WO2023171117A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2023171117A1
WO2023171117A1 PCT/JP2023/000572 JP2023000572W WO2023171117A1 WO 2023171117 A1 WO2023171117 A1 WO 2023171117A1 JP 2023000572 W JP2023000572 W JP 2023000572W WO 2023171117 A1 WO2023171117 A1 WO 2023171117A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
power storage
wall portion
storage element
container
Prior art date
Application number
PCT/JP2023/000572
Other languages
French (fr)
Japanese (ja)
Inventor
一弥 岡部
良一 奥山
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023171117A1 publication Critical patent/WO2023171117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device including a power storage element and a spacer.
  • Patent Document 1 discloses a battery module (power storage device) in which inter-cell spacers (spacers) are fixed to battery cells (power storage elements) with double-sided tape.
  • the spacer is a plate-shaped member, so when fixing the spacer to the power storage element, it is necessary to position and fix the spacer with high precision with respect to the power storage element. may become difficult. For this reason, in the conventional power storage device described above, it becomes difficult to fix the spacer at an accurate position with respect to the power storage element, and there is a possibility that ease of assembly may be reduced.
  • the present invention was made by the inventor of the present application newly paying attention to the above-mentioned problem, and an object of the present invention is to provide a power storage device that can improve ease of assembly.
  • a power storage device is a power storage device including a power storage element having a container and a spacer, wherein the container has a first surface and a second surface adjacent to each other, and the spacer has a first wall portion facing the first surface and a second wall portion facing the second surface, and at least one of the first wall portion and the second wall portion is opposite to the first wall portion. It is adhered or welded to at least one of the first surface and the second surface.
  • FIG. 1 is a perspective view showing the configuration of a power storage device according to an embodiment.
  • FIG. 2 is a perspective view showing the configuration of the power storage element according to the embodiment.
  • FIG. 3 is a perspective view showing the configuration of a power storage element and a spacer according to the embodiment.
  • FIG. 4 is a perspective view showing the configuration of a first spacer included in the spacer according to the embodiment.
  • FIG. 5 is a perspective view showing the configuration of a first spacer included in a spacer according to Modification 1 of the embodiment.
  • a power storage device includes a power storage element having a container and a spacer, wherein the container has a first surface and a second surface adjacent to each other. , the spacer has a first wall portion facing the first surface, and a second wall portion facing the second surface, and at least one of the first wall portion and the second wall portion is , is adhered or welded to at least one of the first surface and the second surface.
  • the spacer has a first wall portion and a second wall portion, and at least one of the first wall portion and the second wall portion is connected to the second wall portion of the container of the power storage element. It is adhered or welded to at least one of the first surface and the second surface.
  • the spacer can be easily and accurately positioned with respect to the power storage element using the first and second wall parts of the spacer, and the spacer can be fixed to the power storage element by adhesion or welding. Therefore, since the spacer can be fixed at a relatively accurate position relative to the power storage element, the ease of assembling the power storage device can be improved.
  • the container has a third surface sandwiching the first surface between the second surface and the spacer, a first spacer having a wall portion; and a second spacer having at least one of a third wall portion facing the first surface and a fourth wall portion facing the third surface, the first spacer being A separate second spacer may be included.
  • the spacer is composed of a plurality of separate members (the first spacer and the second spacer), so that the spacer can be placed at a necessary location in the power storage element. .
  • the amount of material used for the spacer can be reduced, the weight can be reduced, and the cost can be reduced.
  • At least one of the third wall portion and the fourth wall portion may be adhered or welded to at least one of the first surface and the third surface. good.
  • At least one of the third wall portion and the fourth wall portion of the second spacer is adhered or welded to at least one of the first surface and the third surface of the container of the power storage element.
  • the second spacer can also be fixed to the power storage element.
  • the second surface has a smaller area than the first surface, and the second wall portion is located on the second surface. It may be glued or welded.
  • the second surface of the container of the power storage element has a smaller area than the first surface, so the first surface is the long side of the container and the second surface is the long side of the container. It is the short side.
  • the long side (first side) of the container swells, but the short side (second side) swells to a small extent. Therefore, by adhering or welding the second wall portion of the spacer to the short side (second surface) of the storage element container, it is possible to prevent the spacer from peeling off from the storage element container.
  • the first wall portion is bonded or welded to the first surface
  • the second wall portion is bonded to the second surface. It may be glued or welded to.
  • the spacer can be firmly fixed to the electricity storage element.
  • the direction in which a pair of electrode terminals (positive and negative electrodes) of a power storage element are arranged, the opposing direction of the short sides of the container of the power storage element, or the direction in which the container of the power storage element extends is referred to as the X-axis direction. It is defined as The direction in which a plurality of power storage elements are lined up, the direction in which the power storage elements and spacers are lined up, the thickness direction (flat direction) of the power storage elements, or the direction in which the long sides of the power storage elements face each other is defined as the Y-axis direction.
  • the direction in which the container body and the lid of the storage element container are lined up, the protruding direction of the electrode terminal of the storage element, or the vertical direction is defined as the Z-axis direction.
  • These X-axis direction, Y-axis direction, and Z-axis direction are directions that intersect with each other (orthogonal in this embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described as the vertical direction below.
  • the X-axis plus direction indicates the arrow direction of the X-axis
  • the X-axis minus direction indicates the opposite direction to the X-axis plus direction.
  • the X-axis direction refers to both or one of the X-axis plus direction and the X-axis minus direction.
  • the Y-axis direction and the Z-axis direction are expressed in the following description.
  • FIG. 1 is a perspective view showing the configuration of a power storage device 10 according to the present embodiment.
  • FIG. 1 shows the general outline of the exterior body 300 included in the power storage device 10 using broken lines, and is a diagram showing the inside of the exterior body 300 when seen through the exterior body 300.
  • the power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in this embodiment.
  • the power storage device 10 is a battery module (battery assembly) used for power storage, power supply, or the like.
  • the power storage device 10 is used as a battery for driving or starting an engine of a mobile object such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railway vehicle for an electric railway.
  • Examples of the above-mentioned vehicles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel oil, liquefied natural gas, etc.) vehicles.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • fossil fuel gasoline, diesel oil, liquefied natural gas, etc.
  • Examples of the above-mentioned railway vehicles for electric railways include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor.
  • the power storage device 10 can also be used as a stationary battery or the like used for home or business purposes.
  • the power storage device 10 includes a plurality of power storage elements 100, a plurality of spacers 200 (200a and 200b), and an exterior body 300.
  • the power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, but illustration and description thereof are omitted.
  • the bus bar may connect all the power storage elements 100 in series, connect any of the power storage elements 100 in parallel and then connect them in series, or connect all the power storage elements 100 in parallel. It's okay.
  • the power storage device 10 includes a busbar frame for positioning the busbar, an external terminal connected to an external busbar, an exhaust part for exhausting gas discharged from the power storage element 100, and a plurality of power storage elements.
  • 100 and the plurality of spacers 200 end plates, side plates, etc.
  • electrical equipment such as circuit boards, fuses, relays, connectors, etc. that monitor or control the charging state and discharging state of the power storage element 100, etc. may be provided.
  • the power storage element 100 is a secondary battery (single battery) that can charge and discharge electricity, and more specifically, it is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 100 has a rectangular parallelepiped shape (square) that is long in the X-axis direction and flat in the Y-axis direction.
  • a plurality of (eight) power storage elements 100 are arranged side by side in the Y-axis direction, but the number of power storage elements 100 arranged is not particularly limited, and may be one.
  • the size and shape of power storage element 100 are not particularly limited either, and need not be long in the X-axis direction or flat in the Y-axis direction.
  • the power storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or a capacitor.
  • the power storage element 100 may be not a secondary battery but a primary battery that allows the user to use the stored electricity without charging it.
  • Power storage element 100 may be a battery using a solid electrolyte.
  • the power storage element 100 may be a pouch type power storage element. A detailed description of the configuration of power storage element 100 will be described later.
  • Spacers 200 are members arranged in line with power storage element 100 in the Y-axis direction. Spacer 200 is arranged in the positive Y-axis direction or negative Y-axis direction of power storage element 100 to absorb or suppress expansion of power storage element 100 in the Y-axis direction.
  • the spacer 200 has walls on both sides of the power storage element 100 in the X-axis direction and on both sides of the Z-axis direction, so that the spacer 200 also functions as a holder for holding the power storage element 100 and positioning the power storage element 100.
  • Spacer 200 also has the function of insulating and/or heat insulating power storage element 100 and other members (other power storage element 100 or exterior body 300, etc.).
  • Spacer 200 is arranged to face the long side and short side of container 110 of power storage element 100 and to be in contact with the long side and short side.
  • spacer 200 is fixed to the long side and short side of power storage element 100 by adhesion or welding, and holds power storage element 100 .
  • the spacer 200 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyether sulfone (PES), polyamide (PA), ABS resin or an insulating member such as a composite material thereof, a member having heat insulating properties such as insulating coated metal, glass fiber, ceramic, or mica.
  • PC polycarbonate
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PPS polyphenylene sulfide resin
  • PPE polyphenylene ether
  • PPE polyphenylene ether
  • the spacer 200 arranged between the two power storage elements 100 will also be referred to as a spacer 200a.
  • the spacer 200 arranged at the end in the Y-axis direction (between the power storage element 100 and the exterior body 300 at the end in the Y-axis direction) is also referred to as a spacer 200b.
  • Spacers 200a and 200b are arranged alternately with power storage elements 100. That is, spacers 200 (200a and 200b) are arranged at positions sandwiching power storage element 100 in the Y-axis direction. All the spacers 200 (200a and 200b) may be made of the same material, or any one of the spacers 200 may be made of different materials.
  • the spacer 200a has walls on both sides in the X-axis direction and on both sides in the Z-axis direction of two power storage elements 100 arranged on both sides of the spacer 200a in the Y-axis direction, and holds the two power storage elements 100.
  • This is an intermediate spacer (intermediate holder).
  • the spacer 200b has walls on both sides in the X-axis direction and both sides in the Z-axis direction of one power storage element 100 disposed on one side of the spacer 200b in the Y-axis direction, and has walls on both sides of the one power storage element 100 in the Y-axis direction. holder). That is, the power storage element 100 located at the end in the Y-axis direction is held by the spacer 200a and the spacer 200b. Other power storage elements 100 are held by two spacers 200a.
  • the spacer 200b has a shape similar to that of the spacer 200a divided in half in the Y-axis direction (see FIG. 3). Specifically, the spacer 200b in the positive Y-axis direction has the same configuration as the portion in the negative Y-axis direction when the spacer 200a is divided in half in the Y-axis direction. The spacer 200b in the negative Y-axis direction has the same configuration as the portion in the positive Y-axis direction when the spacer 200a is divided in half in the Y-axis direction.
  • the spacer 200b in the negative Y-axis direction has a shape that is symmetrical to the spacer 200b in the positive Y-axis direction with respect to the XZ plane, or has a shape in which the spacer 200b in the positive Y-axis direction is rotated 180 degrees around the Z-axis. are doing. A detailed explanation of the configuration of the spacer 200 (200a and 200b) will be given later.
  • the exterior body 300 is a member disposed outside the plurality of power storage elements 100 and the plurality of spacers 200 (200a and 200b).
  • the exterior body 300 is a substantially rectangular parallelepiped-shaped (box-shaped) container (module case) that accommodates the plurality of power storage elements 100 and the plurality of spacers 200. That is, the exterior body 300 is arranged outside the plurality of power storage elements 100 and the plurality of spacers 200 (200a and 200b), fixes the plurality of power storage elements 100, etc. at a predetermined position, and protects them from impact and the like.
  • Exterior body 300 is formed of an insulating member such as any resin material that can be used for spacer 200, and prevents power storage element 100 from coming into contact with external metal members or the like. As long as the insulation of power storage element 100 is maintained, exterior body 300 may be formed of a metal member such as aluminum, aluminum alloy, stainless steel, iron, or a plated steel plate.
  • FIG. 2 is a perspective view showing the configuration of power storage element 100 according to this embodiment.
  • FIG. 2 shows an enlarged view of the power storage element 100 shown in FIG. 1, and shows the internal configuration of the container 110 with broken lines. Since all of the plurality of power storage elements 100 included in power storage device 10 have the same configuration, one power storage element 100 is shown in FIG. 2, and the configuration of one power storage element 100 will be described in detail below.
  • the power storage element 100 includes a container 110 and a pair of electrode terminals 140 (positive electrode and negative electrode).
  • a current collector 160 is housed therein.
  • An electrolytic solution non-aqueous electrolyte
  • a gasket is placed between the electrode terminal 140 and current collector 160 and the container 110 (cover 130, which will be described later).
  • the illustration of is omitted.
  • the type of electrolytic solution is not particularly limited as long as it does not impair the performance of power storage element 100, and various types can be selected.
  • the gasket may be made of any material as long as it has insulating properties.
  • the power storage element 100 includes a spacer placed on the side or below the electrode body 150, an insulating film that wraps around the electrode body 150, etc., and an insulating film (such as a shrink tube) that covers the outer surface of the container 110. ) etc.
  • the container 110 is a rectangular parallelepiped-shaped (prismatic or box-shaped) case that includes a container body 120 with an opening formed therein and a lid 130 that closes the opening of the container body 120.
  • the container 100 has an elongated shape in the X-axis direction.
  • the length of the container 100 in the X-axis direction may be three times or more the length in the Z-axis direction.
  • the container main body 120 is a rectangular cylindrical member with a bottom that constitutes the main body of the container 110, and has an opening formed in a surface in the positive direction of the Z-axis.
  • the lid 130 is a rectangular plate-like member that is long in the X-axis direction and constitutes the lid of the container 110, and is arranged in the positive Z-axis direction of the container body 120.
  • the lid body 130 is provided with a gas exhaust valve 131 that releases the pressure when the pressure inside the container 110 increases excessively.
  • the container 110 may be provided with a liquid injection part or the like for injecting the electrolyte into the container 110.
  • the material of the container 110 (container body 120 and lid 130) is not particularly limited, and may be a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin may also be used. can.
  • the container 110 has a structure in which the inside is hermetically sealed by housing the electrode body 150 and the like inside the container body 120, and then joining the container body 120 and the lid 130 by welding or the like. .
  • the container 110 has first surfaces 111 and 112 on both sides in the Y-axis direction, a second surface 113 and a third surface 114 on both sides in the X-axis direction, and a fourth surface on the bottom surface in the negative Z-axis direction. It has a surface 115 and a fifth surface 116 on the upper surface in the positive direction of the Z axis.
  • the first surface 111 is a surface of the container 110 in the negative direction of the Y-axis
  • the first surface 112 is a surface of the container 110 in the positive direction of the Y-axis
  • the second surface 113 is a surface of the container 110 in the negative direction of the X-axis
  • the third surface 114 is a surface of the container 110 in the positive direction of the X-axis.
  • the first surfaces 111 and 112 are rectangular planar portions that form the long side surfaces of the container 110, and are arranged to face adjacent power storage elements 100 or spacers 200 in the Y-axis direction.
  • the first surfaces 111 and 112 are arranged adjacent to the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116.
  • the areas of the first surfaces 111 and 112 are larger than the areas of the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116.
  • the first surface 111 and the first surface 112 are arranged at positions sandwiching the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116.
  • the second surface 113 and the third surface 114 are rectangular planar portions that form the short side surfaces of the container 110, and are arranged to face the wall portion of the spacer 200 in the X-axis direction.
  • the second surface 113 and the third surface 114 are arranged adjacent to the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116.
  • the areas of the second surface 113 and the third surface 114 are smaller than the areas of the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116.
  • the second surface 113 and the third surface 114 are arranged at positions sandwiching the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116.
  • the fourth surface 115 is a rectangular flat surface that forms the bottom surface of the container 110, and is arranged to face the wall of the spacer 200 in the Z-axis direction.
  • the fifth surface 116 is a rectangular plane part (terminal arrangement surface on which the electrode terminal 140 is arranged) forming the upper surface of the container 110, and is arranged to face the wall part of the spacer 200 in the Z-axis direction.
  • the fourth surface 115 and the fifth surface 116 are arranged adjacent to the first surfaces 111 and 112, the second surface 113, and the third surface 114.
  • the fourth surface 115 and the fifth surface 116 are arranged at positions sandwiching the first surfaces 111 and 112, the second surface 113, and the third surface 114.
  • the electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the electricity storage element 100, which is arranged on the lid 130 of the container 110. Specifically, a pair of electrode terminals 140 aligned in the X-axis direction are arranged to protrude from the top surface (fifth surface 116) of the lid 130 in the Z-axis plus direction.
  • the electrode terminal 140 is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body 150 via the current collector 160. In other words, the electrode terminal 140 is used to lead the electricity stored in the electrode body 150 to the external space of the electricity storage element 100 and to introduce electricity into the internal space of the electricity storage element 100 in order to store electricity in the electrode body 150. It is a metal member.
  • the electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
  • the electrode terminal 140 is connected (joined) to the current collector 160 and attached to the lid 130 by caulking or the like.
  • the method of connecting (joining) the electrode terminal 140 and the current collector 160 is not limited to caulking, but may include welding such as ultrasonic welding, laser welding, or resistance welding, or a mechanical method other than caulking such as screw connection. Bonding or the like may also be used.
  • the electrode body 150 is a power storage element (power generation element) that can store electricity, and includes a positive electrode plate, a negative electrode plate, and a separator, and is formed by laminating the positive electrode plate, the negative electrode plate, and the separator.
  • the positive electrode plate is an electrode plate in which a positive electrode active material layer is formed on a positive electrode base material which is a current collecting foil made of metal such as aluminum or an aluminum alloy.
  • the negative electrode plate is an electrode plate in which a negative electrode active material layer is formed on a negative electrode base material that is a current collecting foil made of metal such as copper or copper alloy.
  • the separator is a microporous sheet made of resin.
  • any known material can be appropriately used as long as it is capable of intercalating and deintercalating lithium ions.
  • any known material can be used as appropriate as long as it does not impair the performance of power storage element 100.
  • the electrode body 150 is formed by winding a positive electrode plate and a negative electrode plate, which are arranged in layers so that a separator is sandwiched between them, with a winding axis parallel to the X-axis direction. It is a wound type electrode body. Specifically, in the electrode body 150, a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween so as to be offset from each other in the direction of the winding axis (X-axis direction).
  • the positive electrode plate and the negative electrode plate each have a portion where the composite material is not coated and the base material is exposed at the end portion in the shifted direction, and the end portion is electrically and mechanically connected to the current collector 160. connected to.
  • the electrode body 150 has an elongated shape extending in the X-axis direction, and has an oval shape when viewed from the X-axis direction.
  • the electrode body 150 has a shape in which the length in the X-axis direction is, for example, 300 mm or more, and specifically, approximately 500 mm to 1500 mm. Therefore, the length of the electrode body 150 in the X-axis direction is longer than the length in the Z-axis direction.
  • the length of the electrode body 150 in the X-axis direction may be three times or more the length in the Z-axis direction.
  • the electrode body 150 may be a wound type electrode body formed by winding a positive electrode plate, a negative electrode plate, and a separator around a winding axis parallel to the Z-axis direction.
  • the electrode body 150 may be a laminated type (stack type) electrode body formed by laminating a plurality of flat plates, a bellows-type electrode body formed by folding the plates into a bellows shape, or other electrode bodies.
  • the electrode body may have the following form.
  • the current collector 160 is a conductive current collecting member (a positive electrode current collector and a negative electrode current collector) that is disposed between the electrode body 150 and the container 110 and is electrically connected to the electrode terminal 140 and the electrode body 150. ).
  • the positive current collector 160 is connected (joined) to the positive plate of the electrode body 150 by welding or the like, and is also connected (joined) to the positive electrode terminal 140 by caulking or the like.
  • the negative electrode current collector 160 is connected (joined) to the negative electrode plate of the electrode body 150 by welding or the like, and is also connected (joined) to the negative electrode terminal 140 by caulking or the like.
  • the current collector 160 of the positive electrode is made of aluminum or an aluminum alloy, like the positive base material of the positive plate of the electrode body 150, and the current collector 160 of the negative electrode is made of the same material as the negative base material of the negative plate of the electrode body 150. , made of copper or copper alloy.
  • the method of connecting (joining) the current collector 160 and the electrode body 150 is not limited to welding, and caulking or the like may be used.
  • FIG. 3 is a perspective view showing the configuration of power storage element 100 and spacer 200 according to the present embodiment.
  • FIG. 4 is a perspective view showing the configuration of the first spacer 210 included in the spacer 200a according to the present embodiment. 4(a) shows an enlarged view of the first spacer 210 included in the spacer 200a shown in FIG. 3, and FIG. 4(b) shows the first spacer 210 shown in FIG. 4(a) in an enlarged manner. The configuration is shown when rotated by 90 degrees around the Z axis.
  • the spacer 200a includes a first spacer 210 and second spacers 220 and 230 that are separate from the first spacer 210. That is, the first spacer 210, the second spacer 220, and the second spacer 230 are mutually separate members and are arranged apart from each other.
  • the first spacer 210 is a member of the spacer 200a that is disposed in the negative X-axis direction, and is disposed facing the end of the power storage element 100 in the negative X-axis direction.
  • the second spacer 220 is a member of the spacer 200a that is disposed in the X-axis plus direction, and is disposed facing the end of the power storage element 100 in the X-axis plus direction.
  • the second spacer 230 is a member disposed between the first spacer 210 and the second spacer 220, and is disposed facing the center of the power storage element 100 in the X-axis direction.
  • the first spacer 210, the second spacer 220, and the second spacer 230 may all be formed of the same material, or the first spacer 210 and the second spacer 220 may be formed of resin, and the second spacer 230 may be formed of glass fiber. Alternatively, either of them may be made of a different material, such as ceramic.
  • the first spacer 210 and the second spacer 220 are preferably made of the same material, and the second spacer 230 is preferably made of a different material from the first spacer 210 and the second spacer 220.
  • the first spacer 210 has a shape that is symmetrical with respect to a plane passing through the center position and parallel to the XZ plane, and a shape that is symmetrical with respect to a plane passing through the center position and parallel to the XY plane. That is, the first spacer 210 has a shape that becomes rotationally symmetrical when rotated by 180° about an axis that passes through the center position and is parallel to the X-axis direction. As shown in FIGS. 3 and 4, the first spacer 210 includes a first wall 211, a second wall 212, a top wall 213, and a bottom wall 214.
  • the first spacer 210 integrally includes a first wall portion 211, a second wall portion 212, a top wall portion 213, and a bottom wall portion 214, but any of the portions are separated. It may be formed and connected (joined) with the body.
  • the first wall portion 211 is a flat and rectangular portion extending in the Z-axis direction parallel to the XZ plane, and constitutes the main body of the first spacer 210.
  • the first wall portion 211 is arranged in the positive Y-axis direction or the negative Y-axis direction of the power storage element 100. Specifically, the first wall portion 211 faces an end in the X-axis minus direction of the first surface 111 or 112 of the container 110 of the power storage element 100 in the Y-axis direction, and It is placed in contact with the end in the negative direction of the X-axis.
  • the first wall portion 211 extends from one end edge to the other end edge of the first surface 111 or 112 in the Z-axis direction.
  • the first wall portion 211 is adhered to the first surface 111 or 112 using an adhesive, double-sided tape, or the like. Specifically, the first wall portion 211 is located between the two power storage elements 100 in the Y-axis direction, that is, between the first surface 111 of the container 110 of one power storage element 100 and the first surface 111 of the container 110 of the other power storage element 100. It is arranged between the first surface 112 and the other surface 112 . The first wall portion 211 contacts the ends of both the first surface 111 and the first surface 112 in the X-axis negative direction, and is bonded to both the first surface 111 and the first surface 112. .
  • the second wall portion 212 is a flat rectangular portion that protrudes from the end of the first wall portion 211 in the X-axis negative direction to both sides in the Y-axis direction and extends in the Z-axis direction, and is arranged parallel to the YZ plane. There is.
  • the second wall portion 212 is arranged along the second surface 113 of the container 110 of the power storage element 100 in the negative X-axis direction of the power storage element 100 .
  • the second wall portion 212 is arranged facing the second surface 113 in the X-axis direction so as to cover approximately half of the second surface 113 of the container 110 in the Y-axis positive direction or the Y-axis negative direction. be done.
  • the second wall portion 212 extends from one end edge to the other end edge of the second surface 113 in the Z-axis direction.
  • the second wall portion 212 is placed in contact with the second surface 113 and is bonded to the second surface 113 with an adhesive, double-sided tape, or the like.
  • the second wall portion 212 is bonded to both second surfaces 113 of the two containers 110 of the two power storage elements 100 that sandwich the first wall portion 211 .
  • the upper wall portion 213 is a flat, substantially triangular (or substantially trapezoidal) portion that protrudes from the end of the first wall portion 211 in the Z-axis plus direction to both sides in the Y-axis direction, and is arranged parallel to the XY plane. ing. Upper wall portion 213 is arranged along the fifth surface 116 of container 110 of power storage element 100 in the positive Z-axis direction of power storage element 100 . Specifically, the upper wall portion 213 is disposed facing the fifth surface 116 in the Z-axis direction so as to cover the corner of the end of the fifth surface 116 in the X-axis minus direction.
  • the upper wall portion 213 is placed in contact with the fifth surface 116 and is adhered to the fifth surface 116 with an adhesive, double-sided tape, or the like. Specifically, the upper wall portion 213 is bonded to both of the fifth surfaces 116 of the two containers 110 that are included in the two power storage elements 100 that sandwich the first wall portion 211 .
  • the bottom wall portion 214 is a flat, substantially triangular (or substantially trapezoidal) portion that protrudes from the end of the first wall portion 211 in the Z-axis negative direction to both sides in the Y-axis direction, and is arranged parallel to the XY plane. ing. Bottom wall portion 214 is arranged along fourth surface 115 of container 110 of power storage element 100 in the negative Z-axis direction of power storage element 100 . Specifically, the bottom wall portion 214 is disposed facing the fourth surface 115 in the Z-axis direction so as to cover the corner of the end of the fourth surface 115 in the X-axis minus direction.
  • the bottom wall portion 214 is placed in contact with the fourth surface 115 and is adhered to the fourth surface 115 with an adhesive, double-sided tape, or the like. Specifically, the bottom wall portion 214 is bonded to both of the fourth surfaces 115 of the two containers 110 that are included in the two power storage elements 100 that sandwich the first wall portion 211 .
  • the spacer 200a has a first wall portion 211 facing the first surface 111 or 112 of the container 110 of the power storage element 100, and a second wall portion 212 facing the second surface 113.
  • the first wall portion 211 may be welded to the first surface 111 or 112 of the container 110 of the power storage element 100 instead of or in addition to adhesion.
  • the first wall portion 211 can be welded to the first surface 111 or 112 by, for example, covering the outer surface of the container 110 of the power storage element 100 with an insulating film and welding the insulating film and the first wall portion 211 together.
  • the second wall portion 212 may be welded to the second surface 113 of the container 110 of the power storage element 100 instead of or in addition to adhesion. That is, the first wall portion 211 only needs to be bonded or welded to the first surface 111 or 112, and the second wall portion 212 only needs to be bonded or welded to the second surface 113.
  • the upper wall portion 213 does not need to be bonded or welded to the fifth surface 116. In this case, the upper wall portion 213 may be spaced apart from the fifth surface 116.
  • the bottom wall portion 214 does not need to be bonded or welded to the fourth surface 115. In this case, the bottom wall portion 214 may be spaced apart from the fourth surface 115.
  • the second spacer 220 has a third wall 221, a fourth wall 222, a top wall 223, and a bottom wall 224.
  • the second spacer 220 has a shape that is symmetrical to the first spacer 210 with respect to the YZ plane, or a shape that is obtained by rotating the first spacer 210 by 180 degrees around the Z axis. Therefore, the third wall 221 has the same configuration as the first wall 211 of the first spacer 210, the fourth wall 222 has the same configuration as the second wall 212, and the upper wall
  • the portion 223 has the same configuration as the top wall portion 213, and the bottom wall portion 224 has the same configuration as the bottom wall portion 214.
  • the configurations of the third wall 221, fourth wall 222, top wall 223, and bottom wall 224 of the second spacer 220 are as follows: 212, the top wall part 213, and the bottom wall part 214, and the description thereof will be simplified or omitted.
  • the third wall portion 221 faces the end of the first surface 111 or 112 in the X-axis positive direction of the container 110 of the power storage element 100 in the Y-axis direction, and is located opposite the end of the first surface 111 or 112 in the X-axis positive direction placed in contact with the In this embodiment, the third wall portion 221 is adhered or welded to the first surface 111 or 112. Specifically, the third wall 221 contacts the ends of both the first surfaces 111 and 112 in the X-axis positive direction of the two containers 110 of the two power storage elements 100 that sandwich the third wall 221, and , is adhered or welded to both the first surface 111 and the first surface 112.
  • the fourth wall portion 222 is arranged along the third surface 114 of the container 110 of the power storage element 100 in the X-axis plus direction of the power storage element 100. Specifically, the fourth wall portion 222 is arranged to face the third surface 114 in the X-axis direction so as to cover approximately half of the third surface 114 of the container 110 in the Y-axis positive direction or the Y-axis negative direction. be done.
  • the fourth wall portion 222 extends from one end edge to the other end edge of the third surface 114 in the Z-axis direction.
  • the fourth wall portion 222 is placed in contact with the third surface 114 and is adhered or welded to the third surface 114. Specifically, the fourth wall 222 is adhered or welded to both third surfaces 114 of the two containers 110 that are included in the two power storage elements 100 that sandwich the third wall 221 .
  • the upper wall portion 223 is arranged to face the fifth surface 116 in the Z-axis direction so as to cover the corner of the fifth surface 116 of the container 110 of the power storage element 100 at the end in the X-axis positive direction.
  • Bottom wall portion 224 is disposed facing fourth surface 115 in the Z-axis direction so as to cover the corner of the fourth surface 115 of container 110 of power storage element 100 at the end in the X-axis positive direction.
  • the second spacer 230 has a flat and rectangular third wall portion 231 parallel to the XZ plane.
  • second spacer 230 has only third wall portion 231.
  • Third wall portion 231 is arranged in the Y-axis positive direction or Y-axis negative direction of power storage element 100. Specifically, the third wall portion 231 faces the center portion in the X-axis direction and the center portion in the Z-axis direction of the first surface 111 or 112 of the container 110 of the power storage element 100 in the Y-axis direction, and It is placed in contact with the center portion of the surface 111 or 112 in the X-axis direction and the center portion in the Z-axis direction.
  • the third wall portion 231 is adhered to the first surface 111 or 112 using an adhesive, double-sided tape, or the like. Specifically, the third wall portion 231 is located between the two power storage elements 100 in the Y-axis direction, that is, between the first surface 111 of the container 110 of one power storage element 100 and the first surface 111 of the container 110 of the other power storage element 100. It is arranged between the first surface 112 and the other surface 112 . The third wall portion 231 contacts the central portion in the X-axis direction and the central portion in the Z-axis direction of both the first surface 111 and the first surface 112, and Glued to both sides.
  • the third wall 231 is welded to the first surface 111 or 112 of the container 110 of the power storage element 100 instead of or in addition to adhesion. It's okay. That is, the third wall portion 231 only needs to be adhered or welded to the first surface 111 or 112.
  • the second spacer 220 has the third wall 221 facing the first surface 111 (112) and the fourth wall 222 facing the third surface 114.
  • the wall portion 222 is adhered or welded to the first surface 111 (112) and the third surface 114.
  • the second spacer 230 has a third wall portion 231 facing the first surface 111 (112), and the third wall portion 231 is adhered or welded to the first surface 111 (112). Therefore, the second spacers 220 and 230 have at least one of a third wall portion facing the first surface 111 (112) and a fourth wall portion facing the third surface 114. At least one of the third wall and the fourth wall is adhered or welded to at least one of the first surface 111 (112) and the third surface 114.
  • spacer 200b includes a first spacer 240 and second spacers 250 and 260.
  • the first spacer 240 has a first wall part 241, a second wall part 242, a top wall part 243, and a bottom wall part 244, like the first spacer 210 of the spacer 200a.
  • the second spacer 250 has a third wall part 251, a fourth wall part 252, a top wall part 253, and a bottom wall part 254, like the second spacer 220 of the spacer 200a.
  • the second spacer 260 has a third wall portion 261 similarly to the second spacer 230 of the spacer 200a.
  • the spacer 200b has a shape similar to that of the spacer 200a divided in half in the Y-axis direction. That is, the first spacer 240, the second spacer 250, and the second spacer 260 have a shape that is obtained by dividing the first spacer 210, the second spacer 220, and the second spacer 230 in half in the Y-axis direction.
  • the first wall 241, second wall 242, top wall 243, and bottom wall 244 of the first spacer 240 are the same as the first wall 211, second wall 212, and It has a shape in which the top wall part 213 and the bottom wall part 214 are divided in half in the Y-axis direction.
  • the third wall 251, fourth wall 252, top wall 253, and bottom wall 254 of the second spacer 250 are the same as the third wall 221, fourth wall 222, top wall 223, and bottom wall 254 of the second spacer 220. It has a shape similar to that of the bottom wall portion 224 divided in half in the Y-axis direction.
  • the third wall portion 261 of the second spacer 260 has a shape similar to that of the third wall portion 231 of the second spacer 230 divided in half in the Y-axis direction.
  • the thicknesses of the first wall 241, the third wall 251, and the third wall 261 are not particularly limited, and as shown in FIG. The thickness may be the same as that of the portion 231.
  • each part of the spacer 200b (first spacer 240, second spacer 250, and second spacer 260) is the same as the configuration of each part of the spacer 200a (first spacer 210, second spacer 220, and second spacer 230). According to. Therefore, a detailed explanation of the configuration of each part of the spacer 200b will be omitted.
  • the spacer 200a (first spacer 210) has the first wall portion 211 and the second wall portion 212. At least one of the first wall portion 211 and the second wall portion 212 (both in this embodiment) is connected to at least one of the first surface 111 (112) and the second surface 113 (in this embodiment, both) of the container 110 of the power storage element 100. In the form of , it is glued or welded to both sides).
  • the spacer 200a (first spacer 210) can be easily positioned with high precision with respect to the electricity storage element 100 by the first wall portion 211 and the second wall portion 212
  • the spacer 200a (first spacer 210) can be easily positioned with respect to the electricity storage element 100 by adhesion or welding. ) can be fixed to the electricity storage element 100. Therefore, since spacer 200a (first spacer 210) can be fixed at a relatively accurate position with respect to power storage element 100, the assemblability (ease of assembly) of power storage device 10 can be improved. After the power storage device 10 is assembled, positional displacement of the spacer 200a (first spacer 210) with respect to the power storage element 100 can be suppressed.
  • the spacer 200a is composed of a plurality of separate members (the first spacer 210, the second spacers 220 and 230), the spacer 200a can be arranged at a necessary location in the power storage element 100. This makes it possible to reduce the amount of material used for the spacer 200a, reduce the weight, and reduce costs compared to the case where one spacer is arranged in most of the space between the power storage elements.
  • the amount of material used for the spacer 200a can be further reduced by configuring the spacer 200a from a plurality of separate members. can. If the length of the container 100 in the X-axis direction is three times or more the length in the Z-axis direction, the amount of material used for the spacer 200a can be further reduced by configuring the spacer 200a with a plurality of separate members. can.
  • the spacer 200a is composed of a plurality of separate members (first spacer 210, second spacers 220 and 230), the material of the first spacer 210 and the material of the second spacer 230 can be made different. can. In this case, by forming second spacer 230 from ceramic or the like, melting of second spacer 230 can be suppressed even when power storage element 100 reaches a high temperature. Thereby, the safety of the power storage element can be improved.
  • At least one of the third wall portion 221 and the fourth wall portion 222 of the second spacer 220 (in this embodiment, both) At least one (in this embodiment, both) is adhered or welded. Thereby, the second spacer 220 can also be easily positioned with respect to the power storage element 100 and fixed to the power storage element 100. After the power storage device 10 is assembled, positional displacement of the second spacer 220 with respect to the power storage element 100 can be suppressed. By adhering or welding the third wall portion 231 of the second spacer 230 to the first surface 111 (112) of the container 110 of the power storage element 100, the second spacer 230 can also be fixed to the power storage element 100.
  • the second surface 113 of the container 110 of the power storage element 100 has a smaller area than the first surfaces 111 and 112, so the first surfaces 111 and 112 are the long sides of the container 110, and the second surface 113 is the short side of the container 110. It is a side.
  • the long sides (first surfaces 111 and 112) of the container 110 swell, but the short sides (second surface 113) swell by a small amount. Therefore, the second wall portion 212 of the spacer 200a (first spacer 210) is adhered or welded to the short side (second surface 113) of the container 110 of the power storage element 100, so that the spacer 200a (first spacer 210) 210) can be prevented from peeling off from the container 110 of the power storage element 100.
  • the second wall portion 212 is adhered or welded to the short side surface (second surface 113) of the container 110, even if the long side surface (first surfaces 111 and 112) of the container 110 swells, the first wall portion Movement of the portion 211 is suppressed. Therefore, the first wall portion 211 can press the long side (first surface 111 or 112) of the container 110 more firmly.
  • Both the first wall portion 211 and the second wall portion 212 of the spacer 200a are adhered or welded to both the first surface 111 (112) and the second surface 113 of the container 110 of the power storage element 100. Thereby, spacer 200a (first spacer 210) can be firmly fixed to power storage element 100.
  • the spacer 200a (first spacer 210, second spacer 220 and 230) be adhered to the power storage element 100 with an adhesive because the adhesive does not have cushioning properties like double-sided tape.
  • the description of the effects regarding the first spacer 210 is similarly applicable to the second spacer 220.
  • the description of the effects regarding spacer 200a can be similarly applied to spacer 200b (first spacer 240, second spacers 250 and 260).
  • FIG. 5 is a perspective view showing the configuration of first spacers 210a and 210b included in spacer 200a according to Modification 1 of the present embodiment.
  • (a) and (b) of FIG. 5 are diagrams corresponding to (a) and (b) of FIG. 4.
  • first spacers 210a and 210b in this modification are two members obtained by dividing the first spacer 210 in the above embodiment.
  • the first spacer 210a has the same shape as the end of the first spacer 210 in the Z-axis positive direction
  • the first spacer 210b has the same shape as the end of the first spacer 210 in the Z-axis negative direction. have.
  • the first spacers 210a and 210b are two members arranged in the Z-axis direction.
  • the first spacer 210a has a first wall portion 211a, a second wall portion 212a, and an upper wall portion 213.
  • the first wall portion 211a and the second wall portion 212a have the same shapes as the Z-axis plus direction end portions of the first wall portion 211 and the second wall portion 212 of the first spacer 210 in the above embodiment. are doing.
  • the first spacer 210b has a first wall portion 211b, a second wall portion 212b, and a bottom wall portion 214.
  • the first wall portion 211b and the second wall portion 212b have the same shape as the end portions in the Z-axis negative direction of the first wall portion 211 and the second wall portion 212 of the first spacer 210 in the above embodiment. are doing.
  • the other configurations of this modification are the same as those of the above embodiment, so detailed explanations will be omitted.
  • the power storage device 10 can achieve the same effects as the above embodiment.
  • spacer 200a by further dividing spacer 200a, spacer 200a can be arranged at a necessary location in power storage element 100. Thereby, the amount of material used for the spacer 200a can be reduced, the weight can be reduced, and the cost can be reduced.
  • the spacer 200a (first spacers 210a and 210b) may be further divided.
  • the second spacer 220 or 230 may be divided.
  • the first spacer 240, second spacer 250, or 260 included in the spacer 200b may be similarly divided.
  • modified examples of the first spacer 210 included in the spacer 200a will be mainly described, but among the modified examples, those that are applicable to the second spacer 220 or 230 are also modified to the second spacer 220 or 230. You may.
  • modifications of the first spacer 210 those that are applicable to the first spacer 240, second spacer 250, or 260 included in the spacer 200b are also applicable to the first spacer 240, second spacer 250, or 260. May be deformed.
  • the first wall 211 of the first spacer 210 is adhered (or welded) to both the first surfaces 111 and 112 of the two containers 110 of the two power storage elements 100 that sandwich the first wall 211. ), but it is not necessary to adhere (or weld) to either one of the first surfaces 111 and 112.
  • the second wall portion 212 of the first spacer 210 is adhered (or welded) to both of the second surfaces 113 of the two containers 110 of the two power storage elements 100 that sandwich the first wall portion 211. However, it is not necessary to adhere (or weld) to one of the second surfaces 113. If the second wall portion 212 is not bonded (or welded) to the second surface 113, the second wall portion 212 may be spaced apart from the second surface 113.
  • both the first wall portion 211 and the second wall portion 212 of the first spacer 210 are bonded ( or welding), but is not limited thereto.
  • the first wall portion 211 may not be bonded (or welded) to the first surface 111 (112), and the second wall portion 212 may not be bonded (or welded) to the second surface 113. In this way, at least one of the first wall portion 211 and the second wall portion 212 may be adhered or welded to at least one of the first surface 111 (112) and the second surface 113.
  • the first spacer 210 has the top wall part 213 and the bottom wall part 214, but it may not have one or both of the top wall part 213 and the bottom wall part 214. Good too.
  • the spacer 200a includes the separate first spacer 210, second spacer 220, and second spacer 230, but it may not include the second spacer 220. , the second spacer 230 may not be included. Any two or all three of the first spacer 210, the second spacer 220, and the second spacer 230 may be integrated.
  • the first surface 111 (112) of the container 110 of the power storage element 100 is the long side of the container 110
  • the second surface 113 is the short side of the container 110
  • (112) may be the short side of the container 110
  • the second surface 113 may be the long side of the container 110
  • the first surface 111 (112) may be the terminal arrangement surface or the bottom surface of the container 110
  • the second surface 113 may be the terminal arrangement surface or the bottom surface of the container 110.
  • all of the plurality of spacers 200 (200a and 200b) have the above configuration, but any one of the spacers 200 may have a configuration different from the above.
  • any one of the plurality of spacers 200 (200a and 200b) included in the power storage device 10 may not be arranged.
  • Power storage device 10 may include spacer 200a without including spacer 200b.
  • Power storage device 10 may not include any one of the plurality of spacers 200a.
  • power storage device 10 includes only one power storage element 100, spacer 200a is not arranged, and two spacers 200b are arranged on both sides of power storage element 100, or one spacer 200b is arranged on one side of power storage element 100. may be done.
  • the present invention can be applied to a power storage device, etc. equipped with a power storage element such as a lithium ion secondary battery.
  • Power storage device 100 Power storage element 110 Container 111, 112 First surface 113 Second surface 114 Third surface 115 Fourth surface 116 Fifth surface 120 Container body 130 Lid body 131 Gas discharge valve 140 Electrode terminal 150 Electrode body 160 Current collector 200, 200a, 200b Spacer 210, 210a, 210b, 240 First spacer 211, 211a, 211b, 241 First wall 212, 212a, 212b, 242 Second wall 213, 223, 243, 253 Upper wall 214, 224, 244, 254 Bottom wall 220, 230, 250, 260 Second spacer 221, 231, 251, 261 Third wall 222, 252 Fourth wall 300 Exterior body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A power storage device comprising a power storage element having a container, and a spacer, wherein the container has a first surface and a second surface that are adjacent to each other, the spacer has a first wall portion facing the first surface, and a second wall portion facing the second surface, and at least one of the first wall portion and the second wall portion is bonded or welded to at least one of the first surface and the second surface.

Description

蓄電装置Power storage device
 本発明は、蓄電素子とスペーサとを備える蓄電装置に関する。 The present invention relates to a power storage device including a power storage element and a spacer.
 従来、蓄電素子とスペーサとを備え、スペーサが蓄電素子に固定された蓄電装置が知られている。例えば、特許文献1には、セル間スペーサ(スペーサ)が両面テープで電池セル(蓄電素子)に固定された電池モジュール(蓄電装置)が開示されている。 Conventionally, a power storage device is known that includes a power storage element and a spacer, and the spacer is fixed to the power storage element. For example, Patent Document 1 discloses a battery module (power storage device) in which inter-cell spacers (spacers) are fixed to battery cells (power storage elements) with double-sided tape.
国際公開第2014/203342号International Publication No. 2014/203342
 上記従来のような構成の蓄電装置では、組立性(組み立てやすさ)が低下するおそれがある。例えば、上記特許文献1に開示された蓄電装置では、スペーサが板状の部材であるため、スペーサを蓄電素子に固定する際に、スペーサを蓄電素子に対して高精度に位置決めして固定するのが困難となるおそれがある。このため、上記従来の蓄電装置では、スペーサを蓄電素子に対して正確な位置に固定するのが困難になり、組立性が低下するおそれがある。 In the power storage device having the conventional configuration described above, there is a risk that the assemblability (easiness of assembly) may be reduced. For example, in the power storage device disclosed in Patent Document 1, the spacer is a plate-shaped member, so when fixing the spacer to the power storage element, it is necessary to position and fix the spacer with high precision with respect to the power storage element. may become difficult. For this reason, in the conventional power storage device described above, it becomes difficult to fix the spacer at an accurate position with respect to the power storage element, and there is a possibility that ease of assembly may be reduced.
 本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、組立性を向上できる蓄電装置を提供することを目的とする。 The present invention was made by the inventor of the present application newly paying attention to the above-mentioned problem, and an object of the present invention is to provide a power storage device that can improve ease of assembly.
 本発明の一実施形態に係る蓄電装置は、容器を有する蓄電素子と、スペーサと、を備える蓄電装置であって、前記容器は、互いに隣り合う第一面及び第二面を有し、前記スペーサは、前記第一面に対向する第一壁部と、前記第二面に対向する第二壁部と、を有し、前記第一壁部及び前記第二壁部の少なくとも一方は、前記第一面及び前記第二面の少なくとも一方に接着または溶着されている。 A power storage device according to an embodiment of the present invention is a power storage device including a power storage element having a container and a spacer, wherein the container has a first surface and a second surface adjacent to each other, and the spacer has a first wall portion facing the first surface and a second wall portion facing the second surface, and at least one of the first wall portion and the second wall portion is opposite to the first wall portion. It is adhered or welded to at least one of the first surface and the second surface.
 本発明の一実施形態における蓄電装置によれば、組立性を向上できる。 According to the power storage device in one embodiment of the present invention, ease of assembly can be improved.
図1は、実施の形態に係る蓄電装置の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of a power storage device according to an embodiment. 図2は、実施の形態に係る蓄電素子の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the power storage element according to the embodiment. 図3は、実施の形態に係る蓄電素子及びスペーサの構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of a power storage element and a spacer according to the embodiment. 図4は、実施の形態に係るスペーサが有する第一スペーサの構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of a first spacer included in the spacer according to the embodiment. 図5は、実施の形態の変形例1に係るスペーサが有する第一スペーサの構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of a first spacer included in a spacer according to Modification 1 of the embodiment.
 (1)本発明の一実施形態に係る蓄電装置は、容器を有する蓄電素子と、スペーサと、を備える蓄電装置であって、前記容器は、互いに隣り合う第一面及び第二面を有し、前記スペーサは、前記第一面に対向する第一壁部と、前記第二面に対向する第二壁部と、を有し、前記第一壁部及び前記第二壁部の少なくとも一方は、前記第一面及び前記第二面の少なくとも一方に接着または溶着されている。 (1) A power storage device according to an embodiment of the present invention includes a power storage element having a container and a spacer, wherein the container has a first surface and a second surface adjacent to each other. , the spacer has a first wall portion facing the first surface, and a second wall portion facing the second surface, and at least one of the first wall portion and the second wall portion is , is adhered or welded to at least one of the first surface and the second surface.
 本発明の一実施形態に係る蓄電装置によれば、スペーサは、第一壁部及び第二壁部を有し、第一壁部及び第二壁部の少なくとも一方は、蓄電素子の容器の第一面及び第二面の少なくとも一方に接着または溶着されている。これにより、スペーサの第一壁部及び第二壁部でスペーサを蓄電素子に対して容易に高精度で位置決めしつつ、接着または溶着によってスペーサを蓄電素子に固定できる。したがって、スペーサを蓄電素子に対して比較的正確な位置に固定できるため、蓄電装置の組立性を向上できる。 According to the power storage device according to one embodiment of the present invention, the spacer has a first wall portion and a second wall portion, and at least one of the first wall portion and the second wall portion is connected to the second wall portion of the container of the power storage element. It is adhered or welded to at least one of the first surface and the second surface. Thereby, the spacer can be easily and accurately positioned with respect to the power storage element using the first and second wall parts of the spacer, and the spacer can be fixed to the power storage element by adhesion or welding. Therefore, since the spacer can be fixed at a relatively accurate position relative to the power storage element, the ease of assembling the power storage device can be improved.
 (2)上記(1)に記載の蓄電装置において、前記容器は、前記第二面とで前記第一面を挟む第三面を有し、前記スペーサは、前記第一壁部及び前記第二壁部を有する第一スペーサと、前記第一面に対向する第三壁部及び前記第三面に対向する第四壁部の少なくとも一方を有する第二スペーサであって、前記第一スペーサとは別体の第二スペーサと、を有する、としてもよい。 (2) In the power storage device according to (1) above, the container has a third surface sandwiching the first surface between the second surface and the spacer, a first spacer having a wall portion; and a second spacer having at least one of a third wall portion facing the first surface and a fourth wall portion facing the third surface, the first spacer being A separate second spacer may be included.
 上記(2)に記載の蓄電装置によれば、スペーサが、別体の複数の部材(第一スペーサ及び第二スペーサ)で構成されていることで、蓄電素子における必要な箇所にスペーサを配置できる。これにより、スペーサの材料使用量を低減したり、軽量化を図ったり、コスト低減を図ることができる。 According to the power storage device described in (2) above, the spacer is composed of a plurality of separate members (the first spacer and the second spacer), so that the spacer can be placed at a necessary location in the power storage element. . Thereby, the amount of material used for the spacer can be reduced, the weight can be reduced, and the cost can be reduced.
 (3)上記(2)に記載の蓄電装置において、前記第三壁部及び前記第四壁部の少なくとも一方は、前記第一面及び前記第三面の少なくとも一方に接着または溶着されていてもよい。 (3) In the power storage device according to (2) above, at least one of the third wall portion and the fourth wall portion may be adhered or welded to at least one of the first surface and the third surface. good.
 上記(3)に記載の蓄電装置によれば、第二スペーサの第三壁部及び第四壁部の少なくとも一方を、蓄電素子の容器の第一面及び第三面の少なくとも一方に接着または溶着することで、第二スペーサも蓄電素子に対して固定できる。 According to the power storage device described in (3) above, at least one of the third wall portion and the fourth wall portion of the second spacer is adhered or welded to at least one of the first surface and the third surface of the container of the power storage element. By doing so, the second spacer can also be fixed to the power storage element.
 (4)上記(1)から(3)のいずれかひとつに記載の蓄電装置において、前記第二面は、前記第一面よりも面積が小さく、前記第二壁部は、前記第二面に接着または溶着されている、としてもよい。 (4) In the power storage device according to any one of (1) to (3) above, the second surface has a smaller area than the first surface, and the second wall portion is located on the second surface. It may be glued or welded.
 上記(4)に記載の蓄電装置によれば、蓄電素子の容器の第二面は、第一面よりも面積が小さいため、第一面が容器の長側面であり、第二面が容器の短側面である。蓄電素子は、容器の長側面(第一面)が膨れるが、短側面(第二面)は膨れる量が小さい。このため、スペーサの第二壁部が、蓄電素子の容器の短側面(第二面)に接着または溶着されていることで、スペーサが蓄電素子の容器から剥がれるのを抑制できる。 According to the power storage device described in (4) above, the second surface of the container of the power storage element has a smaller area than the first surface, so the first surface is the long side of the container and the second surface is the long side of the container. It is the short side. In the electricity storage element, the long side (first side) of the container swells, but the short side (second side) swells to a small extent. Therefore, by adhering or welding the second wall portion of the spacer to the short side (second surface) of the storage element container, it is possible to prevent the spacer from peeling off from the storage element container.
 (5)上記(1)から(4)のいずれかひとつに記載の蓄電装置において、前記第一壁部は、前記第一面に接着または溶着され、前記第二壁部は、前記第二面に接着または溶着されている、としてもよい。 (5) In the power storage device according to any one of (1) to (4) above, the first wall portion is bonded or welded to the first surface, and the second wall portion is bonded to the second surface. It may be glued or welded to.
 上記(5)に記載の蓄電装置によれば、スペーサの第一壁部及び第二壁部の双方を、蓄電素子の容器の第一面及び第二面の双方に接着または溶着することで、スペーサを蓄電素子に強固に固定できる。 According to the power storage device described in (5) above, by adhering or welding both the first wall portion and the second wall portion of the spacer to both the first surface and the second surface of the container of the power storage element, The spacer can be firmly fixed to the electricity storage element.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序等は、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。 Hereinafter, a power storage device according to an embodiment of the present invention (including variations thereof) will be described with reference to the drawings. The embodiments described below are all inclusive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, manufacturing steps, order of manufacturing steps, etc. shown in the following embodiments are merely examples, and do not limit the present invention. In each figure, dimensions etc. are not strictly illustrated. In each figure, the same or similar components are designated by the same reference numerals.
 以下の説明及び図面中において、蓄電素子が有する一対(正極及び負極)の電極端子の並び方向、蓄電素子の容器の短側面の対向方向、または、蓄電素子の容器の延びる方向を、X軸方向と定義する。複数の蓄電素子の並び方向、蓄電素子とスペーサとの並び方向、蓄電素子の厚み方向(扁平方向)、または、蓄電素子の容器の長側面の対向方向を、Y軸方向と定義する。蓄電素子の容器の容器本体と蓋体との並び方向、蓄電素子の電極端子の突出方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the direction in which a pair of electrode terminals (positive and negative electrodes) of a power storage element are arranged, the opposing direction of the short sides of the container of the power storage element, or the direction in which the container of the power storage element extends is referred to as the X-axis direction. It is defined as The direction in which a plurality of power storage elements are lined up, the direction in which the power storage elements and spacers are lined up, the thickness direction (flat direction) of the power storage elements, or the direction in which the long sides of the power storage elements face each other is defined as the Y-axis direction. The direction in which the container body and the lid of the storage element container are lined up, the protruding direction of the electrode terminal of the storage element, or the vertical direction is defined as the Z-axis direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that intersect with each other (orthogonal in this embodiment). Depending on the usage mode, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described as the vertical direction below.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。単にX軸方向という場合は、X軸プラス方向及びX軸マイナス方向の双方向またはいずれか一方の方向を示す。Y軸方向及びZ軸方向についても同様である。平行及び直交等の、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が平行であるとは、当該2つの方向が完全に平行であることを意味するだけでなく、実質的に平行であること、すなわち、例えば数%程度の差異を含むことも意味する。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。 In the following description, the X-axis plus direction indicates the arrow direction of the X-axis, and the X-axis minus direction indicates the opposite direction to the X-axis plus direction. When simply referred to as the X-axis direction, it refers to both or one of the X-axis plus direction and the X-axis minus direction. The same applies to the Y-axis direction and the Z-axis direction. Expressions indicating relative directions or orientations, such as parallel and orthogonal, include cases where the directions or orientations are not strictly speaking. Two directions being parallel means not only that the two directions are completely parallel, but also that they are substantially parallel, that is, including a difference of, for example, a few percent. . In the following description, when the expression "insulation" is used, it means "electrical insulation".
 (実施の形態)
 [1 蓄電装置10の全般的な説明]
 まず、本実施の形態における蓄電装置10の全般的な説明を行う。図1は、本実施の形態に係る蓄電装置10の構成を示す斜視図である。図1は、蓄電装置10が備える外装体300の概略の外形を破線で示し、かつ、外装体300を透視して外装体300の内方を示した図となっている。
(Embodiment)
[1 General description of power storage device 10]
First, a general description of power storage device 10 in this embodiment will be given. FIG. 1 is a perspective view showing the configuration of a power storage device 10 according to the present embodiment. FIG. 1 shows the general outline of the exterior body 300 included in the power storage device 10 using broken lines, and is a diagram showing the inside of the exterior body 300 when seen through the exterior body 300.
 蓄電装置10は、外部からの電気を充電し、また外部へ電気を放電することができる装置であり、本実施の形態では、略直方体形状を有している。蓄電装置10は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。蓄電装置10は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、及び、化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電装置10は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in this embodiment. The power storage device 10 is a battery module (battery assembly) used for power storage, power supply, or the like. The power storage device 10 is used as a battery for driving or starting an engine of a mobile object such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railway vehicle for an electric railway. . Examples of the above-mentioned vehicles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel oil, liquefied natural gas, etc.) vehicles. Examples of the above-mentioned railway vehicles for electric railways include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor. The power storage device 10 can also be used as a stationary battery or the like used for home or business purposes.
 図1に示すように、蓄電装置10は、複数の蓄電素子100と、複数のスペーサ200(200a及び200b)と、外装体300と、を備えている。蓄電装置10は、蓄電素子100同士を直列または並列に接続するバスバーも備えているが、図示及び説明は省略する。バスバーは、全ての蓄電素子100を直列に接続してもよいし、いずれかの蓄電素子100を並列に接続してから直列に接続してもよいし、全ての蓄電素子100を並列に接続してもよい。蓄電装置10は、上記の構成要素の他、上記バスバーの位置決めを行うバスバーフレーム、外部のバスバー等と接続される外部端子、蓄電素子100から排出されるガスを排気する排気部、複数の蓄電素子100及び複数のスペーサ200を拘束する拘束部材(エンドプレート及びサイドプレート等)、並びに、蓄電素子100の充電状態及び放電状態等を監視または制御する回路基板、ヒューズ、リレー及びコネクタ等の電気機器等を備えていてもよい。 As shown in FIG. 1, the power storage device 10 includes a plurality of power storage elements 100, a plurality of spacers 200 (200a and 200b), and an exterior body 300. The power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, but illustration and description thereof are omitted. The bus bar may connect all the power storage elements 100 in series, connect any of the power storage elements 100 in parallel and then connect them in series, or connect all the power storage elements 100 in parallel. It's okay. In addition to the above-mentioned components, the power storage device 10 includes a busbar frame for positioning the busbar, an external terminal connected to an external busbar, an exhaust part for exhausting gas discharged from the power storage element 100, and a plurality of power storage elements. 100 and the plurality of spacers 200 (end plates, side plates, etc.), electrical equipment such as circuit boards, fuses, relays, connectors, etc. that monitor or control the charging state and discharging state of the power storage element 100, etc. may be provided.
 蓄電素子100は、電気を充電し、また、電気を放電できる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子100は、X軸方向に長く、かつ、Y軸方向に扁平な直方体形状(角形)を有している。本実施の形態では、複数(8個)の蓄電素子100がY軸方向に並んで配列されているが、配列される蓄電素子100の個数は特に限定されず、1個でもよい。蓄電素子100の大きさ及び形状も特に限定されず、X軸方向に長くなくてもよく、Y軸方向に扁平でなくてもよい。蓄電素子100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子100は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。蓄電素子100は、固体電解質を用いた電池であってもよい。蓄電素子100は、パウチタイプの蓄電素子であってもよい。蓄電素子100の構成の詳細な説明については、後述する。 The power storage element 100 is a secondary battery (single battery) that can charge and discharge electricity, and more specifically, it is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 100 has a rectangular parallelepiped shape (square) that is long in the X-axis direction and flat in the Y-axis direction. In the present embodiment, a plurality of (eight) power storage elements 100 are arranged side by side in the Y-axis direction, but the number of power storage elements 100 arranged is not particularly limited, and may be one. The size and shape of power storage element 100 are not particularly limited either, and need not be long in the X-axis direction or flat in the Y-axis direction. The power storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or a capacitor. The power storage element 100 may be not a secondary battery but a primary battery that allows the user to use the stored electricity without charging it. Power storage element 100 may be a battery using a solid electrolyte. The power storage element 100 may be a pouch type power storage element. A detailed description of the configuration of power storage element 100 will be described later.
 スペーサ200(200a及び200b)は、Y軸方向において蓄電素子100と並んで配置される部材である。スペーサ200は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に配置されて、蓄電素子100のY軸方向への膨れを吸収したり当該膨れを抑制したりする。スペーサ200は、蓄電素子100のX軸方向両側及びZ軸方向両側に壁部を有することで、蓄電素子100を保持し、蓄電素子100の位置決めを行うホルダの機能も有している。スペーサ200は、蓄電素子100と他の部材(他の蓄電素子100または外装体300等)とを絶縁及び/又は断熱する機能も有する。スペーサ200は、蓄電素子100が有する容器110の長側面及び短側面と対向し、かつ、当該長側面及び短側面と接触した状態で配置される。本実施の形態では、スペーサ200は、蓄電素子100の当該長側面及び短側面に接着または溶着によって固定されて、蓄電素子100を保持する。 Spacers 200 (200a and 200b) are members arranged in line with power storage element 100 in the Y-axis direction. Spacer 200 is arranged in the positive Y-axis direction or negative Y-axis direction of power storage element 100 to absorb or suppress expansion of power storage element 100 in the Y-axis direction. The spacer 200 has walls on both sides of the power storage element 100 in the X-axis direction and on both sides of the Z-axis direction, so that the spacer 200 also functions as a holder for holding the power storage element 100 and positioning the power storage element 100. Spacer 200 also has the function of insulating and/or heat insulating power storage element 100 and other members (other power storage element 100 or exterior body 300, etc.). Spacer 200 is arranged to face the long side and short side of container 110 of power storage element 100 and to be in contact with the long side and short side. In this embodiment, spacer 200 is fixed to the long side and short side of power storage element 100 by adhesion or welding, and holds power storage element 100 .
 スペーサ200は、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ポリアミド(PA)、ABS樹脂、若しくは、それらの複合材料等の絶縁部材、絶縁塗装をした金属、ガラス繊維、セラミック、または、マイカ等の断熱性を有する部材等により形成されている。 The spacer 200 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyether sulfone (PES), polyamide (PA), ABS resin or an insulating member such as a composite material thereof, a member having heat insulating properties such as insulating coated metal, glass fiber, ceramic, or mica.
 以下では、2つの蓄電素子100の間に配置されるスペーサ200を、スペーサ200aとも称する。Y軸方向の端部(Y軸方向端部の蓄電素子100と外装体300との間)に配置されるスペーサ200を、スペーサ200bとも称する。スペーサ200a及び200bは、蓄電素子100と交互に配置される。つまり、スペーサ200(200a及び200b)は、Y軸方向で蓄電素子100を挟む位置に配置される。全てのスペーサ200(200a及び200b)が同じ材質の部材で形成されていてもよいし、いずれかのスペーサ200が異なる材質の部材で形成されていてもよい。 Hereinafter, the spacer 200 arranged between the two power storage elements 100 will also be referred to as a spacer 200a. The spacer 200 arranged at the end in the Y-axis direction (between the power storage element 100 and the exterior body 300 at the end in the Y-axis direction) is also referred to as a spacer 200b. Spacers 200a and 200b are arranged alternately with power storage elements 100. That is, spacers 200 (200a and 200b) are arranged at positions sandwiching power storage element 100 in the Y-axis direction. All the spacers 200 (200a and 200b) may be made of the same material, or any one of the spacers 200 may be made of different materials.
 具体的には、スペーサ200aは、スペーサ200aのY軸方向両側に配置される2つの蓄電素子100のX軸方向両側及びZ軸方向両側に壁部を有し、当該2つの蓄電素子100を保持する中間スペーサ(中間ホルダ)である。スペーサ200bは、スペーサ200bのY軸方向片側に配置される1つの蓄電素子100のX軸方向両側及びZ軸方向両側に壁部を有し、当該1つの蓄電素子100を保持するエンドスペーサ(エンドホルダ)である。つまり、Y軸方向端部に位置する蓄電素子100は、スペーサ200a及びスペーサ200bに保持される。それ以外の蓄電素子100は、2つのスペーサ200aに保持される。 Specifically, the spacer 200a has walls on both sides in the X-axis direction and on both sides in the Z-axis direction of two power storage elements 100 arranged on both sides of the spacer 200a in the Y-axis direction, and holds the two power storage elements 100. This is an intermediate spacer (intermediate holder). The spacer 200b has walls on both sides in the X-axis direction and both sides in the Z-axis direction of one power storage element 100 disposed on one side of the spacer 200b in the Y-axis direction, and has walls on both sides of the one power storage element 100 in the Y-axis direction. holder). That is, the power storage element 100 located at the end in the Y-axis direction is held by the spacer 200a and the spacer 200b. Other power storage elements 100 are held by two spacers 200a.
 スペーサ200bは、スペーサ200aをY軸方向で半分に割ったような形状を有している(図3参照)。具体的には、Y軸プラス方向のスペーサ200bは、スペーサ200aをY軸方向で半分に割った場合のY軸マイナス方向の部位と同様の構成を有している。Y軸マイナス方向のスペーサ200bは、スペーサ200aをY軸方向で半分に割った場合のY軸プラス方向の部位と同様の構成を有している。Y軸マイナス方向のスペーサ200bは、Y軸プラス方向のスペーサ200bとXZ平面に対して対称となる形状、または、Y軸プラス方向のスペーサ200bをZ軸を中心に180°回転させた形状を有している。スペーサ200(200a及び200b)の構成の詳細な説明については、後述する。 The spacer 200b has a shape similar to that of the spacer 200a divided in half in the Y-axis direction (see FIG. 3). Specifically, the spacer 200b in the positive Y-axis direction has the same configuration as the portion in the negative Y-axis direction when the spacer 200a is divided in half in the Y-axis direction. The spacer 200b in the negative Y-axis direction has the same configuration as the portion in the positive Y-axis direction when the spacer 200a is divided in half in the Y-axis direction. The spacer 200b in the negative Y-axis direction has a shape that is symmetrical to the spacer 200b in the positive Y-axis direction with respect to the XZ plane, or has a shape in which the spacer 200b in the positive Y-axis direction is rotated 180 degrees around the Z-axis. are doing. A detailed explanation of the configuration of the spacer 200 (200a and 200b) will be given later.
 外装体300は、複数の蓄電素子100及び複数のスペーサ200(200a及び200b)の外方に配置される部材である。本実施の形態では、外装体300は、複数の蓄電素子100及び複数のスペーサ200を収容する略直方体形状(箱形)の容器(モジュールケース)である。つまり、外装体300は、複数の蓄電素子100及び複数のスペーサ200(200a及び200b)の外方に配置され、これら複数の蓄電素子100等を所定の位置で固定し、衝撃等から保護する。外装体300は、スペーサ200に使用可能ないずれかの樹脂材料等の絶縁性を有する部材で形成されており、蓄電素子100が外部の金属部材等に接触することを回避する。蓄電素子100の絶縁性が保たれる構成であれば、外装体300は、アルミニウム、アルミニウム合金、ステンレス鋼、鉄、メッキ鋼板等の金属製の部材で形成されていてもよい。 The exterior body 300 is a member disposed outside the plurality of power storage elements 100 and the plurality of spacers 200 (200a and 200b). In this embodiment, the exterior body 300 is a substantially rectangular parallelepiped-shaped (box-shaped) container (module case) that accommodates the plurality of power storage elements 100 and the plurality of spacers 200. That is, the exterior body 300 is arranged outside the plurality of power storage elements 100 and the plurality of spacers 200 (200a and 200b), fixes the plurality of power storage elements 100, etc. at a predetermined position, and protects them from impact and the like. Exterior body 300 is formed of an insulating member such as any resin material that can be used for spacer 200, and prevents power storage element 100 from coming into contact with external metal members or the like. As long as the insulation of power storage element 100 is maintained, exterior body 300 may be formed of a metal member such as aluminum, aluminum alloy, stainless steel, iron, or a plated steel plate.
 [2 蓄電素子100の説明]
 次に、蓄電素子100の構成について、詳細に説明する。図2は、本実施の形態に係る蓄電素子100の構成を示す斜視図である。図2は、図1に示した蓄電素子100を拡大し、かつ、容器110の内部の構成を破線で示している。蓄電装置10が有する複数の蓄電素子100は、全て同様の構成を有するため、図2では、1つの蓄電素子100を示し、かつ、以下では、1つの蓄電素子100の構成について詳細に説明する。
[2 Description of power storage element 100]
Next, the configuration of power storage element 100 will be described in detail. FIG. 2 is a perspective view showing the configuration of power storage element 100 according to this embodiment. FIG. 2 shows an enlarged view of the power storage element 100 shown in FIG. 1, and shows the internal configuration of the container 110 with broken lines. Since all of the plurality of power storage elements 100 included in power storage device 10 have the same configuration, one power storage element 100 is shown in FIG. 2, and the configuration of one power storage element 100 will be described in detail below.
 図2に示すように、蓄電素子100は、容器110と、一対(正極及び負極)の電極端子140とを備え、容器110の内方には、電極体150と、一対(正極及び負極)の集電体160とが収容されている。容器110の内方には電解液(非水電解質)も封入され、電極端子140及び集電体160と容器110(後述の蓋体130)との間にはガスケットが配置されているが、これらの図示は省略する。当該電解液としては、蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。ガスケットは、絶縁性を有していればどのような素材で形成されていてもよい。蓄電素子100は、上記の構成要素の他、電極体150の側方または下方等に配置されるスペーサ、電極体150等を包み込む絶縁フィルム、及び、容器110の外面を覆う絶縁フィルム(シュリンクチューブ等)等を有していてもよい。 As shown in FIG. 2, the power storage element 100 includes a container 110 and a pair of electrode terminals 140 (positive electrode and negative electrode). A current collector 160 is housed therein. An electrolytic solution (non-aqueous electrolyte) is also sealed inside the container 110, and a gasket is placed between the electrode terminal 140 and current collector 160 and the container 110 (cover 130, which will be described later). The illustration of is omitted. The type of electrolytic solution is not particularly limited as long as it does not impair the performance of power storage element 100, and various types can be selected. The gasket may be made of any material as long as it has insulating properties. In addition to the above-mentioned components, the power storage element 100 includes a spacer placed on the side or below the electrode body 150, an insulating film that wraps around the electrode body 150, etc., and an insulating film (such as a shrink tube) that covers the outer surface of the container 110. ) etc.
 容器110は、開口が形成された容器本体120と、容器本体120の当該開口を閉塞する蓋体130と、を有する直方体形状(角形または箱形)のケースである。本実施形態では、容器100はX軸方向に長尺な形状を有している。容器100のX軸方向の長さは、Z軸方向の長さの3倍以上であってもよい。容器本体120は、容器110の本体部を構成する矩形筒状で底を備える部材であり、Z軸プラス方向の面に開口が形成されている。蓋体130は、容器110の蓋部を構成するX軸方向に長い矩形状の板状部材であり、容器本体120のZ軸プラス方向に配置されている。蓋体130には、容器110内方の圧力が過度に上昇した場合に当該圧力を開放するガス排出弁131が設けられている。容器110には、容器110内方に電解液を注液するための注液部等が設けられていてもよい。容器110(容器本体120及び蓋体130)の材質は、特に限定されず、例えばステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属とすることができるが、樹脂を用いることもできる。 The container 110 is a rectangular parallelepiped-shaped (prismatic or box-shaped) case that includes a container body 120 with an opening formed therein and a lid 130 that closes the opening of the container body 120. In this embodiment, the container 100 has an elongated shape in the X-axis direction. The length of the container 100 in the X-axis direction may be three times or more the length in the Z-axis direction. The container main body 120 is a rectangular cylindrical member with a bottom that constitutes the main body of the container 110, and has an opening formed in a surface in the positive direction of the Z-axis. The lid 130 is a rectangular plate-like member that is long in the X-axis direction and constitutes the lid of the container 110, and is arranged in the positive Z-axis direction of the container body 120. The lid body 130 is provided with a gas exhaust valve 131 that releases the pressure when the pressure inside the container 110 increases excessively. The container 110 may be provided with a liquid injection part or the like for injecting the electrolyte into the container 110. The material of the container 110 (container body 120 and lid 130) is not particularly limited, and may be a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin may also be used. can.
 容器110は、電極体150等を容器本体120の内方に収容後、容器本体120と蓋体130とが溶接等によって接合されることにより、内部が密閉(密封)される構造となっている。容器110は、Y軸方向両側の側面に第一面111及び112を有し、X軸方向両側の側面に第二面113及び第三面114を有し、Z軸マイナス方向の底面に第四面115を有し、Z軸プラス方向の上面に第五面116を有している。第一面111は、容器110のY軸マイナス方向の面であり、第一面112は、容器110のY軸プラス方向の面である。第二面113は、容器110のX軸マイナス方向の面であり、第三面114は、容器110のX軸プラス方向の面である。 The container 110 has a structure in which the inside is hermetically sealed by housing the electrode body 150 and the like inside the container body 120, and then joining the container body 120 and the lid 130 by welding or the like. . The container 110 has first surfaces 111 and 112 on both sides in the Y-axis direction, a second surface 113 and a third surface 114 on both sides in the X-axis direction, and a fourth surface on the bottom surface in the negative Z-axis direction. It has a surface 115 and a fifth surface 116 on the upper surface in the positive direction of the Z axis. The first surface 111 is a surface of the container 110 in the negative direction of the Y-axis, and the first surface 112 is a surface of the container 110 in the positive direction of the Y-axis. The second surface 113 is a surface of the container 110 in the negative direction of the X-axis, and the third surface 114 is a surface of the container 110 in the positive direction of the X-axis.
 第一面111及び112は、容器110の長側面を形成する矩形状の平面部であり、隣り合う蓄電素子100またはスペーサ200とY軸方向において対向して配置される。第一面111及び112は、第二面113、第三面114、第四面115及び第五面116と互いに隣り合って配置される。第一面111及び112の面積は、第二面113、第三面114、第四面115及び第五面116の面積より大きい。第一面111と第一面112とは、第二面113、第三面114、第四面115及び第五面116を挟む位置に配置される。 The first surfaces 111 and 112 are rectangular planar portions that form the long side surfaces of the container 110, and are arranged to face adjacent power storage elements 100 or spacers 200 in the Y-axis direction. The first surfaces 111 and 112 are arranged adjacent to the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116. The areas of the first surfaces 111 and 112 are larger than the areas of the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116. The first surface 111 and the first surface 112 are arranged at positions sandwiching the second surface 113, the third surface 114, the fourth surface 115, and the fifth surface 116.
 第二面113及び第三面114は、容器110の短側面を形成する矩形状の平面部であり、スペーサ200の壁部とX軸方向において対向して配置される。第二面113及び第三面114は、第一面111、112、第四面115及び第五面116と互いに隣り合って配置される。第二面113及び第三面114の面積は、第一面111、112、第四面115及び第五面116の面積より小さい。第二面113と第三面114とは、第一面111、112、第四面115及び第五面116を挟む位置に配置される。 The second surface 113 and the third surface 114 are rectangular planar portions that form the short side surfaces of the container 110, and are arranged to face the wall portion of the spacer 200 in the X-axis direction. The second surface 113 and the third surface 114 are arranged adjacent to the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116. The areas of the second surface 113 and the third surface 114 are smaller than the areas of the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116. The second surface 113 and the third surface 114 are arranged at positions sandwiching the first surfaces 111 and 112, the fourth surface 115, and the fifth surface 116.
 第四面115は、容器110の底面を形成する矩形状の平面部であり、スペーサ200の壁部とZ軸方向において対向して配置される。第五面116は、容器110の上面を形成する矩形状の平面部(電極端子140が配置される端子配置面)であり、スペーサ200の壁部とZ軸方向において対向して配置される。第四面115及び第五面116は、第一面111、112、第二面113及び第三面114と互いに隣り合って配置される。第四面115と第五面116とは、第一面111、112、第二面113及び第三面114を挟む位置に配置される。 The fourth surface 115 is a rectangular flat surface that forms the bottom surface of the container 110, and is arranged to face the wall of the spacer 200 in the Z-axis direction. The fifth surface 116 is a rectangular plane part (terminal arrangement surface on which the electrode terminal 140 is arranged) forming the upper surface of the container 110, and is arranged to face the wall part of the spacer 200 in the Z-axis direction. The fourth surface 115 and the fifth surface 116 are arranged adjacent to the first surfaces 111 and 112, the second surface 113, and the third surface 114. The fourth surface 115 and the fifth surface 116 are arranged at positions sandwiching the first surfaces 111 and 112, the second surface 113, and the third surface 114.
 電極端子140は、容器110の蓋体130に配置される、蓄電素子100の端子部材(正極端子及び負極端子)である。具体的には、X軸方向に並ぶ一対の電極端子140が、蓋体130の上面(第五面116)からZ軸プラス方向に突出して配置されている。電極端子140は、集電体160を介して、電極体150の正極板及び負極板に電気的に接続されている。つまり、電極端子140は、電極体150に蓄えられている電気を蓄電素子100の外部空間に導出し、また、電極体150に電気を蓄えるために蓄電素子100の内部空間に電気を導入するための金属製の部材である。電極端子140は、アルミニウム、アルミニウム合金、銅、銅合金等で形成されている。電極端子140は、かしめ等によって、集電体160に接続(接合)され、かつ、蓋体130に取り付けられる。電極端子140と集電体160とを接続(接合)する手法は、かしめ接合には限定されず、超音波接合、レーザ溶接若しくは抵抗溶接等の溶接、または、ねじ結合等のかしめ以外の機械的接合等が用いられてもよい。 The electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the electricity storage element 100, which is arranged on the lid 130 of the container 110. Specifically, a pair of electrode terminals 140 aligned in the X-axis direction are arranged to protrude from the top surface (fifth surface 116) of the lid 130 in the Z-axis plus direction. The electrode terminal 140 is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body 150 via the current collector 160. In other words, the electrode terminal 140 is used to lead the electricity stored in the electrode body 150 to the external space of the electricity storage element 100 and to introduce electricity into the internal space of the electricity storage element 100 in order to store electricity in the electrode body 150. It is a metal member. The electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like. The electrode terminal 140 is connected (joined) to the current collector 160 and attached to the lid 130 by caulking or the like. The method of connecting (joining) the electrode terminal 140 and the current collector 160 is not limited to caulking, but may include welding such as ultrasonic welding, laser welding, or resistance welding, or a mechanical method other than caulking such as screw connection. Bonding or the like may also be used.
 電極体150は、電気を蓄えることができる蓄電要素(発電要素)であり、正極板と負極板とセパレータとを備え、正極板、負極板及びセパレータが積層されて形成されている。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる集電箔である正極基材上に正極活物質層が形成された電極板である。負極板は、銅または銅合金等の金属からなる集電箔である負極基材上に負極活物質層が形成された電極板である。セパレータは、樹脂からなる微多孔性のシートである。正極活物質層に用いられる正極活物質、及び、負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。セパレータについても、蓄電素子100の性能を損なうものでなければ適宜公知の材料を使用できる。 The electrode body 150 is a power storage element (power generation element) that can store electricity, and includes a positive electrode plate, a negative electrode plate, and a separator, and is formed by laminating the positive electrode plate, the negative electrode plate, and the separator. The positive electrode plate is an electrode plate in which a positive electrode active material layer is formed on a positive electrode base material which is a current collecting foil made of metal such as aluminum or an aluminum alloy. The negative electrode plate is an electrode plate in which a negative electrode active material layer is formed on a negative electrode base material that is a current collecting foil made of metal such as copper or copper alloy. The separator is a microporous sheet made of resin. As the positive electrode active material used in the positive electrode active material layer and the negative electrode active material used in the negative electrode active material layer, any known material can be appropriately used as long as it is capable of intercalating and deintercalating lithium ions. For the separator, any known material can be used as appropriate as long as it does not impair the performance of power storage element 100.
 本実施の形態では、電極体150は、正極板と負極板との間にセパレータが挟み込まれるように層状に配置されたものが、X軸方向に平行な巻回軸にて巻回されて形成された巻回型の電極体である。具体的には、電極体150は、正極板と負極板とが、セパレータを介して、巻回軸の方向(X軸方向)に互いにずらして巻回されている。正極板及び負極板は、それぞれのずらされた方向の端部に、合材が塗工されず基材が露出した部分を有し、当該端部が、集電体160と電気的及び機械的に接続される。電極体150は、X軸方向に延びる長尺な形状であって、X軸方向から見て長円形状を有している。電極体150は、X軸方向の長さが、例えば、300mm以上、具体的には、500mm~1500mm程度まで延びた形状を有している。このため、電極体150は、Z軸方向の長さよりもX軸方向の長さが長くなっている。電極体150のX軸方向の長さは、Z軸方向の長さの3倍以上であってもよい。電極体150は、正極板と負極板とセパレータとが、Z軸方向に平行な巻回軸にて巻回されて形成された巻回型の電極体でもよい。電極体150は、複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体でもよいし、極板を蛇腹状に折り畳んだ蛇腹型の電極体でもよいし、その他の形態の電極体でもよい。 In this embodiment, the electrode body 150 is formed by winding a positive electrode plate and a negative electrode plate, which are arranged in layers so that a separator is sandwiched between them, with a winding axis parallel to the X-axis direction. It is a wound type electrode body. Specifically, in the electrode body 150, a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween so as to be offset from each other in the direction of the winding axis (X-axis direction). The positive electrode plate and the negative electrode plate each have a portion where the composite material is not coated and the base material is exposed at the end portion in the shifted direction, and the end portion is electrically and mechanically connected to the current collector 160. connected to. The electrode body 150 has an elongated shape extending in the X-axis direction, and has an oval shape when viewed from the X-axis direction. The electrode body 150 has a shape in which the length in the X-axis direction is, for example, 300 mm or more, and specifically, approximately 500 mm to 1500 mm. Therefore, the length of the electrode body 150 in the X-axis direction is longer than the length in the Z-axis direction. The length of the electrode body 150 in the X-axis direction may be three times or more the length in the Z-axis direction. The electrode body 150 may be a wound type electrode body formed by winding a positive electrode plate, a negative electrode plate, and a separator around a winding axis parallel to the Z-axis direction. The electrode body 150 may be a laminated type (stack type) electrode body formed by laminating a plurality of flat plates, a bellows-type electrode body formed by folding the plates into a bellows shape, or other electrode bodies. The electrode body may have the following form.
 集電体160は、電極体150と容器110との間に配置され、電極端子140と電極体150とに電気的に接続される導電性の集電部材(正極集電体及び負極集電体)である。正極の集電体160は、電極体150の正極板と溶接等により接続(接合)されるとともに、正極の電極端子140とかしめ等により接続(接合)される。負極の集電体160は、電極体150の負極板と溶接等により接続(接合)されるとともに、負極の電極端子140とかしめ等により接続(接合)される。正極の集電体160は、電極体150の正極板の正極基材と同様、アルミニウムまたはアルミニウム合金等で形成され、負極の集電体160は、電極体150の負極板の負極基材と同様、銅または銅合金等で形成されている。集電体160と電極体150とを接続(接合)する手法は、溶接には限定されず、かしめ接合等が用いられてもよい。 The current collector 160 is a conductive current collecting member (a positive electrode current collector and a negative electrode current collector) that is disposed between the electrode body 150 and the container 110 and is electrically connected to the electrode terminal 140 and the electrode body 150. ). The positive current collector 160 is connected (joined) to the positive plate of the electrode body 150 by welding or the like, and is also connected (joined) to the positive electrode terminal 140 by caulking or the like. The negative electrode current collector 160 is connected (joined) to the negative electrode plate of the electrode body 150 by welding or the like, and is also connected (joined) to the negative electrode terminal 140 by caulking or the like. The current collector 160 of the positive electrode is made of aluminum or an aluminum alloy, like the positive base material of the positive plate of the electrode body 150, and the current collector 160 of the negative electrode is made of the same material as the negative base material of the negative plate of the electrode body 150. , made of copper or copper alloy. The method of connecting (joining) the current collector 160 and the electrode body 150 is not limited to welding, and caulking or the like may be used.
 [3 スペーサ200の説明]
 次に、スペーサ200(200a及び200b)の構成について、詳細に説明する。図3は、本実施の形態に係る蓄電素子100及びスペーサ200の構成を示す斜視図である。図3では、図1に示した蓄電装置10が備える、Y軸プラス方向端部に位置する2つの蓄電素子100とスペーサ200a及び200bとを分離させて、各構成要素を示している。図4は、本実施の形態に係るスペーサ200aが有する第一スペーサ210の構成を示す斜視図である。図4の(a)は、図3に示したスペーサ200aが有する第一スペーサ210を拡大して示し、図4の(b)は、図4の(a)に示した第一スペーサ210を、Z軸を中心に90°回転させた場合の構成を示している。
[3 Description of spacer 200]
Next, the configuration of the spacer 200 (200a and 200b) will be described in detail. FIG. 3 is a perspective view showing the configuration of power storage element 100 and spacer 200 according to the present embodiment. In FIG. 3, two power storage elements 100 and spacers 200a and 200b, which are included in the power storage device 10 shown in FIG. 1 and located at the ends in the positive direction of the Y-axis, are shown separated. FIG. 4 is a perspective view showing the configuration of the first spacer 210 included in the spacer 200a according to the present embodiment. 4(a) shows an enlarged view of the first spacer 210 included in the spacer 200a shown in FIG. 3, and FIG. 4(b) shows the first spacer 210 shown in FIG. 4(a) in an enlarged manner. The configuration is shown when rotated by 90 degrees around the Z axis.
 図3に示すように、スペーサ200aは、第一スペーサ210と、第一スペーサ210とは別体の第二スペーサ220及び230と、を有している。つまり、第一スペーサ210、第二スペーサ220、及び、第二スペーサ230は、互いに別体の部材であり、かつ、互いに離間して配置されている。第一スペーサ210は、スペーサ200aのうちのX軸マイナス方向に配置される部材であり、蓄電素子100のX軸マイナス方向端部に対向して配置される。第二スペーサ220は、スペーサ200aのうちのX軸プラス方向に配置される部材であり、蓄電素子100のX軸プラス方向端部に対向して配置される。第二スペーサ230は、第一スペーサ210及び第二スペーサ220の間に配置される部材であり、蓄電素子100のX軸方向中央部に対向して配置される。第一スペーサ210、第二スペーサ220及び第二スペーサ230は、全てが同じ材質で形成されてもよいし、第一スペーサ210及び第二スペーサ220が樹脂で形成され、第二スペーサ230がガラス繊維またはセラミックで形成される等、いずれかが異なる材質で形成されてもよい。この場合、第一スペーサ210及び第二スペーサ220が同じ材質で形成され、第一スペーサ210及び第二スペーサ220とは異なる材質で第二スペーサ230が形成されることが好ましい。 As shown in FIG. 3, the spacer 200a includes a first spacer 210 and second spacers 220 and 230 that are separate from the first spacer 210. That is, the first spacer 210, the second spacer 220, and the second spacer 230 are mutually separate members and are arranged apart from each other. The first spacer 210 is a member of the spacer 200a that is disposed in the negative X-axis direction, and is disposed facing the end of the power storage element 100 in the negative X-axis direction. The second spacer 220 is a member of the spacer 200a that is disposed in the X-axis plus direction, and is disposed facing the end of the power storage element 100 in the X-axis plus direction. The second spacer 230 is a member disposed between the first spacer 210 and the second spacer 220, and is disposed facing the center of the power storage element 100 in the X-axis direction. The first spacer 210, the second spacer 220, and the second spacer 230 may all be formed of the same material, or the first spacer 210 and the second spacer 220 may be formed of resin, and the second spacer 230 may be formed of glass fiber. Alternatively, either of them may be made of a different material, such as ceramic. In this case, the first spacer 210 and the second spacer 220 are preferably made of the same material, and the second spacer 230 is preferably made of a different material from the first spacer 210 and the second spacer 220.
 第一スペーサ210は、中心位置を通りXZ平面に平行な面に対して対称となる形状、かつ、中心位置を通りXY平面に平行な面に対して対称となる形状を有している。つまり、第一スペーサ210は、中心位置を通りX軸方向に平行な軸を中心に180°回転させた場合に、回転対称となる形状を有している。図3及び図4に示すように、第一スペーサ210は、第一壁部211と、第二壁部212と、上壁部213と、底壁部214と、を有している。本実施の形態では、第一スペーサ210は、第一壁部211と第二壁部212と上壁部213と底壁部214とを一体的に有しているが、いずれかの部位が別体で形成されて接続(接合)されていてもよい。 The first spacer 210 has a shape that is symmetrical with respect to a plane passing through the center position and parallel to the XZ plane, and a shape that is symmetrical with respect to a plane passing through the center position and parallel to the XY plane. That is, the first spacer 210 has a shape that becomes rotationally symmetrical when rotated by 180° about an axis that passes through the center position and is parallel to the X-axis direction. As shown in FIGS. 3 and 4, the first spacer 210 includes a first wall 211, a second wall 212, a top wall 213, and a bottom wall 214. In the present embodiment, the first spacer 210 integrally includes a first wall portion 211, a second wall portion 212, a top wall portion 213, and a bottom wall portion 214, but any of the portions are separated. It may be formed and connected (joined) with the body.
 第一壁部211は、XZ平面に平行なZ軸方向に延びる平板状かつ矩形状の部位であり、第一スペーサ210の本体を構成する。第一壁部211は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に配置される。具体的には、第一壁部211は、蓄電素子100の容器110の第一面111または112のX軸マイナス方向端部にY軸方向で対向し、かつ、当該第一面111または112のX軸マイナス方向端部に接触した状態で配置される。第一壁部211は、当該第一面111または112のZ軸方向における一端縁から他端縁までに亘って延びる。本実施の形態では、第一壁部211は、当該第一面111または112に接着剤または両面テープ等によって接着される。詳細には、第一壁部211は、Y軸方向において2つの蓄電素子100の間、つまり、一方の蓄電素子100の容器110の第一面111と、他方の蓄電素子100の容器110の第一面112との間に配置される。第一壁部211は、当該第一面111及び当該第一面112の双方のX軸マイナス方向端部に接触し、かつ、当該第一面111及び当該第一面112の双方に接着される。 The first wall portion 211 is a flat and rectangular portion extending in the Z-axis direction parallel to the XZ plane, and constitutes the main body of the first spacer 210. The first wall portion 211 is arranged in the positive Y-axis direction or the negative Y-axis direction of the power storage element 100. Specifically, the first wall portion 211 faces an end in the X-axis minus direction of the first surface 111 or 112 of the container 110 of the power storage element 100 in the Y-axis direction, and It is placed in contact with the end in the negative direction of the X-axis. The first wall portion 211 extends from one end edge to the other end edge of the first surface 111 or 112 in the Z-axis direction. In this embodiment, the first wall portion 211 is adhered to the first surface 111 or 112 using an adhesive, double-sided tape, or the like. Specifically, the first wall portion 211 is located between the two power storage elements 100 in the Y-axis direction, that is, between the first surface 111 of the container 110 of one power storage element 100 and the first surface 111 of the container 110 of the other power storage element 100. It is arranged between the first surface 112 and the other surface 112 . The first wall portion 211 contacts the ends of both the first surface 111 and the first surface 112 in the X-axis negative direction, and is bonded to both the first surface 111 and the first surface 112. .
 第二壁部212は、第一壁部211のX軸マイナス方向端部からY軸方向両側に突出し、Z軸方向に延びる平板状かつ矩形状の部位であり、YZ平面に平行に配置されている。第二壁部212は、蓄電素子100のX軸マイナス方向において、蓄電素子100の容器110の第二面113に沿って配置される。具体的には、第二壁部212は、容器110の第二面113のY軸プラス方向またはY軸マイナス方向の略半分を覆うように、X軸方向において第二面113と対向して配置される。第二壁部212は、当該第二面113のZ軸方向における一端縁から他端縁までに亘って延びる。本実施の形態では、第二壁部212は、当該第二面113と接触した状態で配置され、かつ、当該第二面113に接着剤または両面テープ等によって接着される。詳細には、第二壁部212は、第一壁部211を挟む2つの蓄電素子100が有する2つの容器110の第二面113の双方に接着される。 The second wall portion 212 is a flat rectangular portion that protrudes from the end of the first wall portion 211 in the X-axis negative direction to both sides in the Y-axis direction and extends in the Z-axis direction, and is arranged parallel to the YZ plane. There is. The second wall portion 212 is arranged along the second surface 113 of the container 110 of the power storage element 100 in the negative X-axis direction of the power storage element 100 . Specifically, the second wall portion 212 is arranged facing the second surface 113 in the X-axis direction so as to cover approximately half of the second surface 113 of the container 110 in the Y-axis positive direction or the Y-axis negative direction. be done. The second wall portion 212 extends from one end edge to the other end edge of the second surface 113 in the Z-axis direction. In this embodiment, the second wall portion 212 is placed in contact with the second surface 113 and is bonded to the second surface 113 with an adhesive, double-sided tape, or the like. Specifically, the second wall portion 212 is bonded to both second surfaces 113 of the two containers 110 of the two power storage elements 100 that sandwich the first wall portion 211 .
 上壁部213は、第一壁部211のZ軸プラス方向端部からY軸方向両側に突出する平板状かつ略三角形状(または略台形状)の部位であり、XY平面に平行に配置されている。上壁部213は、蓄電素子100のZ軸プラス方向において、蓄電素子100の容器110の第五面116に沿って配置される。具体的には、上壁部213は、第五面116のX軸マイナス方向端部の角部を覆うように、Z軸方向において第五面116と対向して配置される。本実施の形態では、上壁部213は、第五面116と接触した状態で配置され、かつ、第五面116に接着剤または両面テープ等によって接着される。詳細には、上壁部213は、第一壁部211を挟む2つの蓄電素子100が有する2つの容器110の第五面116の双方に接着される。 The upper wall portion 213 is a flat, substantially triangular (or substantially trapezoidal) portion that protrudes from the end of the first wall portion 211 in the Z-axis plus direction to both sides in the Y-axis direction, and is arranged parallel to the XY plane. ing. Upper wall portion 213 is arranged along the fifth surface 116 of container 110 of power storage element 100 in the positive Z-axis direction of power storage element 100 . Specifically, the upper wall portion 213 is disposed facing the fifth surface 116 in the Z-axis direction so as to cover the corner of the end of the fifth surface 116 in the X-axis minus direction. In this embodiment, the upper wall portion 213 is placed in contact with the fifth surface 116 and is adhered to the fifth surface 116 with an adhesive, double-sided tape, or the like. Specifically, the upper wall portion 213 is bonded to both of the fifth surfaces 116 of the two containers 110 that are included in the two power storage elements 100 that sandwich the first wall portion 211 .
 底壁部214は、第一壁部211のZ軸マイナス方向端部からY軸方向両側に突出する平板状かつ略三角形状(または略台形状)の部位であり、XY平面に平行に配置されている。底壁部214は、蓄電素子100のZ軸マイナス方向において、蓄電素子100の容器110の第四面115に沿って配置される。具体的には、底壁部214は、第四面115のX軸マイナス方向端部の角部を覆うように、Z軸方向において第四面115と対向して配置される。本実施の形態では、底壁部214は、第四面115と接触した状態で配置され、かつ、第四面115に接着剤または両面テープ等によって接着される。詳細には、底壁部214は、第一壁部211を挟む2つの蓄電素子100が有する2つの容器110の第四面115の双方に接着される。 The bottom wall portion 214 is a flat, substantially triangular (or substantially trapezoidal) portion that protrudes from the end of the first wall portion 211 in the Z-axis negative direction to both sides in the Y-axis direction, and is arranged parallel to the XY plane. ing. Bottom wall portion 214 is arranged along fourth surface 115 of container 110 of power storage element 100 in the negative Z-axis direction of power storage element 100 . Specifically, the bottom wall portion 214 is disposed facing the fourth surface 115 in the Z-axis direction so as to cover the corner of the end of the fourth surface 115 in the X-axis minus direction. In this embodiment, the bottom wall portion 214 is placed in contact with the fourth surface 115 and is adhered to the fourth surface 115 with an adhesive, double-sided tape, or the like. Specifically, the bottom wall portion 214 is bonded to both of the fourth surfaces 115 of the two containers 110 that are included in the two power storage elements 100 that sandwich the first wall portion 211 .
 このように、スペーサ200aは、蓄電素子100の容器110の第一面111または112に対向する第一壁部211と、第二面113に対向する第二壁部212と、を有している。上記構成において、第一壁部211は、蓄電素子100の容器110の第一面111または112に、接着に代えて、または、接着に加えて、溶着されてもよい。蓄電素子100の容器110の外面を絶縁フィルムで覆い、当該絶縁フィルムと第一壁部211とを溶着するなどにより、第一壁部211を当該第一面111または112に溶着できる。同様に、第二壁部212は、蓄電素子100の容器110の第二面113に、接着に代えて、または、接着に加えて、溶着されてもよい。つまり、第一壁部211は、第一面111または112に接着または溶着されていればよく、第二壁部212は、第二面113に接着または溶着されていればよい。上壁部213及び底壁部214についても同様である。上壁部213は、第五面116に接着も溶着もされなくてもよい。この場合、上壁部213は、第五面116から離間して配置されてもよい。底壁部214は、第四面115に接着も溶着もされなくてもよい。この場合、底壁部214は、第四面115から離間して配置されてもよい。 In this way, the spacer 200a has a first wall portion 211 facing the first surface 111 or 112 of the container 110 of the power storage element 100, and a second wall portion 212 facing the second surface 113. . In the above configuration, the first wall portion 211 may be welded to the first surface 111 or 112 of the container 110 of the power storage element 100 instead of or in addition to adhesion. The first wall portion 211 can be welded to the first surface 111 or 112 by, for example, covering the outer surface of the container 110 of the power storage element 100 with an insulating film and welding the insulating film and the first wall portion 211 together. Similarly, the second wall portion 212 may be welded to the second surface 113 of the container 110 of the power storage element 100 instead of or in addition to adhesion. That is, the first wall portion 211 only needs to be bonded or welded to the first surface 111 or 112, and the second wall portion 212 only needs to be bonded or welded to the second surface 113. The same applies to the top wall portion 213 and the bottom wall portion 214. The upper wall portion 213 does not need to be bonded or welded to the fifth surface 116. In this case, the upper wall portion 213 may be spaced apart from the fifth surface 116. The bottom wall portion 214 does not need to be bonded or welded to the fourth surface 115. In this case, the bottom wall portion 214 may be spaced apart from the fourth surface 115.
 図3に示すように、第二スペーサ220は、第三壁部221と、第四壁部222と、上壁部223と、底壁部224と、を有している。第二スペーサ220は、第一スペーサ210とYZ平面に対して対称となる形状、または、第一スペーサ210をZ軸を中心に180°回転させた形状を有している。このため、第三壁部221は、第一スペーサ210の第一壁部211と同様の構成を有し、第四壁部222は、第二壁部212と同様の構成を有し、上壁部223は、上壁部213と同様の構成を有し、底壁部224は、底壁部214と同様の構成を有している。したがって、以下では、第二スペーサ220の第三壁部221、第四壁部222、上壁部223及び底壁部224の構成は、第一スペーサ210の第一壁部211、第二壁部212、上壁部213及び底壁部214の構成に準ずるとして、説明を簡略化または省略する。 As shown in FIG. 3, the second spacer 220 has a third wall 221, a fourth wall 222, a top wall 223, and a bottom wall 224. The second spacer 220 has a shape that is symmetrical to the first spacer 210 with respect to the YZ plane, or a shape that is obtained by rotating the first spacer 210 by 180 degrees around the Z axis. Therefore, the third wall 221 has the same configuration as the first wall 211 of the first spacer 210, the fourth wall 222 has the same configuration as the second wall 212, and the upper wall The portion 223 has the same configuration as the top wall portion 213, and the bottom wall portion 224 has the same configuration as the bottom wall portion 214. Therefore, in the following, the configurations of the third wall 221, fourth wall 222, top wall 223, and bottom wall 224 of the second spacer 220 are as follows: 212, the top wall part 213, and the bottom wall part 214, and the description thereof will be simplified or omitted.
 第三壁部221は、蓄電素子100の容器110の第一面111または112のX軸プラス方向端部にY軸方向で対向し、かつ、当該第一面111または112のX軸プラス方向端部に接触した状態で配置される。本実施の形態では、第三壁部221は、当該第一面111または112に接着または溶着される。詳細には、第三壁部221は、第三壁部221を挟む2つの蓄電素子100が有する2つの容器110の第一面111及び112の双方のX軸プラス方向端部に接触し、かつ、当該第一面111及び当該第一面112の双方に接着または溶着される。 The third wall portion 221 faces the end of the first surface 111 or 112 in the X-axis positive direction of the container 110 of the power storage element 100 in the Y-axis direction, and is located opposite the end of the first surface 111 or 112 in the X-axis positive direction placed in contact with the In this embodiment, the third wall portion 221 is adhered or welded to the first surface 111 or 112. Specifically, the third wall 221 contacts the ends of both the first surfaces 111 and 112 in the X-axis positive direction of the two containers 110 of the two power storage elements 100 that sandwich the third wall 221, and , is adhered or welded to both the first surface 111 and the first surface 112.
 第四壁部222は、蓄電素子100のX軸プラス方向において、蓄電素子100の容器110の第三面114に沿って配置される。具体的には、第四壁部222は、容器110の第三面114のY軸プラス方向またはY軸マイナス方向の略半分を覆うように、X軸方向において第三面114と対向して配置される。第四壁部222は、当該第三面114のZ軸方向における一端縁から他端縁までに亘って延びる。本実施の形態では、第四壁部222は、当該第三面114と接触した状態で配置され、かつ、当該第三面114に接着または溶着される。詳細には、第四壁部222は、第三壁部221を挟む2つの蓄電素子100が有する2つの容器110の第三面114の双方に接着または溶着される。 The fourth wall portion 222 is arranged along the third surface 114 of the container 110 of the power storage element 100 in the X-axis plus direction of the power storage element 100. Specifically, the fourth wall portion 222 is arranged to face the third surface 114 in the X-axis direction so as to cover approximately half of the third surface 114 of the container 110 in the Y-axis positive direction or the Y-axis negative direction. be done. The fourth wall portion 222 extends from one end edge to the other end edge of the third surface 114 in the Z-axis direction. In this embodiment, the fourth wall portion 222 is placed in contact with the third surface 114 and is adhered or welded to the third surface 114. Specifically, the fourth wall 222 is adhered or welded to both third surfaces 114 of the two containers 110 that are included in the two power storage elements 100 that sandwich the third wall 221 .
 上壁部223は、蓄電素子100の容器110の第五面116のX軸プラス方向端部の角部を覆うように、Z軸方向において第五面116と対向して配置される。底壁部224は、蓄電素子100の容器110の第四面115のX軸プラス方向端部の角部を覆うように、Z軸方向において第四面115と対向して配置される。 The upper wall portion 223 is arranged to face the fifth surface 116 in the Z-axis direction so as to cover the corner of the fifth surface 116 of the container 110 of the power storage element 100 at the end in the X-axis positive direction. Bottom wall portion 224 is disposed facing fourth surface 115 in the Z-axis direction so as to cover the corner of the fourth surface 115 of container 110 of power storage element 100 at the end in the X-axis positive direction.
 第二スペーサ230は、XZ平面に平行な平板状かつ矩形状の第三壁部231を有している。本実施の形態では、第二スペーサ230は、第三壁部231のみを有している。第三壁部231は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に配置される。具体的には、第三壁部231は、蓄電素子100の容器110の第一面111または112のX軸方向中央部及びZ軸方向中央部にY軸方向で対向し、かつ、当該第一面111または112のX軸方向中央部及びZ軸方向中央部に接触した状態で配置される。本実施の形態では、第三壁部231は、当該第一面111または112に接着剤または両面テープ等によって接着される。詳細には、第三壁部231は、Y軸方向において2つの蓄電素子100の間、つまり、一方の蓄電素子100の容器110の第一面111と、他方の蓄電素子100の容器110の第一面112との間に配置される。第三壁部231は、当該第一面111及び当該第一面112の双方のX軸方向中央部及びZ軸方向中央部に接触し、かつ、当該第一面111及び当該第一面112の双方に接着される。 The second spacer 230 has a flat and rectangular third wall portion 231 parallel to the XZ plane. In this embodiment, second spacer 230 has only third wall portion 231. Third wall portion 231 is arranged in the Y-axis positive direction or Y-axis negative direction of power storage element 100. Specifically, the third wall portion 231 faces the center portion in the X-axis direction and the center portion in the Z-axis direction of the first surface 111 or 112 of the container 110 of the power storage element 100 in the Y-axis direction, and It is placed in contact with the center portion of the surface 111 or 112 in the X-axis direction and the center portion in the Z-axis direction. In this embodiment, the third wall portion 231 is adhered to the first surface 111 or 112 using an adhesive, double-sided tape, or the like. Specifically, the third wall portion 231 is located between the two power storage elements 100 in the Y-axis direction, that is, between the first surface 111 of the container 110 of one power storage element 100 and the first surface 111 of the container 110 of the other power storage element 100. It is arranged between the first surface 112 and the other surface 112 . The third wall portion 231 contacts the central portion in the X-axis direction and the central portion in the Z-axis direction of both the first surface 111 and the first surface 112, and Glued to both sides.
 第三壁部231は、第一スペーサ210の第一壁部211と同様に、蓄電素子100の容器110の第一面111または112に、接着に代えて、または、接着に加えて、溶着されてもよい。つまり、第三壁部231は、第一面111または112に接着または溶着されていればよい。 Like the first wall 211 of the first spacer 210, the third wall 231 is welded to the first surface 111 or 112 of the container 110 of the power storage element 100 instead of or in addition to adhesion. It's okay. That is, the third wall portion 231 only needs to be adhered or welded to the first surface 111 or 112.
 このように、第二スペーサ220は、第一面111(112)に対向する第三壁部221及び第三面114に対向する第四壁部222を有し、第三壁部221及び第四壁部222は、第一面111(112)及び第三面114に接着または溶着されている。第二スペーサ230は、第一面111(112)に対向する第三壁部231を有し、第三壁部231は、第一面111(112)に接着または溶着されている。このため、第二スペーサ220及び230は、第一面111(112)に対向する第三壁部、及び、第三面114に対向する第四壁部の少なくとも一方を有している。当該第三壁部及び第四壁部の少なくとも一方は、第一面111(112)及び第三面114の少なくとも一方に接着または溶着されている。 In this way, the second spacer 220 has the third wall 221 facing the first surface 111 (112) and the fourth wall 222 facing the third surface 114. The wall portion 222 is adhered or welded to the first surface 111 (112) and the third surface 114. The second spacer 230 has a third wall portion 231 facing the first surface 111 (112), and the third wall portion 231 is adhered or welded to the first surface 111 (112). Therefore, the second spacers 220 and 230 have at least one of a third wall portion facing the first surface 111 (112) and a fourth wall portion facing the third surface 114. At least one of the third wall and the fourth wall is adhered or welded to at least one of the first surface 111 (112) and the third surface 114.
 スペーサ200bは、スペーサ200aと同様に、第一スペーサ240と、第二スペーサ250及び260と、を有している。第一スペーサ240は、スペーサ200aの第一スペーサ210と同様に、第一壁部241と、第二壁部242と、上壁部243と、底壁部244と、を有している。第二スペーサ250は、スペーサ200aの第二スペーサ220と同様に、第三壁部251と、第四壁部252と、上壁部253と、底壁部254と、を有している。第二スペーサ260は、スペーサ200aの第二スペーサ230と同様に、第三壁部261を有している。 Like spacer 200a, spacer 200b includes a first spacer 240 and second spacers 250 and 260. The first spacer 240 has a first wall part 241, a second wall part 242, a top wall part 243, and a bottom wall part 244, like the first spacer 210 of the spacer 200a. The second spacer 250 has a third wall part 251, a fourth wall part 252, a top wall part 253, and a bottom wall part 254, like the second spacer 220 of the spacer 200a. The second spacer 260 has a third wall portion 261 similarly to the second spacer 230 of the spacer 200a.
 上述の通り、スペーサ200bは、スペーサ200aをY軸方向で半分に割ったような形状を有している。つまり、第一スペーサ240、第二スペーサ250及び第二スペーサ260は、第一スペーサ210、第二スペーサ220及び第二スペーサ230をY軸方向で半分に割ったような形状を有している。具体的には、第一スペーサ240の第一壁部241、第二壁部242、上壁部243及び底壁部244は、第一スペーサ210の第一壁部211、第二壁部212、上壁部213及び底壁部214をY軸方向で半分に割ったような形状を有している。第二スペーサ250の第三壁部251、第四壁部252、上壁部253及び底壁部254は、第二スペーサ220の第三壁部221、第四壁部222、上壁部223及び底壁部224をY軸方向で半分に割ったような形状を有している。第二スペーサ260の第三壁部261は、第二スペーサ230の第三壁部231をY軸方向で半分に割ったような形状を有している。ただし、第一壁部241、第三壁部251及び第三壁部261の厚みは、特に限定されず、図3に示すように、第一壁部211、第三壁部221及び第三壁部231の厚みと同等でもよい。 As described above, the spacer 200b has a shape similar to that of the spacer 200a divided in half in the Y-axis direction. That is, the first spacer 240, the second spacer 250, and the second spacer 260 have a shape that is obtained by dividing the first spacer 210, the second spacer 220, and the second spacer 230 in half in the Y-axis direction. Specifically, the first wall 241, second wall 242, top wall 243, and bottom wall 244 of the first spacer 240 are the same as the first wall 211, second wall 212, and It has a shape in which the top wall part 213 and the bottom wall part 214 are divided in half in the Y-axis direction. The third wall 251, fourth wall 252, top wall 253, and bottom wall 254 of the second spacer 250 are the same as the third wall 221, fourth wall 222, top wall 223, and bottom wall 254 of the second spacer 220. It has a shape similar to that of the bottom wall portion 224 divided in half in the Y-axis direction. The third wall portion 261 of the second spacer 260 has a shape similar to that of the third wall portion 231 of the second spacer 230 divided in half in the Y-axis direction. However, the thicknesses of the first wall 241, the third wall 251, and the third wall 261 are not particularly limited, and as shown in FIG. The thickness may be the same as that of the portion 231.
 このように、スペーサ200b(第一スペーサ240、第二スペーサ250及び第二スペーサ260)の各部の構成は、スペーサ200a(第一スペーサ210、第二スペーサ220及び第二スペーサ230)の各部の構成に準ずる。このため、スペーサ200bの各部の構成についての詳細な説明は省略する。 In this way, the configuration of each part of the spacer 200b (first spacer 240, second spacer 250, and second spacer 260) is the same as the configuration of each part of the spacer 200a (first spacer 210, second spacer 220, and second spacer 230). According to. Therefore, a detailed explanation of the configuration of each part of the spacer 200b will be omitted.
 [4 効果の説明]
 以上のように、本発明の実施の形態に係る蓄電装置10によれば、スペーサ200a(第一スペーサ210)は、第一壁部211及び第二壁部212を有している。第一壁部211及び第二壁部212の少なくとも一方(本実施の形態では、双方)は、蓄電素子100の容器110の第一面111(112)及び第二面113の少なくとも一方(本実施の形態では、双方)に接着または溶着されている。これにより、第一壁部211及び第二壁部212でスペーサ200a(第一スペーサ210)を蓄電素子100に対して容易に高精度で位置決めしつつ、接着または溶着によってスペーサ200a(第一スペーサ210)を蓄電素子100に固定できる。したがって、スペーサ200a(第一スペーサ210)を蓄電素子100に対して比較的正確な位置に固定できるため、蓄電装置10の組立性(組み立てやすさ)を向上できる。蓄電装置10の組立後においては、スペーサ200a(第一スペーサ210)の蓄電素子100に対する位置ずれを抑制できる。
[4 Explanation of effects]
As described above, according to the power storage device 10 according to the embodiment of the present invention, the spacer 200a (first spacer 210) has the first wall portion 211 and the second wall portion 212. At least one of the first wall portion 211 and the second wall portion 212 (both in this embodiment) is connected to at least one of the first surface 111 (112) and the second surface 113 (in this embodiment, both) of the container 110 of the power storage element 100. In the form of , it is glued or welded to both sides). As a result, while the spacer 200a (first spacer 210) can be easily positioned with high precision with respect to the electricity storage element 100 by the first wall portion 211 and the second wall portion 212, the spacer 200a (first spacer 210) can be easily positioned with respect to the electricity storage element 100 by adhesion or welding. ) can be fixed to the electricity storage element 100. Therefore, since spacer 200a (first spacer 210) can be fixed at a relatively accurate position with respect to power storage element 100, the assemblability (ease of assembly) of power storage device 10 can be improved. After the power storage device 10 is assembled, positional displacement of the spacer 200a (first spacer 210) with respect to the power storage element 100 can be suppressed.
 スペーサ200aが、別体の複数の部材(第一スペーサ210、第二スペーサ220及び230)で構成されていることで、蓄電素子100における必要な箇所にスペーサ200aを配置できる。これにより、1つのスペーサを蓄電素子間の大半の空間に配置する場合と比較して、スペーサ200aの材料使用量を低減したり、軽量化を図ったり、コスト低減を図ることができる。 Since the spacer 200a is composed of a plurality of separate members (the first spacer 210, the second spacers 220 and 230), the spacer 200a can be arranged at a necessary location in the power storage element 100. This makes it possible to reduce the amount of material used for the spacer 200a, reduce the weight, and reduce costs compared to the case where one spacer is arranged in most of the space between the power storage elements.
 特に、本実施形態では、容器100がX軸方向に長尺な形状を有しているため、スペーサ200aを別体の複数の部材で構成することにより、スペーサ200aの材料使用量をより大きく低減できる。容器100のX軸方向の長さが、Z軸方向の長さの3倍以上であれば、スペーサ200aを別体の複数の部材で構成することにより、スペーサ200aの材料使用量を一層大きく低減できる。 In particular, in this embodiment, since the container 100 has an elongated shape in the X-axis direction, the amount of material used for the spacer 200a can be further reduced by configuring the spacer 200a from a plurality of separate members. can. If the length of the container 100 in the X-axis direction is three times or more the length in the Z-axis direction, the amount of material used for the spacer 200a can be further reduced by configuring the spacer 200a with a plurality of separate members. can.
 スペーサ200aが、別体の複数の部材(第一スペーサ210、第二スペーサ220及び230)で構成されていることで、第一スペーサ210の材質と第二スペーサ230の材質とを異ならせることができる。この場合、第二スペーサ230をセラミック等で形成することにより、蓄電素子100が高温になった場合でも、第二スペーサ230の溶融を抑制できる。これにより、蓄電素子の安全性を向上できる。 Since the spacer 200a is composed of a plurality of separate members (first spacer 210, second spacers 220 and 230), the material of the first spacer 210 and the material of the second spacer 230 can be made different. can. In this case, by forming second spacer 230 from ceramic or the like, melting of second spacer 230 can be suppressed even when power storage element 100 reaches a high temperature. Thereby, the safety of the power storage element can be improved.
 第二スペーサ220の第三壁部221及び第四壁部222の少なくとも一方(本実施の形態では、双方)を、蓄電素子100の容器110の第一面111(112)及び第三面114の少なくとも一方(本実施の形態では、双方)に接着または溶着する。これにより、第二スペーサ220も蓄電素子100に対して容易に位置決めしつつ、蓄電素子100に固定できる。蓄電装置10の組立後においては、第二スペーサ220の蓄電素子100に対する位置ずれを抑制できる。第二スペーサ230の第三壁部231を、蓄電素子100の容器110の第一面111(112)に接着または溶着することで、第二スペーサ230も蓄電素子100に対して固定できる。 At least one of the third wall portion 221 and the fourth wall portion 222 of the second spacer 220 (in this embodiment, both) At least one (in this embodiment, both) is adhered or welded. Thereby, the second spacer 220 can also be easily positioned with respect to the power storage element 100 and fixed to the power storage element 100. After the power storage device 10 is assembled, positional displacement of the second spacer 220 with respect to the power storage element 100 can be suppressed. By adhering or welding the third wall portion 231 of the second spacer 230 to the first surface 111 (112) of the container 110 of the power storage element 100, the second spacer 230 can also be fixed to the power storage element 100.
 蓄電素子100の容器110の第二面113は、第一面111及び112よりも面積が小さいため、第一面111及び112が容器110の長側面であり、第二面113が容器110の短側面である。蓄電素子100は、容器110の長側面(第一面111及び112)が膨れるが、短側面(第二面113)は膨れる量が小さい。このため、スペーサ200a(第一スペーサ210)の第二壁部212が、蓄電素子100の容器110の短側面(第二面113)に接着または溶着されていることで、スペーサ200a(第一スペーサ210)が蓄電素子100の容器110から剥がれるのを抑制できる。第二壁部212が、容器110の短側面(第二面113)に接着または溶着されていることで、容器110の長側面(第一面111及び112)が膨れた場合でも、第一壁部211の移動が抑制される。このため、第一壁部211で、容器110の長側面(第一面111または112)をより強固に圧迫できる。 The second surface 113 of the container 110 of the power storage element 100 has a smaller area than the first surfaces 111 and 112, so the first surfaces 111 and 112 are the long sides of the container 110, and the second surface 113 is the short side of the container 110. It is a side. In the power storage element 100, the long sides (first surfaces 111 and 112) of the container 110 swell, but the short sides (second surface 113) swell by a small amount. Therefore, the second wall portion 212 of the spacer 200a (first spacer 210) is adhered or welded to the short side (second surface 113) of the container 110 of the power storage element 100, so that the spacer 200a (first spacer 210) 210) can be prevented from peeling off from the container 110 of the power storage element 100. Since the second wall portion 212 is adhered or welded to the short side surface (second surface 113) of the container 110, even if the long side surface (first surfaces 111 and 112) of the container 110 swells, the first wall portion Movement of the portion 211 is suppressed. Therefore, the first wall portion 211 can press the long side (first surface 111 or 112) of the container 110 more firmly.
 スペーサ200a(第一スペーサ210)の第一壁部211及び第二壁部212の双方を、蓄電素子100の容器110の第一面111(112)及び第二面113の双方に接着または溶着することで、スペーサ200a(第一スペーサ210)を蓄電素子100に強固に固定できる。 Both the first wall portion 211 and the second wall portion 212 of the spacer 200a (first spacer 210) are adhered or welded to both the first surface 111 (112) and the second surface 113 of the container 110 of the power storage element 100. Thereby, spacer 200a (first spacer 210) can be firmly fixed to power storage element 100.
 接着剤は両面テープのようなクッション性を有さないため、スペーサ200a(第一スペーサ210、第二スペーサ220及び230)は、接着剤によって蓄電素子100に接着されることが好ましい。 It is preferable that the spacer 200a (first spacer 210, second spacer 220 and 230) be adhered to the power storage element 100 with an adhesive because the adhesive does not have cushioning properties like double-sided tape.
 上記において、第一スペーサ210についての効果の記載は、第二スペーサ220についても同様に適用できる。スペーサ200aについての効果の記載は、スペーサ200b(第一スペーサ240、第二スペーサ250及び260)についても同様に適用できる。 In the above, the description of the effects regarding the first spacer 210 is similarly applicable to the second spacer 220. The description of the effects regarding spacer 200a can be similarly applied to spacer 200b (first spacer 240, second spacers 250 and 260).
 [5 変形例の説明]
 以上、本発明の実施の形態に係る蓄電装置10について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であり、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
[5 Description of modification]
Although the power storage device 10 according to the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. The embodiments disclosed this time are illustrative in all respects, and the scope of the present invention includes all changes within the meaning and range equivalent to the scope of the claims.
 (変形例1)
 上記実施の形態において、スペーサ200の形状は特に限定されず、種々の形状を取り得る。その一例を以下に説明する。図5は、本実施の形態の変形例1に係るスペーサ200aが有する第一スペーサ210a及び210bの構成を示す斜視図である。図5の(a)及び(b)は、図4の(a)及び(b)に対応する図である。
(Modification 1)
In the embodiments described above, the shape of the spacer 200 is not particularly limited, and can take various shapes. An example of this will be explained below. FIG. 5 is a perspective view showing the configuration of first spacers 210a and 210b included in spacer 200a according to Modification 1 of the present embodiment. (a) and (b) of FIG. 5 are diagrams corresponding to (a) and (b) of FIG. 4.
 図5に示すように、本変形例における第一スペーサ210a及び210bは、上記実施の形態における第一スペーサ210を分割して得られる2つの部材である。第一スペーサ210aは、第一スペーサ210のZ軸プラス方向端部の部位と同様の形状を有し、第一スペーサ210bは、第一スペーサ210のZ軸マイナス方向端部の部位と同様の形状を有している。第一スペーサ210a及び210bは、Z軸方向に並ぶ2つの部材である。 As shown in FIG. 5, first spacers 210a and 210b in this modification are two members obtained by dividing the first spacer 210 in the above embodiment. The first spacer 210a has the same shape as the end of the first spacer 210 in the Z-axis positive direction, and the first spacer 210b has the same shape as the end of the first spacer 210 in the Z-axis negative direction. have. The first spacers 210a and 210b are two members arranged in the Z-axis direction.
 具体的には、第一スペーサ210aは、第一壁部211aと、第二壁部212aと、上壁部213と、を有している。第一壁部211a及び第二壁部212aは、上記実施の形態における第一スペーサ210が有する第一壁部211及び第二壁部212のZ軸プラス方向端部の部位と同様の形状を有している。第一スペーサ210bは、第一壁部211bと、第二壁部212bと、底壁部214と、を有している。第一壁部211b及び第二壁部212bは、上記実施の形態における第一スペーサ210が有する第一壁部211及び第二壁部212のZ軸マイナス方向端部の部位と同様の形状を有している。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 Specifically, the first spacer 210a has a first wall portion 211a, a second wall portion 212a, and an upper wall portion 213. The first wall portion 211a and the second wall portion 212a have the same shapes as the Z-axis plus direction end portions of the first wall portion 211 and the second wall portion 212 of the first spacer 210 in the above embodiment. are doing. The first spacer 210b has a first wall portion 211b, a second wall portion 212b, and a bottom wall portion 214. The first wall portion 211b and the second wall portion 212b have the same shape as the end portions in the Z-axis negative direction of the first wall portion 211 and the second wall portion 212 of the first spacer 210 in the above embodiment. are doing. The other configurations of this modification are the same as those of the above embodiment, so detailed explanations will be omitted.
 以上のように、本変形例に係る蓄電装置10によれば、上記実施の形態と同様の効果を奏することができる。特に、本変形例では、スペーサ200aをさらに分割することで、蓄電素子100における必要な箇所にスペーサ200aを配置できる。これにより、スペーサ200aの材料使用量を低減したり、軽量化を図ったり、コスト低減を図ることができる。 As described above, the power storage device 10 according to this modification can achieve the same effects as the above embodiment. In particular, in this modification, by further dividing spacer 200a, spacer 200a can be arranged at a necessary location in power storage element 100. Thereby, the amount of material used for the spacer 200a can be reduced, the weight can be reduced, and the cost can be reduced.
 本変形例において、スペーサ200a(第一スペーサ210a及び210b)をさらに分割してもよい。第二スペーサ220または230についても同様に、分割してもよい。スペーサ200bが有する第一スペーサ240、第二スペーサ250または260についても同様に、分割してもよい。 In this modification, the spacer 200a ( first spacers 210a and 210b) may be further divided. Similarly, the second spacer 220 or 230 may be divided. The first spacer 240, second spacer 250, or 260 included in the spacer 200b may be similarly divided.
 (その他の変形例)
 以下に、その他の種々の変形例について説明する。以下では、スペーサ200aが有する第一スペーサ210の変形例について主に説明するが、当該変形例のうち第二スペーサ220または230についても適用できるものは、第二スペーサ220または230についても同様に変形してもよい。同様に、第一スペーサ210の変形例のうち、スペーサ200bが有する第一スペーサ240、第二スペーサ250または260についても適用できるものは、第一スペーサ240、第二スペーサ250または260についても同様に変形してもよい。
(Other variations)
Various other modifications will be described below. In the following, modified examples of the first spacer 210 included in the spacer 200a will be mainly described, but among the modified examples, those that are applicable to the second spacer 220 or 230 are also modified to the second spacer 220 or 230. You may. Similarly, among the modifications of the first spacer 210, those that are applicable to the first spacer 240, second spacer 250, or 260 included in the spacer 200b are also applicable to the first spacer 240, second spacer 250, or 260. May be deformed.
 上記実施の形態では、第一スペーサ210の第一壁部211は、第一壁部211を挟む2つの蓄電素子100が有する2つの容器110の第一面111及び112の双方に接着(または溶着)されることとしたが、当該第一面111及び112のいずれか一方には接着(または溶着)されなくてもよい。 In the embodiment described above, the first wall 211 of the first spacer 210 is adhered (or welded) to both the first surfaces 111 and 112 of the two containers 110 of the two power storage elements 100 that sandwich the first wall 211. ), but it is not necessary to adhere (or weld) to either one of the first surfaces 111 and 112.
 上記実施の形態では、第一スペーサ210の第二壁部212は、第一壁部211を挟む2つの蓄電素子100の2つの容器110の第二面113の双方に接着(または溶着)されることとしたが、いずれか一方の第二面113には接着(または溶着)されなくてもよい。第二壁部212が第二面113に接着(または溶着)されない場合には、第二壁部212は、当該第二面113から離間して配置されてもよい。 In the embodiment described above, the second wall portion 212 of the first spacer 210 is adhered (or welded) to both of the second surfaces 113 of the two containers 110 of the two power storage elements 100 that sandwich the first wall portion 211. However, it is not necessary to adhere (or weld) to one of the second surfaces 113. If the second wall portion 212 is not bonded (or welded) to the second surface 113, the second wall portion 212 may be spaced apart from the second surface 113.
 上記実施の形態では、第一スペーサ210の第一壁部211及び第二壁部212の双方が、蓄電素子100の容器110の第一面111(112)及び第二面113の双方に接着(または溶着)されることとしたが、これには限定されない。第一壁部211が第一面111(112)に接着(または溶着)されなくてもよいし、第二壁部212が第二面113に接着(または溶着)されなくてもよい。このように、第一壁部211及び第二壁部212の少なくとも一方が、第一面111(112)及び第二面113の少なくとも一方に接着または溶着されていればよい。 In the embodiment described above, both the first wall portion 211 and the second wall portion 212 of the first spacer 210 are bonded ( or welding), but is not limited thereto. The first wall portion 211 may not be bonded (or welded) to the first surface 111 (112), and the second wall portion 212 may not be bonded (or welded) to the second surface 113. In this way, at least one of the first wall portion 211 and the second wall portion 212 may be adhered or welded to at least one of the first surface 111 (112) and the second surface 113.
 上記実施の形態では、第一スペーサ210は、上壁部213及び底壁部214を有していることとしたが、上壁部213及び底壁部214の一方または双方を有していなくてもよい。 In the above embodiment, the first spacer 210 has the top wall part 213 and the bottom wall part 214, but it may not have one or both of the top wall part 213 and the bottom wall part 214. Good too.
 上記実施の形態では、スペーサ200aは、別体の第一スペーサ210、第二スペーサ220及び第二スペーサ230を有していることとしたが、第二スペーサ220を有していなくてもよいし、第二スペーサ230を有していなくてもよい。第一スペーサ210、第二スペーサ220及び第二スペーサ230のいずれか2つ、または、3つ全てが一体化されていてもよい。 In the above embodiment, the spacer 200a includes the separate first spacer 210, second spacer 220, and second spacer 230, but it may not include the second spacer 220. , the second spacer 230 may not be included. Any two or all three of the first spacer 210, the second spacer 220, and the second spacer 230 may be integrated.
 上記実施の形態では、蓄電素子100の容器110の第一面111(112)が容器110の長側面であり、第二面113が容器110の短側面であることとしたが、第一面111(112)が容器110の短側面であり、第二面113が容器110の長側面であってもよい。第一面111(112)が、容器110の端子配置面または底面でもよいし、第二面113が、容器110の端子配置面または底面でもよい。 In the above embodiment, the first surface 111 (112) of the container 110 of the power storage element 100 is the long side of the container 110, and the second surface 113 is the short side of the container 110. (112) may be the short side of the container 110, and the second surface 113 may be the long side of the container 110. The first surface 111 (112) may be the terminal arrangement surface or the bottom surface of the container 110, and the second surface 113 may be the terminal arrangement surface or the bottom surface of the container 110.
 上記実施の形態では、複数のスペーサ200(200a及び200b)の全てが上述の構成を有していることとしたが、いずれかのスペーサ200が上述とは異なる構成を有していてもよい。 In the above embodiment, all of the plurality of spacers 200 (200a and 200b) have the above configuration, but any one of the spacers 200 may have a configuration different from the above.
 上記実施の形態において、蓄電装置10が備える複数のスペーサ200(200a及び200b)のうちのいずれかのスペーサ200が配置されなくてもよい。蓄電装置10は、スペーサ200bを備えることなく、スペーサ200aを備えていてもよい。蓄電装置10は、複数のスペーサ200aのうちのいずれかのスペーサ200aを備えていなくてもよい。蓄電装置10が1つの蓄電素子100しか備えない場合には、スペーサ200aは配置されることなく、蓄電素子100の両側に2つのスペーサ200b、または、蓄電素子100の片側に1つのスペーサ200bが配置されてもよい。 In the embodiment described above, any one of the plurality of spacers 200 (200a and 200b) included in the power storage device 10 may not be arranged. Power storage device 10 may include spacer 200a without including spacer 200b. Power storage device 10 may not include any one of the plurality of spacers 200a. When power storage device 10 includes only one power storage element 100, spacer 200a is not arranged, and two spacers 200b are arranged on both sides of power storage element 100, or one spacer 200b is arranged on one side of power storage element 100. may be done.
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Embodiments constructed by arbitrarily combining the components included in the above embodiments and their modifications are also included within the scope of the present invention.
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置等に適用できる。 The present invention can be applied to a power storage device, etc. equipped with a power storage element such as a lithium ion secondary battery.
 10 蓄電装置
 100 蓄電素子
 110 容器
 111、112 第一面
 113 第二面
 114 第三面
 115 第四面
 116 第五面
 120 容器本体
 130 蓋体
 131 ガス排出弁
 140 電極端子
 150 電極体
 160 集電体
 200、200a、200b スペーサ
 210、210a、210b、240 第一スペーサ
 211、211a、211b、241 第一壁部
 212、212a、212b、242 第二壁部
 213、223、243、253 上壁部
 214、224、244、254 底壁部
 220、230、250、260 第二スペーサ
 221、231、251、261 第三壁部
 222、252 第四壁部
 300 外装体
10 Power storage device 100 Power storage element 110 Container 111, 112 First surface 113 Second surface 114 Third surface 115 Fourth surface 116 Fifth surface 120 Container body 130 Lid body 131 Gas discharge valve 140 Electrode terminal 150 Electrode body 160 Current collector 200, 200a, 200b Spacer 210, 210a, 210b, 240 First spacer 211, 211a, 211b, 241 First wall 212, 212a, 212b, 242 Second wall 213, 223, 243, 253 Upper wall 214, 224, 244, 254 Bottom wall 220, 230, 250, 260 Second spacer 221, 231, 251, 261 Third wall 222, 252 Fourth wall 300 Exterior body

Claims (5)

  1.  容器を有する蓄電素子と、スペーサと、を備える蓄電装置であって、
     前記容器は、互いに隣り合う第一面及び第二面を有し、
     前記スペーサは、前記第一面に対向する第一壁部と、前記第二面に対向する第二壁部と、を有し、
     前記第一壁部及び前記第二壁部の少なくとも一方は、前記第一面及び前記第二面の少なくとも一方に接着または溶着されている
     蓄電装置。
    A power storage device including a power storage element having a container and a spacer,
    The container has a first surface and a second surface that are adjacent to each other,
    The spacer has a first wall portion facing the first surface, and a second wall portion facing the second surface,
    At least one of the first wall portion and the second wall portion is adhered or welded to at least one of the first surface and the second surface. The power storage device.
  2.  前記容器は、前記第二面とで前記第一面を挟む第三面を有し、
     前記スペーサは、
     前記第一壁部及び前記第二壁部を有する第一スペーサと、
     前記第一面に対向する第三壁部及び前記第三面に対向する第四壁部の少なくとも一方を有する第二スペーサであって、前記第一スペーサとは別体の第二スペーサと、を有する
     請求項1に記載の蓄電装置。
    The container has a third surface that sandwiches the first surface with the second surface,
    The spacer is
    a first spacer having the first wall portion and the second wall portion;
    a second spacer having at least one of a third wall portion facing the first surface and a fourth wall portion facing the third surface, the second spacer being separate from the first spacer; The power storage device according to claim 1, comprising:
  3.  前記第三壁部及び前記第四壁部の少なくとも一方は、前記第一面及び前記第三面の少なくとも一方に接着または溶着されている
     請求項2に記載の蓄電装置。
    The power storage device according to claim 2, wherein at least one of the third wall portion and the fourth wall portion is adhered or welded to at least one of the first surface and the third surface.
  4.  前記第二面は、前記第一面よりも面積が小さく、
     前記第二壁部は、前記第二面に接着または溶着されている
     請求項1~3のいずれか一項に記載の蓄電装置。
    The second surface has a smaller area than the first surface,
    The power storage device according to any one of claims 1 to 3, wherein the second wall portion is adhered or welded to the second surface.
  5.  前記第一壁部は、前記第一面に接着または溶着され、前記第二壁部は、前記第二面に接着または溶着されている
     請求項1~4のいずれか一項に記載の蓄電装置。
    The power storage device according to any one of claims 1 to 4, wherein the first wall portion is bonded or welded to the first surface, and the second wall portion is bonded or welded to the second surface. .
PCT/JP2023/000572 2022-03-11 2023-01-12 Power storage device WO2023171117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037859 2022-03-11
JP2022037859 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171117A1 true WO2023171117A1 (en) 2023-09-14

Family

ID=87936696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000572 WO2023171117A1 (en) 2022-03-11 2023-01-12 Power storage device

Country Status (1)

Country Link
WO (1) WO2023171117A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065558A (en) * 2011-09-15 2013-04-11 Sb Limotive Co Ltd Battery module
JP2015207539A (en) * 2014-04-23 2015-11-19 トヨタ自動車株式会社 power storage device
WO2017057207A1 (en) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 Battery pack
JP2021535538A (en) * 2019-08-08 2021-12-16 欣旺達電動汽車電池有限公司Sunwoda Electric Vehicle Battery Co., LTD. Battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065558A (en) * 2011-09-15 2013-04-11 Sb Limotive Co Ltd Battery module
JP2015207539A (en) * 2014-04-23 2015-11-19 トヨタ自動車株式会社 power storage device
WO2017057207A1 (en) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 Battery pack
JP2021535538A (en) * 2019-08-08 2021-12-16 欣旺達電動汽車電池有限公司Sunwoda Electric Vehicle Battery Co., LTD. Battery module

Similar Documents

Publication Publication Date Title
US20230084184A1 (en) Energy storage apparatus
JP7286991B2 (en) Storage element
JP7427903B2 (en) Power storage device
WO2023171117A1 (en) Power storage device
JP2021111562A (en) Power storage device
WO2024009930A1 (en) Power storage device
WO2024038730A1 (en) Electricity storage device
WO2024058219A1 (en) Power storage device
WO2022130999A1 (en) Power storage device
WO2023199781A1 (en) Power storage device
WO2024043254A1 (en) Power storage device
WO2023013466A1 (en) Power storage device
WO2021166625A1 (en) Power storage device
WO2022255162A1 (en) Power storage device
WO2021187133A1 (en) Power storage device
WO2022163668A1 (en) Power storage device
WO2022255017A1 (en) Power storage device
WO2024038729A1 (en) Electricity storage device
WO2023053831A1 (en) Power storage device
WO2022196479A1 (en) Power storage device
JP7501370B2 (en) Power storage device
WO2023032562A1 (en) Power storage device
JP7275677B2 (en) power storage device
JP2021132016A (en) Power storage device
JP2021132014A (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766298

Country of ref document: EP

Kind code of ref document: A1