WO2023190713A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2023190713A1
WO2023190713A1 PCT/JP2023/012866 JP2023012866W WO2023190713A1 WO 2023190713 A1 WO2023190713 A1 WO 2023190713A1 JP 2023012866 W JP2023012866 W JP 2023012866W WO 2023190713 A1 WO2023190713 A1 WO 2023190713A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage element
wall
axis direction
wall portion
Prior art date
Application number
PCT/JP2023/012866
Other languages
French (fr)
Japanese (ja)
Inventor
強志 飛鷹
智弘 川内
卓 森口
翔 米澤
宏樹 東
喜弘 増田
恵太 浜川
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023190713A1 publication Critical patent/WO2023190713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device.
  • Patent Document 1 discloses a secondary battery device (power storage device) in which a plurality of secondary battery cells (power storage elements) are housed in a holding member (case body) having a bottom wall.
  • the heat may be transmitted to a normal power storage element through the bottom wall of the holding member and have an adverse effect.
  • An object of the present invention is to suppress the thermal influence from one power storage element to other power storage elements.
  • a power storage device includes a power storage element and a holding member that holds the power storage element, and the holding member has a bottom wall that supports the power storage element, and a bottom wall that supports the power storage element in a first direction.
  • a first wall portion disposed adjacent to the bottom wall and protruding from the bottom wall; and a second wall portion disposed at a position different from the first wall portion and protruding from the bottom wall, the second wall portion protruding from the bottom wall.
  • the one wall portion extends in a second direction intersecting the first direction, and the slope of the opposing surface of the first wall portion that faces the electricity storage element is greater than the slope of the second wall portion.
  • thermal influence from one power storage element to other power storage elements can be suppressed.
  • FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view showing each component when the power storage device according to the embodiment is disassembled.
  • FIG. 3 is a perspective view showing the configuration of the power storage element according to the embodiment.
  • FIG. 4 is a perspective view and a sectional view showing the structure of the holding member according to the embodiment.
  • FIG. 5 is a sectional view of the first wall portion of the holding member according to the embodiment.
  • FIG. 6 is a top view showing a configuration in which a power storage element and a spacer are arranged in a holding member according to an embodiment.
  • FIG. 7 is a sectional view showing the second wall portion according to the embodiment.
  • FIG. 8 is an explanatory diagram showing the state transition between the power storage element and the wall according to the embodiment.
  • FIG. 9 is a sectional view showing a first wall portion according to a modification.
  • FIG. 10 is a perspective view showing the configuration of the bus bar according to the embodiment.
  • a power storage device includes a power storage element and a holding member that holds the power storage element, and the holding member is connected to a bottom wall that supports the power storage element in a first direction.
  • a first wall portion disposed adjacent to the power storage element and protruding from the bottom wall; and a second wall portion disposed at a position different from the first wall portion and protruding from the bottom wall.
  • the first wall extends in a second direction intersecting the first direction, and the slope of the opposing surface of the first wall facing the electricity storage element is greater than the slope of the second wall.
  • a power storage element expands when the temperature becomes excessively high.
  • the wall portion (second wall portion) of the holding member (exterior body) that holds the power storage element usually has a draft angle. Since the slope of the opposing surface of the first wall portion disposed adjacent to the power storage element is larger than the slope of the second wall portion, the first wall portion has a slope larger than a normal draft angle.
  • the power storage element moves upward along the opposing surface and separates from the bottom wall of the holding member. This makes it difficult for the heat of the power storage element to be transferred to the bottom wall, so it is possible to suppress the heat from propagating to other power storage elements via the bottom wall of the holding member. Therefore, it is possible to suppress the thermal influence of one power storage element among the plurality of power storage elements arranged on the other power storage elements.
  • the opposing surfaces include a first surface provided at a position close to the bottom wall, and a first surface provided at a position farther from the bottom wall than the first surface. a second surface, and the slope of the second surface may be greater than the slope of the first surface.
  • the side surface of the power storage element expands in an arc shape. Therefore, in a region inside the peripheral edge of the power storage element, the amount of displacement during expansion in the normal direction of the side surface of the power storage element is large.
  • the second surface is located farther from the bottom wall than the first surface. Therefore, if the first surface is placed at a position corresponding to the periphery of the energy storage element, the second surface will correspond to the area where the amount of displacement is larger than the periphery of the energy storage element, and will absorb the expansion of the energy storage element. Cheap. Since the slope of the second surface is greater than the slope of the first surface, the expanded electricity storage element can smoothly move away from the bottom wall.
  • a power storage device includes a power storage element and a holding member that holds the power storage element, and the holding member is connected to a bottom wall that supports the power storage element in a first direction.
  • a first wall portion disposed adjacent to the power storage element and protruding from the bottom wall; the first wall portion includes an opposing surface facing the power storage element; , extending in a second direction intersecting the first direction, and the opposing surfaces include a first surface provided at a position close to the bottom wall, and a first surface provided at a position farther from the bottom wall than the first surface. and a second surface having a slope, the slope of the second surface being greater than the slope of the first surface.
  • the side surface of the power storage element expands in an arc shape. Therefore, in a region inside the peripheral edge of the power storage element, the amount of displacement during expansion in the normal direction of the side surface of the power storage element is large.
  • the second surface is located farther from the bottom wall than the first surface. Therefore, if the first surface is placed at a position corresponding to the periphery of the energy storage element, the second surface will correspond to the area where the amount of displacement is larger than the periphery of the energy storage element, and will absorb the expansion of the energy storage element. Cheap. Since the slope of the second surface is greater than the slope of the first surface, the expanded electricity storage element can smoothly move away from the bottom wall.
  • the length in the third direction intersecting the first direction and the second direction is The length may be within 1/8 of the length of the electricity storage element in the third direction.
  • the side surface of the power storage element expands in an arc shape.
  • the slope of the peripheral edge portion of the side surface of the power storage element is larger than the slope of the center portion.
  • the expanded electricity storage element is placed at a position corresponding to the peripheral edge with a large inclination. A first wall can be placed. Therefore, the peripheral edge portion of the power storage element having a large slope can be brought into contact with the opposing surface of the first wall portion. Thereby, the expanded electricity storage element can be smoothly moved in a direction away from the bottom wall.
  • the smoother the power storage element can be moved the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, the propagation of heat to other power storage elements via the bottom wall of the holding member can be further suppressed, and the influence of heat on other power storage elements can be further suppressed.
  • the first wall portion may be arranged to face a central portion of the power storage element in the second direction.
  • the opposing surface is arranged at a location where the expansion of the power storage element is large in the second direction as well.
  • the expanded electricity storage element can be smoothly moved in a direction away from the bottom wall by the opposing surface.
  • the smoother the power storage element can be moved the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, the propagation of heat to other power storage elements via the bottom wall of the holding member can be further suppressed, and the influence of heat on other power storage elements can be further suppressed.
  • a bent portion may be provided at an intermediate portion in a direction in which the adjacent power storage devices are lined up.
  • the bus bar includes a bent portion
  • the bent portion can follow stress.
  • the bus bar connected to the power storage element is subjected to stress. Since the bent portion of the bus bar can follow the stress, the expanded electricity storage element can be smoothly moved from the holding member.
  • the power storage device is arranged at a position where the power storage element is sandwiched between the power storage element and the holding member in a direction in which the power storage element and the holding member are lined up. It may also include a metal lid.
  • the electricity storage element is sandwiched between the holding member and the lid.
  • the power storage element expands and moves away from the holding member, the power storage element approaches the lid. Since the lid body is made of metal, it can effectively radiate heat from the electricity storage element. Therefore, when a power storage element expands, thermal effects on other power storage elements can be further suppressed.
  • the first wall portion may include a heat transfer member having higher thermal conductivity than the holding member.
  • the first wall includes the heat transfer member
  • the heat of the electricity storage element is transferred to the heat transfer member and is radiated. Ru. This can suppress heat from propagating from the expanded power storage element to other power storage elements, and can further suppress thermal effects on other power storage elements.
  • the directions shown in the following description and drawings will be explained.
  • the direction in which a pair of electrode terminals (positive electrode and negative electrode) in one power storage element are arranged, the opposing direction of the short sides of the container of the power storage element, or the short direction of the holding member is defined as the X-axis direction.
  • the direction in which the plurality of power storage elements are lined up, the direction in which the long sides of the container of the power storage elements face each other, the direction in which the power storage elements and spacers are lined up, or the longitudinal direction of the holding member is defined as the Y-axis direction.
  • the arrangement direction of the bottom wall of the holding member and the power storage element, the protruding direction of the electrode terminal of the power storage element, the arrangement direction of the main body and the lid (the holding member and the lid member) of the exterior body, the main body and the lid body (the first The direction in which the first support and the second support are lined up or the vertical direction is defined as the Z-axis direction.
  • These X-axis direction, Y-axis direction, and Z-axis direction are directions that intersect with each other (orthogonal in this embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described as the vertical direction below.
  • the X-axis plus direction indicates the arrow direction of the X-axis
  • the X-axis minus direction indicates the opposite direction to the X-axis plus direction.
  • the X-axis direction it refers to both or one of the X-axis plus direction and the X-axis minus direction.
  • the Y-axis direction and the Z-axis direction will also be referred to as the first direction
  • the X-axis direction will also be referred to as the second direction
  • the Z-axis direction will also be referred to as the third direction.
  • the slope is the acute angle that the surface of the member constituting the power storage device makes with the Z-axis direction (third direction).
  • FIG. 1 is a perspective view showing the appearance of a power storage device 1 according to an embodiment.
  • FIG. 2 is an exploded perspective view showing each component when power storage device 1 according to the embodiment is disassembled.
  • the power storage device 1 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in this embodiment.
  • the power storage device 1 is a battery module (battery assembly) used for power storage, power supply, or the like.
  • the power storage device 1 is used for driving or starting an engine of a moving object such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railway vehicle for an electric railway. Used as batteries, etc.
  • Examples of the above-mentioned vehicles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel oil, liquefied natural gas, etc.) vehicles.
  • Examples of the above-mentioned railway vehicles for electric railways include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor.
  • the power storage device 1 can also be used as a stationary battery or the like used for home or business purposes.
  • the power storage device 1 includes a power storage unit 10 and a board unit 20 attached to the power storage unit 10.
  • the power storage unit 10 has a substantially rectangular parallelepiped shape that is elongated in the Y-axis direction.
  • the board unit 20 is a device that can monitor the state of the power storage element 100 included in the power storage unit 10 and control the power storage element 100, and has a circuit board and the like inside.
  • the substrate unit 20 is a flat rectangular member that is attached to the end of the power storage unit 10 in the longitudinal direction, that is, to the side surface of the power storage unit 10 in the negative direction of the Y-axis.
  • the power storage unit 10 includes a plurality of power storage elements 100, a plurality of spacers 200, an exterior body 300, a plurality of bus bars 400, an exterior body support 500, cables 410 and 420, have.
  • the power storage element 100 is a secondary battery (single battery) that can charge and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 100 has a flat rectangular parallelepiped shape (prismatic shape), and in this embodiment, 14 power storage elements 100 are arranged in a line in the Y-axis direction.
  • the size and shape of power storage element 100, the number of power storage elements 100 arranged, etc. are not limited, and only one power storage element 100 may be arranged.
  • the power storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or a capacitor.
  • the power storage element 100 may be not a secondary battery but a primary battery that allows the user to use the stored electricity without charging it.
  • Power storage element 100 may be a battery using a solid electrolyte.
  • the power storage element 100 may be a pouch type power storage element. A detailed description of the configuration of power storage element 100 will be described later.
  • the spacer 200 (210, 220) is a flat rectangular member that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction) and heats and/or insulates the power storage element 100 and other members. It is.
  • the spacer 200 is a heat insulating plate or an insulating plate that is arranged in the positive Y-axis direction or the negative Y-axis direction of the power storage element 100 and heats and/or insulates the power storage elements 100 from each other or the power storage element 100 and the exterior body support 500. be.
  • the spacer 200 is formed of a member having heat insulating properties such as glass wool or mica, or a member having insulating properties such as any resin material that can be used for the exterior body 300 described below. Spacer 210 and spacer 220 of spacer 200 may be made of the same material, or may be made of different materials.
  • the spacer 200 is made of glass wool that has heat insulating properties.
  • the thermal conductivity of the spacer 200 is lower than that of the holding member 310. Since the spacer 200 is arranged between adjacent power storage elements 100, when one power storage element becomes high in temperature, it is possible to suppress the heat of the high temperature power storage element from being transmitted to the adjacent power storage element.
  • the spacer 210 of the spacers 200 is a flat rectangular spacer parallel to the XZ plane that is arranged between two adjacent power storage elements 100 and insulates and/or insulates between the two power storage elements 100. (intermediate spacer). Specifically, spacer 210 is disposed between long sides 111 of containers 110, which will be described later, of the two power storage elements 100, facing the long sides 111. In this embodiment, 13 spacers 210 and 14 power storage elements 100 are arranged alternately in the Y-axis direction, but when the number of power storage elements 100 is other than 14, the spacers 210 The number is also changed as appropriate depending on the number of power storage elements 100.
  • the spacer 210 is not limited to being arranged between all of the power storage elements 100, and a configuration may be adopted in which the spacer 210 is not arranged between any of the power storage elements 100. All the spacers 210 may be made of the same material, or any of the spacers 210 may be made of different materials.
  • the spacer 220 of the spacers 200 is disposed between the power storage element 100 at the end and the side wall of the exterior body support 500, and provides insulation between the power storage element 100 at the end and the side wall of the exterior body support 500. and/or an insulating flat rectangular spacer (end spacer) parallel to the XZ plane.
  • Two spacers 220 are arranged between the power storage elements 100 located at both ends in the Y-axis direction and the side walls of the exterior body support 500 at both ends in the Y-axis direction.
  • the spacer 220 is arranged between the long side surface 111 of the container 110 of the power storage element 100 at the end in the Y-axis direction and the side wall of the exterior body support 500 facing in the Y-axis direction. It is arranged opposite to the side wall of the body support 500.
  • the two spacers 220 may be made of the same material, or may be made of different materials.
  • the exterior body 300 is a member that is arranged outside of the plurality of power storage elements 100 and the plurality of spacers 200 and forms a casing (outer shell of the power storage unit 10) that covers the plurality of power storage elements 100 and the like. Specifically, the exterior body 300 is arranged on both sides of the plurality of power storage elements 100 in the Z-axis direction so as to sandwich the plurality of power storage elements 100 and the plurality of spacers 200 in the Z-axis direction. Covers both ends in the Z-axis direction. Thereby, the exterior body 300 fixes the plurality of power storage elements 100 and the plurality of spacers 200 at predetermined positions.
  • the exterior body 300 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET). , polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyether sulfone (PES), polyamide (PA), ABS It is formed of an insulating member such as resin or a composite material thereof, or metal coated with an insulating coating. Exterior body 300 thereby prevents power storage element 100 and the like from coming into contact with external metal members and the like. Exterior body 300 may be formed of a conductive member such as metal, as long as the insulation of power storage element 100 and the like is maintained.
  • the exterior body 300 includes a holding member 310 that constitutes a lower member of the exterior body 300 and a lid member 320 that constitutes an upper member of the exterior body 300.
  • the holding member 310 and the lid member 320 may be made of the same material, or may be made of different materials.
  • the holding member 310 is a tray that is elongated in the Y-axis direction. Specifically, the holding member 310 is arranged in the negative Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 200, and is elongated in the Y-axis direction to hold the plurality of power storage elements 100 and the plurality of spacers 200. It is a shallow box-shaped (flat, substantially rectangular parallelepiped) tray with a shallow depth. A detailed description of the configuration of the holding member 310 will be given later.
  • the lid member 320 is arranged in the Z-axis positive direction of the plurality of power storage elements 100 and the plurality of spacers 200, and has a box shape (flat substantially rectangular parallelepiped shape) that is elongated in the Y-axis direction and supported by the plurality of power storage elements 100. It is a member of Since the lid member 320 is disposed between the second support body 520 of the exterior body support body 500 and the power storage element 100, which will be described later, it can also be said that the lid member 320 is the inner lid of the power storage unit 10.
  • the lid member 320 is a busbar frame (also referred to as a busbar holder or a busbar plate), and serves to insulate the busbar 400 from other members, regulate the position of the busbar 400, and the like.
  • the lid member 320 is disposed on the plurality of power storage elements 100 and positioned with respect to the plurality of power storage elements 100, and the plurality of bus bars 400 are positioned with respect to the lid member 320.
  • each bus bar 400 is positioned with respect to the plurality of power storage elements 100 and joined to the electrode terminal 140 that the plurality of power storage elements 100 have.
  • the bus bar 400 is a rectangular plate-like member that is arranged on the plurality of power storage elements 100 and electrically connects the electrode terminals 140 of the plurality of power storage elements 100.
  • bus bar 400 and electrode terminal 140 are connected (joined) with bolts, but they may be connected (joined) by welding or the like.
  • the bus bar 400 is formed of a metal conductive member such as aluminum, aluminum alloy, copper, copper alloy, nickel, or a combination thereof, or a conductive member other than metal.
  • bus bar 400 connects 14 power storage elements 100 in series by connecting electrode terminals 140 of adjacent power storage elements 100, but the connection mode of power storage elements 100 is limited to the above. However, any combination of series and parallel connections may be used.
  • the bus bar 400 has a pair of connecting portions 401 that are connected to the electrode terminals 140, an intermediate portion 402, and a bent portion 403.
  • the intermediate portion 402 and the bent portion 403 are the same portion.
  • electrode terminals 140 of adjacent power storage elements 100 and bus bars 400 are connected.
  • the bus bar 400 has an intermediate portion 402 located in the middle of the range where the pair of connecting portions 401 are located side by side.
  • a bent portion 403 is further formed.
  • the bent portion 403 is formed by bending the bus bar 400, which is a metal plate-like member, into a U-shape in the Z-axis direction at the intermediate portion 402.
  • the bending portion 403 can follow the stress acting on the bus bar 400.
  • Intermediate portion 402 is also an intermediate portion of bus bar 400 in the direction in which adjacent power storage elements 100 are lined up. The bend may be formed as a groove.
  • the power storage device 1 By connecting the electrode terminals 140 of the power storage elements 100 located at both ends in the Y-axis direction of the plurality of power storage elements 100 to the cables 410 and 420, the power storage device 1 charges with electricity from the outside, It can also discharge electricity to the outside. Cables 410 and 420 are positive and negative electric wires (power cables) through which current flows for charging and discharging power storage device 1 (power storage element 100).
  • the exterior body support 500 is a member that supports and protects (reinforces) the exterior body 300.
  • the exterior support 500 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate.
  • the exterior body support 500 has a first support body 510 that constitutes the main body of the exterior body support body 500 and a second support body 520 that constitutes the lid body of the exterior body support body 500.
  • the first support body 510 and the second support body 520 may be made of the same material, or may be made of different materials.
  • the first support body 510 is a member on which the holding member 310 is disposed and supports the holding member 310 from below (Z-axis negative direction), and has a bottom wall 511 and connection parts 512 and 513.
  • the bottom wall 511 is a flat, rectangular portion that constitutes the bottom wall of the power storage unit 10 and extends in the Y-axis direction and parallel to the XY plane, and is arranged in the negative Z-axis direction of the holding member 310.
  • the connecting portion 512 is a plate-shaped portion that stands upright in the Z-axis positive direction from the Y-axis negative end of the bottom wall 511 and protrudes in the Y-axis negative direction, and is connected to the second support 520. .
  • the connecting portion 513 is a plate-shaped portion that stands upright in the Z-axis positive direction from the Y-axis positive direction end of the bottom wall 511 and protrudes in the Y-axis positive direction, and is connected to the second support body 520. .
  • the second support body 520 is a member that presses and supports the lid member 320 from above (Z-axis positive direction), and has a top surface portion 521 and connection portions 522 and 523.
  • the top surface portion 521 is a flat, rectangular portion that constitutes the top surface portion (outer lid) of the power storage unit 10 and extends in the Y-axis direction and parallel to the XY plane, and is arranged in the positive Z-axis direction of the lid member 320.
  • Ru is a portion that extends in the negative Z-axis direction from the end of the top surface portion 521 in the negative Y-axis direction and projects in the negative Y-axis direction, and is connected to the connecting portion 512 of the first support body 510 .
  • the connecting portion 523 is a portion that extends from the end of the top surface portion 521 in the Y-axis positive direction in the Z-axis negative direction and projects in the Y-axis positive direction, and is connected to the connecting portion 513 of the first support body 510.
  • the second support body 520 is an example of a lid body.
  • the first support body 510 and the second support body 520 are arranged such that the connecting portions 512 and 513 and the connecting portions 522 and 523 are secured with screws or the like, with the holding member 310 and the lid member 320 being sandwiched from the Z-axis direction. It is configured to be fixed by being connected (joined) with.
  • the exterior body support body 500 supports (holds) the exterior body 300.
  • the second support body 520 sandwiches the plurality of power storage elements 100 with the holding member 310 in the direction in which the power storage elements 100 and the holding member 310 are lined up.
  • the direction in which power storage element 100 and holding member 310 are lined up is also the third direction.
  • FIG. 3 is a perspective view showing the configuration of power storage element 100 according to the embodiment.
  • FIG. 3 shows an enlarged appearance of one power storage element 100 among the plurality of power storage elements 100 shown in FIG. 2 . Since all of the plurality of power storage elements 100 have the same configuration, the configuration of one power storage element 100 will be described in detail below.
  • the power storage element 100 has a substantially rectangular parallelepiped shape.
  • the power storage element 100 includes a container 110 and a pair of electrode terminals 140 (a positive electrode and a negative electrode). Inside the container 110, an electrode body, a pair of current collectors (a positive electrode and a negative electrode), an electrolytic solution (nonaqueous electrolyte), and the like are housed, but illustration thereof is omitted.
  • the type of electrolytic solution is not particularly limited as long as it does not impair the performance of power storage element 100, and various types can be selected.
  • the power storage element 100 includes an insulating gasket that insulates and seals between the container 110, the electrode terminal 140, and the current collector, illustration of this gasket is also omitted.
  • the power storage element 100 may include a spacer placed on the side or below the electrode body, an insulating film that wraps around the electrode body, and the like.
  • An insulating film (such as a shrink tube) may be placed around the container 110 to cover the outer surface of the container 110.
  • the material of the insulating film is not particularly limited as long as it can ensure the insulation required for the power storage element 100.
  • insulating resin such as PC, PP, PE, PPS, PET, PBT or ABS resin, epoxy resin, Kapton (registered trademark), Teflon (registered trademark), silicone, polyisoprene, and polychloride can be used. Vinyl etc. are exemplified.
  • the container 110 is a rectangular parallelepiped-shaped (prismatic or box-shaped) case that includes a container body 120 with an opening formed therein and a lid portion 130 that closes the opening of the container body 120.
  • the container body 120 is a rectangular cylindrical member having a bottom and forming the main body portion of the container 110, and has an opening formed in the positive direction of the Z-axis.
  • the lid portion 130 is a rectangular plate-like member that is long in the X-axis direction and constitutes the lid of the container 110, and is arranged in the positive Z-axis direction of the container body 120.
  • the container 110 (lid 130) includes a gas discharge valve 131 that releases the pressure when the pressure inside the container 110 increases excessively, and a liquid injection valve for injecting electrolyte into the inside of the container 110. (not shown), etc. are provided.
  • the material of the container 110 (container body 120 and lid part 130) is not particularly limited, and may be a weldable (joinable) metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin may also be used. can.
  • the container 110 has a structure in which the inside is sealed by accommodating the electrode body and the like inside the container body 120, and then joining the container body 120 and the lid portion 130 by welding or the like.
  • the container 110 has a pair of long sides 111 on both sides in the Y-axis direction, a pair of short sides 112 on both sides in the X-axis direction, and a bottom surface 113 on the negative side in the Z-axis direction.
  • the long side surface 111 is a rectangular flat portion parallel to the XZ plane that forms the long side surface of the container 110, and is disposed to face the adjacent spacer 200 in the Y-axis direction.
  • the long side 111 is adjacent to the short side 112 and the bottom 113 and has a larger area than the short side 112.
  • the short side surface 112 is a rectangular flat portion parallel to the YZ plane that forms the short side surface of the container 110.
  • the short side surface 112 is adjacent to the long side surface 111 and the bottom surface 113 and has a smaller area than the long side surface 111.
  • the bottom surface 113 is a rectangular plane part parallel to the XY plane that forms the bottom surface of the container 110, and is disposed adjacent to the long side surface 111 and the short side surface 112.
  • the long side surface 111 is also the long side surface of the power storage element 100.
  • Short side 112 is also a short side of power storage element 100.
  • the electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the electricity storage element 100 arranged in the lid part 130, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via the current collector. There is.
  • the electrode terminal 140 is a metal member that leads the electricity stored in the electrode body to the external space of the electricity storage element 100 and introduces electricity into the internal space of the electricity storage element 100 to store electricity in the electrode body. be.
  • the electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
  • the electrode body is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator.
  • the positive electrode plate has a positive electrode active material layer formed on a positive electrode base material layer, which is a current collector foil made of metal such as aluminum or an aluminum alloy.
  • the negative electrode plate has a negative electrode active material layer formed on a negative electrode base material layer which is a current collecting foil made of metal such as copper or copper alloy.
  • the active material used for the positive electrode active material layer and the negative electrode active material layer any known material can be used as appropriate as long as it is capable of intercalating and deintercalating lithium ions.
  • As the separator a microporous sheet made of resin, a nonwoven fabric, or the like can be used.
  • the electrode body is formed by stacking electrode plates (a positive electrode plate and a negative electrode plate) in the Y-axis direction.
  • the electrode body is a wound type electrode body formed by winding electrode plates (positive electrode plate and negative electrode plate), and a laminated type (stack type) electrode formed by laminating multiple flat electrode plates.
  • the electrode body may be in any form, such as a bellows-shaped electrode body in which a body or an electrode plate is folded into a bellows shape.
  • the current collector is a conductive member (a positive electrode current collector and a negative electrode current collector) that is electrically connected to the electrode terminal 140 and the electrode body.
  • the positive electrode current collector is formed of aluminum or an aluminum alloy, etc., like the positive electrode base material layer of the positive electrode plate, and the negative electrode current collector is formed of copper, copper alloy, etc., like the negative electrode base material layer of the negative electrode plate. There is.
  • FIG. 4 is a perspective view and a cross-sectional view showing the configuration of the holding member 310 according to the embodiment.
  • FIG. 4(a) is an enlarged perspective view of the holding member 310 shown in FIG. 2
  • FIG. 4(b) is an enlarged perspective view of a part of FIG. 4(a).
  • FIG. 5 is a cross-sectional view of the wall portion 314 included in the holding member 310 according to the embodiment.
  • FIG. 5 is a cross-sectional view of the wall portion 314 of the holding member 310 taken along a plane parallel to the YZ plane including the line VV shown in FIG.
  • FIG. 5 also shows the power storage element 100 and spacer 210 arranged around the wall portion 314 with broken lines.
  • FIG. 6 is a top view showing a configuration when the power storage element 100 and the spacer 210 are arranged in the holding member 310 according to the embodiment. Specifically, FIG. 6 is a diagram of the configuration of a part of the holding member 310 shown in FIG. 4 when the power storage element 100 and the spacer 210 are arranged on the holding member 310, as viewed from the Z-axis plus direction. .
  • the holding member 310 is a resin molded product having a bottom wall 311, a pair of side walls 312, a pair of side walls 313, and a plurality of wall portions 314.
  • the bottom wall 311 is a part that is arranged in the negative Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 210 and supports the plurality of power storage elements 100 and the plurality of spacers 210 from below.
  • the bottom wall 311 is formed into a flat rectangular shape that extends parallel to the XY plane and in the Y-axis direction. That is, the bottom wall 311 is arranged to face the power storage element 100 in the Z-axis direction (the third direction intersecting the first direction and the second direction).
  • the bottom wall 311 is a wall portion that forms the bottom surface of the exterior body.
  • the bottom wall 311 is arranged to face the bottom surface 113 of the container 110 of the power storage element 100 in the Z-axis direction.
  • the bottom wall 311 has a pedestal portion 311a disposed at a position facing the bottom surface 113 of each power storage element 100. The pedestal portion 311a protrudes toward the bottom surface 113 and comes into contact with the bottom surface 113.
  • the pair of side walls 312 are long flat wall portions that protrude from both ends of the bottom wall 311 in the X-axis direction in the Z-axis plus direction and extend parallel to the YZ plane and in the Y-axis direction.
  • a pair of side walls 312 are arranged to face power storage element 100 in the X-axis direction (second direction).
  • the side wall 312 in the negative X-axis direction of the pair of side walls 312 is arranged to face the short side 112 in the negative X-axis direction of the container 110 of the power storage element 100 in the X-axis direction.
  • the side wall 312 in the X-axis positive direction is arranged to face the short side 112 in the X-axis positive direction of the container 110 of the power storage element 100 in the X-axis direction.
  • the side wall 312 has a facing surface (second facing surface) 312b facing the short side surface 112 of the power storage element 100.
  • the pair of side walls 312 are arranged at positions sandwiching the power storage element 100 in the X-axis direction.
  • the pair of side walls 313 are plate-shaped and rectangular walls that protrude from both ends of the bottom wall 311 in the Y-axis direction in the Z-axis plus direction, and extend parallel to the XZ plane and in the X-axis direction. 100.
  • the side wall 313 in the Y-axis negative direction of the pair of side walls 313 is connected to the long side 111 in the Y-axis negative direction of the container 110 of the power storage element 100 located at the end in the Y-axis negative direction among the plurality of power storage elements 100. They are arranged to face each other in the axial direction.
  • the side wall 313 in the positive Y-axis direction is arranged to face the long side 111 in the positive Y-axis direction of the container 110 of the power storage element 100 located at the end in the positive Y-axis direction in the Y-axis direction. In this way, the pair of side walls 313 are arranged at positions sandwiching the plurality of power storage elements 100 in the Y-axis direction.
  • the wall portion 314 is a wall portion that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction), extends toward the side wall 312, and is integrated with the bottom wall 311.
  • Wall portion 314 is arranged between two power storage elements 100 in the Y-axis direction (first direction) (see FIG. 5).
  • the wall portion 314 is disposed between two adjacent power storage elements 100 so as to face the long side surface 111 of the container 110 of the two power storage elements 100 .
  • the wall portion 314 is a long portion that continuously extends in the X-axis direction (second direction) toward the side wall 312, and is arranged to protrude from the bottom wall 311 in the Z-axis plus direction.
  • Wall portion 314 is continuously formed in a range including the length from one end to the other end of power storage element 100 in the X-axis direction (second direction). As long as the wall portion 314 does not protrude toward the long side surface 111 of the power storage element 100, a groove may be formed or the wall portion 314 may be formed discontinuously in the X-axis direction (second direction).
  • the wall portion 314 is a protruding portion that protrudes from the bottom wall 311 in a bulging shape in the positive direction of the Z-axis. That is, a wall recess 314b, which is a recess recessed toward the Z-axis positive direction, is formed on the surface of the wall 314 in the Z-axis negative direction. A wall recess 314a, which is a recess recessed toward the Z-axis minus direction, is formed at a position facing the wall recess 314b on the surface of the wall 314 in the Z-axis plus direction.
  • the wall recesses 314a and 314b are recesses that extend in the X-axis direction from one end of the wall 314 in the X-axis direction to the other end (see FIG. 5, etc.).
  • the wall portion 314 is formed with wall recesses 314a and 314b throughout, so that the wall portion 314 does not become too thick than the bottom wall 311 and has the same thickness as the bottom wall 311. In this way, the wall portion 314 is a continuous portion of the bottom wall 311, and is integrally formed (integrated) with the bottom wall 311.
  • the wall portion 314 is a pedestal that is arranged in the negative Z-axis direction of the spacer 210 and supports the spacer 210 in the Z-axis direction (third direction) (see FIG. 5). That is, the wall portion 314 supports the spacer 210 that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction).
  • the spacer 210 is placed on the wall portion 314 with the surface of the spacer 210 in the negative Z-axis direction being in contact with the center portion in the Y-axis direction of the surface of the wall portion 314 in the positive Z-axis direction.
  • a plurality of wall portions 314 are arranged in line in the Y-axis direction corresponding to all the spacers 210, and each wall portion 314 supports each spacer 210 from the negative Z-axis direction.
  • the wall portion 314 is thicker than the spacer 210 in the Y-axis direction and shorter than the spacer 210 in the X-axis direction.
  • wall portion 314 is arranged to face at least the center portion of power storage element 100 in the X-axis direction.
  • the length of wall portion 314 in the X-axis direction is preferably 1 ⁇ 3 or more of the length of power storage element 100 in the X-axis direction.
  • the central portion of the power storage element 100 in the X-axis direction is a region that includes the center position of the power storage element 100 in the X-axis direction, and has a length that includes the center and is approximately 1/3 of the length of the power storage element 100 in the X-axis direction. is within the range of
  • the wall recess 314a is formed to have a width smaller than the spacer 210 in the Y-axis direction and a length shorter than the spacer 210 in the X-axis direction so that the end of the spacer 210 does not enter the wall recess 314a. has been done.
  • the wall portion 314 is an example of a first wall portion disposed at a position adjacent to the power storage element 100 in the Y-axis direction when the bottom wall 311 is viewed from above (viewed in the Z-axis direction).
  • the side walls 312 and 313 are examples of second wall parts arranged at different positions from the wall part 314.
  • FIG. 7 is a sectional view showing the second wall portion according to the embodiment.
  • a side wall 312 is illustrated as the second wall portion.
  • an outer surface 312a that is an outer surface and an inner surface 312b that is an inner surface are each inclined at a gradient ⁇ with respect to the Z-axis direction (third direction).
  • the inner surface 312b is a facing surface (second facing surface) facing the short side surface 112 of the power storage element 100.
  • the gradient ⁇ is an acute angle between the second opposing surface 312b and the Z-axis direction.
  • the acute angle between the outer surface 312a and the Z-axis direction is also ⁇ .
  • This slope ⁇ is the draft angle of the resin molded product from the mold, and has a value of 0.5 degrees or more and less than 2 degrees.
  • the outer and inner surfaces of the side wall 313 also have a draft angle of the slope ⁇ , similar to the side wall 312.
  • the wall portion 314, which is the first wall portion, has an outer shape that tapers in the positive direction of the Z-axis.
  • the length H1 of the wall portion 314 in the Z-axis direction (third direction) is within 1/8 of the length of the power storage element 100 in the Z-axis direction.
  • the length H1 should be within 1 ⁇ 8 of the length of the power storage element 100 in the Z-axis direction in the container 110.
  • the length H1 is the length in the Z-axis direction from the top end of the wall portion 314 to the pedestal portion 311a, but the length H1 is the length in the Z-axis direction from the top end to the bottom end of the wall portion 314. It may also be H1.
  • the wall portion 314 is provided with a facing surface 315 that faces the long side surface 111 of the power storage element 100 in the Y-axis direction.
  • the opposing surface 315 of the wall portion 314 is also referred to as a first opposing surface to distinguish it from the opposing surface 312b (second opposing surface) that is the inner surface of the side wall 312.
  • a pair of opposing surfaces 315 are formed on both sides of the wall portion 314 in the Y-axis direction. Each opposing surface 315 is inclined with respect to the Z-axis direction.
  • the pair of opposing surfaces 315 differ in that they face opposite directions in the Y-axis direction, but have the same basic configuration.
  • Each opposing surface (first opposing surface) 315 is provided below the wall portion 314 in the Z-axis direction (third direction), and includes a planar first surface 315a formed at a position close to the bottom wall 311; It has a planar second surface 315b provided at a position farther from the bottom wall 311 than the first surface 315a.
  • the opposing surface (first opposing surface) 315 is a continuous plane extending in the X-axis direction (second direction).
  • the first surface 315a and the second surface 315b are continuous planes extending in the X-axis direction (second direction).
  • the opposing surfaces 315 may be discontinuous as long as they do not have a shape that protrudes in the normal direction of the plane.
  • An example of a discontinuous shape is a groove.
  • the first surface 315a and the second surface 315b are provided continuously in the Z-axis direction.
  • the first surface 315a is inclined with a gradient ⁇ with respect to the Z-axis direction
  • the second surface 315b is inclined with a gradient ⁇ with respect to the Z-axis direction.
  • the slope is an acute angle that the surfaces (first surface 315a, second surface 315b, etc.) of the members constituting power storage device 1 make with respect to the third direction (Z-axis direction).
  • the third direction is a direction that intersects the first direction (Y-axis direction) and the second direction (X-axis direction).
  • the third direction is a direction in which bottom wall 311 and power storage element 100 are lined up.
  • the third direction is also a direction that intersects the direction in which power storage element 100 and wall portion 314 face each other (first direction) and the direction in which wall portion 314 extends (second direction).
  • the relationship between the gradients ⁇ , ⁇ , and ⁇ is ⁇ . That is, the slope of the opposing surface 315 is larger than the slope ⁇ of the side wall 312 (second wall portion) as a whole. Specifically, the slope of the first opposing surface 315 is greater than the slope of the second opposing surface 312b.
  • the slope ⁇ may be 2 degrees or more and 5 degrees or less, and the slope ⁇ may be larger than 5 degrees.
  • the slopes ⁇ and ⁇ are 30 degrees or less, preferably 20 degrees or less.
  • the gradient of the second surface 315b is larger than the gradient of the first surface 315a.
  • a protrusion 316 is formed on the holding member 310.
  • the protrusion 316 is a protrusion that is arranged between the side wall 312 and the wall portion 314 in the X-axis direction and protrudes from the bottom wall 311 in the Z-axis direction (third direction).
  • the height of the protrusion 316 in the Z-axis direction is lower than the height of the wall portion 314 in the Z-axis direction.
  • the protrusion 316 is a continuous portion of the bottom wall 311 and is formed integrally with the bottom wall 311 . In FIGS. 4, 5, and 8, illustration of the protrusion 316 is omitted.
  • the protrusion 316 is a protrusion for positioning the power storage element 100. As shown in FIG. 6, the protrusions 316 are arranged at the bottom of the container 110 of each power storage element 100 on both sides in the Y-axis direction of both ends in the X-axis direction so as to sandwich both ends in the X-axis direction in the Y-axis direction. Ru. Four protrusions 316 are arranged for one power storage element 100. Although the power storage element 100 does not contact the wall portion 314, these four protrusions 316 contact the container 110 of the power storage element 100 in the Y-axis direction, thereby restricting movement of the power storage element 100 in the Y-axis direction.
  • the long side surface 111 of the power storage element 100 and the opposing surface 315 of the wall portion 314 are not in contact with each other.
  • the distance between the long side surface 111 and the opposing surface 315 is 2 mm or less, preferably 1 mm or less. This distance is the distance between the bottom (part connected to the bottom wall 311) of the opposing surface (first surface 315a) and the long side surface 111.
  • FIG. 8 is an explanatory diagram showing state transitions between power storage element 100 and wall portion 314 according to the embodiment. Specifically, (a) of FIG. 8 shows the state of the power storage element 100 and the wall part 314 before expansion, and (b) of FIG. 8 shows the state of the power storage element 100 and the wall part 314 during expansion. , FIG. 8(c) shows a state in which the electricity storage element 100 and the wall portion 314 have expanded more than in FIG. 8(b). In either state, each long side surface 111 of the container 110 of the power storage element 100 faces the wall portion 314.
  • each long side surface 111 of the container 110 comes into contact with the first surface (opposing surface) 315a of each wall portion 314, as shown in FIG. 8(b).
  • the angle C at the boundary between the first surface 315a and the second surface 315b expands. This can serve as a starting point for upward movement of power storage element 100. As the expansion of power storage element 100 further progresses, power storage element 100 is further pushed upward due to the inclination (gradient ⁇ ) of second surface 315b of each wall portion 314.
  • the heat of the power storage element 100 that has become excessively high in temperature is difficult to be transferred to the bottom wall 311. Since the slopes ⁇ and ⁇ are larger than the slope ⁇ , it is easy to push the expanded container 110 upward, so that the container 110 can be separated from the bottom wall 311 at an early stage.
  • the slope of the opposing surface 315 of the wall 314 (first wall) (the slope ⁇ of the first surface 315a, the slope ⁇ of the second surface 315b) ⁇ ) is larger than the slope ⁇ of the side walls 312 and 313 (second wall portion). Therefore, when the excessively heated power storage element 100 expands and hits the facing surface 315, the power storage element 100 moves upward along the facing surface 315 and separates from the bottom wall 311. Since opposing surfaces 315 (first surface 315a and second surface 315b) are continuous planes extending in the X-axis direction (second direction), upward movement of power storage element 100 becomes smooth.
  • opposing surface 315 may be a discontinuous plane extending in the X-axis direction (second direction). This makes it difficult for the heat of the power storage element 100 to be transferred to the bottom wall 311, so that it is possible to suppress the heat from propagating to other power storage elements 100 via the bottom wall 311. Therefore, among the plurality of power storage elements 100 arranged in a row, the thermal influence from one power storage element 100 to other power storage elements 100 can be suppressed.
  • the long side 111 of the power storage element 100 expands in an arc shape. Therefore, in a region inside the peripheral edge of power storage element 100, the amount of displacement during expansion in the normal direction of long side surface 111 of power storage element 100 is large.
  • the second surface 315b is located farther from the bottom wall 311 than the first surface 315a. Therefore, when the first surface 315a is arranged at a position corresponding to the peripheral edge of the power storage element 100, the second surface 315b corresponds to a portion where the amount of displacement is larger than the peripheral edge of the power storage element 100, It is easy to accept the expansion of 100.
  • the expanded power storage element 100 can be smoothly moved in the direction away from the bottom wall 311.
  • the long side surface 111 of the power storage element 100 expands in an arc shape.
  • the inclination of the peripheral portion of the long side surface 111 of the power storage element 100 in the Z-axis direction (third direction) is greater than the inclination of the central portion.
  • the inclination of the long side surface 111 in the Z-axis direction (third direction) is the acute angle that the long side surface 111 makes with the Z-axis direction (third direction).
  • the wall portion 314 since the length H1 of the wall portion 314 is within 1/8 of the length of the power storage element 100 in the Z-axis direction, the wall portion 314 is located at a position corresponding to the peripheral edge with a large inclination in the expanded power storage element 100. A wall 314 can be placed. Therefore, the peripheral edge portion of the power storage element 100 having a large slope can be brought into contact with the facing surface 315 of the wall portion 314 . Thereby, the expanded power storage element 100 can be smoothly moved in the direction away from the bottom wall 311. The smoother the power storage element 100 can be moved, the sooner the heat of the power storage element 100 will be less likely to be transferred to the bottom wall 311. Therefore, the propagation of heat to other power storage elements 100 via bottom wall 311 can be further suppressed, and the influence of heat on other power storage elements 100 can be further suppressed.
  • the opposing surface 315 is arranged at a location where the expansion of the power storage element 100 is large in the X-axis direction as well. Ru.
  • the expanded power storage element 100 can be smoothly moved in a direction away from the bottom wall 311 by the opposing surface 315.
  • the smoother the power storage element 100 can be moved the sooner the heat of the power storage element 100 will be less likely to be transferred to the bottom wall 311. Therefore, the propagation of heat to other power storage elements 100 via bottom wall 311 can be further suppressed, and the influence of heat on other power storage elements 100 can be further suppressed.
  • the expanded power storage element 100 can come into contact with the facing surface 315 of the wall portion 314 over a wide range. Therefore, the expanded power storage element 100 can be moved smoothly.
  • bus bar 400 When a plurality of power storage elements 100 are connected by bus bar 400 and used, since bus bar 400 includes a bent portion, the bent portion can follow stress.
  • the bus bar connected to the power storage element 100 receives stress that tends to shift from its normal position. Since the bent portion of the bus bar can flexibly follow the stress, the expanded electricity storage element can be smoothly moved from the holding member.
  • the plurality of power storage elements 100 are sandwiched between the holding member 310 and the second support body 520 (lid body).
  • the power storage element 100 expands and moves away from the holding member 310, the power storage element 100 approaches the second support 520 (lid). Since the second support body 520 (lid body) is made of metal, it can effectively radiate the heat of the electricity storage element 100. Therefore, when a power storage element expands, thermal effects on other power storage elements can be further suppressed.
  • the wall recesses 314a and 314b are formed in the wall 314, but at least one of the wall recesses 314a and 314b may not be formed.
  • a configuration will be described in which a wall portion does not have a wall recessed portion and the wall portion includes a heat transfer member.
  • FIG. 9 is a cross-sectional view showing a wall portion 314C according to a modification.
  • a heat transfer member 350 is disposed inside the wall portion 314C.
  • the heat transfer member 350 is made of a metal material having higher thermal conductivity than the holding member 310, such as copper, aluminum, or nickel.
  • the heat transfer member 350 integrally includes a heat transfer wall 351 and a heat transfer bottom 352.
  • the heat transfer wall 351 is a long flat wall extending parallel to the XZ plane and in the X-axis direction, and is disposed as a whole within the wall 314C. Thereby, the heat transfer wall 351 is arranged at a position corresponding to the opposing surface 315 of the wall portion 314C.
  • the heat transfer bottom 352 is a flat wall portion parallel to the XY plane, and is provided to support the bottom wall 311 of the holding member 310 from below.
  • the heat transfer wall 351 of the heat transfer member 350 is disposed on the wall portion 314C at a position corresponding to the opposing surface 315, when the expanded electricity storage element 100 comes into contact with the opposing surface 315 of the wall portion 314C, The heat of the electricity storage element 100 is transmitted to the heat transfer wall 351 and is radiated from the heat transfer bottom 352. Thereby, heat can be suppressed from propagating from expanded and overheated electricity storage element 100 to other electricity storage elements 100, and thermal effects on other electricity storage elements 100 can be further suppressed.
  • the opposing surface 315 of the wall portion 314 has the first surface 315a and the second surface 315b with mutually different slopes is illustrated, but the opposing surface is a flat plane as a whole.
  • the slope of the opposing surface may be greater than the slope of the inner surface 312b of the second wall portion.
  • the slope of the opposing surface may be at least 2 degrees, preferably at least 5 degrees.
  • the slope of the second surface 315b may be made larger than the slope of the first surface 315a without using the inner surface 312b of the second wall portion 312 as a comparison target. A similar effect can be obtained.
  • the slope of the second surface 315b may be at least 2 degrees, preferably at least 5 degrees.
  • the slopes of the first and second surfaces are 30 degrees or less, preferably 20 degrees or less.
  • the protrusion 316 of the holding member 310 restricts the movement of the power storage element 100 in the Y-axis direction, but the holding member 310 does not need to have the protrusion 316. Even if the electricity storage element 100 before expansion and the wall portion 314 are not in contact with each other, in the expanded state of the electricity storage element 100, the pair of long sides 111 of the electricity storage element 100 are connected to two opposing walls on both sides in the Y-axis direction. Each opposing surface 315 of 314 is contacted in the same manner.
  • the holding member 310 may not have the protrusion 316, and the power storage element 100 may be in contact with the bottom of the opposing surface 315 of the wall portion 314 (the portion connected to the bottom wall 311).
  • Wall portion 314 also functions as a positioning member for power storage element 100 in the Y-axis direction. In this case, when the power storage element 100 becomes hot and expands, the time until the long side surface 111 contacts the opposing surface 315 (first surface 315a, second surface 315b) becomes shorter, and the power storage element 100 can move upward more quickly. .
  • first surface 315a and the second surface 315b are each flat. At least one of the first surface and the second surface may be curved. If it is curved, the slope is an acute angle formed by the Z-axis direction and the virtual line connecting the starting point and the ending point when viewed in the X-axis direction.
  • the case where the first surface 315a is tilted with respect to the Z-axis direction is illustrated, but the first surface 315a does not need to be tilted with respect to the Z-axis direction.
  • the length H1 of the wall portion 314 is within 1/8 of the length of the power storage element 100 in the Z-axis direction, but the length of the first wall portion in the Z-axis direction is , may be larger than 1/8 of the length of the power storage element 100 in the Z-axis direction.
  • the length of the wall portion 314 in the X-axis direction is 1/3 or more of the length of the power storage element 100 in the X-axis direction, but the length of the wall portion 314 in the X-axis direction is The length may be less than 1 ⁇ 3 of the length of power storage element 100 in the X-axis direction.
  • the wall portion 314 is a continuous portion of the bottom wall 311, so that the wall portion 314 is integrated with the bottom wall 311, but the present invention is not limited thereto.
  • the wall portion 314 is formed by joining the bottom wall 311 and a separate wall portion 314 to the bottom wall 311 by bonding with an adhesive, heat welding, laser welding, etc. It may be integrated with the wall 311.
  • the wall portion 314 is arranged between the two power storage elements 100, but not between the two power storage elements 100 but on the side (outside) of the power storage element 100 at the end. may be placed.
  • the wall 314 supports the spacer 210 in the Z-axis direction, but the spacer 210 is arranged in the Y-axis direction of the wall 314, and the wall 314 supports the spacer 210 in the Y-axis direction. 210 may be supported. The spacer 210 may not be arranged around the wall portion 314, and the wall portion 314 may not support the spacer 210.
  • the cross-sectional shape of the wall portion 314 in the YZ plane may be any shape, such as a semicircle, a semiellipse, a semiellipse, a triangle, or another polygon.
  • the spacer 200 is made of glass wool that has insulation and heat insulation properties, but the spacer may just have insulation properties.
  • the exterior body 300 (the holding member 310 and the lid member 320) is a tray and a busbar frame that sandwich the plurality of power storage elements 100 and the plurality of spacers 200 in the Z-axis direction.
  • the lid member 320 may be an insulating member or the like on which electrical equipment (electrical components) such as a board, relay, fuse, thermistor, or harness is placed, instead of a busbar frame.
  • the exterior body 300 is not configured to sandwich a plurality of power storage elements 100, etc., but is a box having a holding member 310 as a housing that accommodates a plurality of power storage elements 100, etc., and a lid member 320 as a lid body that closes an opening of the housing. It may also be a shaped container (module case).
  • the power storage element 100 is arranged with the electrode terminal 140 facing in the Z-axis positive direction, but it is arranged in an orientation with the electrode terminal 140 facing in the X-axis direction, the Y-axis direction, or the Z-axis negative direction. It may be placed in
  • the present invention can be applied to a power storage device, etc. equipped with a power storage element such as a lithium ion secondary battery.
  • Power storage device 100 Power storage element 110 Containers 200, 210, 220 Spacer 300 Exterior body 310 Holding member 311 Bottom wall 311a Projections 312, 313 Side wall (second wall) 312a Outer surface 312b Inner surface (opposing surface, second opposing surface) 314, 314C Wall part (first wall part) 314a, 314b Wall recess 315 Opposing surface (first opposing surface) 315a First surface 315b Second surface 350 Heat transfer member 351 Heat transfer wall 352 Heat transfer bottom H1 Length ⁇ , ⁇ , ⁇ Gradient

Abstract

A power storage device (1) comprises a power storage element (100) and a holding member (310) that holds the power storage element (100). The holding member (310) comprises: a bottom wall (311) that supports the power storage element (100); a first wall portion (wall portion (314)) that is disposed at a position adjacent to the power storage element (100) in a first direction and that protrudes from the bottom wall (311); and second wall portions (side walls (312) and (313)) that are disposed at positions different from that of the first wall portion and that protrude from the bottom wall (311). The first wall portion extends in a second direction (X-axis direction) that intersects the first direction (Y-axis direction). The gradient of an opposing face (315), of the first wall portion, opposite to the power storage element (100) is greater than the gradient α of the second wall portion.

Description

蓄電装置Power storage device
 本発明は、蓄電装置に関する。 The present invention relates to a power storage device.
 特許文献1には、底壁を有する保持部材(ケース本体)に対して、複数の二次電池セル(蓄電素子)が収容された二次電池装置(蓄電装置)が開示されている。 Patent Document 1 discloses a secondary battery device (power storage device) in which a plurality of secondary battery cells (power storage elements) are housed in a holding member (case body) having a bottom wall.
国際公開第2016/158395号International Publication No. 2016/158395
 一つの蓄電素子が過剰に高温化してしまうと、その熱が保持部材の底壁を介して、正常な蓄電素子まで伝わって悪影響を及ぼすおそれがある。 If one power storage element becomes excessively high in temperature, the heat may be transmitted to a normal power storage element through the bottom wall of the holding member and have an adverse effect.
 本発明の目的は、一つの蓄電素子から他の蓄電素子に対する熱影響を抑制することである。 An object of the present invention is to suppress the thermal influence from one power storage element to other power storage elements.
 本発明の一態様に係る蓄電装置は、蓄電素子と、前記蓄電素子を保持する保持部材と、を備え、前記保持部材は、前記蓄電素子を支持する底壁と、第一方向において前記蓄電素子に隣り合う位置に配置され、前記底壁から突出した第一壁部と、前記第一壁部とは異なる位置に配置され、前記底壁から突出した第二壁部と、を備え、前記第一壁部は、前記第一方向に交差する第二方向に延びており、前記第一壁部において前記蓄電素子に対向する対向面の勾配は、前記第二壁部の勾配よりも大きい。 A power storage device according to one aspect of the present invention includes a power storage element and a holding member that holds the power storage element, and the holding member has a bottom wall that supports the power storage element, and a bottom wall that supports the power storage element in a first direction. a first wall portion disposed adjacent to the bottom wall and protruding from the bottom wall; and a second wall portion disposed at a position different from the first wall portion and protruding from the bottom wall, the second wall portion protruding from the bottom wall. The one wall portion extends in a second direction intersecting the first direction, and the slope of the opposing surface of the first wall portion that faces the electricity storage element is greater than the slope of the second wall portion.
 本発明における蓄電装置によれば、一つの蓄電素子から他の蓄電素子に対する熱影響を抑制できる。 According to the power storage device of the present invention, thermal influence from one power storage element to other power storage elements can be suppressed.
図1は、実施の形態に係る蓄電装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment. 図2は、実施の形態に係る蓄電装置を分解した場合の各構成要素を示す分解斜視図である。FIG. 2 is an exploded perspective view showing each component when the power storage device according to the embodiment is disassembled. 図3は、実施の形態に係る蓄電素子の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the power storage element according to the embodiment. 図4は、実施の形態に係る保持部材の構成を示す斜視図及び断面図である。FIG. 4 is a perspective view and a sectional view showing the structure of the holding member according to the embodiment. 図5は、実施の形態に係る保持部材が有する第一壁部の断面図である。FIG. 5 is a sectional view of the first wall portion of the holding member according to the embodiment. 図6は、実施の形態に係る保持部材に、蓄電素子及びスペーサを配置した場合の構成を示す上面図である。FIG. 6 is a top view showing a configuration in which a power storage element and a spacer are arranged in a holding member according to an embodiment. 図7は、実施の形態に係る第二壁部を示す断面図である。FIG. 7 is a sectional view showing the second wall portion according to the embodiment. 図8は、実施の形態に係る蓄電素子と壁部との状態遷移を示す説明図である。FIG. 8 is an explanatory diagram showing the state transition between the power storage element and the wall according to the embodiment. 図9は、変形例に係る第一壁部を示す断面図である。FIG. 9 is a sectional view showing a first wall portion according to a modification. 図10は、実施の形態にかかるバスバーの構成を示す斜視図である。FIG. 10 is a perspective view showing the configuration of the bus bar according to the embodiment.
 (1)本発明の一態様に係る蓄電装置は、蓄電素子と、前記蓄電素子を保持する保持部材と、を備え、前記保持部材は、前記蓄電素子を支持する底壁と、第一方向において前記蓄電素子に隣り合う位置に配置され、前記底壁から突出した第一壁部と、前記第一壁部とは異なる位置に配置され、前記底壁から突出した第二壁部と、を備え、前記第一壁部は、前記第一方向に交差する第二方向に延びており、前記第一壁部において前記蓄電素子に対向する対向面の勾配は、前記第二壁部の勾配よりも大きい。 (1) A power storage device according to one aspect of the present invention includes a power storage element and a holding member that holds the power storage element, and the holding member is connected to a bottom wall that supports the power storage element in a first direction. A first wall portion disposed adjacent to the power storage element and protruding from the bottom wall; and a second wall portion disposed at a position different from the first wall portion and protruding from the bottom wall. , the first wall extends in a second direction intersecting the first direction, and the slope of the opposing surface of the first wall facing the electricity storage element is greater than the slope of the second wall. big.
 蓄電素子は、過剰に高温化した場合などに膨張する。蓄電素子を保持する保持部材(外装体)の壁部(第二壁部)は通常、抜き勾配を有している。蓄電素子と隣り合う位置に配置される第一壁部の対向面の勾配は第二壁部の勾配よりも大きいので、第一壁部は通常の抜き勾配よりも大きい勾配を有する。上記態様によれば、膨張した蓄電素子は、対向面に当たるとこの対向面に沿って蓄電素子が上方に移動し、保持部材の底壁から離れる。これにより、蓄電素子の熱が底壁に伝達されにくくなるため、保持部材の底壁を経由して他の蓄電素子へと熱が伝播することを抑制できる。したがって、複数並べられた蓄電素子のうち、一つの蓄電素子から他の蓄電素子に対する熱影響を抑制できる。 A power storage element expands when the temperature becomes excessively high. The wall portion (second wall portion) of the holding member (exterior body) that holds the power storage element usually has a draft angle. Since the slope of the opposing surface of the first wall portion disposed adjacent to the power storage element is larger than the slope of the second wall portion, the first wall portion has a slope larger than a normal draft angle. According to the above aspect, when the expanded power storage element hits the opposing surface, the power storage element moves upward along the opposing surface and separates from the bottom wall of the holding member. This makes it difficult for the heat of the power storage element to be transferred to the bottom wall, so it is possible to suppress the heat from propagating to other power storage elements via the bottom wall of the holding member. Therefore, it is possible to suppress the thermal influence of one power storage element among the plurality of power storage elements arranged on the other power storage elements.
 (2)上記(1)に記載の蓄電装置において、前記対向面は、前記底壁に近い位置に設けられた第一面と、前記第一面よりも前記底壁から遠い位置に設けられた第二面とを備え、前記第二面の勾配は、前記第一面の勾配よりも大きくてもよい。 (2) In the power storage device according to (1) above, the opposing surfaces include a first surface provided at a position close to the bottom wall, and a first surface provided at a position farther from the bottom wall than the first surface. a second surface, and the slope of the second surface may be greater than the slope of the first surface.
 蓄電素子が膨張する際には、蓄電素子の側面が弧状に膨らむ。このため蓄電素子の周縁部よりも内側の領域では、蓄電素子側面の法線方向における膨張時の変位量が大きい。本態様では、第二面は、第一面よりも底壁から遠い位置に配置されている。このため、第一面を蓄電素子の周縁部に対応させた位置に配置すると、第二面は、蓄電素子の周縁部よりも変位量が大きい部位に対応することとなり、蓄電素子の膨張を受け止めやすい。第二面の勾配は、第一面の勾配よりも大きいため、膨張した蓄電素子は、底壁から離れる方向にスムーズに移動できる。膨張した蓄電素子が底壁から離れる方向に移動できれば、それだけ早期に蓄電素子の熱が底壁に伝達されにくくなる。したがって、保持部材の底壁を経由して他の蓄電素子へと熱が伝播することをより抑制でき、他の蓄電素子に対する熱影響をより抑制できる。 When the power storage element expands, the side surface of the power storage element expands in an arc shape. Therefore, in a region inside the peripheral edge of the power storage element, the amount of displacement during expansion in the normal direction of the side surface of the power storage element is large. In this aspect, the second surface is located farther from the bottom wall than the first surface. Therefore, if the first surface is placed at a position corresponding to the periphery of the energy storage element, the second surface will correspond to the area where the amount of displacement is larger than the periphery of the energy storage element, and will absorb the expansion of the energy storage element. Cheap. Since the slope of the second surface is greater than the slope of the first surface, the expanded electricity storage element can smoothly move away from the bottom wall. The sooner the expanded power storage element can move away from the bottom wall, the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, the propagation of heat to other power storage elements via the bottom wall of the holding member can be further suppressed, and the influence of heat on other power storage elements can be further suppressed.
 (3)本発明の一態様に係る蓄電装置は、蓄電素子と、前記蓄電素子を保持する保持部材と、を備え、前記保持部材は、前記蓄電素子を支持する底壁と、第一方向において前記蓄電素子に隣り合う位置に配置され、前記底壁から突出した第一壁部と、を備え、前記第一壁部は、前記蓄電素子に対向する対向面を備え、前記第一壁部は、前記第一方向に交差する第二方向に延びており、前記対向面は、前記底壁に近い位置に設けられた第一面と、前記第一面よりも前記底壁から遠い位置に設けられた第二面とを備え、前記第二面の勾配は、前記第一面の勾配よりも大きい。 (3) A power storage device according to one aspect of the present invention includes a power storage element and a holding member that holds the power storage element, and the holding member is connected to a bottom wall that supports the power storage element in a first direction. a first wall portion disposed adjacent to the power storage element and protruding from the bottom wall; the first wall portion includes an opposing surface facing the power storage element; , extending in a second direction intersecting the first direction, and the opposing surfaces include a first surface provided at a position close to the bottom wall, and a first surface provided at a position farther from the bottom wall than the first surface. and a second surface having a slope, the slope of the second surface being greater than the slope of the first surface.
 蓄電素子が過剰に高温化して膨張する際には、蓄電素子の側面が弧状に膨らむ。このため蓄電素子の周縁部よりも内側の領域では、蓄電素子側面の法線方向における膨張時の変位量が大きい。本態様では、第二面は、第一面よりも底壁から遠い位置に配置されている。このため、第一面を蓄電素子の周縁部に対応させた位置に配置すると、第二面は、蓄電素子の周縁部よりも変位量が大きい部位に対応することとなり、蓄電素子の膨張を受け止めやすい。第二面の勾配は、第一面の勾配よりも大きいため、膨張した蓄電素子は、底壁から離れる方向にスムーズに移動できる。膨張した蓄電素子が底壁から離れる方向に移動できれば、それだけ早期に蓄電素子の熱が底壁に伝達されにくくなる。したがって、保持部材の底壁を経由して他の蓄電素子へと熱が伝播することを抑制でき、他の蓄電素子に対する熱影響を抑制できる。 When the power storage element becomes excessively hot and expands, the side surface of the power storage element expands in an arc shape. Therefore, in a region inside the peripheral edge of the power storage element, the amount of displacement during expansion in the normal direction of the side surface of the power storage element is large. In this aspect, the second surface is located farther from the bottom wall than the first surface. Therefore, if the first surface is placed at a position corresponding to the periphery of the energy storage element, the second surface will correspond to the area where the amount of displacement is larger than the periphery of the energy storage element, and will absorb the expansion of the energy storage element. Cheap. Since the slope of the second surface is greater than the slope of the first surface, the expanded electricity storage element can smoothly move away from the bottom wall. The sooner the expanded power storage element can move away from the bottom wall, the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, it is possible to suppress heat from propagating to other power storage elements via the bottom wall of the holding member, and it is possible to suppress thermal effects on other power storage elements.
 (4)上記(1)~(3)のいずれかひとつに記載の蓄電装置において、前記第一壁部において、前記第一方向及び前記第二方向に交差する第三方向の長さは、前記蓄電素子における前記第三方向の長さの1/8以内であってもよい。 (4) In the power storage device according to any one of (1) to (3) above, in the first wall portion, the length in the third direction intersecting the first direction and the second direction is The length may be within 1/8 of the length of the electricity storage element in the third direction.
 上述したように、蓄電素子が膨張する際には、蓄電素子の側面が弧状に膨らむ。このとき、蓄電素子の側面の周縁部の傾斜は、中央部の傾斜よりも大きくなる。本態様では、第一壁部において第三方向の長さが、蓄電素子における第三方向の長さの1/8以内であるので、膨張した蓄電素子において傾斜の大きい周縁部に対応した位置に第一壁部を配置できる。このため、第一壁部の対向面に対し、蓄電素子の傾斜の大きい周縁部を接触させられる。これにより、膨張した蓄電素子を、底壁から離れる方向にスムーズに移動できる。スムーズに蓄電素子を移動できれば、それだけ早期に蓄電素子の熱が底壁に伝達されにくくなる。したがって、保持部材の底壁を経由して他の蓄電素子へと熱が伝播することをより抑制でき、他の蓄電素子に対する熱影響をより抑制できる。 As described above, when the power storage element expands, the side surface of the power storage element expands in an arc shape. At this time, the slope of the peripheral edge portion of the side surface of the power storage element is larger than the slope of the center portion. In this aspect, since the length of the first wall in the third direction is within 1/8 of the length of the electricity storage element in the third direction, the expanded electricity storage element is placed at a position corresponding to the peripheral edge with a large inclination. A first wall can be placed. Therefore, the peripheral edge portion of the power storage element having a large slope can be brought into contact with the opposing surface of the first wall portion. Thereby, the expanded electricity storage element can be smoothly moved in a direction away from the bottom wall. The smoother the power storage element can be moved, the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, the propagation of heat to other power storage elements via the bottom wall of the holding member can be further suppressed, and the influence of heat on other power storage elements can be further suppressed.
 (5)上記(1)~(4)のいずれかひとつに記載の蓄電装置において、前記第一壁部は、前記蓄電素子における前記第二方向の中央部に対向して配置されていてもよい。 (5) In the power storage device according to any one of (1) to (4) above, the first wall portion may be arranged to face a central portion of the power storage element in the second direction. .
 これによれば、第一壁部が、蓄電素子における第二方向の中央部に対向して配置されているので、第二方向においても蓄電素子の膨張の大きい箇所に対向面が配置される。これにより、膨張した蓄電素子を、対向面によって底壁から離れる方向にスムーズに移動できる。スムーズに蓄電素子を移動できれば、それだけ早期に蓄電素子の熱が底壁に伝達されにくくなる。したがって、保持部材の底壁を経由して他の蓄電素子へと熱が伝播することをより抑制でき、他の蓄電素子に対する熱影響をより抑制できる。 According to this, since the first wall portion is arranged to face the central part of the power storage element in the second direction, the opposing surface is arranged at a location where the expansion of the power storage element is large in the second direction as well. Thereby, the expanded electricity storage element can be smoothly moved in a direction away from the bottom wall by the opposing surface. The smoother the power storage element can be moved, the sooner the heat of the power storage element will be less likely to be transferred to the bottom wall. Therefore, the propagation of heat to other power storage elements via the bottom wall of the holding member can be further suppressed, and the influence of heat on other power storage elements can be further suppressed.
 (6)上記(1)~(5)のいずれかひとつに記載の蓄電装置において、複数の前記蓄電素子と、隣り合う前記蓄電素子同士を接続するバスバーとを備え、前記バスバーは、前記バスバーの、隣り合う前記蓄電装置が並ぶ方向における中間部に曲げ部を備えてもよい。 (6) The power storage device according to any one of (1) to (5) above, including a plurality of the power storage elements and a bus bar that connects the adjacent power storage elements, and the bus bar is connected to the bus bar. , a bent portion may be provided at an intermediate portion in a direction in which the adjacent power storage devices are lined up.
 これによれば、複数の蓄電素子がバスバーで接続されて使用される際に、バスバーが曲げ部を備えるため、当該曲げ部が応力に追従できる。膨張した蓄電素子が保持部材から離れる方向に移動した際には、当該蓄電素子に接続されたバスバーは応力を受ける。バスバーの曲げ部が当該応力に追従できるため、膨張した蓄電素子が保持部材からスムーズに移動できる。 According to this, when a plurality of power storage elements are connected by a bus bar and used, since the bus bar includes a bent portion, the bent portion can follow stress. When the expanded power storage element moves in a direction away from the holding member, the bus bar connected to the power storage element is subjected to stress. Since the bent portion of the bus bar can follow the stress, the expanded electricity storage element can be smoothly moved from the holding member.
 (7)上記(1)~(6)のいずれかひとつに記載の蓄電装置において、前記蓄電素子と前記保持部材とが並ぶ方向において、前記保持部材とで前記蓄電素子を挟む位置に配置される金属製の蓋体を備えてもよい。 (7) In the power storage device according to any one of (1) to (6) above, the power storage device is arranged at a position where the power storage element is sandwiched between the power storage element and the holding member in a direction in which the power storage element and the holding member are lined up. It may also include a metal lid.
 これによれば、蓄電素子は、保持部材と蓋体とで挟まれている。蓄電素子が膨張して、保持部材から離れる方向に移動すると、当該蓄電素子は蓋体に接近する。蓋体は金属製であるため、当該蓄電素子の熱を効果的に放熱できる。よって、蓄電素子が膨張した際に、他の蓄電素子に対する熱影響をより抑制できる。 According to this, the electricity storage element is sandwiched between the holding member and the lid. When the power storage element expands and moves away from the holding member, the power storage element approaches the lid. Since the lid body is made of metal, it can effectively radiate heat from the electricity storage element. Therefore, when a power storage element expands, thermal effects on other power storage elements can be further suppressed.
 (8)上記(1)~(7)のいずれかひとつに記載の蓄電装置において、前記第一壁部は、前記保持部材よりも熱伝導率の高い伝熱部材を含んでもよい。 (8) In the power storage device according to any one of (1) to (7) above, the first wall portion may include a heat transfer member having higher thermal conductivity than the holding member.
 これによれば、第一壁部は、伝熱部材を含んでいるので、膨張した蓄電素子が第一壁部の対向面に接触すると、当該蓄電素子の熱が伝熱部材に伝わり、放熱される。これにより膨張した蓄電素子から、他の蓄電素子へと熱が伝播することを抑制でき、他の蓄電素子に対する熱影響をより抑制できる。 According to this, since the first wall includes the heat transfer member, when the expanded electricity storage element contacts the opposing surface of the first wall, the heat of the electricity storage element is transferred to the heat transfer member and is radiated. Ru. This can suppress heat from propagating from the expanded power storage element to other power storage elements, and can further suppress thermal effects on other power storage elements.
 (実施の形態)
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序等は、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。
(Embodiment)
Hereinafter, a power storage device according to an embodiment of the present invention (including variations thereof) will be described with reference to the drawings. The embodiments described below are all inclusive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, manufacturing steps, order of manufacturing steps, etc. shown in the following embodiments are merely examples, and do not limit the present invention. In each figure, dimensions etc. are not strictly illustrated. In each figure, the same or similar components are designated by the same reference numerals.
 以下の記述及び図面中に示される方向について説明する。1つの蓄電素子における一対(正極及び負極)の電極端子の並び方向、蓄電素子の容器の短側面の対向方向、または、保持部材の短手方向を、X軸方向と定義する。複数の蓄電素子の並び方向、蓄電素子の容器の長側面の対向方向、蓄電素子及びスペーサの並び方向、または、保持部材の長手方向を、Y軸方向と定義する。保持部材の底壁及び蓄電素子の並び方向、蓄電素子の電極端子の突出方向、外装体の本体及び蓋体(保持部材及び蓋部材)の並び方向、外装体支持体の本体及び蓋体(第一支持体及び第二支持体)の並び方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 The directions shown in the following description and drawings will be explained. The direction in which a pair of electrode terminals (positive electrode and negative electrode) in one power storage element are arranged, the opposing direction of the short sides of the container of the power storage element, or the short direction of the holding member is defined as the X-axis direction. The direction in which the plurality of power storage elements are lined up, the direction in which the long sides of the container of the power storage elements face each other, the direction in which the power storage elements and spacers are lined up, or the longitudinal direction of the holding member is defined as the Y-axis direction. The arrangement direction of the bottom wall of the holding member and the power storage element, the protruding direction of the electrode terminal of the power storage element, the arrangement direction of the main body and the lid (the holding member and the lid member) of the exterior body, the main body and the lid body (the first The direction in which the first support and the second support are lined up or the vertical direction is defined as the Z-axis direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that intersect with each other (orthogonal in this embodiment). Depending on the usage mode, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described as the vertical direction below.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。単にX軸方向という場合は、X軸プラス方向及びX軸マイナス方向の双方向またはいずれか一方の方向を示す。Y軸方向及びZ軸方向についても同様である。以下では、Y軸方向を第一方向とも呼び、X軸方向を第二方向とも呼び、Z軸方向を第三方向とも呼ぶ。平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が平行であるとは、当該2つの方向が完全に平行であることを意味するだけでなく、実質的に平行であること、すなわち、数%程度の差異を含むことも意味する。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。 In the following description, the X-axis plus direction indicates the arrow direction of the X-axis, and the X-axis minus direction indicates the opposite direction to the X-axis plus direction. When simply referred to as the X-axis direction, it refers to both or one of the X-axis plus direction and the X-axis minus direction. The same applies to the Y-axis direction and the Z-axis direction. Hereinafter, the Y-axis direction will also be referred to as the first direction, the X-axis direction will also be referred to as the second direction, and the Z-axis direction will also be referred to as the third direction. Expressions indicating relative directions or orientations, such as parallel and orthogonal, include cases where the directions or orientations are not strictly speaking. When two directions are parallel, it does not only mean that the two directions are completely parallel, but also that they are substantially parallel, that is, there is a difference of several percent. In the following description, when the expression "insulation" is used, it means "electrical insulation".
 以下の説明において、勾配とは、蓄電装置を構成する部材の面がZ軸方向(第三方向)となす鋭角側の角度である。 In the following description, the slope is the acute angle that the surface of the member constituting the power storage device makes with the Z-axis direction (third direction).
 [1 蓄電装置1の全般的な説明]
 まず、本実施の形態における蓄電装置1の全般的な説明を行う。図1は、実施の形態に係る蓄電装置1の外観を示す斜視図である。図2は、実施の形態に係る蓄電装置1を分解した場合の各構成要素を示す分解斜視図である。
[1 General description of power storage device 1]
First, a general description of power storage device 1 in this embodiment will be given. FIG. 1 is a perspective view showing the appearance of a power storage device 1 according to an embodiment. FIG. 2 is an exploded perspective view showing each component when power storage device 1 according to the embodiment is disassembled.
 蓄電装置1は、外部からの電気を充電し、また外部へ電気を放電できる装置であり、本実施の形態では、略直方体形状を有している。蓄電装置1は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置1は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、及び、化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電装置1は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 1 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in this embodiment. The power storage device 1 is a battery module (battery assembly) used for power storage, power supply, or the like. Specifically, the power storage device 1 is used for driving or starting an engine of a moving object such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railway vehicle for an electric railway. Used as batteries, etc. Examples of the above-mentioned vehicles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel oil, liquefied natural gas, etc.) vehicles. Examples of the above-mentioned railway vehicles for electric railways include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor. The power storage device 1 can also be used as a stationary battery or the like used for home or business purposes.
 図1に示すように、蓄電装置1は、蓄電ユニット10と、蓄電ユニット10に取り付けられる基板ユニット20と、を備えている。蓄電ユニット10は、Y軸方向に長尺の略直方体形状を有している。基板ユニット20は、蓄電ユニット10が有する蓄電素子100の状態の監視、及び、蓄電素子100の制御を行うことができる機器であり、内方に回路基板等を有している。本実施の形態では、基板ユニット20は、蓄電ユニット10の長手方向の端部、つまり、蓄電ユニット10のY軸マイナス方向の側面に取り付けられる扁平な矩形状の部材である。 As shown in FIG. 1, the power storage device 1 includes a power storage unit 10 and a board unit 20 attached to the power storage unit 10. The power storage unit 10 has a substantially rectangular parallelepiped shape that is elongated in the Y-axis direction. The board unit 20 is a device that can monitor the state of the power storage element 100 included in the power storage unit 10 and control the power storage element 100, and has a circuit board and the like inside. In the present embodiment, the substrate unit 20 is a flat rectangular member that is attached to the end of the power storage unit 10 in the longitudinal direction, that is, to the side surface of the power storage unit 10 in the negative direction of the Y-axis.
 さらに図2に示すように、蓄電ユニット10は、複数の蓄電素子100と、複数のスペーサ200と、外装体300と、複数のバスバー400と、外装体支持体500と、ケーブル410及び420と、を有している。 Further, as shown in FIG. 2, the power storage unit 10 includes a plurality of power storage elements 100, a plurality of spacers 200, an exterior body 300, a plurality of bus bars 400, an exterior body support 500, cables 410 and 420, have.
 蓄電素子100は、電気を充電し、電気を放電できる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子100は、扁平な直方体形状(角形)を有しており、本実施の形態では、14個の蓄電素子100がY軸方向に並んで配列されている。蓄電素子100の大きさ、形状、及び、配列される蓄電素子100の個数等は限定されず、1つの蓄電素子100しか配置されていなくてもよい。蓄電素子100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子100は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。蓄電素子100は、固体電解質を用いた電池であってもよい。蓄電素子100は、パウチタイプの蓄電素子であってもよい。蓄電素子100の構成の詳細な説明については、後述する。 The power storage element 100 is a secondary battery (single battery) that can charge and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 100 has a flat rectangular parallelepiped shape (prismatic shape), and in this embodiment, 14 power storage elements 100 are arranged in a line in the Y-axis direction. The size and shape of power storage element 100, the number of power storage elements 100 arranged, etc. are not limited, and only one power storage element 100 may be arranged. The power storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or a capacitor. The power storage element 100 may be not a secondary battery but a primary battery that allows the user to use the stored electricity without charging it. Power storage element 100 may be a battery using a solid electrolyte. The power storage element 100 may be a pouch type power storage element. A detailed description of the configuration of power storage element 100 will be described later.
 スペーサ200(210、220)は、Y軸方向(第一方向)において蓄電素子100と隣り合って配置され、蓄電素子100と他の部材とを断熱及び/又は絶縁する平板状かつ矩形状の部材である。スペーサ200は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に配置されて、蓄電素子100同士または蓄電素子100と外装体支持体500とを断熱及び/又は絶縁する断熱板または絶縁板である。スペーサ200は、グラスウールまたはマイカ等の断熱性を有する部材、または、後述の外装体300に使用可能ないずれかの樹脂材料等の絶縁性を有する部材等で形成されている。スペーサ200のうちのスペーサ210とスペーサ220とは、同じ材質の部材で形成されていてもよいし、異なる材質の部材で形成されていてもよい。 The spacer 200 (210, 220) is a flat rectangular member that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction) and heats and/or insulates the power storage element 100 and other members. It is. The spacer 200 is a heat insulating plate or an insulating plate that is arranged in the positive Y-axis direction or the negative Y-axis direction of the power storage element 100 and heats and/or insulates the power storage elements 100 from each other or the power storage element 100 and the exterior body support 500. be. The spacer 200 is formed of a member having heat insulating properties such as glass wool or mica, or a member having insulating properties such as any resin material that can be used for the exterior body 300 described below. Spacer 210 and spacer 220 of spacer 200 may be made of the same material, or may be made of different materials.
 本実施の形態では、スペーサ200は、断熱性を有するグラスウールで形成されている。スペーサ200の熱伝導率は、保持部材310の熱伝導率よりも小さい。隣り合う蓄電素子100の間にスペーサ200が配置されるので、一つの蓄電素子が高温化した場合に、隣の蓄電素子に高温化した蓄電素子の熱が伝わることを抑制できる。 In this embodiment, the spacer 200 is made of glass wool that has heat insulating properties. The thermal conductivity of the spacer 200 is lower than that of the holding member 310. Since the spacer 200 is arranged between adjacent power storage elements 100, when one power storage element becomes high in temperature, it is possible to suppress the heat of the high temperature power storage element from being transmitted to the adjacent power storage element.
 スペーサ200のうちのスペーサ210は、隣り合う2つの蓄電素子100の間に配置され、当該2つの蓄電素子100の間を断熱及び/又は絶縁する、XZ平面に平行な平板状かつ矩形状のスペーサ(中間スペーサ)である。具体的には、スペーサ210は、当該2つの蓄電素子100が有する後述の容器110の長側面111同士の間において、当該長側面111と対向して配置される。本実施の形態では、13枚のスペーサ210が14個の蓄電素子100とY軸方向に交互に並んで配置されているが、蓄電素子100の数が14個以外の場合には、スペーサ210の数も蓄電素子100の数に応じて適宜変更される。スペーサ210は、全ての蓄電素子100同士の間に配置されることには限定されず、いずれかの蓄電素子100同士の間にはスペーサ210が配置されない構成でもよい。全てのスペーサ210が同じ材質の部材で形成されていてもよいし、いずれかのスペーサ210が異なる材質の部材で形成されていてもよい。 The spacer 210 of the spacers 200 is a flat rectangular spacer parallel to the XZ plane that is arranged between two adjacent power storage elements 100 and insulates and/or insulates between the two power storage elements 100. (intermediate spacer). Specifically, spacer 210 is disposed between long sides 111 of containers 110, which will be described later, of the two power storage elements 100, facing the long sides 111. In this embodiment, 13 spacers 210 and 14 power storage elements 100 are arranged alternately in the Y-axis direction, but when the number of power storage elements 100 is other than 14, the spacers 210 The number is also changed as appropriate depending on the number of power storage elements 100. The spacer 210 is not limited to being arranged between all of the power storage elements 100, and a configuration may be adopted in which the spacer 210 is not arranged between any of the power storage elements 100. All the spacers 210 may be made of the same material, or any of the spacers 210 may be made of different materials.
 スペーサ200のうちのスペーサ220は、端部の蓄電素子100と外装体支持体500の側壁との間に配置され、当該端部の蓄電素子100と外装体支持体500の側壁との間を断熱及び/又は絶縁する、XZ平面に平行な平板状かつ矩形状のスペーサ(エンドスペーサ)である。Y軸方向両端部に位置する蓄電素子100と外装体支持体500のY軸方向両端部の側壁との間に、2つのスペーサ220が配置される。具体的には、スペーサ220は、Y軸方向端部の蓄電素子100の容器110の長側面111と外装体支持体500のY軸方向に対向する側壁との間において、当該長側面111及び外装体支持体500の当該側壁と対向して配置される。2つのスペーサ220は、同じ材質の部材で形成されていてもよいし、異なる材質の部材で形成されていてもよい。 The spacer 220 of the spacers 200 is disposed between the power storage element 100 at the end and the side wall of the exterior body support 500, and provides insulation between the power storage element 100 at the end and the side wall of the exterior body support 500. and/or an insulating flat rectangular spacer (end spacer) parallel to the XZ plane. Two spacers 220 are arranged between the power storage elements 100 located at both ends in the Y-axis direction and the side walls of the exterior body support 500 at both ends in the Y-axis direction. Specifically, the spacer 220 is arranged between the long side surface 111 of the container 110 of the power storage element 100 at the end in the Y-axis direction and the side wall of the exterior body support 500 facing in the Y-axis direction. It is arranged opposite to the side wall of the body support 500. The two spacers 220 may be made of the same material, or may be made of different materials.
 外装体300は、複数の蓄電素子100及び複数のスペーサ200の外方に配置され、当該複数の蓄電素子100等を覆う筐体(蓄電ユニット10の外殻)を構成する部材である。具体的には、外装体300は、複数の蓄電素子100及び複数のスペーサ200をZ軸方向で挟むように、当該複数の蓄電素子100のZ軸方向両側に配置され、当該複数の蓄電素子100等のZ軸方向両端部を覆う。これにより、外装体300は、複数の蓄電素子100及び複数のスペーサ200を所定の位置で固定する。 The exterior body 300 is a member that is arranged outside of the plurality of power storage elements 100 and the plurality of spacers 200 and forms a casing (outer shell of the power storage unit 10) that covers the plurality of power storage elements 100 and the like. Specifically, the exterior body 300 is arranged on both sides of the plurality of power storage elements 100 in the Z-axis direction so as to sandwich the plurality of power storage elements 100 and the plurality of spacers 200 in the Z-axis direction. Covers both ends in the Z-axis direction. Thereby, the exterior body 300 fixes the plurality of power storage elements 100 and the plurality of spacers 200 at predetermined positions.
 外装体300は、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ポリアミド(PA)、ABS樹脂、若しくは、それらの複合材料等の絶縁部材、または、絶縁塗装をした金属等により形成されている。外装体300は、これにより、蓄電素子100等が外部の金属部材等に接触することを回避する。蓄電素子100等の絶縁性が保たれる構成であれば、外装体300は、金属等の導電部材で形成されてもよい。 The exterior body 300 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET). , polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyether sulfone (PES), polyamide (PA), ABS It is formed of an insulating member such as resin or a composite material thereof, or metal coated with an insulating coating. Exterior body 300 thereby prevents power storage element 100 and the like from coming into contact with external metal members and the like. Exterior body 300 may be formed of a conductive member such as metal, as long as the insulation of power storage element 100 and the like is maintained.
 外装体300は、外装体300の下側部材を構成する保持部材310と、外装体300の上側部材を構成する蓋部材320と、を有している。保持部材310及び蓋部材320は、同じ材質の部材で形成されていてもよいし、異なる材質の部材で形成されていてもよい。 The exterior body 300 includes a holding member 310 that constitutes a lower member of the exterior body 300 and a lid member 320 that constitutes an upper member of the exterior body 300. The holding member 310 and the lid member 320 may be made of the same material, or may be made of different materials.
 保持部材310は、Y軸方向に長尺なトレイである。具体的には、保持部材310は、複数の蓄電素子100及び複数のスペーサ200のZ軸マイナス方向に配置されて、当該複数の蓄電素子100及び複数のスペーサ200を保持するY軸方向に長尺かつ深さが浅い浅箱状(扁平な略直方体形状)のトレイである。保持部材310の構成の詳細な説明については、後述する。 The holding member 310 is a tray that is elongated in the Y-axis direction. Specifically, the holding member 310 is arranged in the negative Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 200, and is elongated in the Y-axis direction to hold the plurality of power storage elements 100 and the plurality of spacers 200. It is a shallow box-shaped (flat, substantially rectangular parallelepiped) tray with a shallow depth. A detailed description of the configuration of the holding member 310 will be given later.
 蓋部材320は、複数の蓄電素子100及び複数のスペーサ200のZ軸プラス方向に配置されて、複数の蓄電素子100に支持されるY軸方向に長尺な箱形(扁平な略直方体形状)の部材である。蓋部材320は、後述の外装体支持体500の第二支持体520と蓄電素子100との間に配置されるため、蓄電ユニット10の内蓋であるとも言える。本実施の形態では、蓋部材320は、バスバーフレーム(バスバーホルダまたはバスバープレートとも言う)であり、バスバー400と他の部材との絶縁、及び、バスバー400の位置規制等を行う。具体的には、蓋部材320が、複数の蓄電素子100上に配置されて複数の蓄電素子100に対して位置決めされ、かつ、複数のバスバー400が、蓋部材320に対して位置決めされる。これにより、各バスバー400は、複数の蓄電素子100に対して位置決めされて、当該複数の蓄電素子100が有する電極端子140に接合される。 The lid member 320 is arranged in the Z-axis positive direction of the plurality of power storage elements 100 and the plurality of spacers 200, and has a box shape (flat substantially rectangular parallelepiped shape) that is elongated in the Y-axis direction and supported by the plurality of power storage elements 100. It is a member of Since the lid member 320 is disposed between the second support body 520 of the exterior body support body 500 and the power storage element 100, which will be described later, it can also be said that the lid member 320 is the inner lid of the power storage unit 10. In this embodiment, the lid member 320 is a busbar frame (also referred to as a busbar holder or a busbar plate), and serves to insulate the busbar 400 from other members, regulate the position of the busbar 400, and the like. Specifically, the lid member 320 is disposed on the plurality of power storage elements 100 and positioned with respect to the plurality of power storage elements 100, and the plurality of bus bars 400 are positioned with respect to the lid member 320. Thereby, each bus bar 400 is positioned with respect to the plurality of power storage elements 100 and joined to the electrode terminal 140 that the plurality of power storage elements 100 have.
 バスバー400は、複数の蓄電素子100上に配置され、複数の蓄電素子100の電極端子140同士を電気的に接続する矩形状の板状部材である。本実施の形態では、バスバー400と電極端子140とは、ボルト接続(接合)されるが、溶接等で接続(接合)されてもよい。バスバー400は、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル等の金属製の導電部材若しくはそれらの組み合わせ、または、金属以外の導電性の部材等で形成されている。本実施の形態では、バスバー400は、隣り合う蓄電素子100の電極端子140同士を接続することで、14個の蓄電素子100を直列に接続するが、蓄電素子100の接続態様は上記には限定されず、直列接続及び並列接続がどのように組み合わされてもよい。 The bus bar 400 is a rectangular plate-like member that is arranged on the plurality of power storage elements 100 and electrically connects the electrode terminals 140 of the plurality of power storage elements 100. In this embodiment, bus bar 400 and electrode terminal 140 are connected (joined) with bolts, but they may be connected (joined) by welding or the like. The bus bar 400 is formed of a metal conductive member such as aluminum, aluminum alloy, copper, copper alloy, nickel, or a combination thereof, or a conductive member other than metal. In the present embodiment, bus bar 400 connects 14 power storage elements 100 in series by connecting electrode terminals 140 of adjacent power storage elements 100, but the connection mode of power storage elements 100 is limited to the above. However, any combination of series and parallel connections may be used.
 図2、図10に示すように、バスバー400は、電極端子140と接続される一対の接続部401と、中間部402と、曲げ部403とを有している。中間部402と曲げ部403とは、同一の部位である。一対の接続部401において、隣り合う蓄電素子100の電極端子140とバスバー400とが接続される。バスバー400は、一対の接続部401が並んで位置する範囲の中間位置に中間部402を有している。中間部402では、さらに曲げ部403が形成されている。曲げ部403は、金属製の板状部材であるバスバー400を中間部402でZ軸方向にU字状に曲げて形成されている。曲げ部403は、バスバー400に作用する応力に追従できる。中間部402は、バスバー400の、隣り合う蓄電素子100が並ぶ方向における中間部でもある。曲げ部は溝として形成されてもよい。 As shown in FIGS. 2 and 10, the bus bar 400 has a pair of connecting portions 401 that are connected to the electrode terminals 140, an intermediate portion 402, and a bent portion 403. The intermediate portion 402 and the bent portion 403 are the same portion. At a pair of connecting portions 401, electrode terminals 140 of adjacent power storage elements 100 and bus bars 400 are connected. The bus bar 400 has an intermediate portion 402 located in the middle of the range where the pair of connecting portions 401 are located side by side. In the intermediate portion 402, a bent portion 403 is further formed. The bent portion 403 is formed by bending the bus bar 400, which is a metal plate-like member, into a U-shape in the Z-axis direction at the intermediate portion 402. The bending portion 403 can follow the stress acting on the bus bar 400. Intermediate portion 402 is also an intermediate portion of bus bar 400 in the direction in which adjacent power storage elements 100 are lined up. The bend may be formed as a groove.
 複数の蓄電素子100のうちのY軸方向両端部に位置する蓄電素子100が有する電極端子140が、ケーブル410及び420に接続されることにより、蓄電装置1が、外部からの電気を充電し、また外部へ電気を放電できる。ケーブル410及び420は、蓄電装置1(蓄電素子100)を充放電するための電流が流れる正極及び負極の電線(電源ケーブル)である。 By connecting the electrode terminals 140 of the power storage elements 100 located at both ends in the Y-axis direction of the plurality of power storage elements 100 to the cables 410 and 420, the power storage device 1 charges with electricity from the outside, It can also discharge electricity to the outside. Cables 410 and 420 are positive and negative electric wires (power cables) through which current flows for charging and discharging power storage device 1 (power storage element 100).
 外装体支持体500は、外装体300を支持し、保護(補強)する部材である。外装体支持体500は、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板等の金属製の部材等により形成されている。外装体支持体500は、外装体支持体500の本体を構成する第一支持体510と、外装体支持体500の蓋体を構成する第二支持体520と、を有している。第一支持体510及び第二支持体520は、同じ材質の部材で形成されていてもよいし、異なる材質の部材で形成されていてもよい。 The exterior body support 500 is a member that supports and protects (reinforces) the exterior body 300. The exterior support 500 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate. The exterior body support 500 has a first support body 510 that constitutes the main body of the exterior body support body 500 and a second support body 520 that constitutes the lid body of the exterior body support body 500. The first support body 510 and the second support body 520 may be made of the same material, or may be made of different materials.
 第一支持体510は、保持部材310が配置されて保持部材310を下方(Z軸マイナス方向)から支持する部材であり、底壁511と、接続部512及び513と、を有している。底壁511は、蓄電ユニット10の底壁を構成する、XY平面に平行かつY軸方向に延びる平板状かつ矩形状の部位であり、保持部材310のZ軸マイナス方向に配置される。接続部512は、底壁511のY軸マイナス方向端部からZ軸プラス方向に立設され、かつ、Y軸マイナス方向に突出する板状の部位であり、第二支持体520と接続される。接続部513は、底壁511のY軸プラス方向端部からZ軸プラス方向に立設され、かつ、Y軸プラス方向に突出する板状の部位であり、第二支持体520と接続される。 The first support body 510 is a member on which the holding member 310 is disposed and supports the holding member 310 from below (Z-axis negative direction), and has a bottom wall 511 and connection parts 512 and 513. The bottom wall 511 is a flat, rectangular portion that constitutes the bottom wall of the power storage unit 10 and extends in the Y-axis direction and parallel to the XY plane, and is arranged in the negative Z-axis direction of the holding member 310. The connecting portion 512 is a plate-shaped portion that stands upright in the Z-axis positive direction from the Y-axis negative end of the bottom wall 511 and protrudes in the Y-axis negative direction, and is connected to the second support 520. . The connecting portion 513 is a plate-shaped portion that stands upright in the Z-axis positive direction from the Y-axis positive direction end of the bottom wall 511 and protrudes in the Y-axis positive direction, and is connected to the second support body 520. .
 第二支持体520は、蓋部材320の上方(Z軸プラス方向)から蓋部材320を押圧して支持する部材であり、天面部521と、接続部522及び523と、を有している。天面部521は、蓄電ユニット10の上面部(外蓋)を構成する、XY平面に平行かつY軸方向に延びる平板状かつ矩形状の部位であり、蓋部材320のZ軸プラス方向に配置される。接続部522は、天面部521のY軸マイナス方向端部からZ軸マイナス方向に延び、かつ、Y軸マイナス方向に突出する部位であり、第一支持体510の接続部512と接続される。接続部523は、天面部521のY軸プラス方向端部からZ軸マイナス方向に延び、かつ、Y軸プラス方向に突出する部位であり、第一支持体510の接続部513と接続される。第二支持体520は、蓋体の一例である。 The second support body 520 is a member that presses and supports the lid member 320 from above (Z-axis positive direction), and has a top surface portion 521 and connection portions 522 and 523. The top surface portion 521 is a flat, rectangular portion that constitutes the top surface portion (outer lid) of the power storage unit 10 and extends in the Y-axis direction and parallel to the XY plane, and is arranged in the positive Z-axis direction of the lid member 320. Ru. The connecting portion 522 is a portion that extends in the negative Z-axis direction from the end of the top surface portion 521 in the negative Y-axis direction and projects in the negative Y-axis direction, and is connected to the connecting portion 512 of the first support body 510 . The connecting portion 523 is a portion that extends from the end of the top surface portion 521 in the Y-axis positive direction in the Z-axis negative direction and projects in the Y-axis positive direction, and is connected to the connecting portion 513 of the first support body 510. The second support body 520 is an example of a lid body.
 このように、第一支持体510及び第二支持体520は、保持部材310及び蓋部材320をZ軸方向から挟み込んだ状態で、接続部512及び513と接続部522及び523とがネジ止め等で接続(接合)されることで固定される構成となっている。これにより、外装体支持体500は、外装体300を支持(保持)する。第二支持体520は、蓄電素子100と保持部材310とが並ぶ方向において、保持部材310とで複数の蓄電素子100を挟んでいる。蓄電素子100と保持部材310とが並ぶ方向は第三方向でもある。 In this way, the first support body 510 and the second support body 520 are arranged such that the connecting portions 512 and 513 and the connecting portions 522 and 523 are secured with screws or the like, with the holding member 310 and the lid member 320 being sandwiched from the Z-axis direction. It is configured to be fixed by being connected (joined) with. Thereby, the exterior body support body 500 supports (holds) the exterior body 300. The second support body 520 sandwiches the plurality of power storage elements 100 with the holding member 310 in the direction in which the power storage elements 100 and the holding member 310 are lined up. The direction in which power storage element 100 and holding member 310 are lined up is also the third direction.
 [2 蓄電素子100の説明]
 次に、蓄電素子100の構成について、詳細に説明する。図3は、実施の形態に係る蓄電素子100の構成を示す斜視図である。図3は、図2に示した複数の蓄電素子100のうちの1つの蓄電素子100の外観を拡大して示している。当該複数の蓄電素子100は、全て同様の構成を有しているため、以下では、1つの蓄電素子100の構成について詳細に説明する。
[2 Description of power storage element 100]
Next, the configuration of power storage element 100 will be described in detail. FIG. 3 is a perspective view showing the configuration of power storage element 100 according to the embodiment. FIG. 3 shows an enlarged appearance of one power storage element 100 among the plurality of power storage elements 100 shown in FIG. 2 . Since all of the plurality of power storage elements 100 have the same configuration, the configuration of one power storage element 100 will be described in detail below.
 図3に示すように、蓄電素子100は、略直方体の形状を有している。蓄電素子100は、容器110と、一対(正極及び負極)の電極端子140と、を備えている。容器110の内方には、電極体、一対(正極及び負極)の集電体、及び、電解液(非水電解質)等が収容されているが、これらの図示は省略する。当該電解液としては、蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。蓄電素子100は、容器110と電極端子140及び集電体との間を絶縁し、かつ封止する絶縁性のガスケットを備えているが、この図示も省略する。 As shown in FIG. 3, the power storage element 100 has a substantially rectangular parallelepiped shape. The power storage element 100 includes a container 110 and a pair of electrode terminals 140 (a positive electrode and a negative electrode). Inside the container 110, an electrode body, a pair of current collectors (a positive electrode and a negative electrode), an electrolytic solution (nonaqueous electrolyte), and the like are housed, but illustration thereof is omitted. The type of electrolytic solution is not particularly limited as long as it does not impair the performance of power storage element 100, and various types can be selected. Although the power storage element 100 includes an insulating gasket that insulates and seals between the container 110, the electrode terminal 140, and the current collector, illustration of this gasket is also omitted.
 蓄電素子100は、上記の構成要素の他、電極体の側方または下方等に配置されるスペーサ、及び、電極体等を包み込む絶縁フィルム等を有してもよい。容器110の周囲には、容器110の外面を覆う絶縁フィルム(シュリンクチューブ等)が配置されていてもよい。当該絶縁フィルムの材質は、蓄電素子100に必要な絶縁性を確保できるものであれば特に限定されない。が、絶縁フィルムとして、PC、PP、PE、PPS、PET、PBTまたはABS樹脂等の絶縁性の樹脂、エポキシ樹脂、カプトン(登録商標)、テフロン(登録商標)、シリコン、ポリイソプレン、及びポリ塩化ビニル等が例示される。 In addition to the above-mentioned components, the power storage element 100 may include a spacer placed on the side or below the electrode body, an insulating film that wraps around the electrode body, and the like. An insulating film (such as a shrink tube) may be placed around the container 110 to cover the outer surface of the container 110. The material of the insulating film is not particularly limited as long as it can ensure the insulation required for the power storage element 100. However, as an insulating film, insulating resin such as PC, PP, PE, PPS, PET, PBT or ABS resin, epoxy resin, Kapton (registered trademark), Teflon (registered trademark), silicone, polyisoprene, and polychloride can be used. Vinyl etc. are exemplified.
 容器110は、開口が形成された容器本体120と、容器本体120の当該開口を閉塞する蓋部130と、を有する直方体形状(角形または箱形)のケースである。容器本体120は、容器110の本体部を構成する矩形筒状で底を備える部材であり、Z軸プラス方向側に開口が形成されている。蓋部130は、容器110の蓋体を構成するX軸方向に長い矩形状の板状部材であり、容器本体120のZ軸プラス方向に配置されている。容器110(蓋部130)には、容器110内方の圧力が過度に上昇した場合に当該圧力を開放するガス排出弁131、及び、容器110内方に電解液を注液するための注液部(図示せず)等が設けられている。容器110(容器本体120及び蓋部130)の材質は、特に限定されず、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能(接合可能)な金属とできるが、樹脂を用いることもできる。 The container 110 is a rectangular parallelepiped-shaped (prismatic or box-shaped) case that includes a container body 120 with an opening formed therein and a lid portion 130 that closes the opening of the container body 120. The container body 120 is a rectangular cylindrical member having a bottom and forming the main body portion of the container 110, and has an opening formed in the positive direction of the Z-axis. The lid portion 130 is a rectangular plate-like member that is long in the X-axis direction and constitutes the lid of the container 110, and is arranged in the positive Z-axis direction of the container body 120. The container 110 (lid 130) includes a gas discharge valve 131 that releases the pressure when the pressure inside the container 110 increases excessively, and a liquid injection valve for injecting electrolyte into the inside of the container 110. (not shown), etc. are provided. The material of the container 110 (container body 120 and lid part 130) is not particularly limited, and may be a weldable (joinable) metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin may also be used. can.
 容器110は、電極体等を容器本体120の内方に収容後、容器本体120と蓋部130とが溶接等によって接合されることにより、内部が密封される構造となっている。容器110は、Y軸方向両側の側面に一対の長側面111を有し、X軸方向両側の側面に一対の短側面112を有し、Z軸マイナス方向側に底面113を有している。長側面111は、容器110の長側面を形成するXZ平面に平行な矩形状の平面部であり、隣り合うスペーサ200とY軸方向において対向して配置される。長側面111は、短側面112及び底面113に隣接し、短側面112よりも面積が大きい。短側面112は、容器110の短側面を形成するYZ平面に平行な矩形状の平面部である。短側面112は、長側面111及び底面113に隣接し、長側面111よりも面積が小さい。底面113は、容器110の底面を形成するXY平面に平行な矩形状の平面部であり、長側面111及び短側面112に隣接して配置される。長側面111は蓄電素子100の長側面でもある。短側面112は蓄電素子100の短側面でもある。 The container 110 has a structure in which the inside is sealed by accommodating the electrode body and the like inside the container body 120, and then joining the container body 120 and the lid portion 130 by welding or the like. The container 110 has a pair of long sides 111 on both sides in the Y-axis direction, a pair of short sides 112 on both sides in the X-axis direction, and a bottom surface 113 on the negative side in the Z-axis direction. The long side surface 111 is a rectangular flat portion parallel to the XZ plane that forms the long side surface of the container 110, and is disposed to face the adjacent spacer 200 in the Y-axis direction. The long side 111 is adjacent to the short side 112 and the bottom 113 and has a larger area than the short side 112. The short side surface 112 is a rectangular flat portion parallel to the YZ plane that forms the short side surface of the container 110. The short side surface 112 is adjacent to the long side surface 111 and the bottom surface 113 and has a smaller area than the long side surface 111. The bottom surface 113 is a rectangular plane part parallel to the XY plane that forms the bottom surface of the container 110, and is disposed adjacent to the long side surface 111 and the short side surface 112. The long side surface 111 is also the long side surface of the power storage element 100. Short side 112 is also a short side of power storage element 100.
 電極端子140は、蓋部130に配置される蓄電素子100の端子部材(正極端子及び負極端子)であり、集電体を介して、電極体の正極板及び負極板に電気的に接続されている。電極端子140は、電極体に蓄えられている電気を蓄電素子100の外部空間に導出し、電極体に電気を蓄えるために蓄電素子100の内部空間に電気を導入するための金属製の部材である。電極端子140は、アルミニウム、アルミニウム合金、銅、銅合金等で形成されている。 The electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the electricity storage element 100 arranged in the lid part 130, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via the current collector. There is. The electrode terminal 140 is a metal member that leads the electricity stored in the electrode body to the external space of the electricity storage element 100 and introduces electricity into the internal space of the electricity storage element 100 to store electricity in the electrode body. be. The electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
 電極体は、正極板と負極板とセパレータとが積層されて形成された蓄電要素(発電要素)である。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる集電箔である正極基材層上に正極活物質層が形成されたものである。負極板は、銅または銅合金等の金属からなる集電箔である負極基材層上に負極活物質層が形成されたものである。正極活物質層及び負極活物質層に用いられる活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。セパレータは、樹脂からなる微多孔性のシートまたは不織布等を用いることができる。本実施の形態では、電極体は、極板(正極板及び負極板)がY軸方向に積層されて形成されている。電極体は、極板(正極板及び負極板)が巻回されて形成された巻回型の電極体、複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体、または、極板を蛇腹状に折り畳んだ蛇腹型の電極体等、どのような形態の電極体でもよい。 The electrode body is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator. The positive electrode plate has a positive electrode active material layer formed on a positive electrode base material layer, which is a current collector foil made of metal such as aluminum or an aluminum alloy. The negative electrode plate has a negative electrode active material layer formed on a negative electrode base material layer which is a current collecting foil made of metal such as copper or copper alloy. As the active material used for the positive electrode active material layer and the negative electrode active material layer, any known material can be used as appropriate as long as it is capable of intercalating and deintercalating lithium ions. As the separator, a microporous sheet made of resin, a nonwoven fabric, or the like can be used. In this embodiment, the electrode body is formed by stacking electrode plates (a positive electrode plate and a negative electrode plate) in the Y-axis direction. The electrode body is a wound type electrode body formed by winding electrode plates (positive electrode plate and negative electrode plate), and a laminated type (stack type) electrode formed by laminating multiple flat electrode plates. The electrode body may be in any form, such as a bellows-shaped electrode body in which a body or an electrode plate is folded into a bellows shape.
 集電体は、電極端子140と電極体とに電気的に接続される導電性の部材(正極集電体及び負極集電体)である。正極集電体は、正極板の正極基材層と同様、アルミニウムまたはアルミニウム合金等で形成され、負極集電体は、負極板の負極基材層と同様、銅または銅合金等で形成されている。 The current collector is a conductive member (a positive electrode current collector and a negative electrode current collector) that is electrically connected to the electrode terminal 140 and the electrode body. The positive electrode current collector is formed of aluminum or an aluminum alloy, etc., like the positive electrode base material layer of the positive electrode plate, and the negative electrode current collector is formed of copper, copper alloy, etc., like the negative electrode base material layer of the negative electrode plate. There is.
 [3 保持部材310の説明]
 次に、保持部材310の構成について、詳細に説明する。図4は、実施の形態に係る保持部材310の構成を示す斜視図及び断面図である。具体的には、図4の(a)は、図2に示した保持部材310を拡大して示す斜視図であり、図4の(b)は、図4の(a)の一部をさらに拡大して示す斜視図である。図5は、実施の形態に係る保持部材310が有する壁部314の断面図である。具体的には、図5は、保持部材310が有する壁部314を、図4の(b)に示したV-V線を含みYZ平面に平行な面で切断した場合の断面図である。図5は、壁部314の周囲に配置される蓄電素子100及びスペーサ210も破線で示している。図6は、実施の形態に係る保持部材310に、蓄電素子100及びスペーサ210を配置した場合の構成を示す上面図である。具体的には、図6は、図4に示した保持部材310の一部について、保持部材310に蓄電素子100及びスペーサ210を配置した場合の構成を、Z軸プラス方向から見た図である。
[3 Description of holding member 310]
Next, the configuration of the holding member 310 will be explained in detail. FIG. 4 is a perspective view and a cross-sectional view showing the configuration of the holding member 310 according to the embodiment. Specifically, FIG. 4(a) is an enlarged perspective view of the holding member 310 shown in FIG. 2, and FIG. 4(b) is an enlarged perspective view of a part of FIG. 4(a). It is an enlarged perspective view. FIG. 5 is a cross-sectional view of the wall portion 314 included in the holding member 310 according to the embodiment. Specifically, FIG. 5 is a cross-sectional view of the wall portion 314 of the holding member 310 taken along a plane parallel to the YZ plane including the line VV shown in FIG. 4(b). FIG. 5 also shows the power storage element 100 and spacer 210 arranged around the wall portion 314 with broken lines. FIG. 6 is a top view showing a configuration when the power storage element 100 and the spacer 210 are arranged in the holding member 310 according to the embodiment. Specifically, FIG. 6 is a diagram of the configuration of a part of the holding member 310 shown in FIG. 4 when the power storage element 100 and the spacer 210 are arranged on the holding member 310, as viewed from the Z-axis plus direction. .
 これらの図に示すように、保持部材310は、底壁311と、一対の側壁312及び一対の側壁313と、複数の壁部314と、を有した樹脂成形品である。 As shown in these figures, the holding member 310 is a resin molded product having a bottom wall 311, a pair of side walls 312, a pair of side walls 313, and a plurality of wall portions 314.
 底壁311は、複数の蓄電素子100及び複数のスペーサ210のZ軸マイナス方向に配置され、複数の蓄電素子100及び複数のスペーサ210を下方から支持する部位である。底壁311は、XY平面に平行かつY軸方向に延びる平板状かつ矩形状に形成されている。つまり、底壁311は、Z軸方向(第一方向及び第二方向に交差する第三方向)において蓄電素子100と対向して配置される。具体的には、底壁311は、外装体の底面を形成する壁部である。底壁311は、蓄電素子100の容器110の底面113とZ軸方向において対向して配置されている。底壁311は、それぞれの蓄電素子100の底面113と対向する位置に配置された台座部311aを有している。台座部311aは、底面113に向けて突出して当該底面113に接触する。 The bottom wall 311 is a part that is arranged in the negative Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 210 and supports the plurality of power storage elements 100 and the plurality of spacers 210 from below. The bottom wall 311 is formed into a flat rectangular shape that extends parallel to the XY plane and in the Y-axis direction. That is, the bottom wall 311 is arranged to face the power storage element 100 in the Z-axis direction (the third direction intersecting the first direction and the second direction). Specifically, the bottom wall 311 is a wall portion that forms the bottom surface of the exterior body. The bottom wall 311 is arranged to face the bottom surface 113 of the container 110 of the power storage element 100 in the Z-axis direction. The bottom wall 311 has a pedestal portion 311a disposed at a position facing the bottom surface 113 of each power storage element 100. The pedestal portion 311a protrudes toward the bottom surface 113 and comes into contact with the bottom surface 113.
 一対の側壁312は、底壁311のX軸方向両端部からZ軸プラス方向に突出し、YZ平面に平行かつY軸方向に延びる長尺な平板状の壁部である。一対の側壁312は、X軸方向(第二方向)において蓄電素子100と対向して配置される。一対の側壁312のうちのX軸マイナス方向の側壁312は、蓄電素子100の容器110のX軸マイナス方向の短側面112とX軸方向において対向して配置される。X軸プラス方向の側壁312は、蓄電素子100の容器110のX軸プラス方向の短側面112とX軸方向において対向して配置される。具体的には、側壁312は、蓄電素子100の短側面112に対向する対向面(第二対向面)312bを有している。このように、一対の側壁312は、X軸方向において蓄電素子100を挟む位置に配置される。 The pair of side walls 312 are long flat wall portions that protrude from both ends of the bottom wall 311 in the X-axis direction in the Z-axis plus direction and extend parallel to the YZ plane and in the Y-axis direction. A pair of side walls 312 are arranged to face power storage element 100 in the X-axis direction (second direction). The side wall 312 in the negative X-axis direction of the pair of side walls 312 is arranged to face the short side 112 in the negative X-axis direction of the container 110 of the power storage element 100 in the X-axis direction. The side wall 312 in the X-axis positive direction is arranged to face the short side 112 in the X-axis positive direction of the container 110 of the power storage element 100 in the X-axis direction. Specifically, the side wall 312 has a facing surface (second facing surface) 312b facing the short side surface 112 of the power storage element 100. In this way, the pair of side walls 312 are arranged at positions sandwiching the power storage element 100 in the X-axis direction.
 一対の側壁313は、底壁311のY軸方向両端部からZ軸プラス方向に突出し、XZ平面に平行かつX軸方向に延びる平板状かつ矩形状の壁部であり、Y軸方向において蓄電素子100と対向して配置される。一対の側壁313のうちのY軸マイナス方向の側壁313は、複数の蓄電素子100のうちのY軸マイナス方向端部に位置する蓄電素子100の容器110のY軸マイナス方向の長側面111とY軸方向において対向して配置される。Y軸プラス方向の側壁313は、Y軸プラス方向端部に位置する蓄電素子100の容器110のY軸プラス方向の長側面111とY軸方向において対向して配置される。このように、一対の側壁313は、Y軸方向において複数の蓄電素子100を挟む位置に配置される。 The pair of side walls 313 are plate-shaped and rectangular walls that protrude from both ends of the bottom wall 311 in the Y-axis direction in the Z-axis plus direction, and extend parallel to the XZ plane and in the X-axis direction. 100. The side wall 313 in the Y-axis negative direction of the pair of side walls 313 is connected to the long side 111 in the Y-axis negative direction of the container 110 of the power storage element 100 located at the end in the Y-axis negative direction among the plurality of power storage elements 100. They are arranged to face each other in the axial direction. The side wall 313 in the positive Y-axis direction is arranged to face the long side 111 in the positive Y-axis direction of the container 110 of the power storage element 100 located at the end in the positive Y-axis direction in the Y-axis direction. In this way, the pair of side walls 313 are arranged at positions sandwiching the plurality of power storage elements 100 in the Y-axis direction.
 壁部314は、Y軸方向(第一方向)において蓄電素子100と隣り合って配置され、側壁312に向けて延び、かつ、底壁311と一体化された壁部である。壁部314は、Y軸方向(第一方向)において2つの蓄電素子100の間に配置される(図5参照)。具体的には、壁部314は、隣り合う2つの蓄電素子100の間において、当該2つの蓄電素子100の容器110の長側面111に対向して配置される。壁部314は、側壁312に向けてX軸方向(第二方向)に連続して延びる長尺な部位であり、底壁311からZ軸プラス方向に突出して配置される。壁部314は、蓄電素子100のX軸方向(第二方向)における一端から他端までの長さを含む範囲において連続して形成されている。壁部314は、蓄電素子100の長側面111に向けて突出しないのであれば、溝が形成されていたり、X軸方向(第二方向)に不連続に形成されていてもよい。 The wall portion 314 is a wall portion that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction), extends toward the side wall 312, and is integrated with the bottom wall 311. Wall portion 314 is arranged between two power storage elements 100 in the Y-axis direction (first direction) (see FIG. 5). Specifically, the wall portion 314 is disposed between two adjacent power storage elements 100 so as to face the long side surface 111 of the container 110 of the two power storage elements 100 . The wall portion 314 is a long portion that continuously extends in the X-axis direction (second direction) toward the side wall 312, and is arranged to protrude from the bottom wall 311 in the Z-axis plus direction. Wall portion 314 is continuously formed in a range including the length from one end to the other end of power storage element 100 in the X-axis direction (second direction). As long as the wall portion 314 does not protrude toward the long side surface 111 of the power storage element 100, a groove may be formed or the wall portion 314 may be formed discontinuously in the X-axis direction (second direction).
 本実施の形態では、壁部314は、底壁311からZ軸プラス方向に膨出状に突出する突出部である。つまり、壁部314のZ軸マイナス方向の面には、Z軸プラス方向に向けて凹んだ凹部である壁部凹部314bが形成されている。壁部314のZ軸プラス方向の面の壁部凹部314bと対向する位置には、Z軸マイナス方向に向けて凹んだ凹部である壁部凹部314aが形成されている。壁部凹部314a及び314bは、壁部314のX軸方向の一端部から他端部までに亘ってX軸方向に延びる凹部である(図5等参照)。壁部314は、全体に壁部凹部314a及び314bが形成されることで、底壁311よりも厚みが厚くなり過ぎることなく、底壁311と厚みが同等の部位となっている。このように、壁部314は、底壁311と連続した部位であり、底壁311と一体的に形成(一体化)されている。 In the present embodiment, the wall portion 314 is a protruding portion that protrudes from the bottom wall 311 in a bulging shape in the positive direction of the Z-axis. That is, a wall recess 314b, which is a recess recessed toward the Z-axis positive direction, is formed on the surface of the wall 314 in the Z-axis negative direction. A wall recess 314a, which is a recess recessed toward the Z-axis minus direction, is formed at a position facing the wall recess 314b on the surface of the wall 314 in the Z-axis plus direction. The wall recesses 314a and 314b are recesses that extend in the X-axis direction from one end of the wall 314 in the X-axis direction to the other end (see FIG. 5, etc.). The wall portion 314 is formed with wall recesses 314a and 314b throughout, so that the wall portion 314 does not become too thick than the bottom wall 311 and has the same thickness as the bottom wall 311. In this way, the wall portion 314 is a continuous portion of the bottom wall 311, and is integrally formed (integrated) with the bottom wall 311.
 壁部314は、スペーサ210のZ軸マイナス方向に配置され、Z軸方向(第三方向)においてスペーサ210を支持する台座である(図5参照)。つまり、壁部314は、Y軸方向(第一方向)において蓄電素子100と隣り合って配置されるスペーサ210を支持する。壁部314のZ軸プラス方向の面のY軸方向中央部に、スペーサ210のZ軸マイナス方向の面が接触した状態で、壁部314上にスペーサ210が載せられる。本実施の形態では、全てのスペーサ210に対応して、複数の壁部314がY軸方向に並んで配置され、それぞれの壁部314がそれぞれのスペーサ210をZ軸マイナス方向から支持する。図6に示すように、壁部314は、Y軸方向においてはスペーサ210よりも厚みが厚く、X軸方向においてはスペーサ210よりも長さが短い。具体的には、壁部314は、蓄電素子100におけるX軸方向の少なくとも中央部に対向して配置されている。壁部314のX軸方向の長さは、蓄電素子100のX軸方向の長さの1/3以上であると好ましい。蓄電素子100におけるX軸方向の中央部とは、蓄電素子100のX軸方向の中心位置を含む部位であり、中心を含み蓄電素子100のX軸方向の長さの約1/3の長さの範囲である。 The wall portion 314 is a pedestal that is arranged in the negative Z-axis direction of the spacer 210 and supports the spacer 210 in the Z-axis direction (third direction) (see FIG. 5). That is, the wall portion 314 supports the spacer 210 that is arranged adjacent to the power storage element 100 in the Y-axis direction (first direction). The spacer 210 is placed on the wall portion 314 with the surface of the spacer 210 in the negative Z-axis direction being in contact with the center portion in the Y-axis direction of the surface of the wall portion 314 in the positive Z-axis direction. In this embodiment, a plurality of wall portions 314 are arranged in line in the Y-axis direction corresponding to all the spacers 210, and each wall portion 314 supports each spacer 210 from the negative Z-axis direction. As shown in FIG. 6, the wall portion 314 is thicker than the spacer 210 in the Y-axis direction and shorter than the spacer 210 in the X-axis direction. Specifically, wall portion 314 is arranged to face at least the center portion of power storage element 100 in the X-axis direction. The length of wall portion 314 in the X-axis direction is preferably ⅓ or more of the length of power storage element 100 in the X-axis direction. The central portion of the power storage element 100 in the X-axis direction is a region that includes the center position of the power storage element 100 in the X-axis direction, and has a length that includes the center and is approximately 1/3 of the length of the power storage element 100 in the X-axis direction. is within the range of
 壁部凹部314aは、壁部凹部314a内にスペーサ210の端部が入らないように、Y軸方向においてはスペーサ210よりも幅が小さく、X軸方向においてはスペーサ210よりも長さが短く形成されている。 The wall recess 314a is formed to have a width smaller than the spacer 210 in the Y-axis direction and a length shorter than the spacer 210 in the X-axis direction so that the end of the spacer 210 does not enter the wall recess 314a. has been done.
 壁部314は、底壁311を平面視(Z軸方向視)した場合に、蓄電素子100とY軸方向で隣り合う位置に配置された第一壁部の一例である。側壁312及び313は、壁部314とは異なる位置で配置された第二壁部の一例である。 The wall portion 314 is an example of a first wall portion disposed at a position adjacent to the power storage element 100 in the Y-axis direction when the bottom wall 311 is viewed from above (viewed in the Z-axis direction). The side walls 312 and 313 are examples of second wall parts arranged at different positions from the wall part 314.
 図7は、実施の形態に係る第二壁部を示す断面図である。図7では、第二壁部として側壁312を例示している。図7に示すように、第二壁部である側壁312では、外側の面である外面312a及び内側の面である内面312bのそれぞれがZ軸方向(第三方向)に対して勾配αで傾いている。内面312bは、蓄電素子100の短側面112に対向する対向面(第二対向面)である。勾配αは、第二対向面312bとZ軸方向とがなす鋭角側の角度である。外面312aとZ軸方向とがなす鋭角側の角度もαとなっている。この勾配αは、樹脂成形品の金型からの抜き勾配であり、0.5度以上2度未満の値となっている。側壁313の外面および内面も、側壁312と同様に勾配αの抜き勾配を有している。 FIG. 7 is a sectional view showing the second wall portion according to the embodiment. In FIG. 7, a side wall 312 is illustrated as the second wall portion. As shown in FIG. 7, in the side wall 312 that is the second wall portion, an outer surface 312a that is an outer surface and an inner surface 312b that is an inner surface are each inclined at a gradient α with respect to the Z-axis direction (third direction). ing. The inner surface 312b is a facing surface (second facing surface) facing the short side surface 112 of the power storage element 100. The gradient α is an acute angle between the second opposing surface 312b and the Z-axis direction. The acute angle between the outer surface 312a and the Z-axis direction is also α. This slope α is the draft angle of the resin molded product from the mold, and has a value of 0.5 degrees or more and less than 2 degrees. The outer and inner surfaces of the side wall 313 also have a draft angle of the slope α, similar to the side wall 312.
 一方、図5に示すように、第一壁部である壁部314は、Z軸プラス方向に向けて先細る外形を有している。壁部314においてZ軸方向(第三方向)の長さH1は、蓄電素子100におけるZ軸方向の長さの1/8以内である。好ましくは、長さH1は、蓄電素子100の容器110におけるZ軸方向の長さの1/8以内であればよい。本実施の形態では、長さH1は、壁部314の上端から台座部311aまでのZ軸方向の長さとしているが、壁部314の上端から下端までのZ軸方向の長さを長さH1としてもよい。 On the other hand, as shown in FIG. 5, the wall portion 314, which is the first wall portion, has an outer shape that tapers in the positive direction of the Z-axis. The length H1 of the wall portion 314 in the Z-axis direction (third direction) is within 1/8 of the length of the power storage element 100 in the Z-axis direction. Preferably, the length H1 should be within ⅛ of the length of the power storage element 100 in the Z-axis direction in the container 110. In this embodiment, the length H1 is the length in the Z-axis direction from the top end of the wall portion 314 to the pedestal portion 311a, but the length H1 is the length in the Z-axis direction from the top end to the bottom end of the wall portion 314. It may also be H1.
 壁部314には、Y軸方向において蓄電素子100の長側面111に対向する対向面315が設けられている。壁部314の対向面315は、側壁312の内面である対向面312b(第二対向面)と区別するために、第一対向面とも呼ぶ。対向面315(第一対向面)は、壁部314のY軸方向の両側に一対形成されている。各対向面315はZ軸方向に対して傾いている。一対の対向面315は、互いにY軸方向で相反する向きを向いている点で異なるが、基本的な構成は同様である。 The wall portion 314 is provided with a facing surface 315 that faces the long side surface 111 of the power storage element 100 in the Y-axis direction. The opposing surface 315 of the wall portion 314 is also referred to as a first opposing surface to distinguish it from the opposing surface 312b (second opposing surface) that is the inner surface of the side wall 312. A pair of opposing surfaces 315 (first opposing surfaces) are formed on both sides of the wall portion 314 in the Y-axis direction. Each opposing surface 315 is inclined with respect to the Z-axis direction. The pair of opposing surfaces 315 differ in that they face opposite directions in the Y-axis direction, but have the same basic configuration.
 各対向面(第一対向面)315は、Z軸方向(第三方向)において、壁部314の下方に設けられ、底壁311に近い位置に形成された平面状の第一面315aと、第一面315aよりも底壁311から遠い位置に設けられた平面状の第二面315bとを有している。対向面(第一対向面)315は、X軸方向(第二方向)に延びる連続した平面である。第一面315aおよび第二面315bとは、X軸方向(第二方向)に延びる連続した平面である。対向面315(第一面315aと第二面315b)は、平面の法線方向に突出する形状がなければ、不連続であってもよい。不連続な形状の一例としては溝を例示できる。第一面315aと第二面315bとはZ軸方向で連続して設けられている。 Each opposing surface (first opposing surface) 315 is provided below the wall portion 314 in the Z-axis direction (third direction), and includes a planar first surface 315a formed at a position close to the bottom wall 311; It has a planar second surface 315b provided at a position farther from the bottom wall 311 than the first surface 315a. The opposing surface (first opposing surface) 315 is a continuous plane extending in the X-axis direction (second direction). The first surface 315a and the second surface 315b are continuous planes extending in the X-axis direction (second direction). The opposing surfaces 315 (first surface 315a and second surface 315b) may be discontinuous as long as they do not have a shape that protrudes in the normal direction of the plane. An example of a discontinuous shape is a groove. The first surface 315a and the second surface 315b are provided continuously in the Z-axis direction.
 第一面315aはZ軸方向に対して勾配βで傾いており、第二面315bはZ軸方向に対して勾配γで傾いている。勾配とは、蓄電装置1を構成する部材の表面(第一面315a、第二面315bなど)が第三方向(Z軸方向)に対してなす鋭角側の角度である。第三方向とは、第一方向(Y軸方向)および第二方向(X軸方向)に交差する方向である。第三方向とは、底壁311と蓄電素子100が並ぶ方向である。第三方向とは、蓄電素子100と壁部314とが対向する方向(第一方向)、および、壁部314が延びる方向(第二方向)に交差する方向でもある。各勾配α、β、γの関係性は、α<β<γとなっている。つまり、対向面315の勾配は、全体として側壁312(第二壁部)の勾配αよりも大きい。具体的には、第一対向面315の勾配は、第二対向面312bの勾配よりも大きい。勾配βは2度以上、5度以下であればよく、勾配γは5度よりも大きければよい。勾配β、γは、30度以下であり、20度以下が好ましい。 The first surface 315a is inclined with a gradient β with respect to the Z-axis direction, and the second surface 315b is inclined with a gradient γ with respect to the Z-axis direction. The slope is an acute angle that the surfaces (first surface 315a, second surface 315b, etc.) of the members constituting power storage device 1 make with respect to the third direction (Z-axis direction). The third direction is a direction that intersects the first direction (Y-axis direction) and the second direction (X-axis direction). The third direction is a direction in which bottom wall 311 and power storage element 100 are lined up. The third direction is also a direction that intersects the direction in which power storage element 100 and wall portion 314 face each other (first direction) and the direction in which wall portion 314 extends (second direction). The relationship between the gradients α, β, and γ is α<β<γ. That is, the slope of the opposing surface 315 is larger than the slope α of the side wall 312 (second wall portion) as a whole. Specifically, the slope of the first opposing surface 315 is greater than the slope of the second opposing surface 312b. The slope β may be 2 degrees or more and 5 degrees or less, and the slope γ may be larger than 5 degrees. The slopes β and γ are 30 degrees or less, preferably 20 degrees or less.
 上記勾配β、γの関係性より、本実施の形態では、第二面315bの勾配は、第一面315aの勾配よりも大きい。 According to the relationship between the gradients β and γ, in this embodiment, the gradient of the second surface 315b is larger than the gradient of the first surface 315a.
 図6に示すように、保持部材310には突起316が形成されている。突起316は、X軸方向において、側壁312と壁部314との間に配置され、底壁311からZ軸方向(第三方向)に突出する突起である。突起316のZ軸方向の高さは、壁部314のZ軸方の高さよりも低い。突起316は、底壁311と連続した部位であり、底壁311と一体的に形成されている。図4、図5、図8では突起316の図示を省略している。 As shown in FIG. 6, a protrusion 316 is formed on the holding member 310. The protrusion 316 is a protrusion that is arranged between the side wall 312 and the wall portion 314 in the X-axis direction and protrudes from the bottom wall 311 in the Z-axis direction (third direction). The height of the protrusion 316 in the Z-axis direction is lower than the height of the wall portion 314 in the Z-axis direction. The protrusion 316 is a continuous portion of the bottom wall 311 and is formed integrally with the bottom wall 311 . In FIGS. 4, 5, and 8, illustration of the protrusion 316 is omitted.
 本実施の形態では、突起316は、蓄電素子100の位置決め用の突起である。図6に示すように、突起316は、それぞれの蓄電素子100の容器110の底部において、X軸方向両端部をY軸方向で挟むように、X軸方向両端部のY軸方向両側に配置される。1つの蓄電素子100に対して、4つの突起316が配置される。蓄電素子100は壁部314に接触していないが、この4つの突起316が、蓄電素子100の容器110とY軸方向で接触し、蓄電素子100のY軸方向への移動を制限する。 In this embodiment, the protrusion 316 is a protrusion for positioning the power storage element 100. As shown in FIG. 6, the protrusions 316 are arranged at the bottom of the container 110 of each power storage element 100 on both sides in the Y-axis direction of both ends in the X-axis direction so as to sandwich both ends in the X-axis direction in the Y-axis direction. Ru. Four protrusions 316 are arranged for one power storage element 100. Although the power storage element 100 does not contact the wall portion 314, these four protrusions 316 contact the container 110 of the power storage element 100 in the Y-axis direction, thereby restricting movement of the power storage element 100 in the Y-axis direction.
 蓄電素子100は、突起316で位置決めされるため、蓄電素子100の長側面111と壁部314の対向面315とは接触していない。長側面111と対向面315との距離は2mm以下となっており、1mm以下が好ましい。この距離は、対向面(第一面315a)の底部(底壁311に接続する部位)と長側面111との距離である。 Since the power storage element 100 is positioned by the protrusion 316, the long side surface 111 of the power storage element 100 and the opposing surface 315 of the wall portion 314 are not in contact with each other. The distance between the long side surface 111 and the opposing surface 315 is 2 mm or less, preferably 1 mm or less. This distance is the distance between the bottom (part connected to the bottom wall 311) of the opposing surface (first surface 315a) and the long side surface 111.
 [4 蓄電素子100と壁部314との状態遷移について]
 次に、蓄電素子100と壁部314との状態遷移について説明する。図8は、実施の形態に係る蓄電素子100と壁部314との状態遷移を示す説明図である。具体的には、図8の(a)は膨張前の蓄電素子100と壁部314との状態を示し、図8の(b)は膨張中の蓄電素子100と壁部314との状態を示し、図8の(c)は、図8の(b)よりも膨張が進んだ蓄電素子100と壁部314との状態を示している。いずれの状態においても、蓄電素子100の容器110の各長側面111が、壁部314に対向している。
[4 Regarding state transition between power storage element 100 and wall portion 314]
Next, state transition between power storage element 100 and wall portion 314 will be described. FIG. 8 is an explanatory diagram showing state transitions between power storage element 100 and wall portion 314 according to the embodiment. Specifically, (a) of FIG. 8 shows the state of the power storage element 100 and the wall part 314 before expansion, and (b) of FIG. 8 shows the state of the power storage element 100 and the wall part 314 during expansion. , FIG. 8(c) shows a state in which the electricity storage element 100 and the wall portion 314 have expanded more than in FIG. 8(b). In either state, each long side surface 111 of the container 110 of the power storage element 100 faces the wall portion 314.
 図8の(a)に示すように、膨張前において、蓄電素子100の一対の長側面111は、当該蓄電素子100を挟む二つの壁部314の各対向面315に接していない。その後、蓄電素子100が過剰に高温化すると蓄電素子100内にガスが発生して、容器110の各長側面111が膨張する。これにより、図8の(b)に示すように、容器110の各長側面111が各壁部314の第一面(対向面)315aに接触する。 As shown in FIG. 8(a), before expansion, the pair of long sides 111 of the power storage element 100 are not in contact with the opposing surfaces 315 of the two walls 314 that sandwich the power storage element 100 therebetween. Thereafter, when power storage element 100 becomes excessively hot, gas is generated within power storage element 100, and each long side surface 111 of container 110 expands. As a result, each long side surface 111 of the container 110 comes into contact with the first surface (opposing surface) 315a of each wall portion 314, as shown in FIG. 8(b).
 蓄電素子100の膨張が更に進行すると、各壁部314の第一面315aの傾き(勾配β)によって容器110が上方へと押し出される。よって、図8の(c)に示すように、蓄電素子100は、底壁311から離れることになる。 As the expansion of power storage element 100 further progresses, container 110 is pushed upward due to the inclination (gradient β) of first surface 315a of each wall portion 314. Therefore, as shown in FIG. 8(c), power storage element 100 is separated from bottom wall 311.
 本実施の形態では、第一面315aの上方に、第一面315aよりも勾配が大きい第二面315bがあるために、第一面315aと第二面315bの境界の角Cが、膨張した蓄電素子100の上方への移動の起点となり得る。蓄電素子100の膨張が更に進行すると、各壁部314の第二面315bの傾き(勾配γ)によって蓄電素子100が更に上方へと押し出される。 In this embodiment, since there is a second surface 315b having a larger slope than the first surface 315a above the first surface 315a, the angle C at the boundary between the first surface 315a and the second surface 315b expands. This can serve as a starting point for upward movement of power storage element 100. As the expansion of power storage element 100 further progresses, power storage element 100 is further pushed upward due to the inclination (gradient γ) of second surface 315b of each wall portion 314.
 したがって、過剰に高温化した蓄電素子100の熱が底壁311に伝達されにくくなる。勾配β、γは、勾配αよりも大きいので、膨張した容器110を上方へと押し出しやすいため、早期に容器110を底壁311から離すことが可能である。 Therefore, the heat of the power storage element 100 that has become excessively high in temperature is difficult to be transferred to the bottom wall 311. Since the slopes β and γ are larger than the slope α, it is easy to push the expanded container 110 upward, so that the container 110 can be separated from the bottom wall 311 at an early stage.
 [5 効果の説明]
 以上のように、本発明の実施の形態に係る蓄電装置1によれば、壁部314(第一壁部)の対向面315の勾配(第一面315aの勾配β、第二面315bの勾配γのそれぞれ)が側壁312及び313(第二壁部)の勾配αよりも大きい。このため、過剰に高温化した蓄電素子100が膨張して、対向面315に当たるとこの対向面315に沿って蓄電素子100が上方に移動し、底壁311から離れる。対向面315(第一面315aと第二面315b)は、X軸方向(第二方向)に延びる連続した平面であるため、蓄電素子100の上方への移動がスムーズとなる。蓄電素子100の上方への移動が阻害されなければ、対向面315(第一面315aと第二面315b)は、X軸方向(第二方向)に延びる不連続な平面であってもよい。これにより、蓄電素子100の熱が底壁311に伝達されにくくなるため、底壁311を経由して他の蓄電素子100へと熱が伝播することを抑制できる。したがって、複数並べられた蓄電素子100のうち、一つの蓄電素子100から他の蓄電素子100に対する熱影響を抑制できる。
[5 Explanation of effects]
As described above, according to the power storage device 1 according to the embodiment of the present invention, the slope of the opposing surface 315 of the wall 314 (first wall) (the slope β of the first surface 315a, the slope β of the second surface 315b) γ) is larger than the slope α of the side walls 312 and 313 (second wall portion). Therefore, when the excessively heated power storage element 100 expands and hits the facing surface 315, the power storage element 100 moves upward along the facing surface 315 and separates from the bottom wall 311. Since opposing surfaces 315 (first surface 315a and second surface 315b) are continuous planes extending in the X-axis direction (second direction), upward movement of power storage element 100 becomes smooth. As long as upward movement of power storage element 100 is not inhibited, opposing surface 315 (first surface 315a and second surface 315b) may be a discontinuous plane extending in the X-axis direction (second direction). This makes it difficult for the heat of the power storage element 100 to be transferred to the bottom wall 311, so that it is possible to suppress the heat from propagating to other power storage elements 100 via the bottom wall 311. Therefore, among the plurality of power storage elements 100 arranged in a row, the thermal influence from one power storage element 100 to other power storage elements 100 can be suppressed.
 勾配αを比較対象としなくとも、対向面315の勾配がZ軸方向に対して2度以上であれば、同様の効果を得ることが可能である。 Even if the slope α is not used for comparison, it is possible to obtain the same effect as long as the slope of the opposing surface 315 is 2 degrees or more with respect to the Z-axis direction.
 蓄電素子100が膨張する際には、蓄電素子100の長側面111が弧状に膨らむ。このため、蓄電素子100の周縁部よりも内側の領域では、蓄電素子100の長側面111の法線方向における膨張時の変位量が大きい。本実施の形態では、第二面315bは、第一面315aよりも底壁311から遠い位置に配置されている。このため、第一面315aを蓄電素子100の周縁部に対応させた位置に配置すると、第二面315bは、蓄電素子100の周縁部よりも変位量が大きい部位に対応することとなり、蓄電素子100の膨張を受け止めやすい。第二面315bの勾配γは、第一面315aの勾配βよりも大きいので、膨張した蓄電素子100を、底壁311から離れる方向にスムーズに移動できる。底壁311から離れる方向にスムーズに蓄電素子100を移動できれば、それだけ早期に蓄電素子100の熱が底壁311に伝達されにくくなる。したがって、底壁311を経由して他の蓄電素子100へと熱が伝播することをより抑制でき、他の蓄電素子100に対する熱影響をより抑制できる。 When the power storage element 100 expands, the long side 111 of the power storage element 100 expands in an arc shape. Therefore, in a region inside the peripheral edge of power storage element 100, the amount of displacement during expansion in the normal direction of long side surface 111 of power storage element 100 is large. In this embodiment, the second surface 315b is located farther from the bottom wall 311 than the first surface 315a. Therefore, when the first surface 315a is arranged at a position corresponding to the peripheral edge of the power storage element 100, the second surface 315b corresponds to a portion where the amount of displacement is larger than the peripheral edge of the power storage element 100, It is easy to accept the expansion of 100. Since the slope γ of the second surface 315b is larger than the slope β of the first surface 315a, the expanded power storage element 100 can be smoothly moved in the direction away from the bottom wall 311. The smoother the power storage element 100 can be moved in the direction away from the bottom wall 311, the sooner the heat of the power storage element 100 becomes less likely to be transferred to the bottom wall 311. Therefore, the propagation of heat to other power storage elements 100 via bottom wall 311 can be further suppressed, and the influence of heat on other power storage elements 100 can be further suppressed.
 上述したように、蓄電素子100が膨張する際には、蓄電素子100の長側面111が弧状に膨らむ。このとき、蓄電素子100の長側面111の、Z軸方向(第三方向)における周縁部の傾斜は、中央部の傾斜よりも大きくなる。長側面111の、Z軸方向(第三方向)における傾斜とは、長側面111がZ軸方向(第三方向)となす鋭角側の角度である。本実施の形態では、壁部314の長さH1が、蓄電素子100におけるZ軸方向の長さの1/8以内であるので、膨張した蓄電素子100において傾斜の大きい周縁部に対応した位置に壁部314を配置できる。このため、壁部314の対向面315に対し、蓄電素子100の傾斜の大きい周縁部を接触できる。これにより、膨張した蓄電素子100を、底壁311から離れる方向にスムーズに移動できる。スムーズに蓄電素子100を移動できれば、それだけ早期に蓄電素子100の熱が底壁311に伝達されにくくなる。したがって、底壁311を経由して他の蓄電素子100へと熱が伝播することをより抑制でき、他の蓄電素子100に対する熱影響をより抑制できる。 As described above, when the power storage element 100 expands, the long side surface 111 of the power storage element 100 expands in an arc shape. At this time, the inclination of the peripheral portion of the long side surface 111 of the power storage element 100 in the Z-axis direction (third direction) is greater than the inclination of the central portion. The inclination of the long side surface 111 in the Z-axis direction (third direction) is the acute angle that the long side surface 111 makes with the Z-axis direction (third direction). In the present embodiment, since the length H1 of the wall portion 314 is within 1/8 of the length of the power storage element 100 in the Z-axis direction, the wall portion 314 is located at a position corresponding to the peripheral edge with a large inclination in the expanded power storage element 100. A wall 314 can be placed. Therefore, the peripheral edge portion of the power storage element 100 having a large slope can be brought into contact with the facing surface 315 of the wall portion 314 . Thereby, the expanded power storage element 100 can be smoothly moved in the direction away from the bottom wall 311. The smoother the power storage element 100 can be moved, the sooner the heat of the power storage element 100 will be less likely to be transferred to the bottom wall 311. Therefore, the propagation of heat to other power storage elements 100 via bottom wall 311 can be further suppressed, and the influence of heat on other power storage elements 100 can be further suppressed.
 壁部314が、蓄電素子100におけるX軸方向(第二方向)の中央部に対向して配置されているので、X軸方向においても蓄電素子100の膨張の大きい箇所に対向面315が配置される。これにより、膨張した蓄電素子100を、対向面315によって底壁311から離れる方向にスムーズに移動できる。スムーズに蓄電素子100を移動できれば、それだけ早期に蓄電素子100の熱が底壁311に伝達されにくくなる。したがって、底壁311を経由して他の蓄電素子100へと熱が伝播することをより抑制でき、他の蓄電素子100に対する熱影響をより抑制できる。 Since the wall portion 314 is arranged to face the central part of the power storage element 100 in the X-axis direction (second direction), the opposing surface 315 is arranged at a location where the expansion of the power storage element 100 is large in the X-axis direction as well. Ru. Thereby, the expanded power storage element 100 can be smoothly moved in a direction away from the bottom wall 311 by the opposing surface 315. The smoother the power storage element 100 can be moved, the sooner the heat of the power storage element 100 will be less likely to be transferred to the bottom wall 311. Therefore, the propagation of heat to other power storage elements 100 via bottom wall 311 can be further suppressed, and the influence of heat on other power storage elements 100 can be further suppressed.
 壁部314のX軸方向の長さが、蓄電素子100のX軸方向の長さの1/3以上であるので、膨張した蓄電素子100を広範囲にわたって壁部314の対向面315に接触できる。このため、膨張した蓄電素子100をスムーズに移動できる。 Since the length of the wall portion 314 in the X-axis direction is 1/3 or more of the length of the power storage element 100 in the X-axis direction, the expanded power storage element 100 can come into contact with the facing surface 315 of the wall portion 314 over a wide range. Therefore, the expanded power storage element 100 can be moved smoothly.
 複数の蓄電素子100がバスバー400で接続されて使用される際に、バスバー400が曲げ部を備えるため、当該曲げ部が応力に追従できる。膨張した蓄電素子100が保持部材310から離れる方向(Z軸プラス方向)に移動した際には、当該蓄電素子100に接続されたバスバーは正規の位置からずれようとする応力を受ける。バスバーの曲げ部が当該応力に柔軟に追従できるため、膨張した蓄電素子が保持部材からスムーズに移動できる。 When a plurality of power storage elements 100 are connected by bus bar 400 and used, since bus bar 400 includes a bent portion, the bent portion can follow stress. When the expanded power storage element 100 moves in the direction away from the holding member 310 (Z-axis positive direction), the bus bar connected to the power storage element 100 receives stress that tends to shift from its normal position. Since the bent portion of the bus bar can flexibly follow the stress, the expanded electricity storage element can be smoothly moved from the holding member.
 複数の蓄電素子100は、保持部材310と第二支持体520(蓋体)とで挟まれている。蓄電素子100が膨張して、保持部材310から離れる方向に移動すると、当該蓄電素子100は第二支持体520(蓋体)に接近する。第二支持体520(蓋体)は金属製であるため、当該蓄電素子100の熱を効果的に放熱できる。よって、蓄電素子が膨張した際に、他の蓄電素子に対する熱影響をより抑制できる。 The plurality of power storage elements 100 are sandwiched between the holding member 310 and the second support body 520 (lid body). When the power storage element 100 expands and moves away from the holding member 310, the power storage element 100 approaches the second support 520 (lid). Since the second support body 520 (lid body) is made of metal, it can effectively radiate the heat of the electricity storage element 100. Therefore, when a power storage element expands, thermal effects on other power storage elements can be further suppressed.
 [6 変形例の説明]
 以上、本実施の形態に係る蓄電装置1について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であって制限的なものではなく、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
[6 Description of modification]
Although the power storage device 1 according to the present embodiment has been described above, the present invention is not limited to the above embodiment. The embodiments disclosed this time are illustrative in all respects and are not restrictive, and the scope of the present invention includes all changes within the meaning and scope equivalent to the scope of the claims. .
 上記実施の形態では、壁部314には、壁部凹部314a及び314bが形成されていることとしたが、壁部凹部314a及び314bのうちの少なくとも一方の凹部が形成されていなくてもよい。この変形例では、壁部には壁部凹部が形成されておらず、壁部が伝熱部材を含む形態について説明する。 In the embodiment described above, the wall recesses 314a and 314b are formed in the wall 314, but at least one of the wall recesses 314a and 314b may not be formed. In this modification, a configuration will be described in which a wall portion does not have a wall recessed portion and the wall portion includes a heat transfer member.
 図9は、変形例に係る壁部314Cを示す断面図である。図に示すように壁部314Cには、その内部に伝熱部材350が配置されている。伝熱部材350は、保持部材310よりも熱伝導率の高い、銅、アルミニウム、ニッケルなどの金属材料から形成されている。伝熱部材350は、伝熱壁351と、伝熱底352とを一体的に有している。伝熱壁351は、XZ平面に平行かつX軸方向に延びる長尺な平板状の壁部であり、全体として壁部314C内に配置されている。これにより伝熱壁351は、壁部314Cの対向面315に対応する位置に配置されている。伝熱底352は、XY平面に平行な平板状の壁部であり、保持部材310の底壁311を下方から支えるように設けられている。 FIG. 9 is a cross-sectional view showing a wall portion 314C according to a modification. As shown in the figure, a heat transfer member 350 is disposed inside the wall portion 314C. The heat transfer member 350 is made of a metal material having higher thermal conductivity than the holding member 310, such as copper, aluminum, or nickel. The heat transfer member 350 integrally includes a heat transfer wall 351 and a heat transfer bottom 352. The heat transfer wall 351 is a long flat wall extending parallel to the XZ plane and in the X-axis direction, and is disposed as a whole within the wall 314C. Thereby, the heat transfer wall 351 is arranged at a position corresponding to the opposing surface 315 of the wall portion 314C. The heat transfer bottom 352 is a flat wall portion parallel to the XY plane, and is provided to support the bottom wall 311 of the holding member 310 from below.
 このように、壁部314Cには、伝熱部材350の伝熱壁351が対向面315に対応する位置に配置されているので、膨張した蓄電素子100が壁部314Cの対向面315に接触すると、当該蓄電素子100の熱が伝熱壁351に伝わり、伝熱底352から放熱される。これにより膨張および過熱した蓄電素子100から、他の蓄電素子100へと熱が伝播することを抑制でき、他の蓄電素子100に対する熱影響をより抑制できる。 In this way, since the heat transfer wall 351 of the heat transfer member 350 is disposed on the wall portion 314C at a position corresponding to the opposing surface 315, when the expanded electricity storage element 100 comes into contact with the opposing surface 315 of the wall portion 314C, The heat of the electricity storage element 100 is transmitted to the heat transfer wall 351 and is radiated from the heat transfer bottom 352. Thereby, heat can be suppressed from propagating from expanded and overheated electricity storage element 100 to other electricity storage elements 100, and thermal effects on other electricity storage elements 100 can be further suppressed.
 (その他の変形例)
 (a)上記実施の形態では、壁部314の対向面315が、互いに勾配の異なる第一面315aと第二面315bと有する場合を例示したが、対向面が全体として平坦な平面であってもよく、この場合、対向面の勾配が、第二壁部の内面312bの勾配よりも大きければよい。この場合、対向面の勾配は、2度以上であればよく、5度以上であれば好ましい。
(Other variations)
(a) In the above embodiment, the case where the opposing surface 315 of the wall portion 314 has the first surface 315a and the second surface 315b with mutually different slopes is illustrated, but the opposing surface is a flat plane as a whole. In this case, the slope of the opposing surface may be greater than the slope of the inner surface 312b of the second wall portion. In this case, the slope of the opposing surface may be at least 2 degrees, preferably at least 5 degrees.
 (b)第二壁部312の内面312bを比較対象とせずに、第二面315bの勾配を第一面315aの勾配よりも大きくするだけでもよい。同様な効果が得られる。この場合、第二面315bの勾配は、2度以上であればよく、5度以上であれば好ましい。第一面および第二面の勾配は、30度以下であり、20度以下が好ましい。 (b) The slope of the second surface 315b may be made larger than the slope of the first surface 315a without using the inner surface 312b of the second wall portion 312 as a comparison target. A similar effect can be obtained. In this case, the slope of the second surface 315b may be at least 2 degrees, preferably at least 5 degrees. The slopes of the first and second surfaces are 30 degrees or less, preferably 20 degrees or less.
 (c)上記実施の形態では、保持部材310の突起316が、蓄電素子100のY軸方向の移動を制限したが、保持部材310は、突起316を有していなくてもよい。膨張前の蓄電素子100と壁部314が接触していなくても、蓄電素子100が膨張した状態では、蓄電素子100の一対の長側面111は、Y軸方向の両側で対向する二つの壁部314の各対向面315に同じように接触する。 (c) In the above embodiment, the protrusion 316 of the holding member 310 restricts the movement of the power storage element 100 in the Y-axis direction, but the holding member 310 does not need to have the protrusion 316. Even if the electricity storage element 100 before expansion and the wall portion 314 are not in contact with each other, in the expanded state of the electricity storage element 100, the pair of long sides 111 of the electricity storage element 100 are connected to two opposing walls on both sides in the Y-axis direction. Each opposing surface 315 of 314 is contacted in the same manner.
 (d)保持部材310は突起316を有さず、蓄電素子100は、壁部314の対向面315の底部(底壁311に接続する部位)に接触していてもよい。壁部314が蓄電素子100のY軸方向の位置決め部材としても機能する。この場合、蓄電素子100が高温化して膨張すると、長側面111が対向面315(第一面315a、第二面315b)接触するまでの時間が短くなり、より早く蓄電素子100が上方に移動できる。 (d) The holding member 310 may not have the protrusion 316, and the power storage element 100 may be in contact with the bottom of the opposing surface 315 of the wall portion 314 (the portion connected to the bottom wall 311). Wall portion 314 also functions as a positioning member for power storage element 100 in the Y-axis direction. In this case, when the power storage element 100 becomes hot and expands, the time until the long side surface 111 contacts the opposing surface 315 (first surface 315a, second surface 315b) becomes shorter, and the power storage element 100 can move upward more quickly. .
(その他)
 上記実施の形態では、第一面315a及び第二面315bのそれぞれが平面である場合を例示した。第一面及び第二面の少なくとも一方が湾曲してもよい。湾曲している場合には、X軸方向視においてその起点と終点とを結ぶ仮想線とZ軸方向とからなる鋭角が勾配となる。
(others)
In the embodiment described above, the first surface 315a and the second surface 315b are each flat. At least one of the first surface and the second surface may be curved. If it is curved, the slope is an acute angle formed by the Z-axis direction and the virtual line connecting the starting point and the ending point when viewed in the X-axis direction.
 上記実施の形態では、第一面315aがZ軸方向に対して傾いている場合を例示したが、第一面315aがZ軸方向に対して傾いていなくてもよい。 In the above embodiment, the case where the first surface 315a is tilted with respect to the Z-axis direction is illustrated, but the first surface 315a does not need to be tilted with respect to the Z-axis direction.
 上記実施の形態では、壁部314の長さH1が、蓄電素子100におけるZ軸方向の長さの1/8以内である場合を例示したが、第一壁部においてZ軸方向の長さは、蓄電素子100におけるZ軸方向の長さの1/8よりも大きくてもよい。 In the above embodiment, the length H1 of the wall portion 314 is within 1/8 of the length of the power storage element 100 in the Z-axis direction, but the length of the first wall portion in the Z-axis direction is , may be larger than 1/8 of the length of the power storage element 100 in the Z-axis direction.
 上記実施の形態では、壁部314のX軸方向の長さが、蓄電素子100のX軸方向の長さの1/3以上である場合を例示したが、壁部314のX軸方向の長さは、蓄電素子100のX軸方向の長さの1/3未満であってもよい。 In the above embodiment, the length of the wall portion 314 in the X-axis direction is 1/3 or more of the length of the power storage element 100 in the X-axis direction, but the length of the wall portion 314 in the X-axis direction is The length may be less than ⅓ of the length of power storage element 100 in the X-axis direction.
 上記実施の形態では、保持部材310において、壁部314は、底壁311と連続した部位であることで、底壁311と一体化されていることとしたが、これには限定されない。壁部314は、底壁311と別体の壁部314が、接着剤等による接着、熱溶着等による溶着、または、レーザ溶接等による溶接等で、底壁311に接合されることで、底壁311と一体化されていてもよい。 In the embodiment described above, in the holding member 310, the wall portion 314 is a continuous portion of the bottom wall 311, so that the wall portion 314 is integrated with the bottom wall 311, but the present invention is not limited thereto. The wall portion 314 is formed by joining the bottom wall 311 and a separate wall portion 314 to the bottom wall 311 by bonding with an adhesive, heat welding, laser welding, etc. It may be integrated with the wall 311.
 上記実施の形態では、壁部314は、2つの蓄電素子100の間に配置されることとしたが、2つの蓄電素子100の間ではなく、端部の蓄電素子100の側方(外側)に配置されてもよい。 In the embodiment described above, the wall portion 314 is arranged between the two power storage elements 100, but not between the two power storage elements 100 but on the side (outside) of the power storage element 100 at the end. may be placed.
 上記実施の形態では、壁部314は、Z軸方向においてスペーサ210を支持することとしたが、壁部314のY軸方向にスペーサ210が配置されて、壁部314が、Y軸方向においてスペーサ210を支持してもよい。壁部314の周囲にはスペーサ210が配置されず、壁部314がスペーサ210を支持しない構成でもよい。 In the above embodiment, the wall 314 supports the spacer 210 in the Z-axis direction, but the spacer 210 is arranged in the Y-axis direction of the wall 314, and the wall 314 supports the spacer 210 in the Y-axis direction. 210 may be supported. The spacer 210 may not be arranged around the wall portion 314, and the wall portion 314 may not support the spacer 210.
 壁部314のYZ平面での断面形状は、半円形状、半楕円形状、半長円形状、三角形状、その他の多角形状等、どのような形状でもよい。 The cross-sectional shape of the wall portion 314 in the YZ plane may be any shape, such as a semicircle, a semiellipse, a semiellipse, a triangle, or another polygon.
 上記実施の形態では、スペーサ200は絶縁性および断熱性を有するグラスウールとしたが、スペーサは絶縁性を有するだけでもよい。 In the above embodiment, the spacer 200 is made of glass wool that has insulation and heat insulation properties, but the spacer may just have insulation properties.
 上記実施の形態では、外装体300(保持部材310及び蓋部材320)は、複数の蓄電素子100及び複数のスペーサ200をZ軸方向で挟むトレイ及びバスバーフレームであることとしたが、これには限定されない。蓋部材320は、バスバーフレームではなく、基板、リレー、ヒューズ、サーミスタまたはハーネス等の電気機器(電気部品)を配置する絶縁部材等でもよい。外装体300は、複数の蓄電素子100等を挟む構成ではなく、複数の蓄電素子100等を収容するハウジングとしての保持部材310と、ハウジングの開口を塞ぐ蓋体としての蓋部材320とを有する箱形の容器(モジュールケース)であってもよい。 In the above embodiment, the exterior body 300 (the holding member 310 and the lid member 320) is a tray and a busbar frame that sandwich the plurality of power storage elements 100 and the plurality of spacers 200 in the Z-axis direction. Not limited. The lid member 320 may be an insulating member or the like on which electrical equipment (electrical components) such as a board, relay, fuse, thermistor, or harness is placed, instead of a busbar frame. The exterior body 300 is not configured to sandwich a plurality of power storage elements 100, etc., but is a box having a holding member 310 as a housing that accommodates a plurality of power storage elements 100, etc., and a lid member 320 as a lid body that closes an opening of the housing. It may also be a shaped container (module case).
 上記実施の形態では、蓄電素子100は、電極端子140がZ軸プラス方向に向く姿勢で配置されることとしたが、電極端子140がX軸方向、Y軸方向またはZ軸マイナス方向に向く姿勢で配置されてもよい。 In the embodiment described above, the power storage element 100 is arranged with the electrode terminal 140 facing in the Z-axis positive direction, but it is arranged in an orientation with the electrode terminal 140 facing in the X-axis direction, the Y-axis direction, or the Z-axis negative direction. It may be placed in
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Embodiments constructed by arbitrarily combining the components included in the above embodiments and their modifications are also included within the scope of the present invention.
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置等に適用できる。 The present invention can be applied to a power storage device, etc. equipped with a power storage element such as a lithium ion secondary battery.
1 蓄電装置
100 蓄電素子
110 容器
200、210、220 スペーサ
300 外装体
310 保持部材
311 底壁
311a 突出部
312、313 側壁(第二壁部)
312a 外面
312b 内面(対向面、第二対向面)
314、314C 壁部(第一壁部)
314a、314b 壁部凹部
315 対向面(第一対向面)
315a 第一面
315b 第二面
350 伝熱部材
351 伝熱壁
352 伝熱底
H1 長さ
α、β、γ 勾配
1 Power storage device 100 Power storage element 110 Containers 200, 210, 220 Spacer 300 Exterior body 310 Holding member 311 Bottom wall 311a Projections 312, 313 Side wall (second wall)
312a Outer surface 312b Inner surface (opposing surface, second opposing surface)
314, 314C Wall part (first wall part)
314a, 314b Wall recess 315 Opposing surface (first opposing surface)
315a First surface 315b Second surface 350 Heat transfer member 351 Heat transfer wall 352 Heat transfer bottom H1 Length α, β, γ Gradient

Claims (8)

  1.  蓄電素子と、
     前記蓄電素子を保持する保持部材と、を備え、
     前記保持部材は、
     前記蓄電素子を支持する底壁と、
     第一方向において前記蓄電素子に隣り合う位置に配置され、前記底壁から突出した第一壁部と、
     前記第一壁部とは異なる位置に配置され、前記底壁から突出した第二壁部と、を備え、
     前記第一壁部は、前記第一方向に交差する第二方向に延びており、
     前記第一壁部において前記蓄電素子に対向する対向面の勾配は、前記第二壁部の勾配よりも大きい
     蓄電装置。
    A power storage element,
    A holding member that holds the electricity storage element,
    The holding member is
    a bottom wall that supports the electricity storage element;
    a first wall portion located adjacent to the power storage element in a first direction and protruding from the bottom wall;
    a second wall portion located at a different position from the first wall portion and protruding from the bottom wall;
    The first wall extends in a second direction intersecting the first direction,
    The slope of the opposing surface facing the power storage element in the first wall part is larger than the slope of the second wall part. The power storage device.
  2.  前記対向面は、前記底壁に近い位置に設けられた第一面と、前記第一面よりも前記底壁から遠い位置に設けられた第二面とを備え、
     前記第二面の勾配は、前記第一面の勾配よりも大きい
     請求項1に記載の蓄電装置。
    The opposing surface includes a first surface provided at a position close to the bottom wall, and a second surface provided at a position farther from the bottom wall than the first surface,
    The power storage device according to claim 1 , wherein the slope of the second surface is greater than the slope of the first surface.
  3.  蓄電素子と、
     前記蓄電素子を保持する保持部材と、を備え、
     前記保持部材は、
     前記蓄電素子を支持する底壁と、
     第一方向において前記蓄電素子に隣り合う位置に配置され、前記底壁から突出した第一壁部と、を備え、
     前記第一壁部は、前記蓄電素子に対向する対向面を備え、
     前記第一壁部は、前記第一方向に交差する第二方向に延びており、
     前記対向面は、前記底壁に近い位置に設けられた第一面と、前記第一面よりも前記底壁から遠い位置に設けられた第二面とを備え、
     前記第二面の勾配は、前記第一面の勾配よりも大きい
     蓄電装置。
    A power storage element,
    A holding member that holds the electricity storage element,
    The holding member is
    a bottom wall that supports the electricity storage element;
    a first wall portion disposed adjacent to the power storage element in a first direction and protruding from the bottom wall;
    The first wall portion includes a facing surface facing the power storage element,
    The first wall extends in a second direction intersecting the first direction,
    The opposing surface includes a first surface provided at a position close to the bottom wall, and a second surface provided at a position farther from the bottom wall than the first surface,
    The slope of the second surface is greater than the slope of the first surface. Power storage device.
  4.  前記第一壁部において、前記第一方向及び前記第二方向に交差する第三方向の長さは、前記蓄電素子における前記第三方向の長さの1/8以内である
     請求項1~3のいずれか一項に記載の蓄電装置。
    The length of the first wall portion in a third direction intersecting the first direction and the second direction is within ⅛ of the length of the electricity storage element in the third direction. The power storage device according to any one of .
  5.  前記第一壁部は、前記蓄電素子における前記第二方向の中央部に対向して配置されている
     請求項1~3のいずれか一項に記載の蓄電装置。
    The power storage device according to any one of claims 1 to 3, wherein the first wall portion is arranged to face a central portion of the power storage element in the second direction.
  6.  複数の前記蓄電素子と、隣り合う前記蓄電素子同士を接続するバスバーとを備え、
     前記バスバーは、前記バスバーの、隣り合う前記蓄電装置が並ぶ方向における中間部に曲げ部を備える
     請求項1~3のいずれか一項に記載の蓄電装置。
    comprising a plurality of the power storage elements and a bus bar connecting the adjacent power storage elements,
    The power storage device according to any one of claims 1 to 3, wherein the bus bar includes a bent portion at an intermediate portion of the bus bar in a direction in which the adjacent power storage devices are lined up.
  7.  前記蓄電素子と前記保持部材とが並ぶ方向において、前記保持部材とで前記蓄電素子を挟む位置に配置される金属製の蓋体を備える
     請求項1~3のいずれか一項に記載の蓄電装置。
    The power storage device according to any one of claims 1 to 3, comprising a metal lid body disposed at a position where the power storage element is sandwiched between the power storage element and the holding member in a direction in which the power storage element and the holding member are lined up. .
  8.  前記第一壁部は、前記保持部材よりも熱伝導率の高い伝熱部材を含む
     請求項1~3のいずれか一項に記載の蓄電装置。
    The power storage device according to any one of claims 1 to 3, wherein the first wall portion includes a heat transfer member having a higher thermal conductivity than the holding member.
PCT/JP2023/012866 2022-03-31 2023-03-29 Power storage device WO2023190713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057971 2022-03-31
JP2022-057971 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190713A1 true WO2023190713A1 (en) 2023-10-05

Family

ID=88202106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012866 WO2023190713A1 (en) 2022-03-31 2023-03-29 Power storage device

Country Status (1)

Country Link
WO (1) WO2023190713A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067045A1 (en) * 2010-11-18 2012-05-24 三洋電機株式会社 Battery assembly, separator for battery assembly, and vehicle provided with same
JP2015185463A (en) * 2014-03-25 2015-10-22 株式会社Gsユアサ Power supply module
JP2015211013A (en) * 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2018006058A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery module
JP2019197661A (en) * 2018-05-09 2019-11-14 株式会社Gsユアサ Power storage device
WO2020111042A1 (en) * 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 Electric power storage module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067045A1 (en) * 2010-11-18 2012-05-24 三洋電機株式会社 Battery assembly, separator for battery assembly, and vehicle provided with same
JP2015185463A (en) * 2014-03-25 2015-10-22 株式会社Gsユアサ Power supply module
JP2015211013A (en) * 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2018006058A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery module
JP2019197661A (en) * 2018-05-09 2019-11-14 株式会社Gsユアサ Power storage device
WO2020111042A1 (en) * 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 Electric power storage module

Similar Documents

Publication Publication Date Title
WO2023190713A1 (en) Power storage device
JP7427903B2 (en) Power storage device
CN113597655A (en) Electricity storage device
WO2024043254A1 (en) Power storage device
JP2023149291A (en) Power storage device
WO2023223961A1 (en) Power storage device
WO2024043253A1 (en) Power storage device
JP7419926B2 (en) Power storage device
JP2024032050A (en) Power storage device and power storage device panel
JP2024017601A (en) Power storage device
JP2023149388A (en) Power storage device
JP2024039887A (en) Power storage device
WO2023171117A1 (en) Power storage device
WO2023176752A1 (en) Electricity storage device and method for manufacturing electricity storage device
JP2023149595A (en) Power storage device
WO2024038729A1 (en) Electricity storage device
US20230021263A1 (en) Energy storage apparatus
US20220320687A1 (en) Energy storage apparatus
WO2024058219A1 (en) Power storage device
JP2023149289A (en) Power storage device
EP4287230A1 (en) Power storage device
JP7415397B2 (en) Energy storage element
WO2023048040A1 (en) Power storage device
WO2023176753A1 (en) Power storage device
WO2022255162A1 (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780721

Country of ref document: EP

Kind code of ref document: A1