合わせることによって構成されてもよい。一例として、「パラメータBは、好ましくはA1以上、より好ましくはA2以上、さらに好ましくはA3以上である。パラメータBは、好ましくはA4以下、より好ましくはA5以下、さらに好ましくはA6以下である。」との記載について説明する。この例において、パラメータBの数値範囲は、A1以上A4以下でもよく、A1以上A5以下でもよく、A1以上A6以下でもよく、A2以上A4以下でもよく、A2以上A5以下でもよく、A2以上A6以下でもよく、A3以上A4以下でもよく、A3以上A5以下でもよく、A3以上A6以下でもよい。 In this specification, when multiple upper limit value candidates and multiple lower limit value candidates are listed for a certain parameter, the numerical range of the parameter is defined as any one upper limit value candidate and any one lower limit value. It may be configured by combining the candidates. As an example, "Parameter B is preferably A1 or more, more preferably A2 or more, even more preferably A3 or more. Parameter B is preferably A4 or less, more preferably A5 or less, and still more preferably A6 or less." '' will be explained. In this example, the numerical range of parameter B may be A1 or more and A4 or less, A1 or more and A5 or less, A1 or more and A6 or less, A2 or more and A4 or less, A2 or more and A5 or less, A2 or more and A6 or less. It may be A3 or more and A4 or less, A3 or more and A5 or less, or A3 or more and A6 or less.
 以下の説明において、登場する各成分(例えば、ポリエチレン及びポリプロピレン等のポリオレフィン、α-オレフィン、ヘテロ原子含有樹脂及び接着性樹脂などの樹脂材料、添加剤及び発熱物質)は、それぞれ1種用いてもよく、2種以上を用いてもよい。
 以下の説明において、第1の態様の積層体と第2の態様の積層体とで共通する事項について積層体に言及するときは、単に「積層体」とも記載する。
 「主成分」とは、層又は基材中に50質量%以上含まれている成分を意味する。
In the following description, each component that appears (for example, polyolefins such as polyethylene and polypropylene, α-olefins, resin materials such as heteroatom-containing resins and adhesive resins, additives, and exothermic substances) may be used alone. Often, two or more types may be used.
In the following description, when referring to the laminate with respect to matters common between the laminate of the first aspect and the laminate of the second aspect, it is also simply referred to as a "laminate."
"Main component" means a component contained in a layer or base material in an amount of 50% by mass or more.
 [積層体]
 本開示の積層体は、延伸基材とシーラント層とを少なくとも備える。
 本開示の積層体は、包装材料として好適に用いることができる。
[Laminated body]
The laminate of the present disclosure includes at least a stretched base material and a sealant layer.
The laminate of the present disclosure can be suitably used as a packaging material.
 第1の態様の積層体において、延伸基材は、ポリオレフィン層を少なくとも備える。第1の態様の積層体において、シーラント層は、ポリオレフィンを主成分として含有する。
 本開示の第1の態様の積層体は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層を備える。本開示の第1の態様の積層体において、発熱性樹脂層は、延伸基材中、延伸基材とシーラント層との間、及び延伸基材におけるシーラント層側の面とは反対側の面上の少なくともいずれかの箇所に位置する。このような構成により、例えば、積層体にレーザーを照射することで変質部を形成でき、該積層体の手による引裂き性、よって該積層体を備える包装袋の開封性を向上できる。例えば、積層体の縦方向(MD)、横方向(MDに対して垂直な方向、TD)、又はMDに対して斜め45°の方向に沿って変質部を形成することにより、各方向の引裂き性を向上できる。特に、積層体のMD及びTDだけでなく、MDに対して斜め45°の方向における引裂き性も向上できる。
In the laminate of the first aspect, the stretched base material includes at least a polyolefin layer. In the laminate of the first embodiment, the sealant layer contains polyolefin as a main component.
The laminate of the first aspect of the present disclosure includes a heat-generating resin layer containing as a main component a heteroatom-containing resin that generates heat by absorbing laser. In the laminate of the first aspect of the present disclosure, the exothermic resin layer is provided in the stretched base material, between the stretched base material and the sealant layer, and on the surface of the stretched base material opposite to the surface on the sealant layer side. located in at least one of the following locations: With such a configuration, for example, the laminate can be irradiated with a laser to form a deteriorated portion, and the laminate can be easily torn by hand, thereby improving the ease of opening a packaging bag including the laminate. For example, by forming altered parts along the longitudinal direction (MD), transverse direction (direction perpendicular to MD, TD) of the laminate, or in a direction diagonal to MD at 45 degrees, tearing in each direction can be achieved. You can improve your sexuality. In particular, it is possible to improve not only the MD and TD of the laminate, but also the tearability in a direction diagonal to the MD at 45 degrees.
 一実施形態において、延伸基材を構成する樹脂及びシーラント層を構成する樹脂の主成分がいずれもポリオレフィンであることにより、例えば、積層体のリサイクル性を向上できる。 In one embodiment, the main components of the resin constituting the stretched base material and the resin constituting the sealant layer are both polyolefins, so that, for example, the recyclability of the laminate can be improved.
 本開示の第1の態様の積層体全体におけるポリオレフィン(具体的にはポリエチレン又はポリプロピレン)の含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。これにより、例えば、積層体を用いてモノマテリアル化した包装袋を作製でき、包装袋のリサイクル性を向上できる。ポリオレフィンの含有割合の上限は特に限定されないが、99質量%でもよく、95質量%でもよい。 The content of polyolefin (specifically polyethylene or polypropylene) in the entire laminate of the first aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more. be. Thereby, for example, a monomaterial packaging bag can be produced using the laminate, and the recyclability of the packaging bag can be improved. The upper limit of the polyolefin content is not particularly limited, but may be 99% by mass or 95% by mass.
 第2の態様の積層体において、延伸基材は、ポリエチレンを主成分として含有する。第2の態様の積層体において、シーラント層は、それぞれ後述する第1の層と第2の層とを少なくとも備える。
 本開示の第2の態様の積層体は、延伸基材とシーラント層との間に、レーザーを吸収して発熱する発熱物質を含有する発熱層をさらに備える。このような構成により、例えば、積層体にレーザーを照射することで変質部を形成でき、該積層体の手による引裂き性、よって該積層体を備える包装袋の開封性を向上できる。例えば、積層体の縦方向(MD)、横方向(MDに対して垂直な方向、TD)、又はMDに対して斜め45°の方向に沿って変質部を形成することにより、各方向の引裂き性を向上できる。特に、積層体のMD及びTDだけでなく、MDに対して斜め45°の方向における引裂き性も向上できる。
In the laminate of the second aspect, the stretched base material contains polyethylene as a main component. In the laminate of the second aspect, the sealant layer includes at least a first layer and a second layer, each of which will be described later.
The laminate of the second aspect of the present disclosure further includes a heat generating layer containing a heat generating substance that absorbs laser and generates heat between the stretched base material and the sealant layer. With such a configuration, for example, the laminate can be irradiated with a laser to form a deteriorated portion, and the laminate can be easily torn by hand, thereby improving the ease of opening a packaging bag including the laminate. For example, by forming altered parts along the longitudinal direction (MD), transverse direction (direction perpendicular to MD, TD) of the laminate, or in a direction diagonal to MD at 45 degrees, tearing in each direction can be achieved. You can improve your sexuality. In particular, it is possible to improve not only the MD and TD of the laminate, but also the tearability in a direction diagonal to the MD at 45 degrees.
 一実施形態において、延伸基材を構成する樹脂及びシーラント層を構成する樹脂の主成分がいずれもポリエチレンであることにより、例えば、積層体のリサイクル性を向上できる。 In one embodiment, the main components of the resin constituting the stretched base material and the resin constituting the sealant layer are both polyethylene, so that, for example, the recyclability of the laminate can be improved.
 本開示の第2の態様の積層体全体におけるポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。これにより、例えば、積層体を用いてモノマテリアル化した包装袋を作製でき、包装袋のリサイクル性を向上できる。ポリエチレンの含有割合の上限は特に限定されないが、99質量%でもよく、95質量%でもよい。 The content of polyethylene in the entire laminate of the second aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 90% by mass or more. Thereby, for example, a monomaterial packaging bag can be produced using the laminate, and the recyclability of the packaging bag can be improved. The upper limit of the content of polyethylene is not particularly limited, but may be 99% by mass or 95% by mass.
 <延伸基材>
 第1の態様の積層体において、延伸基材は、ポリオレフィン層を少なくとも備える。本開示において「ポリオレフィン層」とは、ポリエチレン及びポリプロピレン等のポリオレフィンを主成分として含有する層を意味する。
<Stretched base material>
In the laminate of the first aspect, the stretched base material includes at least a polyolefin layer. In the present disclosure, the term "polyolefin layer" refers to a layer containing polyolefin such as polyethylene and polypropylene as a main component.
 延伸基材は、ポリオレフィンを主成分として含有するポリオレフィン基材でもよい。第2の態様の積層体において、延伸基材は、ポリエチレンを主成分として含有するポリエチレン基材である。 The stretched base material may be a polyolefin base material containing polyolefin as a main component. In the laminate of the second aspect, the stretched base material is a polyethylene base material containing polyethylene as a main component.
 延伸基材は、添加剤を含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、スリップ剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、相溶化剤、顔料及び改質用樹脂が挙げられる。 The stretched base material may contain additives. Examples of additives include crosslinking agents, antioxidants, antiblocking agents, slip agents, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, compatibilizers, pigments, and modifying resins. Can be mentioned.
 延伸基材は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層をさらに備えてもよい。すなわち延伸基材は、ポリオレフィン層と発熱性樹脂層とを備えてもよい。延伸基材は、例えば、ポリオレフィン層と、接着性樹脂層と、発熱性樹脂層と、接着性樹脂層と、ポリオレフィン層とをこの順に備えてもよく、ポリオレフィン層と、接着性樹脂層と、発熱性樹脂層とをこの順に備えてもよい。ポリオレフィン層などの各層は2層以上存在してもよい。 The stretched base material may further include a heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat. That is, the stretched base material may include a polyolefin layer and a heat-generating resin layer. The stretched base material may include, for example, a polyolefin layer, an adhesive resin layer, a heat-generating resin layer, an adhesive resin layer, and a polyolefin layer in this order, and the polyolefin layer, the adhesive resin layer, The heat generating resin layer may be provided in this order. Each layer such as a polyolefin layer may be present in two or more layers.
 延伸基材は、延伸処理が施された基材である。これにより、例えば、基材の強度、耐熱性及び透明性を向上できる。延伸処理は、一軸延伸でもよく、二軸延伸でもよい。縦方向(基材の流れ方向、MD)へ延伸を行う場合の延伸倍率は、2倍以上でもよく、3倍以上でもよく、10倍以下でもよく、7倍以下でもよい。横方向(MDに対して垂直な方向、TD)へ延伸を行う場合の延伸倍率は、2倍以上でもよく、3倍以上でもよく、10倍以下でもよく、7倍以下でもよい。延伸基材は、例えば、縦方向(MD)に延伸処理された一軸延伸フィルムである。 The stretched base material is a base material that has been subjected to a stretching process. Thereby, for example, the strength, heat resistance, and transparency of the base material can be improved. The stretching treatment may be uniaxial stretching or biaxial stretching. The stretching ratio when stretching in the longitudinal direction (the flow direction of the base material, MD) may be 2 times or more, 3 times or more, 10 times or less, or 7 times or less. The stretching ratio when stretching in the transverse direction (direction perpendicular to MD, TD) may be 2 times or more, 3 times or more, 10 times or less, or 7 times or less. The stretched base material is, for example, a uniaxially stretched film stretched in the machine direction (MD).
 延伸基材は、単層構造を有してもよく、多層構造を有してもよい。
 延伸基材の厚さは、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下であり、例えば5μm以上200μm以下である。厚さが下限値以上であると、例えば、積層体の強度及び耐熱性を向上できる。厚さが上限値以下であると、例えば、積層体の加工適性を向上できる。
The stretched base material may have a single layer structure or a multilayer structure.
The thickness of the stretched base material is preferably 5 μm or more, more preferably 10 μm or more, even more preferably 15 μm or more, and preferably 200 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less, for example, 5 μm or more and 200 μm or less. It is as follows. When the thickness is at least the lower limit, for example, the strength and heat resistance of the laminate can be improved. When the thickness is below the upper limit, for example, the processability of the laminate can be improved.
 延伸基材は、例えば、ポリエチレン等のポリオレフィン又はその樹脂組成物をインフレーション成形法又はTダイ成形法等により製膜してフィルムを作製した後、該フィルムを延伸することにより作製できる。インフレーション成形法によれば、製膜と延伸とを同時に行うことができる。 The stretched base material can be produced, for example, by forming a film from a polyolefin such as polyethylene or its resin composition by an inflation molding method, a T-die molding method, or the like, and then stretching the film. According to the inflation molding method, film formation and stretching can be performed simultaneously.
 延伸基材は、一実施形態において、共押出樹脂フィルムである。
 延伸基材は、一実施形態において、ポリエチレン層等のポリオレフィン層を構成する2以上の材料を共押出インフレーション法により共押出製膜し、さらに延伸処理して得られた樹脂フィルムである。
 延伸基材は、一実施形態において、ポリオレフィン層を構成する材料と、延伸基材が接着性樹脂層を備える場合は接着性樹脂層を構成する材料と、発熱性樹脂層を構成する材料とを、共押出インフレーション法により共押出製膜し、さらに延伸処理して得られた樹脂フィルムである。
The stretched substrate, in one embodiment, is a coextruded resin film.
In one embodiment, the stretched base material is a resin film obtained by coextruding two or more materials constituting a polyolefin layer such as a polyethylene layer using a coextrusion inflation method and further stretching the film.
In one embodiment, the stretched base material includes a material constituting the polyolefin layer, a material constituting the adhesive resin layer when the stretched base material includes an adhesive resin layer, and a material constituting the exothermic resin layer. , a resin film obtained by coextrusion film formation by a coextrusion inflation method and further stretching treatment.
 延伸基材には、表面処理が施されていてもよい。これにより、例えば、延伸基材と他の層との密着性を向上できる。表面処理の方法としては、例えば、コロナ処理、オゾン処理、酸素ガス及び/又は窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理;並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。 The stretched base material may be surface-treated. Thereby, for example, the adhesion between the stretched base material and other layers can be improved. Examples of surface treatment methods include physical treatments such as corona treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and/or nitrogen gas, and glow discharge treatment; and chemical treatments such as oxidation treatment using chemicals. For example,
 (ポリオレフィン層)
 ポリオレフィン層は、ポリオレフィンを主成分として含有する。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン及びポリメチルペンテンが挙げられる。ポリオレフィン層としては、ポリエチレン層及びポリプロピレン層が好ましい。
(Polyolefin layer)
The polyolefin layer contains polyolefin as a main component. Examples of polyolefins include polyethylene, polypropylene, and polymethylpentene. As the polyolefin layer, a polyethylene layer and a polypropylene layer are preferred.
 ポリオレフィンのメルトフローレート(MFR)は、製膜性及び加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.2g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5.0g/10分以下であり、例えば0.1g/10分以上50g/10分以下である。ポリオレフィンのMFRは、JIS K7210-1:2014に準拠し、荷重2.16kgの条件で、A法により測定する。MFRの測定温度は、ポリオレフィンの融点等に応じて設定され、例えば、ポリエチレンの場合は190℃であり、ポリプロピレンの場合は230℃である。 The melt flow rate (MFR) of the polyolefin is preferably 0.1 g/10 minutes or more, more preferably 0.2 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes or less, for example 0.1 g/10 minutes. It is more than 50g/10 minutes. The MFR of polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014. The measurement temperature for MFR is set depending on the melting point of the polyolefin, and is, for example, 190°C in the case of polyethylene and 230°C in the case of polypropylene.
 ポリオレフィン層におけるポリオレフィンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上又は95質量%以上である。 The content of polyolefin in the polyolefin layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
 ポリオレフィン層は、ポリオレフィン以外の樹脂材料を含有してもよい。このような樹脂材料としては、例えば、(メタ)アクリル樹脂、ビニル樹脂、セルロース樹脂、ポリアミド、ポリエステル及びアイオノマー樹脂が挙げられる。 The polyolefin layer may contain resin materials other than polyolefin. Examples of such resin materials include (meth)acrylic resins, vinyl resins, cellulose resins, polyamides, polyesters, and ionomer resins.
 ポリオレフィン層は、添加剤を含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、スリップ剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、相溶化剤、顔料及び改質用樹脂が挙げられる。 The polyolefin layer may contain additives. Examples of additives include crosslinking agents, antioxidants, antiblocking agents, slip agents, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, compatibilizers, pigments, and modifying resins. Can be mentioned.
 ポリオレフィン層の厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは100μm以下、より好ましくは50μm以下であり、例えば5μm以上100μm以下である。厚さが下限値以上であると、例えば、基材の強度、耐熱性及びリサイクル性を向上できる。厚さが上限値以下であると、例えば、基材の加工適性を向上できる。延伸基材がポリオレフィン層を2層以上備える場合は、上記「厚さ」は、各ポリオレフィン層の厚さの合計を意味する。 The thickness of the polyolefin layer is preferably 5 μm or more, more preferably 10 μm or more, and preferably 100 μm or less, more preferably 50 μm or less, for example, 5 μm or more and 100 μm or less. When the thickness is at least the lower limit, the strength, heat resistance, and recyclability of the base material can be improved, for example. When the thickness is below the upper limit, for example, the processing suitability of the base material can be improved. When the stretched base material includes two or more polyolefin layers, the above "thickness" means the total thickness of each polyolefin layer.
 延伸基材は、ポリオレフィン層を1層備えてもよく、2層以上備えてもよい。 The stretched base material may be provided with one polyolefin layer, or may be provided with two or more layers.
 ((ポリエチレン層))
 ポリエチレン層は、ポリエチレンを主成分として含有する。
 本開示においてポリエチレンとは、全繰返し構成単位中、エチレン由来の構成単位の含有割合が50モル%以上の重合体をいう。この重合体において、エチレン由来の構成単位の含有割合は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。上記含有割合は、NMR法により測定される。
((Polyethylene layer))
The polyethylene layer contains polyethylene as a main component.
In the present disclosure, polyethylene refers to a polymer in which the content of ethylene-derived structural units is 50 mol% or more among all repeating structural units. In this polymer, the content of the structural unit derived from ethylene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol% or more. The above content ratio is measured by NMR method.
 本開示においてポリエチレンは、エチレンの単独重合体でもよく、エチレンと、エチレン以外のエチレン性不飽和モノマーとの共重合体でもよい。エチレン以外のエチレン性不飽和モノマーとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び6-メチル-1-ヘプテン等の炭素数2以上20以下のα-オレフィン;酢酸ビニル及びプロピオン酸ビニル等のビニルモノマー;並びに(メタ)アクリル酸メチル及び(メタ)アクリル酸エチル等の(メタ)アクリル酸エステルが挙げられる。 In the present disclosure, polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and an ethylenically unsaturated monomer other than ethylene. Examples of ethylenically unsaturated monomers other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene. , 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene, and 6-methyl-1-heptene, and other α-olefins having 2 to 20 carbon atoms; vinyl such as vinyl acetate and vinyl propionate. Monomers; and (meth)acrylic esters such as methyl (meth)acrylate and ethyl (meth)acrylate.
 本開示においてポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。延伸基材の強度及び耐熱性という観点から、高密度ポリエチレン及び中密度ポリエチレンが好ましい。延伸基材の製膜性及び加工適性という観点から、直鎖状低密度ポリエチレン及び中密度ポリエチレンが好ましい。特に中密度ポリエチレンが好ましい。ポリエチレンとしては、環境負荷低減という観点から、バイオマス由来のポリエチレンや、メカニカルリサイクル又はケミカルリサイクルされたポリエチレンを使用してもよい。 In the present disclosure, polyethylene includes, for example, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and very low-density polyethylene. From the viewpoint of the strength and heat resistance of the stretched base material, high-density polyethylene and medium-density polyethylene are preferred. From the viewpoint of film formability and processability of the stretched base material, linear low-density polyethylene and medium-density polyethylene are preferred. Particularly preferred is medium density polyethylene. As the polyethylene, from the viewpoint of reducing environmental load, biomass-derived polyethylene, mechanically recycled or chemically recycled polyethylene may be used.
 本開示においてポリエチレンの密度は、以下のとおりである。
 高密度ポリエチレンの密度は、好ましくは0.945g/cm3を超える。高密度ポリエチレンの密度の上限は、例えば0.965g/cm3である。中密度ポリエチレンの密度は、好ましくは0.930g/cm3を超えて0.945g/cm3以下である。低密度ポリエチレンの密度は、好ましくは0.900g/cm3を超えて0.930g/cm3以下である。直鎖状低密度ポリエチレンの密度は、好ましくは0.900g/cm3を超えて0.930g/cm3以下である。超低密度ポリエチレンの密度は、好ましくは0.900g/cm3以下である。超低密度ポリエチレンの密度の下限は、例えば0.860g/cm3である。ポリエチレンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定する。
In the present disclosure, the density of polyethylene is as follows.
The density of the high density polyethylene is preferably greater than 0.945 g/cm 3 . The upper limit of the density of high-density polyethylene is, for example, 0.965 g/cm 3 . The density of the medium density polyethylene is preferably greater than 0.930 g/cm 3 and less than 0.945 g/cm 3 . The density of the low density polyethylene is preferably greater than 0.900 g/cm 3 and less than 0.930 g/cm 3 . The density of the linear low density polyethylene is preferably more than 0.900 g/cm 3 and less than 0.930 g/cm 3 . The density of the ultra-low density polyethylene is preferably 0.900 g/cm 3 or less. The lower limit of the density of ultra-low density polyethylene is, for example, 0.860 g/cm 3 . The density of polyethylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
 低密度ポリエチレンは、通常、高圧重合法によりエチレンを重合して得られるポリエチレン(高圧法低密度ポリエチレン)である。直鎖状低密度ポリエチレンは、通常、チーグラー・ナッタ触媒などのマルチサイト触媒又はメタロセン触媒などのシングルサイト触媒を用いた重合法によりエチレン及び少量のα-オレフィンを重合して得られるポリエチレンである。 Low-density polyethylene is usually polyethylene obtained by polymerizing ethylene using a high-pressure polymerization method (high-pressure low-density polyethylene). Linear low-density polyethylene is usually polyethylene obtained by polymerizing ethylene and a small amount of α-olefin by a polymerization method using a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst.
 密度又は分岐が異なるポリエチレンは、重合方法を適宜選択することによって得られる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒、又はメタロセン触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合及び高圧イオン重合のいずれかの方法により、1段又は2段以上の多段で重合を行うことが好ましい。
 以上のポリエチレンの説明は、他の箇所においても適用できる。
Polyethylenes having different densities or branches can be obtained by appropriately selecting the polymerization method. For example, a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst is used as a polymerization catalyst, and one-stage polymerization is performed by any one of gas phase polymerization, slurry polymerization, solution polymerization, and high-pressure ionic polymerization. Alternatively, it is preferable to carry out the polymerization in multiple stages of two or more stages.
The above description of polyethylene can also be applied elsewhere.
 ポリエチレンの融点(Tm)は、耐熱性という観点から、好ましくは100℃以上、より好ましくは105℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは140℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。 From the viewpoint of heat resistance, the melting point (Tm) of polyethylene is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably 140°C or lower. , for example, 100°C or more and 140°C or less. Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
 ポリエチレン層におけるポリエチレンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上又は95質量%以上である。 The content of polyethylene in the polyethylene layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
 ((ポリプロピレン層))
 ポリプロピレン層は、ポリプロピレンを主成分として含有する。延伸基材がポリプロピレン層を備えることにより、例えば、延伸基材を使用して作製される包装袋の耐油性を向上できる。
((Polypropylene layer))
The polypropylene layer contains polypropylene as a main component. By providing the stretched base material with a polypropylene layer, for example, the oil resistance of a packaging bag produced using the stretched base material can be improved.
 ポリプロピレンは、プロピレンホモポリマー(ホモポリプロピレン)、プロピレンランダムコポリマー(ランダムポリプロピレン)及びプロピレンブロックコポリマー(ブロックポリプロピレン)のいずれでもよく、これらから選択される2種以上の混合物でもよい。ポリプロピレンとしては、環境負荷低減という観点から、バイオマス由来のポリプロピレンや、メカニカルリサイクル又はケミカルリサイクルされたポリプロピレンを使用してもよい。 The polypropylene may be any of a propylene homopolymer (homopolypropylene), a propylene random copolymer (random polypropylene), and a propylene block copolymer (block polypropylene), or a mixture of two or more selected from these. As the polypropylene, from the viewpoint of reducing environmental load, biomass-derived polypropylene, mechanically recycled or chemically recycled polypropylene may be used.
 プロピレンホモポリマーとは、プロピレンのみの重合体である。プロピレンランダムコポリマーとは、プロピレンとプロピレン以外のα-オレフィン等とのランダム共重合体である。プロピレンブロックコポリマーとは、少なくともプロピレンからなる重合体ブロックと、少なくともプロピレン以外のα-オレフィン等からなる重合体ブロックとを有する共重合体である。 A propylene homopolymer is a polymer made only of propylene. A propylene random copolymer is a random copolymer of propylene and an α-olefin other than propylene. A propylene block copolymer is a copolymer having at least a polymer block made of propylene and a polymer block made of at least an α-olefin other than propylene.
 プロピレン以外のα-オレフィンとしては、例えば、炭素数2以上20以下のα-オレフィンが挙げられ、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び6-メチル-1-ヘプテンが挙げられる。 Examples of α-olefins other than propylene include α-olefins having 2 to 20 carbon atoms, specifically ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Mention may be made of decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene.
 ポリプロピレンの中でも、透明性の観点からは、プロピレンランダムコポリマーが好ましい。包装袋の剛性及び耐熱性を重視する場合は、プロピレンホモポリマーが好ましい。包装袋の耐衝撃性を重視する場合は、プロピレンブロックコポリマーが好ましい。 Among polypropylenes, propylene random copolymers are preferred from the viewpoint of transparency. When the rigidity and heat resistance of the packaging bag are important, propylene homopolymer is preferred. If the impact resistance of the packaging bag is important, propylene block copolymers are preferred.
 ポリプロピレンの密度は、例えば0.88g/cm3以上0.92g/cm3以下である。ポリプロピレンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定する。 The density of polypropylene is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less. The density of polypropylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
 ポリプロピレンの融点(Tm)は、耐熱性という観点から、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは170℃以下であり、例えば120℃以上170℃以下である。Tmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。 From the viewpoint of heat resistance, the melting point (Tm) of polypropylene is preferably 120°C or higher, more preferably 130°C or higher, even more preferably 150°C or higher, and preferably 170°C or lower, for example 120°C or higher and 170°C. It is as follows. Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
 ポリプロピレン層におけるポリプロピレンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上又は95質量%以上である。 The content of polypropylene in the polypropylene layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more or 95% by mass or more.
 (発熱性樹脂層)
 延伸基材は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層をさらに備えてもよい。これにより、例えば、積層体にレーザーを照射することで変質部を含む易開封線を形成でき、包装袋の開封性を向上できる。
(Exothermic resin layer)
The stretched base material may further include a heat-generating resin layer containing as a main component a heteroatom-containing resin that absorbs laser and generates heat. Thereby, for example, by irradiating the laminate with a laser, an easy-to-open line including the altered portion can be formed, and the unsealability of the packaging bag can be improved.
 ヘテロ原子含有樹脂におけるヘテロ原子としては、例えば、酸素原子、硫黄原子及び窒素原子が挙げられる。ヘテロ原子含有樹脂は、例えば、ヒドロキシ基、アミド基、エステル基及びイミド基などのヘテロ原子含有基を有する。レーザーを吸収して発熱するヘテロ原子含有樹脂としては、例えば、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリアミド、ポリエステル及びポリイミドが挙げられる。これらの中でも、包装袋の開封性という観点から、エチレン-ビニルアルコール共重合体、ポリビニルアルコール及びポリアミドが好ましく、エチレン-ビニルアルコール共重合体及びポリアミドがより好ましく、エチレン-ビニルアルコール共重合体がさらに好ましい。 Examples of the heteroatoms in the heteroatom-containing resin include oxygen atoms, sulfur atoms, and nitrogen atoms. The heteroatom-containing resin has a heteroatom-containing group such as a hydroxy group, an amide group, an ester group, and an imide group. Examples of the heteroatom-containing resin that absorbs laser and generates heat include ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyamide, polyester, and polyimide. Among these, from the viewpoint of ease of opening the packaging bag, ethylene-vinyl alcohol copolymers, polyvinyl alcohol and polyamides are preferred, ethylene-vinyl alcohol copolymers and polyamides are more preferred, and ethylene-vinyl alcohol copolymers are even more preferred. preferable.
 エチレン-ビニルアルコール共重合体(EVOH)は、例えば、エチレンとビニルエステル系モノマーとを共重合させた後にケン化させることにより得られる。エチレンとビニルエステル系モノマーとの共重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。 Ethylene-vinyl alcohol copolymer (EVOH) can be obtained, for example, by copolymerizing ethylene and a vinyl ester monomer and then saponifying the copolymer. The copolymerization of ethylene and the vinyl ester monomer can be carried out by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc.
 ビニルエステル系モノマーとしては、一般的に酢酸ビニルが用いられるが、他のビニルエステル系モノマーを用いてもよい。他のビニルエステル系モノマーとしては、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル及びバーサチック酸ビニル等の脂肪族ビニルエステル;安息香酸ビニル等の芳香族ビニルエステルが挙げられる。 As the vinyl ester monomer, vinyl acetate is generally used, but other vinyl ester monomers may also be used. Examples of other vinyl ester monomers include vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate. Aliphatic vinyl esters include aromatic vinyl esters such as vinyl benzoate.
 EVOHにおいてエチレンに由来する構成単位の含有割合(エチレン含有割合)は、好ましくは20モル%以上、より好ましくは25モル%以上であり、好ましくは60モル%以下、より好ましくは50モル%以下であり、例えば20モル%以上60モル%以下である。エチレン含有割合が下限値以上であると、例えば、延伸基材の加工適性を向上できる。エチレン含有割合が上限値以下であると、例えば、包装袋の開封性を向上できるとともに、延伸基材の酸素バリア性及び水蒸気バリア性を向上できる。エチレン含有割合は、NMR法により測定する。 The content ratio of structural units derived from ethylene (ethylene content ratio) in EVOH is preferably 20 mol% or more, more preferably 25 mol% or more, and preferably 60 mol% or less, more preferably 50 mol% or less. For example, it is 20 mol% or more and 60 mol% or less. When the ethylene content is at least the lower limit, for example, the processing suitability of the stretched base material can be improved. When the ethylene content is at most the upper limit, for example, the unsealability of the packaging bag can be improved, and the oxygen barrier properties and water vapor barrier properties of the stretched base material can be improved. The ethylene content rate is measured by NMR method.
 EVOHにおける平均ケン化度は、90モル%以上でもよく、95モル%以上でもよく、99モル%以上でもよい。平均ケン化度は、JIS K6726:1994(ただしEVOHは水/メタノール溶媒に均一に溶解した溶液を使用)に準拠して測定する。 The average degree of saponification in EVOH may be 90 mol% or more, 95 mol% or more, or 99 mol% or more. The average saponification degree is measured in accordance with JIS K6726:1994 (however, EVOH uses a solution uniformly dissolved in a water/methanol solvent).
 EVOHの融点(Tm)は、耐熱性の観点から、好ましくは140℃以上、より好ましくは145℃以上、さらに好ましくは150℃以上であり、好ましくは200℃以下、より好ましくは195℃以下、さらに好ましくは190℃以下であり、例えば140℃以上200℃以下である。EVOHのTmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。 From the viewpoint of heat resistance, the melting point (Tm) of EVOH is preferably 140°C or higher, more preferably 145°C or higher, even more preferably 150°C or higher, and preferably 200°C or lower, more preferably 195°C or lower, and Preferably it is 190°C or less, for example 140°C or more and 200°C or less. The Tm of EVOH is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
 EVOHのメルトフローレート(MFR)は、製膜性及び加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5.0g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。EVOHのMFRは、ASTM D1238に準拠し、温度190℃、荷重2.16kgの条件で測定する。測定温度はEVOHの融点に応じて210℃でもよい。 The melt flow rate (MFR) of EVOH is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes, for example 0.1 g/10 minutes. It is 30g/10 minutes or less. The MFR of EVOH is measured in accordance with ASTM D1238 at a temperature of 190° C. and a load of 2.16 kg. The measurement temperature may be 210° C. depending on the melting point of EVOH.
 EVOHは、公知の方法により、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化などの変性がされていてもよい。 EVOH may be modified by urethanation, acetalization, cyanoethylation, oxyalkylenation, etc. by known methods.
 ポリビニルアルコール(PVA)における平均ケン化度は、70モル%以上でもよく、75モル%以上でもよく、80モル%以上でもよく、85モル%以上でもよい。平均ケン化度は、JIS K6726:1994に準拠して測定する。 The average degree of saponification in polyvinyl alcohol (PVA) may be 70 mol% or more, 75 mol% or more, 80 mol% or more, or 85 mol% or more. The average degree of saponification is measured in accordance with JIS K6726:1994.
 ポリアミドとしては、例えば、脂肪族ポリアミド及び半芳香族ポリアミドが挙げられる。ポリアミドとしては、脂肪族ポリアミドが好ましく、結晶性脂肪族ポリアミドがより好ましい。 Examples of the polyamide include aliphatic polyamide and semi-aromatic polyamide. As the polyamide, aliphatic polyamide is preferable, and crystalline aliphatic polyamide is more preferable.
 脂肪族ポリアミドとしては、例えば、脂肪族ホモポリアミド及び脂肪族共重合ポリアミドが挙げられる。以下の例示において、ポリアミドを「PA」とも記載する。 Examples of aliphatic polyamides include aliphatic homopolyamides and aliphatic copolyamides. In the following examples, polyamide is also referred to as "PA".
 脂肪族ホモポリアミドとしては、具体的には、ポリカプロラクタム(PA6)、ポリエナントラクタム(PA7)、ポリウンデカンラクタム(PA11)、ポリラウリルラクタム(PA12)、ポリヘキサメチレンアジパミド(PA66)、ポリテトラメチレンドデカミド(PA412)、ポリペンタメチレンアゼラミド(PA59)、ポリペンタメチレンセバカミド(PA510)、ポリペンタメチレンドデカミド(PA512)、ポリヘキサメチレンアゼラミド(PA69)、ポリヘキサメチレンセバカミド(PA610)、ポリヘキサメチレンドデカミド(PA612)、ポリノナメチレンアジパミド(PA96)、ポリノナメチレンアゼラミド(PA99)、ポリノナメチレンセバカミド(PA910)、ポリノナメチレンドデカミド(PA912)、ポリデカメチレンアジパミド(PA106)、ポリデカメチレンアゼラミド(PA109)、ポリデカメチレンデカミド(PA1010)、ポリデカメチレンドデカミド(PA1012)、ポリドデカメチレンアジパミド(PA126)、ポリドデカメチレンアゼラミド(PA129)、ポリドデカメチレンセバカミド(PA1210)及びポリドデカメチレンドデカミド(PA1212)が挙げられる。 Specifically, the aliphatic homopolyamides include polycaprolactam (PA6), polyenanthlactam (PA7), polyundecanelactam (PA11), polylauryllactam (PA12), polyhexamethylene adipamide (PA66), and polyamide. Tetramethylene dodecamide (PA412), polypentamethylene azelamide (PA59), polypentamethylene sebacamide (PA510), polypentamethylene dodecamide (PA512), polyhexamethylene azeramide (PA69), polyhexamethylene sebaca Mido (PA610), polyhexamethylene dodecamide (PA612), polynonamethylene adipamide (PA96), polynonamethylene azeramide (PA99), polynonamethylene sebacamide (PA910), polynonamethylene dodecamide (PA912) ), polydecamethylene adipamide (PA106), polydecamethylene azeramide (PA109), polydecamethylene decamide (PA1010), polydecamethylene dodecamide (PA1012), polydodecamethylene adipamide (PA126), poly Mention may be made of dodecamethylene azeramide (PA129), polydodecamethylene sebacamide (PA1210) and polydodecamethylene dodecamide (PA1212).
 脂肪族共重合ポリアミドとしては、具体的には、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(PA6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(PA6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(PA6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(PA6/611)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(PA6/612)、カプロラクタム/アミノウンデカン酸共重合体(PA6/11)、カプロラクタム/ラウリルラクタム共重合体(PA6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(PA6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(PA6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(PA6/66/612)が挙げられる。 Specifically, the aliphatic copolymer polyamides include caprolactam/hexamethylene diamino adipic acid copolymer (PA6/66), caprolactam/hexamethylene diamino azelaic acid copolymer (PA6/69), and caprolactam/hexamethylene diamino acid copolymer (PA6/69). Sebacic acid copolymer (PA6/610), caprolactam/hexamethylenediaminoundecanoic acid copolymer (PA6/611), caprolactam/hexamethylenediaminododecanoic acid copolymer (PA6/612), caprolactam/aminoundecanoic acid copolymer combination (PA6/11), caprolactam/lauryllactam copolymer (PA6/12), caprolactam/hexamethylene diamino adipic acid/lauryllactam copolymer (PA6/66/12), caprolactam/hexamethylene diamino adipic acid/hexa Examples include methylene diamino sebacic acid copolymer (PA6/66/610) and caprolactam/hexamethylene diamino adipic acid/hexamethylene diamino dodecane dicarboxylic acid copolymer (PA6/66/612).
 脂肪族ポリアミドの相対粘度は、好ましくは1.5以上5.0以下、より好ましく2.0以上5.0以下、さらに好ましくは2.5以上4.5以下である。脂肪族ポリアミドの相対粘度は、JIS K6920-2:2009に準拠して、ポリアミド1gを96%濃硫酸100mLに溶解させ、25℃で測定する。 The relative viscosity of the aliphatic polyamide is preferably 1.5 or more and 5.0 or less, more preferably 2.0 or more and 5.0 or less, and still more preferably 2.5 or more and 4.5 or less. The relative viscosity of aliphatic polyamide is measured at 25° C. by dissolving 1 g of polyamide in 100 mL of 96% concentrated sulfuric acid in accordance with JIS K6920-2:2009.
 半芳香族ポリアミドとは、芳香族ジアミンに由来する構成単位と、脂肪族ジカルボン酸に由来する構成単位とを有するポリアミド、又は、脂肪族ジアミンに由来する構成単位と、芳香族ジカルボン酸に由来する構成単位とを有するポリアミドである。例えば、芳香族ジアミンと脂肪族ジカルボン酸とから構成されるポリアミド、及び脂肪族ジアミンと芳香族ジカルボン酸とから構成されるポリアミドが挙げられる。 Semi-aromatic polyamide is a polyamide having a structural unit derived from an aromatic diamine and a structural unit derived from an aliphatic dicarboxylic acid, or a polyamide having a structural unit derived from an aliphatic diamine and a structural unit derived from an aromatic dicarboxylic acid. It is a polyamide having structural units. Examples include polyamides composed of aromatic diamines and aliphatic dicarboxylic acids, and polyamides composed of aliphatic diamines and aromatic dicarboxylic acids.
 半芳香族ポリアミドとしては、例えば、ポリヘキサメチレンテレフタルアミド(PA6T)、ポリヘキサメチレンイソフタルアミド(PA6I)、ポリノナメチレンテレフタルアミド(PA9T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド共重合体(PA66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6I)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミド共重合体(PA6T/6)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミド共重合体(PA6I/6)、ポリヘキサメチレンテレフタルアミド/ポリドデカミド共重合体(PA6T/12)、ポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミド共重合体(PA6I/6T)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)共重合体(PA6T/M5T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6/6I)及びポリメタキシリレンアジパミド(PAMXD6)が挙げられる。 Examples of semi-aromatic polyamides include polyhexamethylene terephthalamide (PA6T), polyhexamethylene isophthalamide (PA6I), polynonamethylene terephthalamide (PA9T), and polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer. (PA66/6T), polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer (PA66/6I), polyhexamethylene terephthalamide/polycaproamide copolymer (PA6T/6), polyhexamethylene isophthalamide amide/polycaproamide copolymer (PA6I/6), polyhexamethylene terephthalamide/polydodecamide copolymer (PA6T/12), polyhexamethylene isophthalamide/polyhexamethylene terephthalamide copolymer (PA6I/6T), Polyhexamethylene terephthalamide/poly(2-methylpentamethylene terephthalamide) copolymer (PA6T/M5T), polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (PA66/6T) /6I), polyhexamethylene adipamide/polycaproamide/polyhexamethylene isophthalamide copolymer (PA66/6/6I), and polymethaxylylene adipamide (PAMXD6).
 半芳香族ポリアミドのメルトボリュームレート(MVR)は、好ましくは5cm3/10分以上200cm3/10分以下、より好ましくは10cm3/10分以上100cm3/10分以下である。MVRは、ISO1133に準拠して、温度275℃、荷重5kgで測定する。 The melt volume rate (MVR) of the semi-aromatic polyamide is preferably from 5 cm 3 /10 minutes to 200 cm 3 /10 minutes, more preferably from 10 cm 3 /10 minutes to 100 cm 3 /10 minutes. MVR is measured at a temperature of 275° C. and a load of 5 kg in accordance with ISO1133.
 ポリアミドとしては、結晶性脂肪族ポリアミドが好ましい。結晶性脂肪族ポリアミドとしては、例えば、PA6、PA11、PA12、PA66、PA610、PA612、PA6/66及びPA6/66/12が挙げられる。 As the polyamide, crystalline aliphatic polyamide is preferred. Examples of crystalline aliphatic polyamides include PA6, PA11, PA12, PA66, PA610, PA612, PA6/66 and PA6/66/12.
 結晶性脂肪族ポリアミドの融点(Tm)は、好ましくは180℃以上であり、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは230℃以下であり、例えば180℃以上300℃以下である。ポリアミドのTmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。 The melting point (Tm) of the crystalline aliphatic polyamide is preferably 180°C or higher, preferably 300°C or lower, more preferably 250°C or lower, even more preferably 230°C or lower, for example, 180°C or higher and 300°C or lower. be. Tm of polyamide is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
 発熱性樹脂層におけるヘテロ原子含有樹脂の含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上又は95質量%以上である。これにより、例えば、包装袋の開封性を向上できる。 The content ratio of the heteroatom-containing resin in the exothermic resin layer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, particularly preferably 90% by mass or more, or 95% by mass or more. be. Thereby, for example, the ease of opening the packaging bag can be improved.
 発熱性樹脂層は、上記添加剤を含有してもよい。 The exothermic resin layer may contain the above additives.
 延伸基材における発熱性樹脂層の厚さは、好ましくは0.5μm以上、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上であり、好ましくは10μm以下、より好ましくは8.0μm以下、さらに好ましくは6.0μm以下であり、例えば0.5μm以上10μm以下である。厚さが下限値以上であると、例えば、包装袋の開封性を向上できる。厚さが上限値以下であると、例えば、積層体のリサイクル性を向上できる。延伸基材が発熱性樹脂層を2層以上備える場合は、上記「厚さ」は、各発熱性樹脂層の厚さの合計を意味する。 The thickness of the exothermic resin layer in the stretched base material is preferably 0.5 μm or more, more preferably 1.0 μm or more, even more preferably 1.5 μm or more, and preferably 10 μm or less, more preferably 8.0 μm or less. , more preferably 6.0 μm or less, for example 0.5 μm or more and 10 μm or less. When the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved. When the thickness is below the upper limit, for example, the recyclability of the laminate can be improved. When the stretched base material includes two or more heat-generating resin layers, the above "thickness" means the total thickness of each heat-generating resin layer.
 発熱性樹脂層の厚さは、延伸基材の厚さに対して、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上であり、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下であり、例えば1%以上30%以下である。延伸基材が発熱性樹脂層を2層以上備える場合は、上記「厚さ」は、各発熱性樹脂層の厚さの合計を意味する。 The thickness of the exothermic resin layer is preferably 1% or more, more preferably 3% or more, even more preferably 5% or more, and preferably 30% or less, more preferably It is 25% or less, more preferably 20% or less, for example 1% or more and 30% or less. When the stretched base material includes two or more heat-generating resin layers, the above "thickness" means the total thickness of each heat-generating resin layer.
 (接着性樹脂層)
 発熱性樹脂層を備える延伸基材は、ポリオレフィン層と発熱性樹脂層との間に、接着性樹脂層を備えてもよい。これにより、例えば、ポリオレフィン層と発熱性樹脂層との密着性を向上できる。
(adhesive resin layer)
The stretched base material including the heat generating resin layer may include an adhesive resin layer between the polyolefin layer and the heat generating resin layer. Thereby, for example, the adhesion between the polyolefin layer and the exothermic resin layer can be improved.
 接着性樹脂層は、樹脂材料を含有する。樹脂材料としては、例えば、ポリオレフィン、変性ポリオレフィン、ビニル樹脂、ポリエーテル、ポリエステル、ポリウレタン、シリコーン樹脂、エポキシ樹脂及びフェノール樹脂が挙げられる。これらの中でも、リサイクル性及び密着性という観点から、ポリオレフィン及び変性ポリオレフィンが好ましく、酸変性ポリオレフィン等の変性ポリオレフィンがより好ましい。 The adhesive resin layer contains a resin material. Examples of the resin material include polyolefin, modified polyolefin, vinyl resin, polyether, polyester, polyurethane, silicone resin, epoxy resin, and phenol resin. Among these, from the viewpoint of recyclability and adhesion, polyolefins and modified polyolefins are preferred, and modified polyolefins such as acid-modified polyolefins are more preferred.
 変性ポリオレフィンとしては、例えば、マレイン酸及びフマル酸等の不飽和カルボン酸、又はその酸無水物、エステル若しくは金属塩による、ポリオレフィンの変性物、特にポリオレフィンのグラフト変性物が挙げられる。樹脂材料の中でも、モノマテリアル包装材料に適した構成が得られるという観点から、変性ポリオレフィンが好ましい。 Examples of modified polyolefins include modified polyolefins, particularly graft-modified polyolefins, with unsaturated carboxylic acids such as maleic acid and fumaric acid, or acid anhydrides, esters, or metal salts thereof. Among the resin materials, modified polyolefins are preferred from the viewpoint of obtaining a structure suitable for monomaterial packaging materials.
 変性ポリオレフィンのメルトフローレート(MFR)は、製膜性及び加工適性という観点から、0.1g/10分以上でもよく、0.3g/10分以上でもよく、0.5g/10分以上でもよく、50g/10分以下でもよく、30g/10分以下でもよく、10g/10分以下でもより、例えば0.1g/10分以上50g/10分以下でもよい。変性ポリオレフィンのMFRは、ASTM D1238に準拠し、温度190℃、荷重2.16kgの条件で測定するが、測定温度は変性ポリオレフィンの融点に応じて変更してもよい。 The melt flow rate (MFR) of the modified polyolefin may be 0.1 g/10 minutes or more, 0.3 g/10 minutes or more, or 0.5 g/10 minutes or more from the viewpoint of film formability and processing suitability. , 50 g/10 minutes or less, 30 g/10 minutes or less, 10 g/10 minutes or less, for example, 0.1 g/10 minutes or more and 50 g/10 minutes or less. The MFR of the modified polyolefin is measured in accordance with ASTM D1238 at a temperature of 190° C. and a load of 2.16 kg, but the measurement temperature may be changed depending on the melting point of the modified polyolefin.
 接着性樹脂層は、上記添加剤を含有してもよい。 The adhesive resin layer may contain the above additives.
 接着性樹脂層の厚さは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは15μm以下、より好ましくは10μm以下であり、例えば0.5μm以上15μm以下である。厚さが下限値以上であると、例えば、上記密着性を向上できる。厚さが上限値以下であると、例えば、積層体のリサイクル性を向上できる。延伸基材が接着性樹脂層を2層以上備える場合は、上記「厚さ」は、各接着性樹脂層の厚さの合計を意味する。 The thickness of the adhesive resin layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, and preferably 15 μm or less, more preferably 10 μm or less, for example, 0.5 μm or more and 15 μm or less. For example, when the thickness is at least the lower limit, the adhesion can be improved. When the thickness is below the upper limit, for example, the recyclability of the laminate can be improved. When the stretched base material includes two or more adhesive resin layers, the above "thickness" means the total thickness of each adhesive resin layer.
 発熱性樹脂層を備える延伸基材としては、具体的には、(1)中密度ポリエチレン層と、接着性樹脂層と、発熱性樹脂層とをこの順に備える延伸基材;(2)中密度ポリエチレン層と、中密度ポリエチレン層と、中密度ポリエチレン層と、接着性樹脂層と、発熱性樹脂層とをこの順に備える延伸基材;(3)中密度ポリエチレン層と、接着性樹脂層と、発熱性樹脂層と、接着性樹脂層と、中密度ポリエチレン層とをこの順に備える延伸基材が挙げられる。ここで中密度ポリエチレン層は、中密度ポリエチレンを主成分として含有する。(1)及び(2)の延伸基材の場合は、例えば、発熱性樹脂層がシーラント層側を向くように配置される。 Specifically, the stretched base material provided with a heat-generating resin layer includes (1) a stretched base material comprising a medium-density polyethylene layer, an adhesive resin layer, and a heat-generating resin layer in this order; (2) medium-density polyethylene layer; A stretched base material comprising a polyethylene layer, a medium-density polyethylene layer, a medium-density polyethylene layer, an adhesive resin layer, and a heat-generating resin layer in this order; (3) a medium-density polyethylene layer, an adhesive resin layer, An example is a stretched base material comprising a heat generating resin layer, an adhesive resin layer, and a medium density polyethylene layer in this order. Here, the medium density polyethylene layer contains medium density polyethylene as a main component. In the case of the stretched base materials (1) and (2), for example, the exothermic resin layer is arranged so as to face the sealant layer side.
 <ポリオレフィン基材>
 延伸基材は、ポリオレフィン層を備え、ポリオレフィンを主成分として含有するポリオレフィン基材でもよい。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン及びポリメチルペンテンが挙げられ、詳細は上述したとおりである。ポリオレフィン基材としては、ポリエチレン基材及びポリプロピレン基材が好ましい。
<Polyolefin base material>
The stretched base material may be a polyolefin base material including a polyolefin layer and containing polyolefin as a main component. Examples of the polyolefin include polyethylene, polypropylene, and polymethylpentene, and the details are as described above. As the polyolefin base material, a polyethylene base material and a polypropylene base material are preferred.
 ポリオレフィン基材におけるポリオレフィンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、よりさらに好ましくは90質量%以上、特に好ましくは95質量%以上である。 The content of polyolefin in the polyolefin base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be.
 ポリオレフィン基材は、ポリオレフィン以外の上記樹脂材料を含有してもよい。
 ポリオレフィン基材は、上記添加剤を含有してもよい。
The polyolefin base material may contain the above resin materials other than polyolefin.
The polyolefin base material may contain the above additives.
 ポリオレフィン基材のヘイズ値は、25%以下でもよく、15%以下でもよく、10%以下でもよい。ヘイズ値のその下限値は、0.1%又は1%でもよい。ポリオレフィン基材のヘイズ値は、JIS K7136:2000に準拠して測定する。 The haze value of the polyolefin base material may be 25% or less, 15% or less, or 10% or less. The lower limit of the haze value may be 0.1% or 1%. The haze value of the polyolefin base material is measured in accordance with JIS K7136:2000.
 ポリオレフィン基材は、単層構造を有してもよく、多層構造を有してもよい。多層構造を有するポリオレフィン基材は、例えば、強度、耐熱性、印刷適性及び延伸適性のバランスに優れるという観点から好ましい。ポリオレフィン基材は、ポリオレフィン層を2層以上有してもよい。この場合のポリオレフィン層の層数は、2層以上でもよく、3層以上でもよく、7層以下でもよく、5層以下でもよく、例えば、3層、5層又は7層である。 The polyolefin base material may have a single layer structure or a multilayer structure. A polyolefin base material having a multilayer structure is preferable from the viewpoint of, for example, an excellent balance of strength, heat resistance, printability, and stretching suitability. The polyolefin base material may have two or more polyolefin layers. In this case, the number of polyolefin layers may be 2 or more, 3 or more, 7 or less, or 5 or less, for example, 3, 5, or 7 layers.
 ポリオレフィン基材の厚さは、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下であり、例えば5μm以上200μm以下である。厚さが下限値以上であると、例えば、積層体の強度及び耐熱性を向上できる。厚さが上限値以下であると、例えば、積層体の加工適性を向上できる。 The thickness of the polyolefin base material is preferably 5 μm or more, more preferably 10 μm or more, even more preferably 15 μm or more, and preferably 200 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less, for example, 5 μm or more and 200 μm or less. It is as follows. When the thickness is at least the lower limit, for example, the strength and heat resistance of the laminate can be improved. When the thickness is below the upper limit, for example, the processability of the laminate can be improved.
 (ポリエチレン基材)
 ポリエチレン基材は、ポリエチレンを主成分として含有する。
 ポリエチレンの詳細は、上述したとおりである。
(Polyethylene base material)
The polyethylene base material contains polyethylene as a main component.
Details of the polyethylene are as described above.
 ポリエチレンのメルトフローレート(MFR)は、製膜性及び加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.2g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5.0g/10分以下であり、例えば0.1g/10分以上50g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠し、荷重2.16kgの条件で、A法により測定する。MFRの測定温度は、190℃である。 The melt flow rate (MFR) of polyethylene is preferably 0.1 g/10 minutes or more, more preferably 0.2 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5.0 g/10 minutes or less, for example 0.1 g/10 minutes. It is more than 50g/10 minutes. The MFR of polyethylene is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014. The measurement temperature of MFR is 190°C.
 ポリエチレンの融点(Tm)は、耐熱性という観点から、好ましくは100℃以上、より好ましくは105℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは140℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。 From the viewpoint of heat resistance, the melting point (Tm) of polyethylene is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably 140°C or lower. , for example, 100°C or more and 140°C or less. Tm is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
 ポリエチレン基材におけるポリエチレンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、よりさらに好ましくは90質量%以上、特に好ましくは95質量%以上である。このような構成により、例えば、積層体のリサイクル性を向上できる。 The content of polyethylene in the polyethylene base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be. With such a configuration, for example, the recyclability of the laminate can be improved.
 ポリエチレン基材は、一軸延伸フィルムでもよく、二軸延伸フィルムでもよく、例えば、縦方向(MD)に延伸処理された一軸延伸フィルムである。延伸処理の詳細は、上述したとおりである。 The polyethylene base material may be a uniaxially stretched film or a biaxially stretched film, for example, a uniaxially stretched film that has been stretched in the machine direction (MD). Details of the stretching process are as described above.
 ポリエチレン基材は、単層構造を有してもよく、多層構造を有してもよい。延伸基材は、ポリエチレンを主成分として含有するポリエチレン層を1層備えてもよく、2層以上備えてもよい。多層構造を有するポリエチレン基材は、例えば、強度、耐熱性、印刷適性及び延伸適性のバランスに優れるという観点から好ましい。多層構造を有するポリエチレン基材の場合のポリエチレン層の層数は、2層以上でもよく、3層以上でもよく、7層以下でもよく、5層以下でもよく、例えば、3層、5層又は7層である。 The polyethylene base material may have a single layer structure or a multilayer structure. The stretched base material may be provided with one polyethylene layer containing polyethylene as a main component, or may be provided with two or more layers. A polyethylene base material having a multilayer structure is preferable from the viewpoint of, for example, an excellent balance of strength, heat resistance, printability, and stretching suitability. In the case of a polyethylene base material having a multilayer structure, the number of polyethylene layers may be 2 or more, 3 or more, 7 or less, or 5 or less, for example, 3, 5, or 7. It is a layer.
 多層構造を有するポリエチレン基材として、以下の例が挙げられる。
(1)中密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、高密度ポリエチレン層と、中密度ポリエチレン層とを、この順に備える基材;
(2)中密度ポリエチレン層と、中密度ポリエチレン層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、中密度ポリエチレン層とを、この順に備える基材;
(3)中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、直鎖状低密度ポリエチレン層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層とを、この順に備える基材;
(4)中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層とを、この順に備える基材;
(5)高密度ポリエチレン及び中密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、直鎖状低密度ポリエチレン及び中密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、高密度ポリエチレン及び中密度ポリエチレンのブレンド層とを、この順に備える基材;
(6)中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、高密度ポリエチレン含有層と、直鎖状低密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層とを、この順に備える基材;
(7)中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、直鎖状低密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層とを、この順に備える基材;
(8)高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層又は超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とを、この順に備える基材;
(9)高密度ポリエチレン層と、高密度ポリエチレン及び中密度ポリエチレのブレンド層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層又は超低密度ポリエチレン層と、高密度ポリエチレン及び中密度ポリエチレンのブレンド層と、高密度ポリエチレン層とを、この順に備える基材;
(10)高密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、高密度ポリエチレン層と、高密度ポリエチレンとを、この順に備える基材;
(11)中密度ポリエチレン層と、高密度ポリエチレン層と、直鎖状低密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン層とを、この順に備える基材。
Examples of polyethylene base materials having a multilayer structure include the following.
(1) A base material comprising a medium density polyethylene layer, a high density polyethylene layer, a blend layer of medium density polyethylene and high density polyethylene, a high density polyethylene layer, and a medium density polyethylene layer in this order;
(2) A base material comprising, in this order, a medium density polyethylene layer, a medium density polyethylene layer, a blend layer of medium density polyethylene and linear low density polyethylene, a medium density polyethylene layer, and a medium density polyethylene layer;
(3) A blend layer of medium density polyethylene and high density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a linear low density polyethylene layer, and a blend layer of medium density polyethylene and linear low density polyethylene. A base material comprising a blend layer and a blend layer of medium density polyethylene and high density polyethylene in this order;
(4) A blend layer of medium density polyethylene and high density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, a blend layer of medium density polyethylene and linear low density polyethylene, A base material comprising a blend layer of linear low-density polyethylene and a blend layer of medium-density polyethylene and high-density polyethylene in this order;
(5) A blend layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a blend layer of linear low-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, and a layer of high-density polyethylene and medium-density polyethylene. a base material comprising a blend layer in this order;
(6) A blend layer of medium density polyethylene and high density polyethylene, a high density polyethylene containing layer, a linear low density polyethylene layer, a high density polyethylene layer, a blend layer of medium density polyethylene and high density polyethylene, Base materials provided in this order;
(7) A blend layer of medium-density polyethylene and high-density polyethylene, a blend layer of medium-density polyethylene and linear low-density polyethylene, a linear low-density polyethylene layer, a high-density polyethylene layer, a medium-density polyethylene and high-density polyethylene layer, a base material comprising, in this order, a blend layer of density polyethylene;
(8) High-density polyethylene layer, medium-density polyethylene layer, low-density polyethylene layer, linear low-density polyethylene layer or very low-density polyethylene layer, medium-density polyethylene layer, and high-density polyethylene layer in this order. A base material provided;
(9) A high-density polyethylene layer, a blend layer of high-density polyethylene and medium-density polyethylene, a low-density polyethylene layer, a linear low-density polyethylene layer, or a very low-density polyethylene layer, and a blend of high-density polyethylene and medium-density polyethylene. a base material comprising a layer and a high-density polyethylene layer in this order;
(10) A base material comprising a high-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and high-density polyethylene in this order;
(11) A base material comprising a medium-density polyethylene layer, a high-density polyethylene layer, a linear low-density polyethylene layer, a high-density polyethylene layer, and a medium-density polyethylene layer in this order.
 上記(1)~(11)の基材は、それぞれ5層備える。各層を外側から順に第1層~第5層と記載する。第1層及び第5層のそれぞれの厚さは、0.5μm以上でもよく、1μm以上でもよく、10μm以下でもよく、8μm以下でもよく、5μm以下でもよく、例えば0.5μm以上10μm以下でもよい。第2層及び第4層のそれぞれの厚さは、0.5μm以上でもよく、1μm以上でもよく、15μm以下でもよく、10μm以下でもよく、8μm以下でもよく、例えば0.5μm以上15μm以下でもよい。第3層の厚さは、1μm以上でもよく、2μm以上でもよく、5μm以上でもよく、50μm以下でもよく、40μm以下でもよく、30μm以下でもよく、例えば1μm以上50μm以下でもよい。 Each of the base materials (1) to (11) above has five layers. Each layer is described as a first layer to a fifth layer in order from the outside. The thickness of each of the first layer and the fifth layer may be 0.5 μm or more, 1 μm or more, 10 μm or less, 8 μm or less, 5 μm or less, for example, 0.5 μm or more and 10 μm or less. . The thickness of each of the second layer and the fourth layer may be 0.5 μm or more, 1 μm or more, 15 μm or less, 10 μm or less, 8 μm or less, for example, 0.5 μm or more and 15 μm or less. . The thickness of the third layer may be 1 μm or more, 2 μm or more, 5 μm or more, 50 μm or less, 40 μm or less, 30 μm or less, for example, 1 μm or more and 50 μm or less.
 多層構造を有するポリエチレン基材として、以下の例も挙げられる。
(12)高密度ポリエチレン層と、中密度ポリエチレン層とを、この順に備える基材;
(13)高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とを、この順に備える基材。
Examples of the polyethylene base material having a multilayer structure include the following.
(12) A base material comprising a high-density polyethylene layer and a medium-density polyethylene layer in this order;
(13) A base material comprising a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer in this order.
 (ポリプロピレン基材)
 ポリプロピレン基材は、ポリプロピレンを主成分として含有する。本開示の積層体がポリプロピレン基材を備えることにより、例えば、積層体を使用して作製される包装袋の耐油性を向上できる。
 ポリプロピレンの詳細は、上述したとおりである。
(Polypropylene base material)
The polypropylene base material contains polypropylene as a main component. By including the polypropylene base material in the laminate of the present disclosure, for example, the oil resistance of a packaging bag produced using the laminate can be improved.
Details of the polypropylene are as described above.
 ポリプロピレン基材におけるポリプロピレンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上、よりさらに好ましくは90質量%以上、特に好ましくは95質量%以上である。このような構成により、例えば、積層体のリサイクル性を向上できる。 The content of polypropylene in the polypropylene base material is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 85% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more. be. With such a configuration, for example, the recyclability of the laminate can be improved.
 ポリプロピレン基材は、一軸延伸フィルムでもよく、二軸延伸フィルムでもよく、例えば、二軸延伸フィルムである。延伸処理の詳細は、上述したとおりである。 The polypropylene base material may be a uniaxially stretched film or a biaxially stretched film, for example, a biaxially stretched film. Details of the stretching process are as described above.
 <発熱性樹脂層>
 本開示の第1の態様の積層体は、上記発熱性樹脂層を、延伸基材とシーラント層との間に備えてもよい。本開示の第1の態様の積層体は、上記発熱性樹脂層を、延伸基材におけるシーラント層側の面とは反対側の面上に備えてもよい。
<Exothermic resin layer>
The laminate of the first aspect of the present disclosure may include the heat generating resin layer between the stretched base material and the sealant layer. The laminate of the first aspect of the present disclosure may include the heat-generating resin layer on the surface of the stretched base material opposite to the surface on the sealant layer side.
 発熱性樹脂層の詳細は上述したとおりであるから、本欄での説明は省略する。レーザーを吸収して発熱するヘテロ原子含有樹脂としては、エチレン-ビニルアルコール共重合体及びポリビニルアルコールが好ましい。 The details of the exothermic resin layer are as described above, so the explanation in this section will be omitted. As the heteroatom-containing resin that absorbs laser and generates heat, ethylene-vinyl alcohol copolymer and polyvinyl alcohol are preferred.
 発熱性樹脂層の厚さは、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上であり、5.0μm以下でもよく、3.0μm以下でもよく、例えば0.1μm以上5.0μm以下でもよい。厚さが下限値以上であると、例えば、包装袋の開封性を向上できる。厚さが上限値以下であると、例えば、積層体のリサイクル性を向上できる。 The thickness of the exothermic resin layer is preferably 0.1 μm or more, more preferably 0.3 μm or more, even more preferably 0.5 μm or more, and may be 5.0 μm or less, or 3.0 μm or less, for example, .1 μm or more and 5.0 μm or less. When the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved. When the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
 延伸基材の面上に設けられた発熱性樹脂層は、例えば、レーザーを吸収して発熱する上記ヘテロ原子含有樹脂を含有する塗工液を、延伸基材に塗布し乾燥することにより形成することができる。すなわち発熱性樹脂層は、延伸基材上に設けられた表面コート層であってもよい。また、積層体を平面視した場合において、上記表面コート層を全面に設けてもよく、積層体から包装袋を作製する際に易開封線が形成される個所にのみ設けてもよい。 The exothermic resin layer provided on the surface of the stretched base material is formed, for example, by applying a coating liquid containing the above-mentioned heteroatom-containing resin that generates heat by absorbing laser to the stretched base material and drying it. be able to. That is, the exothermic resin layer may be a surface coat layer provided on the stretched base material. Furthermore, when the laminate is viewed in plan, the surface coat layer may be provided over the entire surface, or may be provided only at locations where easy-to-open lines are formed when a packaging bag is produced from the laminate.
 <アンカーコート層>
 本開示の第1の態様の積層体は、延伸基材の一方の面上又は両方の面上に、発熱性樹脂層を備えてもよい。本開示の第1の態様の積層体は、延伸基材と発熱性樹脂層との間に、アンカーコート層を備えてもよい。本開示の積層体は、延伸基材と発熱層との間に、アンカーコート層を備えてもよい。これにより、例えば、層間の密着性を向上できる。
<Anchor coat layer>
The laminate of the first aspect of the present disclosure may include a heat-generating resin layer on one surface or both surfaces of the stretched base material. The laminate of the first aspect of the present disclosure may include an anchor coat layer between the stretched base material and the heat-generating resin layer. The laminate of the present disclosure may include an anchor coat layer between the stretched base material and the heat generating layer. Thereby, for example, adhesion between layers can be improved.
 アンカーコート剤としては、例えば、イソシアネート系、ポリウレタン系、ポリオレフィン系、ポリエチレンイミン系又はエポキシ樹脂系のアンカーコート剤が挙げられる。アンカーコート剤は、一実施形態において、2液硬化型樹脂であり、例えば、主剤のポリオールと硬化剤のポリイソシアネートとからなる。アンカーコート剤は、一実施形態において、ポリイソシアネートを含む。ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール及び(メタ)アクリルポリオールが挙げられる。ポリイソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート及びポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート、並びにヘキサメチレンジイソシアネート及びイソホロンジイソシアネート等の脂肪族ポリイソシアネートが挙げられる。アンカーコート層は、一実施形態において、ポリオールとポリイソシアネートとの反応によって得られるポリウレタンからなる。ポリウレタンとしては、具体的には、ポリエーテルポリウレタン、ポリエステルポリウレタン及びポリ(メタ)アクリルポリウレタンが挙げられる。 Examples of the anchor coating agent include isocyanate-based, polyurethane-based, polyolefin-based, polyethyleneimine-based, or epoxy resin-based anchor coating agents. In one embodiment, the anchor coating agent is a two-component curable resin, and includes, for example, a polyol as a main ingredient and a polyisocyanate as a curing agent. In one embodiment, the anchor coating agent includes polyisocyanate. Examples of polyols include polyether polyols, polyester polyols, and (meth)acrylic polyols. Examples of the polyisocyanate include aromatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenylene polyisocyanate, and aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate. The anchor coat layer, in one embodiment, consists of polyurethane obtained by reaction of polyol and polyisocyanate. Specific examples of the polyurethane include polyether polyurethane, polyester polyurethane, and poly(meth)acrylic polyurethane.
 アンカーコート層は、例えば、延伸基材にアンカーコート剤を塗布することにより形成できる。アンカーコート剤は、例えば、ロールコート法、グラビアロールコート法及びキスコート法等のコート法、又は印刷法によって塗布できる。 The anchor coat layer can be formed, for example, by applying an anchor coat agent to the stretched base material. The anchor coating agent can be applied by, for example, a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or a printing method.
 アンカーコート層の厚さは、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、好ましくは3.0μm以下、より好ましくは2.0μm以下、さらに好ましくは1.0μm以下であり、例えば0.05μm以上3.0μm以下である。 The thickness of the anchor coat layer is preferably 0.05 μm or more, more preferably 0.1 μm or more, even more preferably 0.2 μm or more, and preferably 3.0 μm or less, more preferably 2.0 μm or less, and even more preferably is 1.0 μm or less, for example, 0.05 μm or more and 3.0 μm or less.
 <印刷層>
 本開示の第1の態様の積層体は、印刷層を備えてもよい。本開示の第2の態様の積層体は、発熱層以外の印刷層を備えてもよい。印刷層は画像を含む。画像としては、例えば、文字、図形、模様、記号及びこれらの組合せが挙げられる。画像は、商品名、包装袋中の内容物の名称、製造者及び原材料名等の文字情報を含んでもよい。画像は、単色無地(いわゆるベタ画像)でもよい。
<Print layer>
The laminate of the first aspect of the present disclosure may include a printed layer. The laminate according to the second aspect of the present disclosure may include a printed layer other than the heat generating layer. The printing layer contains an image. Examples of images include characters, figures, patterns, symbols, and combinations thereof. The image may include text information such as the product name, the name of the contents in the packaging bag, the manufacturer, and the name of raw materials. The image may be a solid color (a so-called solid image).
 印刷層は、例えば、顔料及び染料などの色材を含有する。印刷層は、例えば、バイオマス由来のインキを用いて形成してもよい。これにより、例えば、環境負荷をより低減できる。後述する発熱層が、画像を含む印刷層として機能してもよい。 The printing layer contains coloring materials such as pigments and dyes, for example. The printing layer may be formed using biomass-derived ink, for example. Thereby, for example, the environmental load can be further reduced. The heat generating layer described below may function as a printing layer containing an image.
 印刷層の形成方法としては、例えば、グラビア印刷法、オフセット印刷法及びフレキソ印刷法などの従来公知の印刷法が挙げられる。環境負荷低減という観点から、フレキソ印刷法を用いてもよい。 Examples of methods for forming the printing layer include conventionally known printing methods such as gravure printing, offset printing, and flexographic printing. From the viewpoint of reducing environmental impact, a flexographic printing method may be used.
 印刷層の厚さは、0.5μm以上でもよく、1.0μm以上でもよく、10μm以下でもよく、6.0μm以下でもよく、4.0μm以下でもよく、例えば0.5μm以上10μm以下でもよい。 The thickness of the printing layer may be 0.5 μm or more, 1.0 μm or more, 10 μm or less, 6.0 μm or less, 4.0 μm or less, for example, 0.5 μm or more and 10 μm or less.
 印刷層は、延伸基材のいずれの面上に形成されていてもよい。印刷層と外気との接触を抑制でき、印刷層の経時的な劣化を抑制できることから、印刷層は、延伸基材におけるシーラント層側の面上に形成されていることが好ましい。 The printed layer may be formed on any surface of the stretched base material. The printed layer is preferably formed on the surface of the stretched base material on the sealant layer side, since contact between the printed layer and the outside air can be suppressed and deterioration of the printed layer over time can be suppressed.
 <発熱層>
 本開示の第1の態様の積層体は、レーザーを吸収して発熱する発熱物質(ただし、レーザーを吸収して発熱する上記ヘテロ原子含有樹脂を除く)を含有する発熱層をさらに備えてもよい。本開示の第2の態様の積層体は、レーザーを吸収して発熱する発熱物質を含有する発熱層を備える。これにより、例えば、積層体にレーザーを照射することで変質部を含む易開封線を形成でき、包装袋の開封性を向上できる。発熱層は、一実施形態において、延伸基材とシーラント層との間に設けられている。発熱層は、バインダー樹脂をさらに含有してもよい。
<Heating layer>
The laminate of the first aspect of the present disclosure may further include a heat generating layer containing a heat generating substance that absorbs laser and generates heat (excluding the heteroatom-containing resin that absorbs laser and generates heat). . The laminate according to the second aspect of the present disclosure includes a heat generating layer containing a heat generating substance that absorbs laser and generates heat. Thereby, for example, by irradiating the laminate with a laser, an easy-to-open line including the altered portion can be formed, and the unsealability of the packaging bag can be improved. In one embodiment, the heat generating layer is provided between the stretched base material and the sealant layer. The heat generating layer may further contain a binder resin.
 レーザーを吸収して発熱する発熱物質としては、例えば、金属酸化物、ビスマス系化合物、モリブデン又はモリブデン系化合物、銅又は銅系化合物及びカーボンブラックが挙げられる。これらの中でも、無機物質が好ましく、金属酸化物がより好ましい。 Examples of exothermic substances that absorb laser and generate heat include metal oxides, bismuth-based compounds, molybdenum or molybdenum-based compounds, copper or copper-based compounds, and carbon black. Among these, inorganic substances are preferred, and metal oxides are more preferred.
 金属酸化物としては、例えば、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化アルミニウム、酸化珪素、酸化ニッケル、酸化スズ、酸化ネオジム、マイカ、ゼオライト、カオリナイト、銅・モリブデン複合酸化物及び銅・タングステン複合酸化物が挙げられる。これらの中でも、酸化チタンが好ましい。発熱層は、例えば白色層でもよく、酸化チタンを含有する白色層でもよい。 Examples of metal oxides include titanium oxide, magnesium oxide, zinc oxide, aluminum oxide, silicon oxide, nickel oxide, tin oxide, neodymium oxide, mica, zeolite, kaolinite, copper/molybdenum composite oxide, and copper/tungsten composite. Examples include oxides. Among these, titanium oxide is preferred. The heat generating layer may be, for example, a white layer or a white layer containing titanium oxide.
 ビスマス系化合物としては、例えば、酸化ビスマス、硝酸ビスマス及びオキシ硝酸ビスマス等の硝酸ビスマス系、塩化ビスマス等のハロゲン化ビスマス系、オキシ塩化ビスマス、硫酸ビスマス、酢酸ビスマス、クエン酸ビスマス、水酸化ビスマス、チタン酸ビスマス並びに次炭酸ビスマスが挙げられる。 Examples of bismuth compounds include bismuth nitrates such as bismuth oxide, bismuth nitrate and bismuth oxynitrate, bismuth halides such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, Mention may be made of bismuth titanate and bismuth subcarbonate.
 モリブデン系化合物としては、例えば、二酸化モリブデン及び三酸化モリブデンなどの酸化モリブデン、塩化モリブデン並びにモリブデン酸金属が挙げられる。モリブデン酸金属における金属成分としては、例えば、K、Zn、Ca、Ni、ビスマス及びMgが挙げられる。 Examples of molybdenum-based compounds include molybdenum oxides such as molybdenum dioxide and molybdenum trioxide, molybdenum chloride, and metal molybdates. Examples of the metal component in the metal molybdate include K, Zn, Ca, Ni, bismuth, and Mg.
 銅系化合物としては、例えば、酸化銅、ハロゲン化銅、ギ酸、クエン酸、サリチル酸、ラウリル酸、シュウ酸及びマレイン酸等の有機酸銅、リン酸銅並びにヒドロキシリン酸銅が挙げられる。 Examples of the copper-based compound include copper oxide, copper halide, organic acid copper such as formic acid, citric acid, salicylic acid, lauric acid, oxalic acid, and maleic acid, copper phosphate, and copper hydroxyphosphate.
 発熱層における上記発熱物質の含有割合は、5質量%以上でもよく、10質量%以上でもよく、20質量%以上でもよく、50質量%以上でもよく、85質量%以下でもよく、80質量%以下でもよく、75質量%以下でもよく、例えば5質量%以上85質量%以下でもよい。 The content ratio of the exothermic substance in the heat generating layer may be 5% by mass or more, 10% by mass or more, 20% by mass or more, 50% by mass or more, 85% by mass or less, 80% by mass or less. It may be 75% by mass or less, for example, 5% by mass or more and 85% by mass or less.
 バインダー樹脂としては、例えば、ポリウレタン、ポリエステル、(メタ)アクリル樹脂及びセルロース樹脂が挙げられる。発熱層におけるバインダー樹脂の含有割合は、15質量%以上でもよく、20質量%以上でもよく、25質量%以上でもよく、95質量%以下でもよく、90質量%以下でもよく、80質量%以下でもよく、50質量%以下でもよく、例えば15質量%以上95質量%以下でもよい。 Examples of the binder resin include polyurethane, polyester, (meth)acrylic resin, and cellulose resin. The content ratio of the binder resin in the heat generating layer may be 15% by mass or more, 20% by mass or more, 25% by mass or more, 95% by mass or less, 90% by mass or less, or 80% by mass or less. It may be 50% by mass or less, for example, 15% by mass or more and 95% by mass or less.
 発熱層の厚さは、0.5μm以上でもよく、1.0μm以上でもよく、4.0μm以下でもよく、3.5μm以下でもよく、3.0μm以下でもよく、例えば0.5μm以上4.0μm以下でもよい。厚さが下限値以上であると、例えば、包装袋の開封性を向上できる。厚さが上限値以下であると、例えば、積層体のリサイクル性を向上できる。 The thickness of the heat generating layer may be 0.5 μm or more, 1.0 μm or more, 4.0 μm or less, 3.5 μm or less, or 3.0 μm or less, for example, 0.5 μm or more and 4.0 μm. The following may be used. When the thickness is equal to or greater than the lower limit, for example, the ease of opening the packaging bag can be improved. When the thickness is below the upper limit, for example, the recyclability of the laminate can be improved.
 発熱層の位置は、例えば、延伸基材とシーラント層との間である。また、積層体を平面視した場合において、発熱層を全面に設けてもよく、積層体から包装袋を作製する際に易開封線が形成される個所にのみ設けてもよい。 The position of the heat generating layer is, for example, between the stretched base material and the sealant layer. In addition, when the laminate is viewed in plan, the heat generating layer may be provided over the entire surface, or may be provided only at locations where easy-to-open lines are formed when producing a packaging bag from the laminate.
 発熱層は、例えば、バインダー樹脂及び発熱物質を含有する組成物を、延伸基材等に塗布し乾燥することにより形成できる。塗布方法としては、例えば、グラビア印刷法、オフセット印刷法及びフレキソ印刷法などの印刷法が挙げられる。すなわち発熱層は、延伸基材上に設けられた印刷層であってもよい。また、積層体を平面視した場合において、上記印刷層を全面に設けてもよく、積層体から包装袋を作製する際に易開封線が形成される個所にのみ設けてもよい。 The heat generating layer can be formed, for example, by applying a composition containing a binder resin and a heat generating substance to a stretched base material and drying the composition. Examples of the coating method include printing methods such as gravure printing, offset printing, and flexographic printing. That is, the heat generating layer may be a printed layer provided on the stretched base material. Furthermore, when the laminate is viewed in plan, the printed layer may be provided on the entire surface, or may be provided only at the locations where easy-to-open lines are formed when producing a packaging bag from the laminate.
 <シーラント層>
 本開示の積層体は、シーラント層を備える。
 シーラント層は、ポリエチレン等のポリオレフィンを主成分として含有する。これにより、包装袋のモノマテリアル化を図ることができる。使用済みの包装袋を回収した後、延伸基材とシーラント層とを分離する必要がなく、包装袋のリサイクル性を向上できる。
<Sealant layer>
The laminate of the present disclosure includes a sealant layer.
The sealant layer contains polyolefin such as polyethylene as a main component. This allows the packaging bag to be made of monomaterial. After collecting used packaging bags, there is no need to separate the stretched base material and the sealant layer, and the recyclability of the packaging bags can be improved.
 ポリオレフィンの中でも、ポリエチレン及びポリプロピレンが好ましい。 Among polyolefins, polyethylene and polypropylene are preferred.
 シーラント層は、一実施形態において、ポリエチレンを主成分として含有する。ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられ、ヒートシール性という観点から、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが好ましい。ポリエチレンとしては、環境負荷低減という観点から、バイオマス由来のポリエチレンや、メカニカルリサイクル又はケミカルリサイクルされたポリエチレンを使用してもよい。 In one embodiment, the sealant layer contains polyethylene as a main component. Examples of polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. and very low density polyethylene are preferred. As the polyethylene, from the viewpoint of reducing environmental load, biomass-derived polyethylene, mechanically recycled or chemically recycled polyethylene may be used.
 ヒートシール性という観点からは、シーラント層は低密度ポリエチレン及び直鎖状低密度ポリエチレンを含有することが好ましい。引裂き性という観点からは、シーラント層は低密度ポリエチレンを含有することが好ましい。シーラント層が低密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する場合、直鎖状低密度ポリエチレンの含有割合(質量%)が低密度ポリエチレンの含有割合(質量%)よりも大きくてもよい。 From the viewpoint of heat-sealability, the sealant layer preferably contains low-density polyethylene and linear low-density polyethylene. From the viewpoint of tearability, the sealant layer preferably contains low density polyethylene. When the sealant layer contains low-density polyethylene and linear low-density polyethylene, the content ratio (mass %) of the linear low-density polyethylene may be larger than the content ratio (mass %) of the low-density polyethylene.
 シーラント層を構成するポリエチレンの融点(Tm)は、耐熱性及びヒートシール性のバランスという観点から、好ましくは90℃以上、より好ましくは95℃以上であり、好ましくは140℃以下、より好ましくは130℃以下であり、例えば90℃以上140℃以下である。 The melting point (Tm) of the polyethylene constituting the sealant layer is preferably 90°C or higher, more preferably 95°C or higher, and preferably 140°C or lower, more preferably 130°C or higher, from the viewpoint of the balance between heat resistance and heat sealability. ℃ or less, for example, 90°C or more and 140°C or less.
 シーラント層を構成するポリエチレンのMFRは、製膜性及び加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、さらに好ましくは10g/10分以下であり、例えば0.1g/10分以上50g/10分以下である。MFRが下限値以上であると、例えば、シーラント層の加工適性を向上できる。MFRが上限値以下であると、例えば、製膜性を向上できる。 The MFR of the polyethylene constituting the sealant layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes, from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, still more preferably 10 g/10 minutes or less, for example 0.1 g/10 minutes or more and 50 g/10 minutes or less. For example, when the MFR is at least the lower limit, the processability of the sealant layer can be improved. For example, film formability can be improved if the MFR is below the upper limit.
 シーラント層におけるポリエチレンの含有割合は、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上である。これにより、例えば、包装袋のリサイクル性を向上できる。 The content of polyethylene in the sealant layer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
 シーラント層は、一実施形態において、ポリプロピレンを主成分として含有する。これにより、例えば、包装袋の耐油性を向上できる。 In one embodiment, the sealant layer contains polypropylene as a main component. Thereby, for example, the oil resistance of the packaging bag can be improved.
 ポリプロピレンとしては、例えば、プロピレンホモポリマー、プロピレン-α-オレフィンランダム共重合体等のプロピレンランダムコポリマー、及びプロピレン-α-オレフィンブロック共重合体等のプロピレンブロックコポリマーが挙げられる。α-オレフィンの詳細は、上述したとおりである。ポリプロピレンとしては、環境負荷低減という観点から、バイオマス由来のポリプロピレンや、メカニカルリサイクル又はケミカルリサイクルされたポリプロピレンを使用してもよい。 Examples of polypropylene include propylene homopolymers, propylene random copolymers such as propylene-α-olefin random copolymers, and propylene block copolymers such as propylene-α-olefin block copolymers. Details of the α-olefin are as described above. As the polypropylene, from the viewpoint of reducing environmental load, biomass-derived polypropylene, mechanically recycled or chemically recycled polypropylene may be used.
 ポリプロピレンの密度は、ヒートシール性という観点から、例えば0.88g/cm3以上0.92g/cm3以下である。 From the viewpoint of heat sealability, the density of polypropylene is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less.
 シーラント層を構成するポリプロピレンの融点(Tm)は、耐熱性及びヒートシール性のバランスという観点から、好ましくは120℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上であり、好ましくは160℃以下、より好ましくは155℃以下、さらに好ましくは150℃以下であり、例えば120℃以上160℃以下である。 The melting point (Tm) of the polypropylene constituting the sealant layer is preferably 120°C or higher, more preferably 125°C or higher, even more preferably 130°C or higher, and preferably 160°C or higher, from the viewpoint of the balance between heat resistance and heat sealability. ℃ or less, more preferably 155°C or less, still more preferably 150°C or less, for example, 120°C or more and 160°C or less.
 シーラント層におけるポリプロピレンの含有割合は、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。これにより、例えば、包装袋のリサイクル性を向上できる。 The content of polypropylene in the sealant layer is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
 シーラント層を構成するポリオレフィンのMFRは、製膜性及び加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、さらに好ましくは10g/10分以下であり、例えば0.1g/10分以上50g/10分以下である。MFRが下限値以上であると、例えば、シーラント層の加工適性を向上できる。MFRが上限値以下であると、例えば、製膜性を向上できる。 The MFR of the polyolefin constituting the sealant layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes, from the viewpoint of film formability and processing suitability. or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, still more preferably 10 g/10 minutes or less, for example 0.1 g/10 minutes or more and 50 g/10 minutes or less. For example, when the MFR is at least the lower limit, the processability of the sealant layer can be improved. For example, film formability can be improved if the MFR is below the upper limit.
 シーラント層におけるポリオレフィンの含有割合は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは75質量%以上である。これにより、例えば、包装袋のリサイクル性を向上できる。 The content of polyolefin in the sealant layer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 75% by mass or more. Thereby, for example, the recyclability of the packaging bag can be improved.
 シーラント層は、上記添加剤を含有してもよい。 The sealant layer may contain the above additives.
 シーラント層の厚さは、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上、特に好ましくは80μm以上であり、好ましくは300μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下であり、例えば10μm以上300μm以下である。シーラント層が多層構造を有する場合、その総厚さが上記範囲にあることが好ましい。厚さが下限値以上であると、例えば、シーラント層のヒートシール性及び包装袋のリサイクル性を向上できる。厚さが上限値以下であると、例えば、積層体の加工適性を向上できる。 The thickness of the sealant layer is preferably 10 μm or more, more preferably 30 μm or more, even more preferably 50 μm or more, particularly preferably 80 μm or more, and preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less. , for example, 10 μm or more and 300 μm or less. When the sealant layer has a multilayer structure, the total thickness thereof is preferably within the above range. When the thickness is at least the lower limit, for example, the heat sealability of the sealant layer and the recyclability of the packaging bag can be improved. When the thickness is below the upper limit, for example, the processability of the laminate can be improved.
 シーラント層は、ヒートシール性という観点から、好ましくは未延伸の樹脂フィルムであり、より好ましくは未延伸の共押出樹脂フィルムであり、シーラント層を構成する各層は、共押出樹脂層である。上記樹脂フィルムは、例えば、キャスト法、Tダイ法又はインフレーション法等を利用することにより作製できる。「未延伸」とは、全く延伸されていないフィルムだけでなく、製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも含む概念である。 From the viewpoint of heat sealability, the sealant layer is preferably an unstretched resin film, more preferably an unstretched coextruded resin film, and each layer constituting the sealant layer is a coextruded resin layer. The resin film can be produced by, for example, a casting method, a T-die method, an inflation method, or the like. "Unstretched" is a concept that includes not only a film that has not been stretched at all, but also a film that has been slightly stretched due to the tension applied during film formation.
 例えば、シーラント層に対応する未延伸の樹脂フィルムを必要に応じて接着層を介して延伸基材上に積層してもよく、ポリエチレン等のポリオレフィン又はその樹脂組成物を延伸基材上に溶融押出しすることによりシーラント層を形成してもよい。後者の場合、接着層が設けられていなくてもよい。接着層としては、例えば、後述する接着層が挙げられる。 For example, an unstretched resin film corresponding to the sealant layer may be laminated on the stretched base material via an adhesive layer as necessary, or a polyolefin such as polyethylene or its resin composition may be melt-extruded onto the stretched base material. A sealant layer may be formed by doing so. In the latter case, the adhesive layer may not be provided. Examples of the adhesive layer include the adhesive layer described below.
 <シーラント層の実施形態>
 シーラント層は、以下に説明する第1の層と第2の層とを備えてもよい。第1の層は、エチレン/α-オレフィン共重合体を主成分として含有し、且つ、112℃以下の融点を有する。第2の層は、ポリエチレンを主成分として含有し、且つ、114℃以上の融点を有する。第1の層により低温シール性を向上できると共に、第2の層により剛性及び手切れ性を向上できる。
<Embodiment of sealant layer>
The sealant layer may include a first layer and a second layer as described below. The first layer contains an ethylene/α-olefin copolymer as a main component and has a melting point of 112° C. or lower. The second layer contains polyethylene as a main component and has a melting point of 114° C. or higher. The first layer can improve low-temperature sealing properties, and the second layer can improve rigidity and hand-cutting properties.
 ポリエチレンを主成分として含有する延伸基材は、従来のようなポリエステルやナイロンといった樹脂フィルムよりも融点が低いポリエチレンから構成されているため、積層体を用いて包装袋を製造する際のヒートシール温度をあまり高くすることができない。第1の層及び第2の層を備えるシーラント層の場合は、第1の層が第2の層よりも低温でヒートシールできるため、ポリエチレンから構成される延伸基材と組み合せた場合であっても、包装袋のシール性を維持することができる。 The stretched base material, which mainly contains polyethylene, is composed of polyethylene that has a lower melting point than conventional resin films such as polyester and nylon, so the heat sealing temperature when manufacturing packaging bags using the laminate is lower. cannot be made too high. In the case of a sealant layer comprising a first layer and a second layer, the first layer can be heat-sealed at a lower temperature than the second layer. Also, the sealing properties of the packaging bag can be maintained.
 ポリエチレンから構成される延伸基材は、ポリエステルやナイロンといった樹脂フィルムよりも引裂き強度が高いため、積層体を包装袋に加工した際に開封時の手切れ性(引裂き性)が低下することがある。延伸基材と上記実施形態のシーラント層とを組み合わせることで、積層体の引裂き性が向上する。この理由は明らかではないが、シーラント層が、融点が114℃以上の第2の層を備えることで靱性を向上し、積層体の引裂き性がさらに向上したものと推測できる。なお本開示では、上述したように積層体に易開封線を設けることで引裂き性を向上できるところ、上記実施形態のシーラント層を用いることで、引裂き性をさらに向上できる。 Stretched base material made of polyethylene has higher tear strength than resin films such as polyester or nylon, so when the laminate is processed into a packaging bag, the tearability (tearability) when opening the bag may be reduced. . By combining the stretched base material and the sealant layer of the above embodiment, the tearability of the laminate is improved. Although the reason for this is not clear, it can be assumed that the sealant layer, which includes the second layer having a melting point of 114° C. or higher, improves the toughness and further improves the tearability of the laminate. In addition, in the present disclosure, tearability can be improved by providing an easy-to-open line in the laminate as described above, and tearability can be further improved by using the sealant layer of the above embodiment.
 本明細書において、層の融点は、示差走査熱量計を用いて、JIS K7121:2012に準拠して求めた値である。具体的には、シーラント層の各層から試料を採取し、実施例欄に記載した方法により、融点を測定する。 In this specification, the melting point of a layer is a value determined in accordance with JIS K7121:2012 using a differential scanning calorimeter. Specifically, a sample is taken from each layer of the sealant layer, and the melting point is measured by the method described in the Examples section.
 (第1の層)
 シーラント層における第1の層は、エチレン/α-オレフィン共重合体を主成分として含有し、且つ、112℃以下の融点を有する。これにより、上述した通り、シーラント層の低温シール性を向上できる。第1の層は、シーラント層における一方の表面層であり、積層体の一方の表面層でもある。第1の層は、包装袋中に収容される内容物側を向く層である。
(first layer)
The first layer in the sealant layer contains an ethylene/α-olefin copolymer as a main component and has a melting point of 112° C. or lower. Thereby, as described above, the low-temperature sealing properties of the sealant layer can be improved. The first layer is one surface layer of the sealant layer and also one surface layer of the laminate. The first layer is the layer facing the contents contained in the packaging bag.
 エチレン/α-オレフィン共重合体としては、例えば、直鎖状ポリエチレンが挙げられる。直鎖状ポリエチレンとは、例えば、チーグラー・ナッタ触媒に代表されるマルチサイト触媒又はメタロセン触媒に代表されるシングルサイト触媒を使用して得られる、エチレンとα-オレフィンとの共重合体である。0.930g/cm3以下の密度を有する直鎖状ポリエチレンは、例えば直鎖状低密度ポリエチレンである。 Examples of the ethylene/α-olefin copolymer include linear polyethylene. Linear polyethylene is a copolymer of ethylene and α-olefin, which is obtained using, for example, a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst. The linear polyethylene having a density of 0.930 g/cm 3 or less is, for example, linear low density polyethylene.
 上記共重合体のコモノマーであるα-オレフィンは、例えば炭素数3以上20以下のα-オレフィンであり、例えば、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-オクテン、1-ノネン及び4-メチルペンテンが挙げられ、炭素数が多いほど引裂き性が向上する傾向にある。低温シール性と引裂き性とを考慮すると、α-オレフィンとしては、1-へキセン及び1-オクテンが好ましい。 The α-olefin that is a comonomer of the above copolymer is, for example, an α-olefin having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Examples include nonene and 4-methylpentene, and tearability tends to improve as the number of carbon atoms increases. In consideration of low-temperature sealability and tearability, 1-hexene and 1-octene are preferred as the α-olefin.
 ポリエチレンは、例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒、又はメタロセン触媒などのシングルサイト触媒を用いて、製造できる。シングルサイト触媒とは、均一な活性種を形成し得る触媒であり、通常、メタロセン系遷移金属化合物又は非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調製される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点の構造が均一であるため、高分子量かつ均一度の高い構造を有する重合体を得ることができるため好ましい。シングルサイト触媒としては、メタロセン触媒が好ましい。また、メタロセン触媒を用いて製造されたエチレン/α-オレフィン共重合体を、第1の層で用いることにより、チーグラー・ナッタ触媒を用いて製造されたエチレン/α-オレフィン共重合体を用いた場合に比べて、例えば低温シール性をより向上できる。メタロセン触媒を用いて製造されたエチレン/α-オレフィン共重合体を、後述する第2の層又は第3の層で用いることにより、チーグラー・ナッタ触媒を用いて製造されたエチレン/α-オレフィン共重合体を用いた場合に比べて、例えば耐衝撃性をより向上できる。 Polyethylene can be produced using, for example, a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst as a polymerization catalyst. A single-site catalyst is a catalyst capable of forming uniform active species, and is usually prepared by bringing a metallocene transition metal compound or a non-metallocene transition metal compound into contact with an activation cocatalyst. Single-site catalysts are preferable compared to multi-site catalysts because they have a uniform structure of active sites and can yield polymers with high molecular weight and highly uniform structures. As the single site catalyst, a metallocene catalyst is preferred. In addition, by using an ethylene/α-olefin copolymer produced using a metallocene catalyst in the first layer, an ethylene/α-olefin copolymer produced using a Ziegler-Natta catalyst can be used. For example, low-temperature sealing performance can be further improved than in the case of the conventional method. By using an ethylene/α-olefin copolymer produced using a metallocene catalyst in the second layer or third layer described below, the ethylene/α-olefin copolymer produced using a Ziegler-Natta catalyst can be used. For example, impact resistance can be improved more than when a polymer is used.
 第1の層の融点は、シーラント層の低温シール性の観点から、好ましくは110℃以下、より好ましくは105℃以下、さらに好ましくは100℃以下であり、80℃以上でもよく、90℃以上でもよく、例えば80℃以上110℃以下でもよい。 From the viewpoint of low-temperature sealing properties of the sealant layer, the melting point of the first layer is preferably 110°C or lower, more preferably 105°C or lower, even more preferably 100°C or lower, and may be 80°C or higher, or even 90°C or higher. For example, the temperature may be 80°C or higher and 110°C or lower.
 第2の層の融点と第1の層の融点との差は、シーラント層の低温シール性及び剛性のバランスの観点から、好ましくは4℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは48℃以下、さらに好ましくは46℃以下であり、例えば40℃以下でもよく、例えば4℃以上50℃以下でもよい。 The difference between the melting point of the second layer and the first layer is preferably 4°C or higher, more preferably 15°C or higher, and even more preferably 20°C, from the viewpoint of the low-temperature sealing property and rigidity balance of the sealant layer. The temperature is preferably 50°C or lower, more preferably 48°C or lower, still more preferably 46°C or lower, and may be, for example, 40°C or lower, for example, 4°C or higher and 50°C or lower.
 第1の層の密度は、好ましくは0.915g/cm3以下、より好ましくは0.912g/cm3以下、さらに好ましくは0.908g/cm3以下であり、0.890g/cm3以上でもよく、0.900g/cm3以上でもよく、例えば0.890g/cm3以上0.915g/cm3以下でもよい。第1の層の密度を0.915g/cm3以下とすることにより、例えば、シーラント層の低温シール性を向上できる。第1の層の密度を0.890g/cm3以上とすることにより、例えば、積層体の耐ブロッキング性を向上できる。 The density of the first layer is preferably 0.915 g/cm 3 or less, more preferably 0.912 g/cm 3 or less, even more preferably 0.908 g/cm 3 or less, and even 0.890 g/cm 3 or more. It may be 0.900 g/cm 3 or more, for example, 0.890 g/cm 3 or more and 0.915 g/cm 3 or less. By setting the density of the first layer to 0.915 g/cm 3 or less, for example, the low-temperature sealing properties of the sealant layer can be improved. By setting the density of the first layer to 0.890 g/cm 3 or more, for example, the blocking resistance of the laminate can be improved.
 第1の層におけるエチレン/α-オレフィン共重合体の含有割合は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。 The content of the ethylene/α-olefin copolymer in the first layer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more.
 第1の層は、一実施形態において、好ましくは0.912g/cm3以下、より好ましくは0.908g/cm3以下、さらに好ましくは0.905g/cm3以下の密度を有するエチレン/α-オレフィン共重合体を含有する。該エチレン/α-オレフィン共重合体の密度は、好ましくは0.890g/cm3以上、より好ましくは0.895g/cm3以上である。該密度は、例えば、0.890g/cm3以上0.912g/cm3以下である。第1の層が0.912g/cm3以下の密度を有するエチレン/α-オレフィン共重合体を含有することにより、例えば、シーラント層の低温シール性を向上できる。該エチレン/α-オレフィン共重合体の密度が0.890g/cm3以上であることにより、例えば、積層体の耐ブロッキング性を向上できる。 In one embodiment , the first layer is an ethylene/α- Contains olefin copolymer. The density of the ethylene/α-olefin copolymer is preferably 0.890 g/cm 3 or more, more preferably 0.895 g/cm 3 or more. The density is, for example, 0.890 g/cm 3 or more and 0.912 g/cm 3 or less. When the first layer contains an ethylene/α-olefin copolymer having a density of 0.912 g/cm 3 or less, the low-temperature sealing properties of the sealant layer can be improved, for example. When the density of the ethylene/α-olefin copolymer is 0.890 g/cm 3 or more, the blocking resistance of the laminate can be improved, for example.
 第1の層の厚さは、5μm以上でもよく、15μm以上でもよく、50μm以下でもよく、30μm以下でもよく、例えば5μm以上50μm以下でもよい。第1の層は、単層でも、各層が同一組成の多層でもよい。第1の層が多層である場合、第1の層の厚さは、各層の合計厚さである。 The thickness of the first layer may be 5 μm or more, 15 μm or more, 50 μm or less, 30 μm or less, for example, 5 μm or more and 50 μm or less. The first layer may be a single layer or a multilayer with each layer having the same composition. If the first layer is multilayer, the thickness of the first layer is the total thickness of each layer.
 シーラント層の厚さに対する第1の層の厚さの割合は、好ましくは3%以上、より好ましくは5%以上、さらに好ましくは10%以上、特に好ましくは15%以上であり、好ましくは40%以下、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下であり、例えば3%以上40%以下である。これにより、例えば、シーラント層の低温シール性及び剛性のバランスをより向上できる。 The ratio of the thickness of the first layer to the thickness of the sealant layer is preferably 3% or more, more preferably 5% or more, even more preferably 10% or more, particularly preferably 15% or more, and preferably 40%. The content is more preferably 35% or less, still more preferably 30% or less, particularly preferably 25% or less, for example 3% or more and 40% or less. Thereby, for example, the balance between low-temperature sealing performance and rigidity of the sealant layer can be further improved.
 第1の層は、一実施形態において、第2の層又は第3の層に接していることが好ましく、第2の層に接していることがより好ましい。すなわち、第1の層は、一実施形態において、接着層を介さずに、第2の層又は第3の層に接していることが好ましい。
 第1の層は、一実施形態において、未延伸の樹脂層である。
In one embodiment, the first layer is preferably in contact with the second layer or the third layer, and more preferably in contact with the second layer. That is, in one embodiment, the first layer is preferably in contact with the second layer or the third layer without an adhesive layer interposed therebetween.
In one embodiment, the first layer is an unstretched resin layer.
 第1の層は、上記添加剤を含有してもよい。 The first layer may contain the above additive.
 (第2の層)
 シーラント層における第2の層は、ポリエチレンを主成分として含有し、且つ、114℃以上の融点を有する。これにより、上述した通り、シーラント層の剛性を向上できる。
(Second layer)
The second layer in the sealant layer contains polyethylene as a main component and has a melting point of 114° C. or higher. Thereby, as described above, the rigidity of the sealant layer can be improved.
 第2の層の融点は、シーラント層の剛性の観点から、好ましくは117℃以上、より好ましくは120℃以上であり、150℃以下でもよく、135℃以下でもよい。 From the viewpoint of the rigidity of the sealant layer, the melting point of the second layer is preferably 117°C or higher, more preferably 120°C or higher, and may be 150°C or lower, or 135°C or lower.
 第2の層の密度は、好ましくは0.916g/cm3以上、より好ましくは0.917g/cm3以上、さらに好ましくは0.920g/cm3以上、特に好ましくは0.930g/cm3以上であり、0.950g/cm3以下でもよく、0.945g/cm3以下でもよく、例えば0.916g/cm3以上0.950g/cm3以下でもよい。第2の層の密度を0.916g/cm3以上とすることにより、例えば、シーラント層の剛性及び引裂き性を向上できる。第2の層の密度を0.950g/cm3以下とすることにより、例えば、シーラント層の耐衝撃性を向上できる。 The density of the second layer is preferably 0.916 g/cm 3 or more, more preferably 0.917 g/cm 3 or more, even more preferably 0.920 g/cm 3 or more, particularly preferably 0.930 g/cm 3 or more. It may be 0.950 g/cm 3 or less, 0.945 g/cm 3 or less, for example, 0.916 g/cm 3 or more and 0.950 g/cm 3 or less. By setting the density of the second layer to 0.916 g/cm 3 or more, for example, the rigidity and tearability of the sealant layer can be improved. By setting the density of the second layer to 0.950 g/cm 3 or less, for example, the impact resistance of the sealant layer can be improved.
 第2の層におけるポリエチレンの含有割合は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。 The content of polyethylene in the second layer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more.
 第2の層は、一実施形態において、好ましくは0.915g/cm3以上、より好ましくは0.935g/cm3以上の密度を有するポリエチレンを含有する。該ポリエチレンの密度は、好ましくは0.970g/cm3以下、より好ましくは0.960g/cm3以下である。該密度は、例えば0.915g/cm3以上0.970g/cm3以下でもよい。第2の層が0.915g/cm3以上の密度を有するポリエチレンを含有することにより、例えば、シーラント層の剛性及び引裂き性を向上できる。該ポリエチレンの密度が0.970g/cm3以下であることにより、例えば、シーラント層の耐衝撃性を向上できる。 The second layer, in one embodiment, preferably contains polyethylene having a density of 0.915 g/cm 3 or more, more preferably 0.935 g/cm 3 or more. The density of the polyethylene is preferably 0.970 g/cm 3 or less, more preferably 0.960 g/cm 3 or less. The density may be, for example, 0.915 g/cm 3 or more and 0.970 g/cm 3 or less. When the second layer contains polyethylene having a density of 0.915 g/cm 3 or more, for example, the rigidity and tearability of the sealant layer can be improved. When the density of the polyethylene is 0.970 g/cm 3 or less, for example, the impact resistance of the sealant layer can be improved.
 第2の層は、上記ポリエチレンとして、エチレン/α-オレフィン共重合体を含有してもよい。第2の層におけるエチレン/α-オレフィン共重合体の含有割合は、第2の層の全体に対して、好ましくは50質量%以上、より好ましくは70質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下であり、例えば50質量%以上90質量%以下である。エチレン/α-オレフィン共重合体の含有割合を50質量%以上とすることにより、例えば、シーラント層の耐衝撃性を向上できる。エチレン/α-オレフィン共重合体の含有割合を90質量%以下とすることにより、例えば、シーラント層の引裂き性を向上できる。 The second layer may contain an ethylene/α-olefin copolymer as the polyethylene. The content of the ethylene/α-olefin copolymer in the second layer is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass, based on the entire second layer. The content is more preferably 80% by mass or less, for example 50% by mass or more and 90% by mass or less. By controlling the content of the ethylene/α-olefin copolymer to 50% by mass or more, for example, the impact resistance of the sealant layer can be improved. By controlling the content of the ethylene/α-olefin copolymer to 90% by mass or less, for example, the tearability of the sealant layer can be improved.
 第2の層は、上記ポリエチレンとして、エチレンの単独重合体を含有してもよい。第2の層におけるエチレンの単独重合体の含有割合は、第2の層の全体に対して、好ましくは10質量%以上、より好ましくは15質量%以上であり、好ましくは50質量%以下、より好ましくは25質量%以下であり、例えば10質量%以上50質量%以下である。エチレンの単独重合体の含有割合を10質量%以上とすることにより、例えば、シーラント層の引裂き性を向上できる。エチレンの単独重合体の含有割合を50質量%以下とすることにより、例えば、シーラント層の耐衝撃性を向上できる。 The second layer may contain an ethylene homopolymer as the polyethylene. The content ratio of the ethylene homopolymer in the second layer is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 15% by mass or more, based on the entire second layer. Preferably it is 25% by mass or less, for example 10% by mass or more and 50% by mass or less. By setting the content of the ethylene homopolymer to 10% by mass or more, for example, the tearability of the sealant layer can be improved. By controlling the content of the ethylene homopolymer to 50% by mass or less, for example, the impact resistance of the sealant layer can be improved.
 一実施形態において、シーラント層が2つの層から構成される場合、第2の層は、シーラント層における延伸基材側の表面層である。一実施形態において、シーラント層が3つ以上の層から構成される場合、第2の層は、シーラント層における延伸基材側の表面層及び/又は中間層である。この場合、第1の層と中間層とは、低温シール性及び剛性のバランスの観点から、構成材料が異なることが好ましい。 In one embodiment, when the sealant layer is composed of two layers, the second layer is the surface layer of the sealant layer on the stretched base material side. In one embodiment, when the sealant layer is composed of three or more layers, the second layer is a surface layer and/or an intermediate layer on the stretched substrate side in the sealant layer. In this case, the first layer and the intermediate layer are preferably made of different constituent materials from the viewpoint of the balance between low-temperature sealability and rigidity.
 中間層とは、シーラント層の一方の表面層と他方の表面層との間に位置する層を意味する。中間層は、単層でもよく、多層でもよい。中間層が多層である場合、各中間層の組成は、同一でもよく、異なってもよい。 The intermediate layer means a layer located between one surface layer and the other surface layer of the sealant layer. The intermediate layer may be a single layer or a multilayer. When the intermediate layer is multilayered, the composition of each intermediate layer may be the same or different.
 第2の層は、ポリエチレンを主成分として含有し、且つ、114℃以上の融点を有する層であれば、シーラント層内に複数存在する層でもよい。例えば、延伸基材側の表面層及び中間層の両方が第2の層でもよい。 The second layer may be a plurality of layers in the sealant layer as long as it contains polyethylene as a main component and has a melting point of 114° C. or higher. For example, both the surface layer and the intermediate layer on the stretched base material side may be the second layer.
 第2の層の厚さは、10μm以上でもよく、45μm以上でもよく、250μm以下でもよく、170μm以下でもよく、例えば10μm以上250μm以下でもよい。第2の層が多層である場合、第2の層の厚さは、各層の合計厚さである。 The thickness of the second layer may be 10 μm or more, 45 μm or more, 250 μm or less, 170 μm or less, for example, 10 μm or more and 250 μm or less. If the second layer is multilayer, the thickness of the second layer is the total thickness of each layer.
 第2の層は、一実施形態において、未延伸の樹脂層である。 In one embodiment, the second layer is an unstretched resin layer.
 第2の層は、上記添加剤を含有してもよい。 The second layer may contain the above additive.
 (第3の層)
 シーラント層は、第1の層及び第2の層以外に、第3の層をさらに備えてもよい。第3の層は、ポリエチレンを主成分として含有する層であって、第1の層及び第2の層には該当しない層である。
(Third layer)
The sealant layer may further include a third layer in addition to the first layer and the second layer. The third layer is a layer containing polyethylene as a main component, and is a layer that does not correspond to the first layer or the second layer.
 一実施形態において、第3の層は、延伸基材側の表面層及び/又は中間層である。
 第3の層は、シーラント層内に複数存在する層でもよい。
In one embodiment, the third layer is a surface layer and/or an intermediate layer on the side of the stretched substrate.
The third layer may be a plurality of layers within the sealant layer.
 第3の層は、一実施形態において、未延伸の樹脂層である。 In one embodiment, the third layer is an unstretched resin layer.
 第3の層は、上記添加剤を含有してもよい。 The third layer may contain the above additive.
 (シーラント層の構成)
 ポリエチレンを主成分として含有するシーラント層の層構成としては、例えば、
・第1の層/第2の層、
・第1の層/第2の層/第1の層、
・第1の層/第2の層/第2の層、
・第1の層/第2の層/第3の層、
・第1の層/第3の層/第2の層、
が挙げられる。「/」は層間を意味する。
(Structure of sealant layer)
For example, the layer structure of the sealant layer containing polyethylene as a main component is as follows:
・First layer/second layer,
・First layer/second layer/first layer,
・First layer/second layer/second layer,
・First layer/second layer/third layer,
・First layer/third layer/second layer,
can be mentioned. "/" means between layers.
 例えば、シーラント層が第1の層と中間層と延伸基材側の表面層とを備える場合、延伸基材側の表面層の融点よりも、中間層の融点の方が高いことが好ましい。また、第1の層の融点よりも、中間層の融点の方が高いことが好ましい。また、第1の層の融点よりも、延伸基材側の表面層の融点の方が高いことが好ましい。このような構成により、例えば、シーラント層の低温シール性、剛性及び耐衝撃性をより向上できる。 For example, when the sealant layer includes a first layer, an intermediate layer, and a surface layer on the stretched base material side, it is preferable that the melting point of the intermediate layer is higher than the melting point of the surface layer on the stretched base material side. Further, it is preferable that the melting point of the intermediate layer is higher than that of the first layer. Further, it is preferable that the melting point of the surface layer on the stretched base material side is higher than the melting point of the first layer. With such a configuration, for example, the low-temperature sealability, rigidity, and impact resistance of the sealant layer can be further improved.
 例えば中間層の融点と延伸基材側の表面層の融点との差は、0℃以上30℃以下でもよく、1℃以上でもよく、2℃以上でもよく、また、25℃以下でもよく、20℃以下でもよく、15℃以下でもよく、10℃以下でもよい。例えば中間層の融点と第1の層の融点との差は、2℃以上50℃以下でもよく、4℃以上でもよく、15℃以上でもよく、また、40℃以下でもよく、35℃以下でもよい。例えば延伸基材側の表面層の融点と第1の層の融点との差は、2℃以上40℃以下でもよく、4℃以上でもよく、15℃以上でもよく、また、35℃以下でもよく、30℃以下でもよい。 For example, the difference between the melting point of the intermediate layer and the melting point of the surface layer on the stretched base material side may be 0°C or more and 30°C or less, 1°C or more, 2°C or more, or 25°C or less, or 20°C or more. The temperature may be below 15°C, or below 10°C. For example, the difference between the melting point of the intermediate layer and the first layer may be 2°C or more and 50°C or less, 4°C or more, 15°C or more, or 40°C or less, or 35°C or less. good. For example, the difference between the melting point of the surface layer on the stretched base material side and the melting point of the first layer may be 2°C or more and 40°C or less, 4°C or more, 15°C or more, or 35°C or less. , 30°C or lower.
 第1の層と中間層と延伸基材側の表面層とを備えるシーラント層において、該シーラント層の厚さに対する第1の層の厚さの割合及び延伸基材側の表面層の厚さの割合は、それぞれ独立に、好ましくは3%以上、より好ましくは5%以上、さらに好ましくは10%以上、特に好ましくは15%以上であり、好ましくは40%以下、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下であり、例えば3%以上40%以下である。 In a sealant layer comprising a first layer, an intermediate layer, and a surface layer on the stretched base material side, the ratio of the thickness of the first layer to the thickness of the sealant layer and the thickness of the surface layer on the stretched base material side are The proportions are each independently preferably 3% or more, more preferably 5% or more, even more preferably 10% or more, particularly preferably 15% or more, preferably 40% or less, more preferably 35% or less, and Preferably it is 30% or less, particularly preferably 25% or less, for example 3% or more and 40% or less.
 第1の層と中間層と延伸基材側の表面層とを備えるシーラント層において、該シーラント層の厚さに対する中間層の厚さの割合は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上であり、好ましくは94%以下、より好ましくは90%以下、さらに好ましくは80%以下、特に好ましくは70%以下であり、例えば20%以上94%以下である。 In a sealant layer comprising a first layer, an intermediate layer, and a surface layer on the stretched base material side, the ratio of the thickness of the intermediate layer to the thickness of the sealant layer is preferably 20% or more, more preferably 30% or more. , more preferably 40% or more, particularly preferably 50% or more, preferably 94% or less, more preferably 90% or less, even more preferably 80% or less, particularly preferably 70% or less, for example 20% or more It is 94% or less.
 シーラント層は、一実施形態において、該シーラント層を構成する第1の層、第2の層及び任意に第3の層から選ばれる各層の間に、接着層を有さない。例えば、シーラント層は、共押出樹脂フィルムである。 In one embodiment, the sealant layer does not have an adhesive layer between each layer selected from the first layer, the second layer, and optionally the third layer constituting the sealant layer. For example, the sealant layer is a coextruded resin film.
 シーラント層におけるエチレン/α-オレフィン共重合体の含有割合は、シーラント層の全体に対して、好ましくは50質量%以上、より好ましくは70質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下であり、例えば50質量%以上90質量%以下である。エチレン/α-オレフィン共重合体の含有割合を50質量%以上とすることにより、例えば、シーラント層の耐衝撃性を向上できる。エチレン/α-オレフィン共重合体の含有割合を90質量%以下とすることにより、例えば、シーラント層の引裂き性を向上できる。 The content of the ethylene/α-olefin copolymer in the sealant layer is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or less, more preferably is 80% by mass or less, for example, 50% by mass or more and 90% by mass or less. By controlling the content of the ethylene/α-olefin copolymer to 50% by mass or more, for example, the impact resistance of the sealant layer can be improved. By controlling the content of the ethylene/α-olefin copolymer to 90% by mass or less, for example, the tearability of the sealant layer can be improved.
 シーラント層におけるエチレンの単独重合体の含有割合は、シーラント層の全体に対して、好ましくは10質量%以上、より好ましくは15質量%以上であり、好ましくは50質量%以下、より好ましくは25質量%以下であり、例えば10質量%以上50質量%以下である。エチレンの単独重合体の含有割合を10質量%以上とすることにより、例えば、シーラント層の引裂き性を向上できる。エチレンの単独重合体の含有割合を50質量%以下とすることにより、例えば、シーラント層の耐衝撃性を向上できる。 The content of the ethylene homopolymer in the sealant layer is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 25% by mass, based on the entire sealant layer. % or less, for example, 10% by mass or more and 50% by mass or less. By setting the content of the ethylene homopolymer to 10% by mass or more, for example, the tearability of the sealant layer can be improved. By controlling the content of the ethylene homopolymer to 50% by mass or less, for example, the impact resistance of the sealant layer can be improved.
 シーラント層における第1の層の反対側に位置する面には、表面処理が施されてもよい。これにより、隣接する層との密着性を向上できる。表面処理の具体例は、上述したとおりである。 A surface treatment may be applied to the surface of the sealant layer located on the opposite side of the first layer. Thereby, adhesion between adjacent layers can be improved. Specific examples of the surface treatment are as described above.
 <接着層>
 本開示の積層体は、延伸基材とシーラント層との間、例えば発熱層とシーラント層との間などの任意の層間に、接着層を備えてもよい。これにより、延伸基材とシーラント層との間の密着性を向上できる。
<Adhesive layer>
The laminate of the present disclosure may include an adhesive layer between arbitrary layers, such as between the stretched base material and the sealant layer, for example, between the heat generating layer and the sealant layer. Thereby, the adhesiveness between the stretched base material and the sealant layer can be improved.
 接着層の厚さは、0.1μm以上でもよく、0.2μm以上でもよく、0.5μm以上でもよく、10μm以下でもよく、8.0μm以下でもよく、6.0μm以下でもよく、例えば0.1μm以上10μm以下でもよい。接着層の厚さは、2.0μm以下でもよい。 The thickness of the adhesive layer may be 0.1 μm or more, 0.2 μm or more, 0.5 μm or more, 10 μm or less, 8.0 μm or less, 6.0 μm or less, for example 0. The thickness may be 1 μm or more and 10 μm or less. The thickness of the adhesive layer may be 2.0 μm or less.
 接着層は、一実施形態において、接着剤により構成される接着剤層でもよい。接着剤は、1液硬化型の接着剤、2液硬化型の接着剤、及び非硬化型の接着剤のいずれでもよい。接着剤は、無溶剤型の接着剤でもよく、溶剤型の接着剤でもよい。 In one embodiment, the adhesive layer may be an adhesive layer made of adhesive. The adhesive may be a one-component curing adhesive, a two-component curing adhesive, or a non-curing adhesive. The adhesive may be a solvent-free adhesive or a solvent-based adhesive.
 無溶剤型の接着剤、すなわちノンソルベントラミネート接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤及びウレタン系接着剤が挙げられる。これらの中でも、ウレタン系接着剤が好ましく、2液硬化型のウレタン系接着剤がより好ましい。 Examples of solvent-free adhesives, that is, non-solvent laminating adhesives, include polyether adhesives, polyester adhesives, silicone adhesives, epoxy adhesives, and urethane adhesives. Among these, urethane adhesives are preferred, and two-component curing type urethane adhesives are more preferred.
 無溶剤型の接着剤は、一実施形態において、主剤と硬化剤とを有する2液硬化型接着剤である。主剤に含まれる重合体成分の重量平均分子量(Mw)は、塗工適性という観点から、好ましくは800以上10,000以下、より好ましくは1,200以上4,000以下である。主剤に含まれる重合体成分の多分散度(Mw/Mn)は、好ましくは2.8以下、より好ましくは1.2以上2.7以下、さらに好ましくは1.5以上2.6以下、特に好ましくは2.0以上2.5以下である。ここでMnは、主剤に含まれる重合体成分の数平均分子量である。各平均分子量は、JIS K7252-1:2008に準拠したゲルパーミエーションクロマトグラフィー(GPC)により測定され、ポリスチレン換算の値である。 In one embodiment, the solvent-free adhesive is a two-component curing adhesive that includes a base agent and a curing agent. The weight average molecular weight (Mw) of the polymer component contained in the base resin is preferably 800 or more and 10,000 or less, more preferably 1,200 or more and 4,000 or less, from the viewpoint of coating suitability. The polydispersity (Mw/Mn) of the polymer component contained in the base agent is preferably 2.8 or less, more preferably 1.2 or more and 2.7 or less, even more preferably 1.5 or more and 2.6 or less, especially Preferably it is 2.0 or more and 2.5 or less. Here, Mn is the number average molecular weight of the polymer component contained in the base resin. Each average molecular weight is measured by gel permeation chromatography (GPC) in accordance with JIS K7252-1:2008, and is a value in terms of polystyrene.
 溶剤型の接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、オレフィン系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤及びウレタン系接着剤が挙げられる。 Examples of solvent-based adhesives include rubber adhesives, vinyl adhesives, olefin adhesives, silicone adhesives, epoxy adhesives, phenolic adhesives, and urethane adhesives.
 一実施形態において、無溶剤型の接着剤を用いて接着層を形成することにより、例えば、積層体における残留溶剤量、具体的には残留有機溶剤量をより低減できる。有機溶剤としては、例えば、トルエン、キシレン、n-ヘキサン及びメチルシクロヘキサン等の炭化水素溶剤;酢酸エチル、酢酸n-プロピル、酢酸n-ブチル及び酢酸イソブチル等のエステル溶剤;メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール及びイソブチルアルコール等のアルコール溶剤;並びにアセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン等のケトン溶剤が挙げられる。 In one embodiment, by forming the adhesive layer using a solvent-free adhesive, the amount of residual solvent, specifically, the amount of residual organic solvent in the laminate can be further reduced, for example. Examples of organic solvents include hydrocarbon solvents such as toluene, xylene, n-hexane, and methylcyclohexane; ester solvents such as ethyl acetate, n-propyl acetate, n-butyl acetate, and isobutyl acetate; methanol, ethanol, isopropyl alcohol, Alcohol solvents such as n-butyl alcohol and isobutyl alcohol; and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
 一実施形態において、無溶剤型の接着剤を用いることにより、溶剤型の接着剤を用いた場合に比べて、例えば、接着層を薄くできる。これにより、積層体全体におけるポリオレフィンの含有割合をさらに向上できる。このような積層体は、モノマテリアル化された包装袋の作製に好適である。一実施形態において、無溶剤型の接着剤を用いることにより、溶剤型の接着剤を用いた場合に比べて、積層体の引裂き性をより向上できる。 In one embodiment, by using a solvent-free adhesive, the adhesive layer can be made thinner, for example, than when a solvent-based adhesive is used. Thereby, the content ratio of polyolefin in the entire laminate can be further improved. Such a laminate is suitable for producing a monomaterial packaging bag. In one embodiment, by using a solvent-free adhesive, the tearability of the laminate can be improved more than when using a solvent-based adhesive.
 以下、2液硬化型のウレタン系接着剤について説明する。このウレタン系接着剤としては、例えば、ポリエステルポリオール等のポリオール化合物を含む主剤と、イソシアネート化合物を含む硬化剤とを有する接着剤が好ましい。 Hereinafter, a two-component curing type urethane adhesive will be explained. As this urethane adhesive, for example, an adhesive having a base agent containing a polyol compound such as a polyester polyol and a curing agent containing an isocyanate compound is preferable.
 ポリオール化合物としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール及び(メタ)アクリルポリオールが挙げられる。これらの中でも、ポリエステルポリオールが好ましい。 Examples of polyol compounds include polyester polyols, polyether polyols, polycarbonate polyols, and (meth)acrylic polyols. Among these, polyester polyols are preferred.
 ポリエステルポリオールは、1分子中に水酸基を2個以上有する。ポリエステルポリオールは、主骨格として、例えば、ポリエステル構造又はポリエステルポリウレタン構造を有する。ポリエステルポリオールは、例えば、多価アルコール成分と多価カルボン酸成分との脱水縮合反応や、エステル交換又は開環反応により得られる。 A polyester polyol has two or more hydroxyl groups in one molecule. A polyester polyol has, for example, a polyester structure or a polyester polyurethane structure as a main skeleton. Polyester polyols can be obtained, for example, by dehydration condensation reaction, transesterification, or ring-opening reaction between a polyhydric alcohol component and a polyhydric carboxylic acid component.
 多価アルコール成分としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール及びシクロヘキサンジメタノール等のジオール;グリセリン、トリエチロールプロパン、トリメチロールプロパン、ペンタエリスリトール及びソルビトール等の3官能以上のポリオールが挙げられる。 Examples of the polyhydric alcohol component include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Diols such as hexanediol, neopentyl glycol and cyclohexanedimethanol; trifunctional or higher functional polyols such as glycerin, triethylolpropane, trimethylolpropane, pentaerythritol and sorbitol.
 多価カルボン酸成分としては、例えば、脂肪族多価カルボン酸、脂環族多価カルボン酸及び芳香族多価カルボン酸、並びにこれらのエステル誘導体及び酸無水物が挙げられる。脂肪族多価カルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、マレイン酸、フマル酸及びダイマー酸等の脂肪族ジカルボン酸が挙げられる。脂環族多価カルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸及び1,4-シクロヘキサンジカルボン酸が挙げられる。芳香族多価カルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸及び1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸が挙げられる。 Examples of the polycarboxylic acid component include aliphatic polycarboxylic acids, alicyclic polycarboxylic acids, aromatic polycarboxylic acids, and ester derivatives and acid anhydrides thereof. Examples of the aliphatic polycarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid, and dimer acid. Examples of the alicyclic polycarboxylic acids include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of aromatic polycarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, and 1,2-bis(phenoxy)ethane-p , p'-dicarboxylic acid.
 ポリエステルポリオールは、必要に応じてポリイソシアネートにて予め鎖長させることもできる。ポリイソシアネートとしては、例えば、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、m-キシリレンジイソシアネート、α、α、α’α’-テトラメチル-m-キシリレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート及びジフェニルメタンジイソシアネート等のジイソシアネート;並びにジイソシアネートのビュレット体、ヌレート体又はトリメチロールプロパンアダクト体が挙げられる。 The polyester polyol can also be lengthened in advance with polyisocyanate, if necessary. Examples of polyisocyanates include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, m-xylylene diisocyanate, α, α, α'α'-tetramethyl-m-xylylene diisocyanate, tolylene diisocyanate, and naphthalene. Diisocyanates such as diisocyanates and diphenylmethane diisocyanate; and biurets, nurates, or trimethylolpropane adducts of diisocyanates can be mentioned.
 ポリエステルポリオール等のポリオール化合物の重量平均分子量(Mw)は、塗工適性という観点から、好ましくは800以上10,000以下、より好ましくは1,200以上4,000以下である。ポリエステルポリオール等のポリオール化合物の多分散度(Mw/Mn)は、好ましくは2.8以下、より好ましくは1.2以上2.7以下、さらに好ましくは1.5以上2.6以下、特に好ましくは2.0以上2.5以下である。ここでMnは、ポリオール化合物の数平均分子量である。各平均分子量は、JIS K7252-1:2008に準拠したゲルパーミエーションクロマトグラフィー(GPC)により測定され、ポリスチレン換算の値である。 From the viewpoint of coating suitability, the weight average molecular weight (Mw) of the polyol compound such as polyester polyol is preferably 800 or more and 10,000 or less, more preferably 1,200 or more and 4,000 or less. The polydispersity (Mw/Mn) of the polyol compound such as polyester polyol is preferably 2.8 or less, more preferably 1.2 or more and 2.7 or less, still more preferably 1.5 or more and 2.6 or less, particularly preferably is 2.0 or more and 2.5 or less. Here, Mn is the number average molecular weight of the polyol compound. Each average molecular weight is measured by gel permeation chromatography (GPC) in accordance with JIS K7252-1:2008, and is a value in terms of polystyrene.
 イソシアネート化合物は、1分子中にイソシアネート基を2個以上有する。イソシアネート化合物としては、例えば、芳香族イソシアネート及び脂肪族イソシアネートが挙げられる。イソシアネート化合物は、公知のイソシアネートブロック化剤を用いて公知慣用の適宜の方法より付加反応させて得られたブロック化イソシアネート化合物でもよい。 The isocyanate compound has two or more isocyanate groups in one molecule. Examples of the isocyanate compound include aromatic isocyanates and aliphatic isocyanates. The isocyanate compound may be a blocked isocyanate compound obtained by addition reaction using a known isocyanate blocking agent by a known and commonly used method.
 イソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ノルボルネンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、m-キシリレンジイソシアネート、水素化キシリレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート及びα、α、α’α’-テトラメチル-m-キシリレンジイソシアネート等のジイソシアネート;これらのジイソシアネートの3量体;並びにこれらのジイソシアネート化合物と、低分子活性水素化合物若しくはそのアルキレンオキシド付加物、又は高分子活性水素化合物とを反応させて得られる、アダクト体、ビュレット体及びアロファネート体が挙げられる。 Examples of the isocyanate compound include tetramethylene diisocyanate, hexamethylene diisocyanate, norbornene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, m-xylylene diisocyanate, hydrogenated xylylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, and α, Diisocyanates such as α,α'α'-tetramethyl-m-xylylene diisocyanate; trimers of these diisocyanates; and these diisocyanate compounds and low-molecular active hydrogen compounds or their alkylene oxide adducts, or polymeric active compounds. Examples include an adduct, a burette, and an allophanate, which are obtained by reacting with a hydrogen compound.
 低分子活性水素化合物としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、ネネオペンチルグリコール、1,6-ヘキサメチレングリコール、1,8-オクタメチレングリコール、1,4-シクロヘキサンジメタノール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及びメタキシリレンジアミンが挙げられる。高分子活性水素化合物としては、例えば、ポリエステル、ポリエーテルポリオール及びポリアミドが挙げられる。 Examples of low-molecular active hydrogen compounds include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, neneopentyl glycol, 1,6-hexamethylene glycol, 1,8-octamethylene glycol, 1,4-Cyclohexane dimethanol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanol Amines include diethanolamine, triethanolamine and metaxylylene diamine. Examples of the polymeric active hydrogen compound include polyester, polyether polyol, and polyamide.
 接着層は、熱可塑性樹脂を含有する接着性樹脂層でもよい。熱可塑性樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-マレイン酸共重合体、アイオノマー樹脂、及びポリオレフィンに不飽和カルボン酸、不飽和カルボン酸無水物又はエステル単量体をグラフト重合又は共重合した樹脂が挙げられる。熱可塑性樹脂は、化石燃料由来の材料を使用してもよく、バイオマス由来の材料を使用してもよく、これらの両方を使用してもよい。 The adhesive layer may be an adhesive resin layer containing a thermoplastic resin. Examples of thermoplastic resins include high-density polyethylene, medium-density polyethylene, high-pressure low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer, and ethylene-vinyl acetate copolymer. Methyl (meth)acrylate copolymer, ethylene-ethyl (meth)acrylate copolymer, ethylene-maleic acid copolymer, ionomer resin, and polyolefin with unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, or monoester. Examples include resins obtained by graft polymerization or copolymerization of polymers. The thermoplastic resin may be a fossil fuel-derived material, a biomass-derived material, or both.
 本開示の積層体は、一実施形態において、延伸基材と、シーラント層に対応する樹脂フィルムとを、無溶剤型の接着剤を用いたノンソルベントラミネート法により貼り合わせて製造してもよく、溶剤型の接着剤を用いたドライラミネート法により貼り合わせて製造してもよい。 In one embodiment, the laminate of the present disclosure may be manufactured by bonding a stretched base material and a resin film corresponding to the sealant layer by a non-solvent laminating method using a solvent-free adhesive. They may be manufactured by bonding them together by a dry lamination method using a solvent-based adhesive.
 <積層体の層構成>
 以下、本開示の第1の態様の積層体の層構成について、数例を挙げる。
 図1に示す積層体30は、ポリオレフィン層42、ポリオレフィン層42、ポリオレフィン層42、接着性樹脂層44及び発熱性樹脂層46を備える延伸基材40と、接着層60と、シーラント層70とをこの順に備える。図1に示す積層体30は、延伸基材40と接着層60との間に、図示せぬ発熱層80をさらに備えてもよい。延伸基材40は、図2に示すように、ポリオレフィン層42、接着性樹脂層44、発熱性樹脂層46、接着性樹脂層44及びポリオレフィン層42を備えてもよい。
<Layer configuration of laminate>
Hereinafter, several examples will be given of the layer structure of the laminate according to the first aspect of the present disclosure.
The laminate 30 shown in FIG. 1 includes a stretched base material 40 including a polyolefin layer 42, a polyolefin layer 42, an adhesive resin layer 44, and a heat generating resin layer 46, an adhesive layer 60, and a sealant layer 70. Prepare in this order. The laminate 30 shown in FIG. 1 may further include a heat generating layer 80 (not shown) between the stretched base material 40 and the adhesive layer 60. The stretched base material 40 may include a polyolefin layer 42, an adhesive resin layer 44, a heat generating resin layer 46, an adhesive resin layer 44, and a polyolefin layer 42, as shown in FIG.
 図3に示す積層体30は、延伸基材(ポリオレフィン基材)40と、発熱性樹脂層50と、接着層60と、シーラント層70とをこの順に備える。図3に示す積層体30は、発熱性樹脂層50と接着層60との間、及び/又は、延伸基材40と発熱性樹脂層50との間に、図示せぬ発熱層80をさらに備えてもよい。 The laminate 30 shown in FIG. 3 includes a stretched base material (polyolefin base material) 40, a heat-generating resin layer 50, an adhesive layer 60, and a sealant layer 70 in this order. The laminate 30 shown in FIG. 3 further includes a heat generating layer 80 (not shown) between the heat generating resin layer 50 and the adhesive layer 60 and/or between the stretched base material 40 and the heat generating resin layer 50. It's okay.
 図4に示す積層体30は、発熱性樹脂層50と、延伸基材(ポリオレフィン基材)40と、接着層60と、シーラント層70とをこの順に備える。図4に示す積層体は、延伸基材40と接着層60との間に、図示せぬ発熱層80をさらに備えてもよい。 The laminate 30 shown in FIG. 4 includes a heat-generating resin layer 50, a stretched base material (polyolefin base material) 40, an adhesive layer 60, and a sealant layer 70 in this order. The laminate shown in FIG. 4 may further include a heat generating layer 80 (not shown) between the stretched base material 40 and the adhesive layer 60.
 図3及び図4において、延伸基材40は多層構造を有してもよい。図3及び図4において、発熱性樹脂層50と延伸基材40との間に、図示せぬアンカーコート層を設けてもよい。 In FIGS. 3 and 4, the stretched base material 40 may have a multilayer structure. In FIGS. 3 and 4, an anchor coat layer (not shown) may be provided between the exothermic resin layer 50 and the stretched base material 40.
 以下、本開示の第2の態様の積層体の層構成について、具体例を挙げる。図15に示す積層体30は、延伸基材40と、発熱層50と、接着層60と、シーラント層70とをこの順に備える。図15において、延伸基材40は多層構造を有してもよい。図15におけるシーラント層70は、例えば図16~図18に示す層構成を有する。 Hereinafter, specific examples will be given regarding the layer structure of the laminate according to the second aspect of the present disclosure. The laminate 30 shown in FIG. 15 includes a stretched base material 40, a heat generating layer 50, an adhesive layer 60, and a sealant layer 70 in this order. In FIG. 15, the stretched base material 40 may have a multilayer structure. The sealant layer 70 in FIG. 15 has a layer structure shown in FIGS. 16 to 18, for example.
 図16に示すシーラント層70は、シール層としての第1の層72と、ラミネート層としての第2の層74とをこの順に備える。図17に示すシーラント層70は、シール層としての第1の層72と、中間層としての第2の層74と、ラミネート層としての第2の層74とをこの順に備える。2つの第2の層74は相互に同一でもよく異なってもよい。図18に示すシーラント層70は、シール層としての第1の層72と、中間層としての第2の層74と、ラミネート層としての第3の層76とをこの順に備える。 The sealant layer 70 shown in FIG. 16 includes a first layer 72 as a sealing layer and a second layer 74 as a laminate layer in this order. The sealant layer 70 shown in FIG. 17 includes a first layer 72 as a sealing layer, a second layer 74 as an intermediate layer, and a second layer 74 as a laminate layer in this order. The two second layers 74 may be the same or different from each other. The sealant layer 70 shown in FIG. 18 includes, in this order, a first layer 72 as a sealing layer, a second layer 74 as an intermediate layer, and a third layer 76 as a laminate layer.
 [包装袋]
 本開示の積層体は、包装材料用途に好適に使用できる。包装材料は、包装袋を作製するために使用される。本開示の積層体を少なくとも用いることにより、引裂き性に優れる包装袋を製造できる。包装袋は、ボトルなどの容器へ詰め替えられる、液体や粉体などの流動性を有する内容物を収容する詰替えパウチ、特にスタンディングパウチでもよい。
[Packaging bag]
The laminate of the present disclosure can be suitably used for packaging material applications. Packaging materials are used to make packaging bags. By using at least the laminate of the present disclosure, a packaging bag with excellent tearability can be manufactured. The packaging bag may be a refill pouch, particularly a standing pouch, that accommodates fluid contents such as liquid or powder that is refilled into a container such as a bottle.
 包装袋としては、例えば、スタンディングパウチ型、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型及びガゼット型などの種々の形態の包装袋が挙げられる。 Examples of packaging bags include standing pouch type, side seal type, two side seal type, three side seal type, four side seal type, envelope sticker type, gasho sticker type (pillow seal type), pleated seal type, and flat bottom seal type. There are various types of packaging bags, such as a type, a square bottom seal type, and a gusset type.
 本開示の包装袋は、本開示の積層体を備える。
 本開示の包装袋は、
  内容物を収容する収容部と、
  積層体のシーラント層同士が接合されているシール部と、
  積層体の変質部を含む易開封線と
を有する。
 シール部は、収容部を画成する内縁を含む。
 易開封線は、シール部の内縁に交わる第1交点及び第2交点を含み、包装袋を平面視した場合に収容部を横切る線である。
 包装袋は、引き裂きの起点となるノッチ部をさらに有してもよい。
The packaging bag of the present disclosure includes the laminate of the present disclosure.
The packaging bag of the present disclosure is
a storage section that accommodates the contents;
a sealing part where the sealant layers of the laminate are joined;
and an easy-to-open line that includes the altered portion of the laminate.
The seal portion includes an inner edge that defines a housing portion.
The easy-to-open line is a line that includes a first intersection point and a second intersection point that intersect with the inner edge of the seal portion, and crosses the storage portion when the packaging bag is viewed from above.
The packaging bag may further include a notch that serves as a starting point for tearing.
 <シール部>
 包装袋は、積層体のシーラント層同士が接合されているシール部を有する。シール部の形成方法としては、例えば、加熱などによって積層体のシーラント層を溶融させ、シーラント層同士を融着させるヒートシールが挙げられ、具体的には、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール及び超音波シールが挙げられる。
<Seal part>
The packaging bag has a seal portion where the sealant layers of the laminate are joined together. Examples of methods for forming the seal portion include heat sealing, in which the sealant layers of the laminate are melted by heating and the sealant layers are fused together, and specifically, bar seals, rotating roll seals, belt seals, Impulse seals, high frequency seals and ultrasonic seals may be mentioned.
 <易開封線>
 包装袋は、包装袋を引き裂く際の経路として、易開封線を有する。
 易開封線は、積層体が変質している部分である変質部を含む。
 易開封線に含まれる変質部の幅W1は、好ましくは30μm以上、より好ましくは50μm以上、さらに好ましくは70μm以上であり、250μm以下でもよく、230μm以下でもよく、200μm以下でもよく、例えば30μm以上250μm以下でもよい。これにより、例えば、包装袋の開封性を向上できる。幅W1は、延伸基材におけるシーラント層側の端面において測定される。発熱性樹脂層又は発熱層がレーザーから吸収するエネルギーが大きいほど、幅W1は大きくなる傾向にある。
 幅W1の算出方法の具体例は、後述する。
<Easy-to-open line>
The packaging bag has an easy-to-open line as a path for tearing the packaging bag.
The easy-to-open line includes a deteriorated portion, which is a portion where the laminate has deteriorated in quality.
The width W1 of the altered part included in the easy-to-open line is preferably 30 μm or more, more preferably 50 μm or more, even more preferably 70 μm or more, and may be 250 μm or less, 230 μm or less, 200 μm or less, for example 30 μm or more. It may be 250 μm or less. Thereby, for example, the ease of opening the packaging bag can be improved. The width W1 is measured at the end surface of the stretched base material on the sealant layer side. The width W1 tends to increase as the energy absorbed from the laser by the exothermic resin layer or the exothermic layer increases.
A specific example of the method for calculating the width W1 will be described later.
 包装袋を構成する積層体は、易開封線を2以上有してもよい。易開封線の本数は、1以上でもよく、2以上でもよく、3以上でもよく、10以下でもよく、8以下でもよく、5以下でもよく、例えば1以上10以下でもよい。易開封線は、後述する表面フィルム及び裏面フィルムの両方に形成されていてもよい。この場合、表面フィルム及び裏面フィルムが、それぞれ、上記本数の易開封線を有してもよい。 The laminate that constitutes the packaging bag may have two or more easy-to-open lines. The number of easy-to-open lines may be 1 or more, 2 or more, 3 or more, 10 or less, 8 or less, 5 or less, for example, 1 or more and 10 or less. The easy-to-open line may be formed on both the front film and the back film, which will be described later. In this case, the front film and the back film may each have the above number of easy-to-open lines.
 変質部を含む易開封線は、例えば、包装袋を構成する積層体にレーザーを照射することにより形成できる。積層体に変質部が形成される理由は、以下のように推察される。積層体にレーザーを照射すると、発熱性樹脂層に含まれる上記ヘテロ原子含有樹脂又は発熱層に含まれる上記発熱物質がレーザーを吸収することにより、発熱性樹脂層又は発熱層の温度が上昇する。これにより、例えば、加熱された発熱性樹脂層又は発熱層の周囲にガスが発生する。ガスの温度が上昇し、ガスの圧力が増加すると、延伸基材の一部が飛散し、変質部が形成される。変質部は、延伸基材を貫通していてもよく、発熱性樹脂層又は発熱層をさらに貫通していてもよく、接着剤層をさらに貫通していてもよい。貫通孔が形成されなくとも、例えば、発熱性樹脂層又は発熱層が膨張して延伸基材が部分的に盛り上げられる、或いは剥離することにより変質部が形成されていてもよい。なお、別の原理によって変質部が形成されていてもよい。 The easy-open line including the altered portion can be formed, for example, by irradiating the laminate that constitutes the packaging bag with a laser. The reason why altered parts are formed in the laminate is presumed to be as follows. When the laminate is irradiated with a laser, the heteroatom-containing resin contained in the exothermic resin layer or the exothermic substance contained in the exothermic layer absorbs the laser, thereby increasing the temperature of the exothermic resin layer or the exothermic layer. As a result, gas is generated around the heated heat-generating resin layer or heat-generating layer, for example. When the temperature of the gas rises and the pressure of the gas increases, a portion of the stretched base material scatters, forming an altered part. The altered portion may penetrate the stretched base material, may further penetrate the heat-generating resin layer or the heat-generating layer, or may further penetrate the adhesive layer. Even if a through-hole is not formed, an altered portion may be formed, for example, by expansion of the heat-generating resin layer or heat-generating layer and the stretching base material being partially raised or peeled off. Note that the altered portion may be formed according to another principle.
 レーザーの照射は、積層体におけるレーザーの照射位置を移動させながら実施できる。例えば、レーザーを積層体に向けて放射するレーザー照射装置を積層体に対して相対的に移動させてもよい。これにより、レーザー照射装置の移動経路に沿って変質部が形成される。この結果、レーザー照射装置の移動経路に対応する方向に延びる易開封線が積層体に形成される。相対的な移動は、レーザー照射装置を積層体に対して移動させることを含んでいてもよく、積層体をレーザー照射装置に対して移動させることを含んでいてもよい。また、ガルバノミラーなどを用いてレーザーの軌道を変化させることにより、積層体におけるレーザーの照射位置を移動させてもよい。 Laser irradiation can be performed while moving the laser irradiation position in the laminate. For example, a laser irradiation device that emits a laser toward the laminate may be moved relative to the laminate. As a result, an altered portion is formed along the movement path of the laser irradiation device. As a result, an easy-to-open line extending in a direction corresponding to the movement path of the laser irradiation device is formed in the laminate. The relative movement may include moving the laser irradiation device with respect to the stacked body, and may include moving the stacked body with respect to the laser irradiation device. Furthermore, the irradiation position of the laser on the stacked body may be moved by changing the trajectory of the laser using a galvanometer mirror or the like.
 シーラント層側から積層体にレーザーを照射してもよい。
 延伸基材側から積層体にレーザーを照射してもよい。
The laminate may be irradiated with a laser from the sealant layer side.
The laminate may be irradiated with a laser from the stretched base material side.
 レーザー照射の走査速度は、10mm/s以上でもよく、20mm/s以上でもよく、50mm/s以上でもよい。走査速度を一定値以上にすることにより、例えば、発熱性樹脂層又は発熱層が過剰にレーザーのエネルギーを吸収することを抑制できる。これにより、シーラント層にダメージが生じることを抑制でき、また、変質部の幅W1が大きくなり過ぎることを抑制できる。レーザー照射の走査速度は、レーザーの種類及び波長に応じて適宜選択することができる。 The scanning speed of laser irradiation may be 10 mm/s or more, 20 mm/s or more, or 50 mm/s or more. By setting the scanning speed to a certain value or higher, for example, it is possible to prevent the exothermic resin layer or the exothermic layer from absorbing excessive laser energy. Thereby, it is possible to suppress damage to the sealant layer, and it is also possible to suppress the width W1 of the altered portion from becoming too large. The scanning speed of laser irradiation can be appropriately selected depending on the type and wavelength of the laser.
 レーザー照射の走査速度は、2000mm/s以下でもよく、1500mm/s以下でもよく、1000mm/s以下でもよい。これにより、例えば、発熱性樹脂層又は発熱層がレーザーのエネルギーを適切に吸収できる。 The scanning speed of laser irradiation may be 2000 mm/s or less, 1500 mm/s or less, or 1000 mm/s or less. Thereby, for example, the heat-generating resin layer or the heat-generating layer can appropriately absorb laser energy.
 レーザーの出力は、1W以上でもよく、2W以上でもよく、100W以下でもよく、80W以下でもよく、50W以下でもよく、例えば1W以上100W以下でもよい。レーザーの線幅は、40μm以上でもよく、60μm以上でもよく、500μm以下でもよく、200μm以下でもよく、100μm以下でもよく、例えば40μm以上500μm以下でもよい。 The output of the laser may be 1 W or more, 2 W or more, 100 W or less, 80 W or less, 50 W or less, for example, 1 W or more and 100 W or less. The line width of the laser may be 40 μm or more, 60 μm or more, 500 μm or less, 200 μm or less, 100 μm or less, for example, 40 μm or more and 500 μm or less.
 レーザーは、UVレーザーでもよく、可視光レーザーでもよく、赤外線レーザーでもよい。レーザーの波長は、200nm以上でもよく、300nm以上でもよく、500nm以上でもよく、800nm以上でもよく、1000nm以上でもよく、20μm以下でもよく、15μm以下でもよく、2000nm以下でもよく、1800nm以下でもよく、1500nm以下でもよく、例えば200nm以上20μm以下でもよい。 The laser may be a UV laser, a visible light laser, or an infrared laser. The wavelength of the laser may be 200 nm or more, 300 nm or more, 500 nm or more, 800 nm or more, 1000 nm or more, 20 μm or less, 15 μm or less, 2000 nm or less, 1800 nm or less, The thickness may be 1500 nm or less, for example, 200 nm or more and 20 μm or less.
 レーザーとしては、例えば、ファイバーレーザー、YAGレーザー、YVO4レーザー、半導体レーザー及び炭酸ガスレーザー(CO2レーザー)が挙げられる。引裂き性(特に後述する斜め45°の方向の引裂き性)の観点からは、ファイバーレーザーが好ましく、生産性の観点からは、CO2レーザーが好ましい。 Examples of lasers include fiber lasers, YAG lasers, YVO 4 lasers, semiconductor lasers, and carbon dioxide lasers (CO 2 lasers). From the viewpoint of tearability (particularly the tearability in the diagonal direction of 45°, which will be described later), a fiber laser is preferable, and from the viewpoint of productivity, a CO 2 laser is preferable.
 <内容物>
 包装袋中に収容される内容物としては、例えば、液体、固体、粉体及びゲル体が挙げられる。内容物は、飲食品でもよく、化学品、化粧品、医薬品、金属部品及び電子部品等の非飲食品でもよい。包装袋中に内容物を収容した後、包装袋の開口部をヒートシールすることにより、包装袋を密封できる。
<Contents>
Examples of the contents accommodated in the packaging bag include liquids, solids, powders, and gels. The contents may be food or drink products, or non-food or drink products such as chemicals, cosmetics, pharmaceuticals, metal parts, and electronic parts. After the contents are placed in the packaging bag, the packaging bag can be sealed by heat-sealing the opening of the packaging bag.
 内容物としては、例えば、シャンプー、リンス、コンディショナー、ハンドソープ、ボディソープ、芳香剤、消臭剤、脱臭剤、防虫剤、洗剤;ソース、醤油、ドレッシング、食用油、マヨネーズ、ケチャップ、シロップ、料理用酒類、他の液体又は粘稠体の調味料;果汁類;香辛料;液体飲料、ゼリー状飲料、液体スープ、粉末スープ、インスタント食品、他の飲食品;クリーム;金属部品及び電子部品が挙げられる。 Contents include, for example, shampoo, conditioner, conditioner, hand soap, body soap, fragrance, deodorant, deodorant, insect repellent, detergent; sauce, soy sauce, dressing, cooking oil, mayonnaise, ketchup, syrup, and cooking. Alcoholic beverages, other liquid or viscous seasonings; fruit juices; spices; liquid drinks, jelly drinks, liquid soups, powdered soups, instant foods, other food and drinks; creams; metal parts and electronic parts. .
 <包装袋の作製>
 一実施形態において、本開示の積層体を、延伸基材が外側、シーラント層が内側に位置するように二つ折にして重ね合わせて、その端部等をヒートシールすることにより、包装袋を作製できる。他の実施形態において、複数の本開示の積層体をシーラント層同士が対向するように重ね合わせて、その端部等をヒートシールすることにより、包装袋を作製できる。包装袋の全部が上記積層体で構成されてもよく、包装袋の一部が上記積層体で構成されてもよい。
<Preparation of packaging bag>
In one embodiment, a packaging bag is produced by folding the laminate of the present disclosure in half so that the stretched base material is on the outside and the sealant layer is on the inside, stacking them on top of each other, and heat-sealing the edges and the like. can. In another embodiment, a packaging bag can be produced by stacking a plurality of laminates of the present disclosure so that the sealant layers face each other and heat-sealing the ends and the like. The entire packaging bag may be composed of the above-mentioned laminate, or a part of the packaging bag may be composed of the above-mentioned laminate.
 <包装袋の実施形態>
 以下、本開示の包装袋の実施形態の数例を、図面に基づき説明する。
 図5は、一実施形態の包装袋10を示す正面図である。図5には、内容物が充填される前の状態(内容物が収容されていない状態)の包装袋10が示されている。包装袋10は、自立可能に構成されたガセット式のパウチである。包装袋10は、上部11、下部12及び側部13を含み、正面図において略矩形状の輪郭を有する。「上部」、「下部」及び「側部」などの名称、並びに、「上方」及び「下方」などの用語は、ガセット部を下にして包装袋10が自立している状態を基準として包装袋10やその構成要素の位置や方向を相対的に表したものに過ぎない。包装袋10の輸送時や使用時の姿勢などは、本明細書における名称や用語によっては限定されない。
<Embodiment of packaging bag>
Hereinafter, several examples of embodiments of the packaging bag of the present disclosure will be described based on the drawings.
FIG. 5 is a front view showing the packaging bag 10 of one embodiment. FIG. 5 shows the packaging bag 10 in a state before it is filled with contents (in a state in which no contents are accommodated). The packaging bag 10 is a gusset-type pouch configured to be self-supporting. The packaging bag 10 includes an upper part 11, a lower part 12, and a side part 13, and has a substantially rectangular outline in a front view. Names such as "upper part,""lowerpart," and "side part," and terms such as "upper part" and "lower part" are based on the state in which the packaging bag 10 stands on its own with the gusset section facing down. It is merely a relative representation of the positions and directions of 10 and its constituent elements. The posture of the packaging bag 10 during transportation or use is not limited by the names and terms used in this specification.
 包装袋10は、収容部17、シール部19及び易開封線26を有する。収容部17は、内容物を収容する。シール部19は、収容部17を画成する内縁19xを含む。シール部19は、包装袋10を構成する積層体のシーラント層同士を接合することによって構成されている。図5などの平面図においては、シール部19にハッチングが施されている。 The packaging bag 10 has a storage section 17, a seal section 19, and an easy-to-open line 26. The storage section 17 stores contents. The seal portion 19 includes an inner edge 19x that defines the housing portion 17. The seal portion 19 is constructed by joining together the sealant layers of the laminate that constitutes the packaging bag 10. In a plan view such as FIG. 5, the seal portion 19 is hatched.
 収容部17は、注出口部20を含んでいてもよい。注出口部20は、包装袋10から内容物を取り出す際に内容物が通る部分である。注出口部20の幅は、収容部17のその他の部分の幅よりも狭い。このため、使用者は、注出口部20を通って包装袋10から注出される内容物の注出方向を精度良く定めることができる。 The accommodating part 17 may include a spout part 20. The spout portion 20 is a portion through which the contents are taken out from the packaging bag 10. The width of the spout portion 20 is narrower than the width of the other portions of the accommodating portion 17. Therefore, the user can accurately determine the direction in which the contents are poured out from the packaging bag 10 through the spout section 20.
 易開封線26は、包装袋10の引裂き性を高めるために包装袋10に形成されている。易開封線26は、包装袋10の平面視において収容部17を横切る。収容部17を横切る易開封線26の方向は特に限定されず、例えば積層体のMD方向でもよく、MD方向に対して任意の角度の方向(例えばTD方向や、45°の方向)でもよい。図5に示す例において、易開封線26は、平面視において注出口部20を横切る。図5に示すように、包装袋10の外縁には、易開封線26に隣接する切り欠き28が形成されていてもよい。切り欠き28に替えて切り込みが包装袋10の外縁に形成されていてもよい。 The easy-to-open line 26 is formed on the packaging bag 10 in order to improve the tearability of the packaging bag 10. The easy-to-open line 26 crosses the accommodating portion 17 when the packaging bag 10 is viewed from above. The direction of the easy-to-open line 26 that crosses the accommodating portion 17 is not particularly limited, and may be, for example, the MD direction of the laminate, or a direction at any angle with respect to the MD direction (for example, the TD direction or a 45° direction). In the example shown in FIG. 5, the easy-to-open line 26 crosses the spout portion 20 in plan view. As shown in FIG. 5, a cutout 28 adjacent to the easy-open line 26 may be formed at the outer edge of the packaging bag 10. Instead of the notch 28, a notch may be formed on the outer edge of the packaging bag 10.
 使用者が易開封線26に沿って包装袋10を引き裂く時、包装袋10を構成するフィルムにせん断力が加えられる。シーラント層70の破断が易開封線26に沿って進行することにより、フィルムが引き裂かれる。引裂き性とは、フィルムに加えられるせん断力に基づいて生じる包装袋10の破断の進行のし易さを意味する。フィルムが高い引裂き性を有する場合、使用者が適度なせん断力を包装袋10に加えることにより、易開封線26に沿って包装袋10のフィルムを破断させることができる。フィルムが低い引裂き性を有する場合、使用者が大きなせん断力を包装袋10に加えたとしても、易開封線26に沿う包装袋10の破断が進行しにくい。例えば、包装袋10に加えるせん断力が、包装袋10の一部の層を伸ばす力として利用されたり、包装袋10の一部の層を他の層から剥離させる力として利用されたりする。このため、フィルムの破断が進行しにくい。 When the user tears the packaging bag 10 along the easy-open line 26, shearing force is applied to the film constituting the packaging bag 10. The film is torn as the sealant layer 70 breaks along the easy-open line 26. Tearability refers to the ease with which the packaging bag 10 breaks due to shearing force applied to the film. When the film has high tearability, the film of the packaging bag 10 can be broken along the easy-open line 26 by the user applying an appropriate shearing force to the packaging bag 10. When the film has low tearability, even if a user applies a large shearing force to the packaging bag 10, the packaging bag 10 is unlikely to break along the easy-open line 26. For example, the shearing force applied to the packaging bag 10 is used as a force to stretch some layers of the packaging bag 10, or as a force to peel some layers of the packaging bag 10 from other layers. Therefore, the film is difficult to break.
 包装袋10は、表面を構成する表面フィルム14、裏面を構成する裏面フィルム15、及び、下部12を構成する下部フィルム16を備える。下部フィルム16は、折り返し部16fで折り返された状態で、表面フィルム14と裏面フィルム15との間に配置されている。 The packaging bag 10 includes a front film 14 constituting the front surface, a back film 15 constituting the back surface, and a lower film 16 constituting the lower part 12. The lower film 16 is placed between the front film 14 and the back film 15 in a folded state at the folded portion 16f.
 表面フィルム14及び裏面フィルム15のいずれか一方又は両方が、本開示の積層体30により構成される。下部フィルム16も、本開示の積層体30により構成されてもよい。積層体30は、一実施形態において、図6に示すように、延伸基材40と、発熱性樹脂層又は発熱層50と、接着層60と、シーラント層70とを備える。 Either or both of the front film 14 and the back film 15 are constituted by the laminate 30 of the present disclosure. The lower film 16 may also be comprised of the laminate 30 of the present disclosure. In one embodiment, the laminate 30 includes a stretched base material 40, a heat generating resin layer or heat generating layer 50, an adhesive layer 60, and a sealant layer 70, as shown in FIG.
 積層体30は、内面30x及び外面30yを含む。内面30xは、内容物に接する面である。外面30yは、内面30xの反対側に位置する面である。シーラント層70は、延伸基材40に対して内面30xの側に位置している。発熱性樹脂層又は発熱層50は、延伸基材40とシーラント層70との間に位置する。 The laminate 30 includes an inner surface 30x and an outer surface 30y. The inner surface 30x is a surface that comes into contact with the contents. The outer surface 30y is a surface located on the opposite side of the inner surface 30x. The sealant layer 70 is located on the inner surface 30x side with respect to the stretched base material 40. The heat generating resin layer or heat generating layer 50 is located between the stretched base material 40 and the sealant layer 70.
 「表面フィルム」、「裏面フィルム」及び「下部フィルム」という用語は、位置関係に応じて各フィルムを区画したものに過ぎず、包装袋10を製造する際のフィルムの提供方法が、上述の用語によって限定されることはない。例えば、包装袋10は、表面フィルム14と裏面フィルム15と下部フィルム16とが連設された1枚のフィルムを用いて製造されてもよく、表面フィルム14と下部フィルム16が連設された1枚のフィルムと1枚の裏面フィルム15の計2枚のフィルムを用いて製造されてもよく、1枚の表面フィルム14と1枚の裏面フィルム15と1枚の下部フィルム16の計3枚のフィルムを用いて製造されてもよい。 The terms "front film", "back film", and "lower film" are merely divisions of each film according to their positional relationship, and the method of providing the film when manufacturing the packaging bag 10 is defined by the above-mentioned terms. is not limited by. For example, the packaging bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are arranged in series, or the packaging bag 10 in which the front film 14 and the lower film 16 are arranged in series. It may be manufactured using a total of two films, one film and one back film 15, or a total of three films, one front film 14, one back film 15, and one bottom film 16. It may also be manufactured using a film.
 図5に示すように、シール部19は、下部シール部12a、側部シール部13a及び注出口シール部20aを含む。下部シール部12aは、下部12に広がっている。側部シール部13aは、一対の側部13に沿って延びている。注出口シール部20aは、注出口部20を画成している。注出口シール部20aの内縁の間の距離は、一対の側部シール部13a間の内縁の間の距離よりも小さい。注出口部20が包装袋10の上部11と側部13との間の隅部に形成される場合、注出口シール部20aは側部シール部13aに接続される。 As shown in FIG. 5, the seal portion 19 includes a lower seal portion 12a, a side seal portion 13a, and a spout seal portion 20a. The lower seal portion 12a extends to the lower portion 12. The side seal portion 13a extends along the pair of side portions 13. The spout seal portion 20a defines the spout portion 20. The distance between the inner edges of the spout seal portions 20a is smaller than the distance between the inner edges of the pair of side seal portions 13a. When the spout part 20 is formed at a corner between the top 11 and the side part 13 of the packaging bag 10, the spout seal part 20a is connected to the side seal part 13a.
 内容物が収容されていない状態の包装袋10においては、図5に示すように、包装袋10の上部11は開口部11bになっている。開口部11bを介して包装袋10に内容物を収容した後、表面フィルム14のシーラント層と裏面フィルム15のシーラント層とを上部11において接合することにより、開口部11bに上部シール部が形成される。これにより、収容部17が包装袋10の外部から封止される。 As shown in FIG. 5, in the packaging bag 10 in which no contents are stored, the upper part 11 of the packaging bag 10 has an opening 11b. After the contents are stored in the packaging bag 10 through the opening 11b, the sealant layer of the front film 14 and the sealant layer of the back film 15 are joined at the upper part 11, thereby forming an upper seal part in the opening 11b. Ru. Thereby, the accommodating portion 17 is sealed from the outside of the packaging bag 10.
 側部シール部13a、注出口シール部20a及び上部シール部は、表面フィルム14のシーラント層と裏面フィルム15のシーラント層とを接合することによって構成される。下部シール部12aは、表面フィルム14のシーラント層と下部フィルム16のシーラント層とが接合されている部分、及び、裏面フィルム15のシーラント層と下部フィルム16のシーラント層とが接合されている部分を含む。図5において符号13cが付された点線で示すように、下部フィルム16の一部に切り欠きが形成されていてもよい。切り欠きの位置においては、表面フィルム14のシーラント層と裏面フィルム15のシーラント層とが接合されていてもよい。 The side seal part 13a, spout seal part 20a, and top seal part are constructed by joining the sealant layer of the front film 14 and the sealant layer of the back film 15. The lower seal portion 12a includes a portion where the sealant layer of the front film 14 and a sealant layer of the lower film 16 are joined, and a portion where the sealant layer of the back film 15 and the sealant layer of the lower film 16 are joined. include. As shown by the dotted line labeled 13c in FIG. 5, a cutout may be formed in a portion of the lower film 16. At the position of the notch, the sealant layer of the front film 14 and the sealant layer of the back film 15 may be joined.
 易開封線26について詳細に説明する。図6は、表面フィルム14に形成されている易開封線26を示す図である。図6は、図5において符号Aで示すように、易開封線26が延びる方向に直交する方向に沿って表面フィルム14を切断した場合を示す断面図である。図示はしないが、裏面フィルム15にも易開封線26が形成されていてもよい。表面フィルム14の易開封線26と裏面フィルム15の易開封線26とは、表面フィルム14の法線方向に沿って見た場合に重なっていてもよい。易開封線26は、延伸基材40を貫通する貫通孔27を含む。易開封線26は、積層体30にレーザーを照射することによって形成される。図8に示すように、包装袋10は、収容部17を横切る複数の易開封線26を有してもよい。 The easy-to-open line 26 will be explained in detail. FIG. 6 is a diagram showing the easy-to-open line 26 formed on the surface film 14. FIG. 6 is a cross-sectional view showing a case where the surface film 14 is cut along a direction perpendicular to the direction in which the easy-to-open line 26 extends, as indicated by the symbol A in FIG. Although not shown, an easy-to-open line 26 may also be formed on the back film 15. The easy-to-open line 26 of the front film 14 and the easy-to-open line 26 of the back film 15 may overlap when viewed along the normal direction of the front film 14. The easy-to-open line 26 includes a through hole 27 that penetrates the stretched base material 40 . The easy-to-open line 26 is formed by irradiating the laminate 30 with a laser. As shown in FIG. 8, the packaging bag 10 may have a plurality of easy-to-open lines 26 that cross the accommodating portion 17.
 変質部の幅の算出方法を、図7を参照して説明する。図7に示すように、易開封線26は、第1交点261及び第2交点262においてシール部19の内縁19xに交わる。点P1、P2、P3は、第1交点261から第2交点262までの易開封線26の区間を4分割した場合の境界に位置する。易開封線26が延びる方向に直交するとともに点P1、P2、P3を通る直線に沿って包装袋10を切断する。3つの切断面を観察し、幅を測定する。幅の3つの測定値の平均値を、変質部の幅W1として用いる。切断面を観察する装置としては、例えば、キーエンス社製のデジタルマイクロスコープ VHX-6000を用いる。観察倍率は1000倍である。変質部の幅の測定は、VHX-6000の測長機能により実施される。 A method for calculating the width of the altered portion will be explained with reference to FIG. 7. As shown in FIG. 7, the easy-to-open line 26 intersects with the inner edge 19x of the seal portion 19 at a first intersection 261 and a second intersection 262. Points P1, P2, and P3 are located at boundaries when the section of the easy-to-open line 26 from the first intersection 261 to the second intersection 262 is divided into four. The packaging bag 10 is cut along a straight line that is perpendicular to the direction in which the easy-to-open line 26 extends and passes through points P1, P2, and P3. Observe the three cut surfaces and measure the width. The average value of the three width measurements is used as the width W1 of the altered portion. As a device for observing the cut surface, for example, a digital microscope VHX-6000 manufactured by Keyence Corporation is used. The observation magnification is 1000 times. The width of the altered area is measured using the length measurement function of the VHX-6000.
 次に、下部フィルム16の層構成について説明する。
 表面フィルム14のシーラント層及び裏面フィルム15のシーラント層と接合可能な内面を有する限りにおいて、下部フィルム16の層構成は任意である。例えば、表面フィルム14及び裏面フィルム15と同様に、下部フィルム16として上述の積層体30を用いてもよい。本開示の積層体30とは異なる構成のフィルムを、下部フィルム16として用いてもよい。
Next, the layer structure of the lower film 16 will be explained.
The layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the sealant layer of the front film 14 and the sealant layer of the back film 15. For example, similarly to the front film 14 and the back film 15, the above-mentioned laminate 30 may be used as the lower film 16. A film having a structure different from that of the laminate 30 of the present disclosure may be used as the lower film 16.
 包装袋10は、例えば、以下のようにして作製できる。積層体30を準備する。続いて、積層体30にレーザーを照射して易開封線26を形成する。易開封線26が形成された積層体30を2つに切断する。これにより、表面フィルム14及び裏面フィルム15が得られる。続いて、表面フィルム14と裏面フィルム15との間に、折り返した状態の下部フィルム16を挿入する。続いて、各フィルムのシーラント層同士をヒートシールすることにより、下部シール部12a、側部シール部13a、注出口シール部20aなどのシール部を形成する。ヒートシールによって互いに接合されたフィルムを適切な形状に切断する。これにより、図5に示す包装袋10が得られる。 The packaging bag 10 can be produced, for example, as follows. A laminate 30 is prepared. Subsequently, the laminated body 30 is irradiated with a laser to form an easy-to-open line 26. The laminate 30 on which the easy-to-open line 26 is formed is cut into two. Thereby, a front film 14 and a back film 15 are obtained. Subsequently, the folded lower film 16 is inserted between the front film 14 and the back film 15. Subsequently, the sealant layers of each film are heat-sealed to form seal parts such as the lower seal part 12a, the side seal part 13a, and the spout seal part 20a. The films joined together by heat sealing are cut into appropriate shapes. Thereby, the packaging bag 10 shown in FIG. 5 is obtained.
 続いて、包装袋10の収容部17に内容物を充填する。その後、上部11をヒートシールすることによって上部シール部を形成する。このようにして、内容物が収容され封止された包装袋10が得られる。 Subsequently, the storage portion 17 of the packaging bag 10 is filled with the contents. Thereafter, the upper portion 11 is heat-sealed to form an upper sealed portion. In this way, a sealed packaging bag 10 containing the contents is obtained.
 以上の実施形態の説明においては、包装袋10がガセット式のパウチである例を示したが、包装袋10の具体的な構成が特に限定されることはない。 In the above description of the embodiment, an example was shown in which the packaging bag 10 is a gusset-type pouch, but the specific configuration of the packaging bag 10 is not particularly limited.
 例えば、包装袋10は、図9及び図10に示すように、下部フィルム16を備えていなくてもよい。図9及び図10において、包装袋10の下部シール部12a及び側部シール部13aは、それぞれ積層体30からなる表面フィルム14及び裏面フィルム15のシーラント層同士を接合することによって形成されている。包装袋10に内容物を収容した後、表面フィルム14のシーラント層と裏面フィルム15のシーラント層とを上部11の開口部11bにおいて接合することにより、包装袋10が封止される。図9及び図10においても、包装袋10は、平面視において収容部17を横切る易開封線26を備える。これにより、包装袋10の引裂き性を高めることができる。 For example, the packaging bag 10 does not need to include the lower film 16, as shown in FIGS. 9 and 10. In FIGS. 9 and 10, the lower seal part 12a and the side seal part 13a of the packaging bag 10 are formed by bonding the sealant layers of the front film 14 and the back film 15, respectively, which are made of the laminate 30. After the contents are stored in the packaging bag 10, the packaging bag 10 is sealed by joining the sealant layer of the front film 14 and the sealant layer of the back film 15 at the opening 11b of the upper part 11. Also in FIGS. 9 and 10, the packaging bag 10 includes an easy-to-open line 26 that crosses the accommodating portion 17 in plan view. Thereby, the tearability of the packaging bag 10 can be improved.
 図11に示すように、包装袋10は、ピローパウチでもよい。包装袋10は、表面フィルム14及び裏面フィルム15を構成する積層体30の端部を重ねることにより構成される合掌部18を含む。合掌部18は、積層体30のシーラント層同士が接合された合掌部シール部18aを含む。図11に示す例において、易開封線26は、収容部17及び合掌部18を横切るよう形成されている。図11に示すように、合掌部の外縁に、易開封線26に接する切り欠き28又は図示せぬ切り込みが形成されていてもよい。 As shown in FIG. 11, the packaging bag 10 may be a pillow pouch. The packaging bag 10 includes a folded palm portion 18 formed by overlapping the ends of the laminate 30 that constitutes the front film 14 and the back film 15. The palms in prayer portion 18 includes a palms in prayer portion seal portion 18a in which the sealant layers of the laminate 30 are joined together. In the example shown in FIG. 11, the easy-to-open line 26 is formed to cross the housing portion 17 and the folded palms portion 18. As shown in FIG. 11, a notch 28 or a notch (not shown) may be formed at the outer edge of the palm-to-face portion in contact with the easy-to-open line 26.
 [第1の態様]
 本開示の第1の態様は、例えば以下の[1]~[13]に関する。
 [1]延伸基材とシーラント層とを少なくとも備える積層体であって、前記延伸基材は、ポリオレフィン層を少なくとも備え、前記シーラント層は、ポリオレフィンを主成分として含有し、前記積層体は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層を備え、該発熱性樹脂層が、前記延伸基材中、前記延伸基材と前記シーラント層との間、及び前記延伸基材における前記シーラント層側の面とは反対側の面上の少なくともいずれかの箇所に位置する、積層体。
 [2]前記ヘテロ原子含有樹脂が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール及びポリアミドから選択される少なくとも1種を含む、前記[1]に記載の積層体。
 [3]前記延伸基材が、前記ポリオレフィン層と、接着性樹脂層と、前記発熱性樹脂層とを少なくとも備える、前記[1]又は[2]に記載の積層体。
 [4]前記積層体が、前記発熱性樹脂層を備える前記延伸基材と、接着層と、前記シーラント層とをこの順に少なくとも備える、前記[1]~[3]のいずれか一項に記載の積層体。
 [5]前記積層体が、前記延伸基材と、前記発熱性樹脂層と、接着層と、前記シーラント層とをこの順に少なくとも備える、前記[1]~[3]のいずれか一項に記載の積層体。
 [6]前記積層体が、前記発熱性樹脂層と、前記延伸基材と、接着層と、前記シーラント層とをこの順に少なくとも備える、前記[1]~[3]のいずれか一項に記載の積層体。
 [7]前記積層体が、レーザーを吸収して発熱する発熱物質(ただし、レーザーを吸収して発熱する前記ヘテロ原子含有樹脂を除く)を含有する発熱層をさらに備える、前記[1]~[6]のいずれか一項に記載の積層体。
 [8]前記発熱物質が、金属酸化物、ビスマス系化合物、モリブデン、モリブデン系化合物、銅、銅系化合物及びカーボンブラックから選択される少なくとも1種である、前記[7]に記載の積層体。
 [9]前記延伸基材の前記ポリオレフィン層がポリエチレン層であり、前記シーラント層がポリエチレンを主成分として含有するか、又は、前記延伸基材の前記ポリオレフィン層がポリプロピレン層であり、前記シーラント層がポリプロピレンを主成分として含有する、前記[1]~[8]のいずれか一項に記載の積層体。
 [10]前記シーラント層が、第1の層と第2の層とを少なくとも備え、前記第1の層が、エチレン/α-オレフィン共重合体を主成分として含有し、前記第1の層の融点が、112℃以下であり、前記第2の層が、ポリエチレンを主成分として含有し、前記第2の層の融点が、114℃以上であり、前記積層体の一方の表面層が、前記第1の層である、前記[1]~[9]のいずれか一項に記載の積層体。
 [11]前記第1の層の密度が0.915g/cm3以下であり、前記第2の層の密度が0.916g/cm3以上である、前記[10]に記載の積層体。
 [12]前記積層体全体におけるポリオレフィンの含有割合が、80質量%以上である、前記[1]~[11]のいずれか一項に記載の積層体。
 [13]前記[1]~[12]のいずれか一項に記載の積層体を備える包装袋であって、前記包装袋が、内容物を収容する収容部と、前記積層体の前記シーラント層同士が接合されているシール部と、前記積層体の変質部を含む易開封線とを有し、前記シール部が、前記収容部を画成する内縁を含み、前記易開封線が、前記シール部の前記内縁に交わる第1交点及び第2交点を含み、前記包装袋を平面視した場合に前記収容部を横切る線である、包装袋。
[First aspect]
The first aspect of the present disclosure relates to, for example, the following [1] to [13].
[1] A laminate including at least a stretched base material and a sealant layer, wherein the stretched base material includes at least a polyolefin layer, the sealant layer contains polyolefin as a main component, and the laminate is a heat-generating resin layer containing as a main component a heteroatom-containing resin that generates heat by absorbing A laminate located at at least one location on a surface of the stretched base material opposite to the surface facing the sealant layer.
[2] The laminate according to [1] above, wherein the heteroatom-containing resin contains at least one selected from ethylene-vinyl alcohol copolymer, polyvinyl alcohol, and polyamide.
[3] The laminate according to [1] or [2], wherein the stretched base material includes at least the polyolefin layer, the adhesive resin layer, and the exothermic resin layer.
[4] The laminate according to any one of [1] to [3] above, wherein the laminate includes at least the stretched base material including the exothermic resin layer, an adhesive layer, and the sealant layer in this order. laminate.
[5] The laminate according to any one of [1] to [3] above, wherein the laminate includes at least the stretched base material, the exothermic resin layer, the adhesive layer, and the sealant layer in this order. laminate.
[6] The laminate according to any one of [1] to [3] above, wherein the laminate includes at least the exothermic resin layer, the stretched base material, the adhesive layer, and the sealant layer in this order. laminate.
[7] The laminate further comprises a heat generating layer containing a heat generating substance that absorbs laser and generates heat (excluding the heteroatom-containing resin that generates heat by absorbing laser) [1] to [ 6].
[8] The laminate according to [7] above, wherein the exothermic substance is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black.
[9] The polyolefin layer of the stretched base material is a polyethylene layer, and the sealant layer contains polyethylene as a main component, or the polyolefin layer of the stretched base material is a polypropylene layer, and the sealant layer The laminate according to any one of [1] to [8] above, which contains polypropylene as a main component.
[10] The sealant layer includes at least a first layer and a second layer, the first layer containing an ethylene/α-olefin copolymer as a main component, and the first layer containing an ethylene/α-olefin copolymer as a main component. a melting point of 112° C. or lower, the second layer contains polyethylene as a main component, a melting point of the second layer is 114° C. or higher, and one surface layer of the laminate contains polyethylene as a main component; The laminate according to any one of [1] to [9] above, which is the first layer.
[11] The laminate according to [10], wherein the first layer has a density of 0.915 g/cm 3 or less, and the second layer has a density of 0.916 g/cm 3 or more.
[12] The laminate according to any one of [1] to [11], wherein the polyolefin content in the entire laminate is 80% by mass or more.
[13] A packaging bag comprising the laminate according to any one of [1] to [12] above, wherein the packaging bag includes a storage section for accommodating contents and the sealant layer of the laminate. a seal portion that is joined to each other; and an easy-to-open line that includes an altered portion of the laminate; the seal portion includes an inner edge defining the housing portion; and the easy-to-open line includes The packaging bag includes a first intersection point and a second intersection point that intersect with the inner edge of the portion, and is a line that crosses the storage portion when the packaging bag is viewed from above.
 [第2の態様]
 本開示の第2の態様は、例えば以下の[1]~[8]に関する。
 [1]延伸基材とシーラント層とを少なくとも備える積層体であって、前記延伸基材は、ポリエチレンを主成分として含有し、前記シーラント層は、第1の層と第2の層とを少なくとも備え、前記第1の層が、エチレン/α-オレフィン共重合体を主成分として含有し、前記第1の層の融点が、112℃以下であり、前記第2の層が、ポリエチレンを主成分として含有し、前記第2の層の融点が、114℃以上であり、前記積層体の一方の表面層が、前記第1の層であり、前記積層体は、前記延伸基材と前記シーラント層との間に、レーザーを吸収して発熱する発熱物質を含有する発熱層をさらに備える、積層体。
 [2]前記第1の層の密度が0.915g/cm3以下であり、前記第2の層の密度が0.916g/cm3以上である、前記[1]に記載の積層体。
 [3]前記発熱物質が、金属酸化物、ビスマス系化合物、モリブデン、モリブデン系化合物、銅、銅系化合物及びカーボンブラックから選択される少なくとも1種である、前記[1]又は[2]に記載の積層体。
 [4]前記発熱物質が、金属酸化物である、前記[1]~[3]のいずれか一項に記載の積層体。
 [5]前記発熱層が、前記延伸基材上に設けられた印刷層である、前記[1]~[4]のいずれか一項に記載の積層体。
 [6]前記発熱層と前記シーラント層との間に、接着層をさらに備える、前記[1]~[5]のいずれか一項に記載の積層体。
 [7]前記積層体全体におけるポリエチレンの含有割合が、80質量%以上である、前記[1]~[6]のいずれか一項に記載の積層体。
 [8]前記[1]~[7]のいずれか一項に記載の積層体を備える包装袋であって、前記包装袋が、内容物を収容する収容部と、前記積層体の前記シーラント層同士が接合されているシール部と、前記積層体の変質部を含む易開封線とを有し、前記シール部が、前記収容部を画成する内縁を含み、前記易開封線が、前記シール部の前記内縁に交わる第1交点及び第2交点を含み、前記包装袋を平面視した場合に前記収容部を横切る線である、包装袋。
[Second aspect]
The second aspect of the present disclosure relates to, for example, the following [1] to [8].
[1] A laminate comprising at least a stretched base material and a sealant layer, the stretched base material containing polyethylene as a main component, and the sealant layer comprising at least a first layer and a second layer. wherein the first layer contains an ethylene/α-olefin copolymer as a main component, the first layer has a melting point of 112° C. or less, and the second layer contains polyethylene as a main component. the melting point of the second layer is 114°C or higher, one surface layer of the laminate is the first layer, and the laminate contains the stretched base material and the sealant layer. A laminate further comprising a heat generating layer containing a heat generating substance that absorbs laser and generates heat between the two.
[2] The laminate according to [1] above, wherein the first layer has a density of 0.915 g/cm 3 or less, and the second layer has a density of 0.916 g/cm 3 or more.
[3] The exothermic substance described in [1] or [2] above is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black. laminate.
[4] The laminate according to any one of [1] to [3] above, wherein the exothermic substance is a metal oxide.
[5] The laminate according to any one of [1] to [4], wherein the heat generating layer is a printed layer provided on the stretched base material.
[6] The laminate according to any one of [1] to [5], further comprising an adhesive layer between the heat generating layer and the sealant layer.
[7] The laminate according to any one of [1] to [6], wherein the content of polyethylene in the entire laminate is 80% by mass or more.
[8] A packaging bag comprising the laminate according to any one of [1] to [7] above, wherein the packaging bag includes a storage section for accommodating contents and the sealant layer of the laminate. a seal portion that is joined to each other; and an easy-to-open line that includes an altered portion of the laminate; the seal portion includes an inner edge defining the housing portion; and the easy-to-open line includes The packaging bag includes a first intersection point and a second intersection point that intersect with the inner edge of the portion, and is a line that crosses the storage portion when the packaging bag is viewed from above.
 以下、実施例により本開示の積層体をより具体的に説明するが、本開示の積層体は以下の実施例に限定されない。 Hereinafter, the laminate of the present disclosure will be explained in more detail using Examples, but the laminate of the present disclosure is not limited to the following Examples.
 [延伸基材の作製]
 延伸基材の作製において、以下の材料を使用した。
・中密度ポリエチレン(MDPE)
  商品名:Elite5538G、Dowchemical社製、密度:0.941g/cm3、融点:129℃、MFR:1.3g/10分
・高密度ポリエチレン(HDPE)
  商品名:Elite5960G、Dowchemical社製、密度:0.960g/cm3、融点:134℃、MFR:0.8g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  商品名:Elite5400G、Dowchemical社製、密度:0.916g/cm3、融点:123℃、MFR:1.3g/10分
・接着性樹脂
  商品名:アドマーNF557、三井化学製、
  無水マレイン酸変性ポリエチレン、密度:0.920g/cm3
・エチレン-ビニルアルコール共重合体(EVOH)
  商品名:エバールE171B、クラレ製、
  融点:165℃、密度:1.14g/cm3
  MFR:1.7g/10分、エチレン含有割合:44モル%
・ポリアミド(Ny)
  商品名:5033、宇部興産製、
  融点:196℃、密度:1.14g/cm3
[Preparation of stretched base material]
The following materials were used in producing the stretched base material.
・Medium density polyethylene (MDPE)
Product name: Elite5538G, manufactured by Dow Chemical, density: 0.941 g/cm 3 , melting point: 129°C, MFR: 1.3 g/10 min, high-density polyethylene (HDPE)
Product name: Elite5960G, manufactured by Dow Chemical, density: 0.960 g/cm 3 , melting point: 134°C, MFR: 0.8 g/10 min, linear low density polyethylene (LLDPE)
Product name: Elite5400G, manufactured by Dow Chemical, density: 0.916 g/cm 3 , melting point: 123°C, MFR: 1.3 g/10 minutes, adhesive resin Product name: Admer NF557, manufactured by Mitsui Chemicals,
Maleic anhydride modified polyethylene, density: 0.920g/cm 3
・Ethylene-vinyl alcohol copolymer (EVOH)
Product name: EVAL E171B, manufactured by Kuraray,
Melting point: 165°C, density: 1.14g/cm 3 ,
MFR: 1.7 g/10 min, ethylene content: 44 mol%
・Polyamide (Ny)
Product name: 5033, manufactured by Ube Industries,
Melting point: 196°C, density: 1.14g/cm 3
 <ポリエチレン基材>
 70部のMDPEと30部のLLDPEとを混合して、平均密度0.934g/cm3のブレンドPE(A)を得た。70部のMDPEと30部のHDPEとを混合して、平均密度0.947g/cm3のブレンドPE(B)を得た。LLDPE、ブレンドPE(A)及びブレンドPE(B)を、インフレーション成形法により、ブレンドPE(B)層15μm/ブレンドPE(A)層22.5μm/LLDPE層50μm/ブレンドPE(A)22.5μm/ブレンドPE(B)層15μmの層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折り畳み、2枚重ねにした。得られたポリエチレンフィルムを縦方向(MD)に5倍延伸し、さらに、一方のブレンドPE(B)層にコロナ処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmのポリエチレン基材(以下「PE基材」ともいう)を得た。
<Polyethylene base material>
70 parts of MDPE and 30 parts of LLDPE were mixed to obtain a blend PE (A) with an average density of 0.934 g/cm 3 . 70 parts of MDPE and 30 parts of HDPE were mixed to obtain a blended PE (B) with an average density of 0.947 g/cm 3 . LLDPE, blend PE (A), and blend PE (B) were formed by inflation molding to form blend PE (B) layer 15 μm/blend PE (A) layer 22.5 μm/LLDPE layer 50 μm/blend PE (A) 22.5 μm. / Blend PE (B) layer Co-extrusion of 5 layers with a layer thickness ratio of 15 μm was performed to form a tube-shaped film to obtain a polyethylene film with a total thickness of 125 μm, and the tube-shaped film was folded at the nip point to form two sheets. I layered it. The obtained polyethylene film was stretched 5 times in the machine direction (MD), and one of the blended PE (B) layers was subjected to corona treatment, and then the end was slit and divided into two sheets with a thickness of 25 μm. A polyethylene base material (hereinafter also referred to as "PE base material") was obtained.
 <EVOH含有基材(A)>
 MDPE(Elite5538G)と、接着性樹脂(アドマーNF557)と、EVOH(エバールE171B)と、接着性樹脂(アドマーNF557)と、MDPE(Elite5538G)とをインフレーション成形法により共押出製膜し、得られたフィルムを延伸装置を用いて縦方向(MD)に5倍延伸して、EVOH含有基材(A)を得た。このようにして得られたEVOH含有基材(A)は、厚さ7μmのMDPE層、厚さ4μmの接着性樹脂層、厚さ2.5μmのEVOH層、厚さ4μmの接着性樹脂層、及び厚さ7.5μmのMDPE層をこの順に備える。
 一方のMDPE層面にコロナ処理を行った。
<EVOH-containing base material (A)>
MDPE (Elite5538G), adhesive resin (Admer NF557), EVOH (Eval E171B), adhesive resin (Admer NF557), and MDPE (Elite 5538G) were coextruded into a film using an inflation molding method. The film was stretched 5 times in the machine direction (MD) using a stretching device to obtain an EVOH-containing base material (A). The EVOH-containing base material (A) thus obtained includes a 7 μm thick MDPE layer, a 4 μm thick adhesive resin layer, a 2.5 μm thick EVOH layer, a 4 μm thick adhesive resin layer, and a 7.5 μm thick MDPE layer in this order.
Corona treatment was performed on one MDPE layer surface.
 <EVOH含有基材(B)>
 EVOH(エバールE171B)と、接着性樹脂(アドマーNF557)と、MDPE(Elite5538G)とをインフレーション成形法により共押出製膜し、得られたフィルムを延伸装置を用いて縦方向(MD)に5倍延伸して、EVOH含有基材(B)を得た。このようにして得られたEVOH含有基材(B)は、厚さ2.5μmのEVOH層、厚さ3μmの接着性樹脂層、及び合計厚さ19.5μmの3層のMDPE層をこの順に備える。
 EVOH層面にコロナ処理を行った。
<EVOH-containing base material (B)>
EVOH (Eval E171B), adhesive resin (Admer NF557), and MDPE (Elite5538G) are coextruded into a film using an inflation molding method, and the resulting film is stretched 5 times in the machine direction (MD) using a stretching device. The EVOH-containing base material (B) was obtained by stretching. The EVOH-containing base material (B) thus obtained consists of an EVOH layer with a thickness of 2.5 μm, an adhesive resin layer with a thickness of 3 μm, and three MDPE layers with a total thickness of 19.5 μm in this order. Be prepared.
Corona treatment was performed on the EVOH layer surface.
 <EVOH含有層基材(C)>
 EVOH(エバールE171B)と、接着性樹脂(アドマーNF557)と、MDPE(Elite5538G)とをインフレーション成形法により共押出製膜し、得られたフィルムを延伸装置を用いて縦方向(MD)に5倍延伸して、EVOH含有基材(C)を得た。このようにして得られたEVOH含有基材(C)は、厚さ5μmのEVOH層、厚さ3μmの接着性樹脂層、及び合計厚さ17μmの3層のMDPE層をこの順に備える。
 EVOH層面にコロナ処理を行った。
<EVOH-containing layer base material (C)>
EVOH (Eval E171B), adhesive resin (Admer NF557), and MDPE (Elite5538G) are coextruded into a film using an inflation molding method, and the resulting film is stretched 5 times in the machine direction (MD) using a stretching device. The EVOH-containing base material (C) was obtained by stretching. The EVOH-containing base material (C) thus obtained comprises, in this order, an EVOH layer with a thickness of 5 μm, an adhesive resin layer with a thickness of 3 μm, and three MDPE layers with a total thickness of 17 μm.
Corona treatment was performed on the EVOH layer surface.
 <Ny含有基材(D)>
 EVOH(エバールE171B)をNy(5033)に変更したこと以外はEVOH含有基材(B)と同様にして、Ny含有基材(D)を得た。このようにして得られたNy含有基材(D)は、厚さ2.5μmのNy層、厚さ3μmの接着性樹脂層、及び合計厚さ19.5μmの3層のMDPE層をこの順に備える。
 Ny層面にコロナ処理を行った。
<Ny-containing base material (D)>
A Ny-containing base material (D) was obtained in the same manner as the EVOH-containing base material (B) except that EVOH (EVAL E171B) was changed to Ny (5033). The Ny-containing base material (D) thus obtained has a Ny layer with a thickness of 2.5 μm, an adhesive resin layer with a thickness of 3 μm, and three MDPE layers with a total thickness of 19.5 μm in this order. Be prepared.
Corona treatment was performed on the Ny layer surface.
 <他の延伸基材>
 PP基材:厚さ20μmの二軸延伸ポリプロピレン基材
      (東洋紡、P2161)
 Ny基材:厚さ15μmの二軸延伸ナイロン基材
      (出光ユニテック、G-100)
<Other stretched base materials>
PP base material: 20 μm thick biaxially oriented polypropylene base material (Toyobo, P2161)
Ny base material: 15 μm thick biaxially stretched nylon base material (Idemitsu Unitec, G-100)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [シーラントフィルムの作製]
 シーラントフィルムの作製において、以下の材料を使用した。
・エチレン/α-オレフィン共重合体(以下「共重合体A」と記載する)
  エチレンとC8オレフィンとの共重合体、
  密度:0.902g/cm3、MFR:1.0g/10分、
  重合触媒:メタロセン触媒
・エチレン/α-オレフィン共重合体(以下「共重合体B」と記載する)
  エチレンとC8オレフィンとの共重合体、
  密度:0.918g/cm3、MFR:0.8g/10分、
  重合触媒:メタロセン触媒
・エチレン/α-オレフィン共重合体(以下「共重合体C」と記載する)
 エチレンとC8オレフィンとの共重合体、
  密度:0.941g/cm3、MFR:1.3g/10分、
  重合触媒:メタロセン触媒
・高圧法低密度ポリエチレン(LDPE)
  密度:0.919g/cm3、MFR:2.0g/10分
・スリップ剤マスターバッチ(スリップ剤MB)
  ベース材料:ポリエチレン、
  スリップ剤:エルカ酸アミド、スリップ剤の含有割合:2.0質量%、
  密度:0.921g/cm3、MFR:5.4g/10分
・アンチブロッキング剤マスターバッチ(AB剤MB)
  ベース材料:ポリエチレン、アンチブロッキング剤:アクリル樹脂、
  アンチブロッキング剤の含有割合:30質量%、
  密度:0.959g/cm3、MFR:2.5g/10分
[Preparation of sealant film]
The following materials were used in making the sealant film.
・Ethylene/α-olefin copolymer (hereinafter referred to as “copolymer A”)
copolymer of ethylene and C8 olefin,
Density: 0.902g/cm 3 , MFR: 1.0g/10min,
Polymerization catalyst: metallocene catalyst/ethylene/α-olefin copolymer (hereinafter referred to as “copolymer B”)
copolymer of ethylene and C8 olefin,
Density: 0.918g/cm 3 , MFR: 0.8g/10min,
Polymerization catalyst: metallocene catalyst/ethylene/α-olefin copolymer (hereinafter referred to as “copolymer C”)
copolymer of ethylene and C8 olefin,
Density: 0.941g/cm 3 , MFR: 1.3g/10min,
Polymerization catalyst: Metallocene catalyst/high pressure low density polyethylene (LDPE)
Density: 0.919g/cm 3 , MFR: 2.0g/10min・Slip agent masterbatch (slip agent MB)
Base material: polyethylene,
Slip agent: erucic acid amide, content of slip agent: 2.0% by mass,
Density: 0.921g/cm 3 , MFR: 5.4g/10min・Anti-blocking agent masterbatch (AB agent MB)
Base material: polyethylene, anti-blocking agent: acrylic resin,
Content ratio of anti-blocking agent: 30% by mass,
Density: 0.959g/cm 3 , MFR: 2.5g/10min
 第1の層(シール層)として、93質量部の共重合体Aと、1質量部のスリップ剤MBと、6質量部のAB剤MBとの混合物を用い、第2の層(中間層)として、69質量部の共重合体Cと、30質量部のLDPEと、1質量部のスリップ剤MBとの混合物を用い、第2の層(ラミネート層)として、89質量部の共重合体Bと、10質量部のLDPEと、1質量部のスリップ剤MBとの混合物を用い、第1の層(シール層):第2の層(中間層):第2の層(ラミネート層)の厚さ比が1:3:1となるようにして3層押出製膜により、厚さ130μmのシーラントフィルム(以下「PEフィルム(A)」ともいう)を得た。
 PEフィルム(A)のラミネート層面にコロナ処理を行った。
A mixture of 93 parts by mass of copolymer A, 1 part by mass of slip agent MB, and 6 parts by mass of AB agent MB was used as the first layer (sealing layer), and the second layer (intermediate layer) As a second layer (laminate layer), a mixture of 69 parts by mass of copolymer C, 30 parts by mass of LDPE, and 1 part by mass of slip agent MB was used, and 89 parts by mass of copolymer B was used as the second layer (laminate layer). Using a mixture of 10 parts by mass of LDPE and 1 part by mass of slip agent MB, the thickness of the first layer (sealing layer): second layer (intermediate layer): second layer (laminate layer) A sealant film (hereinafter also referred to as "PE film (A)") having a thickness of 130 μm was obtained by three-layer extrusion film forming at a ratio of 1:3:1.
Corona treatment was performed on the laminate layer surface of the PE film (A).
 得られたPEフィルム(A)における各層の融点を、以下の方法に基づき、示差走査熱量計を用いて、JIS K7121:2012に準拠して求めた。その結果、第1の層(シール層)の融点は99℃、第2の層(中間層)の融点は122℃、第2の層(ラミネート層)の融点は117℃であった。また、密度については、第1の層(シール層)の密度は0.906g/cm3、第2の層(中間層)の密度は0.934g/cm3、第2の層(ラミネート層)の密度は0.918g/cm3であった。 The melting point of each layer in the obtained PE film (A) was determined in accordance with JIS K7121:2012 using a differential scanning calorimeter based on the following method. As a result, the melting point of the first layer (seal layer) was 99°C, the melting point of the second layer (intermediate layer) was 122°C, and the melting point of the second layer (laminate layer) was 117°C. Regarding the density, the density of the first layer (sealing layer) is 0.906g/cm 3 , the density of the second layer (intermediate layer) is 0.934g/cm 3 , and the density of the second layer (laminate layer) is 0.906g/cm 3 . The density of was 0.918 g/cm 3 .
 (融点の測定)
 シーラントフィルムにおける各層の融点を、示差走査熱量計を用いて、JIS K7121:2012に準拠して求めた。示差走査熱量計としては、日立ハイテクサイエンス社製の熱分析装置TA7000シリーズを使用した。具体的には、シーラントフィルムから各層の試料を採取した。約10mgの試料をアルミニウム製のセルに入れ、窒素雰囲気下において、10℃/minの加熱速度で20℃から融点より充分に高い温度(例えば、200℃)まで昇温し、その到達温度で10分間保持した後、10℃/minの冷却速度で20℃まで冷却した。この昇温、保持及び冷却をもう一度繰り返し、2回目の昇温の際に観測される最大吸熱ピークの融解ピーク温度を求め、これを融点とした。
(Measurement of melting point)
The melting point of each layer in the sealant film was determined using a differential scanning calorimeter in accordance with JIS K7121:2012. As the differential scanning calorimeter, a thermal analyzer TA7000 series manufactured by Hitachi High-Tech Science Co., Ltd. was used. Specifically, samples of each layer were taken from the sealant film. Approximately 10 mg of the sample was placed in an aluminum cell, and heated at a heating rate of 10°C/min from 20°C to a temperature sufficiently higher than the melting point (for example, 200°C) in a nitrogen atmosphere, and at that temperature it was heated to 10°C. After holding for a minute, it was cooled to 20°C at a cooling rate of 10°C/min. This heating, holding, and cooling process was repeated once more, and the melting peak temperature of the maximum endothermic peak observed during the second heating was determined, and this was taken as the melting point.
 <他のシーラントフィルム>
 PEフィルム(B):厚さ130μmの未延伸ポリエチレンフィルム(密度0.911g/cm3のシール層と、密度0.937g/cm3の中間層と、密度0.926g/cm3のラミネート層とを有し、シール層:中間層:ラミネート層の厚さ比が1:3:1であるポリエチレンフィルム)
 PPフィルム :厚さ80μmの未延伸ポリプロピレンフィルム
         (東レフィルム加工、ZK-207)
<Other sealant films>
PE film (B): unstretched polyethylene film with a thickness of 130 μm (sealing layer with a density of 0.911 g/cm 3 , intermediate layer with a density of 0.937 g/cm 3 , and laminate layer with a density of 0.926 g/cm 3 ) (a polyethylene film having a sealing layer:intermediate layer:laminate layer thickness ratio of 1:3:1)
PP film: 80 μm thick unstretched polypropylene film (Toray Film Processing, ZK-207)
 [接着剤]
 以下の接着剤を用いた。
 無溶剤型接着剤(NSL):ロックペイント製、2液硬化型ウレタン系無溶剤型接着剤、主剤:RN-920、硬化剤:HN-920=1:1で配合。主剤に含まれる重合体成分の重量平均分子量(Mw)は2,000から2,500の範囲にあり、主剤に含まれる重合体成分の多分散度(Mw/Mn)は2.0から2.5の範囲にあった。
[glue]
The following adhesive was used.
Solvent-free adhesive (NSL): Manufactured by Rock Paint, 2-part curable urethane-based solvent-free adhesive, main ingredient: RN-920, curing agent: HN-920 = 1:1. The weight average molecular weight (Mw) of the polymer component contained in the base resin is in the range of 2,000 to 2,500, and the polydispersity (Mw/Mn) of the polymer component contained in the base resin is 2.0 to 2. It was in the range of 5.
 溶剤型接着剤(DL):ロックペイント製、2液硬化型ウレタン系溶剤型接着剤、主剤:RU-80、硬化剤:H-5=10:1.15で配合。主剤に含まれる重合体成分の重量平均分子量(Mw)は30,000から34,000の範囲にあり、数平均分子量(Mn)は7,500から9,500の範囲にあった。 Solvent-based adhesive (DL): Manufactured by Rock Paint, two-component curable urethane-based solvent-based adhesive, main ingredient: RU-80, curing agent: H-5 = 10:1.15. The weight average molecular weight (Mw) of the polymer component contained in the base agent was in the range of 30,000 to 34,000, and the number average molecular weight (Mn) was in the range of 7,500 to 9,500.
 [各塗工液の調製]
 以下の組成を有する各塗工液を調製した。
[Preparation of each coating fluid]
Each coating liquid having the following composition was prepared.
 (白色層用塗工液)
・合成樹脂                        12質量部
・酸化チタン                       30質量部
・溶剤                          58質量部
(Coating liquid for white layer)
Synthetic resin 12 parts by mass ・Titanium oxide 30 parts by mass ・Solvent 58 parts by mass
 (EVOH含有塗工液)
・エチレン-ビニルアルコール共重合体           12質量部
 (EVOH、三菱ケミカル製、SoarnoL 16DX)
・水                           44質量部
・イソプロピルアルコール(IPA)            44質量部
(EVOH-containing coating liquid)
・12 parts by mass of ethylene-vinyl alcohol copolymer (EVOH, manufactured by Mitsubishi Chemical, SoarnoL 16DX)
Water 44 parts by mass ・Isopropyl alcohol (IPA) 44 parts by mass
 (PVA含有塗工液)
・ポリビニルアルコール                  20質量部
 (PVA、クラレ製、ポバール3-88)
・水                           40質量部
・IPA                         40質量部
(PVA-containing coating liquid)
Polyvinyl alcohol 20 parts by mass (PVA, manufactured by Kuraray, Poval 3-88)
Water 40 parts by mass ・IPA 40 parts by mass
 (アンカーコート剤)
・イソシアネート                     10質量部
 (三井化学製、タケネートA-3)
・酢酸エチル                       90質量部
(Anchor coating agent)
Isocyanate 10 parts by mass (Mitsui Chemicals, Takenate A-3)
・Ethyl acetate 90 parts by mass
 [積層体の作製]
 以下の実施例及び比較例の記載において、既出の層に関してすでに説明した内容(例えば層の形成条件及び厚さ)については、詳細な説明を適宜省略することがある。
[Preparation of laminate]
In the following descriptions of Examples and Comparative Examples, detailed explanations of the contents already explained regarding the already mentioned layers (for example, layer formation conditions and thickness) may be omitted as appropriate.
 [実施例1]
 EVOH含有基材(A)のコロナ処理面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 1]
A solvent-free adhesive is applied to the corona-treated surface of the EVOH-containing substrate (A) to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface is connected to the corona-treated surface of the PE film (A). Pasted together. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例2]
 EVOH含有基材(A)のコロナ処理面に、グラビア印刷機を用いて、白色層用塗工液を塗布し熱風乾燥させて、厚さ1.0μmの白色層を形成した。該基材における白色層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 2]
A white layer coating solution was applied to the corona-treated surface of the EVOH-containing substrate (A) using a gravure printing machine and dried with hot air to form a 1.0 μm thick white layer. A solvent-free adhesive was applied to the white layer surface of the base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例3~8]
 EVOH含有基材(A)にかえて表2に記載のEVOH含有基材又はNy含有基材を用いたこと以外は実施例1又は2と同様にして、積層体を作製した。
[Examples 3 to 8]
A laminate was produced in the same manner as in Example 1 or 2, except that the EVOH-containing base material or Ny-containing base material listed in Table 2 was used instead of the EVOH-containing base material (A).
 [実施例9]
 PE基材のコロナ処理面に、グラビア印刷機を用いて、EVOH含有塗工液を塗布し熱風乾燥させて、厚さ1.0μmのEVOHコート層を形成した。PE基材におけるEVOHコート層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 9]
An EVOH-containing coating liquid was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form an EVOH coating layer with a thickness of 1.0 μm. A solvent-free adhesive was applied to the EVOH coat layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例10及び11]
 EVOHコート層上又はPE基材上に厚さ1.0μmの白色層をさらに形成したこと以外は実施例9と同様にして、積層体を作製した。
[Examples 10 and 11]
A laminate was produced in the same manner as in Example 9 except that a 1.0 μm thick white layer was further formed on the EVOH coat layer or the PE base material.
 [実施例12及び13]
 無溶剤型接着剤にかえて溶剤型接着剤を塗布し熱風乾燥させて厚さ3.0μmの接着剤層を形成したこと以外は実施例1と同様にして、実施例12の積層体を作製した。無溶剤型接着剤にかえて溶剤型接着剤を塗布し熱風乾燥させて厚さ3.0μmの接着剤層を形成したこと以外は実施例2と同様にして、実施例13の積層体を作製した。
[Example 12 and 13]
A laminate of Example 12 was prepared in the same manner as in Example 1, except that a solvent-based adhesive was applied instead of a solvent-free adhesive and dried with hot air to form an adhesive layer with a thickness of 3.0 μm. did. A laminate of Example 13 was prepared in the same manner as in Example 2, except that a solvent-based adhesive was applied instead of a solvent-free adhesive and dried with hot air to form an adhesive layer with a thickness of 3.0 μm. did.
 [実施例14]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にEVOHコート層を形成し、他方の面に無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例9と同様にして、積層体を作製した。
[Example 14]
Corona treatment was performed on both sides of the PE substrate. The procedure was the same as in Example 9, except that an EVOH coat layer was formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced.
 [実施例15]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にEVOHコート層を形成し、他方の面上に白色層を形成し、さらに無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例10と同様にして、積層体を作製した。
[Example 15]
Corona treatment was performed on both sides of the PE substrate. An EVOH coating layer was formed on one side of the PE base material, a white layer was formed on the other side, and the corona-treated side of the PE film (A) was further bonded with a solvent-free adhesive. A laminate was produced in the same manner as in Example 10 except for this.
 [実施例16]
 PEフィルム(A)にかえて「CXU-ELS」を用いたこと以外は実施例4と同様にして、積層体を作製した。
[Example 16]
A laminate was produced in the same manner as in Example 4, except that "CXU-ELS" was used instead of PE film (A).
 [実施例17]
 PE基材のコロナ処理面に、グラビア印刷機を用いて、EVOH含有塗工液にかえてPVA含有塗工液を塗布し熱風乾燥させて、厚さ1.0μmのPVAコート層を形成したこと以外は実施例9と同様にして、積層体を作製した。
[Example 17]
Using a gravure printing machine, a PVA-containing coating liquid was applied to the corona-treated surface of the PE base material instead of an EVOH-containing coating liquid, and the coating liquid was dried with hot air to form a PVA coating layer with a thickness of 1.0 μm. A laminate was produced in the same manner as in Example 9 except for this.
 [実施例18]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にPVAコート層を形成し、他方の面に無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例17と同様にして、積層体を作製した。
[Example 18]
Corona treatment was performed on both sides of the PE substrate. A PVA coating layer was formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced.
 [実施例19]
 PE基材のコロナ処理面に、グラビア印刷機を用いて、アンカーコート剤を塗布し熱風乾燥させて、厚さ0.5μmのアンカーコート層(AC層)を形成した。PE基材におけるAC層面に、グラビア印刷機を用いて、EVOH含有塗工液を塗布し熱風乾燥させて、厚さ1.0μmのEVOHコート層を形成した。PE基材におけるEVOHコート層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 19]
An anchor coat agent was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form an anchor coat layer (AC layer) with a thickness of 0.5 μm. An EVOH-containing coating liquid was applied to the AC layer surface of the PE base material using a gravure printer and dried with hot air to form an EVOH coat layer with a thickness of 1.0 μm. A solvent-free adhesive was applied to the EVOH coat layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例20]
 EVOHコート層上に白色層をさらに形成したこと以外は実施例19と同様にして、積層体を作製した。
[Example 20]
A laminate was produced in the same manner as in Example 19 except that a white layer was further formed on the EVOH coat layer.
 [実施例21]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にAC層及びEVOHコート層を順次形成し、他方の面に無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例19と同様にして、積層体を作製した。
[Example 21]
Corona treatment was performed on both sides of the PE substrate. Example except that an AC layer and an EVOH coat layer were sequentially formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced in the same manner as in Example 19.
 [実施例22]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にAC層及びEVOHコート層を順次形成し、他方の面上に白色層を形成し、さらに無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例20と同様にして、積層体を作製した。
[Example 22]
Corona treatment was performed on both sides of the PE substrate. An AC layer and an EVOH coat layer are sequentially formed on one side of the PE base material, a white layer is formed on the other side, and the corona-treated side of the PE film (A) is further bonded with a solvent-free adhesive. A laminate was produced in the same manner as in Example 20 except that they were bonded together.
 [実施例23]
 PE基材上にAC層を介してPVAコート層を形成したこと以外は実施例17と同様にして、積層体を作製した。
[Example 23]
A laminate was produced in the same manner as in Example 17 except that a PVA coat layer was formed on the PE base material via an AC layer.
 [実施例24]
 PE基材の両面にコロナ処理を行った。PE基材の一方の面上にAC層及びPVAコート層を順次形成し、他方の面に無溶剤型接着剤を介してPEフィルム(A)のコロナ処理面を貼り合わせたこと以外は実施例23と同様にして、積層体を作製した。
[Example 24]
Corona treatment was performed on both sides of the PE substrate. Example except that an AC layer and a PVA coat layer were sequentially formed on one side of the PE base material, and the corona-treated side of the PE film (A) was bonded to the other side via a solvent-free adhesive. A laminate was produced in the same manner as in Example 23.
 [実施例25]
 PP基材のコロナ処理面に、グラビア印刷機を用いて、アンカーコート剤を塗布し熱風乾燥させて、厚さ0.5μmのAC層を形成した。PP基材におけるAC層面に、グラビア印刷機を用いて、EVOH含有塗工液を塗布し熱風乾燥させ、厚さ1.0μmのEVOHコート層を形成した。PP基材におけるEVOHコート層面に、グラビア印刷機を用いて、白色層用塗工液を塗布し熱風乾燥させて、厚さ1.0μmの白色層を形成した。PP基材における白色層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPPフィルムのコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 25]
An anchor coating agent was applied to the corona-treated surface of the PP base material using a gravure printing machine and dried with hot air to form an AC layer with a thickness of 0.5 μm. An EVOH-containing coating liquid was applied to the AC layer surface of the PP base material using a gravure printing machine and dried with hot air to form an EVOH coat layer with a thickness of 1.0 μm. A white layer coating liquid was applied to the EVOH coat layer surface of the PP base material using a gravure printer and dried with hot air to form a 1.0 μm thick white layer. A solvent-free adhesive was applied to the white layer surface of the PP base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface was bonded to the corona-treated surface of the PP film. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [比較例1及び2]
 PE基材又はNy基材のコロナ処理面に、溶剤型接着剤を塗布し熱風乾燥させて厚さ3.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Comparative Examples 1 and 2]
A solvent-based adhesive is applied to the corona-treated surface of the PE base material or Ny base material and dried with hot air to form an adhesive layer with a thickness of 3.0 μm, and the adhesive layer surface is subjected to the corona treatment of the PE film (A). Attached to the surface. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例1A]
 PE基材のコロナ処理面に、グラビア印刷機を用いて、白色層用塗工液を塗布し熱風乾燥させて、厚さ1.0μmの白色層を形成した。該基材における白色層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Example 1A]
A white layer coating solution was applied to the corona-treated surface of the PE base material using a gravure printing machine and dried with hot air to form a 1.0 μm thick white layer. A solvent-free adhesive was applied to the white layer surface of the base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface was bonded to the corona-treated surface of the PE film (A). After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [実施例2A~4A]
 PE基材のコロナ処理面に、グラビア印刷機を用いて、
・実施例2Aでは油性グラビアインキ(DICグラフィックス製、商品名:フィナート)を塗布し熱風乾燥させて印刷層を形成し、その上に白色層用塗工液を塗布し熱風乾燥させて白色層を形成し;
・実施例3Aでは上記油性グラビアインキを塗布し熱風乾燥させて印刷層を形成し、その上に白色層用塗工液を塗布し熱風乾燥させて白色層を形成し、その上に上記油性グラビアインキを塗布し熱風乾燥させて印刷層を形成し;
・実施例4Aでは白色層用塗工液を塗布し熱風乾燥させて白色層を形成し、その上に上記油性グラビアインキを塗布し熱風乾燥させて印刷層を形成した。
 それぞれの層の厚さは1.0μmである。
[Examples 2A to 4A]
Using a gravure printing machine on the corona-treated surface of the PE base material,
- In Example 2A, an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart) was applied and dried with hot air to form a printing layer, and a white layer coating liquid was applied on top of that and dried with hot air to form a white layer. form;
- In Example 3A, the above oil-based gravure ink is applied and dried with hot air to form a printing layer, the coating liquid for white layer is applied on top of that and dried with hot air to form a white layer, and the above oil-based gravure ink is applied on top of that and the white layer is formed by drying with hot air. Applying ink and drying with hot air to form a printing layer;
- In Example 4A, a white layer coating solution was applied and dried with hot air to form a white layer, and the oil-based gravure ink was applied thereon and dried with hot air to form a printed layer.
The thickness of each layer is 1.0 μm.
 PE基材における白色層面又は印刷層面に、無溶剤型接着剤を塗布して厚さ1.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。
 以上のようにして、積層体を作製した。
A solvent-free adhesive is applied to the white layer surface or printed layer surface of the PE base material to form an adhesive layer with a thickness of 1.0 μm, and the adhesive layer surface is bonded to the corona-treated surface of the PE film (A). Ta. After bonding, aging treatment was performed at 40° C. for 4 days.
A laminate was produced as described above.
 [比較例1A及び2A]
 PE基材又はNy基材のコロナ処理面に、溶剤型接着剤を塗布し熱風乾燥させて厚さ3.0μmの接着剤層を形成し、該接着剤層面をPEフィルム(A)のコロナ処理面と貼り合わせた。貼り合わせ後、40℃×4日間のエージング処理を行った。以上のようにして、積層体を作製した。
[Comparative Examples 1A and 2A]
A solvent-based adhesive is applied to the corona-treated surface of the PE base material or Ny base material and dried with hot air to form an adhesive layer with a thickness of 3.0 μm, and the adhesive layer surface is subjected to the corona treatment of the PE film (A). Attached to the surface. After bonding, aging treatment was performed at 40° C. for 4 days. A laminate was produced as described above.
 [包装袋の作製]
 得られた積層体を2枚準備し、シーラント層が向かい合うように積層体同士を重ね合わせ、2辺をヒートシールすることで胴部を形成した。次いで、さらにもう1枚の積層体を、シーラント層が外側になるようにV字状に折り、胴部の一端から挟み込み、ヒートシールすることにより底部を形成し、スタンディングパウチを作成した。ヒートシール条件は、温度140℃(実施例25以外)又は180℃(実施例25)、圧力1kgf/cm2、1秒とした。
[Preparation of packaging bag]
Two of the obtained laminates were prepared, the laminates were stacked on top of each other so that the sealant layers faced each other, and two sides were heat-sealed to form a body. Next, yet another laminate was folded into a V-shape with the sealant layer on the outside, sandwiched from one end of the body, and heat-sealed to form a bottom, thereby creating a standing pouch. The heat sealing conditions were a temperature of 140° C. (other than Example 25) or 180° C. (Example 25), a pressure of 1 kgf/cm 2 , and a time of 1 second.
 [引裂き強度]
 JIS P8116:2000、JIS K7128-2:1998に準拠して、実施例及び比較例で作製した積層体を63mm×76mmの大きさにカットして、試験片を作製した。ここで、積層体の縦方向(MD)、横方向(TD)又はMDに対して斜め45°の方向に長さ63mmの短辺の向きが揃うように、積層体をカットした。試験片の長辺の中央部において、積層体の基材側から、試験片の短辺の向きに沿って、各装置の(平均)出力に対する出力80%及び走査速度100mm/s又は1000mm/sでレーザーを照射して直線状の易カット線(易開封線)を形成した。易開封線は5本形成した(図12参照)。易開封線の間隔は4mmとした。
[Tear strength]
In accordance with JIS P8116:2000 and JIS K7128-2:1998, the laminates produced in Examples and Comparative Examples were cut into a size of 63 mm x 76 mm to produce test pieces. Here, the laminate was cut so that the short sides of the 63 mm length were aligned in the longitudinal direction (MD), transverse direction (TD), or diagonal direction of 45° with respect to the MD. At the center of the long side of the test piece, from the base material side of the laminate, along the short side of the test piece, the output is 80% of the (average) output of each device and the scanning speed is 100 mm/s or 1000 mm/s. A straight easy-to-cut line (easy-to-open line) was formed by irradiating the laser with a laser. Five easy-to-open lines were formed (see FIG. 12). The interval between the easy-to-open lines was 4 mm.
 以下のレーザー照射装置を用いた。
・CO2レーザー照射装置
 (キーエンス製、3-Axis CO2レーザマーカ ML-Z9520、CO2レーザー、波長10.6μm、平均出力30W)、
・ファイバーレーザー照射装置
 (パナソニック製、LP-Z250、
  Yb:ファイバーレーザー、波長1060nm、平均出力25W、
  印字パルス周期10μs、線幅70μm)
・UVレーザー照射装置
 (キーエンス製、3-Axis UVレーザマーカ MD-U1000C、YVO4レーザー、波長355nm、出力2.5W)
The following laser irradiation device was used.
・CO 2 laser irradiation device (manufactured by Keyence, 3-Axis CO 2 laser marker ML-Z9520, CO 2 laser, wavelength 10.6 μm, average output 30 W),
・Fiber laser irradiation device (Manufactured by Panasonic, LP-Z250,
Yb: fiber laser, wavelength 1060 nm, average output 25 W,
Print pulse period 10μs, line width 70μm)
・UV laser irradiation device (Keyence, 3-Axis UV laser marker MD-U1000C, YVO 4 laser, wavelength 355 nm, output 2.5 W)
 易開封線に沿った引裂き強度を、JIS K7128-2:1998のエルメンドルフ引裂法に準拠して測定した。測定器は、エルメンドルフ引裂度試験機(東洋精機製作所S-01)を使用した。積層体を4枚重ねて試験片を作製し、2個の試験片について測定を行い、結果を4倍して16枚単位の値に換算して得られた値の平均値を引裂き強度(N)とした。実施例1Aの積層体に易開封線を形成しなかった場合の評価を参考例1Aとして記載した。 The tear strength along the easy tear line was measured in accordance with the Elmendorf tear method of JIS K7128-2:1998. The measuring device used was an Elmendorf tear tester (Toyo Seiki Seisakusho S-01). A test piece is made by stacking four laminates, two test pieces are measured, the result is multiplied by 4, the value is converted to a value for each 16 pieces, and the average value of the obtained values is determined as the tear strength (N ). The evaluation when the easy-to-open line was not formed in the laminate of Example 1A was described as Reference Example 1A.
 [手切れ性評価(実施例1~25及び比較例1~2)]
 積層体の手切れ性を、上記引裂き強度に基づき評価した。
 AA:1.0N未満
 A :1.0N以上1.3N未満
 B :1.3N以上1.7N未満
 C :1.7N以上3.0N未満
 D :3.0N以上
 E :OVER(測定不可)
[Hand-tearability evaluation (Examples 1 to 25 and Comparative Examples 1 to 2)]
The hand tearability of the laminate was evaluated based on the above tear strength.
AA: Less than 1.0N A: 1.0N or more and less than 1.3N B: 1.3N or more and less than 1.7N C: 1.7N or more and less than 3.0N D: 3.0N or more E: OVER (unmeasurable)
 [手切れ性評価(実施例1A~4A及び比較例1A~2A)]
 積層体の手切れ性を、上記引裂き強度に基づき評価した。
 A :3.0N未満
 B :3.0N以上
 C :OVER(測定不可)
[Hand tearability evaluation (Examples 1A to 4A and Comparative Examples 1A to 2A)]
The hand tearability of the laminate was evaluated based on the above tear strength.
A: Less than 3.0N B: 3.0N or more C: OVER (cannot be measured)
 [モノマテリアル率]
 積層体におけるポリエチレンの含有割合が90質量%以上の場合を「A」と評価し、積層体におけるポリエチレンの含有割合が90質量%未満の場合を「B」と評価した。
[Monomaterial rate]
A case where the content rate of polyethylene in the laminate was 90% by mass or more was evaluated as "A", and a case where the content rate of polyethylene in the laminate was less than 90% by mass was evaluated as "B".
 [変質部の断面観察及び幅W1の測定]
 試験片の短辺に沿って形成された易開封線を4分割した場合の境界に位置する点P1、P2、P3を設定した。易開封線が延びる方向に直交するとともに点P1、P2、P3をそれぞれ通る直線に沿って積層体を切断した。3つの切断面を観察し、変質部の幅を測定した。幅の3つの測定値の平均値を、変質部の幅W1として用いた。表中では、幅W1を「線幅」と記載した。
 キーエンス社製のデジタルマイクロスコープ VHX-6000を用いて、(A)実施例2(CO2レーザー照射、出力:80%、走査速度:1000mm/sec)、(B)実施例2(ファイバーレーザー照射、出力:80%、走査速度:100mm/sec)、(C)実施例2(UVレーザー照射、出力:80%、走査速度:100mm/sec)の積層体の断面形状を観察した(観察倍率1000倍)。それぞれの積層体の観察結果を図13(A)~(C)に示す。いずれもMD方向に沿ってレーザー照射された積層体の、MD方向に対して垂直な断面の画像である。
[Observation of cross section of altered part and measurement of width W1]
Points P1, P2, and P3 were set at the boundaries when the easy-open line formed along the short side of the test piece was divided into four. The laminate was cut along a straight line that was perpendicular to the direction in which the easy-to-open line extended and also passed through points P1, P2, and P3. Three cut surfaces were observed and the width of the altered area was measured. The average value of the three width measurements was used as the width W1 of the altered portion. In the table, the width W1 is described as "line width".
Using a digital microscope VHX-6000 manufactured by Keyence Corporation, (A) Example 2 (CO 2 laser irradiation, output: 80%, scanning speed: 1000 mm/sec), (B) Example 2 (fiber laser irradiation, Output: 80%, scanning speed: 100 mm/sec), (C) The cross-sectional shape of the laminate of Example 2 (UV laser irradiation, output: 80%, scanning speed: 100 mm/sec) was observed (observation magnification: 1000 times) ). The observation results of each laminate are shown in FIGS. 13(A) to 13(C). Each is an image of a cross section perpendicular to the MD direction of a laminate irradiated with laser along the MD direction.
 VHX-6000の測長機能を用いて、図13(A)~(C)の変質部の幅W1を測定した。その結果、(A)、(B)及び(C)では、それぞれ、121μm、122μm及び104μmであった。 Using the length measurement function of VHX-6000, the width W1 of the altered portion shown in FIGS. 13(A) to (C) was measured. The results were 121 μm, 122 μm, and 104 μm in (A), (B), and (C), respectively.
 キーエンス社製のデジタルマイクロスコープ VHX-6000を用いて、実施例1A(CO2レーザー照射、出力:80%、走査速度:1000mm/sec)の積層体の断面形状を観察した(観察倍率1000倍)。積層体の観察結果を図14に示す。図14は、MD方向に沿ってレーザー照射された積層体の、MD方向に対して垂直な断面の画像である。VHX-6000の測長機能を用いて、図14の変質部の幅W1を測定した。その結果、109μmであった。 The cross-sectional shape of the laminate of Example 1A (CO 2 laser irradiation, output: 80%, scanning speed: 1000 mm/sec) was observed using a digital microscope VHX-6000 manufactured by Keyence Corporation (observation magnification: 1000 times). . The observation results of the laminate are shown in FIG. 14. FIG. 14 is an image of a cross section perpendicular to the MD direction of the laminate irradiated with laser along the MD direction. Using the length measurement function of VHX-6000, the width W1 of the altered portion shown in FIG. 14 was measured. As a result, it was 109 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 当業者であれば理解するように、本開示の積層体等は上記実施例の記載によって限定されず、上記実施例及び明細書は本開示の原理を説明するためのものにすぎず、本開示の主旨及び範囲から逸脱しない限り、様々な改変又は改善を行うことができ、これら改変又は改善はいずれも保護請求している本開示の範囲内に含まれる。さらに本開示が保護請求している範囲は、請求の範囲の記載のみならずその均等物を含む。 As those skilled in the art will understand, the laminate etc. of the present disclosure are not limited by the description of the above embodiments, and the above embodiments and specification are merely for illustrating the principles of the present disclosure. Various modifications or improvements can be made without departing from the spirit and scope of the invention, and all such modifications or improvements are included within the scope of the claimed disclosure. Furthermore, the scope of this disclosure includes not only the claims but also equivalents thereof.
10 包装袋
11 上部
12 下部
12a 下部シール部
13 側部
13a 側部シール部
14 表面フィルム
15 裏面フィルム
16 下部フィルム
17 収容部
20 注出口部
20a 注出口シール部
26 易開封線
27 貫通孔
28 切り欠き
30 積層体
30x 内面
30y 外面
40 延伸基材
42 ポリオレフィン層
44 接着性樹脂層
46 発熱性樹脂層
50 発熱性樹脂層又は発熱層
60 接着層
70 シーラント層
80 発熱層
10 Packaging bag 11 Upper part 12 Lower part 12a Lower seal part 13 Side part 13a Side seal part 14 Front film 15 Back film 16 Lower film 17 Storage part 20 Spout part 20a Spout seal part 26 Easy-open line 27 Through hole 28 Notch 30 Laminate 30x Inner surface 30y Outer surface 40 Stretched base material 42 Polyolefin layer 44 Adhesive resin layer 46 Exothermic resin layer 50 Exothermic resin layer or exothermic layer 60 Adhesive layer 70 Sealant layer 80 Exothermic layer

Claims (20)

  1.  延伸基材とシーラント層とを少なくとも備える積層体であって、
     前記延伸基材は、ポリオレフィン層を少なくとも備え、
     前記シーラント層は、ポリオレフィンを主成分として含有し、
     前記積層体は、レーザーを吸収して発熱するヘテロ原子含有樹脂を主成分として含有する発熱性樹脂層を備え、該発熱性樹脂層が、前記延伸基材中、前記延伸基材と前記シーラント層との間、及び前記延伸基材における前記シーラント層側の面とは反対側の面上の少なくともいずれかの箇所に位置する、
    積層体。
    A laminate comprising at least a stretched base material and a sealant layer,
    The stretched base material includes at least a polyolefin layer,
    The sealant layer contains polyolefin as a main component,
    The laminate includes a heat-generating resin layer containing as a main component a heteroatom-containing resin that generates heat by absorbing laser, and the heat-generating resin layer is arranged between the stretched base material and the sealant layer in the stretched base material. and at least one location on the surface of the stretched base material opposite to the surface on the side of the sealant layer,
    laminate.
  2.  前記ヘテロ原子含有樹脂が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール及びポリアミドから選択される少なくとも1種を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the heteroatom-containing resin contains at least one selected from ethylene-vinyl alcohol copolymer, polyvinyl alcohol, and polyamide.
  3.  前記延伸基材が、前記ポリオレフィン層と、接着性樹脂層と、前記発熱性樹脂層とを少なくとも備える、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the stretched base material includes at least the polyolefin layer, the adhesive resin layer, and the exothermic resin layer.
  4.  前記積層体が、前記発熱性樹脂層を備える前記延伸基材と、接着層と、前記シーラント層とをこの順に少なくとも備える、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the laminate includes at least the stretched base material including the heat-generating resin layer, an adhesive layer, and the sealant layer in this order.
  5.  前記積層体が、前記延伸基材と、前記発熱性樹脂層と、接着層と、前記シーラント層とをこの順に少なくとも備える、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the laminate comprises at least the stretched base material, the exothermic resin layer, the adhesive layer, and the sealant layer in this order.
  6.  前記積層体が、前記発熱性樹脂層と、前記延伸基材と、接着層と、前記シーラント層とをこの順に少なくとも備える、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the laminate comprises at least the exothermic resin layer, the stretched base material, the adhesive layer, and the sealant layer in this order.
  7.  前記積層体が、レーザーを吸収して発熱する発熱物質(ただし、レーザーを吸収して発熱する前記ヘテロ原子含有樹脂を除く)を含有する発熱層をさらに備える、請求項1~6のいずれか一項に記載の積層体。 Any one of claims 1 to 6, wherein the laminate further comprises a heat generating layer containing a heat generating substance that absorbs laser and generates heat (excluding the heteroatom-containing resin that generates heat by absorbing laser). The laminate described in section.
  8.  前記発熱物質が、金属酸化物、ビスマス系化合物、モリブデン、モリブデン系化合物、銅、銅系化合物及びカーボンブラックから選択される少なくとも1種である、請求項7に記載の積層体。 The laminate according to claim 7, wherein the exothermic substance is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black.
  9.  前記延伸基材の前記ポリオレフィン層がポリエチレン層であり、前記シーラント層がポリエチレンを主成分として含有するか、又は、
     前記延伸基材の前記ポリオレフィン層がポリプロピレン層であり、前記シーラント層がポリプロピレンを主成分として含有する、
    請求項1~8のいずれか一項に記載の積層体。
    The polyolefin layer of the stretched base material is a polyethylene layer, and the sealant layer contains polyethylene as a main component, or
    The polyolefin layer of the stretched base material is a polypropylene layer, and the sealant layer contains polypropylene as a main component.
    The laminate according to any one of claims 1 to 8.
  10.  前記シーラント層が、
      第1の層と第2の層とを少なくとも備え、
      前記第1の層が、エチレン/α-オレフィン共重合体を主成分として含有し、
      前記第1の層の融点が、112℃以下であり、
      前記第2の層が、ポリエチレンを主成分として含有し、
      前記第2の層の融点が、114℃以上であり、
      前記積層体の一方の表面層が、前記第1の層である、
    請求項1~9のいずれか一項に記載の積層体。
    The sealant layer is
    comprising at least a first layer and a second layer,
    The first layer contains an ethylene/α-olefin copolymer as a main component,
    The melting point of the first layer is 112°C or less,
    The second layer contains polyethylene as a main component,
    The second layer has a melting point of 114° C. or higher,
    one surface layer of the laminate is the first layer,
    The laminate according to any one of claims 1 to 9.
  11.  前記第1の層の密度が0.915g/cm3以下であり、
     前記第2の層の密度が0.916g/cm3以上である、
    請求項10に記載の積層体。
    The density of the first layer is 0.915 g/cm 3 or less,
    The density of the second layer is 0.916 g/cm 3 or more,
    The laminate according to claim 10.
  12.  前記積層体全体におけるポリオレフィンの含有割合が、80質量%以上である、請求項1~11のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 11, wherein the polyolefin content in the entire laminate is 80% by mass or more.
  13.  延伸基材とシーラント層とを少なくとも備える積層体であって、
     前記延伸基材は、ポリエチレンを主成分として含有し、
     前記シーラント層は、
      第1の層と第2の層とを少なくとも備え、
      前記第1の層が、エチレン/α-オレフィン共重合体を主成分として含有し、
      前記第1の層の融点が、112℃以下であり、
      前記第2の層が、ポリエチレンを主成分として含有し、
      前記第2の層の融点が、114℃以上であり、
      前記積層体の一方の表面層が、前記第1の層であり、
     前記積層体は、前記延伸基材と前記シーラント層との間に、レーザーを吸収して発熱する発熱物質を含有する発熱層をさらに備える、
    積層体。
    A laminate comprising at least a stretched base material and a sealant layer,
    The stretched base material contains polyethylene as a main component,
    The sealant layer is
    comprising at least a first layer and a second layer,
    The first layer contains an ethylene/α-olefin copolymer as a main component,
    The melting point of the first layer is 112°C or less,
    The second layer contains polyethylene as a main component,
    The second layer has a melting point of 114° C. or higher,
    One surface layer of the laminate is the first layer,
    The laminate further includes a heat generating layer containing a heat generating substance that absorbs laser and generates heat between the stretched base material and the sealant layer.
    laminate.
  14.  前記第1の層の密度が0.915g/cm3以下であり、
     前記第2の層の密度が0.916g/cm3以上である、
    請求項13に記載の積層体。
    The density of the first layer is 0.915 g/cm 3 or less,
    The density of the second layer is 0.916 g/cm 3 or more,
    The laminate according to claim 13.
  15.  前記発熱物質が、金属酸化物、ビスマス系化合物、モリブデン、モリブデン系化合物、銅、銅系化合物及びカーボンブラックから選択される少なくとも1種である、請求項13又は14に記載の積層体。 The laminate according to claim 13 or 14, wherein the exothermic substance is at least one selected from metal oxides, bismuth-based compounds, molybdenum, molybdenum-based compounds, copper, copper-based compounds, and carbon black.
  16.  前記発熱物質が、金属酸化物である、請求項13~15のいずれか一項に記載の積層体。 The laminate according to any one of claims 13 to 15, wherein the exothermic substance is a metal oxide.
  17.  前記発熱層が、前記延伸基材上に設けられた印刷層である、請求項13~16のいずれか一項に記載の積層体。 The laminate according to any one of claims 13 to 16, wherein the heat generating layer is a printed layer provided on the stretched base material.
  18.  前記発熱層と前記シーラント層との間に、接着層をさらに備える、請求項13~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 13 to 17, further comprising an adhesive layer between the heat generating layer and the sealant layer.
  19.  前記積層体全体におけるポリエチレンの含有割合が、80質量%以上である、請求項13~18のいずれか一項に記載の積層体。 The laminate according to any one of claims 13 to 18, wherein the content of polyethylene in the entire laminate is 80% by mass or more.
  20.  請求項1~19のいずれか一項に記載の積層体を備える包装袋であって、
     前記包装袋が、
      内容物を収容する収容部と、
      前記積層体の前記シーラント層同士が接合されているシール部と、
      前記積層体の変質部を含む易開封線と
    を有し、
     前記シール部が、前記収容部を画成する内縁を含み、
     前記易開封線が、前記シール部の前記内縁に交わる第1交点及び第2交点を含み、前記包装袋を平面視した場合に前記収容部を横切る線である、
    包装袋。
    A packaging bag comprising the laminate according to any one of claims 1 to 19,
    The packaging bag is
    a storage section that accommodates the contents;
    a sealing portion in which the sealant layers of the laminate are joined;
    and an easy-to-open line including the altered portion of the laminate;
    The seal portion includes an inner edge defining the housing portion,
    The easy-to-open line includes a first intersection point and a second intersection point that intersect the inner edge of the seal portion, and is a line that crosses the storage portion when the packaging bag is viewed from above.
    packaging bag.
PCT/JP2023/013257 2022-03-30 2023-03-30 Multilayer body and packaging bag WO2023190903A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022057547A JP2023149135A (en) 2022-03-30 2022-03-30 Laminate and packaging bag
JP2022-057556 2022-03-30
JP2022057556A JP2023149144A (en) 2022-03-30 2022-03-30 Laminate and packaging bag
JP2022-057547 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190903A1 true WO2023190903A1 (en) 2023-10-05

Family

ID=88202851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013257 WO2023190903A1 (en) 2022-03-30 2023-03-30 Multilayer body and packaging bag

Country Status (1)

Country Link
WO (1) WO2023190903A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058839A (en) * 2008-09-08 2010-03-18 Toppan Printing Co Ltd Easily openable pillow packaging bag
JP2020157719A (en) * 2019-03-28 2020-10-01 大日本印刷株式会社 Laminate, packaging material, packaging bag and stand pouch
JP2020157722A (en) * 2019-03-28 2020-10-01 大日本印刷株式会社 Base material, laminate, packaging material, packaging bag and stand pouch
JP2020203405A (en) * 2019-06-14 2020-12-24 大日本印刷株式会社 Laminate and packaging bag
JP2021054078A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, and packaging container having the barrier laminate
JP2021054076A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, and packaging container having the barrier laminate
JP2022030077A (en) * 2020-08-06 2022-02-18 藤森工業株式会社 Laminate for heat seal packaging and packaging material
JP2022047354A (en) * 2020-09-11 2022-03-24 東洋製罐グループホールディングス株式会社 Packaging layered body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058839A (en) * 2008-09-08 2010-03-18 Toppan Printing Co Ltd Easily openable pillow packaging bag
JP2020157719A (en) * 2019-03-28 2020-10-01 大日本印刷株式会社 Laminate, packaging material, packaging bag and stand pouch
JP2020157722A (en) * 2019-03-28 2020-10-01 大日本印刷株式会社 Base material, laminate, packaging material, packaging bag and stand pouch
JP2020203405A (en) * 2019-06-14 2020-12-24 大日本印刷株式会社 Laminate and packaging bag
JP2021054078A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, and packaging container having the barrier laminate
JP2021054076A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Barrier laminate, and packaging container having the barrier laminate
JP2022030077A (en) * 2020-08-06 2022-02-18 藤森工業株式会社 Laminate for heat seal packaging and packaging material
JP2022047354A (en) * 2020-09-11 2022-03-24 東洋製罐グループホールディングス株式会社 Packaging layered body

Similar Documents

Publication Publication Date Title
EP2837578B1 (en) Cover material for packaging container for retortion
JP6172398B2 (en) Multilayer film, laminated film for packaging material, packaging bag and standing pouch
JP5991504B2 (en) Easy-penetrating lid
WO2018062331A1 (en) Laminated body
WO2023190903A1 (en) Multilayer body and packaging bag
WO2023190907A1 (en) Stretched base material, printing base material, barrier sealant film, laminate, and packaging bag
JP2023149135A (en) Laminate and packaging bag
JP6268873B2 (en) Laminated sachet material for packaging, sachet using the same, and laser sachet for packaging
JP7124285B2 (en) Laminate and bag composed of the laminate
JP2023149144A (en) Laminate and packaging bag
JP2023149114A (en) Rigid base material, printing base material, laminate and packaging bag
JP2023149102A (en) packaging bag
JP2023149106A (en) Heat-resistant base material, printing base material, laminate and packaging bag
JP2023149096A (en) laminate
JP2023149087A (en) Barrier base material and printing base material
JP2023149129A (en) Barrier sealant film, laminate and packaging bag
KR20150020262A (en) Layered film
JP7033266B2 (en) A method for manufacturing a laminated body, a bag composed of the laminated body, and the laminated body.
WO2024071412A1 (en) Stretched base material, printed base material, barrier base material, laminate, and packaging container
JP2020055286A (en) Laminate and bag composed of the laminate
JP2024052239A (en) Barrier substrate, printing substrate, laminate and packaging container
JP4498785B2 (en) Method for producing laminate for liquid-filled sachet and liquid-filled sachet
JP7331473B2 (en) Resin composition for forming sealant layer, and sealant film, laminated film and packaging material using the same
JP6467828B2 (en) Lid material
WO2024048457A1 (en) Multilayer body, packaging bag and method for producing packaging bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780911

Country of ref document: EP

Kind code of ref document: A1