JP2012107178A - Polyimide resin composition - Google Patents

Polyimide resin composition Download PDF

Info

Publication number
JP2012107178A
JP2012107178A JP2011078608A JP2011078608A JP2012107178A JP 2012107178 A JP2012107178 A JP 2012107178A JP 2011078608 A JP2011078608 A JP 2011078608A JP 2011078608 A JP2011078608 A JP 2011078608A JP 2012107178 A JP2012107178 A JP 2012107178A
Authority
JP
Japan
Prior art keywords
polyimide
layered silicate
resin composition
polyimide resin
stn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078608A
Other languages
Japanese (ja)
Inventor
Yu Nagahara
悠 長原
Susumu Koizumi
進 小泉
Yuya Hayashi
裕也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011078608A priority Critical patent/JP2012107178A/en
Publication of JP2012107178A publication Critical patent/JP2012107178A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide resin composition that is excellent in a balance of colorless transparency, dimensional stability and water vapor barrier properties and to provide a polyimide-based composite film that includes the polyimide resin composition.SOLUTION: In a polyimide resin composition including a polyimide (A) and an organized phyllosilicate (B), the polyimide resin composition has the organized phyllosilicate (B) dispersed in the polyimide (A) and contains the organized phyllosilicate (B) in an amount of more than 20 pts.wt. and not more than 250 pts.wt. based on 100 pts.wt. of the polyimide (A).

Description

本発明は、ポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムに関する。   The present invention relates to a polyimide resin composition and a polyimide composite film including the same.

近年、ガラス基板に変わりプラスチックフィルムを基板とした各種フレキシブルデバイスの研究が盛んに行われている。例えば、フレキシブル有機ELディスプレイ、フィルム型太陽電池、電子ペーパー等が挙げられる。これらのプラスチックフィルムには、デバイスの製造プロセス上、高度な耐熱性と透明性、寸法安定性が求められている。   In recent years, various flexible devices using a plastic film as a substrate instead of a glass substrate have been actively studied. For example, a flexible organic EL display, a film type solar cell, electronic paper, etc. are mentioned. These plastic films are required to have high heat resistance, transparency and dimensional stability in the device manufacturing process.

機械的強度の向上、熱膨張率の低下、ガスバリア性の向上等を目的として、各種有機樹脂と無機層状化合物との複合化が盛んに研究されており、ポリイミドについても多くの報告がある。
特許文献1には、有機オニウムイオンで有機化された層状粘土鉱物とポリイミドからなるポリイミド複合材料及びその製造方法が開示されている。
特許文献2には、有機オニウムイオンによりイオン交換能対比50〜100%イオン交換され、比表面積が特定範囲に調整された層状珪酸塩が開示されている。
特許文献3には、樹脂に層状珪酸塩を添加することにより、寸法安定性を向上させる技術が開示されている。
特許文献4には、有機化層状珪酸塩の有機化処理を工夫することにより、その分散性を向上させ、有機化層状珪酸塩を配合した場合でも良好な光学特性を有するフィルムを得る技術が開示されている。
For the purpose of improving the mechanical strength, lowering the coefficient of thermal expansion, improving the gas barrier property, etc., compounding of various organic resins and inorganic layered compounds has been actively studied, and there are many reports on polyimide.
Patent Document 1 discloses a polyimide composite material composed of a layered clay mineral and polyimide that has been organized with organic onium ions, and a method for producing the same.
Patent Document 2 discloses a layered silicate that is ion-exchanged with an organic onium ion by 50 to 100% relative to the ion exchange capacity and has a specific surface area adjusted to a specific range.
Patent Document 3 discloses a technique for improving dimensional stability by adding a layered silicate to a resin.
Patent Document 4 discloses a technique for improving the dispersibility by devising the organic treatment of the organic layered silicate and obtaining a film having good optical characteristics even when the organic layered silicate is blended. Has been.

特開平4−33955号公報JP-A-4-33955 国際公開2005/028366号パンフレットInternational Publication No. 2005/028366 Pamphlet 特開2000−7912号公報JP 2000-7912 A 特開2006−37079号公報JP 2006-37079 A

しかしながら、特許文献1〜4に開示されたポリイミド系複合材料又はフィルムは、透明性、寸法安定性、及び水蒸気バリア性のバランスの観点から、未だ改良の余地がある。
また、層状珪酸塩を無色透明なポリイミドに多量に添加すると、寸法安定性は向上するが、層状珪酸塩同士の凝集が起こり易くなり、透明性が悪化するという問題がある。
However, the polyimide composite materials or films disclosed in Patent Documents 1 to 4 still have room for improvement from the viewpoint of the balance of transparency, dimensional stability, and water vapor barrier properties.
In addition, when a large amount of layered silicate is added to a colorless and transparent polyimide, the dimensional stability is improved, but aggregation of the layered silicate easily occurs, and there is a problem that the transparency is deteriorated.

上記事情に鑑み、本発明は、透明性、寸法安定性、及び水蒸気バリア性のバランスに優れたポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムを提供することを目的とする。
さらには、優れた寸法安定性と透明性を両立するポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムを提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a polyimide resin composition excellent in the balance of transparency, dimensional stability, and water vapor barrier properties, and a polyimide-based composite film including the same.
Furthermore, it aims at providing the polyimide resin composition which balances the outstanding dimensional stability and transparency, and the polyimide-type composite film containing the same.

本発明者は上記課題を解決するために鋭意検討した結果、ポリイミドと、有機化層状珪酸塩、を含むポリイミド樹脂組成物であって、前記ポリイミド(A)中に前記有機化層状珪酸塩(B)を分散させ、さらに、前記ポリイミド(A)対する前記有機化層状珪酸塩(B)の含有量を特定範囲に調整することにより、透明性、寸法安定性、及び水蒸気バリア性のバランスに優れたポリイミド樹脂組成物、及びポリイミド系複合フィルムが得られることを見出した。
また、有機化層状珪酸塩をシランカップリング剤で処理することにより、樹脂中に有機層状珪酸塩を多量に配合した場合でも層状珪酸塩同士の凝集を抑制することができることを発見し、その結果、優れた寸法安定性と透明性を両立するポリイミド樹脂組成物、及びポリイミド系複合フィルムが得られることを見出し、本発明を完成させた。
As a result of intensive studies in order to solve the above problems, the present inventor is a polyimide resin composition containing polyimide and an organically modified layered silicate, wherein the organicated layered silicate (B) is contained in the polyimide (A). ), And further, the content of the organically modified layered silicate (B) with respect to the polyimide (A) is adjusted to a specific range, thereby providing excellent balance of transparency, dimensional stability, and water vapor barrier properties. It discovered that a polyimide resin composition and a polyimide-type composite film were obtained.
In addition, by treating the organic layered silicate with a silane coupling agent, it was discovered that even when a large amount of the organic layered silicate is blended in the resin, aggregation of the layered silicates can be suppressed. The present inventors have found that a polyimide resin composition and a polyimide-based composite film having both excellent dimensional stability and transparency can be obtained, and the present invention has been completed.

すなわち本発明は、以下のとおりである。
[1]
ポリイミド(A)と、
有機化層状珪酸塩(B)と、
を含むポリイミド樹脂組成物であって、
前記ポリイミド(A)中に前記有機化層状珪酸塩(B)が分散し、前記ポリイミド(A)100重量部に対して、前記有機化層状珪酸塩(B)を20重量部を超えて250重量部以下含む、ポリイミド樹脂組成物。
[2]
前記ポリイミド(A)は、テトラカルボン酸二無水物とジアミン化合物とからなる共重合体であり、前記テトラカルボン酸二無水物及び前記ジアミン化合物の少なくとも一方が脂肪族(脂環構造を含む)化合物である、上記[1]記載のポリイミド樹脂組成物。
[3]
前記有機化層状珪酸塩(B)は、イオン交換容量50〜130ミリグラム当量/100gの層状珪酸塩の交換性陽イオンの50〜90ミリグラム当量/100gが有機オニウムイオンにより置換された層状珪酸塩である、上記[1]又は[2]記載のポリイミド樹脂組成物。
[4]
前記有機化層状珪酸塩(B)がシランカップリング剤で処理されている、上記[1]〜[3]のいずれか記載のポリイミド樹脂組成物。
[5]
前記ポリイミド(A)100重量部に対して、前記有機化層状珪酸塩(B)を100重量部以上250重量部以下含む、上記[4]記載のポリイミド樹脂組成物。
[6]
上記[1]〜[5]のいずれか記載のポリイミド樹脂組成物を含むポリイミド系複合フィルム。
[7]
全光線透過率が85%以上、ヘイズ値が3%以下である、上記[6]記載のポリイミド系複合フィルム。
That is, the present invention is as follows.
[1]
Polyimide (A),
An organic layered silicate (B);
A polyimide resin composition comprising:
The organic layered silicate (B) is dispersed in the polyimide (A), and the organic layered silicate (B) exceeds 20 parts by weight with respect to 100 parts by weight of the polyimide (A). A polyimide resin composition containing at most parts.
[2]
The polyimide (A) is a copolymer comprising a tetracarboxylic dianhydride and a diamine compound, and at least one of the tetracarboxylic dianhydride and the diamine compound is an aliphatic (including alicyclic structure) compound. The polyimide resin composition according to the above [1].
[3]
The organically modified layered silicate (B) is a layered silicate in which 50 to 90 milliequivalents / 100 g of the exchangeable cation of the layered silicate having an ion exchange capacity of 50 to 130 milliequivalents / 100 g is substituted with an organic onium ion. The polyimide resin composition according to the above [1] or [2].
[4]
The polyimide resin composition according to any one of [1] to [3], wherein the organically modified layered silicate (B) is treated with a silane coupling agent.
[5]
The polyimide resin composition according to the above [4], comprising 100 parts by weight or more and 250 parts by weight or less of the organically modified layered silicate (B) with respect to 100 parts by weight of the polyimide (A).
[6]
The polyimide type composite film containing the polyimide resin composition in any one of said [1]-[5].
[7]
The polyimide composite film according to [6], wherein the total light transmittance is 85% or more and the haze value is 3% or less.

本発明により、無色透明性、寸法安定性、及び水蒸気バリア性のバランスに優れたポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムを提供することができる。
また、本発明により、優れた寸法安定性と透明性を両立するポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムを提供することができる。
According to the present invention, it is possible to provide a polyimide resin composition having an excellent balance of colorless transparency, dimensional stability, and water vapor barrier properties, and a polyimide composite film including the same.
Moreover, according to the present invention, it is possible to provide a polyimide resin composition having both excellent dimensional stability and transparency, and a polyimide composite film including the same.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。ただし、本発明は下記本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々な変形が可能である。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to the following embodiment, and various modifications can be made without departing from the gist of the present invention.

本実施形態のポリイミド樹脂組成物は、
ポリイミド(A)と、
有機化層状珪酸塩(B)と、
を含むポリイミド樹脂組成物であって、
前記ポリイミド(A)中に前記有機化層状珪酸塩(B)が分散し、前記ポリイミド(A)100重量部に対して、前記有機化層状珪酸塩(B)を20重量部を超えて250重量部以下含む、ポリイミド樹脂組成物である。
The polyimide resin composition of this embodiment is
Polyimide (A),
An organic layered silicate (B);
A polyimide resin composition comprising:
The organic layered silicate (B) is dispersed in the polyimide (A), and the organic layered silicate (B) exceeds 20 parts by weight with respect to 100 parts by weight of the polyimide (A). It is a polyimide resin composition containing a part or less.

[ポリイミド(A)]
本実施形態におけるポリイミドとしては、特に限定されず、テトラカルボン酸二無水物とジアミン化合物を公知の(溶液重合)方法により縮重合してイミド化することにより得ることができる。
[Polyimide (A)]
The polyimide in the present embodiment is not particularly limited, and can be obtained by polycondensation and imidization of a tetracarboxylic dianhydride and a diamine compound by a known (solution polymerization) method.

テトラカルボン酸二無水物及びジアミン化合物としては、脂肪族化合物、芳香族化合物のいずれも用いることができるが、これらの化合物から得られるポリイミドにより良好な無色透明性を付与する観点から、テトラカルボン酸二無水物及びジアミン化合物の少なくとも一方が脂肪族化合物であることが好ましい。ここで、上記脂肪族化合物には、脂環構造を有するものも含まれる。   As the tetracarboxylic dianhydride and the diamine compound, any of an aliphatic compound and an aromatic compound can be used. From the viewpoint of imparting good colorless transparency to the polyimide obtained from these compounds, the tetracarboxylic acid is used. It is preferable that at least one of the dianhydride and the diamine compound is an aliphatic compound. Here, what has an alicyclic structure is also contained in the said aliphatic compound.

脂肪族テトラカルボン酸二無水物としては、特に限定されないが、例えば、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,4,3’,4’−ビシクロヘキシルテトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2,2,2]−オクタン−2,3,5,6−テトラカルボン酸二無水物等が挙げられる。上記の中でも、耐熱性、透明性及び入手の容易さの観点から、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,4,3’,4’−ビシクロヘキシルテトラカルボン酸二無水物、ビシクロ[2,2,2]−オクタン−2,3,5,6−テトラカルボン酸二無水物が好ましい。上記脂肪族テトラカルボン酸二無水物は、単独で用いても2種以上を併用してもよい。   Although it does not specifically limit as aliphatic tetracarboxylic dianhydride, For example, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4,3 ′, 4′-bicyclohexyltetracarboxylic dianhydride Bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, bicyclo [2,2,2 ] -Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2,2,2] -octane-2,3,5,6-tetracarboxylic dianhydride and the like Can be mentioned. Among the above, from the viewpoint of heat resistance, transparency, and availability, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4,3 ′, 4′-bicyclohexyltetracarboxylic dianhydride Bicyclo [2,2,2] -octane-2,3,5,6-tetracarboxylic dianhydride is preferred. The said aliphatic tetracarboxylic dianhydride may be used independently or may use 2 or more types together.

脂肪族ジアミン化合物としては、特に限定されないが、例えば、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、3(4),8(9),−ビス(アミノメチル)トリシクロ[5,2,1,02,6]デカン、2,5(6)−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、イソホロンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、メタキシリレンジアミン、パラキシリレンジアミン、1,2−ジアミノエタン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン等が挙げられる。上記の中でも、耐熱性及び透明性の観点から、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3‘−ジメチルジシクロヘキシルメタン、3(4),8(9),−ビス(アミノメチル)トリシクロ[5,2,1,02,6]デカン、2,5(6)−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、イソホロンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサンが好ましい。上記脂肪族ジアミン化合物は、単独で用いても2種以上を併用してもよい。 The aliphatic diamine compound is not particularly limited, and examples thereof include 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, 3 (4), 8 (9), − bis (aminomethyl) tricyclo [5,2,1,0 2,6] decane, 2,5 (6) - bis (aminomethyl) bicyclo [2,2,1] heptane, isophorone diamine, 1,3-bis (Aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, metaxylylenediamine, paraxylylenediamine, 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane 1,6-diaminohexane, 1,8-diaminooctane and the like. Among the above, from the viewpoint of heat resistance and transparency, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, 3 (4), 8 (9),-bis (aminomethyl) tricyclo [5,2,1,0 2,6] decane, 2,5 (6) - bis (aminomethyl) bicyclo [2,2,1] heptane, isophorone diamine, 1,3-bis ( Aminomethyl) cyclohexane, 1,3-diaminocyclohexane and 1,4-diaminocyclohexane are preferred. The said aliphatic diamine compound may be used independently or may use 2 or more types together.

芳香族テトラカルボン酸二無水物としては、特に限定されないが、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物、4,4’ヘキサフルオロイソプロピリデンジフタル酸無水物等が挙げられる。上記の中でも、耐熱性、透明性及び入手の容易さの観点から、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸無水物、2,2‘−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物、4,4’ヘキサフルオロイソプロピリデンジフタル酸無水物が好ましい。   The aromatic tetracarboxylic dianhydride is not particularly limited. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4, 4′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2′-bis [4- ( 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 4,4 ′ hexafluoroisopropylidene diphthalic anhydride, and the like. Among the above, from the viewpoint of heat resistance, transparency, and availability, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 2,2 ′ -Bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 4,4 ′ hexafluoroisopropylidenediphthalic anhydride is preferred.

芳香族ジアミン化合物としては、特に限定されないが、例えば、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、3,3’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルフォン、ビス[4−(3−アミノフェノキシ)フェニル]スルフォン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。   Although it does not specifically limit as an aromatic diamine compound, For example, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2 ' -Bis (trifluoromethyl) biphenyl, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylmethane, 4,4'-diamino Diphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis ( 3-Aminophenoxy) benzene, 4,4′-bis (4-aminophen) Noxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and the like can be mentioned.

本実施形態において2種以上のテトラカルボン酸二無水物、又は2種以上のジアミン化合物を用いる場合、それらのうちの少なくとも1種が脂肪族化合物であることが好ましい。本実施形態では、原料として、芳香族酸無水物と脂肪族ジアミン化合物の組み合わせ、脂肪族酸無水物と芳香族ジアミン化合物の組み合わせ、脂肪族酸無水物と脂肪族ジアミン化合物の組み合わせを少なくとも用いることが好ましいが、これらに芳香族テトラカルボン酸二無水物や芳香族ジアミン化合物等を併用する場合、透明性の観点から、ポリイミド中に、芳香族酸無水物と芳香族ジアミン化合物の連鎖構造が極力存在しないことが好ましく、全く存在しないことがより好ましい。   In this embodiment, when using 2 or more types of tetracarboxylic dianhydrides or 2 or more types of diamine compounds, it is preferable that at least 1 type of them is an aliphatic compound. In this embodiment, at least a combination of an aromatic acid anhydride and an aliphatic diamine compound, a combination of an aliphatic acid anhydride and an aromatic diamine compound, or a combination of an aliphatic acid anhydride and an aliphatic diamine compound is used as a raw material. However, when an aromatic tetracarboxylic dianhydride or an aromatic diamine compound is used in combination with these, from the viewpoint of transparency, the chain structure of the aromatic acid anhydride and the aromatic diamine compound is as much as possible in the polyimide. It is preferably not present, more preferably not present at all.

[有機化層状珪酸塩(B)]
本実施形態における有機化層状珪酸塩(B)としては、特に限定されないが、イオン交換容量50〜130ミリグラム当量/100gの層状珪酸塩の交換性陽イオンの50〜90ミリグラム当量/100gが有機オニウムイオンにより置換された層状珪酸塩であることが好ましい。
[Organized layered silicate (B)]
The organically modified layered silicate (B) in this embodiment is not particularly limited, but 50 to 90 milligram equivalent / 100 g of the exchangeable cation of the layered silicate having an ion exchange capacity of 50 to 130 milligram equivalent / 100 g is an organic onium. A layered silicate substituted with ions is preferred.

層状珪酸塩としては、特に限定されず、例えば、モンモリロナイト、ヘクトライト、サポナイト、バイデライト、スティブンサイト、及びノントロナイト等のスメクタイト系粘土鉱物、膨潤性マイカ、バーミキュライト、ハロイサイト等が挙げられる。上記の中でも、溶媒中での膨潤性に優れることから、モンモリロナイト、ヘクトライト、サポナイト、膨潤性マイカ、及びバーミキュライトからなる群より選択される少なくとも1種が好適に用いられる。これらの層状珪酸塩は、単独で用いられてもよく、2種以上が併用されてもよい。   The layered silicate is not particularly limited, and examples thereof include smectite clay minerals such as montmorillonite, hectorite, saponite, beidellite, stevensite, and nontronite, swelling mica, vermiculite, and halloysite. Among these, at least one selected from the group consisting of montmorillonite, hectorite, saponite, swellable mica, and vermiculite is preferably used because of its excellent swellability in a solvent. These layered silicates may be used alone or in combination of two or more.

層状珪酸塩のイオン交換容量としては、50〜130ミリグラム当量/100gであることが好ましく、より好ましくは80〜120ミリグラム当量/100g、さらに好ましくは100〜105ミリグラム当量/100gである。イオン交換容量が50ミリグラム当量/100g未満であると、カチオン交換により層状珪酸塩の結晶層間にインターカレートされるカチオン性物質の量が少なくなるために、結晶層間が十分に有機化されないことがある。一方、イオン交換容量が130ミリグラム当量/100gを超えると、層状珪酸塩の結晶層間の結合力が強固になりすぎて、結晶薄片が剥離し難くなることがある。   The ion exchange capacity of the layered silicate is preferably 50 to 130 milligram equivalent / 100 g, more preferably 80 to 120 milligram equivalent / 100 g, and still more preferably 100 to 105 milligram equivalent / 100 g. When the ion exchange capacity is less than 50 milligram equivalent / 100 g, the amount of the cationic substance intercalated between the crystal layers of the layered silicate is reduced by cation exchange, so that the crystal layers are not sufficiently organized. is there. On the other hand, when the ion exchange capacity exceeds 130 milligram equivalent / 100 g, the bonding force between the crystal layers of the layered silicate becomes too strong, and the crystal flakes may be difficult to peel off.

層状珪酸塩のイオン交換容量は、メチレンブルーの吸着量により測定することができる。具体的には、イオン交換する前の状態の層状珪酸塩を秤量し、1%分散液を作製した後、メチレンブルーで滴定を行い、滴定に要するメチレンブルー量と、使用した層状珪酸塩の量から、メチレンブルーの吸着量を算出することができる。   The ion exchange capacity of the layered silicate can be measured by the amount of methylene blue adsorbed. Specifically, after weighing the layered silicate before ion exchange and preparing a 1% dispersion, titrating with methylene blue, from the amount of methylene blue required for titration and the amount of layered silicate used, The adsorption amount of methylene blue can be calculated.

本実施形態の有機化層状珪酸塩は、上記層状珪酸塩を有機オニウムイオンで処理(イオン交換)したものであることが好ましい。このような有機オニウムイオンを生じる有機オニウム塩としては、例えば、4級アンモニウム塩、4級ホスホニウム塩、イミダゾリウム塩等が挙げられるが、着色を可能な限り抑制する観点から、4級アンモニウム塩が好ましい。上記有機オニウム塩は、単独で用いても、2種以上を併用してもよい。   The organically modified layered silicate of this embodiment is preferably one obtained by processing (ion exchange) the above layered silicate with an organic onium ion. Examples of organic onium salts that generate such organic onium ions include quaternary ammonium salts, quaternary phosphonium salts, imidazolium salts, and the like. From the viewpoint of suppressing coloring as much as possible, quaternary ammonium salts are used. preferable. The organic onium salts may be used alone or in combination of two or more.

4級アンモニウム塩としては特に限定されず、例えば、トリメチルアルキルアンモニウム塩、トリエチルアルキルアンモニウム塩、トリブチルアルキルアンモニウム塩、トリオクチルアルキルアンモニウム塩、ジメチルジアルキルアンモニウム塩、ジブチルジアルキルアンモニウム塩、メチルベンジルジアルキルアンモニウム塩、ジベンジルジアルキルアンモニウム塩、トリアルキルメチルアンモニウム塩、トリアルキルエチルアンモニウム塩、トリアルキルブチルアンモニウム塩、芳香環を有する4級アンモニウム塩、トリメチルフェニルアンモニウム等の芳香族アミン由来の4級アンモニウム塩、ポリエチレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリエチレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩等が挙げられる。上記の中でも、層状珪酸塩の分散性向上の観点から、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩がより好ましい。これらの4級アンモニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。   The quaternary ammonium salt is not particularly limited. For example, trimethylalkylammonium salt, triethylalkylammonium salt, tributylalkylammonium salt, trioctylalkylammonium salt, dimethyldialkylammonium salt, dibutyldialkylammonium salt, methylbenzyldialkylammonium salt, Dibenzyldialkylammonium salt, trialkylmethylammonium salt, trialkylethylammonium salt, trialkylbutylammonium salt, quaternary ammonium salt having an aromatic ring, quaternary ammonium salt derived from aromatic amines such as trimethylphenylammonium, polyethylene glycol Dialkyl quaternary ammonium salt having two chains, dialkyl quaternary ammonium having two polypropylene glycol chains Unsalted, trialkyl quaternary ammonium salt having one polyethylene glycol chain, a trialkyl quaternary ammonium salt having one polypropylene glycol chain. Among the above, from the viewpoint of improving the dispersibility of the layered silicate, lauryltrimethylammonium salt, stearyltrimethylammonium salt, trioctylmethylammonium salt, distearyldimethylammonium salt, di-cured tallow dimethylammonium salt, distearyldibenzylammonium salt N-polyoxyethylene-N-lauryl-N, N-dimethylammonium salt is more preferable. These quaternary ammonium salts may be used alone or in combination of two or more.

4級ホスホニウム塩としては特に限定されず、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。   The quaternary phosphonium salt is not particularly limited. For example, dodecyltriphenylphosphonium salt, methyltriphenylphosphonium salt, lauryltrimethylphosphonium salt, stearyltrimethylphosphonium salt, trioctylphosphonium salt, distearyldimethylphosphonium salt, distearyldibenzyl A phosphonium salt etc. are mentioned.

イミダゾリウム塩としては特に限定されず、例えば、ジメチルブチルイミダゾリウム塩、ジメチルオクチルイミダゾリウム塩、ジメチルデシルイミダゾリウム塩、ジメチルドデシルイミダゾリウム塩、ジメチルヘキサデシルイミダゾリウム塩等が挙げられる。これらのホスホニウム塩、イミダゾリウム塩は、それぞれ単独で用いても、1種のみが4級アンモニウム塩と併用されてもよく、2種以上が併用されてもよい。   The imidazolium salt is not particularly limited, and examples thereof include dimethylbutylimidazolium salt, dimethyloctylimidazolium salt, dimethyldecylimidazolium salt, dimethyldodecylimidazolium salt, and dimethylhexadecylimidazolium salt. These phosphonium salts and imidazolium salts may be used alone, or only one kind may be used in combination with a quaternary ammonium salt, or two or more kinds may be used in combination.

本実施形態の有機化層状珪酸塩(B)は、層状珪酸塩中に存在する交換性陽イオンの50〜90ミリグラム当量/100gが有機オニウムイオンにより置換されていることが好ましい。即ち、交換性陽イオンに対する有機オニウムイオンの置換率が50〜90%に調整されていることが好ましい。ここで、交換性陽イオンに対する有機オニウムイオンの置換率が50ミリグラム当量/100g未満であると、有機化層状珪酸塩の分散性が低下する傾向にあり、90ミリグラム当量/100gを超えると、有機オニウムイオンが分解して耐熱性の低下を招くおそれがある。   In the organically modified layered silicate (B) of this embodiment, 50 to 90 milligram equivalents / 100 g of exchangeable cations present in the layered silicate are preferably substituted with organic onium ions. That is, it is preferable that the substitution ratio of the organic onium ion to the exchangeable cation is adjusted to 50 to 90%. Here, when the substitution ratio of the organic onium ion to the exchangeable cation is less than 50 milligram equivalent / 100 g, the dispersibility of the organically modified layered silicate tends to be lowered, and when it exceeds 90 milligram equivalent / 100 g, There is a possibility that the onium ions decompose and cause a decrease in heat resistance.

また、本実施形態の樹脂組成物をフィルムとして用いる場合、交換性陽イオンに対する有機オニウムイオンの置換率が50ミリグラム当量/100g未満であると、有機化層状珪酸塩の分散性が低下し、有機化層状珪酸塩の凝集体の影響でフィルムの光学特性が低下するおそれがある。一方、90ミリグラム当量/100gを超えると、樹脂組成物をフィルム状にした後、加熱により溶媒を除去する乾燥工程において、有機オニウムイオンの熱分解が起こりやすくなり、光学特性の悪化を招くおそれがある。   Further, when the resin composition of the present embodiment is used as a film, the dispersibility of the organically modified layered silicate is reduced when the substitution rate of the organic onium ion with respect to the exchangeable cation is less than 50 milligram equivalent / 100 g. There is a possibility that the optical properties of the film may deteriorate due to the influence of the aggregate of the layered silicate. On the other hand, if it exceeds 90 milligram equivalent / 100 g, after the resin composition is made into a film, the organic onium ions are likely to be thermally decomposed in the drying step of removing the solvent by heating, which may lead to deterioration of optical properties. is there.

交換性陽イオンに対する有機オニウムイオンの置換率を50〜90ミリグラム当量/100gの範囲に調整する方法としては、交換性陽イオン量に、意図的に有機オニウム塩の添加量を調整することで、任意の置換率にする方法等が挙げられる。   As a method of adjusting the substitution rate of the organic onium ion to the exchangeable cation in the range of 50 to 90 milligram equivalent / 100 g, by adjusting the addition amount of the organic onium salt intentionally to the exchangeable cation amount, Examples of the method include an arbitrary substitution rate.

有機オニウム塩により層状珪酸塩の陽イオンを有機オニウムイオンに置換する処理としては、例えば、水中に分散した層状珪酸塩をイオン交換することにより行うことができる。   The treatment for replacing the cation of the layered silicate with the organic onium ion by the organic onium salt can be performed, for example, by ion exchange of the layered silicate dispersed in water.

本実施形態の有機化層状珪酸塩(B)は、シランカップリング剤で処理されていることが好ましい。有機化層状珪酸塩がシランカップリング剤で処理されている場合、有機化層状珪酸塩と樹脂との相溶性が向上し、樹脂中に有機化層状珪酸塩を多量に配合した場合でも層状珪酸塩同士の凝集を抑制することができる。その結果、得られるフィルムに、良好な透明性を維持した状態で、優れた寸法安定性を付与することが可能となる。   The organically modified layered silicate (B) of this embodiment is preferably treated with a silane coupling agent. When the organic layered silicate is treated with a silane coupling agent, the compatibility between the organic layered silicate and the resin is improved, and even when a large amount of the organic layered silicate is blended in the resin, the layered silicate Aggregation between each other can be suppressed. As a result, excellent dimensional stability can be imparted to the resulting film while maintaining good transparency.

シランカップリング剤としては、特に限定されないが、例えば、N−フェニル−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトシシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン等のアミノシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン等のビニルシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン等のメタクリルシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトシシシラン、3−メルカプトプロピルエトキシシラン等のメルカプトシラン、3−グルシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン、3−ウレイドプロピルトリエトキシシラン等のウレイドシラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、イソプロピルジメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン、フェニルトリメトキシシラン等のアルキルシラン等が挙げられる。上記の中でも、ポリイミド樹脂との相溶性をより向上させる傾向にあるため、アミノシランが好ましい。   The silane coupling agent is not particularly limited. For example, N-phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) Amino silane such as aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxy Vinylsilanes such as silane, methacrylic silanes such as 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethyl Mercaptosilane such as cissilane, 3-mercaptopropylethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyl Epoxy silane such as diethoxysilane, ureido silane such as 3-ureidopropyltriethoxysilane, isocyanate silane such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethyl Methoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isopropyldimethoxysilane, isobutyltrimethoxysilane, cyclohexylmethyldi Tokishishiran, and the like alkyl silane and phenyl trimethoxy silane. Among these, aminosilane is preferred because it tends to improve compatibility with the polyimide resin.

有機化層状珪酸塩をシランカップリング剤で処理する方法としては、例えば、有機化層状珪酸塩が分散している溶液中で処理する湿式法、有機化層状珪酸塩を粉体のまま直接処理する乾式法、有機化層状珪酸塩が樹脂中に分散している樹脂組成物中で処理するインテグラルブレンド法が挙げられる。上記の中でも、シランカップリング剤による有機化層状珪酸塩の凝集を抑える観点から、有機化層状珪酸塩がよく分散している状態で処理できる湿式法、インテグラルブレンド法が好ましく、湿式法ではシランカップリング剤で処理後、有機化層状珪酸塩を溶液から単離することなく、溶液に分散したまま樹脂中に配合するのが好ましい。   Examples of the method for treating the organic layered silicate with a silane coupling agent include a wet method in which the organic layered silicate is treated in a solution in which the organic layered silicate is dispersed; Examples thereof include a dry method and an integral blend method in which a resin composition in which an organically modified layered silicate is dispersed in a resin. Among these, from the viewpoint of suppressing aggregation of the organic layered silicate by the silane coupling agent, the wet method and the integral blend method that can be processed in a state where the organic layered silicate is well dispersed are preferable. After the treatment with the coupling agent, the organically modified layered silicate is preferably blended in the resin while being dispersed in the solution without being isolated from the solution.

シランカップリング剤の添加量は、有機化層状珪酸塩に対して、好ましくは0.5〜10重量%であり、より好ましくは1〜5重量%である。シランカップリング剤の添加量が、0.5重量%以上であると、有機化層状珪酸塩と樹脂との相溶性が向上し、有機化層状珪酸塩同士の凝集が抑えられる傾向にあり、10重量%以下であると、シランカップリング剤による有機化層状珪酸塩同士の結合が起こり難くなる傾向にある。   The addition amount of the silane coupling agent is preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight with respect to the organically modified layered silicate. When the addition amount of the silane coupling agent is 0.5% by weight or more, compatibility between the organically modified layered silicate and the resin is improved, and aggregation of the organically modified layered silicate tends to be suppressed. When the content is less than or equal to% by weight, bonding between the organically modified layered silicates by the silane coupling agent tends to be difficult to occur.

本実施形態のポリイミド樹脂組成物は、上記有機化層状珪酸塩(B)を溶媒に分散させた溶液と、上記ポリイミド(A)を含む溶液とを混合して、(B)成分を(A)成分中に分散させることにより得ることができる。ここで、有機化層状珪酸塩(B)はポリイミド(A)中に高度に分散していることが、寸法安定性及び水蒸気バリア性の観点から好ましい。ここで、「高度に」とは電子顕微鏡観察によりクレイの凝集がなく、デラミ及び分散が確認できる状態のことを言う。   In the polyimide resin composition of the present embodiment, a solution in which the organically modified layered silicate (B) is dispersed in a solvent and a solution containing the polyimide (A) are mixed, and the component (B) is added to the component (A). It can be obtained by dispersing in the component. Here, it is preferable from the viewpoint of dimensional stability and water vapor barrier properties that the organically modified layered silicate (B) is highly dispersed in the polyimide (A). Here, “highly” means a state in which delamination and dispersion can be confirmed without clay aggregation by observation with an electron microscope.

上記有機化層状珪酸塩(B)が分散した溶液、及びポリイミド(A)溶液に用いられる溶媒としては、例えば、N−N’−ジメチルホルムアミド、N−N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン類;エチレンカーボネート、プロピレンカーボネート等のカーボネート類;モノグライム、ジグライム、トリグライム、テトラグライム等のグライム類;及びジメチルスルホキシド等の非プロトン性極性溶媒類が挙げられる   Examples of the solvent used in the solution in which the organic layered silicate (B) is dispersed and the polyimide (A) solution include NN′-dimethylformamide, NN′-dimethylacetamide, and N-methyl-2. Amides such as pyrrolidone; Lactones such as γ-butyrolactone, γ-valerolactone and δ-valerolactone; Carbonates such as ethylene carbonate and propylene carbonate; Glymes such as monoglyme, diglyme, triglyme and tetraglyme; and dimethyl Aprotic polar solvents such as sulfoxide

ポリイミド樹脂組成物中における有機化層状珪酸塩(B)の配合量は、ポリイミド(A)100重量部に対して、20重量部を超えて250重量部以下、好ましくは30〜150重量部、より好ましくは40〜100重量部である。(B)成分の配合量が20重量部以下であると、熱線膨張率が悪化したり、水蒸気透過率が低下する傾向にあり、250重量部を超えると、光学特性が悪化したり、フィルム化が困難となり、フィルムが得られない場合がある。   The compounding amount of the organically modified layered silicate (B) in the polyimide resin composition is more than 20 parts by weight and not more than 250 parts by weight, preferably 30 to 150 parts by weight, relative to 100 parts by weight of the polyimide (A). Preferably it is 40-100 weight part. When the blending amount of the component (B) is 20 parts by weight or less, the coefficient of thermal expansion tends to deteriorate or the water vapor transmission rate tends to decrease, and when it exceeds 250 parts by weight, the optical characteristics deteriorate or the film is formed. May become difficult and a film may not be obtained.

有機化層状珪酸塩(B)がシランカップリング処理されている場合、樹脂中に有機化層状珪酸塩を多量に配合した場合でも層状珪酸塩同士の凝集が起こり難くなるため、より多くの有機化層状珪酸塩を配合することが可能となる。この場合の、ポリイミド樹脂組成物中における有機化層状珪酸塩(B)の配合量は、ポリイミド(A)100重量部に対して、好ましくは100〜250重量部であり、より好ましくは130〜220重量部である。有機化層状珪酸塩(B)の配合量が上記範囲であると、良好な透明性を維持した状態で、寸法安定性をより一層向上させることができる。   When the organic layered silicate (B) is subjected to a silane coupling treatment, even when a large amount of the organic layered silicate is blended in the resin, it is difficult for the layered silicates to agglomerate. It becomes possible to mix | blend layered silicate. In this case, the amount of the organically modified layered silicate (B) in the polyimide resin composition is preferably 100 to 250 parts by weight, more preferably 130 to 220 parts per 100 parts by weight of the polyimide (A). Parts by weight. When the blending amount of the organically modified layered silicate (B) is within the above range, the dimensional stability can be further improved while maintaining good transparency.

また、本実施形態のポリイミド樹脂組成物中には、上記(A)、(B)成分の他に、コロイダルシリカ、コロイダルアルミナ等の無機充填材を、(B)成分の分散に影響しない範囲の量でさらに添加してもよい。   Further, in the polyimide resin composition of the present embodiment, in addition to the components (A) and (B), an inorganic filler such as colloidal silica and colloidal alumina is used in a range that does not affect the dispersion of the component (B). Additional amounts may be added.

本実施形態のポリイミド系複合フィルムは、上記ポリイミド樹脂組成物を用いて製造することができる。ポリイミド系複合フィルムの製造方法としては、例えば、上記混合溶液を支持体上に塗布して乾燥させた後、これを支持体から剥離して高温で加熱してフィルム化する方法;支持体が金属製等の耐熱性に優れるものである場合、混合溶液の塗布、加熱して乾燥を支持体上で行った後、これを剥離する方法等が挙げられる。   The polyimide composite film of this embodiment can be produced using the polyimide resin composition. As a method for producing a polyimide-based composite film, for example, a method in which the above mixed solution is applied on a support and dried, and then peeled off from the support and heated at a high temperature to form a film; In the case where it is excellent in heat resistance such as production, there may be mentioned a method in which the mixed solution is applied, heated and dried on the support and then peeled off.

混合溶液を加熱することにより有機溶媒を除去する方法は特に限定されず、公知の方法を採用することができる。加熱の方法としては、例えば、熱風、赤外線、遠赤外線、輻射、電気ヒーター等で行うことが挙げられる。また、加熱温度は、200〜400℃が好ましく、300〜350℃がより好ましい。   The method for removing the organic solvent by heating the mixed solution is not particularly limited, and a known method can be employed. Examples of the heating method include hot air, infrared rays, far infrared rays, radiation, and an electric heater. The heating temperature is preferably 200 to 400 ° C, more preferably 300 to 350 ° C.

本実施形態に係るポリイミド系複合フィルムは、フレキシブル有機ELディスプレイ、フレキシブルプリント基板、フィルム型太陽電池、電子ペーパー等の各種フレキシブルデバイスの基板等として好適に用いることができる。また、フレキシブルプリント基板等の材料として、フレキシブル銅張積層板(CCL)等のような積層体とすることもできる。   The polyimide-based composite film according to this embodiment can be suitably used as a substrate for various flexible devices such as a flexible organic EL display, a flexible printed substrate, a film-type solar cell, and electronic paper. Moreover, it can also be set as laminates, such as a flexible copper clad laminated board (CCL), as materials, such as a flexible printed circuit board.

また、上述のようにして得られたフィルムをさらに延伸することで、より熱膨張率が低く、透明性の高い複合フィルムを得ることができる。また、有機化層状珪酸塩(B)がフィルム面内方向に配向するため、より高度な水蒸気バリア性が得られる傾向にある。   Further, by further stretching the film obtained as described above, a composite film having a lower coefficient of thermal expansion and higher transparency can be obtained. Moreover, since the organically modified layered silicate (B) is oriented in the in-plane direction of the film, a higher water vapor barrier property tends to be obtained.

ここで用いられる延伸方法としては特に制限されないが、樹脂組成物に含まれる溶媒を残存させて低温で行ってもよいし、樹脂組成物のガラス転移点以上の高温で行ってもよい。また一軸延伸、同時二軸延伸、逐次二軸延伸、ゾーン延伸等のいずれでもよいが、同時又は逐次二軸延伸が好ましい。高温で延伸を行う場合には、窒素等の不活性ガス雰囲気下で行うことが好ましい。延伸倍率としては、1.1倍から10倍が好ましい。   Although it does not restrict | limit especially as the extending | stretching method used here, The solvent contained in a resin composition may remain | survive and it may carry out at low temperature, and may be carried out at high temperature beyond the glass transition point of a resin composition. Further, uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, zone stretching and the like may be used, but simultaneous or sequential biaxial stretching is preferable. When extending | stretching at high temperature, it is preferable to carry out in inert gas atmosphere, such as nitrogen. The stretching ratio is preferably 1.1 to 10 times.

本実施形態のポリイミド系複合フィルムの膜厚は、好ましくは1μm以上250μm以下、より好ましくは5μm以上200μm以下、更に好ましくは10μm以上150μm以下である。膜厚が1μm未満であると、ハンドリング性が低下する傾向にあり、250μmを超えると、全光線透過率、ヘイズ値が悪化する傾向にある。特に、樹脂組成物中に有機化層状珪酸塩を多く含む場合、即ち、有機化層状珪酸塩の含有量が上限値の250重量部付近である場合には、フィルムの透明性が低下する可能性がある。従って、このような場合には、フィルムの膜厚を好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下、特に好ましくは60μm以下に調整する。   The film thickness of the polyimide composite film of the present embodiment is preferably 1 μm or more and 250 μm or less, more preferably 5 μm or more and 200 μm or less, and further preferably 10 μm or more and 150 μm or less. When the film thickness is less than 1 μm, the handling property tends to decrease, and when it exceeds 250 μm, the total light transmittance and the haze value tend to deteriorate. In particular, when the resin composition contains a large amount of the organically modified layered silicate, that is, when the content of the organically modified layered silicate is around the upper limit of 250 parts by weight, the transparency of the film may be lowered. There is. Therefore, in such a case, the film thickness is preferably adjusted to 150 μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and particularly preferably 60 μm or less.

本実施形態のポリイミド系複合フィルムの熱線膨張率は、好ましくは30ppm/℃以下、より好ましくは20ppm/℃以下、更に好ましくは15ppm/℃以下である。   The thermal expansion coefficient of the polyimide composite film of the present embodiment is preferably 30 ppm / ° C. or less, more preferably 20 ppm / ° C. or less, and further preferably 15 ppm / ° C. or less.

本実施形態のポリイミド系複合フィルムの全光線透過率は、好ましくは85%以上、より好ましくは88%以上、更に好ましくは90%以上である。また、ポリイミド系複合フィルムのヘイズ値は、好ましくは3%以下、より好ましくは1%以下である。   The total light transmittance of the polyimide composite film of the present embodiment is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. The haze value of the polyimide composite film is preferably 3% or less, more preferably 1% or less.

ここで、全光線透過率及びヘイズ値は、以下の実施例に記載された方法に従って測定することができる。   Here, the total light transmittance and the haze value can be measured according to the methods described in the following examples.

以下に実施例を示して、本実施形態をより詳細に説明するが、本実施形態は以下に記載の実施例によって限定されるものではない。
[測定方法]
本実施例における物性の測定方法及び測定条件は以下の通りである。
Hereinafter, the present embodiment will be described in more detail with reference to examples. However, the present embodiment is not limited to the examples described below.
[Measuring method]
The physical property measurement method and measurement conditions in this example are as follows.

[イオン交換容量]
層状珪酸塩のイオン交換容量は、メチレンブルーの吸着量により測定した。イオン交換する前の状態の層状珪酸塩を秤量し、1%分散液を作製した後、メチレンブルーで滴定を行い、滴定に要するメチレンブルー量と、使用した層状珪酸塩の量から、メチレンブルーの吸着量を算出した。
[Ion exchange capacity]
The ion exchange capacity of the layered silicate was measured by the amount of methylene blue adsorbed. Weigh the layered silicate before ion exchange, prepare a 1% dispersion, perform titration with methylene blue, and determine the amount of methylene blue adsorbed from the amount of methylene blue required for titration and the amount of layered silicate used. Calculated.

[イオン交換率]
有機オニウムイオンによるイオン交換率は、SIIナノテクノロジー製「TG/DTA6200」を用い、空気雰囲気下、昇温速度10℃/分で計測し、有機成分の減少率を求めることにより測定した。
[Ion exchange rate]
The ion exchange rate by organic onium ions was measured by using “TG / DTA6200” manufactured by SII Nanotechnology, and measuring the reduction rate of the organic component by measuring at a heating rate of 10 ° C./min in an air atmosphere.

[厚み]
複合フィルムの厚みは、ミツトヨ製ダイヤルゲージにより測定した。
[Thickness]
The thickness of the composite film was measured with a Mitutoyo dial gauge.

[全光線透過率]
東京電色製「TC−H3DPK」を用いて3点測定し平均値を求めた。
[Total light transmittance]
Three points were measured using “TC-H3DPK” manufactured by Tokyo Denshoku to obtain an average value.

[ヘイズ値]
東京電色製「TC−H3DPK」を用いて3点測定し平均値を求めた。
[Haze value]
Three points were measured using “TC-H3DPK” manufactured by Tokyo Denshoku to obtain an average value.

[熱線膨張率(CTE)]
SIIナノテクノロジー製「TMA/SS6100」を用い、窒素雰囲気下、荷重100mN、昇温速度5℃/分で測定し、100℃から200℃の平均値を求めた。
[Heat expansion coefficient (CTE)]
Using “TMA / SS6100” manufactured by SII Nanotechnology, measurement was performed under a nitrogen atmosphere at a load of 100 mN and a heating rate of 5 ° C./min, and an average value from 100 ° C. to 200 ° C. was obtained.

[水蒸気透過係数]
ポリイミド複合フィルムについて「JIS K7129」に準ずる透湿度測定を行い、水蒸気透過係数を算出した。
具体的には、60mmφカップにフィルムをセットし、恒温恒湿層としてタバイエスペック製「PL−2KP」を用い、試験温度40℃、試験湿度90%の条件下で24h毎の重量変化量を3点測定し平均値を求めた。
[Water vapor transmission coefficient]
The polyimide composite film was subjected to moisture permeability measurement according to “JIS K7129”, and the water vapor transmission coefficient was calculated.
Specifically, a film is set in a 60 mmφ cup, “T-2EP” manufactured by Tabay Espec is used as a constant temperature and humidity layer, and the weight change amount for every 24 h is 3 under a test temperature of 40 ° C. and a test humidity of 90%. The average value was obtained by measuring points.

[実施例1、2及び比較例1、2]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に69ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量26.1重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STNを5重量%含むγ−ブチロラクトン溶液を調製した。
ここで、上記有機物量とは、有機化層状珪酸塩を100重量部としたときの有機オニウムイオンで置換された重量部数を示す。
[Examples 1 and 2 and Comparative Examples 1 and 2]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” (trade name “STN”, manufactured by Co-op Chemical Co., Ltd., ion-exchanged product), ion-exchanged 69 mg equivalent / 100 g in a 500 mL container. Exchange capacity 101 mg equivalent / 100 g)) 15 g and 285 g of γ-butyrolactone (Mitsui Chemicals) were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare a γ-butyrolactone solution containing 5% by weight of STN.
Here, the amount of the organic substance indicates the number of parts by weight substituted with organic onium ions when the organic layered silicate is 100 parts by weight.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まって3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. 3 hours after the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)合成スメクタイト(STN)含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of synthetic smectite (STN) -containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表1に示す。
なお、表1中のSTN含有量は、ポリイミド100重量部に対する、合成スメクタイト(STN)の重量部を示す。以下の実施例及び比較例も同様である。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. The physical properties of the obtained polyimide composite film are shown in Table 1.
In addition, STN content in Table 1 shows the weight part of a synthetic smectite (STN) with respect to 100 weight part of polyimides. The same applies to the following examples and comparative examples.

表1の結果から明らかなように、本実施形態のポリイミド樹脂組成物、及びそれを含むポリイミド系複合フィルムは、透明性、寸法安定性、及び水蒸気バリア性のバランスに優れていることが分かる。   As is clear from the results in Table 1, it can be seen that the polyimide resin composition of the present embodiment and the polyimide composite film including the polyimide resin composition are excellent in balance of transparency, dimensional stability, and water vapor barrier properties.

[実施例3]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に54ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN(有機物量:19.9重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STN50を5重量%含むγ−ブチロラクトン溶液を調製した。
[Example 3]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN (19.9 parts by weight of organic matter: 19.9 parts by weight, manufactured by Co-op Chemical Co., Ltd.), ion-exchanged in a 500 mL container, made by COOP CHEMICAL CO., LTD. Exchange capacity 101 mg equivalent / 100 g)) 15 g and 285 g of γ-butyrolactone (Mitsui Chemicals) were added, and a frequency of 40 KHz was applied using an ultrasonic cleaning machine USD made by ASONE. The mixture was stirred for 1 hour at a rotational speed to prepare a γ-butyrolactone solution containing 5% by weight of STN50.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まって3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. 3 hours after the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)STN含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of STN-containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表2に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 2 shows the physical properties of the obtained polyimide-based composite film.

[比較例3]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に104ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量;38重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、前記STNを5重量%含むγ−ブチロラクトン溶液を調製した。
[Comparative Example 3]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” (trade name “STN”, manufactured by Co-op Chemical), ion-exchanged before organicization, manufactured by Co-op Chemical Co., Ltd.) in a 500 mL container. Capacity 101 mg equivalent / 100 g)) 15 g, γ-butyrolactone (manufactured by Mitsui Chemicals) 285 g were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare a γ-butyrolactone solution containing 5% by weight of the STN.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まって3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. After 3 hours from the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)STN含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of STN-containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表3に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 3 shows the physical properties of the obtained polyimide composite film.

[比較例4]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に95ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量;34.8重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、前記STNを5重量%含むγ−ブチロラクトン溶液を調製した。
[Comparative Example 4]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” manufactured by Co-op Chemical, 34.8 parts by weight, before organicization) ion-exchanged 95 mg equivalent / 100 g in a 500 mL container. Ion exchange capacity 101 milligram equivalent / 100 g)) 15 g and 285 g of γ-butyrolactone (Mitsui Chemicals) were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare a γ-butyrolactone solution containing 5% by weight of the STN.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まってから3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. Three hours after the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)STN含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of STN-containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表4に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 4 shows the physical properties of the obtained polyimide-based composite film.

[実施例4]
(1)シランカップリング剤で処理された合成スメクタイト(STN)溶液の調製
500mLの容器に67ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量23.6重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STNを5重量%含むγ−ブチロラクトン溶液を調製した。引き続きシランカップリング剤による処理を行なった。シランカップリング剤としてN−フェニル−3−アミノプロピルトリメトキシシランを0.375g(STNに対して2.5重量%)、水をシランカップリング剤に対して0.009g(シランカップリング剤に対して1/3当量)加え、ディスパにより1000〜1500rpmの回転数で1時間撹拌し、さらにスターラーで3日間25℃の条件で溶液を攪拌することにより、シランカップリング剤で処理されたSTNを含むγ−ブチロラクトン溶液を調整した。
[Example 4]
(1) Preparation of Synthetic Smectite (STN) Solution Treated with Silane Coupling Agent Synthetic smectite (trade name “STN” (trade name “23.6”, manufactured by Coop Chemical Co., Ltd.) ion-exchanged 67 mg equivalent / 100 g in a 500 mL container. 15 parts by weight, ion exchange capacity of 101 milligram equivalent before organicization / 100 g)) 15 g, 285 g of γ-butyrolactone (Mitsui Chemicals) were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare a γ-butyrolactone solution containing 5% by weight of STN. Subsequently, treatment with a silane coupling agent was performed. As a silane coupling agent, 0.375 g of N-phenyl-3-aminopropyltrimethoxysilane (2.5% by weight with respect to STN) and 0.009 g of water with respect to the silane coupling agent (into the silane coupling agent) STN treated with a silane coupling agent was stirred with a disperser at 1000 to 1500 rpm for 1 hour, and further stirred with a stirrer at 25 ° C. for 3 days. The containing γ-butyrolactone solution was prepared.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全に溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まって3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. 3 hours after the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)合成スメクタイト(STN)含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of synthetic smectite (STN) -containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表5に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 5 shows the physical properties of the obtained polyimide-based composite film.

[実施例5]
シランカップリング剤としてN−フェニル−3−アミノプロピルトリメトキシシランの代わりにアミノプロピルトリメトキシシランを用い、その添加量を2.5重量%から1.8重量%に代えたこと以外は実施例4と同様の方法によりポリイミド樹脂組成物及びポリイミド系複合フィルムを製造した。得られたポリイミド系複合フィルムの物性を表5に示す。
[Example 5]
Example except that aminopropyltrimethoxysilane was used in place of N-phenyl-3-aminopropyltrimethoxysilane as a silane coupling agent, and the amount added was changed from 2.5% by weight to 1.8% by weight. 4 was used to produce a polyimide resin composition and a polyimide composite film. Table 5 shows the physical properties of the obtained polyimide-based composite film.

[実施例6]
シランカップリング剤としてN−フェニル−3−アミノプロピルトリメトキシシランの代わりにフェニルトリメトキシシランを用い、その添加量を2.5重量%から1.5重量%に代えたこと以外は実施例4と同様の方法によりポリイミド樹脂組成物及びポリイミド系複合フィルムを製造した。得られたポリイミド系複合フィルムの物性を表5に示す。
[Example 6]
Example 4 except that phenyltrimethoxysilane was used in place of N-phenyl-3-aminopropyltrimethoxysilane as the silane coupling agent, and the amount added was changed from 2.5 wt% to 1.5 wt%. A polyimide resin composition and a polyimide composite film were produced by the same method. Table 5 shows the physical properties of the obtained polyimide-based composite film.

[実施例7]
有機化層状珪酸塩をシランカップリング剤で処理しなかったこと以外は実施例4と同様の方法により、ポリイミド樹脂組成物及びポリイミド系複合フィルムを製造した。得られたポリイミド系複合フィルムの物性を表5に示す。
[Example 7]
A polyimide resin composition and a polyimide composite film were produced in the same manner as in Example 4 except that the organic layered silicate was not treated with a silane coupling agent. Table 5 shows the physical properties of the obtained polyimide-based composite film.

[実施例8及び比較例5、6]
STNの含有量を変更したこと以外は実施例3と同様の方法により、ポリイミド樹脂組成物及びポリイミド系複合フィルムを製造した。得られたポリイミド系複合フィルムの物性を表6に示す。
[Example 8 and Comparative Examples 5 and 6]
A polyimide resin composition and a polyimide composite film were produced in the same manner as in Example 3 except that the STN content was changed. Table 6 shows the physical properties of the obtained polyimide-based composite film.

[比較例7]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に67ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量26.1重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、γ−ブチロラクトン(三井化学製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STNを5重量%含むγ−ブチロラクトン溶液を調製した。
[Comparative Example 7]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” manufactured by Co-op Chemical, 26.1 parts by weight of organic substance, ions before organicization) ion-exchanged 67 mg equivalent / 100 g in a 500 mL container. Exchange capacity 101 mg equivalent / 100 g)) 15 g and 285 g of γ-butyrolactone (Mitsui Chemicals) were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare a γ-butyrolactone solution containing 5% by weight of STN.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物(岩谷瓦斯製、商品名「PMDA−HS」)13.45g(60mmol)、γ−ブチロラクトン45g、ピリジン(和光純薬製)0.95g(12mmol)を加え、系内の温度を80〜90℃まで上昇させ、PMDA−HSが完全に溶けるまで攪拌した。完全に溶解したのを確認後、4,4’−ジアミノジフェニルエーテル(ODA)(JFEケミカル製)12.0g(60mmol)を加えた。その後、トルエン35gを滴下し、同時に反応により生成した水をトルエンとの共沸を利用して系外に除去した。共沸が始まって3時間後、末端封止剤を投入し、1時間反応を続け、その後室温まで放冷させた。
(2) Preparation of polyimide solution In a 300 mL Separa flask, under a nitrogen stream, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (manufactured by Iwatani Gas Co., Ltd., trade name “PMDA-HS”) 13.45 g (60 mmol) , 45 g of γ-butyrolactone and 0.95 g (12 mmol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred until PMDA-HS was completely dissolved. After confirming complete dissolution, 12.0 g (60 mmol) of 4,4′-diaminodiphenyl ether (ODA) (manufactured by JFE Chemical) was added. Thereafter, 35 g of toluene was dropped, and at the same time, water produced by the reaction was removed out of the system using azeotropy with toluene. 3 hours after the start of azeotropy, the end-capping agent was added, the reaction was continued for 1 hour, and then allowed to cool to room temperature.

(3)合成スメクタイト(STN)含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、160℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of synthetic smectite (STN) -containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 160 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表6に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 6 shows the physical properties of the obtained polyimide-based composite film.

[実施例9〜11及び比較例8、9]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に67ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量26.1重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、N−メチル−2−ピロリドン(WAKO製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STNを5重量%含むN−メチル−2−ピロリドン溶液を調製した。
[Examples 9 to 11 and Comparative Examples 8 and 9]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” manufactured by Co-op Chemical, 26.1 parts by weight of organic substance, ions before organicization) ion-exchanged 67 mg equivalent / 100 g in a 500 mL container. Exchange capacity 101 milligram equivalent / 100 g)) 15 g and N-methyl-2-pyrrolidone (WAKO) 285 g were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare an N-methyl-2-pyrrolidone solution containing 5 wt% STN.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、4,4’ヘキサフルオロイソプロピリデンジフタル酸無水物(Aldrich製、商品名「6FDA」)4.28g(9.6mmol)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(三菱化学製、商品名「BPDA」4.25g(14.4mmol)、イソホロンジアミン(IPDA)(WAKO製)4.09g(24.0mmol)、m−クレゾール(WAKO製)88gを加え、系内の温度を80〜90℃まで上昇させ、2時間攪拌した。その後、系内の温度を上げ、4時間還流を行い、末端封止剤を投入し、1時間反応を続け、室温まで放冷させた。
メタノール2Lに再沈殿を行い、沈殿物をろ過、回収し、80℃で24時間減圧乾燥を行った。
(2) Preparation of polyimide solution Under a nitrogen stream, 4.28 g (9.6 mmol) of 4,4 ′ hexafluoroisopropylidenediphthalic anhydride (trade name “6FDA”, manufactured by Aldrich) in a 300 mL Separa flask, 3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride (Mitsubishi Chemical, trade name “BPDA” 4.25 g (14.4 mmol), isophoronediamine (IPDA) (manufactured by WAKO) 4.09 g (24.0 mmol) ), 88 g of m-cresol (manufactured by WAKO) was added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred for 2 hours. The reaction was continued for 1 hour and allowed to cool to room temperature.
Reprecipitation was performed in 2 L of methanol, and the precipitate was collected by filtration and dried under reduced pressure at 80 ° C. for 24 hours.

(3)合成スメクタイト(STN)含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、100℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of synthetic smectite (STN) -containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 100 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表7に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 7 shows the physical properties of the obtained polyimide-based composite film.

[実施例12、13及び比較例10、11]
(1)合成スメクタイト(STN)溶液の調製
500mLの容器に80ミリグラム当量/100gイオン交換された合成スメクタイト(コープケミカル製、商品名「STN」(有機物量29.2重量部、有機化前のイオン交換容量101ミリグラム等量/100g))15g、N−メチル−2−ピロリドン(WAKO製)285gを加え、アズワン製超音波洗浄機USDを用いて40KHzの振動数を加えた。また同時にディスパにより1000〜1500rpmの回転数で1時間撹拌し、STNを5重量%含むN−メチル−2−ピロリドン溶液を調製した。
[Examples 12 and 13 and Comparative Examples 10 and 11]
(1) Preparation of Synthetic Smectite (STN) Solution Synthetic smectite (trade name “STN” (trade name “STN”, manufactured by Coop Chemical Co., Ltd., ionized before organicization), which was ion-exchanged 80 mg equivalent / 100 g in a 500 mL container. Exchange capacity 101 milligram equivalent / 100 g)) 15 g and N-methyl-2-pyrrolidone (WAKO) 285 g were added, and a frequency of 40 KHz was added using an ultrasonic cleaning machine USD made by ASONE. At the same time, the mixture was stirred for 1 hour at 1000 to 1500 rpm by a dispaper to prepare an N-methyl-2-pyrrolidone solution containing 5 wt% STN.

(2)ポリイミド溶液の調製
300mLセパラフラスコに、窒素気流下、4,4’ヘキサフルオロイソプロピリデンジフタル酸無水物(Aldrich製、商品名「6FDA」)4.28g(9.6mmol)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(三菱化学製、商品名「BPDA」4.25g(14.4mmol)、イソホロンジアミン(IPDA)(WAKO製)4.09g(24.0mmol)、m−クレゾール(WAKO製)88gを加え、系内の温度を80〜90℃まで上昇させ、2時間攪拌した。その後、系内の温度を上げ、4時間還流を行い、末端封止剤を投入し、1時間反応を続け、室温まで放冷させた。
メタノール2Lに再沈殿を行い、沈殿物をろ過、回収し、80℃で24時間減圧乾燥を行った。
(2) Preparation of polyimide solution Under a nitrogen stream, 4.28 g (9.6 mmol) of 4,4 ′ hexafluoroisopropylidenediphthalic anhydride (trade name “6FDA”, manufactured by Aldrich) in a 300 mL Separa flask, 3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride (Mitsubishi Chemical, trade name “BPDA” 4.25 g (14.4 mmol), isophoronediamine (IPDA) (manufactured by WAKO) 4.09 g (24.0 mmol) ), 88 g of m-cresol (manufactured by WAKO) was added, the temperature in the system was raised to 80 to 90 ° C., and the mixture was stirred for 2 hours. The reaction was continued for 1 hour and allowed to cool to room temperature.
Reprecipitation was performed in 2 L of methanol, and the precipitate was collected by filtration and dried under reduced pressure at 80 ° C. for 24 hours.

(3)合成スメクタイト(STN)含有ポリイミド溶液の調製
上記(1)STN溶液と(2)ポリイミド溶液とを混合し、100℃で1時間撹拌して、STN含有ポリイミド溶液を調製した。
(3) Preparation of synthetic smectite (STN) -containing polyimide solution The above (1) STN solution and (2) polyimide solution were mixed and stirred at 100 ° C. for 1 hour to prepare an STN-containing polyimide solution.

(4)ポリイミド樹脂組成物及びポリイミド系複合フィルムの製造
上記(3)で調製したSTN含有ポリイミド溶液を、シリコンウエハー上に塗布し、100℃で30分間、オーブン中で乾燥した。その後、半乾燥のポリイミドのフィルムをシリコンウエハーから剥離し、アルミ製の枠に固定して、室温でオーブン内を窒素置換した後(約2時間を要する)、オーブンを300℃に昇温し(昇温時間約30分)、その後約30分保持して本乾燥させた。得られたポリイミド系複合フィルムの物性を表8に示す。
(4) Production of polyimide resin composition and polyimide composite film The STN-containing polyimide solution prepared in (3) above was applied onto a silicon wafer and dried in an oven at 100 ° C for 30 minutes. Thereafter, the semi-dried polyimide film is peeled off from the silicon wafer, fixed to an aluminum frame, and the inside of the oven is purged with nitrogen at room temperature (which takes about 2 hours), and then the oven is heated to 300 ° C. ( The temperature was raised for about 30 minutes), and then kept for about 30 minutes for the main drying. Table 8 shows the physical properties of the obtained polyimide-based composite film.

[比較例12]
STN溶液を混合しなかったこと以外は実施例12と同様の方法により、ポリイミド樹脂組成物及びポリイミド系複合フィルムを製造した。得られたポリイミド系複合フィルムの物性を表8に示す。
[Comparative Example 12]
A polyimide resin composition and a polyimide composite film were produced in the same manner as in Example 12 except that the STN solution was not mixed. Table 8 shows the physical properties of the obtained polyimide-based composite film.

本実施形態のポリイミド樹脂組成物及びポリイミド系複合フィルムは、フレキシブル有機ELディスプレイ、フレキシブルプリント基板、フィルム型太陽電池、電子ペーパー等の各種フレキシブルデバイスの基板等としての産業上利用可能性を有する。   The polyimide resin composition and polyimide-based composite film of this embodiment have industrial applicability as substrates for various flexible devices such as flexible organic EL displays, flexible printed boards, film-type solar cells, and electronic paper.

Claims (7)

ポリイミド(A)と、
有機化層状珪酸塩(B)と、
を含むポリイミド樹脂組成物であって、
前記ポリイミド(A)中に前記有機化層状珪酸塩(B)が分散し、前記ポリイミド(A)100重量部に対して、前記有機化層状珪酸塩(B)を20重量部を超えて250重量部以下含む、ポリイミド樹脂組成物。
Polyimide (A),
An organic layered silicate (B);
A polyimide resin composition comprising:
The organic layered silicate (B) is dispersed in the polyimide (A), and the organic layered silicate (B) exceeds 20 parts by weight with respect to 100 parts by weight of the polyimide (A). A polyimide resin composition containing at most parts.
前記ポリイミド(A)は、テトラカルボン酸二無水物とジアミン化合物とからなる共重合体であり、前記テトラカルボン酸二無水物及び前記ジアミン化合物の少なくとも一方が脂肪族(脂環構造を含む)化合物である、請求項1記載のポリイミド樹脂組成物。   The polyimide (A) is a copolymer comprising a tetracarboxylic dianhydride and a diamine compound, and at least one of the tetracarboxylic dianhydride and the diamine compound is an aliphatic (including alicyclic structure) compound. The polyimide resin composition according to claim 1, wherein 前記有機化層状珪酸塩(B)は、イオン交換容量50〜130ミリグラム当量/100gの層状珪酸塩の交換性陽イオンの50〜90ミリグラム当量/100gが有機オニウムイオンにより置換された層状珪酸塩である、請求項1又は2記載のポリイミド樹脂組成物。   The organically modified layered silicate (B) is a layered silicate in which 50 to 90 milligram equivalents / 100 g of exchangeable cations of a layered silicate having an ion exchange capacity of 50 to 130 milligram equivalents / 100 g are substituted with organic onium ions. The polyimide resin composition according to claim 1 or 2, wherein 前記有機化層状珪酸塩(B)がシランカップリング剤で処理されている、請求項1〜3のいずれか1項記載のポリイミド樹脂組成物。   The polyimide resin composition according to claim 1, wherein the organically modified layered silicate (B) is treated with a silane coupling agent. 前記ポリイミド(A)100重量部に対して、前記有機化層状珪酸塩(B)を100重量部以上250重量部以下含む、請求項4記載のポリイミド樹脂組成物。   5. The polyimide resin composition according to claim 4, comprising 100 parts by weight or more and 250 parts by weight or less of the organically modified layered silicate (B) with respect to 100 parts by weight of the polyimide (A). 請求項1〜5のいずれか1項記載のポリイミド樹脂組成物を含むポリイミド系複合フィルム。   The polyimide type composite film containing the polyimide resin composition of any one of Claims 1-5. 全光線透過率が85%以上、ヘイズ値が3%以下である、請求項6記載のポリイミド系複合フィルム。   The polyimide composite film according to claim 6, wherein the total light transmittance is 85% or more and the haze value is 3% or less.
JP2011078608A 2010-03-31 2011-03-31 Polyimide resin composition Withdrawn JP2012107178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078608A JP2012107178A (en) 2010-03-31 2011-03-31 Polyimide resin composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010083430 2010-03-31
JP2010083430 2010-03-31
JP2010239873 2010-10-26
JP2010239873 2010-10-26
JP2011078608A JP2012107178A (en) 2010-03-31 2011-03-31 Polyimide resin composition

Publications (1)

Publication Number Publication Date
JP2012107178A true JP2012107178A (en) 2012-06-07

Family

ID=46493132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078608A Withdrawn JP2012107178A (en) 2010-03-31 2011-03-31 Polyimide resin composition

Country Status (1)

Country Link
JP (1) JP2012107178A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015047041A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
JP2015230880A (en) * 2014-06-06 2015-12-21 積水化学工業株式会社 Resin composition for sealing organic electroluminescent display element, resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JP2017019958A (en) * 2015-07-14 2017-01-26 大日本塗料株式会社 Flame-retardant coated body and flame-retardant coating composition
US9691995B2 (en) 2013-12-04 2017-06-27 Lg Chem, Ltd. Method of manufacturing substrate for organic electronic device
KR20180055820A (en) 2015-09-18 2018-05-25 닛산 가가쿠 고교 가부시키 가이샤 Polybenzoxazole and its use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015047041A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
KR101548881B1 (en) 2013-09-30 2015-09-01 주식회사 엘지화학 Substrate for organic electronic
US10090473B2 (en) 2013-09-30 2018-10-02 Lg Display Co., Ltd. Substrate for organic electronic device
US9691995B2 (en) 2013-12-04 2017-06-27 Lg Chem, Ltd. Method of manufacturing substrate for organic electronic device
JP2015230880A (en) * 2014-06-06 2015-12-21 積水化学工業株式会社 Resin composition for sealing organic electroluminescent display element, resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JP2017019958A (en) * 2015-07-14 2017-01-26 大日本塗料株式会社 Flame-retardant coated body and flame-retardant coating composition
KR20180055820A (en) 2015-09-18 2018-05-25 닛산 가가쿠 고교 가부시키 가이샤 Polybenzoxazole and its use

Similar Documents

Publication Publication Date Title
EP2128193B1 (en) Porous polyimide
TWI466949B (en) Polyamic acid resin composition and polyimide film prepared therefrom
US7241491B2 (en) Polyimide metal laminate
EP2501740B1 (en) Thin film transistor compositions, and methods relating thereto
TWI612099B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
KR101382170B1 (en) Polyamic acid polymer composite and method for producing same
JP4997717B2 (en) Colorless and transparent polyimide composite film and method for producing the same
KR102294065B1 (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
JP5344880B2 (en) Adhesive resin composition and laminate comprising the same
KR20140002521A (en) Polyimide and polyimide film comprising the same
JP2012107178A (en) Polyimide resin composition
JP6627317B2 (en) Glass film laminate
WO2012103238A2 (en) Polyimide polymer from non-stoichiometric components
JP2013076026A (en) Polyimide resin composition
TW202112908A (en) Polyimide films and electronic devices
JP2013109842A (en) Manufacturing method of separator for lithium ion battery
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP2011074286A (en) Method for producing polyimide composite, and polyimide composite
JP2011074278A (en) Polyamic acid solution, polyimide using the same, and method for producing them
TW202035520A (en) Polyimide precursor composition, polyimide film and flexible device produced therefrom, and method for producing polyimide film excellent in heat resistance and transparency, and causing no problem such as coloration at high temperature
US20140155526A1 (en) Polyimide composition varnish, film using the same, and method of manufacturing the polyimide composition varnish
CN112399984B (en) Polyimide film containing clay particles and carbon black and preparation method thereof
JP2013109843A (en) Separator for lithium ion battery
CN112574409B (en) High-barrier polyimide film material and preparation method thereof
WO2022070617A1 (en) Layered body including inorganic substrate and polyamic acid cured product

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603