WO2023190861A1 - Vapor deposition mask - Google Patents

Vapor deposition mask Download PDF

Info

Publication number
WO2023190861A1
WO2023190861A1 PCT/JP2023/013165 JP2023013165W WO2023190861A1 WO 2023190861 A1 WO2023190861 A1 WO 2023190861A1 JP 2023013165 W JP2023013165 W JP 2023013165W WO 2023190861 A1 WO2023190861 A1 WO 2023190861A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
formula
deposition mask
resin layer
group
Prior art date
Application number
PCT/JP2023/013165
Other languages
French (fr)
Japanese (ja)
Inventor
義和 大塚
智久 山田
大輔 前田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023190861A1 publication Critical patent/WO2023190861A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to a vapor deposition mask.
  • a vapor deposition mask is used to stack necessary organic layers only on necessary pixels on a device substrate on which switch elements such as TFTs are formed.
  • a metal mask has been used as the vapor deposition mask, but in recent years, in order to form a finer pattern of mask openings, there is a tendency to use a resin film as a mask material instead of a metal mask.
  • resin films are attracting attention as mask materials from the viewpoint of weight reduction.
  • Resin films conventionally used as mask materials are required to further reduce their coefficient of linear expansion from the viewpoint of suppressing thermal deformation.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a vapor deposition mask in which thermal deformation is suppressed.
  • An embodiment of the present invention is a vapor deposition mask.
  • X 1 represents at least one tetravalent organic group selected from formulas (3) and (3') below
  • Y 1 represents a group represented by formula (P) below. or represents an F-containing organic group
  • n is a positive integer representing the number of repeating units.
  • R 10 , R 11 , R 12 and R 13 each independently represent a hydrogen atom or a monovalent alkyl group having 1 to 3 carbon atoms.
  • R represents Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group.
  • m represents an integer of 0 to 4
  • r represents an integer of 1 to 3.
  • the vapor deposition mask of the above aspect may further include a metal layer laminated on at least a portion of the surface of the resin layer facing the vapor deposition source.
  • the resin layer may contain silica particles.
  • the surface of the silica particles may be modified with an alkoxysilane compound having two aromatic groups having 6 to 18 carbon atoms or one aromatic group having 7 to 18 carbon atoms.
  • a technique related to a vapor deposition mask in which thermal deformation is suppressed is provided.
  • FIG. 1(a) is a plan view of the vapor deposition mask according to Embodiment 1 when viewed from the resin layer side
  • FIG. 1(b) is a cross-sectional view taken along line AA shown in FIG. 1(a). It is.
  • FIG. 1(a) is a plan view of the vapor deposition mask 10 according to the embodiment when viewed from the resin layer 24 side
  • FIG. 1(b) is a cross-sectional view taken along line AA shown in FIG. 1(a). It is a diagram.
  • the vapor deposition mask 10 includes a plurality of mask bodies 20 and a reinforcing frame 30 disposed around the plurality of mask bodies 20 so as to surround the plurality of mask bodies 20.
  • the frame body 30 fixes and holds the mask body 20 in a tensioned state.
  • the mask body 20 is a hybrid mask in which a metal layer 22 is laminated on the main surface side of a resin layer 24 facing the vapor deposition source.
  • a metal layer 22 is laminated on the main surface side of a resin layer 24 facing the vapor deposition source.
  • an opening P for forming a thin film pattern on the substrate to be deposited by vapor deposition is provided in the resin layer 24, and a through hole Q containing the opening P is formed in the metal layer 22. There is.
  • the material of the metal layer 22 is not particularly limited, but stainless steel, iron-nickel alloy, aluminum alloy, etc. are applicable, for example.
  • Invar alloy which is an alloy mainly composed of iron and nickel, has a relatively small coefficient of linear expansion and is preferable from the viewpoint of suppressing thermal deformation.
  • the metal layer 22 and the frame 30 are bonded to each other at a portion in contact with the frame 30.
  • the material of the resin layer 24 will be described later.
  • the frame body 30 is formed of a metal plate material having a low coefficient of linear thermal expansion.
  • the metal plate material constituting the frame 30 include Invar material, which is a nickel-iron alloy, and Super Invar material, which is a nickel-iron-cobalt alloy.
  • the resin layer 24 is laminated on the metal layer 22 in the form of metal foil.
  • the lamination method include a method of pasting the resin layer 24 on the metal layer 22 and a method of forming the metal layer 22 on the resin layer 24 by plating.
  • a resist not shown
  • exposure and development are performed to form through-holes Q in the metal layer 22. The corresponding part is removed.
  • the portions of the metal layer 22 that are exposed in the portions where the resist has been removed are selectively removed by an etching process, thereby forming through-holes Q in a predetermined pattern in the metal layer 22.
  • the mask body 20 is formed by irradiating a region of the resin layer 24 included in the through hole Q with a laser beam to form a predetermined pattern of openings P.
  • the obtained mask main body 20 is aligned with the frame 30, and the metal layer 22 and the frame 30 are joined at the portions that contact the frame 30.
  • the method of joining the metal layer 22 and the frame body 30 is not particularly limited, but examples thereof include a method of joining with an adhesive, a method of joining by welding, and the like.
  • the resin composition for a vapor deposition mask used to form the resin layer 24 will be explained.
  • the resin composition for a vapor deposition mask according to the embodiment includes a polyamic acid containing a structural unit represented by formula (1) and an organic solvent.
  • X 1 represents a tetravalent aromatic group of formula (3)
  • Y 1 represents a group represented by formula (P).
  • X 1 represents at least one tetravalent organic group selected from formulas (3) and (3') below
  • Y 1 represents a group represented by formula (P) below. or represents an F-containing organic group
  • n is a positive integer representing the number of repeating units, and is determined according to the weight average molecular weight of the polyamic acid used in this embodiment.
  • R 10 , R 11 , R 12 and R 13 each independently represent a hydrogen atom or a monovalent alkyl group having 1 to 3 carbon atoms.
  • R represents Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, and preferably represents F or Cl.
  • m represents an integer of 0 to 4, preferably 0 to 2, more preferably 0 to 1, particularly preferably 0.
  • r represents an integer of 1 to 3. Note that the alkyl group having 1 to 3 carbon atoms includes methyl, ethyl, n-propyl, and i-propyl, preferably the alkyl group having 1 to 3 carbon atoms is methyl, and more preferably, It is methyl.
  • the weight average molecular weight of the polyamic acid having the repeating unit represented by formula (1) used in this embodiment is preferably 10,000 or more, more preferably 15,000 or more, even more preferably 20,000 or more, 30, 000 or more is even more preferable.
  • the upper limit of the weight average molecular weight of the polyamic acid used in this embodiment is usually 2,000,000 or less, but it is important to prevent the viscosity of the resin composition (varnish) for a vapor deposition mask from becoming excessively high. In consideration of obtaining reproducibly, it is preferably 1,000,000 or less, more preferably 200,000 or less.
  • the weight average molecular weight is obtained by measuring by gel permeation chromatography (GPC) and converting it using a calibration curve prepared using standard polystyrene.
  • the polyamic acid used in this embodiment contains repeating units represented by formula (1) at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, even more preferably at least 80 mol%, More preferably, the content is at least 90 mol%.
  • polyamic acid in such an amount, a resin layer having characteristics suitable for a vapor deposition mask can be obtained with good reproducibility.
  • the polyamic acid is a copolymer made only of repeating units represented by formula (1), that is, a polymer containing 100 mol% of these repeating units.
  • the structural unit represented by formula (1) in this polyamic acid is not composed of only one specific type of repeating units represented by formula (1), but is composed of two or more types of repeating units represented by formula (1). It is preferable to have a random or block copolymer structure consisting of repeating units of ).
  • the types of repeating units of formula (1) that can be used are preferably 2 to 4, and even more preferably 2 to 3.
  • the resin composition for a vapor deposition mask is a polyamic acid containing structural units represented by formulas (1-1) and (1-2), and whose weight average molecular weight is 10,000 or more, and an organic solvent.
  • X 1 represents at least one tetravalent organic group selected from the above formulas (3) and (3')
  • Y 2 represents the above-mentioned It represents a group represented by formula (P1) or (P2), preferably represents a group represented by formula (P1), and Y 3 represents a group represented by formula (P3) above.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and F, Cl, Represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, preferably F or Cl.
  • m1, m2, m3, m4, m5 and m6 may be the same or different and represent an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1. , particularly preferably 0.
  • the lower limit of the numerical range of n1/n2 is preferably 2.1, more preferably 2.2, and even more preferably 2.3.
  • the upper limit of the numerical range of n1/n2 is preferably 19, more preferably 18.
  • n1/n2 preferably satisfies 2.1 to 7.5, and preferably 2.1 to 6.8. More preferably, it satisfies 3.2 to 6.0, even more preferably 3.2 to 5.1.
  • the polyamic acid used in this embodiment contains repeating units represented by formula (1-1) and formula (1-2) at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, Even more preferably it contains at least 80 mol%, and even more preferably at least 90 mol%.
  • polyamic acid in such an amount, a resin layer having characteristics suitable for a vapor deposition mask can be obtained with good reproducibility.
  • the polyamic acid is a copolymer made only of the repeating units represented by formula (1-1) and formula (1-2), that is, the polyamic acid contains 100 mol% of these repeating units. It is a polymer that
  • the weight average molecular weight of the polyamic acid used in this embodiment needs to be 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and even more preferably 30,000 or more.
  • the upper limit of the weight average molecular weight of the polyamic acid used in this embodiment is usually 2,000,000 or less, but it is important to prevent the viscosity of the resin composition (varnish) for a vapor deposition mask from becoming excessively high. In consideration of obtaining a resin layer with high tensile strength and high reproducibility, etc., it is preferably 1,000,000 or less, more preferably 200,000 or less.
  • the polyamic acid can further include a structural unit represented by formula (2).
  • X 1 represents at least one tetravalent organic group selected from the above formulas (3) and (3')
  • Y 4 represents a group represented by the following formula (P4).
  • n 3 represents the number of repeating units.
  • R 7 and R 8 may be the same or different and represent F, Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group.
  • R 7 preferably represents F or Cl.
  • R 8 preferably represents F or Cl.
  • R' represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
  • l and m may be the same or different and represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 to 1, particularly preferably 0.
  • n and n3 are preferably n3/(n+n3) ⁇ 0.2, more preferably n3/ (n+n3) ⁇ 0.1, more preferably n3/(n+n3) ⁇ 0.05. This range is advantageous in obtaining a resin layer with appropriate linear expansion coefficient, heat resistance, and tensile strength with good reproducibility.
  • n1, n2, and n3 are preferably n3/(n1+n2+n3 ) ⁇ 0.2, more preferably n3/(n1+n2+n3) ⁇ 0.1, even more preferably n3/(n1+n2+n3) ⁇ 0.05. This range is advantageous in obtaining a resin layer with appropriate linear expansion coefficient, heat resistance, and tensile strength with good reproducibility.
  • the polyamic acid used in this embodiment has other structural units (repeating unit).
  • the content of such other structural units must be less than 50 mol%, preferably less than 40 mol%, more preferably less than 30 mol%, and less than 20 mol%. is even more preferable, and even more preferably less than 10 mol%.
  • Such other structural units include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2-methyl-1,4-phenylenediamine, 5-methyl-1,3-phenylenediamine, 4-methyl -1,3-phenylenediamine, 2-(trifluoromethyl)-1,4-phenylenediamine, 2-(trifluoromethyl)-1,3-phenylenediamine and 4-(trifluoromethyl)-1,3- Phenylenediamine, benzidine, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 2,3'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)benzidine, 3,3'-bis(trifluoromethyl)benzidine, fluoromethyl)benzidine, 2,3'-bis(trifluoromethyl)benzidine, 4,4'-diphenyl ether, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'
  • the polyamic acid used in this embodiment is 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) (formula (4)) as an acid dianhydride. ) with p-phenylenediamine (pPDA) (formula (5)) and 4,4''-diamino-p-terphenyl (DATP) (formula (6)) as diamines.
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • pPDA p-phenylenediamine
  • DATP 4,4''-diamino-p-terphenyl
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • pPDA p-phenylenediamine
  • DATP 4,4''-diamino-p-terphenyl
  • the charging ratio (mole ratio) of the diamine can be set as appropriate by taking into consideration the molecular weight of the desired polyamic acid, the ratio of structural units, etc. It can be about .7 to 1.3, preferably about 0.8 to 1.2.
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • pPDA p-phenylenediamine
  • DATP 4,4”-diamino-p-terphenyl
  • APAB 2-(3-aminophenyl)-5-aminobenzimidazole
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • pPDA p-phenylenediamine
  • DATP 4,4''-diamino-p-terphenyl
  • the charging ratio (molar ratio) of the diamine consisting of -(3-aminophenyl)-5-aminobenzimidazole (APAB) can be appropriately set in consideration of the desired molecular weight of the polyamic acid, the ratio of structural units, etc.
  • the amount of BPDA which is an acid anhydride component, can be generally adjusted to about 0.7 to 1.3, preferably about 0.8 to 1.2, relative to the amine component 1.
  • the preparation ratio of the diamines pPDA, DATP, and APAB is as follows, assuming that the sum of the amount of pPDA (m 1 ), the amount of DATP (m 2 ), and the amount of APAB (m 3 ) is 1.
  • the amount (m 3 ) of APAB is preferably 0.2 or less, more preferably 0.1 or less, even more preferably 0.05 or less. That is, m 1 , m 2 and m 3 are preferably m 3 /(m 1 +m 2 +m 3 ) ⁇ 0.2, more preferably m 3 /(m 1 +m 2 +m 3 ) ⁇ 0.1. , more preferably satisfies m3/(m1+m2+m3) ⁇ 0.05.
  • the above-mentioned reaction is preferably carried out in a solvent, and when a solvent is used, various types of solvents can be used as long as they do not adversely affect the reaction. Specific examples include m-cresol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide.
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent used, and is usually about 0 to 100°C, but it is necessary to prevent imidization of the resulting polyamic acid and maintain a high content of polyamic acid units.
  • the temperature is preferably about 0 to 70°C, more preferably about 0 to 60°C, even more preferably about 0 to 50°C.
  • the reaction time cannot be absolutely defined because it depends on the reaction temperature and the reactivity of the raw materials, it is usually about 1 to 100 hours.
  • the reaction solution is usually filtered, and then the filtrate is used as it is, or after being diluted or concentrated, as a resin composition (varnish) for a vapor deposition mask.
  • a resin composition varnish
  • the solvent used for dilution and concentration is not particularly limited, and examples include those similar to the specific examples of the reaction solvent for the above reaction, and they may be used alone or in combination of two or more. .
  • the solvents used are N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3 -dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferred.
  • a varnish obtained by dissolving or dispersing the isolated polyamic acid in an organic solvent is used as a vapor deposition mask. It may also be used as a resin composition.
  • the polyamic acid is dissolved in an organic solvent.
  • the organic solvent used for dissolution and dispersion is not particularly limited, and examples thereof include those similar to the specific examples of the reaction solvent for the above reaction, and they may be used alone or in combination of two or more. good.
  • the concentration of polyamic acid relative to the total mass of the varnish should be set appropriately taking into account the thickness of the thin film to be produced, the viscosity of the varnish, etc., but it is usually about 0.5 to 30 mass%, preferably about 5 to 25 mass%. be.
  • the viscosity of the varnish should be set appropriately considering the thickness of the thin film to be produced, etc., but when the purpose is to obtain a resin layer with a thickness of about 5 to 50 ⁇ m with good reproducibility, it is usually heated at 25°C. It is about 500 to 50,000 mPa ⁇ s, preferably about 1,000 to 20,000 mPa ⁇ s.
  • the viscosity of the varnish can be measured using a commercially available viscometer for measuring the viscosity of liquids, for example, with reference to the procedure described in JIS K7117-2, and at a varnish temperature of 25°C. .
  • a cone-plate rotational viscometer is used as the viscometer, preferably using the same type of viscometer with a standard cone rotor of 1°34' ⁇ R24, and a varnish temperature of 25°C. It can be measured under certain conditions.
  • An example of such a rotational viscometer is TVE-25H manufactured by Toki Sangyo Co., Ltd.
  • a resin layer 24 containing polyimide having high heat resistance and a low coefficient of linear expansion can be obtained.
  • the coefficient of linear expansion of the resin layer 24 is preferably 3 ppm/K or less, more preferably 2 ppm/K or less, and even more preferably 1 ppm/K or less.
  • the resin composition for a vapor deposition mask of this embodiment contains silica (silicon dioxide) particles or silica particles whose surfaces are modified with a specific alkoxysilane (hereinafter sometimes referred to as surface-modified silica particles) as other components. It is preferable to include.
  • the average particle diameter of the silica particles and surface-modified silica particles can be appropriately selected depending on the purpose and the like. Among them, the average particle diameter is preferably 1 nm to 100 nm, more preferably 1 nm to 60 nm, even more preferably 9 nm to 60 nm, and even more preferably 9 nm to 45 nm, from the viewpoint of obtaining a highly transparent thin film. It is particularly preferable.
  • the average particle diameter of silica particles and surface-modified silica particles is an average particle diameter value calculated from specific surface area values measured by a nitrogen adsorption method using silica particles and surface-modified silica particles, respectively. be.
  • silica particles for example, colloidal silica having the above average particle diameter value can be suitably used, and as the colloidal silica, silica sol can be used.
  • silica sol it is possible to use an aqueous silica sol produced by a known method using an aqueous sodium silicate solution as a raw material, and an organosilica sol obtained by replacing water, which is a dispersion medium of the aqueous silica sol, with an organic solvent.
  • alkoxysilanes such as methyl silicate and ethyl silicate are hydrolyzed in an organic solvent such as alcohol in the presence of a catalyst (e.g., ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide) and condensed.
  • a catalyst e.g., ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide
  • silica sol, or organosilica sol obtained by substituting the silica sol with another organic solvent it is preferable to use an organosilica sol whose dispersion medium is an organic solvent.
  • Examples of the organic solvent in the above organosilica sol include lower alcohols such as methyl alcohol, ethyl alcohol, and isopropanol; linear amides such as N,N-dimethylformamide and N,N-dimethylacetamide; N-methyl-2- Examples include cyclic amides such as pyrrolidone; ethers such as ⁇ -butyrolactone; glycols such as ethyl cellosolve and ethylene glycol; and acetonitrile.
  • Replacement of water, which is the dispersion medium of the aqueous silica sol, or replacement with another desired organic solvent can be carried out by a conventional method such as distillation or ultrafiltration.
  • the viscosity of the above organosilica sol is about 0.6 mPa ⁇ s to 100 mPa ⁇ s at 20°C.
  • Examples of commercial products of the organosilica sol include, for example, the product name MA-ST-S (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd. (currently Nissan Chemical Co., Ltd., hereinafter the same)), and the product name MT-ST.
  • MA-ST-S methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd. (currently Nissan Chemical Co., Ltd., hereinafter the same)
  • MT-ST commercial products of the organosilica sol
  • silicon dioxide for example, the silicon dioxides listed in the above products used as organosilica sol, may be used in combination of two or more types.
  • the alkoxysilane compound (hereinafter referred to as a specific alkoxysilane) used to modify inorganic fine particles is an alkoxysilane compound having two aromatic groups having 6 to 18 carbon atoms, or an alkoxysilane compound having 2 aromatic groups having 6 to 18 carbon atoms, or having 7 to 18 carbon atoms.
  • alkoxysilane compounds having one 18 aromatic group examples include alkoxysilane compounds having one 18 aromatic group.
  • the aromatic group having 6 to 18 carbon atoms include a phenyl group and an aromatic group having 7 to 18 carbon atoms, which will be described later.
  • Examples of the aromatic group having 7 to 18 carbon atoms include a group having two to three benzene rings and a group having two to four condensed benzene rings.
  • an alkoxysilane having a structure represented by the following formula (S1) and having a biphenyl group as an aromatic group having 7 to 18 carbon atoms is preferable.
  • R 1 and R 2 are each independently an alkyl group having 1 to 3 carbon atoms
  • W is an integer of 1 to 3 carbon atoms
  • Y is an integer of 0 to 2
  • W+Y 3
  • Z 1 represents a group selected from the group consisting of a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms
  • m is an integer of 0 to 5.
  • Z 1 may be the same or different groups.
  • alkoxysilanes in which m is 0 (biphenyl group is not substituted) are preferred.
  • alkoxysilane compound represented by the above formula (S1) examples include 4-biphenyltrimethoxysilane, 4-biphenyltriethoxysilane, 3-biphenyltrimethoxysilane, and 3-biphenyltriethoxysilane.
  • Silica particles whose surfaces are modified with a specific alkoxysilane can be prepared by bringing the specific alkoxysilane and silica particles into contact.
  • a specific alkoxysilane and silica particles are brought into contact, for example, the silanol group or alkoxysilyl group in the specific alkoxysilane undergoes a condensation reaction and bonds with the hydroxyl group present on the surface of the silica particle, and the surface is modified with the specific alkoxysilane. It is thought that silica particles are formed.
  • silica particles whose surfaces are modified with a specific alkoxysilane can be prepared by mixing a colloidal solution of silica particles and a specific alkoxysilane solution prepared in advance.
  • the colloidal solution and the specific alkoxysilane solution may be mixed at room temperature or while being heated. From the viewpoint of reaction efficiency, it is preferable to perform the mixing while heating.
  • the heating temperature can be appropriately selected depending on the solvent and the like.
  • the heating temperature can be, for example, 60° C. or higher, and is preferably the reflux temperature of the solvent.
  • the mixing ratio of the specific alkoxysilane and silica particles can be appropriately selected depending on the purpose and the like.
  • the mass ratio of silica particles to specific alkoxysilane is preferably 70/30 to 99/1, more preferably 70/30 to 90/10, and 80/30 to 99/1. More preferably, the ratio is 20 to 90/10.
  • the mass number of the silica particles is calculated assuming that the compositional formula of the silica particles is SiO2.
  • the content of the silica particles or surface-modified silica particles is 20 to 100 parts by mass based on 100 parts by mass of the polyamic acid containing the structural unit represented by formula (1). It is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight.
  • the polyimide suitably used in the resin composition for a vapor deposition mask of this embodiment contains silica particles or surface-modified silica particles
  • the polyimide suitably used in the resin composition for a vapor deposition mask preferably contains fluorine. According to this, the compatibility between polyimide and silica particles or surface-modified silica particles can be improved. As a result, aggregation of the silica particles or surface-modified silica particles can be suppressed, and good dispersibility of the silica particles or surface-modified silica particles can be maintained in the resin layer obtained using the resin composition for a vapor deposition mask.
  • Y 1 in formula (1) may be a divalent group selected from the group consisting of formulas (Y-1) to (Y-34) below. In formulas (Y-1) to (Y-34), * represents a bond.
  • Methods for imidizing the polyamic acid contained in the resin composition for a vapor deposition mask of this embodiment include thermal imidization in which the resin composition for a vapor deposition mask coated on the metal layer 22 is directly heated, and the resin composition for a vapor deposition mask
  • thermal imidization in which the resin composition for a vapor deposition mask coated on the metal layer 22 is directly heated
  • the resin composition for a vapor deposition mask One example is catalytic imidization, in which a catalyst is added to a substance and heated.
  • a catalyst is added to the resin composition for a vapor deposition mask of this embodiment, and the resin composition for a vapor deposition mask to which the catalyst has been added is prepared by stirring, and then the metal layer is A resin layer 24 is obtained by coating the resin layer 22 and heating it.
  • the amount of catalyst is 0.1 to 30 times the amount of the amic acid group, preferably 1 to 20 times the amount by mole.
  • acetic anhydride or the like can be added as a dehydrating agent to the resin composition for a vapor deposition mask to which a catalyst has been added, and the amount thereof is 1 to 50 times, preferably 3 to 30 times by mole, the amount of the amic acid group.
  • a tertiary amine as the imidization catalyst.
  • Preferred tertiary amines include pyridine, substituted pyridines, imidazole, substituted imidazoles, picoline, quinoline, and isoquinoline.
  • the heating temperature during thermal imidization and catalyst imidization is preferably 450° C. or lower. If the temperature exceeds 450°C, the resin layer obtained becomes brittle, and it may not be possible to obtain a resin layer suitable for use as a vapor deposition mask. In addition, considering the heat resistance and linear expansion coefficient characteristics of the resin layer obtained, it is possible to heat the applied resin composition for a vapor deposition mask at 50°C to 100°C for 5 minutes to 2 hours, and then gradually increase the heating temperature. It is desirable to finally heat the mixture at a temperature of over 375°C to 450°C for 30 minutes to 4 hours.
  • the applied resin composition for a vapor deposition mask is heated at 50°C to 100°C for 5 minutes to 2 hours, then heated at over 100°C to 200°C for 5 minutes to 2 hours, and then heated at over 200°C to 375°C for 5 minutes to 2 hours.
  • the mixture is heated for 30 minutes to 2 hours and finally at a temperature of more than 375° C. to 450° C. for 30 minutes to 4 hours.
  • appliances used for heating include hot plates and ovens.
  • the heating atmosphere may be under air or inert gas, and may be under normal pressure or reduced pressure.
  • the thickness of the resin layer 24, especially when used as a vapor deposition mask, is usually about 1 to 60 ⁇ m, preferably about 5 to 50 ⁇ m, and the thickness of the coating before heating can be adjusted to obtain a resin layer of a desired thickness.
  • the resin layer 24 described above satisfies each condition necessary for a vapor deposition mask, and in particular has an extremely low coefficient of linear expansion of 3 ppm/K, so it is optimal for use as a vapor deposition mask with suppressed thermal deformation.
  • the frame 30 of the embodiment described above has a frame-like shape with an opening, a horizontal frame or a vertical frame may be formed in the opening, and the metal layer 22 may be bonded to the horizontal frame or vertical frame. . According to this, the strength of the mask body 20 due to the frame body 30 can be increased, and in turn, the mask body 20 can be prevented from bending, and the flatness can be increased.
  • the metal layer 22 and the resin layer 24 are laminated in the entire mask body 20, but the metal layer 22 is laminated on a part of the resin layer 24, and the other parts of the resin layer 24 are laminated.
  • the portion may be used alone as a mask.

Abstract

Provided is a vapor deposition mask in which thermal deformation is inhibited. An embodiment of the present invention is a vapor deposition mask 10. The vapor deposition mask 10 is provided with a resin layer 24 having a pattern of opening parts for forming a thin film pattern, by vapor deposition, on a substrate subject to vapor deposition. The resin layer 24 contains a polyamic acid-derived polyimide including structural units represented by formula (1). In formula (1), X1 represents at least one tetravalent organic acid selected from formulas (3) and (3'), Y1 represents an F-containing organic group or a group represented by formula (P), and n is a positive integer representing the number of structural units. In formula (3'), R10, R11, R12, and R13 independently represent a hydrogen atom or a C1-3 monovalent alkyl group. In formula (P), R represents Cl, a C1-3 alkyl group, or a phenyl group. In formula (P), m represents an integer of 0-4, and r represents an integer of 1-3.

Description

蒸着マスクvapor deposition mask
 本発明は、蒸着マスクに関する。 The present invention relates to a vapor deposition mask.
 有機EL表示装置の製造工程において、TFT等のスイッチ素子が形成された装置基板上に必要な画素のみに必要な有機層を積層するために蒸着マスクが用いられる。当該蒸着マスクとして、従来、メタルマスクが用いられていたが、近年より精細なマスク開口部のパターンを形成するため、メタルマスクに代わって樹脂フィルムがマスク材料として用いられる傾向にある。
 また、製品の大型化あるいは装置基板サイズの大型化にともない、蒸着マスクに対しても大型化の要請があり、軽量化の観点からもマスク材料として樹脂フィルムが注目されている。
In the manufacturing process of an organic EL display device, a vapor deposition mask is used to stack necessary organic layers only on necessary pixels on a device substrate on which switch elements such as TFTs are formed. Conventionally, a metal mask has been used as the vapor deposition mask, but in recent years, in order to form a finer pattern of mask openings, there is a tendency to use a resin film as a mask material instead of a metal mask.
Furthermore, as products become larger or device substrates become larger, there is a demand for larger vapor deposition masks, and resin films are attracting attention as mask materials from the viewpoint of weight reduction.
特開2017-14620号公報Unexamined Japanese Patent Publication No. 2017-14620
 従来よりマスク材料として用いられる樹脂フィルムは、熱変形を抑制する観点から、線膨張率のさらなる低下が求められている。
 本発明は上述のような課題を鑑みたものであり、熱変形が抑制された蒸着マスクを提供することを目的とする。
Resin films conventionally used as mask materials are required to further reduce their coefficient of linear expansion from the viewpoint of suppressing thermal deformation.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a vapor deposition mask in which thermal deformation is suppressed.
 本発明のある態様は、蒸着マスクである。被蒸着基板上に蒸着により薄膜パターンを成膜するための開口部のパターンを有する樹脂層を備え、前記樹脂層が下記式(1)で表される構造単位を含むポリアミック酸由来のポリイミドを含む。
Figure JPOXMLDOC01-appb-C000005
 式(1)において、Xは、下記の式(3)および(3’)から選ばれる少なくとも1つの4価の有機基を表し、Yは、下記の式(P)で表される基またはF含有有機基を表し、かつ、nは、繰り返し単位の数を表す正の整数である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 式(3’)において、R10、R11、R12、R13はそれぞれ独立に、水素原子または炭素数1~3の1価アルキル基を表す。
 式(P)において、Rは、Cl、または炭素数1~3のアルキル基、またはフェニル基を表す。また、式(P)において、mは、0~4の整数を表し、rは1~3の整数を表す。
An embodiment of the present invention is a vapor deposition mask. A resin layer having a pattern of openings for forming a thin film pattern by vapor deposition on a substrate to be vapor-deposited, the resin layer containing polyimide derived from polyamic acid containing a structural unit represented by the following formula (1). .
Figure JPOXMLDOC01-appb-C000005
In formula (1), X 1 represents at least one tetravalent organic group selected from formulas (3) and (3') below, and Y 1 represents a group represented by formula (P) below. or represents an F-containing organic group, and n is a positive integer representing the number of repeating units.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
In formula (3'), R 10 , R 11 , R 12 and R 13 each independently represent a hydrogen atom or a monovalent alkyl group having 1 to 3 carbon atoms.
In formula (P), R represents Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group. Further, in formula (P), m represents an integer of 0 to 4, and r represents an integer of 1 to 3.
 上記態様の蒸着マスクにおいて、蒸着源に相対する前記樹脂層の面の少なくとも一部に積層されている金属層をさらに含んでもよい。また、前記樹脂層がシリカ粒子を含んでもよい。また、前記シリカ粒子の表面が、炭素数6-18の芳香族基を2つ有するか、または、炭素数7-18の芳香族基を1つ有するアルコキシシラン化合物で修飾されていてもよい。 The vapor deposition mask of the above aspect may further include a metal layer laminated on at least a portion of the surface of the resin layer facing the vapor deposition source. Moreover, the resin layer may contain silica particles. Further, the surface of the silica particles may be modified with an alkoxysilane compound having two aromatic groups having 6 to 18 carbon atoms or one aromatic group having 7 to 18 carbon atoms.
 本発明によれば、熱変形が抑制された蒸着マスクに関する技術が提供される。 According to the present invention, a technique related to a vapor deposition mask in which thermal deformation is suppressed is provided.
図1(a)実施形態1に係る蒸着マスクを樹脂層側から平面視したときの平面図であり、図1(b)は、図1(a)に示すA-A線に沿った断面図である。FIG. 1(a) is a plan view of the vapor deposition mask according to Embodiment 1 when viewed from the resin layer side, and FIG. 1(b) is a cross-sectional view taken along line AA shown in FIG. 1(a). It is.
 以下、本発明の実施形態について、詳細に説明する。なお、本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下であることを表す。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in this specification, the notation "a to b" in the description of numerical ranges represents a range from a to b, unless otherwise specified.
(蒸着マスク)
 図1(a)実施形態に係る蒸着マスク10を樹脂層24側から平面視したときの平面図であり、図1(b)は、図1(a)に示すA-A線に沿った断面図である。
(vapor deposition mask)
FIG. 1(a) is a plan view of the vapor deposition mask 10 according to the embodiment when viewed from the resin layer 24 side, and FIG. 1(b) is a cross-sectional view taken along line AA shown in FIG. 1(a). It is a diagram.
 蒸着マスク10は、複数のマスク本体20と、複数のマスク本体20を囲むようにその周囲に配置された補強用の枠体30とを含む。枠体30によりマスク本体20が緊張した状態で固定保持される。 The vapor deposition mask 10 includes a plurality of mask bodies 20 and a reinforcing frame 30 disposed around the plurality of mask bodies 20 so as to surround the plurality of mask bodies 20. The frame body 30 fixes and holds the mask body 20 in a tensioned state.
 マスク本体20は、蒸着源に相対する樹脂層24の主面面側に金属層22が積層されたハイブリッドマスクである。マスク本体20では、被蒸着基板上に蒸着により薄膜パターンを成膜するための開口部Pが樹脂層24に設けられるとともに、金属層22に当該開口部Pを内包する貫通孔Qが形成されている。 The mask body 20 is a hybrid mask in which a metal layer 22 is laminated on the main surface side of a resin layer 24 facing the vapor deposition source. In the mask body 20, an opening P for forming a thin film pattern on the substrate to be deposited by vapor deposition is provided in the resin layer 24, and a through hole Q containing the opening P is formed in the metal layer 22. There is.
 金属層22の材料は特に限定されないが、たとえば、ステンレス鋼、鉄ニッケル合金、アルミニウム合金等が適用可能である。特に、鉄とニッケルを主とする合金であるインバー合金は、線膨張係数が比較的小さく、熱変形を抑制する観点で好ましい。枠体30と接する部分において、金属層22と枠体30とが接合されている。 The material of the metal layer 22 is not particularly limited, but stainless steel, iron-nickel alloy, aluminum alloy, etc. are applicable, for example. In particular, Invar alloy, which is an alloy mainly composed of iron and nickel, has a relatively small coefficient of linear expansion and is preferable from the viewpoint of suppressing thermal deformation. The metal layer 22 and the frame 30 are bonded to each other at a portion in contact with the frame 30.
 樹脂層24の材料については後述する。 The material of the resin layer 24 will be described later.
 枠体30は、低熱線膨張係数を有する金属板材で形成される。枠体30を構成する金属板材としては、ニッケル-鉄合金であるインバー材やニッケル-鉄-コバルト合金であるスーパーインバー材等が挙げられる。 The frame body 30 is formed of a metal plate material having a low coefficient of linear thermal expansion. Examples of the metal plate material constituting the frame 30 include Invar material, which is a nickel-iron alloy, and Super Invar material, which is a nickel-iron-cobalt alloy.
(蒸着マスクの製造方法)
 実施形態に係る蒸着マスクの製造方法の一例を以下に述べる。
 まず、金属箔状の金属層22の上に樹脂層24を積層する。積層方法としては、金属層22の上に樹脂層24を貼付する方法や、樹脂層24の上に金属層22をメッキにより形成する方法などが挙げられる。
 樹脂層24とは反対側の金属層22の主表面にレジスト(図示せず)を塗布した後、露光処理および現像処理により、当該レジストのうち、金属層22に形成されるべき貫通孔Qに対応する部分が除去される。
 続いて、レジストが除去された部分において露出する金属層22の部分をエッチング処理により選択的に除去することにより、金属層22に所定パターンの貫通孔Qが形成される。
 続いて、貫通穴Qに内包される樹脂層24の領域にレーザー光を照射し、所定パターンの開口部Pを形成することにより、マスク本体20が形成される。
 得られたマスク本体20を枠体30に位置合わせし、枠体30と接する部分において、金属層22と枠体30とを接合する。金属層22と枠体30とを接合する方法は特に限定されないが、接着剤により接合する方法や、溶接により接合する方法などが挙げられる。
(Method for manufacturing a vapor deposition mask)
An example of a method for manufacturing a vapor deposition mask according to an embodiment will be described below.
First, the resin layer 24 is laminated on the metal layer 22 in the form of metal foil. Examples of the lamination method include a method of pasting the resin layer 24 on the metal layer 22 and a method of forming the metal layer 22 on the resin layer 24 by plating.
After applying a resist (not shown) to the main surface of the metal layer 22 opposite to the resin layer 24, exposure and development are performed to form through-holes Q in the metal layer 22. The corresponding part is removed.
Subsequently, the portions of the metal layer 22 that are exposed in the portions where the resist has been removed are selectively removed by an etching process, thereby forming through-holes Q in a predetermined pattern in the metal layer 22.
Subsequently, the mask body 20 is formed by irradiating a region of the resin layer 24 included in the through hole Q with a laser beam to form a predetermined pattern of openings P.
The obtained mask main body 20 is aligned with the frame 30, and the metal layer 22 and the frame 30 are joined at the portions that contact the frame 30. The method of joining the metal layer 22 and the frame body 30 is not particularly limited, but examples thereof include a method of joining with an adhesive, a method of joining by welding, and the like.
(蒸着マスク用樹脂組成物)
 樹脂層24の形成に用いられる蒸着マスク用樹脂組成物について説明する。
 実施形態に係る蒸着マスク用樹脂組成物は、式(1)で表される構造単位含むポリアミック酸と、有機溶媒とを含む。
(Resin composition for vapor deposition mask)
The resin composition for a vapor deposition mask used to form the resin layer 24 will be explained.
The resin composition for a vapor deposition mask according to the embodiment includes a polyamic acid containing a structural unit represented by formula (1) and an organic solvent.
 式(1)において、Xは、式(3)の4価の芳香族基を表し、Yは、式(P)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、Xは、下記の式(3)および(3’)から選ばれる少なくとも1つの4価の有機基を表し、Yは、下記の式(P)で表される基またはF含有有機基を表し、かつ、nは、繰り返し単位の数を表す正の整数であり、本実施形態で使用されるポリアミック酸の重量平均分子量に応じて定められる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式(3’)において、R10、R11、R12、R13はそれぞれ独立に、水素原子または炭素数1~3の1価アルキル基を表す。
 また、式(P)において、Rは、Cl、または炭素数1~3のアルキル基、またはフェニル基を表し、好ましくは、F、Clを表す。また、式(P)において、mは、0~4の整数を表し、好ましくは0~2を表し、より好ましくは0~1を表し、特に好ましくは0を表す。また、前記の式(P)において、rは1~3の整数を表す。
 なお、炭素数1~3のアルキル基には、メチル、エチル、n-プロピル、およびi-プロピルが包含され、好ましくは、炭素数1~3のアルキル基は、メチルであり、より好ましくは、メチルである。
In formula (1), X 1 represents a tetravalent aromatic group of formula (3), and Y 1 represents a group represented by formula (P).
Figure JPOXMLDOC01-appb-C000009
In formula (1), X 1 represents at least one tetravalent organic group selected from formulas (3) and (3') below, and Y 1 represents a group represented by formula (P) below. or represents an F-containing organic group, and n is a positive integer representing the number of repeating units, and is determined according to the weight average molecular weight of the polyamic acid used in this embodiment.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
In formula (3'), R 10 , R 11 , R 12 and R 13 each independently represent a hydrogen atom or a monovalent alkyl group having 1 to 3 carbon atoms.
Further, in formula (P), R represents Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, and preferably represents F or Cl. Furthermore, in formula (P), m represents an integer of 0 to 4, preferably 0 to 2, more preferably 0 to 1, particularly preferably 0. Furthermore, in the above formula (P), r represents an integer of 1 to 3.
Note that the alkyl group having 1 to 3 carbon atoms includes methyl, ethyl, n-propyl, and i-propyl, preferably the alkyl group having 1 to 3 carbon atoms is methyl, and more preferably, It is methyl.
 本実施形態で用いる式(1)で表される繰り返し単位を有するポリアミック酸の重量平均分子量は、10,000以上が好ましく、15,000以上がより好ましく、20,000以上がさらに好ましく、30,000以上がより一層好ましい。一方、本実施形態で用いるポリアミック酸の重量平均分子量の上限値は、通常2,000,000以下であるが、蒸着マスク用樹脂組成物(ワニス)の粘度が過度に高くなることを抑制することを再現性よく得ること等を考慮すると、好ましくは1,000,000以下、より好ましくは200,000以下である。なお、本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算して得られたものである。 The weight average molecular weight of the polyamic acid having the repeating unit represented by formula (1) used in this embodiment is preferably 10,000 or more, more preferably 15,000 or more, even more preferably 20,000 or more, 30, 000 or more is even more preferable. On the other hand, the upper limit of the weight average molecular weight of the polyamic acid used in this embodiment is usually 2,000,000 or less, but it is important to prevent the viscosity of the resin composition (varnish) for a vapor deposition mask from becoming excessively high. In consideration of obtaining reproducibly, it is preferably 1,000,000 or less, more preferably 200,000 or less. In addition, in this specification, the weight average molecular weight is obtained by measuring by gel permeation chromatography (GPC) and converting it using a calibration curve prepared using standard polystyrene.
 本実施形態で用いるポリアミック酸は、式(1)で表される繰り返し単位を、少なくとも50モル%、好ましくは少なくとも60モル%、より好ましくは少なくとも70モル%、より一層好ましくは少なくとも80モル%、さらに好ましくは少なくとも90モル%含有する。このような量で、ポリアミック酸を用いることで、蒸着マスクに適した特性を持つ樹脂層を再現性よく得ることができる。 The polyamic acid used in this embodiment contains repeating units represented by formula (1) at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, even more preferably at least 80 mol%, More preferably, the content is at least 90 mol%. By using polyamic acid in such an amount, a resin layer having characteristics suitable for a vapor deposition mask can be obtained with good reproducibility.
 本実施形態の好ましい態様によれば、ポリアミック酸は、式(1)で表される繰り返し単位のみからコポリマー、すなわち、これら繰り返し単位が100モル%で含有されるポリマーである。このとき、このポリアミック酸における式(1)で表される構造単位は、式(1)で表される繰り返し単位のうちの特定の1種類のみからなるのではなく、2種以上の式(1)の繰り返し単位によるランダム若しくはブロック共重合体構造を有するのが好ましい。使用可能な式(1)の繰り返し単位の種類は、より好ましくは2~4であり、さらに好ましくは2~3である。 According to a preferred aspect of the present embodiment, the polyamic acid is a copolymer made only of repeating units represented by formula (1), that is, a polymer containing 100 mol% of these repeating units. At this time, the structural unit represented by formula (1) in this polyamic acid is not composed of only one specific type of repeating units represented by formula (1), but is composed of two or more types of repeating units represented by formula (1). It is preferable to have a random or block copolymer structure consisting of repeating units of ). The types of repeating units of formula (1) that can be used are preferably 2 to 4, and even more preferably 2 to 3.
 本実施形態の好ましい態様によれば、蒸着マスク用樹脂組成物は、式(1-1)および式(1-2)で表される構造単位を含むポリアミック酸であって、その重量平均分子量が10,000以上であるポリアミック酸と、有機溶媒とを含む。
Figure JPOXMLDOC01-appb-C000013
 式(1-1)および式(1-2)において、Xは、上述の式(3)および(3’)から選ばれる少なくとも1つの4価の有機基を表し、Yは、前記した式(P1)または(P2)で表される基を表し、好ましくは式(P1)で表される基を表し、Yは、上述の式(P3)で表される基を表す。
Figure JPOXMLDOC01-appb-C000014
 式(P1)、式(P2)および式(P3)において、R、R、R、R、RおよびRは、同一であっても異なっていてもよく、F、Cl、炭素数1~3のアルキル基、またはフェニル基を表し、好ましくは、F、またはClを表す。また、m1、m2、m3、m4、m5およびm6は、同一であっても異なっていてもよく、0~4の整数を表し、好ましくは0~2の整数を表し、より好ましくは0または1を表し、特に好ましくは0を表す。
 また、式(1-1)および式(1-2)において、n1、n2は、各繰り返し単位の数を示し、n1/n2=1.7~20の条件を満たす。ここで、前記のn1/n2の数値範囲の下限値は、好ましくは2.1、さらに好ましくは2.2、より一層好ましくは2.3である。一方、n1/n2の数値範囲の上限値は、好ましくは19、より好ましくは18である。
 適度な線膨脹係数、耐熱性、引張強度を有する樹脂層を再現性よく得ることを考慮すると、n1/n2は、2.1~7.5を満たすことが好ましく、2.1~6.8を満たすことがより好ましく、3.2~6.0を満たすことがより一層好ましく、3.2~5.1を満たすことがさらに好ましい。
According to a preferred aspect of the present embodiment, the resin composition for a vapor deposition mask is a polyamic acid containing structural units represented by formulas (1-1) and (1-2), and whose weight average molecular weight is 10,000 or more, and an organic solvent.
Figure JPOXMLDOC01-appb-C000013
In formula (1-1) and formula (1-2), X 1 represents at least one tetravalent organic group selected from the above formulas (3) and (3'), and Y 2 represents the above-mentioned It represents a group represented by formula (P1) or (P2), preferably represents a group represented by formula (P1), and Y 3 represents a group represented by formula (P3) above.
Figure JPOXMLDOC01-appb-C000014
In formula (P1), formula (P2) and formula (P3), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and F, Cl, Represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, preferably F or Cl. Furthermore, m1, m2, m3, m4, m5 and m6 may be the same or different and represent an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1. , particularly preferably 0.
Furthermore, in formulas (1-1) and (1-2), n1 and n2 indicate the number of each repeating unit, and satisfy the condition of n1/n2=1.7 to 20. Here, the lower limit of the numerical range of n1/n2 is preferably 2.1, more preferably 2.2, and even more preferably 2.3. On the other hand, the upper limit of the numerical range of n1/n2 is preferably 19, more preferably 18.
Considering that a resin layer having an appropriate coefficient of linear expansion, heat resistance, and tensile strength can be obtained with good reproducibility, n1/n2 preferably satisfies 2.1 to 7.5, and preferably 2.1 to 6.8. More preferably, it satisfies 3.2 to 6.0, even more preferably 3.2 to 5.1.
 本実施形態で用いるポリアミック酸は、式(1-1)および式(1-2)で表される繰り返し単位を、少なくとも50モル%、好ましくは少なくとも60モル%、より好ましくは少なくとも70モル%、より一層好ましくは少なくとも80モル%、さらに好ましくは少なくとも90モル%含有する。このような量で、ポリアミック酸を用いることで、蒸着マスクに適した特性を持つ樹脂層を再現性よく得ることができる。 The polyamic acid used in this embodiment contains repeating units represented by formula (1-1) and formula (1-2) at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, Even more preferably it contains at least 80 mol%, and even more preferably at least 90 mol%. By using polyamic acid in such an amount, a resin layer having characteristics suitable for a vapor deposition mask can be obtained with good reproducibility.
 本実施形態の特に好ましい態様によれば、ポリアミック酸は、式(1-1)および式(1-2)で表される繰り返し単位のみからコポリマー、すなわち、これら繰り返し単位が100モル%で含有されるポリマーである。 According to a particularly preferred aspect of this embodiment, the polyamic acid is a copolymer made only of the repeating units represented by formula (1-1) and formula (1-2), that is, the polyamic acid contains 100 mol% of these repeating units. It is a polymer that
 本実施形態で用いるポリアミック酸の重量平均分子量は、10,000以上である必要があり、好ましくは15,000以上、より好ましくは20,000以上、より一層好ましくは30,000以上である。一方、本実施形態で用いるポリアミック酸の重量平均分子量の上限値は、通常2,000,000以下であるが、蒸着マスク用樹脂組成物(ワニス)の粘度が過度に高くなることを抑制することや引張強度が高い樹脂層を再現性よく得ること等を考慮すると、好ましくは1,000,000以下、より好ましくは200,000以下である。 The weight average molecular weight of the polyamic acid used in this embodiment needs to be 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and even more preferably 30,000 or more. On the other hand, the upper limit of the weight average molecular weight of the polyamic acid used in this embodiment is usually 2,000,000 or less, but it is important to prevent the viscosity of the resin composition (varnish) for a vapor deposition mask from becoming excessively high. In consideration of obtaining a resin layer with high tensile strength and high reproducibility, etc., it is preferably 1,000,000 or less, more preferably 200,000 or less.
 本実施形態のより好ましい態様によれば、ポリアミック酸は、式(2)で表される構造単位をさらに含むことができる。
Figure JPOXMLDOC01-appb-C000015
 式(2)において、Xは、上述した式(3)および(3’)から選ばれる少なくとも1つの4価の有機基を表し、Yは、下記の式(P4)で表される基を表し、かつ、nは、繰り返し単位の数を表す。
Figure JPOXMLDOC01-appb-C000016
 式(P4)において、R、およびRは、同一であっても異なっていてもよく、F、Cl、炭素数1~3のアルキル基、またはフェニル基を表す。Rは、好ましくはF、またはClを表す。Rは、好ましくは、F、またはClを表す。R’は、水素原子、炭素数1~3のアルキル基、またはフェニル基を表し、好ましくは、水素原子、または炭素数1~3のアルキル基を表し、より好ましくは、水素原子を表す。さらに、lおよびmは、同一であっても異なっていてもよく、0~4の整数を表し、好ましくは0~2を表し、より好ましくは0~1を表し、特に好ましくは0を表す。
According to a more preferred aspect of this embodiment, the polyamic acid can further include a structural unit represented by formula (2).
Figure JPOXMLDOC01-appb-C000015
In formula (2), X 1 represents at least one tetravalent organic group selected from the above formulas (3) and (3'), and Y 4 represents a group represented by the following formula (P4). and n 3 represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000016
In formula (P4), R 7 and R 8 may be the same or different and represent F, Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group. R 7 preferably represents F or Cl. R 8 preferably represents F or Cl. R' represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom. Furthermore, l and m may be the same or different and represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 to 1, particularly preferably 0.
 式(1)で表される構造単位に加えて、式(2)で表される構造単位を含む場合、n、n3は、好ましくはn3/(n+n3)≦0.2、より好ましくはn3/(n+n3)≦0.1、より一層好ましくはn3/(n+n3)≦0.05を満たす。このような範囲であると、適度な線膨脹係数、耐熱性、引張強度を有する樹脂層を再現性よく得る上で有利である。 When the structural unit represented by formula (2) is included in addition to the structural unit represented by formula (1), n and n3 are preferably n3/(n+n3)≦0.2, more preferably n3/ (n+n3)≦0.1, more preferably n3/(n+n3)≦0.05. This range is advantageous in obtaining a resin layer with appropriate linear expansion coefficient, heat resistance, and tensile strength with good reproducibility.
 式(1-1)および式(1-2)で表される構造単位に加えて、式(2)で表される構造単位を含む場合、n1、n2、n3は、好ましくはn3/(n1+n2+n3)≦0.2、より好ましくはn3/(n1+n2+n3)≦0.1、より一層好ましくはn3/(n1+n2+n3)≦0.05を満たす。このような範囲であると、適度な線膨脹係数、耐熱性、引張強度を有する樹脂層を再現性よく得る上で有利である。 In addition to the structural units represented by formulas (1-1) and (1-2), when the structural unit represented by formula (2) is included, n1, n2, and n3 are preferably n3/(n1+n2+n3 )≦0.2, more preferably n3/(n1+n2+n3)≦0.1, even more preferably n3/(n1+n2+n3)≦0.05. This range is advantageous in obtaining a resin layer with appropriate linear expansion coefficient, heat resistance, and tensile strength with good reproducibility.
 本実施形態で用いるポリアミック酸は、式(1)で表される構造単位、または式(1-1)および式(1-2)で表される構造単位以外にも、他の構造単位(繰り返し単位)を含んでもよい。このような他の構造単位の含有量は、50モル%未満である必要があり、40モル%未満であることが好ましく、30モル%未満であることがより好ましく、20モル%未満であることがより一層好ましく、10モル%未満であることがさらに好ましい。 The polyamic acid used in this embodiment has other structural units (repeating unit). The content of such other structural units must be less than 50 mol%, preferably less than 40 mol%, more preferably less than 30 mol%, and less than 20 mol%. is even more preferable, and even more preferably less than 10 mol%.
 このような他の構造単位としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2-メチル-1,4-フェニレンジアミン、5-メチル-1,3-フェニレンジアミン、4-メチル-1,3-フェニレンジアミン、2-(トリフルオロメチル)-1,4-フェニレンジアミン、2-(トリフルオロメチル)-1,3-フェニレンジアミンおよび4-(トリフルオロメチル)-1,3-フェニレンジアミン、ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,3’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,3’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、5-アミノ-2-(3-アミノフェニル)-1H-ベンゾイミダゾール、9,9-ビス(4-アミノフェニル)フルオレンといったジアミンと、ピロメリット酸無水物(PMDA)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸無水物といった酸二無水物とから誘導される構造などが挙げられる。 Such other structural units include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2-methyl-1,4-phenylenediamine, 5-methyl-1,3-phenylenediamine, 4-methyl -1,3-phenylenediamine, 2-(trifluoromethyl)-1,4-phenylenediamine, 2-(trifluoromethyl)-1,3-phenylenediamine and 4-(trifluoromethyl)-1,3- Phenylenediamine, benzidine, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 2,3'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)benzidine, 3,3'-bis(trifluoromethyl)benzidine, fluoromethyl)benzidine, 2,3'-bis(trifluoromethyl)benzidine, 4,4'-diphenyl ether, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-diaminobenzanilide, 5- Diamines such as amino-2-(3-aminophenyl)-1H-benzimidazole, 9,9-bis(4-aminophenyl)fluorene, pyromellitic anhydride (PMDA), 2,3,6,7-naphthalene Examples include structures derived from acid dianhydrides such as tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, and 3,3',4,4'-benzophenone tetracarboxylic anhydride.
 本実施形態の好ましい態様によれば、本実施形態で用いるポリアミック酸は、酸二無水物としての3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)(式(4))と、ジアミンとしての、p-フェニレンジアミン(pPDA)(式(5))および4,4”-ジアミノ-p-ターフェニル(DATP)(式(6))とを反応させることで得ることができる。
Figure JPOXMLDOC01-appb-C000017
According to a preferred aspect of this embodiment, the polyamic acid used in this embodiment is 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) (formula (4)) as an acid dianhydride. ) with p-phenylenediamine (pPDA) (formula (5)) and 4,4''-diamino-p-terphenyl (DATP) (formula (6)) as diamines. can.
Figure JPOXMLDOC01-appb-C000017
 上記反応において、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)と、p-フェニレンジアミン(pPDA)および4,4”-ジアミノ-p-ターフェニル(DATP)からなるジアミンの仕込み比(モル比)は、所望するポリアミック酸の分子量や構造単位の割合等を勘案して適宜設定することができるが、アミン成分1に対して、通常、酸無水物成分であるBPDA0.7~1.3程度とすることができ、好ましく0.8~1.2程度である。 In the above reaction, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), p-phenylenediamine (pPDA) and 4,4''-diamino-p-terphenyl (DATP) are used. The charging ratio (mole ratio) of the diamine can be set as appropriate by taking into consideration the molecular weight of the desired polyamic acid, the ratio of structural units, etc. It can be about .7 to 1.3, preferably about 0.8 to 1.2.
 一方、ジアミンであるpPDAとDATPの仕込み比は、DATPの物質量(m)を1とした場合に、pPDAの物質量(m)を、通常1.7~20程度とすることができるが、好ましくは2.1~20、より好ましくは2.2~20、より一層好ましくは2.3~19、さらに好ましくは2.3~18である。すなわち、mとmは、通常、m/m=1.7~20であり、好ましくは2.1~20であり、より好ましくは2.2~20であり、より一層好ましくは2.3~19であり、さらに好ましくは2.3~18である。 On the other hand, the charging ratio of pPDA and DATP, which are diamines, can be such that when the amount of DATP (m 2 ) is 1, the amount of pPDA (m 1 ) is usually about 1.7 to 20. is preferably 2.1 to 20, more preferably 2.2 to 20, even more preferably 2.3 to 19, even more preferably 2.3 to 18. That is, m 1 and m 2 are usually m 1 /m 2 = 1.7 to 20, preferably 2.1 to 20, more preferably 2.2 to 20, even more preferably It is 2.3 to 19, more preferably 2.3 to 18.
 本実施形態のより好ましい態様によれば、酸二無水物としての3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)と、ジアミンとしての、p-フェニレンジアミン(pPDA)および4,4”-ジアミノ-p-ターフェニル(DATP)と、さらに2-(3-アミノフェニル)-5-アミノベンズイミダゾール(APAB)(式(7))とを反応させることで得ることができる。
Figure JPOXMLDOC01-appb-C000018
 上記反応において、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)と、p-フェニレンジアミン(pPDA)、4,4”-ジアミノ-p-ターフェニル(DATP)および2-(3-アミノフェニル)-5-アミノベンズイミダゾール(APAB)からなるジアミンの仕込み比(モル比)は、所望するポリアミック酸の分子量や構造単位の割合等を勘案して適宜設定することができるが、アミン成分1に対して、通常、酸無水物成分であるBPDAを0.7~1.3程度とすることができ、好ましく0.8~1.2程度である。
According to a more preferred aspect of the present embodiment, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) as the acid dianhydride and p-phenylenediamine (pPDA) as the diamine. and 4,4”-diamino-p-terphenyl (DATP) and further react with 2-(3-aminophenyl)-5-aminobenzimidazole (APAB) (formula (7)). can.
Figure JPOXMLDOC01-appb-C000018
In the above reaction, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), p-phenylenediamine (pPDA), 4,4''-diamino-p-terphenyl (DATP) and 2 The charging ratio (molar ratio) of the diamine consisting of -(3-aminophenyl)-5-aminobenzimidazole (APAB) can be appropriately set in consideration of the desired molecular weight of the polyamic acid, the ratio of structural units, etc. However, the amount of BPDA, which is an acid anhydride component, can be generally adjusted to about 0.7 to 1.3, preferably about 0.8 to 1.2, relative to the amine component 1.
 一方、ジアミンであるpPDAとDATPとAPABの仕込み比は、pPDAの物質量(m)とDATPの物質量(m)とAPABの物質量(m)の合計を1とした場合に、APABの物質量(m)が、好ましくは0.2以下、より好ましくは0.1以下、より一層好ましくは0.05以下である。すなわち、mとmとmは、好ましくはm/(m+m+m)≦0.2を、より好ましくはm/(m+m+m)≦0.1を、より一層好ましくはm3/(m1+m2+m3)≦0.05を満たす。 On the other hand, the preparation ratio of the diamines pPDA, DATP, and APAB is as follows, assuming that the sum of the amount of pPDA (m 1 ), the amount of DATP (m 2 ), and the amount of APAB (m 3 ) is 1. The amount (m 3 ) of APAB is preferably 0.2 or less, more preferably 0.1 or less, even more preferably 0.05 or less. That is, m 1 , m 2 and m 3 are preferably m 3 /(m 1 +m 2 +m 3 )≦0.2, more preferably m 3 /(m 1 +m 2 +m 3 )≦0.1. , more preferably satisfies m3/(m1+m2+m3)≦0.05.
 上述の反応は溶媒中で行うことが好ましく、溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば、各種溶剤を用いることができる。
 具体例としては、m-クレゾール、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、3-メトキシ-N,N-ジメチルプロピルアミド、3-エトキシ-N,N-ジメチルプロピルアミド、3-プロポキシ-N,N-ジメチルプロピルアミド、3-イソプロポキシ-N,N-ジメチルプロピルアミド、3-ブトキシ-N,N-ジメチルプロピルアミド、3-sec-ブトキシ-N,N-ジメチルプロピルアミド、3-tert-ブトキシ-N,N-ジメチルプロピルアミド、γ-ブチロラクトン等のプロトン性溶剤等が挙げられる。これらは単独でまたは2種以上を組み合わせて使用してもよい。
The above-mentioned reaction is preferably carried out in a solvent, and when a solvent is used, various types of solvents can be used as long as they do not adversely affect the reaction.
Specific examples include m-cresol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide. , 3-methoxy-N,N-dimethylpropylamide, 3-ethoxy-N,N-dimethylpropylamide, 3-propoxy-N,N-dimethylpropylamide, 3-isopropoxy-N,N-dimethylpropylamide, Protic solvents such as 3-butoxy-N,N-dimethylpropylamide, 3-sec-butoxy-N,N-dimethylpropylamide, 3-tert-butoxy-N,N-dimethylpropylamide, γ-butyrolactone, etc. Can be mentioned. These may be used alone or in combination of two or more.
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよく、通常0~100℃程度であるが、得られるポリアミック酸のイミド化を防いでポリアミック酸単位の高含有量を維持するためには、好ましくは0~70℃程度であり、より好ましくは0~60℃程度であり、より一層好ましくは0~50℃程度である。
 反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1~100時間程度である。
The reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent used, and is usually about 0 to 100°C, but it is necessary to prevent imidization of the resulting polyamic acid and maintain a high content of polyamic acid units. For this purpose, the temperature is preferably about 0 to 70°C, more preferably about 0 to 60°C, even more preferably about 0 to 50°C.
Although the reaction time cannot be absolutely defined because it depends on the reaction temperature and the reactivity of the raw materials, it is usually about 1 to 100 hours.
 以上説明した方法によって、目的とするポリアミック酸を含む反応溶液を得ることができる。 By the method explained above, a reaction solution containing the desired polyamic acid can be obtained.
 本実施形態においては、通常、上記反応溶液をろ過した後、そのろ液をそのまま、または、希釈若しくは濃縮し、蒸着マスク用樹脂組成物(ワニス)として用いる。このようにすることで、得られる樹脂層の耐熱性、引張強度あるいは線膨張係数特性の悪化の原因となり得る不純物の混入を低減できるだけでなく、効率よく組成物を得ることができる。
 希釈や濃縮に用いる溶媒は、特に限定されるものではなく、例えば、上記反応の反応溶媒の具体例と同様のものが挙げられ、それらは単独でまたは2種以上を組み合わせて使用してもよい。
In this embodiment, the reaction solution is usually filtered, and then the filtrate is used as it is, or after being diluted or concentrated, as a resin composition (varnish) for a vapor deposition mask. By doing so, it is possible not only to reduce the incorporation of impurities that may cause deterioration of the heat resistance, tensile strength, or linear expansion coefficient characteristics of the resulting resin layer, but also to efficiently obtain the composition.
The solvent used for dilution and concentration is not particularly limited, and examples include those similar to the specific examples of the reaction solvent for the above reaction, and they may be used alone or in combination of two or more. .
 これらの中でも、平坦性の高い樹脂層を再現性よく得ることを考慮すると、用いる溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、γ-ブチロラクトンが好ましい。 Among these, in order to obtain a highly flat resin layer with good reproducibility, the solvents used are N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3 -dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, and γ-butyrolactone are preferred.
 また、本実施形態においては、上記反応溶液を常法に従って後処理してポリアミック酸を単離した後、単離したポリアミック酸を有機溶媒に溶解または分散させることで得られるワニスを、蒸着マスク用樹脂組成物として用いてもよい。この場合、平坦性の高い薄膜を再現性よく得ることを考慮すると、ポリアミック酸は有機溶媒に溶解していることが好ましい。溶解や分散に用いる有機溶媒は、特に限定されるものではなく、例えば、上記反応の反応溶媒の具体例と同様のものが挙げられ、それらは単独でまたは2種以上を組み合わせて使用してもよい。 In addition, in this embodiment, after post-processing the above reaction solution according to a conventional method to isolate polyamic acid, a varnish obtained by dissolving or dispersing the isolated polyamic acid in an organic solvent is used as a vapor deposition mask. It may also be used as a resin composition. In this case, in order to obtain a highly flat thin film with good reproducibility, it is preferable that the polyamic acid is dissolved in an organic solvent. The organic solvent used for dissolution and dispersion is not particularly limited, and examples thereof include those similar to the specific examples of the reaction solvent for the above reaction, and they may be used alone or in combination of two or more. good.
 ポリアミック酸のワニス総質量に対する濃度は、作製する薄膜の厚みやワニス粘度等を勘案して適宜設定するものではあるが、通常0.5~30質量%程度、好ましくは5~25質量%程度である。 The concentration of polyamic acid relative to the total mass of the varnish should be set appropriately taking into account the thickness of the thin film to be produced, the viscosity of the varnish, etc., but it is usually about 0.5 to 30 mass%, preferably about 5 to 25 mass%. be.
 また、ワニスの粘度も、作製する薄膜の厚み等勘案し適宜設定するものではあるが、特に5~50μm程度の厚さの樹脂層を再現性よく得ること目的とする場合、通常、25℃で500~50,000mPa・s程度、好ましくは1,000~20,000mPa・s程度である。
 ここで、ワニスの粘度は、市販の液体の粘度測定用粘度計を使用して、例えば、JIS K7117-2に記載の手順を参照して、ワニス温度25℃の条件にて測定することができる。好ましくは、粘度計としては、円錐平板型(コーンプレート型)回転粘度計を使用し、好ましくは同型の粘度計で標準コーンロータとして1°34‘×R24を使用して、ワニス温度25℃の条件にて測定することができる。このような回転粘度計としては、例えば、東機産業株式会社製TVE-25Hが挙げられる。
In addition, the viscosity of the varnish should be set appropriately considering the thickness of the thin film to be produced, etc., but when the purpose is to obtain a resin layer with a thickness of about 5 to 50 μm with good reproducibility, it is usually heated at 25°C. It is about 500 to 50,000 mPa·s, preferably about 1,000 to 20,000 mPa·s.
Here, the viscosity of the varnish can be measured using a commercially available viscometer for measuring the viscosity of liquids, for example, with reference to the procedure described in JIS K7117-2, and at a varnish temperature of 25°C. . Preferably, a cone-plate rotational viscometer is used as the viscometer, preferably using the same type of viscometer with a standard cone rotor of 1°34'×R24, and a varnish temperature of 25°C. It can be measured under certain conditions. An example of such a rotational viscometer is TVE-25H manufactured by Toki Sangyo Co., Ltd.
 以上説明した本実施形態の蒸着マスク用樹脂組成物を金属層22に塗布して加熱することで、高い耐熱性と、低線膨張係数とを有するポリイミドを含む樹脂層24を得ることができる。樹脂層24の線膨張率としては、3ppm/K以下が好ましく、2ppm/K以下がより好ましく、1ppm/K以下がさらに好ましい。 By applying the resin composition for a vapor deposition mask of this embodiment described above to the metal layer 22 and heating it, a resin layer 24 containing polyimide having high heat resistance and a low coefficient of linear expansion can be obtained. The coefficient of linear expansion of the resin layer 24 is preferably 3 ppm/K or less, more preferably 2 ppm/K or less, and even more preferably 1 ppm/K or less.
(シリカ粒子)
 本実施形態の蒸着マスク用樹脂組成物は、他の成分として、シリカ(二酸化ケイ素)粒子、または表面が特定のアルコキシシランで修飾されたシリカ粒子(以下、表面修飾シリカ粒子という場合がある)を含むことが好ましい。
 シリカ粒子および表面修飾シリカ粒子は目的等に応じてその平均粒子径を適宜選択できる。中でも平均粒子径は、より高透明な薄膜を得る観点から、1nm~100nmであることが好ましく、1nm~60nmであることがより好ましく、9nm~60nmであることがさらに好ましく、9nm~45nmであることが特に好ましい。
 なお、本明細書においてシリカ粒子および表面修飾シリカ粒子の平均粒子径とは、シリカ粒子および表面修飾シリカ粒子をそれぞれ用いて窒素吸着法により測定された比表面積値から算出される平均粒子径値である。
(Silica particles)
The resin composition for a vapor deposition mask of this embodiment contains silica (silicon dioxide) particles or silica particles whose surfaces are modified with a specific alkoxysilane (hereinafter sometimes referred to as surface-modified silica particles) as other components. It is preferable to include.
The average particle diameter of the silica particles and surface-modified silica particles can be appropriately selected depending on the purpose and the like. Among them, the average particle diameter is preferably 1 nm to 100 nm, more preferably 1 nm to 60 nm, even more preferably 9 nm to 60 nm, and even more preferably 9 nm to 45 nm, from the viewpoint of obtaining a highly transparent thin film. It is particularly preferable.
In addition, in this specification, the average particle diameter of silica particles and surface-modified silica particles is an average particle diameter value calculated from specific surface area values measured by a nitrogen adsorption method using silica particles and surface-modified silica particles, respectively. be.
 シリカ粒子として、例えば、上記平均粒子径の値を有するコロイダルシリカを好適に使用でき、該コロイダルシリカとしては、シリカゾルを用いることができる。シリカゾルとしては、ケイ酸ナトリウム水溶液を原料として公知の方法により製造される水性シリカゾルおよび該水性シリカゾルの分散媒である水を有機溶媒に置換して得られるオルガノシリカゾルを使用することが出来る。
 また、メチルシリケートやエチルシリケート等のアルコキシシランを、アルコール等の有機溶媒中で触媒(例えば、アンモニア、有機アミン化合物、水酸化ナトリウム等のアルカリ触媒)の存在下において加水分解し、縮合して得られるシリカゾル、またはそのシリカゾルを他の有機溶媒に溶媒置換したオルガノシリカゾルも用いることができる。
 これらの中でも本実施形態では、分散媒が有機溶媒であるオルガノシリカゾルを用いることが好ましい。
As the silica particles, for example, colloidal silica having the above average particle diameter value can be suitably used, and as the colloidal silica, silica sol can be used. As the silica sol, it is possible to use an aqueous silica sol produced by a known method using an aqueous sodium silicate solution as a raw material, and an organosilica sol obtained by replacing water, which is a dispersion medium of the aqueous silica sol, with an organic solvent.
In addition, alkoxysilanes such as methyl silicate and ethyl silicate are hydrolyzed in an organic solvent such as alcohol in the presence of a catalyst (e.g., ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide) and condensed. It is also possible to use silica sol, or organosilica sol obtained by substituting the silica sol with another organic solvent.
Among these, in this embodiment, it is preferable to use an organosilica sol whose dispersion medium is an organic solvent.
 上述のオルガノシリカゾルにおける有機溶媒の例としては、メチルアルコール、エチルアルコール、イソプロパノール等の低級アルコール;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖アミド類;N-メチル-2-ピロリドン等の環状アミド類;γ-ブチロラクトン等のエーテル類;エチルセロソルブ、エチレングリコール等のグリコール類、アセトニトリル等が挙げられる。
 水性シリカゾルの分散媒である水の置換や、目的とする別の有機溶媒への置換は、蒸留法、限外濾過法等による通常の方法により行うことができる。
 上記のオルガノシリカゾルの粘度は、20℃で、0.6mPa・s~100mPa・s程度である。
Examples of the organic solvent in the above organosilica sol include lower alcohols such as methyl alcohol, ethyl alcohol, and isopropanol; linear amides such as N,N-dimethylformamide and N,N-dimethylacetamide; N-methyl-2- Examples include cyclic amides such as pyrrolidone; ethers such as γ-butyrolactone; glycols such as ethyl cellosolve and ethylene glycol; and acetonitrile.
Replacement of water, which is the dispersion medium of the aqueous silica sol, or replacement with another desired organic solvent can be carried out by a conventional method such as distillation or ultrafiltration.
The viscosity of the above organosilica sol is about 0.6 mPa·s to 100 mPa·s at 20°C.
 上記オルガノシリカゾルの市販品の例としては、例えば商品名MA-ST-S(メタノール分散シリカゾル、日産化学工業(株)(現:日産化学(株)、以下同様)製)、商品名MT-ST(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-UP(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-M(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-L(メタノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-S(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-UP(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-L(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-ZL(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名NPC-ST-30(n-プロピルセロソルブ分散シリカゾル、日産化学工業(株)製)、商品名PGM-ST(1-メトキシ-2-プロパノール分散シリカゾル、日産化学工業(株)製)、商品名DMAC-ST(ジメチルアセトアミド分散シリカゾル、日産化学工業(株)製)、商品名XBA-ST(キシレン・n-ブタノール混合溶媒分散シリカゾル、日産化学工業(株)製)、商品名EAC-ST(酢酸エチル分散シリカゾル、日産化学工業(株)製)、商品名PMA-ST(プロピレングリコールモノメチルエーテルアセテート分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST-UP(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST-L(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)および商品名MIBK-ST(メチルイソブチルケトン分散シリカゾル、日産化学工業(株)製)、PL―1-IPA(イソプロパノール分散シリカゾル、扶桑化学工業(株)製)、PL―1-TOL(トルエン分散シリカゾル、扶桑化学工業(株)製)、PL―2L-PGME(プロピレングリコールモノメチルエーテル分散シリカゾル、扶桑化学工業(株)製)、PL―2L-MEK(メチルエチルケトン分散シリカゾル、扶桑化学工業(株)製)、PL―3-ME(メタノール分散シリカゾル、扶桑化学工業(株)製)等を挙げることができるが、これらに限定されない。
 本実施形態において二酸化ケイ素、例えばオルガノシリカゾルとして使用される上記製品に挙げたような二酸化ケイ素は、二種以上を混合して用いてもよい。
Examples of commercial products of the organosilica sol include, for example, the product name MA-ST-S (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd. (currently Nissan Chemical Co., Ltd., hereinafter the same)), and the product name MT-ST. (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name MA-ST-UP (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), product name MA-ST-M (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.) Co., Ltd.), product name MA-ST-L (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), product name IPA-ST-S (isopropanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), product name IPA-ST (isopropanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name IPA-ST-UP (isopropanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name IPA-ST-L (isopropanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.) (manufactured by Nissan Chemical Industries, Ltd.), trade name IPA-ST-ZL (isopropanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name NPC-ST-30 (n-propyl cellosolve-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.) ), trade name PGM-ST (1-methoxy-2-propanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name DMAC-ST (dimethylacetamide-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), product Product name: XBA-ST (silica sol dispersed in xylene/n-butanol mixed solvent, manufactured by Nissan Chemical Industries, Ltd.), Product name: EAC-ST (Silica sol dispersed in ethyl acetate, manufactured by Nissan Chemical Industries, Ltd.), Product name: PMA-ST ( Propylene glycol monomethyl ether acetate-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name MEK-ST (methyl ethyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name MEK-ST-UP (methyl ethyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.) (manufactured by Kogyo Co., Ltd.), trade name MEK-ST-L (methyl ethyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.) and trade name MIBK-ST (methyl isobutyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), PL. -1-IPA (isopropanol-dispersed silica sol, manufactured by Fuso Chemical Industries, Ltd.), PL-1-TOL (toluene-dispersed silica sol, manufactured by Fuso Chemical Industries, Ltd.), PL-2L-PGME (propylene glycol monomethyl ether-dispersed silica sol, PL-2L-MEK (methyl ethyl ketone dispersed silica sol, manufactured by Fuso Chemical Industry Co., Ltd.), PL-3-ME (methanol dispersed silica sol, manufactured by Fuso Chemical Industry Co., Ltd.), etc. However, it is not limited to these.
In this embodiment, silicon dioxide, for example, the silicon dioxides listed in the above products used as organosilica sol, may be used in combination of two or more types.
 本実施形態において、無機微粒子の修飾に用いるアルコキシシラン化合物(以下、特定アルコキシシランと称する)として、炭素原子数6乃至18の芳香族基を2つ有するアルコキシシラン化合物、または、炭素原子数7乃至18の芳香族基を1つ有するアルコキシシラン化合物が挙げられる。
 上記炭素原子数6乃至18の芳香族基としては、フェニル基、および、後述の炭素原子数7乃至18の芳香族基が挙げられる。炭素原子数7乃至18の芳香族基としては、ベンゼン環を2つ乃至3つ有する基、および、縮環したベンゼン環を2つ乃至4つ有する基などが挙げられる。中でも、炭素原子数7乃至18の芳香族基としてビフェニル基を有する、下記式(S1)で表される構造を有するアルコキシシランが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(S1)において、RとRはそれぞれ独立して、炭素原子数1~3のアルキル基であり、Wは1~3の整数であり、Yは0~2の整数であり、且つ、W+Y=3であり、Zはハロゲン原子、炭素原子数1~10のアルキル基および炭素原子数1~10のアルコキシ基からなる群から選ばれる基を表し、mは0乃至5の整数を表し、但しmが2以上の整数の場合、Zは同一または相異なる基であってよい。中でもmが0である(ビフェニル基が置換されていない)アルコキシシランが好ましい。
In this embodiment, the alkoxysilane compound (hereinafter referred to as a specific alkoxysilane) used to modify inorganic fine particles is an alkoxysilane compound having two aromatic groups having 6 to 18 carbon atoms, or an alkoxysilane compound having 2 aromatic groups having 6 to 18 carbon atoms, or having 7 to 18 carbon atoms. Examples include alkoxysilane compounds having one 18 aromatic group.
Examples of the aromatic group having 6 to 18 carbon atoms include a phenyl group and an aromatic group having 7 to 18 carbon atoms, which will be described later. Examples of the aromatic group having 7 to 18 carbon atoms include a group having two to three benzene rings and a group having two to four condensed benzene rings. Among these, an alkoxysilane having a structure represented by the following formula (S1) and having a biphenyl group as an aromatic group having 7 to 18 carbon atoms is preferable.
Figure JPOXMLDOC01-appb-C000019
In formula (S1), R 1 and R 2 are each independently an alkyl group having 1 to 3 carbon atoms, W is an integer of 1 to 3, Y is an integer of 0 to 2, and , W+Y=3, Z 1 represents a group selected from the group consisting of a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms, and m is an integer of 0 to 5. where m is an integer of 2 or more, Z 1 may be the same or different groups. Among these, alkoxysilanes in which m is 0 (biphenyl group is not substituted) are preferred.
 上記式(S1)で表されるアルコキシシラン化合物の例としては、4-ビフェニルトリメトキシシラン、4-ビフェニルトリエトキシシラン、3-ビフェニルトリメトキシシラン、3-ビフェニルトリエトキシシラン等が挙げられる。 Examples of the alkoxysilane compound represented by the above formula (S1) include 4-biphenyltrimethoxysilane, 4-biphenyltriethoxysilane, 3-biphenyltrimethoxysilane, and 3-biphenyltriethoxysilane.
 特定アルコキシシランで表面が修飾されたシリカ粒子は、特定アルコキシシランとシリカ粒子とを接触させることで調製することができる。特定アルコキシシランとシリカ粒子とを接触させると、例えば、特定アルコキシシラン中のシラノール基またはアルコキシシリル基が、シリカ粒子表面に存在するヒドロキシ基と縮合反応して結合し、特定アルコキシシランで表面が修飾されたシリカ粒子が形成されると考えられる。
 具体的には、例えば、シリカ粒子のコロイド溶液と、予め準備した特定アルコキシシラン溶液とを混合することで、特定アルコキシシランで表面が修飾されたシリカ粒子を調製することができる。コロイド溶液と特定アルコキシシラン溶液の混合は常温で行ってもよく、加熱しながら行ってもよい。反応効率の観点から、混合は加熱しながら行うことが好ましい。混合を加熱しながら行う場合、その加熱温度は溶媒等に応じて適宜選択することができる。加熱温度は例えば、60℃以上とすることができ、溶媒の還流温度であることが好ましい。
Silica particles whose surfaces are modified with a specific alkoxysilane can be prepared by bringing the specific alkoxysilane and silica particles into contact. When a specific alkoxysilane and silica particles are brought into contact, for example, the silanol group or alkoxysilyl group in the specific alkoxysilane undergoes a condensation reaction and bonds with the hydroxyl group present on the surface of the silica particle, and the surface is modified with the specific alkoxysilane. It is thought that silica particles are formed.
Specifically, for example, silica particles whose surfaces are modified with a specific alkoxysilane can be prepared by mixing a colloidal solution of silica particles and a specific alkoxysilane solution prepared in advance. The colloidal solution and the specific alkoxysilane solution may be mixed at room temperature or while being heated. From the viewpoint of reaction efficiency, it is preferable to perform the mixing while heating. When mixing is performed while heating, the heating temperature can be appropriately selected depending on the solvent and the like. The heating temperature can be, for example, 60° C. or higher, and is preferably the reflux temperature of the solvent.
 特定アルコキシシランとシリカ粒子との混合割合は、目的等に応じて適宜選択することができる。例えば、シリカ粒子の特定アルコキシシランに対する質量比(シリカ粒子/特定アルコキシシラン)が、70/30~99/1であることが好ましく、70/30~90/10であることがより好ましく、80/20~90/10であることがさらに好ましい。ここで、シリカ粒子の質量数は、シリカ粒子の組成式をSiO2として算出する。 The mixing ratio of the specific alkoxysilane and silica particles can be appropriately selected depending on the purpose and the like. For example, the mass ratio of silica particles to specific alkoxysilane (silica particles/specific alkoxysilane) is preferably 70/30 to 99/1, more preferably 70/30 to 90/10, and 80/30 to 99/1. More preferably, the ratio is 20 to 90/10. Here, the mass number of the silica particles is calculated assuming that the compositional formula of the silica particles is SiO2.
 本実施形態の蒸着マスク用樹脂組成物において、シリカ粒子または表面修飾シリカ粒子の含有量は、式(1)で表される構造単位含むポリアミック酸100質量部に対して、20~100質量部が好ましく、20~80質量部がより好ましく、30~70質量部がさらに好ましい。シリカ粒子または表面修飾シリカ粒子の含有量を上記範囲とすることにより、蒸着マスク用樹脂組成物を用いて得られる樹脂層の線膨張率を損なうことなく、強度をより一層高めることができる。 In the resin composition for a vapor deposition mask of the present embodiment, the content of the silica particles or surface-modified silica particles is 20 to 100 parts by mass based on 100 parts by mass of the polyamic acid containing the structural unit represented by formula (1). It is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight. By setting the content of silica particles or surface-modified silica particles within the above range, the strength can be further increased without impairing the linear expansion coefficient of the resin layer obtained using the resin composition for a vapor deposition mask.
 本実施形態の蒸着マスク用樹脂組成物がシリカ粒子または表面修飾シリカ粒子を含む場合には、当該蒸着マスク用樹脂組成物において好適に用いられるポリイミドはフッ素を有することが好ましい。これによれば、ポリイミドとシリカ粒子または表面修飾シリカ粒子との相溶性を高めることができる。この結果、シリカ粒子または表面修飾シリカ粒子の凝集を抑制し、蒸着マスク用樹脂組成物を用いて得られる樹脂層において、シリカ粒子または表面修飾シリカ粒子の分散性を良好に保つことができる。
 たとえば、式(1)におけるYとして、以下の式(Y-1)~(Y-34)からなる群から選ばれる2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式(Y-1)~(Y-34)中、*は結合手を表す。
When the resin composition for a vapor deposition mask of this embodiment contains silica particles or surface-modified silica particles, the polyimide suitably used in the resin composition for a vapor deposition mask preferably contains fluorine. According to this, the compatibility between polyimide and silica particles or surface-modified silica particles can be improved. As a result, aggregation of the silica particles or surface-modified silica particles can be suppressed, and good dispersibility of the silica particles or surface-modified silica particles can be maintained in the resin layer obtained using the resin composition for a vapor deposition mask.
For example, Y 1 in formula (1) may be a divalent group selected from the group consisting of formulas (Y-1) to (Y-34) below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
In formulas (Y-1) to (Y-34), * represents a bond.
 本実施形態の蒸着マスク用樹脂組成物中に含むポリアミック酸をイミド化させる方法としては、金属層22に塗布した蒸着マスク用樹脂組成物をそのまま加熱する熱イミド化、および、蒸着マスク用樹脂組成物中に触媒を添加し加熱する触媒イミド化が挙げられる。 Methods for imidizing the polyamic acid contained in the resin composition for a vapor deposition mask of this embodiment include thermal imidization in which the resin composition for a vapor deposition mask coated on the metal layer 22 is directly heated, and the resin composition for a vapor deposition mask One example is catalytic imidization, in which a catalyst is added to a substance and heated.
 ポリアミック酸の触媒イミド化する場合には、本実施形態の蒸着マスク用樹脂組成物中に触媒を添加し、攪拌することにより触媒が添加された蒸着マスク用樹脂組成物を調整した後、金属層22へ塗布、加熱することで樹脂層24が得られる。触媒の量はアミド酸基の0.1から30モル倍、好ましくは1から20モル倍である。また触媒が添加された蒸着マスク用樹脂組成物中に脱水剤として無水酢酸等を加えることもでき、その量はアミド酸基の1から50モル倍、好ましくは3から30モル倍である。 In the case of catalytic imidization of polyamic acid, a catalyst is added to the resin composition for a vapor deposition mask of this embodiment, and the resin composition for a vapor deposition mask to which the catalyst has been added is prepared by stirring, and then the metal layer is A resin layer 24 is obtained by coating the resin layer 22 and heating it. The amount of catalyst is 0.1 to 30 times the amount of the amic acid group, preferably 1 to 20 times the amount by mole. Furthermore, acetic anhydride or the like can be added as a dehydrating agent to the resin composition for a vapor deposition mask to which a catalyst has been added, and the amount thereof is 1 to 50 times, preferably 3 to 30 times by mole, the amount of the amic acid group.
 イミド化触媒としては三級アミンを用いることが好ましい。三級アミンとしては、ピリジン、置換ピリジン類、イミダゾール、置換イミダゾール類、ピコリン、キノリン、イソキノリンなどが好ましい。 It is preferable to use a tertiary amine as the imidization catalyst. Preferred tertiary amines include pyridine, substituted pyridines, imidazole, substituted imidazoles, picoline, quinoline, and isoquinoline.
 熱イミド化、および触媒イミド化時の加熱温度は、450℃以下が好ましい。450℃を超えると、得られる樹脂層が脆くなり、蒸着マスク用途に適した樹脂層を得ることができない場合がある。
 また、得られる樹脂層の耐熱性と線膨張係数特性を考慮すると、塗布した蒸着マスク用樹脂組成物を50℃~100℃で5分間~2時間加熱した後に、そのまま段階的に加熱温度を上昇させて最終的に375℃超~450℃で30分~4時間加熱することが望ましい。
 特に、塗布した蒸着マスク用樹脂組成物は、50℃~100℃で5分間~2時間加熱した後に、100℃超~200℃で5分間~2時間、次いで、200℃超~375℃で5分間~2時間、最後に375℃超~450℃で30分~4時間加熱することが好ましい。
 加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよい。
The heating temperature during thermal imidization and catalyst imidization is preferably 450° C. or lower. If the temperature exceeds 450°C, the resin layer obtained becomes brittle, and it may not be possible to obtain a resin layer suitable for use as a vapor deposition mask.
In addition, considering the heat resistance and linear expansion coefficient characteristics of the resin layer obtained, it is possible to heat the applied resin composition for a vapor deposition mask at 50°C to 100°C for 5 minutes to 2 hours, and then gradually increase the heating temperature. It is desirable to finally heat the mixture at a temperature of over 375°C to 450°C for 30 minutes to 4 hours.
In particular, the applied resin composition for a vapor deposition mask is heated at 50°C to 100°C for 5 minutes to 2 hours, then heated at over 100°C to 200°C for 5 minutes to 2 hours, and then heated at over 200°C to 375°C for 5 minutes to 2 hours. Preferably, the mixture is heated for 30 minutes to 2 hours and finally at a temperature of more than 375° C. to 450° C. for 30 minutes to 4 hours.
Examples of appliances used for heating include hot plates and ovens. The heating atmosphere may be under air or inert gas, and may be under normal pressure or reduced pressure.
 樹脂層24の厚さは、特に蒸着マスクとして用いる場合、通常1~60μm程度、好ましくは5~50μm程度であり、加熱前の塗膜の厚さを調整して所望の厚さの樹脂層を形成する。 The thickness of the resin layer 24, especially when used as a vapor deposition mask, is usually about 1 to 60 μm, preferably about 5 to 50 μm, and the thickness of the coating before heating can be adjusted to obtain a resin layer of a desired thickness. Form.
 以上説明した樹脂層24は、蒸着マスクとして必要な各条件を満たし、特に、3ppm/Kという極めて低い線膨張率を有するため、熱変形が抑制された蒸着マスクとして使用するのに最適である。 The resin layer 24 described above satisfies each condition necessary for a vapor deposition mask, and in particular has an extremely low coefficient of linear expansion of 3 ppm/K, so it is optimal for use as a vapor deposition mask with suppressed thermal deformation.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above can also be adopted.
 上述した実施形態の枠体30は開口を有する額縁状の形状であるが、当該開口部分に横枠や縦枠を形成し、当該横枠や縦枠と金属層22とを接合してもよい。これによれば、枠体30によるマスク本体20の強度を高めることができ、ひいては、マスク本体20がたわむことを抑制し、平坦度を高めることができる。 Although the frame 30 of the embodiment described above has a frame-like shape with an opening, a horizontal frame or a vertical frame may be formed in the opening, and the metal layer 22 may be bonded to the horizontal frame or vertical frame. . According to this, the strength of the mask body 20 due to the frame body 30 can be increased, and in turn, the mask body 20 can be prevented from bending, and the flatness can be increased.
 また、上述した実施形態では、マスク本体20の全体において、金属層22と樹脂層24とが積層されているが、樹脂層24の一部に金属層22が積層され、樹脂層24の他の部分が単独でマスクとして用いられる形態であってもよい。 Further, in the embodiment described above, the metal layer 22 and the resin layer 24 are laminated in the entire mask body 20, but the metal layer 22 is laminated on a part of the resin layer 24, and the other parts of the resin layer 24 are laminated. The portion may be used alone as a mask.
10 蒸着マスク、20 マスク本体、22 金属層、24 樹脂層、30 枠体 10 Vapor deposition mask, 20 Mask body, 22 Metal layer, 24 Resin layer, 30 Frame

Claims (4)

  1.  被蒸着基板上に蒸着により薄膜パターンを成膜するための開口部のパターンを有する樹脂層を備え、
     前記樹脂層が下記式(1)で表される構造単位を含むポリアミック酸由来のポリイミドを含む、蒸着マスク。
    Figure JPOXMLDOC01-appb-C000001
     式(1)において、Xは、下記の式(3)および(3’)から選ばれる少なくとも1つの4価の有機基を表し、Yは、下記の式(P)で表される基またはF含有有機基を表し、かつ、nは、繰り返し単位の数を表す正の整数である。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     式(3’)において、R10、R11、R12、R13はそれぞれ独立に、水素原子または炭素数1~3の1価アルキル基を表す。
     式(P)において、Rは、Cl、または炭素数1~3のアルキル基、またはフェニル基を表す。また、式(P)において、mは、0~4の整数を表し、rは1~3の整数を表す。
    a resin layer having a pattern of openings for forming a thin film pattern by vapor deposition on a substrate to be vapor-deposited;
    A vapor deposition mask, wherein the resin layer contains polyimide derived from polyamic acid containing a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), X 1 represents at least one tetravalent organic group selected from formulas (3) and (3') below, and Y 1 represents a group represented by formula (P) below. or represents an F-containing organic group, and n is a positive integer representing the number of repeating units.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    In formula (3'), R 10 , R 11 , R 12 and R 13 each independently represent a hydrogen atom or a monovalent alkyl group having 1 to 3 carbon atoms.
    In formula (P), R represents Cl, an alkyl group having 1 to 3 carbon atoms, or a phenyl group. Further, in formula (P), m represents an integer of 0 to 4, and r represents an integer of 1 to 3.
  2.  蒸着源に相対する前記樹脂層の面の少なくとも一部に積層されている金属層をさらに含む、請求項1に記載の蒸着マスク。 The vapor deposition mask according to claim 1, further comprising a metal layer laminated on at least a portion of the surface of the resin layer facing the vapor deposition source.
  3.  前記樹脂層がシリカ粒子を含む、請求項1または2に記載の蒸着マスク。 The vapor deposition mask according to claim 1 or 2, wherein the resin layer contains silica particles.
  4.  前記シリカ粒子の表面が、炭素数6-18の芳香族基を2つ有するか、または、炭素数7-18の芳香族基を1つ有するアルコキシシラン化合物で修飾されている、請求項3に記載の蒸着マスク。 According to claim 3, the surface of the silica particles is modified with an alkoxysilane compound having two aromatic groups having 6 to 18 carbon atoms or one aromatic group having 7 to 18 carbon atoms. Vapor deposition mask as described.
PCT/JP2023/013165 2022-03-30 2023-03-30 Vapor deposition mask WO2023190861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-057500 2022-03-30
JP2022057500A JP7131728B1 (en) 2022-03-30 2022-03-30 Evaporation mask

Publications (1)

Publication Number Publication Date
WO2023190861A1 true WO2023190861A1 (en) 2023-10-05

Family

ID=83188047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013165 WO2023190861A1 (en) 2022-03-30 2023-03-30 Vapor deposition mask

Country Status (2)

Country Link
JP (1) JP7131728B1 (en)
WO (1) WO2023190861A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024932A (en) * 2016-08-05 2018-02-15 新日鉄住金化学株式会社 Vapor deposition mask, production method thereof, laminate for vapor deposition mask and production method thereof
JP2018172737A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask having frame, vapor deposition mask preparation body, method for manufacturing organic semiconductor element and method for manufacturing organic el display
JP2019011494A (en) * 2017-06-30 2019-01-24 日鉄ケミカル&マテリアル株式会社 Polyamide acid composition for forming vapor deposition mask, laminate for vapor deposition mask, vapor deposition mask and method for producing the same
WO2019139167A1 (en) * 2018-01-15 2019-07-18 日産化学株式会社 Hybrid resin composition
JP2021103308A (en) * 2015-07-22 2021-07-15 住友化学株式会社 Polyimide varnish, manufacturing method for polyimide film using the same, and polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103308A (en) * 2015-07-22 2021-07-15 住友化学株式会社 Polyimide varnish, manufacturing method for polyimide film using the same, and polyimide film
JP2018024932A (en) * 2016-08-05 2018-02-15 新日鉄住金化学株式会社 Vapor deposition mask, production method thereof, laminate for vapor deposition mask and production method thereof
JP2018172737A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask having frame, vapor deposition mask preparation body, method for manufacturing organic semiconductor element and method for manufacturing organic el display
JP2019011494A (en) * 2017-06-30 2019-01-24 日鉄ケミカル&マテリアル株式会社 Polyamide acid composition for forming vapor deposition mask, laminate for vapor deposition mask, vapor deposition mask and method for producing the same
WO2019139167A1 (en) * 2018-01-15 2019-07-18 日産化学株式会社 Hybrid resin composition

Also Published As

Publication number Publication date
JP2023149108A (en) 2023-10-13
JP7131728B1 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP7304338B2 (en) Method for producing polyimide film and method for producing electronic device
JP6775768B2 (en) Composition for forming a release layer
TWI717574B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
TWI466949B (en) Polyamic acid resin composition and polyimide film prepared therefrom
JP5053384B2 (en) Polyimide resin, liquid crystal alignment film and polyimide film using the same
TWI664212B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing polyimide film and laminate
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
KR102294065B1 (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
JP5804778B2 (en) New polyimide varnish
TWI385198B (en) Double-sided metal clad laminate and fabrication method thereof
KR20170133395A (en) The composition for forming a peel layer and the peel layer
JP7231887B2 (en) hybrid resin composition
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP5188495B2 (en) Positive photosensitive polyimide precursor composition
TWI437026B (en) Solution of polyamic acid resin containing interpenetrating polymer and metal laminate using the same
KR102168594B1 (en) Resin composition for display substrates, resin thin film for display substrates, and method for producing resin thin film for display substrates
WO2023190861A1 (en) Vapor deposition mask
JP2012107178A (en) Polyimide resin composition
WO2017119450A1 (en) Composition for forming substrate for flexible devices
WO2022070617A1 (en) Layered body including inorganic substrate and polyamic acid cured product
WO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
TW202309152A (en) Polyimide films and electronic devices
JP2018141082A (en) Resin composition, film, and optical device
WO2019065819A1 (en) Composition for forming temporary bonding layer, and temporary bonding layer
TWI834630B (en) Polyimide, polyimide solution composition, polyimide film and base material laminate containing the same, substrate, display, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780869

Country of ref document: EP

Kind code of ref document: A1